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Abstract

This thesis describes the development of an x-ray lithography process capable of
reliably and repeatably exposing arbitrary patterns aligned onto a substrate with
feature sizes well below 50 nm. The end result is a robust process which allows device
fabrication in a previously inaccessible regime.

The device that motivated this work was a coupled-quantum-dot structure requir-
ing a fine-line Schottky gate with a width less than 50 nm. An overview is given of
the device physics and testing, as well as the process required to go from a concep-
tual device design to an actual pattern on a substrate using x-ray lithography. The
work done to improve the technology of soft-contact x-ray replication, both for mask-
to-mask replication and for aligned chip or wafer exposures, is described. The first
direct experimental observations of the effect of substrate photoelectrons during x-ray
exposure, and their detrimental effect on pattern replication, are presented and mod-
eled. Modifications to the x-ray mask replication process which enable reliable mask
reproduction in the presence of these substrate-generated electrons are described.
Exposure results for sub-50 nm features are shown and statistical analysis of these
exposures presented which indicate excellent process latitude in this deep-sub 100 nm
regime. Electron transport measurements on devices in GaAs/AlGaAs with fine-line
Schottky gate structures are presented, showing that the lithography was successful
at producing devices with the desired geometry and electrical characteristics.
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Mountains should be climbed with as little effort as possible and without

desire. The reality of your own nature should determine the speed. If

you become restless, speed up. If you become winded, slow down. You

climb the mountain in an equilibrium between restlessness and exhaustion.

Then, when you're no longer thinking ahead, each footstep isn't just a

means to and end but a unique event in itself. This leaf has jagged edges.

This rock looks loose. From this place the snow is less visible, even though

closer. These are some things you should notice anyway. To live only for

some future goal is shallow. It's the sides of the mountain which sustain

life, not the top. Here's where things grow ...

- Robert Pirsig, Zen and the Art of Motorcycle Maintenance

Do everything beautifully; don't worry about the outcome - it will take

care of itself.

- David Stolper, my high school physics (among other things)

teacher
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Chapter 1

Preface

The technology of a product and the technology used in its manufacture often advance

hand in hand. Developments in manufacturing techniques create improved products,

whose use will inspire ideas for further changes to the product. To make these changes,

modifications to the manufacturing processes are often required, which begins the

cycle again. This has been true from the earliest discoveries of basic metallurgy to

early assembly line manufacturing of automobiles and guns, and it continues to be

true today.

Microelectronic device technology and microlithography are an excellent example

of this partnership. As devices are designed that require feature sizes which bump

up against the limits of available fabrication technology, lithography is called upon

to create smaller structures. Once smaller features are manufacturable, the device

technology makes good use of them, which again pushes the lithographic technology.

The fruitfulness of this interaction is immediately evident when one examines

the semiconductor industry. From the beginnings of integrated circuits (ICs) in the

late 1950's [1], the performance, density, and cost of semiconductor devices have

improved exponentially with time. This trend was first noted in 1965 by Gordon

Moore (then Director of Research and Development for Fairchild Semiconductor, now

Chairman Emeritus of Intel Corporation), who noted that the number of components

on an IC had doubled every two years since the invention of the planar transistor in

1959 [2]. Since then the so-called Moore's "Law" has been used to describe "almost
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Figure 1-1: Semiconductor device minimum feature size versus year. Note the
straight-line trend on the semi-log plot, with a prediction that 50nm feature sizes
will be in commercial production in the year 2012. Data from 1980 and before, plot-
ted with filled circles, are from reference [5]. Numbers after 1980 are for dynamic
random-access memory (DRAM) gate lengths. Data from 1986-1995, plotted with
filled squares, are from reference [6]. Open triangles represent predictions from refer-
ence [4].

anything related to the semiconductor industry which when plotted on semi-log paper

approximates a straight line" [3].

In fact Moore's "Law" has become self-enforced, as it is used as a guideline for

planning future technologies in the Semiconductor Industry Association (SIA) Tech-

nology Roadmap [4]. Figure 1-1 shows a plot of minimum feature sizes of commercial

semiconductor products versus year. The data points decrease more or less exponen-

tially, with a prediction that 50nm feature sizes will be in production in the year

2012.

The payoff from this exponential trend has been enormous. The miniaturization

of silicon metal-oxide-semiconductor field-effect transistors (MOSFETs) has given us

today's powerful computers which perform high-speed digital logic operations while

consuming very little power. The public takes for granted that next year a faster

and more powerful model will make current computers obsolete. As the turn of the

millennium approaches, however, the continuation of this trend is not certain.



As conventional silicon MOSFETs are shrunk further into the deep-submicron

regime, their performance degrades because of short-channel and hot-electron effects.

Perhaps a more pressing problem is the wiring crisis: as the density of transistors

increases with decreasing feature size, the interconnects between transistors become

more congested, and crosstalk between signals can increase, while increasing clock

speeds can make delays due to wiring the limiting factor in chip speed.

The potential limitations posed by these issues are specific to MOSFET technology

which has to this point proven to be so highly successful. As the problems with this

technology become more difficult to overcome, alternatives must be explored which

may allow a way around the roadblocks mentioned above.

Even in the absence of MOSFET-specific problems, however, the exponential trend

in device size reduction becomes increasingly difficult to maintain as device dimensions

are pushed into the deep-submicron regime. Optical lithography is the technology

which is used at present to define features on ICs. Although it has been tremendously

successful to date, it is unlikely to be a viable manufacturing vehicle for feature sizes

below 130 nm, and there is some question as to whether it will work below 150 nm [4].

In addition to microelectronics, there are other technologies, such as integrated

optics and microelectromechanical systems (MEMS), which are pushing lithographic

requirements. Many of these technologies were born from microfabrication capabilities

developed in large part by and for the semiconductor industry. These technologies

are now themselves requiring smaller feature sizes and dimensional control whose

requirements can exceed those of microelectronics.

In order to manufacture micro- and nanometer-scale devices in the "post-optical"

era, alternative technologies will have to be developed to a state where they are

suitable for high-volume manufacturing. Several potential candidate technologies

exist, including x-ray lithography, electron-beam lithography, and extreme-ultraviolet

(EUV) lithography. None has been successfully used even for pilot production in the

sub-100 nm regime. Of these technologies, I believe that x-ray nanolithography offers

the best combination of present development and potential for scaling to production

levels.



