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Abstract

Structural-acoustic control with application to launch vehicle shrouds is investigated. Sev-
eral issues introduce difficulties into the problem which make current acoustic control
methods ineffective or impossible to implement. The broadband and diffuse source nature
of the acoustic disturbances make a measurement of the incoming disturbance impossible,
eliminating the possibility of feedforward methods as a solution. Also, global attenuation
of the acoustics is required while the placement of performance microphones near the pay-
load is prohibited because of the possibility of damage to the payload.

The control was implemented in two parts. The first part involved the control of acoustic
transmission from the outside environment into the payload fairing enclosure by control-
ling the vibration of the structure. This was done using a sensitivity weighted Linear Qua-
dratic Gaussian control design targeting the first two structural modes, which are the most
efficient in transmitting sound. The second part controlled the reverberation of sound
within the enclosure by decreasing the reflection coefficient of one end of the enclosure.
This was done using two methods. The first was a sensitivity weighted LQG design in
which the first three acoustic cavity modes were targeted. The second was a state space
formulation of the acoustic impedance matching control methodology. The transmission
and reflection controllers were implemented in succession, allowing for the use of two sin-
gle input, single output controllers.

Significant reduction in the transmission of sound at the frequencies of the structural
modes was achieved using the transmission control. Because the acoustic cavity modes are
weakly coupled with the structural modes, control of the structure did not lead to signifi-
cant damping of the acoustic cavity modes. However, the implementation of the SWLQG
reflection control led to appreciable damping on the first three acoustic modes leading to
an overall acoustic performance improvement of nearly 6 dB in the broadband metric
measured from 10Hz to 1 kHz and modal performance improvements of over 17 dB at the
structural modes and up to 12 dB in the first three acoustic modes.

Thesis Supervisor: David W. Miller
Title: Assistant Professor





Acknowledgements

This work was supported by the AFOSR Grant No. F49620-96-1-0290 for the purpose of

Active Acoustic Launch Load Alleviation with Capt. Brian Sanders as the AFOSR con-

tract monitor, Charlotte Morse as the MIT contract monitor, Sharon-Leah Brown as the

MIT contract administrator, and Karen Buck as the AFOSR contract administrator.

This work would not have been possible without Prof. David Miller whose advice and

guidance were invaluable in the course of the research. Previous research by Dr. Roger

Glaese provided a foundation upon which this work was based, and his advice was sought

on numerous occasions. Dr. Carl Blaurock and Robert Pascal also added significantly to

the research effort and are appreciated for their contributions.





Contents
1 Introduction 13

1.1 Motivation 13
1.2 Passive Techniques 14
1.3 Active Techniques 15
1.4 Thesis Outline 18

2 Experimental Setup 19
2.1 Approach 19
2.2 Test Chamber 20
2.3 Electronics 27

3 Structural-Acoustic Modeling 31
3.1 Finite Element Model 32
3.2 Measurement Model 33
3.3 Summary 36

4 Linear Quadratic Gaussian Control Design Techniques 39
4.1 Sensitivity Weighted LQG 40
4.2 Frequency Weighted LQG 41
4.3 Summary 43

5 Control Design Process 45
5.1 Transmission Control 46

5.1.1 Plate Dynamics 47
5.1.2 Acceleration Feedback 48
5.1.3 Position Feedback 49
5.1.4 Strain Feedback 51

5.2 Combined Transmission-Reflection Control 56
5.2.1 Multi-Input Multi-Output LQG Design 57
5.2.2 Successive Loop Closure with LQG 58
5.2.3 Successive Loop Closure with Impedance Matching 60

5.3 Summary 62

6 Experimental Results 65
6.1 Open Loop 65
6.2 Transmission Control 71
6.3 Combined Transmission and Reflection Control 79
6.4 Summary 93



7 Conclusions 95
7.1 Summary 95
7.2 Recommendations for Further Work 97

References

A MATLAB Code for Design of SWLQG Compensators 103

B Narrowband Impedance Match 111

C Discrete Area Averaging Acoustic Sensor 115
C.1 Introduction 115
C.2 Sensor Design and Signal Analysis 117
C.3 Experimental Results 119
C.4 Conclusions 121



List of Figures
2.1 Exterior view of structural acoustic test chamber 20
2.2 Schematic diagram of the structural-acoustic test chamber 21
2.3 Photograph of chamber interior looking down the length of the waveguide,

showing the acoustic foam, fiberglass blanket, performance microphones, and
control speaker 23

2.4 Disturbance speaker to performance microphones with and without the
fiberglass blanket and acoustic foam linings 23

2.5 Photograph of aluminum plate number 1, instrumented with strain gages and an
accelerometer for structural sensing, a microphone for acoustic sensing and a
piezoceramic patch for structural actuation 25

2.6 Photograph of aluminum plate number 2, instrumented with strain gages and
PVDF for structural sensing and a piezoceramic patch for structural actuation 26

2.7 Photograph of electronics rack for signal conditioning and amplification 27
2.8 Block diagram of experimental setup 28

3.1 The four block problem 33
3.2 Open loop piezoceramic actuator to PVDF strain sensor transfer function (solid:

data, dash: 44 state reduced model, dash-dot: 130 state model) 35
3.3 Block diagram of measurement modeling process 37

5.1 First six mode shapes of a circular plate with clamped boundary conditions 47
5.2 Open loop transfer function from piezoceramic actuator to accelerometer 50
5.3 Open loop transfer function from piezoceramic actuator to position 51
5.4 Schematic diagram of PVDF strain sensor 54
5.5 Piezoceramic actuator to inner ring PVDF sensor and full PVDF sensor transfer

functions 55
5.6 Controlled speaker to feedback microphone transfer function for reflection

control 59

6.1 Open loop Gyu transfer function for transmission control 67
6.2 Open loop Gzu transfer functions 68
6.3 Open loop Gyw transfer function 69
6.4 Open loop Gzw transfer functions 70
6.5 Transmission compensator transfer function and Nichols Plot based on the

compensator wrapped around the open loop data 72
6.6 Transmission control closed loop and open loop disturbance speaker to PVDF

sensor transfer functions 72
6.7 Structural closed loop and open loop disturbance speaker to performance



microphone transfer functions 74
6.8 Disturbance speaker to performance microphone RSS transfer functions with

the transmission control closed -- experimental closed loop data (-), predicted
closed loop (--), and open loop data (-.) 75

6.9 Time traces of the performance microphones in response to a sinusoidal
disturbance at the frequency of the first structural mode 76

6.10 Frequency dependent control penalties 78
6.11 "Acoustic open loop" Gyu and Gzu transfer functions 80
6.12 Impedance matching acoustic controller transfer function 81
6.13 Disturbance speaker to performance microphone RSS transfer functions:

impedance matching reflection and transmission closed loop (-) compared
with the transmission closed loop only (--) 82

6.14 Disturbance speaker to performance microphones for impedance matching
reflection control and transmission control compared with open loop 83

6.15 SWLQG reflection controllers: full 42 state compensator (-), 22 state
reduced compensator (- -), and 16 state reduced compensator (--) 85

6.16 Disturbance to performance microphone transfer functions for the 16 state
SWLQG reflection control with transmission control (-) compared with
transmission control only (--) 87

6.17 Disturbance to performance microphone transfer functions for the 16 state
SWLQG reflection control with transmission control (-) compared with open
loop (--) 88

6.18 Disturbance to performance microphone transfer functions for the 22 state
SWLQG reflection control with transmission control (-) compared with
transmission control only (--) 90

6.19 Disturbance speaker to performance microphone RSS transfer functions --
experimental data for 22 state reflection controller (-), experimental data for
16 state reflection controller (--), predicted performance for 42 state reflection
controller(-.), and experimental data with no reflection control implemented (...) 91

6.20 Disturbance to performance microphone transfer functions for 22 state SWLQG
reflection control with transmission control (-) compared with open loop (--) 92

B.1 Narrowband impedance matching compensator transfer function, transfer
function showing the impedance match, Nichols plot using open loop data, and
predicted closed loop transfer function 114

C. 1 Resulting signals on an area averaging sensor due to incoming waves travelling
perpendicular (a) and obliquely (b) to the face of the sensor 116

C.2 Layout of discrete microphone array 117
C.3 Derived acoustic signal at microphone 1 (-) compared to the signal of

microphone 1 (--) 120
C.4 Average acoustic signal of microphones 1, 6, 7, 8, 9 (-), compared to the

acoustic signal of microphone 1 (--) 121



List of Tables
5.1 Speaker Parameters 62
6.1 Closed loop performance for impedance matching reflection control 94
6.2 Closed loop performance for SWLQG reflection control 94



12



Chapter 1

Introduction

1.1 Motivation

Space bound payloads are subjected to large amplitude vibro-acoustic loads during

launch. These loads are the cause of 40% of first day spacecraft failures. Also, launch

loads are a major consideration in the structural design of spacecraft. The reduction of

acoustic launch loads can lead to the use of more lightweight and off the shelf compo-

nents, which would lead to lower costs for the spacecraft manufacturer as well as

improved performance of the launch vehicle.

There are two major sources of acoustic disturbances during launch. The first is the

rocket main engines [1]. During lift off, noise from the rocket main engines reflects off the

ground and impinges upon the launch vehicle shroud. The second is due to aerodynamic

buffeting during transonic and maximum dynamic pressure flight. The structure of the

payload fairing transmits a significant amount of these acoustic disturbances, causing a

reverberant acoustic environment inside the payload fairing. In addition, the mechanical

vibration of the vehicle is transmitted to the payload fairing, which causes excitation of the

enclosed acoustic field.



The problem is worsened by the current trend in the aerospace industry is to use more

composite materials in structures, including launch vehicle shrouds. Composite materials

are favored because of their high strength and low mass, a good combination for structural

design. However, a structure with less mass has less resistance to acoustic disturbances.

Low structural mass leads to higher susceptibility to structural acceleration, which is the

primary method in which sound is transmitted through the fairing. Since composite fair-

ings designed for the same structural loads as aluminum fairings will have significantly

less mass, composite shrouds will transmit sound more readily into the payload fairing

enclosure.

1.2 Passive Techniques

The current state of the practice is the use of passive acoustic blankets. Layers of these

acoustic blankets are attached to the interior of the launch vehicle shroud [2] and provide a

damping mechanism without which acoustic waves would just reflect off the interior walls

with little dissipation. The blankets dissipate acoustic waves by transforming the acoustic

energy into heat. However, in order for the blankets to be effective, their thickness needs to

be a significant fraction of the acoustic wavelength. Therefore, higher frequency acoustic

waves are more easily dissipated by the acoustic blankets, while lower frequency acoustic

waves pass through the blankets with little dissipation. To complicate matters, the current

trend is towards larger rockets with larger payload fairing diameters, and thus lower fre-

quency fundamental acoustic modes. This would require even thicker and heavier layers

of acoustic blankets. Currently, the blankets are effective in dissipating acoustic energy at

frequencies above 500 Hz.

Another possible passive technique is the replacement of the enclosed air with helium

[3,4]. The acoustics is coupled to the vibration of the structure through the density of the



acoustic medium. By using helium which has a lower density than air, the structural-

acoustic coupling is reduced. However the use of helium may cause electrical problems

with the payload and structural vibrations of the payload may be amplified due to the

decreased aerodynamic damping. Evacuation of the enclosed air has also been suggested

so as to eliminate all of the acoustics inside the payload fairing, but this would require a

large, heavy vacuum pump, which is impractical. Also, the necessary increase in the struc-

tural strength of the fairing to prevent collapse will add significant mass to the structure.

1.3 Active Techniques

Active acoustic control is an alternative to the passive techniques discussed in the previous

section. These active methods are not intended to replace currently used passive tech-

niques, but to complement them. Since passive acoustic blankets are effective in

attenuating higher frequency acoustic disturbances, the active techniques will target lower

frequency acoustic disturbances.

There are two main types of active acoustic control. They are Active Noise Control

and Active Structural Acoustic Control. Active Noise Control (ANC) [5,6,7,8,9] employs

secondary acoustic sources to destructively interfere with the disturbances. Generally, the

acoustic disturbances are monitored, and the secondary acoustic sources emit sounds so as

to cancel the disturbances at discrete performance points. ANC is most often used when

the disturbance has a strong tonal component such as propeller passage frequency or

engine RPM and the disturbance source is easily identifiable and compact such as an auto-

mobile muffler. However, in the case of the acoustic launch load, the disturbances are

broadband and diffuse source, so that a measurement of the disturbance is impossible,

making ANC techniques unfeasible. In addition, ANC techniques are usually only suc-

cessful in achieving attenuation at specific points at which performance microphones have



been placed. In fact ANC techniques may significantly amplify noise at points other than

these performance points. This is not satisfactory for the acoustic launch load alleviation

problem in which global attenuation is required. Also the need to place performance

microphones near the payload should be avoided as this may lead to payload damage.

Active Structural Acoustic Control (ASAC) [10,11,12,13,14,15] on the other hand,

uses structural actuators to control the enclosing structure, thus affecting the acoustic field

within the enclosure. Since ASAC controls the structural vibrations which lead to the

enclosed acoustics, it can control the enclosed acoustic field in a global manner. Although

ASAC allows global attenuation of the enclosed acoustics using only structural actuators,

it has one problem. This is that it can only control the acoustic modes which are closely

coupled with the structural modes.

The impedance matching control technique is a specific type of ASAC. It uses a dere-

verberated model of the system's local behavior to derive a controller which achieves glo-

bal acoustic attenuation without the need for performance microphones distributed

throughout the enclosure. One main advantage to the impedance matching controller is the

lack of need for a complex high order model of the structural-acoustic system. The

assumption made for impedance matching control is that the local behavior can be mod-

eled accurately using wave modes and that these are sufficient to obtain an effective con-

troller. Impedance matching control designs generally attempt to eliminate the reflection

or transmission of energy through some junction or to maximize the energy dissipated by

the controller.

Although impedance matching control has its origins in structural control, it has been

applied to structural-acoustic control to a limited degree. In Guicking's work [16], the

acoustic reflection coefficient of a single degree of freedom structure in a one-dimensional

waveguide was controlled. The sensors were a pair of microphones which were weighted



to give a measure of the incoming acoustic pressure. The feedback gain from the micro-

phone sensors to the single degree of freedom structure was varied manually so that the

acoustic reflection coefficient was minimized. Significant reduction in the reflection coef-

ficient was achieved in the frequency range between 100Hz and 800Hz. This was also

extended to three dimensional acoustics in which an array of speakers was set up and each

speaker was controlled individually using a one dimensional impedance match for reflec-

tion. Although reflection coefficients of less than 0.1 were achieved, Guicking's work had

one major drawback. Since the control gains were varied manually until a desirable result

was obtained, no systematic design methodology was followed to determine the optimal

impedance matching compensator.

In Glaese's work [17] a hybrid global/dereverberated model of the structural-acoustic

system, in which the structural part of the model is fully reverberant, but the acoustic part

is dereverberant, was used. Using an LQG state space formulation, an optimal compensa-

tor was obtained which achieved significant attenuation of the first and second acoustic

modes. Thus a systematic approach to obtaining an optimal compensator for global acous-

tic attenuation was provided which used only structural and acoustic sensing at the surface

of the enclosing structure.

Much of the past research into active acoustic control is based on feedforward tech-

niques in which a measure of the disturbance is available. Feedforward control using

ASAC methods have been used to control acoustic transmission through thin structures

into an enclosure, as was done by Balachandran [18]. PZT piezoelectric actuators located

on the flexible structure were used with condenser microphone sensors to control the

transmission of acoustics generated by a speaker located outside the enclosure. However,

the disturbances generated were simply harmonic in nature allowing for the use of a feed-

forward control.



Since such a measure of the disturbance is not possible in the case of the launch vehi-

cle shroud, feedback methods are required. In Denoyer's work [19], positive position feed-

back (PPF) using a hybrid structural/acoustic control was done with two actuators and two

sensors. The actuators were a piezoceramic actuator and an internal speaker, and the sen-

sors were a piezoelectric strain sensor and a microphone. Significant reductions in the

interior acoustics were achieved at frequencies related to both the structural modes as well

as the acoustic modes of the enclosure. However, the PPF control design method has a few

drawbacks in that it cannot control many modes and it cannot control coupled modes.

There has been much work done in the past in the field of structural-acoustic control.

However, much of this research has focused on feedforward control techniques which are

not a viable option in the case of the launch vehicle shroud. Therefore feedback control

must be used. Much of the past research utilizing feedback methods used either reflection

control or transmission control to attenuate the enclosed acoustics. Although Denoyer's

work described earlier controls both the transmission of sound into the enclosure as well

as the acoustic cavity modes, it doesn't use a systematic control design such as linear opti-

mal control. Therefore the work presented here uses a linear optimal control design to

simultaneously control the transmission and reflection of sound to attenuate the acoustic

levels within an enclosure.

1.4 Thesis Outline

* Experimental Setup
* Structural-Acoustic Modeling
* Linear Quadratic Gaussian Control Design Techniques
* Control Design Process
* Experimental Results



Chapter 2

Experimental Setup

Since this thesis focuses in experimental implementation of existing modeling and control

design methods, the experimental setup for the problem will be discussed first in order to

familiarize the reader with the available hardware.

2.1 Approach

The problem of the rocket payload fairing and its enclosed acoustics consists of three

dimensional acoustics enclosed by a curvilinear two dimensional structure. In solving a

complex problem, it is often insightful to explore a simpler problem while capturing all of

the relevant physics. This allows for the validation of methodologies without the difficul-

ties posed by a large order, multi-dimensional problem.

Thus the problem considered consists of one dimensional acoustics in a waveguide

with a two dimensional structure whose dynamic properties are well understood. The

waveguide is a five foot long closed cylinder, and the structure is a thin, circular aluminum

plate which is clamped on all edges. The plate effectively separates the waveguide into an

upper chamber and a lower chamber. The plate represents the structure of the launch vehi-



Figure 2.1: Exterior view of structural acoustic test chamber

cle shroud, the lower chamber represents the interior of the payload fairing and the upper

chamber represents the outside environment. Using this setup, the problem of attenuating

the acoustic environment in the lower chamber is investigated.

2.2 Test Chamber

A photograph of the test chamber is shown in Figure 2.1. The test chamber is a five foot

long cylindrical waveguide and is constructed from a 12 inch diameter steel pipe with a

three quarter inch wall thickness. The chamber is closed off at the top and bottom with flat
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Figure 2.2: Schematic diagram of the structural-acoustic test chamber

half inch thick steel plates. These end caps are attached to the ends of the waveguide with

RTV silicone adhesive. The reason for the choice of wall material and thickness is that the

high mass and stiffness cause the chamber walls to essentially be acoustically rigid. Creat-

ing an acoustically isolated environment is of great importance to prevent stray acoustic

disturbances from entering the chamber.

Figure 2.2 shows a schematic diagram of the test chamber. The chamber is segmented

into six sections, four sections of length 7.5 inches and two sections of length 15 inches.

The chamber is segmented for a variety of reasons. The first is so that the chamber can be



disassembled or relocated by one person. The second is to allow wires for sensors and

actuators to exit the chamber as well as to allow the aluminum plate to be placed at various

points along the chamber. The third is to allow different length configurations of the test

chamber itself by eliminating one or more sections. During the experiments, the joints

between the sections are sealed tightly with a ring of hardened RTV silicone as well as

electrical tape and duct tape to maintain acoustic isolation of the chamber interior.

There are two ten inch dual voice coil subwoofer speakers with one located at each end

of the chamber. They are mounted on the end plate with an aluminum baffle ring which is

attached to the chamber wall. There are also five electret condenser microphones located

along the length of the chamber, with two in the upper chamber and three in the lower

chamber. The two microphones in the upper chamber are used to monitor the disturbance,

while the three microphones in the lower chamber are used to determine the performance.

All of the microphones are suspended along the centerline of the chamber using a stiff

wire and are inserted between the chamber sections. It should be noted that since the

acoustic waves of interest have wavelengths which are significantly longer than the size of

the microphones or their supports, these structures do not affect the acoustic field in any

significant manner.

Lining the walls of the bottom chamber is a fiberglass blanket and a ring of acoustic

foam as shown in Figure 2.3. The blanket and foam act as a passive acoustic damper sim-

ulating the acoustic blankets which are currently being used in actual payload fairings.

Acoustics above approximately 500 Hz are very well damped whereas the lower fre-

quency acoustic modes are not. Figure 2.4 shows transfer functions from the disturbance

speaker to the root sum square of the performance microphones (microphones 3, 4, and 5)

with and without the fiberglass blanket and foam. The effect of the passive dampers is

clear in the acoustic modes above 500 Hz.



Figure 2.3: Photograph of chamber interior looking down the length of the waveguide,
showing the acoustic foam, fiberglass blanket, performance microphones, and control

speaker

Dist Speaker to Performance Microphone RSS with and without passive damping

101

102 / passive damping-w/o passive damping

102 10 3

Frequency (Hz)

Figure 2.4: Disturbance speaker to performance microphones with and without the
fiberglass blanket and acoustic foam linings
fiberglass blanket and acoustic foam linings



The aluminum plate is inserted between the second and third sections down from the

top. The plate effectively separates the chamber into two separate enclosures. The plate

represents the structure of the launch vehicle shroud. The smaller top enclosure represents

the acoustic environment outside of the fairing, while the lower enclosure represents the

inside of the payload fairing. The speaker at the top of the chamber is used as the acoustic

disturbance source. The acoustic disturbance impinging upon the plate should be a direct

field, non-reverberant acoustic field consisting of band limited white noise. Therefore an

effort was made to reduce the reverberant acoustics in the top chamber by placing acoustic

foam around the inner circumference of the top enclosure. Also the length of the top

enclosure is kept short to increase the frequencies of the longitudinal acoustic modes, so

that reverberant acoustics of the top chamber have frequencies which are significantly

higher than the frequency range on interest.

Two different plates, both constructed of 0.032 inch thick aluminum are instrumented

with various sensors and actuators. These plates can be used interchangeably in the cham-

ber to allow for the use of different sensors and actuators. Both plates have a rectangular

piezoelectric patch for structural actuation which is bonded to the center of the plate. The

first plate, shown in Figure 2.5, has three strain gages and an accelerometer for structural

sensing, and a microphone for acoustic sensing. The accelerometer and microphone are

mounted at the center of the plate, so that they are collocated with the piezoelectric actua-

tor, which is mounted on the other side of the plate. Also, the microphone is mounted with

its face perpendicular to the plate because its diaphragm is sensitive to acceleration. If the

microphone were mounted with its face parallel to the plate, then structural acceleration of

the plate would cause the diaphragm of the microphone to accelerate as well, causing the

microphone to measure structural acceleration in addition to acoustic pressure. By placing

the microphone with its face perpendicular to the plate, its sensitivity to acceleration is



Figure 2.5: Photograph of aluminum plate number 1, instrumented with strain gages
and an accelerometer for structural sensing, a microphone for acoustic sensing and a

piezoceramic patch for structural actuation

orthogonal to the motion of the plate, causing the acceleration component of the micro-

phone measurement to become negligible.

The second plate, shown in Figure 2.6, has two strain gages and an area averaging

piezoelectric strain sensor. The accelerometer and strain gages are located at the center of

the plate, so that they are collocated with the piezo actuator. The area averaging strain sen-

25



Figure 2.6: Photograph of aluminum plate number 2, instrumented with strain gages
and PVDF for structural sensing and a piezoceramic patch for structural actuation

sor is made of polyvinylidene flouride (PVDF) film formed into two concentric annuli and

bonded to the plate using epoxy. The methodology used for the design of the PVDF sensor

will be discussed in chapter 5.
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Figure 2.7: Photograph of electronics rack for signal conditioning and amplification

2.3 Electronics

Since the actuators are driven by electronic signals and the sensors provide electronic sig-

nals, power supplies and signal conditioning amplifiers are required. Figure 2.7 shows a

photograph of the main electronics rack. The piezoceramic patch, disturbance speaker, and

control speaker are driven using three channels of a Crown DC-300A Series II power

amplifier, shown at the bottom. An ENDEVCO charge amplifier (top right) is used as the

signal conditioner for the accelerometer, and a 3-10 VDC power supply (top left) is used

as a power source for the electret condenser microphones. Just below the accelerometer
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Figure 2.8: Block diagram of experimental setup

conditioner and microphone power supply is the bank of strain gage conditioners, and

below that are the conditioning electronics for the microphone signals, capable of han-

dling six microphones. Below the microphone conditioners and just above the Crown

power amplifiers is a gain box, used for changing the gain on various sensor signals.

Not pictured in Figure 2.7 is the signal conditioner for the PVDF strain sensor. Ini-

tially, the PVDF sensor signal was conditioned using the gain box which has an input

impedance of 100 k. This was found to be too low, causing an apparent roll up in the

phase at low frequencies leading to unbounded phase behavior. In order to fix this prob-

Tektronix

Fourier

Analyzer



lem, a signal conditioning circuit was built using a protoboard and an operational amplifier

to increase the input impedance to 10M .

All of the data was taken using a Tektronix 2630 Fourier Analyzer. It is capable of

recording time domain as well as frequency domain data simultaneously on four channels,

as well as acting as a function generator to create the disturbance functions. Figure 2.8

shows a block diagram of the experimental setup used.
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Chapter 3

Structural-Acoustic Modeling

Structural modeling for control involves modeling all of the components which affect

the input-output nature of the system. There are three main components to the structural

plant model. The first is the modeling of the structure itself, which includes its modal fre-

quencies, modal damping ratios, and inertial properties. The second is the modeling of all

actuator and sensor dynamics as well as appropriate gains for amplifiers or signal condi-

tioners which are "in the loop." The third component includes any other systems to which

the structure is coupled. This may include electrical, magnetic, acoustic, or fluid fields.

The effects of these couplings on the structural modes, frequencies, and damping, as well

as any new dynamics that these systems introduce must also be included in the structural

plant model.

There are numerous ways in which a mathematical model of a physical system can be

obtained. Two of the more well known methods of structural modeling for control are the

finite element method and the measurement based technique.



3.1 Finite Element Model

To obtain a structural model using the finite element method, the structure is first dis-

cretized into a finite number of nodes at which forces and moments can be applied and dis-

placements and rotations can be measured. The nodal displacements alone offer a very

crude description of the structural displacements, so the nodes are connected by structural

elements which model different structural behaviors, such as rods, beams, shafts, plates,

and 3D solids. The displacements within these structural elements are described by inter-

polation functions. Given these interpolation functions and the nodal coordinates along

with the material and cross sectional properties of the structure, it is possible to derive

matrix equations which relate the element displacements, velocities, and accelerations to

applied forces and moments. By applying the proper type of force or moment at the nodes

corresponding to the actuator locations, and reading off the displacement, velocity, or

acceleration at the sensor locations, it is possible to construct an inputoutput model of the

structure compatible with modem state space control techniques.

Although less well known, the finite element method can also be used to obtain a

model of an acoustic field. In this application, the acoustic field is discretized into a finite

number of nodes connected by acoustic elements. The measurements at the nodes consist

of pressures and pressure gradients, and the interpolation functions represent the variation

of pressure within an acoustic element rather than the structural deformations within an

element. By using the appropriate finite elements to represent the structure and the sur-

rounding acoustic field, and coupling the structure and acoustics, a combined field struc-

tural-acoustic finite element model can be developed.



Figure 3.1: The four block problem

3.2 Measurement Model

The measurement based technique relies on open loop measurements of the structure's

frequency response to excitations. Band limited white noise is used to excite all input

channels (actuators and disturbance sources) and measurements are taken at all output

channels (sensors and performance measurements). This provides the open loop transfer

functions of the four block problem shown in Figure 3.1. They are the transfer function

from control actuator to feedback sensor (Gyu), control actuator to performance sensor

(Gzu), disturbance actuator to feedback sensor (Gyw), and disturbance actuator to perfor-

mance sensor (Gzw).

Then, the Frequency Domain Observability Range Space Extraction (FORSE) tech-

nique developed by Jacques [20] is used to fit a model to the open loop frequency response

data of the system. The FORSE algorithm is based on Liu's Observability Range Space

Extraction (ORSE) algorithm [21] but is extended from arbitrary real signals to complex

signals.

In order to capture all of the important dynamics of the system, it is necessary to over

parameterize the model, resulting in a very large number of states. Since it is preferable in



terms of computation time to perform the control design with a minimal order model, the

model must be reduced. This is done using a balancing realization in which the system is

transformed so that the observability and controllability grammians are identically equal

to the diagonal matrix of the Hankel singular values. For a non-minimal model, the last

few states will have singular values which are much smaller than the others. These states

can then be safely removed using standard model reduction techniques. The model must

then be tuned to readjust any parameters which may need to be altered as a result of the

model reduction. The model tuning consists of non-linear optimization algorithms applied

to system identification. The Levenberg-Marquardt algorithm [22] designed to solve the

non-linear least squares problem is used to minimize a cost function which is the sum of

quadratic errors. This reduction and tuning process is repeated until a minimal, yet accu-

rate model is obtained.