This thesis describes an example of an interaction between lithographic technol-

ogy and microelectronic device technology. An interest in exploring non-MOSFET

microelectronics led to a proposed device which required sub-50 nm features in order

to operate properly.

Although sub-50 nm features had been created with x-ray nanolithography in the

past, it had been done only as a demonstration to show its capability. The extension

of this earlier work to create a robust x-ray lithography process capable of fabricating

device patterns on a wafer with feature sizes below 50 nm is the subject of this thesis.



Chapter 2

Background and Motivation

2.1 A New Paradigm for Computation

One set of candidate technologies which could potentially overcome problems associ-

ated with MOSFET devices at very small size scales is quantum-effect electronics [7].

These technologies seek to exploit quantum-mechanical phenomena in semiconductor

nanostructures to achieve enhanced functionality of devices. Several devices which

use quantum-mechanical principles have been proposed and tested [8-13].

If a suitable quantum-mechanical transistor were available, using it to replace

conventional transistors would seem to be an attractive possibility. However, the

problems associated with increased interconnect density would still exist. A more

radical departure from conventional electronics would be a design in which computa-

tional elements interacted directly with one another.

One possible scheme for computation in this manner is a cellular automata com-

puter. A conventional cellular automata system is a mathematically-defined structure

comprised of an array of individual units (automata) which interact only with their

(usually nearest) neighbors and only at controlled times. Each element or "computa-

tional primitive" chooses its next internal state based upon its present internal state

and the state of its neighbors. Translating from this abstract concept to an actual

computer comprised of physical elements, however, is not an easy task.

The main problem is that while the idealized cellular automata of the mathe-
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Figure 2-1: Schematic of cellular automata (CA) interactions. Each cell or compu-
tational primitive is represented by an open circle. Interactions are represented by a
filled square. (a) Conventional CA. Elements interact with their nearest neighbors at
regular time intervals according to defined rules. Each element chooses its next state
based upon its present state and the state of its nearest neighbors. (b) Few-body CA.
Elements only interact when their information is brought into proximity with their
nearest neighbors. In the two-body scheme pictured, alternating pairs interact at
each clock cycle. This type of interaction resembles a sequence of scattering events.

matician interacts only with its neighbors and only at controlled times, real, physical

systems are rarely so well-behaved. They tend to interact in a more long-range manner

than only by nearest-neighbor interactions, and they tend to interact continuously.

There is one cellular automata structure which has been proposed which makes a

serious attempt to get around these problems. It is known as a few-body cellular

automata [14-16]. It allows the use of real, physical entities for cellular automata

computation.

The idea behind the few-body cellular automata is similar to that of scattering

processes between particles. In the scattering case, particles approach each other and

interact when they are in close proximity. After the interaction, they separate and

effectively no longer interact. The way in which this is implemented in the few-body

cellular automata scheme is to place the computational primitives at a far enough

distance that they would not normally interact. When interaction is desired, the



information in each primitive is transported in some manner to a location where the

interactions are allowed. Once the interaction occurs, the resulting primitives and

their information are again removed from each other.

Given a primitive which has an appropriate interaction range and which interacts

with other primitives in a predictable manner, computation with cellular automata

can be achieved. A schematic picture of the differences between a conventional cel-

lular automata interaction and a few-body cellular automata interaction is shown in

Figure 2-1.

Even though the concept of a few-body cellular automata brings us much closer

to being able to physically realize a cellular automata computer, it is still as of yet

an abstract concept with no physical implementation. However, by analyzing its

requirements we can begin to understand how we might use available nanostructures

to make a suitable computational primitive to realize the model.

Any available nanostructure must meet the following criteria [16]:

* There must be localized physical states that can represent binary logical states.

* It must be possible to transport the localized physical states without changing

the part that represents the logical state.

* The localized physical states must interact via a potential which is not too

long-ranged.

* The effect of the interaction on the part of the physical state used to represent

the logical state must correspond to a deterministic few-body rule.

From this list we see that the nature and the range of interactions between nano-

structures is critically important.

We will focus on a quantum dot device. In order to better understand how such a

device might be suitable for use in cellular automata computation, it is necessary to

understand how quantum dots interact with each other and with their environment.

First, however, we discuss the physics behind the Coulomb blockade and describe

what a quantum dot is.



2.2 Quantum Dots and the Coulomb Blockade

Quantum dots in semiconductor nanostructures exhibit the effects of the Coulomb

blockade. Some general discussions of the Coulomb blockade in quantum dots and

metallic structures are given by van Houten et al. [17], Kastner [18], Kouwenhoven

et al. [19], and Kouwenhoven and McEuen [20]. We begin with a review of the basic

theory of the Coulomb blockade in metal grains. We then discuss the formation of a

quantum dot in a GaAs/AlGaAs heterostructure, and investigate how it differs from

a metallic structure.

2.2.1 Classical Coulomb Blockade

The Coulomb blockade arises because of the electrostatic energy required to place an

electron on an isolated conducting island. In the normal, macroscopic world, Coulomb

blockade effects are not seen because this energy is very small compared to the thermal

energy kBT available at room temperature. When the size of a conducting island

becomes very small or if the temperature is reduced to near absolute zero, however,

the effect of this Coulomb energy can be seen. Theoretical analyses of the Coulomb

blockade which are more complete than and complementary to what is presented

below are given in Averin and Likharev [21] and van Houten et al. [17].

Energy of an Isolated Conducting Island

Let us imagine a small metal grain or island which is isolated from its environment.

This grain is capacitively coupled to three conductors which are labeled I (for left), r

(for right), and g (for gate). This is pictured schematically in Figure 2-2. We assume

that any charge on the island is imaged solely on the three conductors so that the

total capacitance of the island to the outside world is Cd = CI + C, + Cg.

The electrostatic energy U of this island as a function of its charge Qd can be

written as:

UQd ,U(Qd) = Vd(Ot)dQ,
0 d



Cd = Cg + CI + Cr
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Figure 2-2: Schematic of metal island which experiences Coulomb blockade. Quanti-
ties related to the island (or dot) are identified with the subscript d. Also shown are
leads 1 (left) and r (right), and a gate g.

where Vd represents the voltage on the island (relative to the voltage on I and r, which

are at ground). Let us assume that there is some voltage applied to the gate g. In

this case we have
= C

Cd d)V +C

We also know that charge is quantized, so

Qd = -Ne,

where e is the absolute value of the electron charge.