The advantages provided by the measurement based method are that it often produces

an accurate model of the system which already includes all external influences such as

coupling with other fields, any dynamics of the actuators and sensors, as well as any gains

introduced by the amplifiers and signal conditioners. However, this method also has

numerous drawbacks. First, it is sometimes not possible to obtain a model at all since the

method relies on performance variables and disturbance sources which can be physically

measured. A second drawback to this technique is that although the frequency, damping,

and amplitude of the system poles can be specified readily, it is not possible to specify any

information on the zeroes of the system. Subsequently, non-minimum phase zeros can

occur in the model at various frequencies depending on the specific order in which modes

were eliminated from the model or at what point in the reduction process the model was

tuned. These non-minimum phase zeros do not manifest themselves in any visible manner

when the model transfer function is plotted, but do limit the bandwidth of the controller.
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Figure 3.2: Open loop piezoceramic actuator to PVDF strain sensor transfer function
(solid: data, dash: 44 state reduced model, dash-dot: 130 state model)

Therefore it is necessary to examine the pole-zero plot of the model after reduction and to

redo the model reduction and tuning if necessary. The FEM can be used to complement

the measurement model by helping to determine whether the non-minimum phase zeroes

occur due to the physics or are artifacts of the model reduction. The final drawback to the

measurement based model is that since the model obtained is simply a curve fit, all physi-

cal intuition into the dynamics of the system is lost.

In Figure 3.2 the piezoceramic actuator to PVDF strain sensor transfer function is

shown, with the solid line showing the experimental data. The dash-dot line shows the ini-

tial model obtained using the FORSE algorithm which has 130 states. Clearly 130 states

are not needed to accurately represent the dynamics of this system, and indeed many of the

states represent modes which have very near pole-zero cancellations. Through the iterative

process of model reduction and model tuning, the final design plant model of 44 states is



obtained. This model is shown in the plot as the dashed line. As can be seen from the very

close overlay of the three transfer function plots, the initial 130 state model achieves very

good accuracy and the reduction of the model to 44 states has very little effect on model

accuracy. However, further reduction of the model does lead to a noticeably poorer fit with

missing and mismodeled dynamics

3.3 Summary

Both a finite element model and a measurement based model were developed. The finite

element model was developed by Robert Pascal using the ANSYS commercial finite ele-

ment software. The FEM was useful in offering insight into the physical behavior of the

plate and its coupling with the acoustics as it allowed the identification of the physical sig-

nificance of the modes of the system. However, it was not possible to obtain a model with

high enough accuracy for control design using the finite element method.

The measurement based technique offered an accurate model which incorporated all of

the effects of the acoustics, the structural-acoustic coupling, the dynamics of the speakers,

as well as all sensor and actuator dynamics. This modeling method was ultimately used in

the control design.

Figure 3.3 shows a schematic diagram of the procedure used to obtain a measurement

based model of the open loop system. First, the open loop transfer functions are measured

and the FORSE algorithm is used to obtain an initial model. This initial model is balanced,

reduced, and tuned to a obtain a reduced order model. This reduced model is compared

with the open loop data and the finite element model to ensure that critical dynamics were

not eliminated. Then, the balance, reduce, and tune steps are reiterated until a minimal

order model which retains sufficient accuracy is obtained.



Measured Transfer Functions

Final Model

Figure 3.3: Block diagram of measurement modeling process
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Chapter 4

Linear Quadratic Gaussian Control

Design Techniques

The Linear Quadratic Gaussian (LQG) control design method is based on a linear model

of the system, Gaussian noise, and a quadratic cost function. It can be viewed as having

two separate components, the regulator and the estimator. The estimator employs Kalman

filtering techniques to estimate the state vector from the output signals of the feedback

sensors. The regulator then uses this estimated state vector to derive the control gains.

Given a standard state space representation of a stable open loop system

x = Ax + Buu + Bw

y = Cyx + Dyuu + DywW

Z = Czx + Dzuu + DzwW (4.1)

the quadratic cost to be minimized for a standard LQG control design is given by

JLQG = (xTRxxx + u TRuuu + 2uTRxux)dt (4.2)

where Rxx is the state penalty matrix, Ruu is the control penalty matrix, and Rxu is the

cross-coupled penalty matrix. The control gain, G, and filter gain, H, can be derived inde-



pendently by solving the two algebraic Riccati equations

T R-1BT-1 T0 = SA + AS + Rxx -SB uRu B and G = Ruu- BuS (4.3)

0 = A + AAT+ B EB,-EC -1 CyI and H = 2 0 - 1  (4.4)

where E and E are the process and sensor noise intensities respectively. Then the equa-

tions for the compensator are given by

x = (A-BuG-HCy ) + Hy

u = -G^i (4.5)

where u is the control signal that is fed to the actuator.

4.1 Sensitivity Weighted LQG

Model based controllers such as LQG require an accurate model of the system. The con-

trol gains and Kalman filter gains are derived from the state space matrices provided by

the system model. However, an accurate model is difficult to obtain because it is often

impossible to know the exact properties of the physical system and the variations of these

properties caused by environmental changes such as temperature and pressure. Inaccurate

models may lead to poor performance or in the worst case, unstable closed loop systems.

Sensitivity weighting [23] is a method of designing LQG controllers which are robust

to parametric errors in the model. Although these modeling errors may range from simple

linear functions to complex non-linear functions of the system state space matrices, most

errors in the model can be categorized into fundamental quantities such as frequency and

damping of the system poles. In order to desensitize the standard LQG controller to cer-

tain parametric errors, a quadratic penalty on the sensitivity of the states to each of the

uncertain variables is added to the standard LQG problem.



Let a denote the vector of uncertain parameters to which the control design is to be

desensitized, and define the sensitivity state weighting matrix Rea i with real entries such

that it is symmetric and positive semi-definite. Then the state, control, and cross-coupled

penalty matrices become

SR + X A R A (4.6)1xx Rxx +  a_ -8i a-T aia4.
i=1

n B T -T -lDBu
Iuu = Ru + A ,i A RaaiA L A i (4.7)

n A -T -lB

xu = Rxu+ -i A RaA - (4.8)
i=l 1

and the quadratic cost to be minimized becomes

JSWLQG = (x xx + UT u u + 2u Txux)dt (4.9)

When desensitizing the design to errors in modal parameters such as frequency and

damping of the poles, the effect of the sensitivity weighting is to reduce the control effort

in the frequency region near that particular mode. Therefore, sensitivity weighting is not

only useful in regaining performance or stabilizing a closed loop system, but it can also be

used to shape the frequency domain characteristics of the compensator. By desensitizing

the design to parameters of a mode near an unstable compensator pole, the unstable com-

pensator can be stabilized, easing its implementation.

4.2 Frequency Weighted LQG

Often there is a gap between what the LQG controller achieves and the desired control

system performance. This is due in large part to the discrepancy between the frequency



domain specifications of the control system performance and the time domain optimiza-

tion method used by LQG. One method of overcoming this discrepancy is to use fre-

quency weighted cost functionals [24] in which it is possible to specify different control

and state penalties as a function of frequency.

Using Parseval's theorem, the time domain LQG cost functional is converted into the

frequency domain

J = (x (t)Rxxx(t) +u (t)RUu(t))dt

= -J (x(jW)Rxxx(jo) + u (jo)Ruuu(jo))d (4.10)

Notice that both Rxx and Ruu are constant in the frequency domain. Therefore the standard

LQG cost functional weights the states and controls equally at all frequencies. To add fre-

quency domain specifications on the control system, frequency weights are added, giving

the new quadratic cost functional.

1 H H H H
J - ((x (jo)) W (jo) Wl (jo)x(j) + u (jo)W 2 (jo)Ww(jo)u(jo))do(44.11)

where both Wl(jw) and W2(jw) are user specified frequency weights.

Minimization of the frequency weighted cost functional using LQG methods requires

the transformation of the cost functional back into the time domain. This requires the state

space realization of the frequency weights.

zl(s) = Wl(s)x(s) with Wl(s) = CI(sI-A 1)-I B +D 1  (4.12)

Z 2 (S) = W 2 (s)u(s) with W 2 () = C 2 (sI - A 2 )-B 2 + D 2  (4.13)

This allows the quadratic penalty given by equation 4.11 to be rewritten as

J = (zT( (t)+z (t) +(t)z 2 (t))dt (4.14)

Minimizing this cost functional is equivalent to solving the LQG problem of the open loop



system given by augmenting the dynamics of the frequency dependent weights onto the

original state space matrices. Thus the new open loop system is given by

A 0 0 x Bu B,
S= B C A10 x + B 1D u + B w

. 0 0 A2 X2 B2 _0

Z1  D C C 1 0 1 DU D= Lc x + U D + [ D w (4.15)

Zo 0 C2 D2]

and thus the frequency weighted cost becomes

J C X+2CT D u+u TDT D u)dt (4.16)j _ T T T T TFWLQG =  (X Caug aug augD aug augD aug

This revised weighting function is used to derive the frequency weighted LQG con-

troller. Note that due to the augmented dynamics of the frequency weighting, a FWLQG

controller will have more states than a standard LQG controller designed using the same

plant model.

4.3 Summary

Techniques of the Linear Quadratic Gaussian control design have been presented includ-

ing two variations: sensitivity weighted LQG and frequency weighted LQG. The design of

the compensators using these methods will be discussed in Chapter 5. The sensitivity

weighting will be used primarily to stabilize the compensator, although it will also be used

to reduce amplification at certain frequencies. The frequency weighting will be used to

force compensator roll off at high frequencies to stabilize the closed loop system.
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Chapter 5

Control Design Process

There are two fundamental control problems in the attenuation of acoustics inside the

launch vehicle shroud. Since most of the acoustic disturbances originate from outside the

shroud, the acoustic environment within the enclosure can be attenuated by reducing the

transmission of sound through the structure. However, a reverberant acoustic environment

within the enclosure is inevitable since it is unfeasible to totally eliminate acoustic trans-

mission and also since acoustic disturbances can originate from within the enclosure. The

reverberation within the chamber is caused by the reflection of sound waves at the ends of

the waveguide. Therefore by placing an actuator at one end of the waveguide and control-

ling its reflection coefficient, attenuation of the acoustic cavity modes can be achieved.

This chapter presents the chronology of the attempts at implementation of a control

design to effectively attenuate the acoustics. The use of various sensors for the transmis-

sion control are investigated and the problems with each setup are discussed. Upon obtain-

ing a satisfactory transmission control, the subsequent problems with the implementation

of the reflection control are discussed.



5.1 Transmission Control

A significant portion of the acoustic disturbances enter the payload fairing via transmis-

sion through the structure of the shroud. Therefore reducing the acoustic transmission

through the structure will lead to attenuation of the interior acoustic environment.

The physics of acoustic transmission through a thin plate are as follows. Sound waves

are pressure waves, and pressure is simply a distributed force. So as the sound waves

impinge upon the structure, the structure vibrates in response to the distributed force. This

structural vibration in turn creates differential pressure on the other side of the structure,

and radiates sound waves. Therefore, by preventing the structure from vibrating in

response to incoming acoustic disturbances, acoustic transmission can be attenuated.

However, in order to totally eliminate acoustic transmission through the plate, there

must be no vibration of the plate. The plate must be made to act as a rigid wall, reflecting

back all of the incoming acoustic energy. This would require careful placement of a large

number of sensors and actuators to effectively control all of the modes of the plate. In

effect this is not possible without adding significant mass to the plate which must be

avoided. The other option is to control the plate in order to absorb all of the incoming

acoustic energy and to dissipate it as another form of energy such as heat. This would

require a similarly prohibitive number of sensors and actuators as well as being a more dif-

ficult control problem. In addition, the problem becomes far more difficult when the sim-

ple circular plate is replaced by the complex three dimensional structure of the actual

launch vehicle shroud. Therefore, the best compromise is to identify the frequency range

which contains a few of the structural modes which are important in the transmission of

acoustics and to concentrate the control efforts in that range.



(a) (d)
72.5 Hz 179.2 Hz

(b) (e)
276.3 Hz 309.0 Hz

(c) (f)
629.4 Hz 454.5 Hz

Figure 5.1: First six mode shapes of a circular plate with clamped boundary conditions

5.1.1 Plate Dynamics

The mode shapes and natural frequencies of a circular plate with clamped boundary condi-

tions are well known. The mode shapes of the first six structural modes of the plate are

shown in Figure 5.1. The structural mode shapes of the plate consist of two types: sym-

metric and asymmetric modes. Symmetric modes are circumferentially symmetric and

have circular node lines. Modes (a), (b), and (c) are the first three symmetric modes of the

plate. Asymmetric modes on the other hand have node lines which are diameters of the

circle. Modes (d), (e), and (f) are the first three asymmetric modes of the plate.



Symmetric modes are more efficient in radiating sound than are asymmetric modes,

particularly the lower order modes since they have the largest motion of the plate center of

mass. The fundamental structural mode has the highest radiation efficiency, followed by

the second symmetric mode [25,26,27,28,29]. Therefore by controlling the first two sym-

metric modes of the plate, significant reductions in the transmission of sound can be

achieved.

The plate was controlled using a rectangular piezoceramic patch as the actuator. The

piezoceramic wafer applies a moment to the plate at the edges of the wafer, commanding a

curvature to the plate. The best location for the actuator is the center of the plate where the

curvature is at a maximum for the symmetric modes and at a minimum for the asymmetric

modes, thus allowing for good controllability of the symmetric modes while not exciting

the asymmetric modes. One point to note is that the optimum shape of the piezoceramic

wafer is circular, so that it is point symmetric, with the same shape as the node lines of the

symmetric modes. However, the piezoceramic patch used was rectangular. The reason for

this is that cutting piezoceramic wafers into circles is quite difficult, and was deemed

unnecessary as the rectangular piezo performed well enough.

5.1.2 Acceleration Feedback

Initially, only the first plate, shown in figure 2.5, was available. It was instrumented with a

piezoceramic actuator as well as three strain gages, an accelerometer, and a microphone as

sensors. The accelerometer and microphone were placed at the center of the plate to collo-

cate the sensors and the actuator. Two of the three strain gages were placed 1.5 inches

from the center of the plate while the third strain gage was placed 2.5 inches from the edge

of the plate. All three strain gages were placed with their sensitive axis along the radius of

the plate.



There are two main problems with using a strain gage as a sensor in conjunction with a

piezoceramic actuator. First, if the strain gage is not collocated with the piezoceramic

actuator, then the actuator to sensor transfer function will have missing zeros and a phase

rolloff, limiting the controller bandwidth. If the strain gages are collocated with the actua-

tor, a new problem arises. Since the piezoceramic wafer commands curvature, and the

strain gage senses strain, another form of curvature, the actuator to sensor transfer function

becomes a series of pole zero cancellations, resulting in a simple feedthrough. Such a

transfer function would provide no information on the dynamics of the plate, making con-

trol designs impossible. Therefore, use of the strain gages as feedback sensors is not feasi-

ble.

The accelerometer was chosen as the sensor over the microphone because of the nature

of the control problem. The goal is to attenuate the transmission of acoustics into the lower

chamber by controlling the structural modes of the plate. Therefore, it would make sense

to use a structural sensor.

The piezoceramic actuator to accelerometer transfer function is shown in figure 5.2.