Performing the integration with the above substitutions and constraints gives the

energy of the island as a function of normalized gate voltage Vg/e parameterized by

the number of electrons on the island N:

UN( -NC( + N.
Cde 2Cd

For a given N, this is a straight line as a function of Vg. Lines of different N

will have slopes which become more negative and y-intercepts which increase with

increasing N. A plot of the family of lines for the values Cg = 1 and C1 = Cr = 0.5
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Figure 2-3: Energy of small metal island versus gate voltage. For a given number
of electrons N on the island, the energy is linear with gate voltage. Increasing N
yields lines with a more negative slope and a larger y-intercept. At low temperature
and small bias voltage, current can only flow through the island when the energy of
the state with N electrons is equal to the energy of the state with N + 1 electrons.
"Zero-bias" conductance peaks which have been broadened by temperature and/or
bias voltage are schematically shown at the bottom of the plot.

is shown in Figure 2-3.1

Electron Population of Island and Current Flow

If we start out with one electron on the island and sweep the gate voltage, the system

will want to remain in its lowest-energy state. However, if no electrons are allowed

1The usual picture one sees in the literature is of parabolas instead of lines corresponding to
different N's. This picture is equivalent to the model presented here at a given gate voltage, i.e. the
relative energies for a given gate voltage are the same in the two models. The difference lies in the
fact that here we have neglected the electrostatic energy of the gate charge Q2/2Cd = C2V2/2Cd.
Not including that energy makes it look like the system, if left to itself, would quickly run to infinite
gate voltage, which is clearly non-physical. The advantage of ignoring the gate charge in our model
is that, particularly for double-dot systems, the results of changing parameters are easier to see
graphically with lines than with parabolas.



on or off the island, N cannot change and as the gate is swept the dot energy will

follow the N = 1 line. We can see, for example, that at zero gate voltage that N = 0

would be energetically favorable.

If we allow tunneling of electrons onto and off of the island (say through the left

and right capacitors), then as the gate voltage is swept, the number of electrons on the

island should increase as the gate voltage is raised and the island seeks its minimum

energy.

Let us now assume that we have applied a very small bias voltage on the left

lead (this voltage is small enough that the imaged charge on the island due to it is

negligible compared to the charge from the gate electrode). We continue to assume

that electrons can tunnel through the left and right capacitors if a tunneling event is

energetically favorable. Under what conditions will current flow through the island?

Current will be prevented from flowing unless the charge on the island can fluc-

tuate between N and N + 1. For very low temperatures and a very small "zero-bias"

voltage, this can only happen when the energy of having N and N+ 1 electrons on the

island is degenerate. We would therefore expect current to flow through the island

only when V,/e = n + 1/2, where n is an integer, as this is where the energies are

equal, as can be seen from the diagram.

The current through the island as a function of gate voltage is a series of peaks,

separated in voltage by e/Cg. Finite temperature and applied bias voltage will smear

out the conductance peaks [22], which are sketched at the bottom of the plot in

Figure 2-3. By controlling a gate voltage, one can change the number of electrons on

the island one at a time. For this reason Coulomb blockade effects are often referred

to as single electronics, and a gated island which exhibits the effect is referred to as

a single-electron transistor (SET).

In addition to the zero-bias conductance, the I-V characteristic of a small metal

island can be affected by the Coulomb blockade. At a gate voltage which is not

at a degeneracy point in energy for the states N and N + 1, a finite bias voltage

will be required in order for current to flow. For a gate bias which corresponds

to N electrons on the dot (placing us exactly in the middle between two zero-bias



conductance peaks), a bias voltage of e/2Cd is necessary to overcome the Coulomb

repulsion. This non-linearity in the I-V characteristics is referred to as the Coulomb

blockade of current. More details on this effect can be found in Averin et al. [21].

Coupling to the Environment and Destruction of Coulomb Blockade Ef-

fects

One of the assumptions which we made in developing the theory of the Coulomb

blockade was that the conducting island was isolated from its environment. Making

that assumption meant that the number of electrons on the island was well-defined.

If the island were connected to the leads by a strongly conducting link, it would

no longer make sense to discuss the number of electrons on the island - this would

be analogous to discussing the number of electrons on a mustard-seed-sized piece of

copper arbitrarily chosen from the interior of a large copper block. If the resistance of

the link from our island were increased, however, at some point we would expect that

it would become isolated enough that its electron population would be a well-defined

number.

We can estimate what this resistance might be using the uncertainty principle for

energy and time,

AEAt > hi

where h is Planck's constant divided by 27r. This says that a particle can exist at

an energy AE outside of its classically-allowed energy for a time At subject to the

above constraint. The relevant energy scale in our problem is the energy required to

add an electron to the island, e2/2Cd. If we have current flowing, I = ef, where f is

the frequency of an electron entering or exiting the island. By taking At = 1/f, we

can substitute for our uncertainty relation and get

e e

2Cd I -

We also know that I = V/R, so we can substitute that into the above expression to



yield
e3R

2CdV -

Capacitance times voltage is equal to charge, and the relevant charge on the island

for our purposes is one electron, e. Substituting this and solving for R, we arrive at

2h 1 e2

R> - or o -
e2 R 2h

This is quite close to a more rigorously-derived value of R > h/2e2 which is derived

by Biittiker [23] as the resistance of a one-dimensional conductor with only one trans-

mission channel which has a transmission T = 1 (the point at which the number of

electrons on the dot is no longer well-defined). This value of R is referred to as the

quantum of resistance or the resistance quantum, RQ.

2.2.2 The Quantum Dot

So far we have discussed the Coulomb blockade in a metallic island. Quantum dots

are conducting islands which are defined in a semiconductor. Although the basic

physics of the Coulomb blockade remains the same in both cases, there are additional

issues which arise because of the differences between the two systems.

Constricting the Electrons to a Plane: The Two-Dimensional Electron Gas

The starting point for our quantum dot is a GaAs/AlGaAs heterostructure grown in

such a way that the conduction electrons are confined in a two-dimensional layer a

few hundred angstroms below the surface. A typical heterostructure and a simulation

of the conduction band energy at 4K is shown in Figure 2-4. A triangular well in

the conduction band dips below the Fermi level at the GaAs/AlGaAs interface. This

creates a confining potential in one dimension for electrons, while they are free to

move in the other two dimensions.