This combination provides good observability of the first and second symmetric plate

modes, at 73 Hz and 276 Hz respectively, with a collocated transfer function. However, it

also has very high observability of the higher order symmetric modes and a dereverberated

transfer function which rolls up, causing the higher order modes to have a higher ampli-

tude than the modes of interest, posing some difficulties for the control design.

5.1.3 Position Feedback

In order to bring the slope of the dereverberated transfer function down, the sensor signal

from the accelerometer is integrated twice, essentially providing a measure of the position.

To avoid the infinite energy at low frequencies which results from the integration, the dou-
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Figure 5.2: Open loop transfer function from piezoceramic actuator to accelerometer

ble integration is actually done with a second order low pass filter with a corner frequency

at 10 Hz. The low pass filter was implemented using a HEURIKON digital computer oper-

ating at 8.6 kHz. The open loop transfer function from the piezoceramic actuator to the

position sensor is shown in figure 5.3. Notice that the dereverberated transfer function is

now sloped down, while maintaining the high observability of the relevant modes. Also,

note the slow phase rolloff which results from the digital implementation of the filter.

A measurement model of the piezoceramic actuator to position sensor transfer func-

tion was obtained. A sensitivity weighted LQG control design was attempted, with the

goal of adding damping to the first and second symmetric modes of the plate. Only mini-

mal performance improvements were possible before an unstable compensator would

result. The difficulties encountered are due at least in part to the phase rolloff resulting

from the digital implementation of the low pass filter.
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Figure 5.3: Open loop transfer function from piezoceramic actuator to position

A reasonable solution to this problem is to implement an analog low pass filter in order

to eliminate the time delay imposed by the digital computer. This scheme was never

implemented because of the development of a new structural sensor designed specifically

for the plate which would eliminate the need for filters while possessing better characteris-

tics in terms of observability of the relevant modes.

5.1.4 Strain Feedback

Polyvinylidene flouride (PVDF) piezoelectric film is a long chain polymer plastic which

produces an output voltage when strained. Its main advantage is its ability to be shaped

very easily to alter its frequency domain characteristics. The film which is manufactured

in large sheets can either be cut to the desired shape or electroded only over the desired

area to form a specific shape for the sensor. The sensor shaping can be used to cause sen-

sor rolloff at high frequencies to allow for easier controller rolloff, vary the observabilities

of certain modes to allow for better closed loop performance, and also to tailor the phase



characteristics of the actuator to sensor transfer function [30].

The design of the PVDF sensor is based on an extension of one-dimensional beam the-

ory and on modal analysis of the plate. The strain on the surface of a beam undergoing

transverse bending is given by

h
E(x) = -w"(x, t) (5.1)

2

where h is the thickness of the beam and w(x,t) is the displacement. The output voltage

supplied by the PVDF is given by the area integral of the surface strain multiplied by the

piezo strain constant of the material, D31. Therefore, the output voltage for a rectangular

sensor of unit width extending from x=a to x=b will have an output voltage of

rhh hy(t) = D 3 w"(x, t)dx = 2D 31(w'(a, t)- w'(b, t))) (5.2)

The determination of the parameters a and b is dependent on a modal representation of the

beam displacement given by

w(x, t) = _ Oi(x)q(t) (5.3)
i= 0

where Oi(x) are the mode shapes of the beam. Therefore, in order for the sensor to have

high observability of a specific mode, a and b should be chosen so that the difference of

O'i(a) and O'i(b) is near maximum. Similarly, in order for the sensor to have low observ-

ability of a specific mode, a and b should be chosen so that the difference of O'i(a) and

O'i(b) is very small. This is useful in control design problems in which specific modes are

targeted for closed loop performance. It allows the sensor to have high observability of

specific modes allowing for higher control authority while having low observability of the

other modes allowing for easier rolloff of the compensator.

In addition, if the location of the actuator is known, the phase characteristics of the

actuator to sensor transfer function can be specified. The sign of the modal residue can be



found by multiplying the modal slope evaluated at the actuator by the modal slope evalu-

ated at the sensor. If the modal residues of adjacent modes have the same sign, then there

will be a zero between the modes, with phase recovery between the modes. However, if

they have opposite signs, then there will be no zero between the modes leading to a phase

loss of 1800. Phase loss in the actuator to sensor transfer function should to be avoided

since it limits the allowable compensator gain and decreases the compensator's robustness

to modeling errors.

The sensor design techniques described above can be extended to the circular plate by

taking a slice of the plate through the center. For a circular sensor of radius r centered on

the plate, the strain averaging results in the line integral of the rotation around the circle of

radius r. So the output voltage is given by

n h

y(t) = - D  w'(r, 0, t)dO (5.4)
Jo 2 31

where C is the circle of radius r, centered on the plate. One important and useful side

effect of the circular sensor is that asymmetric modes become unobservable due to the

integration of the rotation around the circle.

Two PVDF sensors were designed by Carl Blaurock of Mid6 Technologies. The first is

designed to have high observability of the first two symmetric modes of the plate while

having low observability of the third symmetric mode to facilitate compensator roll off.

No attempt is made to specify the phase behavior of the actuator to sensor transfer func-

tion. The sensor is shaped so that its circumference lies on the rotation nodeline of the

third symmetric mode, at a radius of 4.6 inches. The finite element model of the plate was

used to determine the location of the nodeline.

The second sensor was also designed to have high observability of the first and second

symmetric modes and low observability of the third mode, but it was also designed to



4.6 inch radius

2.0 inch radius

Inner PVDF

Outer PVDF

Plate ~6.9 inch radius

Figure 5.4: Schematic diagram of PVDF strain sensor

maintain bounded phase to at least the third mode. The sensor in this case is shaped so that

its circumference is within the first nodelines of all three modes with a radius of 2.0

inches.

The two strain sensors were formed by cutting a circle with a 4.6 inch radius from the

PVDF sheet and bonding it to the center of the plate. The second sensor was formed by

removing the PVDF electrode in a circle with a 2 inch radius, thus electrically isolating the

inner circle from the outer annulus. Lead lines were then attached to both the inner circle

and the outer annulus along with a common ground line attached to the plate. Measure-

ments with the 4.6 inch radius sensor can be made by tying the two signal leads together,

thus summing the signals from the inner circle and the outer annulus. Measurements with

the 2 inch radius sensor can be made by using the signal from the inner circle alone. Fig-
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Figure 5.5: Piezoceramic actuator to inner ring PVDF sensor and full PVDF sensor
transfer functions

ure 5.4 shows a schematic diagram of the PVDF strain sensor bonded to the aluminum

plate.

Figure 5.5 shows the transfer functions from the piezoceramic actuator to the inner

PVDF sensor and to the full PVDF sensor. Notice that both transfer functions show high

observability of the first two symmetric modes at 73 Hz and 276 Hz respectively. How-

ever, the third symmetric mode near 630 Hz also has a high residue for both transfer func-

tions. This is most likely due to the fact that the nodelines were predicted using a finite

element model of a plate that was similar to but not identical to the plate to which the

PVDF sensors were bonded. Both plates were made from the same aluminum material

with a 32 mil thickness, but the plate onto which the PVDF was bonded had a slight warp

which caused the two plates to have different dynamic behavior. For example, the funda-

mental mode for the plate with the PVDF is 73 Hz, while the same mode for the plate on

which the FEM was based is 81 Hz. Therefore it is probable that the location of the node-

line predicted by the FEM does not match the actual nodeline on the plate, leading to the

unexpectedly high observability of the third mode.
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Both transfer functions show bounded phase behavior, making both sensors good can-

didates for use as feedback sensors. The choice was almost arbitrary but the inner PVDF

sensor was chosen because of its cleaner transfer function in the region between the first

two modes.

Using the inner ring of the PVDF film as the strain sensor, a measurement model of the

open loop system was obtained. The system also included the disturbance speaker and the

piezoceramic actuator. A sensitivity weighted LQG controller was designed using the

modal velocities of the first two symmetrical structural modes as the state penalty. Signifi-

cant damping of the structural modes was achieved leading to the addition of significant

damping to the acoustics of the lower chamber at frequencies corresponding to those

modes.

However, the acoustic cavity modes cannot be controlled with structural damping

because of the weak coupling between the acoustic modes and the structural modes.

Therefore, there is a fundamental limit to the possible performance improvement in a con-

trol scheme which only the adds structural damping. Therefore, alternate control schemes

which can augment the transmission control to attenuate the acoustic cavity modes were

examined.

5.2 Combined Transmission-Reflection Control

The control of acoustic reflection within the enclosure can be accomplished by altering the

boundary condition at one end of the waveguide so as to reduce the acoustic reflection

coefficient at that boundary. To accomplish this, a ten inch dual voice coil subwoofer

speaker was placed at one end of the waveguide as the actuator at the controlled boundary.

The lowest performance microphone was moved slightly to a position less than one centi-



meter above the speaker cone to form the collocated actuator-sensor pair. This microphone

will act as the feedback sensor as well as the third performance microphone. To achieve

better collocation of the sensor and actuator, the microphone should actually be bonded to

the speaker cone. However, the microphone diaphragm is sensitive to acceleration. There-

fore, if it were attached to the speaker cone, the microphone would sense the structural

acceleration of the speaker in addition to the acoustic pressure, leading to a feedthrough

term in the actuator to sensor transfer function. This problem can be alleviated by turning

the microphone sideways so that the sensitive axis of the microphone diaphragm is orthog-

onal to the acceleration of the speaker cone. However, since a non-collocation of one cen-

timeter leads to a time delay of merely 3x10 -5 seconds and thus a missing zero at a

frequency of 34 kHz, it was deemed unnecessary to place the microphone on the speaker

cone.

One important distinction to be made is that although the actuator is a speaker, it will

not be used as a secondary acoustic source to create cancelling waves as in Active Noise

Control. Instead, the speaker will be used as a single degree of freedom structural actuator

which controls the reflection of sound at the boundary and is therefore an Active Structural

Acoustic Control method.

5.2.1 Multi-Input Multi-Output LQG Design

The use of two actuators and two sensors calls for a multi-input, multi-output control

design. As with any LQG control design, a model of the open loop plant is required. For

this problem, the disturbance actuator is the top speaker, the control actuators are the con-

trolled speaker and the piezoceramic patch, the feedback sensors are microphone 4 and the

PVDF strain sensor, and the performance sensors are the three microphones in the lower

chamber. The signals from the three performance microphones are combined using the



root sum square method to arrive at a spatial average of the acoustic intensity in the lower

chamber and to provide a single performance variable. Open loop transfer functions from

all actuators to all sensors are taken and a measurement model of the open loop plant is

derived. Because the model is attempting to fit nine transfer functions, the initial model is

necessarily of very high order. The same iterative method of model reduction followed by

model tuning is utilized, but the model quickly loses accuracy to such a degree as to render

is useless as a design plant model. In order to maintain the model accuracy necessary to

perform an LQG control design, the model requires more than 300 states, which is prohib-

itively large. Therefore, an alternate method is required.

5.2.2 Successive Loop Closure with LQG

The modeling problem encountered by the multi-input, multi-output control design can be

avoided if the number of inputs and outputs of the system can be kept smaller. Fortunately,

since the control actuators and feedback sensors used by the transmission control and the

reflection control are mutually exclusive, the two control loops can be closed indepen-

dently. This allows two single-input, single-output compensators to be designed using sep-

arate models, and be implemented in succession. Since the transmission control has

already been designed and implemented, all that is required is to design a compensator to

control the acoustic reflection. Because the reflection control is implemented after the

transmission control, the transmission control closed loop system is the open loop system

upon which the reflection control will be designed.

Figure 5.6 shows the transfer function from the controlled speaker to the feedback

microphone with the transmission control implemented. Notice the missing zero between

the first acoustic mode at 134 Hz and the speaker mode at 186 Hz. This results not from

the physical non-collocation of the actuator and sensor but because of the nature of the
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Figure 5.6: Controlled speaker to feedback microphone transfer function for reflection
control

sensor and actuator. The actuator is driven by a current through the voice coil and is in

effect a commanded force. The sensor is a microphone and thus senses pressure. Since the

pressure sensor and the force actuator are not power duals, the physical collocation of the

sensor actuator pair does not necessarily guarantee a collocated transfer function. The

effect of this missing zero is to limit the control effort the compensator can exert in the fre-

quency range near the missing zero, since a stable control loop requires gain stability of

the loop transfer function at the frequency of the missing zero.

A measurement model was fitted to the open loop data using the FORSE algorithm

and a sensitivity weighted LQG controller was designed using the modal velocities of the

first three acoustic modes as the state penalty. Significant damping of these acoustic modes

was achieved using the SWLQG method.



5.2.3 Successive Loop Closure with Impedance Matching

Another approach to the acoustic reflection problem is the acoustic impedance matching

methodology developed by Glaese. The impedance matching design also uses the speaker

as the actuator and the lowest microphone as the feedback sensor. However, instead of

basing the control design on a measurement based model of the entire structural acoustic

system, the impedance matching design is based on a model of the control actuator and its

local coupling with the acoustic field.

The first step in the impedance matching control design is to obtain a model of the

speaker. The speaker is a coupled electro-mechanical device. The mechanical dynamics of

the speaker is that of a single degree of freedom mass-spring-dashpot system if the high

frequency flexible dynamics of the speaker cone are ignored. The force which moves the

speaker cone is provided by the interaction of a current carrying voice coil with a static

magnetic field. The coupling factor BI is a function of the strength of the static magnetic

field, the number of turns in the voice coil, and the length and area of the voice coil. The

voice coil also has an electrical resistance and an inductance which combine to form a real

pole at a frequency of Re/Le. The coupled electro-mechanical behavior of the speaker is

given by

0 1 0

S k c BI Ou
= - m m + (5.5)

iJ 0 -B Re drive
0 -BI

Le

where u is the displacement of the speaker voice coil, i is the current in the voice coil, and

Vdrive is the driving voltage on the speaker. Note that the model also includes the back emf

produced by the motion of the voice coil.



The actual parameters for the speaker were obtained from the specification sheet for

the speaker as well as from actual measurements. In addition to the structural stiffness of

the speaker cone, the speaker dynamics are acoustically stiffened by both the front and

back enclosures. Therefore the stiffness used in the above equation is the effective stiff-

ness of the speaker with both front and back enclosures. The physical parameters of the

speaker are shown in Table 5.1. These values lead to a mechanical resonance at 186 Hz

and an electrical resonance at 842 Hz.

In order to design a compensator using the LQG method, the performance variables

must be determined, and the sensors, actuators, and disturbance source must be modeled.

Since the problem consists of controlling the acoustic reflection coefficient of the speaker,

the most natural choice for the disturbance is the incoming acoustic pressure amplitude,

and for the performance variables, the incoming and outgoing acoustic pressures. How-

ever, the only possible acoustic measurement is the total acoustic pressure. The following

equations can be used to relate the total surface acoustic pressure to the incoming and out-

going acoustic pressures.

o Pi + PoC (5.6)

P = 2P i + pocoi (5.7)

where Po, Pi, and P are the outgoing, incoming, and total acoustic pressures, po is the

ambient density of air, co is the speed of sound in air, and u is the displacement of the

speaker cone.

The final step in the LQG design is to determine the state and control weighting matri-

ces. The state weighting matrix is chosen to be the acoustic power flow matrix given by

PM Pi Pio 2 -A 0 (5.8)
P P Poco 0 ALoi 00



Table 5.1: Speaker Parameters

since the performance variables are simply the incoming and outgoing acoustic pressure

amplitudes. The control weighting matrix is simply the scalar value p, since there in only

one actuator.

5.3 Summary

The vibro-acoustic loads inside the payload fairing arise from the transmission of acoustic

disturbances from the outside environment as well as from the acoustic reverberation

within the enclosure. Attenuation of acoustic transmission through the structure was

achieved using a PVDF strain sensor and a piezoceramic actuator to add damping to the

first two symmetric modes of the plate. However, due to the weak coupling between the

structural modes and the acoustic cavity modes, the structural sensing and actuation alone

did not add appreciable damping to the acoustic cavity modes. Therefore, a second actua-

tor sensor pair was added to the control design to control the reflection of sound within the

enclosure. Due to modeling difficulties posed by a multi-input, multi-output control

design, the method of successive loop closure was used. First, the transmission of sound

Parameter Symbol Value

moving mass m 33.2 g

effective stiffness k 4.79 x 104 N/m

damping c 7.32 Ns/m

coil resistance Re 11.9 Q

coil inductance Le 2.25 mH

effective area A 0.0330 m2

electro-mechanical coupling factor BI 9.83 N/A



into the fairing enclosure was controlled using an SWLQG controller using strain feed-

back. Then the reflection of sound within the fairing enclosure was controlled using two

types of controllers: an SWLQG controller using pressure feedback and an acoustic

impedance matching controller.
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Chapter 6

Experimental Results

The final control design discussed in Chapter 5 employs successive loop closure to first

attenuate acoustic transmission through the plate, and then attenuate acoustic reflection

within the enclosure. To verify this approach, the compensators were implemented on the

test chamber in the laboratory. The experimental data obtained from the experiments are

presented in this chapter.

6.1 Open Loop

The structural-acoustic test chamber has three actuators and six sensors. The three actua-

tors are the top and bottom speakers and piezoceramic patch. The six sensors are the five

microphones and the PVDF area averaging strain sensor. The actuators can be divided into

two categories, the control actuators (u) and the disturbance actuators (w), and the sensors

can also be divided into two categories, the feedback sensors (y) and the performance sen-

sors (z). The individual actuators and sensors can fall into the two categories depending on

the requirements of the specific control scheme. For instance, in the case of transmission

control, the top speaker provides the disturbance and the piezoceramic patch is the control



actuator. The feedback sensor is the PVDF strain sensor and microphones 3, 4, and 5 are

the performance microphones. In the case of reflection control, the disturbance is again the

top speaker, but the control actuator is now the bottom speaker and the feedback sensor is

now the microphone which is collocated with the control speaker (microphone 4). The

performance sensors are still microphones 3, 4, and 5. The performance microphones are

located throughout the length of the lower chamber to observe the global behavior of the

acoustics within the lower chamber. A combined performance of the global acoustic levels

in the lower chamber can be obtained using the root sum square (RSS) of the three perfor-

mance microphones to obtain a form of the spatial average of the three measurements.

Since the control design was based on successive loop closure with the structural con-

trol loop being closed first, the open loop transfer functions discussed here are based on

the control topology of the structural control. So the disturbance is supplied by the top

speaker, the control is the piezoceramic patch, the feedback sensor is the PVDF, and the

performance sensors are the three microphones in the lower chamber. The "open loop"

transfer functions for the acoustic control will be discussed later.

The Gyu transfer function shows the response of the feedback sensor to an excitation of

the control actuator. Figure 6.1 shows the transfer function from the piezoceramic patch to

the inner ring of the PVDF strain sensor. The highly observable and controllable poles

near 73 Hz and 276 Hz are the first and second symmetric modes of the plate, respectively.

The poles with low observability and controllability which show up in the transfer func-

tions as near pole-zero cancellations are asymmetric modes of the plate, acoustic modes of

the lower chamber, and dynamic modes of the speaker. Another important characteristic of

this transfer function is the bounded phase behavior in the low frequency region below 1

kHz. This is due to the collocation of the sensor and actuator which results in an alternat-

ing pole-zero pattern. However, at higher frequencies, the alternating pole-zero pattern
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Figure 6.1: Open loop Gyu transfer function for transmission control

stops, leading to a rolloff in the phase. This is due to the fact that the actuator and sensor

are not purely collocated and also to the dynamics of three dimensional acoustic modes at

higher frequencies. Since this occurs at a high enough frequency, it does not affect the sta-

bility of the closed loop system. The compensator has the opportunity to roll off before the

non-collocation becomes apparent, resulting in gain stability of the closed loop system.

The Gzu transfer functions show the responses of the performance sensors to an excita-

tion of the control actuator. Figure 6.2 shows the transfer functions from the piezoceramic

patch to the three performance microphones. Since none of these microphones are collo-

cated with the plate, these transfer functions do not exhibit the alternating pole-zero pat-

tern and bounded phase characteristic of collocated transfer functions. The non-

collocation causes a propagation delay between the actuator and sensor which equals the

ratio of the distance between actuator and sensor and the speed of sound. This propagation
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Figure 6.2: Open loop Gzu transfer functions

delay results in missing zeros between poles, with the number of missing zeros directly

corresponding to the distance between the actuator and sensor.

The Gy, transfer function shows the response of the feedback sensor to an excitation

of the disturbance actuator. Figure 6.3 shows the transfer function from the disturbance

speaker to the inner ring of the PVDF strain sensor. Again, the actuator and the sensor are

not collocated, so there are missing zeros in the transfer function as well as a significant

roll off in the phase. This transfer function shows significant peaks at the frequencies of

the first and second symmetric structural modes of the plate, as expected since the sensor

used is the PVDF strain sensor which is sensitive to those modes.
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Figure 6.3: Open loop Gyw transfer function

The Gzw transfer functions show the responses of the performance sensors to an excita-

tion of the disturbance actuator. Figure 6.4 shows the transfer functions from the distur-

bance speaker to the three performance microphones in the bottom chamber as well as to

the RSS of the three performance microphones. The modes with the largest amplitudes in

the disturbance to microphone RSS transfer function contribute the most to the transmis-

sion of sound from the outside environment into the fairing enclosure. Therefore, adding

damping to these modes will result in the most significant overall performance improve-

ment. These modes include the first and second structural modes at 73 Hz and 276 Hz,

respectively, and the first and second acoustic modes of the lower chamber at 134 Hz and

325 Hz, respectively. Notice that the frequency of the second acoustic mode is not double

the frequency of the fundamental mode. This is due to the coupling of the acoustics with

the dynamics of the speaker. The frequency of the fundamental acoustic mode is pushed

down from 166 Hz to 134 Hz and the speaker mode is pushed up from 171 Hz to 186 Hz.
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6.2 Transmission Control

The compensator used for structural control of the aluminum plate was designed using the

SWLQG method described in Chapter 5, and was implemented using a HEURIKON digi-

tal computer operating at a sampling frequency of 8.6 kHz. The digital implementation of

the compensator results in an introduction of a time delay equal to one and a half sample

periods which results in a phase lag in the compensator transfer function. This phase lag

essentially limits the bandwidth of the compensator as the loop must be gain stable as it

crosses over -180'. However, by incorporating the time delay into the design plant model

using a pad6 approximation, the LQG algorithm can be made aware of the time delay and

the control design done so as to maintain closed loop stability. For the transmission con-

trol, the targeted modes are the first and second symmetric modes of the plate. Therefore

the necessary controller bandwidth is relatively small, so the limitations imposed by the

time delay should not cause a problem.

Figure 6.5 shows the compensator transfer function and the Nichols plot derived from

the loop transfer function formed by wrapping the compensator around the open loop Gyu

data augmented with the pad6 approximation of the time delay. The design goal of the

structural compensator was to add damping to the first and second symmetric modes of the

plate. As such, there are two separate instances in which the loop gain is greater than unity,

as seen in the Nichols plot, with each instance corresponding to one of the structural

modes. The minimum phase margin supplied by this loop is 370 and the minimum gain

margin is approximately 2 dB.

Figure 6.6 shows the closed loop transfer function from the disturbance speaker to the

feedback sensor, the PVDF strain sensor. As was the goal of the control design, the first

symmetric plate mode at 73 Hz and the second symmetric plate mode at 276 Hz are very
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well damped, with performance improvements of 17.4 dB and 16.2 dB respectively. The

broadband performance improvement measured between 10 Hz and 1 kHz is 4.6 dB.

However, the performance that is of greater interest is the acoustic attenuation in the

lower chamber provided by the damping of the structural modes. Figure 6.7 shows the

closed loop transfer functions from the disturbance speaker to the performance sensors.

The top plot combines the three performance microphones using the root sum square

method to obtain a measure of the spatially averaged performance. The remaining plots

show the transfer functions for the three individual microphones. The combined perfor-

mance transfer function shows that there is significant damping of the acoustics at the fre-

quencies of the first two symmetric modes, with performance improvements of 17.8 dB

and 17.3 dB respectively at those modes. The broadband performance improvement com-

puted between 10 Hz and 1 kHz is 4.9 dB. Notice that the performance improvements

shown in the closed loop disturbance to performance microphone plots closely reflect the

improvements shown in the closed loop disturbance to feedback sensor plot.

Also, note that there is a slight amplification of the acoustics in the low frequency

region below 50 Hz. Numerous attempts were made to eliminate this amplification using

such techniques as frequency weighting, sensitivity weighting, and adding state penalties

at low frequencies, but all attempts were unsuccessful.

The important point here is that using Active Structural Acoustic Control, global atten-

uation of the acoustics has been attained. Moreover, using only structural sensors and

actuators, and with no knowledge of the acoustic modes of the enclosure, significant atten-

uation of the interior acoustic environment was attained. Although there is some amplifi-

cation at certain frequency ranges, the achieved acoustic damping is observed at all

locations within the lower chamber. This is in contrast to many other forms of acoustic
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Figure 6.8: Disturbance speaker to performance microphone RSS transfer functions
with the transmission control closed -- experimental closed loop data (-), predicted

closed loop (--), and open loop data (-.)

control in which attenuation is achieved at certain points at the cost of amplification at all

other points.

Another important point to emphasize is that while the goal of the transmission control

was to reduce the spatially averaged sound levels within the lower chamber, the control

only had information on the vibration of the plate. Therefore, the addition of damping to

or the stiffening of the plate were the only available control options. During the control

design process, the predicted closed loop performance, obtained by wrapping the compen-

sator around the open loop data augmented by the pads time delay was plotted. The pre-

dicted closed loop performance is given by

GZ( zw() l) (6.1)
(cl) 1 + KGyu(ol )

where K is the compensator. Figure 6.8 shows the predicted closed loop acoustic perfor-
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Figure 6.9: Time traces of the performance microphones in response to a sinusoidal
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mance, compared with the experimentally obtained closed loop transfer function from the

disturbance speaker to the root sum square of the performance microphones. Note that the

predicted closed loop transfer function and the experimental closed loop transfer function

match fairly well at the frequencies of the targeted structural modes, with the experimental

data achieving better performance at the fundamental structural mode, but the experimen-

tal data shows amplification at some frequencies between the 100 Hz and 230 Hz.

The plots in figure 6.9 show the time traces of the three performance microphones in

response to a sinusoidal disturbance at the frequency of the first structural mode, 73 Hz.

Notice the significant decrease in the acoustic amplitude resulting at that frequency.

Microphone 5 -- Open and Closed Loop



In addition to the narrowband compensator in which two specific modes of the plate

were targeted for control, an attempt was made to design a broadband compensator in

which attenuation at all frequencies below 300 Hz was achieved. An LQG control design,

similar in structure to the narrowband compensator was used. This time, however, the state

penalty matrix had more than just the two components corresponding to first two modes.

The initial problem which was encountered was that the controller did not roll off fast

enough leading to gain destabilization at high frequencies. A frequency weighting on the

control penalty was adopted, with a high penalty at high frequencies and a low penalty at

low frequencies. The goal of the control frequency weighting was to maintain the closed

loop performance improvements at low frequencies while forcing the controller to roll off

at higher frequencies allowing for a stable closed loop system.

The ideal control frequency weight would be a step function which would have one

value at low frequencies and then step up instantaneously to a higher value for higher fre-

quencies. This would allow the control penalty to be constant for the low frequency range

in which performance improvement is desired, and then immediately raise the control pen-

alty to force the rolloff. However, such a function cannot be put into the state space format

which is necessary for implementation of the frequency weighted LQG control. Therefore,

a fourth order approximation to the step function given by

0 + 1 X 10 40 + 6 X 109
R4(0) = 4 + 1104o 2 +6x 101(6.2)

4 4 2 14 (6.2)
0) +1x10 o +6x10

was used as the frequency dependent control penalty. Figure 6.10 shows a plot of R4 ()) as

the dotted line. Notice that the transition between the regions of low and high control pen-

alties is very slow. The problems that this causes are two fold. First, by pushing the control

penalty lower at low frequencies in an attempt to gain more performance in that region, the

transition zone is also pushed down. This leads to too much control effort exerted in the
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frequency range between 400 Hz and 1 kHz and gain instability results. Second, in order

to have a high enough control penalty at the higher frequencies to avoid gain instability,

the roll up of the weighting function must start at frequencies so low as to limit the band-

width of the controller to below 200 Hz. Due to these limitations on the control gain, it

was not possible to gain any significant performance in regions outside of the first sym-

metric mode, which is no better than the narrowband approach.

In an effort to shorten this transition, an eighth order approximation to the step func-

tion given by

8 3 6 12 4 17 2 24R8) = Ko -3x10 o +4x10 co -4x10 o +4x10
8  5 6 15 4  2 +42 1029

_ 6 x 10 0 + 1 x 10 o + 54o +4x 10

was used, where K is some scaling factor. A plot of R8 (O) with K= 1 is shown in Figure

6.10 as the solid line. As can be seen, this weighting function has better transient behavior

than the fourth order weighting function. Unfortunately, even with an eighth order fre-



quency weight, the transition is still too slow, resulting in the same problems. Although it

is not evident in the figure, there is an order of magnitude difference in the weighting func-

tion between 70 Hz and 270 Hz, resulting in significantly less performance at the second

symmetric mode than at the first. A frequency weighting function which has a rapid

enough transition to allow for appreciable performance improvements in the low fre-

quency range while maintaining gain stability will be of extremely large order.