It is often convenient to think of the 2DEG as a two-dimensional metal, as it

remains conducting at low temperatures. However, some important differences exist
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... ....... . . ..... ...... .....Figure 2-4: GaAs/AlGaAs heterostructure and simulated conduction band level at4 K. At the lower GaAs/AlGaAs interface, the conduction band dips below the Fermilevel, creating a population of electrons which is confined in one direction, but free to

travel in the other two dimensions, termed a two-dimensional electron gas (2DEG).
Donors are separated from the 2DEG by an undoped layer of AlGaAs to reduce
scattering of the electrons. From reference [24].
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between a 2DEG and an elemental metal.

Typical sheet densities n, in the 2DEG are -3-5x1011 cm - 2. This means that

the Fermi wavelength, Af = V27r/nn, 35-40nm. The Fermi wavelength can be

considered in some sense to be the "size" of the electron. In a 2DEG, electrons are

much "bigger" than in metals, where A1 is typically on the order of a few angstroms,

or a factor of about 100 smaller.

In addition, the heterostructure is grown with the dopants removed from the

plane of the 2DEG - there is a layer of undoped AlGaAs between the doped AlGaAs

and the 2DEG. This means that there is very little Coulomb scattering from ionized

dopants. At low temperatures when phonon scattering is negligible, the mobility

of the electrons in the 2DEG can be quite high. Typical mean free paths between

scattering events in GaAs/AlGaAs heterostructures at cryogenic temperatures are

several microns. This means that over the size scale of a quantum dot, transport can

be ballistic. This contrasts rather strongly with a metal where mean free paths at

room temperature are typically one to a few tens of nanometers.

Patterning Laterally: Schottky Gates, Quantum Point Contacts, and

Quantum Dots

In order to create a quantum dot, the 2DEG must be patterned laterally. This is

done by placing metal Schottky gates on the surface of the heterostructure which,

when biased negatively, electrostatically deplete the 2DEG below. An example of a

structure patterned in this manner is shown in Figure 2-5.

In this structure, the surface Schottky gates create a constriction in the 2DEG.

If the gap between the lithographically-defined gates is comparable to a few Fermi

wavelengths of the electrons in the 2DEG and its length is shorter than the mean

free path between scattering events, the constriction will act as a one-dimensional

waveguide for the electrons. As the gates are biased more negatively, fringing fields

push out laterally from the gates and deplete more of the 2DEG, narrowing the

constriction through which the electrons must pass.

As the constriction narrows, fewer electron modes in the waveguide are below the
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Figure 2-5: Schematic of laterally-patterned constriction (a quantum point contact)
in a 2DEG. Schottky gates on the surface of the heterostructure electrostatically
deplete the 2DEG (indicated with shading) below. If the width of the constriction is
on the order of the Fermi wavelength of the electrons in the 2DEG and its length is
shorter than the mean free path between scattering events, the constriction can act
as a one-dimensional waveguide for the electrons, or a quantum point contact (QPC).
Figure from reference [25].



Fermi level of the 2DEG and therefore fewer transmission channels are populated and

available for conduction. A step-like structure is seen in the conductance versus gate

voltage of the constriction, with each step having a conductance value of 1/RQ =

2e 2 /h , 77,pS 1/13kQ. This one-dimensional waveguide structure is called a

quantum point contact (QPC) [25,26].

A quantum dot is typically formed by isolating a small puddle of electrons from

a 2DEG in a GaAs/AlGaAs heterostructure with a set of Schottky gates. Typically

two QPCs allow tunneling current to flow into and out of the dot. By adjusting the

QPCs to a resistance value greater than the resistance quantum, the quantum dot

can be isolated from its environment well enough that the number of electrons on it is

well-defined. In this way, Coulomb blockade effects can be observed in semiconductor

quantum dots.

Since the electrons in a quantum dot are confined, they will occupy quantized

energy levels. These single-particle energy states will have a spacing of approximately

AE(Ef) = 1/(L 2g(Ef)), where L is the length of a side of the electron box, and g(Ef)

is the two-dimensional density of states at the Fermi level. For a two-dimensional

box, the characteristic energy spacing is h2r/m*L2, where m* is the two-dimensional

effective mass of the electron, which is 0.067 times the free electron mass in (100)

GaAs [27].

For a 100nm quantum dot in GaAs, this corresponds to a single-particle level

spacing of 0.36 meV, or a temperature equivalent of about 4 K. Single-particle energy

states can be important in very small quantum dots at low temperature. For a metal,

which has a much smaller Fermi wavelength and is three-dimensional, the single-

particle energy level spacings are much smaller - a 100 nm metallic island would have

an energy level spacing only of about 5 pV [20].

There are several possible regimes of operation of a quantum dot, depending on

the relative energy scales of temperature, kBT, the charging energy, Ec = e2/2 C d, and

the difference between the single-particle energy levels, AE. Quantum dots designed

for this work were in the metallic regime, where AE < kBT < E,.
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Figure 2-6: A scheme for cellular automata computation with quantum dots. (a) The
automaton consists of five interconnected quantum dots populated with two electrons.
The two electrons will repel each other and will want to sit in one of two polarizations,
defined as logical one and zero. (b) A programmable AND/OR gate. Depending on
the value of the program line, the gate acts as either an AND gate or an OR gate.
From references [28-30].

2.3 A Quantum Dot Cellular Automata Scheme

In Section 2.1 we described cellular automata and a scheme for perhaps performing

computation with few-body cellular automata. It was, however, an abstract concept

and still a far cry from an actual computer.

A much more intuitively appealing scheme for cellular automata computation with

quantum dots was developed at Notre Dame University [28]. The automaton, pictured

in Figure 2-6(a), consists of five interconnected quantum dots with a population of

two excess electrons.

Simulations confirm what is intuitively expected: it is energetically favorable for

the two electrons to polarize in opposite corners of the structure. There are two

possible polarizations, each of which can represent a binary state. What makes the

structure computationally useful is the fact that in response to even small perturba-

tions of external electronic charge (such as might be found in a polarized neighboring

cell), the cell responds in a highly nonlinear and stable manner by polarizing strongly



in one of the two states [29,30].

Schemes for making binary signal lines [31], line crossings, and more importantly

logic gates [32] have been proposed. Figure 2-6(b) shows a configuration which can,

through the use of a program line, be used to selectively perform AND and OR

operations. Both static and dynamic simulations of these devices have been run, and

the results are quite promising [32,33].

Understanding how one could perform computation with this scheme is immedi-

ately obvious. However, in order to function as simulated, the quantum dots mak-

ing up this structure must be extremely small - much smaller than intentionally-

positioned quantum dots can be fabricated today. All of the simulations to date have

assumed dots of 10nm diameter with a 20nm center-to-center pitch. The authors

even mention that shrinking the size more would improve performance [33]! Given

current nanofabrication techniques, this is unlikely to happen in the immediate fu-

ture. However, alternative schemes do exist for creating small islands of charge (as

will be discussed in Section 2.5) which may someday allow for implementation of this

structure.

Another difficulty which would be encountered in actually fabricating a quantum

cellular automata system is that the system requires that each block of dots have

exactly two electrons in it, which is quite difficult to do even for a single block, let

alone a chip full of them. Although some experiments have shown that dot electron

population can be quite accurately controlled an a large array of dots [34], this by no

means assures that evenly populating dots in cellular automata will be a trivial task.

Despite the difficulties encountered in fabrication, the progress made by the Notre

Dame group toward actually making these devices has been quite impressive. Both a

readout scheme [35] and a working automata cell [36] have recently been implemented

in metallic SET structures.



2.4 Quantum Dot Interactions

In any cellular automata computation scheme, the manner in which the automata

interact is critical. For the Notre Dame scheme, both the interactions of the five

quantum dots making up the automaton and the interaction of the dots between

automata will determine the ability to successfully perform computations. For the

many-body cellular automata scheme, the range of the interaction between the cells

is critical, and a configuration of quantum dots in each automata that could yield a

deterministic few-body rule is still undetermined.

If we are to pursue cellular automata computation with quantum dots, it is nec-

essary to understand how quantum dots interact with each other and with their

environment (for example, leads). Possible schemes for clocking cellular automata

interactions involve opening up the barriers between dots in an automaton between

inter-automata interactions. This could work for both the Notre Dame scheme [37] or

for a few-body cellular automata, where one might want to transport charge into and

out of various dots. In such a clocking scheme it would be necessary to understand

how the Coulomb blockade is modified as a quantum dot goes from being weakly

coupled to its environment (therefore having a well-defined charge) to being strongly

coupled to its environment (therefore not having a well-defined charge).

Several experiments have been done which investigate how Coulomb blockade ef-

fects are modified as the quantum dot's coupling to the outside world is increased,

and there has been good theoretical modeling to understand the results of the exper-

iments. The work can be broken up into two general classes: dot-to-dot interactions,

and dot-to-lead interactions.

2.4.1 Interdot Interactions

A series of experiments done at Harvard University showed the effect of opening up

a barrier between two matched quantum dots which were connected in series. As

the barriers were opened, the Coulomb blockade peaks split into pairs until one dot

was formed with a higher peak frequency in gate voltage, as would be expected for



a larger gate-to-dot capacitance [38-43]. Some splitting is to be expected purely due

to increased interdot capacitance [6], but the observed peak splitting is greater than

would be expected due to capacitance alone.

In order to fit the data, increased interdot tunneling must be taken into account.

The tunneling allows for quantum charge fluctuations, which can reduce the energy

of a polarized state (where one dot in the pair has an electron and the other does not)

and allow transport in a regime where it would be forbidden if only the capacitance

effects were accounted for [44,45].

If the series quantum dots are not matched or the electrostatic potentials are

not swept uniformly in each dot, then as the temperature decreases, the number

of Coulomb blockade peaks also decreases. This is called the stochastic Coulomb

blockade, and it can be understood from a purely capacitive model [46,47]. It has

been demonstrated in several experiments [48,49].

Other experiments with coupled dots have investigated electrostatic effects in

which the addition of a single electron to one dot can affect the charge state of (and

therefore transport through) another dot which is situated in close proximity to the

first. In these experiments, the dots are typically not connected in series, but one

dot acts as an electrometer to monitor the charge state of the other dot [50-52]. A

similar experiment used a metal single-electron transistor to measure the charge on

a semiconductor quantum dot [53].

2.4.2 Dot-to-Lead Interactions

Other experiments have been done in which a quantum dot is opened up to a lead.

Several experiments have been done in which one QPC in a quantum dot is opened

beyond the point where one transmission channel is fully opened, where theory would

predict the Coulomb blockade would vanish. Results, however, are conflicting, with

some authors reporting the vanishing of the Coulomb blockade [54] while others report

the persistence of effects at higher QPC conductances [55, 56].

In a novel quantum dot structure with three leads, with current input through

one lead and with the output current split between the other two leads, an oscillation



was seen between the currents in the two output QPCs as their barrier strength was

lowered [57]. This was attributed to coupling to the leads resulting in fluctuations

of their local chemical potential [24, 58]. The model, in effect, replaced ohmic leads

with sections which were capacitively isolated from the rest of the 2DEG. The model

explained the data, but the physical explanation for the isolated leads was not well-

motivated.

These experiments were all done on quantum dots formed in GaAs/AlGaAs het-

erostructures. The way in which barriers between dots or between a dot and a lead

was opened up was to decrease the negative bias on the Schottky gates which formed

a QPC. As discussed in Section 2.2.1, when a QPC is opened to the point where

its resistance is equal to RQ, the QPC forms a one-dimensional electron waveguide

which has one transmission channel populated with electrons, and that channel has

a transmission probability of one. This contrasts with other systems which exhibit

Coulomb blockade.

2.5 Coulomb Blockade at High Temperatures

Quantum dot structures formed in GaAs/AlGaAs heterostructures have a limitation

on the minimum capacitance of a quantum dot to the outside world. This is due to the

minimum size dot which can be created by biasing Schottky gates which are removed

from the 2DEG by several tens of nanometers, and by the capacitance of the dot to

metallic gates which necessarily surround the dot. This minimum capacitance sets

a maximum energy e2/2Cd which sets a maximum temperature at which Coulomb

blockade effects are visible. Room temperature operation of a quantum dot structure

in GaAs/AlGaAs is probably impossible. In fact, creating a quantum dot capable of

4K operation in GaAs/A1GaAs is difficult [59,60].