As a result of these problems, an effective broadband controller was not able to be

implemented. The broadband technique only managed to achieve performance improve-

ments at the two symmetric modes which the narrowband controller was able to do in a

much simpler control design.

6.3 Combined Transmission and Reflection Control

After the transmission controller is implemented, the behavior of the system is altered. It

is upon this transmission control closed loop system that the reflection controller will be

implemented. For the reflection control, the disturbance is still provided by the top speaker

and the performance sensors are still microphones 3, 4, and 5. However, the control actua-

tor is now the bottom speaker and the feedback sensor is microphone 4. So in this case,

microphone 4 acts as both a feedback sensor and also as one of the performance sensors.

Figure 6.11 shows the "open loop" Gzu transfer functions. The bottom plot is the transfer

function from the control speaker to the feedback sensor, Gyu. All are measured with the

transmission control closed.

Also, note that the open loop Gzw transfer functions are simply the closed loop Gzw

transfer functions for the transmission control, shown in figure 6.7, since the disturbance

in both cases is the top speaker and the performance sensors in both cases are microphones
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Figure 6.11: "Acoustic open loop" Gyu and Gzu transfer functions

3, 4, and 5. Also, since the feedback sensor for the acoustic control is microphone 4, the

open loop Gy, transfer function is also included in the transmission control closed loop

disturbance to performance transfer functions.

6.3.1 Acoustic Impedance Matching Controller

Two types of reflection controllers were designed, an SWLQG controller and an

acoustic impedance matching controller. The impedance matching controller was

designed using the methodology described in Chapter 5 and was implemented using a sec-

ond HEURIKON digital computer operating at a sampling frequency of 9.6 kHz.
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Figure 6.12: Impedance matching acoustic controller transfer function

Figure 6.12 shows the compensator transfer function, GU, for the acoustic impedance

matching controller. This compensator was designed to attenuate the first few acoustic

modes by employing a broadband penalty. This was done by shaping the disturbance fre-

quency weighting to have a relatively high value up to about 400 Hz after which it rolls

off. The effect of this frequency weighting is to make the control algorithm think there are

higher amplitude disturbances at lower frequencies and therefore increase the control

effort in that frequency range.

Figure 6.13 shows the experimental effects of the reflection control by comparing the

result of implementing both the transmission and reflection control with the result of

implementing just the transmission control. Note that the acoustic controller achieves

attenuation in the first, second, and third acoustic modes which are at 134 Hz, 325 Hz, and

464 Hz, respectively. In addition, there is damping of the acoustics at the frequency of the

speaker mode at 186 Hz.
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Figure 6.14 shows the experimental data of the transmission and reflection control

closed loop system compared with the open loop data. Examination of the combined per-

formance transfer function shows significant damping of the first and second structural

modes with performance improvements of 17.8 dB and 17.3 dB, respectively. Also the

first four acoustic modes show performance improvements of 3.3 dB, 6.7 dB, 0.8 dB, and

3.8 dB, which lead to a broadband performance improvement of 4.9 dB between 10 Hz

and 1 kHz.

6.3.2 Sensitivity Weighted LQG Controller

The primary advantage provided by the impedance matching control design is the lack of

need for a high order, reverberant model of the system. It reduces the acoustic reverbera-
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tion inside the fairing enclosure with a model of the fairing structure and its local acoustic

coupling, without knowledge of the acoustic cavity modes. This allows for the reconfigu-

ration of the payload inside the fairing, which alters the acoustic modes of the enclosure,

without the need to remodel the entire system. However, this convenience comes at the

price of reduced closed loop performance. It is intuitive that if information on the entire

system including its structural modes, acoustic modes, and the coupling between the struc-

ture and acoustics is provided, as opposed to just the structural modes and its local acous-

tic coupling, the controller will be better able to control the acoustic behavior of the

enclosure.

The SWLQG controller was designed based on a 42 state model, but the digital com-

puter is only capable or running a 42 state compensator at a prohibitively slow sampling

rate. Recalling that the phase loss associated with the digital implementation of the con-

troller is worsened by slower sampling rates, it is imperative that the computer be run with

as high a sampling rate as possible. A sampling rate of 8.6 kHz was found to be fast

enough so that the subsequent phase loss does not limit the bandwidth of the controller to

below the highest frequency of interest. However, this requires that the controller must be

reduced from 42 states to 16 states. This reduction leads to a loss of important compensa-

tor dynamics near the frequency of the fundamental acoustic mode, leading to a reduction

in the closed loop performance at that mode. Since the fundamental acoustic mode has the

highest magnitude of any of the acoustic modes, its reduction is the most important in the

overall closed loop performance. Therefore, an attempt was made to reduce the compensa-

tor while maintaining its dynamics at that mode. The problem is that the mode in question

has low amplitude and observability compared to the other modes of the controller, and

therefore a reduction by balanced realization promptly eliminates that mode. Using the

balanced reduction, the compensator can only be reduced to 38 states before the mode is
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Figure 6.15: SWLQG reflection controllers: full 42 state compensator (-), 22 state
reduced compensator (- -), and 16 state reduced compensator (-.)

eliminated. Thus, a reduction method in which specified modes can be kept while others

are eliminated is needed. One such method is to identify the compensator using the

FORSE algorithm that was used to obtain measurement models, and then to eliminate

unnecessary dynamics using the "Remove poles from model" option. This was done and

the compensator was reduced to 22 states. Further reduction led to a poor match between

the reduced and full compensators which would result in poor closed loop performance.

The problem now is that the digital computer must be slowed down to a sampling rate of

7.8 kHz to account for the increase in number of compensator states. An analysis was per-

formed to ensure the closed loop stability of the system after the change in sampling rate.

Figure 6.15 shows the full compensator, the 22 state reduced compensator and the 16 state

reduced compensator. Notice that in the 16 state controller, the pole near 130 Hz has been



reduced out, whereas the 22 state controller retains that mode. There is also a mismatch of

the amplitude at higher frequencies for the 16 state compensator.

Figure 6.16 shows the closed loop transfer function from the disturbance speaker to

the three performance microphones for the 16 state controller. The top plot shows the RSS

of the three microphones, and the remaining plots show the responses of the individual

microphones. The dashed line is the "open loop" transfer function in which only the trans-

mission control is implemented and the solid line shows the closed loop transfer function

with both the transmission and reflection controls implemented, thus showing the effects

of the reflection control. Notice that damping is added to the first three acoustic modes at

134 Hz, 325 Hz, and 464 Hz, with a slight amplification of the speaker mode at 186 Hz.

The performance gain resulting from the addition of the reflection control compared with

the transmission control only is 4.44 dB, 9.57 dB, and 10.88 dB at the first three acoustic

modes respectively. The reason for the relatively small performance improvement in the

fundamental acoustic mode is due to the elimination of the critical compensator mode

responsible for the attenuation of that mode.

Figure 6.17 shows the closed loop transfer function from the disturbance speaker to

the three performance microphones for the combined reflection and transmission control

compared to the open loop transfer functions. The top plot shows the RSS of the three

microphones and the remaining three plots show the individual microphones. Significant

damping has been added to the first five modes of the system by the combination of the

transmission and reflection controls. The broadband performance improvement measured

from 10Hz to 1 kHz is 5.47 dB. The performance gains in the first two structural modes

are 16.03 dB and 14.17 dB, respectively, and in the first three acoustic modes are 5.37 dB,

11.88 dB, and 11.32 dB respectively. Although there is amplification in the region of the

speaker mode (near 200 Hz) caused primarily by the transmission control, the achieved
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acoustic attenuation is global in nature as can be seen from the reductions in each of the

three performance microphones. One point to note is that since microphone 5 is located at

the midpoint of the lower chamber where the fundamental acoustic mode has a node, it is

not observable in the transfer function from the disturbance to microphone 5.

While the 16 state controller achieved very good performance, the 22 state controller

should be able to achieve even better results since it retains more of the dynamics of the

full compensator. Figure 6.18 shows the closed loop disturbance speaker to performance

microphone transfer functions for the 22 state controller. The top plot shows the micro-

phone RSS transfer function and the remaining plots show the individual microphones.

The solid line shows the closed loop system with both the transmission and reflection

compensators implemented, and the dashed line shows the system with just the transmis-

sion control implemented. Again, acoustic attenuation is achieved in the first three acous-

tic modes, and is global in nature. Notice that the damping at the first acoustic mode is

better with the 22 state compensator compared to the 16 state compensator, although there

is amplification just above the fundamental acoustic mode. This amplification also

appeared in the predicted closed loop transfer function with the full 42 state compensator,

although to a slightly lesser degree. Figure 6.19 shows the closed loop experimental data

of the disturbance speaker to performance microphone RSS transfer functions for the 22

state and 16 state compensators compared to the predicted closed loop RSS performance

transfer function for the full 42 state compensator. The reason the amplification does not

occur with the 16 state compensator is probably due to the considerably lower magnitude

of the 16 state compensator transfer function near 200 Hz when compared with the full

and 22 state compensators. This lower magnitude results in no amplification near 200 Hz,

but also leads to less performance at the fundamental acoustic mode. This is consistent

with the slightly higher amplification caused by the 22 state compensator compared with
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Figure 6.19: Disturbance speaker to performance microphone RSS transfer functions --
experimental data for 22 state reflection controller (-), experimental data for 16 state

reflection controller (--), predicted performance for 42 state reflection controller(-.), and
experimental data with no reflection control implemented (...)

the full compensator since the reduction to 22 states caused a slight increase in the ampli-

tude of the compensator near 200 Hz. Clearly there is a trade-off between achieved closed

loop performance at the fundamental acoustic mode and amplification just above that

mode. The performance improvements from implementing the 22 state reflection control

are 8.31 dB, 10.28 dB, 7.58 dB at the first three acoustic modes.

Figure 6.20 shows the disturbance speaker to performance microphone transfer func-

tion for the system with both the 22 state reflection control and the transmission control

implemented, compared to the open loop data. Again, the first three acoustic cavity modes

as well as the acoustics associated with the first two symmetric plate modes are very well

damped. There is amplification in the region near 200 Hz, but the achieved attenuation is

observed at all three performance microphones. The combined transmission and reflection
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control results in a broadband performance improvement of 5.61 dB. The performance

gains at the first three acoustic modes are 9.23 dB, 12.59 dB, and 8.02 dB respectively,

while the gains at the two plate modes are 11.81 dB and 16.82 dB. Notice that the perfor-

mance at the first acoustic mode is significantly better with the 22 state controller.

6.4 Summary

The experimental results of both the transmission control and the combined transmission

and reflection control have been presented. The performance improvements are summa-

rized in tables 6.1 and 6.2. Table 6.1 shows the results of the transmission control and the

impedance matching reflection control and table 6.2 shows the results of the transmission

control and the SWLQG reflection control for both the 16 state compensator and the 22

state compensator. One important point to note is the difference in performance of the

transmission control for the impedance matching and the SWLQG reflection compensa-

tors. The reason for this is that between the implementation of the impedance match and

the SWLQG controllers, the acoustic chamber was disassembled to fix a faulty perfor-

mance microphone and subsequently reassembled. This altered the dynamic properties of

the chamber, which is evidenced by the shifting of the modal frequencies. This variation in

the modes was large enough to warrant a redesign of the transmission controller. Due to

limitations on time, the second transmission controller was not able to be designed to meet

the performance achieved by the first transmission controller which was used for the

impedance match. However, the important point here is that it is possible to achieve a

broadband performance improvement of 4.56 dB with the transmission control and an

additional 2.29 dB with the 22 state SWLQG reflection control. Although this combina-

tion was not implemented experimentally due to the limitations on time, a potential broad-

band performance gain of 6.85 dB is possible.



Table 6.1: Closed loop performance for impedance matching reflection control

Transmission Impedance Match
Mode Freq (Hz) Reflection

& Transmission

Broadband 10Hz - lkHz 4.56 dB 4.92 dB

1st Structural 73 Hz 17.37 dB 17.76 dB

2nd Structural 276 Hz 16.15 dB 17.32 dB

ist Acoustic 134 Hz 2.16 dB 3.27 dB

2nd Acoustic 325 Hz 3.62 dB 6.70 dB

3rd Acoustic 464 Hz -1.12 dB 0.80 dB

Table 6.2: Closed loop performance for SWLQG reflection control

16 state 22 stateTransmission
Mode Freq (Hz) Control Reflection Reflection

& Transmission & Transmission

Broadband 10Hz - 1kHz 3.32 dB 5.47 dB 5.61 dB

1st Structural 69 Hz 15.43 dB 16.03 dB 16.82 dB

2nd Structural 260 Hz 16.03 dB 14.17 dB 11.81 dB

1st Acoustic 133 Hz 0.92 dB 5.37 dB 9.23 dB

2nd Acoustic 326 Hz 2.31 dB 11.88 dB 12.59 dB

3rd Acoustic 466 Hz 0.44 dB 11.32 dB 8.02 dB



Chapter 7

Conclusions

7.1 Summary

The problem of vibro-acoustic control for application in acoustic attenuation of launch

vehicle shrouds was investigated. The complex problem which involves the curvilinear

two dimensional structure of the fairing shell enclosing a three dimensional acoustic field

was simplified into a two dimensional structure and one dimensional acoustics in a

waveguide. The simplification of the problem led to the elimination of many of the diffi-

culties posed by a large order, multi-dimensional setup while preserving the relevant phys-

ics of the problem.

Since most of the acoustic disturbances originate from outside the payload fairing, it is

reasonable to think that reducing the transmission of sound through the shroud will lead to

significant attenuation of the interior acoustics. The addition of structural damping to the

fairing did in fact reduce the transmission of sound into the enclosure, but due to the weak

coupling between the structural modes and the acoustic cavity modes, it was not possible

to attenuate the acoustic reverberation with structural damping alone. It was necessary to

supplement the transmission control with another controller in which a second actuator



was used to alter the acoustic reflection coefficient at one end of the waveguide. Using the

method of successive loop closure, both the transmission control and the reflection control

were implemented and it was possible to achieve significant reductions in the interior

acoustics at the first three acoustic cavity modes as well as at frequencies corresponding to

the first two symmetric structural modes.

The transmission control utilized only structural sensors and actuators employing a

PVDF strain sensor and a piezoceramic actuator. A sensitivity weighted LQG control tar-

geting the first and second symmetric modes of the plate was used, achieving significant

damping of those modes as well as small performance improvements in the first, second,

and fourth acoustic modes. The closed loop system achieved a broadband performance

improvement of 4.56 dB with improvements of 17.37 dB and 16.15 dB at the two struc-

tural modes.