This has led to much research into other systems in which Coulomb blockade

effects can be observed. A short overview of various technologies for fabrication of

single electron devices is given by Ahmed [61]. Here we will mention some of the

technologies in use which yield structures which show Coulomb blockade effects at



higher temperatures.

There are several technologies for creating metallic structures which exhibit the

Coulomb blockade. Fabricated metallic single-electron transistors have been around

for many years [62], and have recently been shown to be operable at 30 K [63].

The Coulomb blockade has recently been observed at room temperature in metal-

lic structures with oxide tunnel barriers formed by STM oxidation [64]. Few-atom

gold clusters have been shown to exhibit the Coulomb blockade by depositing (usu-

ally randomly) an array of clusters between electrodes on a substrate [65-68], where

effects have been clearly seen at 77 K and persist in some form to room temperature.

Room temperature coulomb blockade is also seen in STM measurements on single

clusters [69].

There has been much recent work in making devices in silicon which exhibit

Coulomb blockade effects. Silicon-on-insulator (SOI) wafers allow for structures with

low capacitances, which helps to boost the operating temperatures of these devices.

Typically oxidation of patterned silicon is used to decrease the size of an island be-

low its lithographically-defined dimensions [70-75]. These devices can show clear

signatures of the Coulomb blockade above 100 K and some show effects at room tem-

perature.

Other semiconductor and metallic structures have shown Coulomb blockade effects

at high temperature. There are many means of fabrication, including growth of

nanocrystals of silicon [76] and InAs [77], fluoridation of aluminum by an electron

beam [78], and more esoteric schemes of depositing material into porous A120 3 [79]

or porous opal [80].

If a means were found to produce intentionally-positioned quantum dots which

operate at room temperature or even 77 K and also to be able to arbitrarily connect

them to form automata cells, then questions about interactions between dots would

take on a new urgency. If we are to be prepared to understand how any of these

candidate technologies might be made useful for cellular automata computation, we

must understand how their properties would change with changing barrier strength.

As a barrier is lowered in these systems (one can imagine in some cases a barrier



which is controllable during device operation and in others a barrier which once

made has a constant value but for which there is some choice of barrier strength

during fabrication) it is unclear whether the conduction will be one-dimensional or

not. As expected from our general uncertainty principal argument, regardless of the

nature of conduction, as the conductance through a barrier reaches the quantum of

conductance, 2e 2/h, Coulomb blockade effects should disappear, or at least radically

change.

The manner in which the opening of the conduction occurs, however, may im-

pact observable effects in how the Coulomb blockade vanishes. Golden and Halperin

state that " ... the most important dimensionless parameters [for understanding

the Harvard double-dot experiment] are the number Nch of conducting channels

between the two dots and the dimensionless interdot barrier conductance g of each

channel ... " [44].

For the case of a QPC, as the barrier is lowered, a single conduction channel ap-

pears which opens to a transmission probability for electrons of one as the quantum

of conductance is reached. In a tunnel barrier (such as is seen in metal-oxide sys-

tems), as a barrier progressively opens, many conduction channels open to a small

transmission probability. At the quantum conductance, we have for the QPC case

two states on either side of the barrier which are in full communication while for the

tunnel barrier case we have many states which are in poor communication.

For many of the technologies above it is unclear which type of conduction will

occur when barriers are opened. Some cases may be in-between. For self-assembled

structures electrically connected by molecular wires, there may be a small number of

channels available for conduction [81]. Not all forms of Coulomb blockade will open

to one-dimensional waveguides. The QPC may be an artifact of the GaAs/AlGaAs

heterostructure.



2.6 A Novel Coupled Quantum Dot Structure

2.6.1 A Non-Point-Contact Tunnel Barrier

An alternate means of isolating a quantum dot is shown in Figure 2-7. In this figure

we see a coupled quantum dot structure which is isolated from its leads by QPCs.

The barrier between the dots, however, is a narrow line which, when biased negatively,

forms a tunnel barrier which isolates the dot. As the bias is decreased to allow more

contact between the two dots in this structure, the electrons should not see a one-

dimensional waveguide as the resistance transitions to below RQ. In this case at the

quantum of resistance, there should be some number of channels Kn (approximately

equal to the length of the line divided by the Fermi wavelength of the electrons).

Each of these should have a transmission probability T significantly less than one

(T - 1/). This structure would act like a metallic tunnel barrier, but with the

ability to control the tunneling strength with an external voltage.

The coupled-quantum-dot structure schematically pictured in Figure 2-7 would

allow investigation of how transport properties of a quantum dot or quantum dots

change as a tunnel barrier is opened. By comparison with a similar structure formed

with all QPCs, differences between one-dimensional waveguided and non-waveguided

conductance could be probed.

2.6.2 Fine-Line Barrier Width Considerations

The fine-line tunnel barrier between the two dots would be required to both pinch off

the dots (such that the conductance through the barrier is well below the conductance

quantum) and to transition to a state where the conductance through the barrier is

greater than or equal to the conductance quantum. It is desirable that this transition

be relatively broad, so that noise which will inevitably be present in the gate bias

would not significantly change the conductance of the barrier. The width of the

barrier would therefore be a critical to this device's functionality.



Ohmic Contact

Figure 2-7: Schematic of coupled-quantum-dot device. Schottky gates are shown on
the surface of the heterostructure in white. Their outline is shown in dashed lines
at the 2DEG surface. Ohmic contacts are shown at the surface in white with an 'X'
and at the 2DEG in dark gray with an 'X'. Undepleted 2DEG is shown in light gray.
The two quantum dots are seen as two isolated puddles which can interact with each
other through the fine-line tunnel barrier between them or with the leads through the
four QPCs.

Previous Experiments

Eugster [25] investigated electron waveguide devices which were coupled via a leaky

fine-line tunnel barrier to a 2DEG. In this work he fabricated devices with direct-

write electron-beam lithography with lines as narrow as 30 nm. Typical gate widths

for devices were 30-40 nm. With this linewidth, the transition from the fully open

state to fully pinched off took a gate voltage sweep of approximately 0.09 volts. He

reported that minimum linewidths which were fabricated with x-ray lithography at

that time were approximately 50 nm, and that no tunneling features were seen with

x-ray fabricated devices.