The reflection control, using a speaker actuator and a microphone sensor, attenuated

the reverberation of sound within the enclosure by reducing the reflection coefficient at

one end of the waveguide. Two different types of controllers were implemented: a sensi-

tivity weighted LQG design and an acoustic impedance matching design, both targeting

the first three acoustic modes. The reflection control provided additional damping to the

first, second, and third acoustic modes. The SWLQG reflection control achieved an addi-

tional 2.29 dB broadband, with 8.31 dB, 10.28 dB, and 7.58 dB improvements at the first

three acoustic modes, respectively. The impedance match was only able to achieve an

additional 0.36 dB broadband with 1.11 dB, 3.08 dB, and 1.92 dB at the first three acoustic

modes, but previous results using the acoustic impedance match with a very similar setup

[17] show that better results are possible.

In achieving this final result, numerous difficulties were encountered. The use of vari-

ous structural sensors for the transmission control were investigated with problems arising



from each choice. In the end, the PVDF strain sensor was specially designed for the plate,

leading to good closed loop results. However, the transmission control failed to add any

significant damping to the acoustic cavity modes, forcing the need for a supplementary

reflection control. A multi-input, multi-output control design seemed the most natural

choice, but it quickly became clear that the modeling problems caused by the large num-

ber of inputs and outputs would eliminate this as a potential solution. Therefore the

method of successive loop closure was used in which two single-input, single-output con-

trollers were implemented.

7.2 Recommendations for Further Work

In the implementation of active control for attenuation of acoustic levels inside a rocket

payload fairing, it is desirable to use as little additional mass as possible. In that respect, a

control design which only requires actuators and sensors on the structure of the fairing

which can simultaneously control the transmission and reflection of acoustics is better

than a design which uses two sets of actuators and sensors. The reduction of acoustic

transmission is accomplished by damping the dynamic vibrations of the plate so that

incoming acoustic disturbances reflect back into the outside environment. However, by

simply damping the structural vibrations of the fairing the acoustic reverberation within

the enclosure cannot be controlled due to the weak coupling between the structural modes

and the acoustic cavity modes. Also, if the structure is controlled to minimize the acoustic

reflection coefficient in order to attenuate the reverberation within the enclosure, it is diffi-

cult to control the transmission of sound into the enclosure from the outside environment.

Also, the actual launch vehicle shroud encloses a three dimensional acoustic environ-

ment with a structure that is significantly more complex than the circular plate used in this

experiment. The increased complexity of the problem raises the issue of the selection and



placement of the sensors and actuators to effectively control the structural modes responsi-

ble for the transmission of sound as well as the acoustic cavity modes which contribute the

most to the performance. An analysis to determine these modes must be done and the

proper actuators and sensors selected.

The impedance matching technique should be capable of achieving significantly better

results than was shown in this experiment. This is evident in the past implementation of

the technique on structural systems [31,32]. The problem may lie in the choice of sensors

and actuators, or more fundamentally in the formulation of the power flow control prob-

lem. The main advantage provided by the impedance matching method is the need for

only a low order model which includes the dynamics of the structure and its local acoustic

coupling. This allows for reconfiguration of the payload without having to remodel the

system, whereas with the SWLQG approach, every reconfiguration of the payload requires

a model update and a control redesign. Therefore, an impedance matching controller

which can achieve performance comparable to the SWLQG controller would be a signifi-

cant improvement.
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Appendix A

MATLAB Code for Design of SWLQG
Compensators

% SWLQG control of acoustic transmission through a plate using
% strain (inner PVDF) feedback
% Design of SWLQG controller for reflection control is similar

clear

PTH=path;
path('/mace/roger/Typsec/Acoustic/1D',PTH);
path('/mace/mace/matlab' ,PTH);

i=sqrt(- 1);
rate=8600; %sampling rate of stealth (Hz)

% load data (y/u) -- data does not include time delay
load ../042898d
f=FreqV; w=f*2*pi;
Datayu=Xfer34; %piezo to Inner PVDF
Datayu=Datayu.*exp(-i*w* 1.5/rate);

% load data (z/w)
load ../042898b
Datazw=Xfer34; %speaker to Inner PVDF
Datazw=Datazw.*exp(-i*w* 1.5/rate);

% load acoustic performance data
load ../042898a
DataRSS=sqrt(Xferl4.^2 + Xfer24.^2 + Xfer34.^2);
DataRSS=DataRSS.*exp(-i*w* 1.5/rate);

% load model (y/w,u) -- u=piezo, w=speaker, y=accel
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load pmodelbfca40
sys=com2real(sys);
[A,B,C,D]=unpck(sys);
A=full(A); B=full(B); C=full(C); D=full(D);
[At,Bt,Ct,Dt]=pade(1.5/rate,2);
[A,B,C,D]=seriesa(At,Bt,Ct,Dt,A,B,C,D, 1);
states=length(A);

Sc=[A B; C D]; Nc=[length(A) 1 1];
[Sc,Nc]=balred(2,Sc,Nc);
[A,B,C,D]=split(Sc,Nc);
[A,B,C]=ss2mod6(A,B,C);
Bu=B(:,1); Du=D(:,1);
Bw=B(:,2); Dw=D(:,2);

rho=8e-7;
th=le-2;

Cz=zeros(1,length(C));
Cz(6)=1.2;
Cz(18)=.3;

% Find frequencies of all modes
modes=length(A)/2;
for i=1:modes
Al=A(i*2-1,i*2-1); A2=A(i*2-1,i*2);
omw(i)=sqrt(Al^2+A2^2); % in rad/sec
zt(i)=-A 1/sqrt(A 1 ̂ 2+A2^2);

end
om=omw/2/pi; % in Hz

% transforms the Cz matrix to real modal coordinates
T=zeros(modes*2,modes*2);
for i= 1:modes
wd=omw(i)*sqrt( 1-zt(i)A2);
if i==modes

wd=0.5;
end
Tb=[ 1/wd 0; -zt(i)*omw(i)/wd 1];
T(2*i- 1:2*i,2*i- 1:2*i)=Tb;

end
Cz=Cz*T;

Ainv=inv(A);
AinvT=Ainv';

% Construct the SWLQG state weighting matrix
Rxx=Cz'*Cz;
Vxx=Bw*Bw';
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% Sensitivity weighting -----------------------------
% index of desired modes into om and zt vectors
ind=[10 11 12 13 14 15 16 17 18 19];
% Zeta (0) or omega (1) uncertainty?

typ=[0 0 0 0 0 0 0 00];
% Sensitivity state weighting matrix

Raa=[10 10 10 10 10 10 20 20 10 10];
nparam=length(ind);

for i=1:nparam
fr(i)=om(ind(i));% freq of uncertain modes
z(i)=zt(ind(i));% damping ratios of uncertain modes

end

for i=1:nparam
Ab=A(ind(i)*2-1 :ind(i)*2, ind(i)*2-1 :ind(i)*2);% Block of A matrix
Ainvb=inv(Ab);
AinvTb=Ainvb';
if typ(i)==0
dAdz=[-fr(i) z(i)*fr(i)/sqrt( 1-z(i)A2); -z(i)*fr(i)/sqrt( 1-z(i)A2) -fr(i)];
dRxxb=Raa(i)*dAdz'*AinvTb*Ainvb*dAdz;
elseif typ(i)== 1
dAdw=[-z(i) sqrt(1-z(i)A2); -sqrt(1-z(i)A2) -z(i)];
dRxxb=Raa(i)*dAdw'*AinvTb*Ainvb*dAdw;

end
dRxx=zeros(2*modes,2*modes);
dRxx(ind(i)*2-1 :ind(i)*2, ind(i)*2-1 :ind(i)*2)=dRxxb;

Rxx=Rxx+dRxx;
end

% end sensitivity weighting -------------------------------

[ke,se,ee]=lqe(A,Bw,C, ,th);
[kr,sr,er]=lqr(A,Bu,Rxx,rho);

Ac=A-Bu*kr-ke*C+ke*Du*kr;
Bc=ke;
Cc=kr;
Dc=0;

% 2nd order hp filter to get rid of high magnitude comp dynamics at low freq
whp=5*2*pi; zhp=.707;
nhp=[ [1 00]; dhp= [1 2*zhp*whp whpA2];
[ahp bhp chp dhp]=tf2ss(nhp,dhp);
[Ac,Bc,Cc,Dc]=series(Ac,Bc,Cc,Dc,ahp,bhp,chp,dhp);
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Acomp=Ac; Bcomp=Bc; Ccomp=Cc; Dcomp=Dc;

[mc,pc]=bode(Acomp,Bcomp,Ccomp,Dcomp, 1,w);
figure(l)
subplot(211), loglog(f,mc), Mlabel, grid, axis([10 2000 le-3 le2])
title('Compensator TF')
subplot(212), semilogx(f,pc), Plabel, grid, axis([10 2000 -500 500])

% Check for compensator stability
meig=max(real(eig(Acomp)));
disp(['Maximum real part of compensator e-vals = ',num2str(meig)]);

% Loop transfer function using model
[Al,Bl,C1,Dl]=series(A,B,C,D,Ac,Bc,Cc,Dc);
[mlp,plp]=bode(A,B1,C1,Dl, l,w);

% Check closed loop stability (model -- eigenvalues)
Acl=[A -Bu*kr; ke*C A-Bu*kr-ke*C];
Bcl=[Bw zeros(length(Bw), 1); zeros(length(Bw), 1) ke];
Ccl=[C -Du*kr];
Dcl=[0 0];
[mcl,pcl]=bode(Acl,Bcl,Ccl,Dcl, 1,w);
cleig=max(real(eig(Acl)));
disp(['Maximum real part of closed loop e-vals = ',num2str(cleig)]);

% Check closed loop stability (data -- nichols plot)
[re,im]=nyquist(Acomp,Bcomp,Ccomp,Dcomp, 1 ,w); i=sqrt(-1); K=re+i*im;
Loop=K.*Datayu;
mL=abs(Loop); pL=uang(Loop)+360;
figure(2)
subplot(111), semilogy(pL,mL,plp,mlp,' --',-180*[-1 1 3 5],ones(1,4),'x' ,[pL(30)
pL(232)],[mL(30) mL(232)],'o')
grid
axis([-1500 1000 le-3 100])
title('Nichols Plot -- data (solid), model (dash)')

figure(3)
subplot(211), loglog(f,mlp,'--',f,abs(Loop)), Mlabel, grid, axis([10 2000 le-2 10])
title('Loop Transfer Function -- using ol data (solid), model (dash)')
subplot(212), semilogx(f,plp,'--',f,uang(Loop)), Plabel, grid, axis([10 2000 -500 500])

% Check closed loop performance (z/w)
CLoop=Datazw./(1 +Loop);
figure(4)
subplot(211), loglog(f,abs(CLoop),f,abs(Datazw),'--'), Mlabel, grid
axis([10 2000 le-3 le3])
title('CL w/ OL data (solid), OL (dash) Dist to Perf TF (full comp)')
subplot(212), semilogx(f,uang(CLoop),f,uang(Datazw),' -- '), Plabel, grid
axis([10 2000 -2000 500])
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figure(5)
subplot(211), loglog(f,abs(CLoop),f,mcl,'--');
axis([10 2000 le-3 le3])
title('CL w/OL data (solid), CL model (dash) Dist to Perf TF (full comp)')
subplot(212), semilogx(f,uang(CLoop),f,pcl,'--');
axis([10 2000 -2000 500])

fprintf('\nPerf improvement from 10Hz - 1kHz is:\n')
dperfbb=perfcal(9,801 ,Datazw,CLoop,w);
fprintf('\nPerf improvement near 90Hz is:\n')
dperfl =perfcal(50,80,Datazw,CLoop,w);
fprintf('\nPerf improvement near 300Hz is:\n');
dperf2=perfcal (160,220,Datazw,CLoop,w);

% Check closed loop acoustic performance
CLoopa=DataRSS./( 1+Loop);
figure(6)
subplot(211), loglog(f,abs(CLoopa),f,abs(DataRSS),'--'), Mlabel, grid
axis([10 2000 le-2 le2])
title('CL(solid) and OL(dash) Disturbance to Microphone RSS')
subplot(212), semilogx(f,uang(CLoopa),f,uang(DataRSS),'--'), Plabel, grid
axis([ 10 2000 -200 200])

fprintf('\nAcoustic perf from 10Hz - 1kHz is:\n')
aperfbb=perfcal(9,801 ,DataRSS,CLoopa,w);
fprintf('\nAcoustic perf near 90Hz is:\n')
aperfbb=perfcal(50,80,DataRSS,CLoopa,w);
fprintf('\nAcoustic perf from 300Hz is:\n')
aperfbb=perfcal(160,220,DataRSS,CLoopa,w);

Sens= 1./(1+Loop);
[Acl,Bcl,Ccl,Dcl]=cloop(A1,B1,C1,D1,1,-1);
[ncl,dcl]=ss2tf(Acl,Bcl,Ccl,Dcl, 1);
[nl,dl]=ss2tf(A1,B1,C1,D1,1);
ns=conv(ncl,dl); ds=conv(dcl,nl);
[ms,ps]=bode(ns,ds,w);
figure(7)
subplot(211), loglog(f,abs(Sens),f,ms,'--'), Mlabel, grid
axis([10 2000 le-1 le3])
title('Sensitivity TF -- data(solid), model(dash)')
subplot(212), semilogx(f,uang(Sens),f,ps,'--'), Plabel, grid
axis([10 2000 -500 200])

[Acomp,Bcomp,Ccomp]=ss2mod6(Acomp,Bcomp,Ccomp);
Sc=[Acomp Bcomp; Ccomp Dcomp]; Nc=[length(Acomp) 1 1];

repeat= 1;
while repeat== 1,

107



[Scr,Ncr]=balred(2,Sc,Nc); [Acompr,Bcompr,Ccompr,Dcompr]=split(Scr,Ncr);

[mcr,pcr]=bode(Acompr,Bcompr,Ccompr,Dcompr, 1 ,w);
figure(l)
subplot(211), loglog(f,mcr,f,mc,'--'),Mlabel, grid, axis([10 2000 le-3 le2])
title('Full (dash) and reduced (solid) compensator')
subplot(212), semilogx(f,pcr,f,pc,'--'), Plabel, grid, axis([10 2000 -500 500])

% Recheck closed loop stability with reduced compensator
i=sqrt(- 1);
[re,im]=nyquist(Acompr,Bcompr,Ccompr,Dcompr, 1,w); Kr=re+i*im;
Loopr=Kr.*Datayu;
mLr=abs(Loopr); pLr=uang(Loopr);
figure(2)
subplot(11), semilogy(pLr,mLr,plp,mlp,'--',-180*[-1 1 3 5], ones(1,4),'x',[pLr(67)],

[mLr(67)],'o')
grid
axis([-1500 1000 le-3 100])
title('Nichols Plot -- data(solid) model(dash) -- (reduced comp)')

figure(3)
subplot(211), loglog(f,abs(Loopr),f,abs(Loop),'--'), Mlabel, grid, axis([10 2000 le-2

10])
title('Loop TF -- solid (reduced comp), dash (full comp)')
subplot(212), semilogx(f,uang(Loopr),f,uang(Loop),'--'), Plabel, grid, axis([10 2000 -