Kumar [24] also fabricated quantum dot structures with fine-line tunnel barriers.

His devices were also written with direct-write electron-beam lithography, and the

tunnel barrier widths were approximately 40 nm. The gate voltage sweep necessary

to transition the barrier from the fully open state to fully closed was approximately
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Figure 2-8: Simulations of the conduction band energy (in eV relative to the Fermi
level) in two fine-line gate structures. On the left is a 40 nm gate and on the right is
an 80 nm gate. At around 1- 1.5 volts negative gate bias, the conduction band jumps
above the Fermi level directly under the gate, creating a tunnel barrier for electrons of
approximately the gate width. Upon further increase of the bias, the barrier becomes
wider. Note the difference in energy scales in the two plots.

0.04 volts.

The tunnel barriers in the above experiments were similar in length to the one

which was designed for the double quantum dot structure described above. The

length of the tunnel barrier is set by the size of the quantum dot which is set by

the temperature at which Coulomb blockade effects are to be observed. From these

experiments it would seem that a 50 nm line is too wide to observe tunneling (or to

effectively control the barrier strength in the region below the quantum conductance),

and that a 30-40 nm line gives adequate control over the barrier strength in that low-

conductance regime, with the lower end of that width range giving better control.

Electrostatic Simulations

Further understanding can be gained by simulating the electrostatics of various tun-

nel gate widths. Figure 2-8 shows simulations performed using a three-dimensional

Poisson solver written by Arvind Kumar. The figure plots the conduction band rela-

tive to the Fermi level as a function of position on a slice through the fine-line gate for

gate widths of 40 nm and 80 nm. The geometries are simulated at gate biases ranging

from -0.5 volts to -2 volts. It can be seen that the conduction band quickly jumps

above the Fermi level at a gate voltage of -1 to -1.5 volts with a width close to the



lithographically-defined gate width. Upon increasing the negative bias, the width of

the barrier increases at a slower rate due to fringing fields.

If the initial width of the barrier is such that the conductance of the structure is

already well below the quantum conductance, the transition from fully closed to fully

open would be difficult to control. If, on the other hand, the initial barrier width gives

a barrier with a conductance greater than the conductance quantum, the transition

should be reasonably controllable.

WKB Estimation of Tunneling Probability

A better feel for what these simulations mean can be gained by estimating the tun-

neling probability through the barriers. If we are in a regime where the tunneling

probability T <K 1, then we can use the WKB approximation to estimate the tunnel-

ing probability [82]:

T = exp- 2 10 E dx,

where +xo are the classical turning points (where E=O).

We can approximate the above simulations by fitting a parabola to the portion

of the conduction band which lies above the Fermi energy. To parameterize this

parabola we need two values - the height of the barrier, H, and the width of the

barrier at the Fermi energy, 2x0

The approximated barrier will then be

Ec-Ef =H 1- .

Carrying out the integral we find

T = exp -- r -2/f zo,
2 h

which reduces to

T = exp -2.09V\iHo,

where H is in eV and xo is in nm.



40 nm gate 80 nm gate
Gate Voltage xo(nm) H(eV) T xo(nm) H(eV) T

-1.5 20 0.01 1.5 x 10-2 55 0.125 2.2 x 10- 1 8

-2 45 0.95 1.5 x 10-40 80 0.3 1.7 x 10-40

Table 2.1: Table of parameters to fit simulated fine-line tunnel barriers and tunneling
probabilities for the barriers calculated using the WKB approximation

Table 2.1 shows the parabolic fit parameters and the calculated barrier transmis-

sion for the -1.5 V and -2.0 V tunnel barriers in Figure 2-8. Although it is difficult

to make predictions of how the transmission would relate to an actual conductance

in the structure (since that would depend on the details of the wavefunctions of the

states which were tunneling), it can be seen from the table that the 80 nm gate quickly

yields vanishingly small tunneling probabilities as the barrier pokes above the Fermi

level, while for the 40 nm barrier, there is a region where the tunneling probabilities

are non-trivial.

2.7 Motivation for Improved Sub-50 nm X-ray

Lithographic Process

The direct-write electron-beam lithography used to fabricate the devices of Eugster

and Kumar was done at the National Nanofabrication Facility at Cornell University.

It was desired to fabricate the coupled quantum dot structure at MIT.

Attempts were initially made to write the gate patterns with both electron-beam

direct-write lithography and x-ray lithography. However at MIT, electron-beam

direct-write capabilities did not allow for robust fabrication of features below 50 nm.

X-ray lithography, however, has the potential to repeatably create structures much

smaller than 50nm. According to Eugster [25], in 1993, the smallest features that

could be made by x-ray lithography at MIT on an actual device were 50nm. Prior

to 1993, Early [83] had shown that x-ray lithography was capable of 30 nm features.

However, these were test structures made in the x-ray resist poly(methylmethacrylate)

(PMMA) and not actual devices. Obviously work needed to be done to optimize the



full x-ray device fabrication process.

The remainder of this document will discuss the development of a robust process

which allows for fabrication of aligned devices on substrates with feature sizes in the

sub-50 nm regime. This has involved gaining an improved understanding of many

aspects of the x-ray lithography and mask fabrication processes and using that un-

derstanding to improve various parts of the process. As most process research does,

it has involved drawing upon many disciplines, from mechanical and vacuum design

to electrochemistry to the physics of x-ray and electron interactions with matter to

fluid mechanics and digital signal processing. The end result is a process which is

inherently "manufacturable" (at least in the university setting) and which allows for

device fabrication in a regime which was previously inaccessible.

Chapter 3 will describe x-ray nanolithography and detail the process which is

required in order to go from a conceptual device design to an actual pattern on a

substrate. Chapter 4 will discuss work which I did in order to improve the technology

of soft-contact replication of x-ray masks, both for mask-to-mask replication and

for aligned chip or wafer exposures. Chapter 5 will present the main hurdle which

had to be overcome in developing the sub-50 nm x-ray process: substrate photo-

and Auger electrons. The results of the process improvements will be presented in

Chapters 6 and 7. Chapter 6 will present sub-50 nm exposure results for device and

test structures, and Chapter 7 will present electronic transport measurements on the

fine-line tunnel barriers.