500 500])

% Recheck closed loop performance with reduced compensator
CLoopr=--Datazw./( 1 +Loopr);
figure(4)
subplot(211), loglog(f,abs(CLoopr),f,abs(Datazw),'--',f,abs(CLoop),'-.'), Mlabel, grid
axis([10 2000 le-3 1e3])
title('CL red (solid), OL (dash) CL full (d-d) Disturbance to Performance TF (red

comp)')
subplot(212), semilogx(f,uang(CLoopr),f,uang(Datazw),'--',f,uang(CLoop),' -.'), Plabel,

grid
axis([ 10 2000 -2000 500])

figure(5)
subplot(211), loglog(f,abs(CLoopr),f,mcl,'--');
axis([10 2000 le-3 le3])
title('CL w/OL data (solid), CL model (dash) Dist to Perf TF (red comp)')
subplot(212), semilogx(f,uang(CLoop),f,pcl,'--');
axis([ 10 2000 -2000 500])

fprintf('\nPerf improvement from 10Hz - 1kHz is (reduced comp):\n')
dperfbb=perfcal(9,801 ,Datazw,CLoop,w);
fprintf('\nPerf improvement near 90Hz is (reduced comp):\n')
dperfl =perfcal(50,80,Datazw,CLoop,w);
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fprintf('\nPerf improvement near 300Hz is (reduced comp):\n');
dperf2=perfcal(1 60,220,Datazw,CLoop,w);

CLoopar=DataRSS./( 1+Loopr);
figure(6)
subplot(211), loglog(f,abs(CLoopar),f,abs(DataRSS),'--'), Mlabel, grid
axis([10 2000 le-2 le2])
title('CL(solid) and OL(dash) Disturbance to Microphone RSS')
subplot(212), semilogx(f,uang(CLoopar),f,uang(DataRSS),'--'), Plabel, grid
axis([10 2000 -200 200])

fprintf('\nAcoustic perf from 10Hz - lkHz is:\n')
aperfbb=perfcal(9,801,DataRSS,CLoopar,w);
fprintf('\nAcoustic perf near 90Hz is:\n')
aperfbb=perfcal(50,80,DataRSS,CLoopar,w);
fprintf('\nAcoustic perf from 300Hz is:\n')
aperfbb=perfcal( 160,220,DataRSS,CLoopar,w);

Sensr= 1./(1 +Loopr);
figure(7)
subplot(211), loglog(f,abs(Sensr),f,abs(Sens),'--'), Mlabel, grid
axis([10 2000 le-1 le3])
title('Sensitivity TF -- reduced comp(solid), full comp(dash)')
subplot(212), semilogx(f,uang(Sensr),f,uang(Sens),'--'), Plabel, grid
axis([10 2000 -500 200])

repeat=input('Redo compensator reduction? (1=yes, 0=no)');

end

Sc=Scr; Nc=Ncr;
sav=input('Save the compensator to transcomp.mat now (1)=yes ');
if sav==l

save transcomp Sc Nc
end
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Appendix B

Narrowband Impedance Match

The acoustic impedance matching method controls a structural actuator to match the

impedance of the acoustic cavity, thereby absorbing all of the impinging acoustic energy.

The narrowband impedance match attempts to do this only at a specific frequency, while

maintaining closed loop stability and avoiding amplification elsewhere. Therefore, this

method would be extremely useful when the incoming disturbance is tonal in nature.

Assuming a single degree of freedom structure with a uniform pressure across the

area, the coupled equation of motion is given by

(ms 2 + cs + k)u = f - AP (B.1)

where m, c, and k are the structural mass, damping, and stiffness, respectively, u is the

position of the structure, f is the actuator force, A is the area, and P is the pressure at the

surface of the actuator. The impedance matching result derived by Glaese gives the

required force as

ms 2 + (c - POCOA)s + k
f = 2ocoAs (P - p ocoSU) (B.2)

where po is the ambient density of air and co is the speed of sound in air. Substituting

equation B.2 into B. 1 and solving for u gives
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-1
u = P (B.3)

PoCos

so that

du -1- 1P 
(B.4)

dt poco

Thus, the narrowband impedance matching compensator must actuate the structure to

force the structural velocity to satisfy equation B.4. This requirement can be rewritten as

a -1
- (B.5)

P Poco

Therefore, a method to derive such a compensator using the available measurements

must be developed. An accelerometer is placed on the speaker cone and the open loop

transfer function, is taken from the control speaker to the collocated accelerometer.

The feedback sensor is a collocated microphone, so the transfer function for the compen-

sator can be written as . Notice that the product of the two transfer functions gives
P P

and an integration of this provides u. Therefore the compensator must satisfy

- iif -1 (B.6)

P sfP pocO

at the specific frequency of interest. However, since the transfer function magnitudes are

in Volts/Volt, conversion factors must be included. Let ao be the accelerometer constant

V V
with units of , and mo be the microphone constant with units of Then the

m/s 2 ' N/m2
magnitude and phase of the narrowband impedance matching compensator at the fre-

quency of interest is given by

-1 ao s
Xcomp - a(B.7)

PoComoXacc

where Xacc and Xcomp are the transfer functions of the accelerometer and compensator,

respectively.
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To maintain closed loop stability, the compensator was designed to have a roll up at

low frequencies and a roll off at high frequencies, with the highest gain near the frequency

of interest. The idea behind this design is that the loop will have high gain where attenua-

tion is desired and quickly roll off in either direction leading to gain stability. Differentia-

tors were placed at DC causing the roll up, and complex poles were placed near the

frequency in which attenuation was desired leading to a roll off at high frequency. The

parameters such as the frequency and damping of the poles, and the gain were manually

tuned until an impedance match was achieved. First, the damping ratio of the compensator

poles is chosen. Lightly damped poles are generally advantageous since it allows the loop

to have high gain for a very small frequency range reducing the chances for instability.

However, lightly damped poles have a very rapid drop in phase leading to a lack of robust-

ness in the design. Once the damping has been chosen, the frequency of the poles is

adjusted to match the phase to the impedance matching solution. The gain is then varied to

match the amplitude, completing the impedance match.

The experimental setup consisted of a five foot long, one-dimensional acoustic

waveguide with a circular cross section. One dual voice subwoofer speaker was mounted

at each end of the waveguide. The bottom speaker was used as the disturbance speaker and

the top speaker was used as the control speaker. A microphone and an accelerometer were

mounted on the control speaker.

A compensator with a first order roll up and a second order pole at 375.2 Hz with a

damping ratio of 0.03 was designed to achieve an impedance match at the acoustic mode

at 387.5 Hz. Figure B. 1 shows the compensator transfer function and the - transfer func-
P

tion, showing the impedance match at 387.5 Hz marked by an 'x'. Also shown is the

Nichols plot based on wrapping the compensator around the open loop control speaker to

microphone data as well as the predicted closed loop transfer function from the distur-
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Narrowband Impedance Matching Compensator
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Figure B.1: Narrowband impedance matching compensator transfer function, l/f
transfer function showing the impedance match, Nichols plot using open loop data, and

predicted closed loop transfer function

bance speaker to the feedback microphone. Note that there is significant attenuation at the

frequency of the impedance match with only minor amplification at other frequencies. The

performance improvement at 387.5 Hz is 9.9 dB.

The narrowband acoustic impedance matching method was presented with simulated

closed loop results. Significant reduction in the acoustic reflection was achieved at a spe-

cific frequency while maintaining overall closed loop stability and minor amplification at

other frequencies. However, this approach does not allow for broadband control and is

therefore only useful if the disturbance has a strong tonal component.
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Appendix C

Discrete Area Averaging Acoustic Sensor

C.1 Introduction

The behavior of an acoustic field can be measured with a pressure sensor such as a micro-

phone. Microphones use a diaphragm which deflects in response to changes in pressure,

and these deflections are converted into a voltage which can be sensed and recorded. Many

electret condenser microphones are small enough that they can be suspended in the acous-

tic field without significantly altering the acoustics. Also, these microphones are small

enough to be considered omni-directional, meaning they sense pressure equally well in all

directions.

In the development of the one-dimensional acoustic impedance matching controller, a

sensor with high observability of only the one-dimensional acoustic modes of the

waveguide is desired. The problem with a point sensor such as a single microphone is that

it measures total pressure at a point, which has contributions from one-dimensional acous-

tic modes as well as three-dimensional acoustic modes. The advantage provided by an

area averaging sensor is that incoming waves travelling perpendicular to the face of the

sensor will provide signals across the area of the sensor that are in phase, since one wave-

front will arrive at all points on the sensor simultaneously. On the other hand, incoming
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Figure C.1: Resulting signals on an area averaging sensor due to incoming waves trav-
elling perpendicular (a) and obliquely (b) to the face of the sensor

waves impinging obliquely onto the sensor will provide signals across the area of the sen-

sor which are not in phase with each other. This is shown in Figure C. 1. The lines indicate

the wavefronts where the amplitudes are constant, and the arrows indicate the direction of

wave propagation. The figure on the left shows incoming waves travelling perpendicular

to the face of the sensor resulting in a signal across the sensor which is in phase since the

entire wavefront impinges upon it simultaneously. The figure on the right shows incoming

waves travelling obliquely to the face of the sensor resulting in a sinusoidal pattern in the

resulting signal across the face of the sensor. Therefore, if the area averaging was done in

a continuous manner across the face of the sensor, a zero net signal would result from

waves which hit the sensor obliquely since all of the positive contributions provided by the

areas in which a wavefront is impinging would be canceled out by the negative contribu-

tions provided by the areas in which a trough is impinging. However, a continuous sensor

is not possible, so a discrete microphone array was developed to be used as an area averag-

ing acoustic sensor.
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7 1/2" D

Figure C.2: Layout of discrete microphone array

C.2 Sensor Design and Signal Analysis

The feedback sensor in the acoustic impedance matching control needs to be collocated

with the actuator. Therefore, the area averaging acoustic sensor needs to be placed as close

to the control speaker cone as possible. An aluminum plate with 0.032 inch thickness was

cut into a circle with a 7.5 inch diameter, so that it fits flush with the speaker cone. A set of

nine electret condenser microphones were bonded to this plate using epoxy in the configu-

ration shown in figure C.1. The signals from these microphones can be measured individ-

ually or in any combination. The plate was then attached to the speaker cone using silicone

RTV.
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One problem with the electret condenser microphones is that the diaphragm is sensi-

tive to acceleration, so that it measures a combination of the acoustic pressure and the

structural motion of the plate. Therefore, a method in which the acoustic signal can be sep-

arated from the acceleration signal needs to be derived.

The transfer function from the speaker to the microphone taken at atmospheric condi-

tions can be expressed as

mic x acoustic
= G + K (C.1)

spkr latm spkr latm spkr

where G and K are some gains of the microphone, is the transfer function from the
spkr

acoustic
speaker to the structural acceleration of the plate in 1 atm and is the transfer

spkr

function from the speaker to the acoustic pressure at the location of the sensor. Also, the

transfer function from the speaker to the accelerometer can be expressed as

accel Aaccel A (C.2)
spkr latm spkr latm

where A is some gain of the accelerometer.

If the same transfer functions are taken in a vacuum, the acoustics will no longer be

present in the microphone transfer function, leaving the signal due to the structural accel-

eration only. The transfer functions from the speaker to the microphone and the acceler-

ometer in 0 atm are given by

ic = G (C.3)
spkr Oatm spkr Oatm

accel = A
S A k (C.4)

spkr Oatm spkr Oatm
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Then, the transfer function from the speaker to the acoustic signal at the sensor loca-

tion can be derived as

acoustic _ 1 (mic Gaccel (C5)

spkr K spkr latm A spkr latm.

where

mic

G spkr Oatm
-A = (C.6)
A accel

spkr Oatm

This relation can be used to combine the microphone and accelerometer signals to

obtain the measurement of the acoustic pressure. One point to note is that the accelerome-

ter is a point sensor located at the center of the plate. The assumption made here is that the

acceleration of the plate is dominated by the rigid body motion of the entire plate resulting

from the actuation of the speaker cone. This being the case, the acceleration at the center

of the plate is a good representation of the acceleration at all microphone locations.

C.3 Experimental Results

The experimental setup consisted of a 22.5 inch long one-dimensional waveguide with a

circular cross section. The wave guide was capped on both ends by a steel plate, and the

speaker with discrete area averaging sensor was mounted at one end of the waveguide. A

vacuum pump was attached to a port on the top plate to allow for the evacuation of the

chamber.

A band limited white noise signal was used to excite the speaker and measurements

from the microphones and accelerometer were taken using a Tektronix Fourier Analyzer.

Figure C.3 shows the transfer function from the speaker to the acoustic signal calculated at
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Acoustic Signal compared to Microphone Signal
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Figure C.3: Derived acoustic signal at microphone 1 (-) compared to the signal of
microphone 1 (--)

microphone 1 compared to the signal of microphone 1. Notice that the transfer function of

the acoustic signal is missing some of the dynamics which are present in the microphone

signal, while maintaining the same observability of other modes. These high observability

modes are the acoustic cavity modes of which the first three are at 359 Hz, 719 Hz, and

1078 Hz. Also note, however, that the acoustic signal transfer function does not eliminate

all of the remaining dynamics. One reason for this is that the derivation of the acoustic sig-

nal only attempted to eliminate the contributions from structural acceleration. Therefore,

three dimensional acoustic modes will still be observed by the acoustic signal.

Figure C.4 shows the average acoustic signal provided by five of the microphones in

the array (microphones 1,6,7,8,9) compared to the acoustic signal of microphone 1. Notice

that the observabilities of the one dimensional acoustic modes are not changed by the area

averaging, which is expected. Also, some of the low observability modes of the acoustic
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Average of Acoustic Signals (Mic 1,6,7,8,9) compared to Acoustic Signal of Mic 1
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Figure C.4: Average acoustic signal of microphones 1, 6, 7, 8, 9 (, compared to the
acoustic signal of microphone 1 (--)

signal of microphone I have been eliminated due to the averaging. Although the sensor

still retains observability of many of the unnecessary modes, keep in mind that this is only

the average of five microphones. Unfortunately, the data for the average of all nine micro-

phones was lost.

C.4 Conclusions

A discrete microphone array was developed to investigate the use of an area averaging

sensor for use in the acoustic impedance matching control method. The averaging of the

acoustic signals at discrete points allowed for the elimination of some three-dimensional

acoustic modes while maintaining high observability of the one-dimensional acoustic

modes. The performance of the discrete microphone array can be greatly increased with
modes. The performance of the discrete microphone array can be greatly increased with



the addition of more microphones to better simulate a continuous area averaging sensor.

Also, an in-depth analysis of the three-dimensional acoustic modes of the chamber can

lead to a more systematic approach to the placement of the microphones on the plate. The

addition of weights on each of the microphones, as opposed to an unweighted average,

will also lead to better results.
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