Chapter 3

X-ray Nanolithography

In micro- and nanolithography, we want to create a pattern in a resist on a substrate.

This patterned resist will stand up to (or resist) subsequent steps like etching of the

substrate material, or serve as a sacrificial layer for defining patterns in a deposited

film by liftoff. The device presented in Chapter 2 requires a sub-50 nm line which is

to be deposited by liftoff.

3.1 Alternative Lithographies

Two common means for producing patterns in a resist are shown in Figure 3-1.

Figure 3-1(a) shows a schematic of optical proximity lithography. Ultraviolet (UV)

light is passed through a quartz mask which is patterned with chrome. In the areas

on the mask where chrome is present, the UV light is blocked, while in the areas

without chrome, the light can pass through. The light impinges on photoresist which

has been coated onto the surface of the wafer. Where the photoresist is exposed to

the light, it is chemically altered such that it will (or for the case of negative resist,

will not) dissolve away in a developer.

The minimum spatial period pmin which can be printed with optical projection

lithography is limited by the wavelength of the UV photons used to expose the resist

Pmin NA'



(a) UV (Proximity) Lithography
Ultraviolet light (436nm, 365nm, 248nm, 193nm, ...)

Patterned substrate photoresist
Cr film

(b) Electron-beam Lithography
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Figure 3-1: (a) Schematic of optical lithography. UV light is passed though a mask
which blocks the light in some areas and allows it to pass in others. In clear areas,
UV light is incident upon photoresist on a substrate. (b) Schematic of electron-beam
lithography. An electron beam is steered across the sample by magnetic coils and
blanked when no exposure is desired.

where NA is the numerical aperture (n sin a, where n is the index of refraction of the

medium and a is the half-angle of the final lens in the exposure system), and A is the

wavelength of the light. By using shorter wavelengths of light and optimizing optical

design, optical lithography has been able to print smaller and smaller features over

time. 193 nm lithography for 180 nm feature sizes seems to be on track for commercial

use by the year 2000 [4, 84]. However, optical lithography is not a candidate for sub-

50 nm features at this time, and it is highly unlikely that it ever will be.

Figure 3-1(b) shows a schematic view of electron-beam (e-beam) lithography. In
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this case, rather than an entire die or wafer being exposed at one time, a high-energy

electron beam is steered across the wafer, usually in a raster pattern, and the beam is

blanked when no exposure is desired. An electron-sensitive resist is chemically altered

by the electrons such that it is preferentially dissolved by a developer. As discussed in

Chapter 2, electron beam lithography can be used to define sub-50 nm feature sizes,

but the e-beam systems at MIT were incapable of doing so reliably.

3.2 Overview of the Lithographic Process

In order to define some concepts and terms, we will use the examples of optical and e-

beam lithography to discuss the patterning of resist. Figure 3-2(a) shows a schematic

cross-section of a desired resist profile.

In order to define this pattern, we use a lithographic input of photons or electrons

which to first order corresponds to our desired outcome. In the case of optical lithog-

raphy, we might have a mask whose pattern matches that of our desired resist pattern.

With e-beam lithography, we would write instructions to the computer which tell it

to turn the beam on in places where we want the resist removed and to leave it off

in places where we want the resist to remain. A plot of such an input is shown in

Figure 3-2(b). The lithographic input therefore consists of the source of energetic

particles and some means of providing contrast, or differential dosing of the resist in

exposed and unexposed regions.

The resist dose, however, may not look like the input. In optical lithography, there

will be some diffraction of the image as the light propagates from the mask to the

substrate. In e-beam lithography, although the electrons might initially be aimed at

the proper area on the substrate, forward scattering in the resist and backscattering

from the substrate will tend to distribute the electrons in the resist. These effects will

lead to a reduced volume dose contrast in the resist - the "unexposed" areas may be

dosed somewhat, and the dose in the exposed regions may be reduced. In addition,

the lateral distribution of dose may change due to the non-abrupt transition between

exposed and dark areas. These effects can change feature sizes and for very small
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Figure 3-2: Schematic overview of lithographic process. (a) Desired pattern of resist
on substrate. (b) Lithographic input of photons or electrons. (c) Resist dose, which
is altered from the input due to diffraction or beam scattering effects. (d) Highly
non-linear resist can recover from non-ideal dose, yielding desired pattern.
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features can even prevent replication altogether. They are shown schematically in

Figure 3-2(c).

Fortunately, the development rates of resists used in micro- and nanolithography

are highly non-linear in dose. This usually allows one to recover a resist profile

which at least approximates our desired pattern because the developer effectively

"clips" the resist at a particular threshold dose, as indicated in Figure 3-2(d). Often,

modifications to the input may be necessary in order to obtain the desired pattern,

but an understanding of the processes involved in the exposure and development can

allow one to obtain the desired geometries on the wafer.

3.3 CuL X-Ray Exposure Technology

At first blush, x-ray lithography [85-89] looks a lot like optical proximity lithography,

with the advantage that a much shorter wavelength yields improved resolution. A

schematic of an x-ray exposure is shown in Figure 3-3. There is a source of photons, a

mask which blocks the photons in certain regions and provides contrast, and a resist

which upon x-irradiation is chemically altered so that it is preferentially dissolved

in a developer solution. However, because of the nature of x-rays and the ways in

which they interact with materials, there are significant differences between optical

and x-ray lithography.

We will use our conceptual framework of a lithographic input and a resist dose to

investigate these differences and gain a better understanding of x-ray lithography.

3.3.1 Lithographic Input in X-ray Lithography

Electron Bombardment X-Ray Source

The source for x-ray photons used for lithography in the NanoStructures Laboratory

at MIT is a copper target which is bombarded with high-energy electrons. The

target is water-cooled in a high-vacuum chamber. Current driven through a tungsten

filament creates a thermionic source of electrons. The filament is held at (for our
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Figure 3-3: Schematic of x-ray exposure. Figure from reference [90].
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Figure 3-4: Possible consequences of an inner-shell electron (here a K-shell electron)
being ejected from an atom by a high-energy electron beam. (a) Auger electron
generation. A higher-shell electron (here from an L-shell) drops in energy to replace
the emitted electron. The energy is transferred to another upper shell electron (here
also from the L-shell) which is ionized. (b) X-ray generation. Energy gained in the
L-4K transition is used to create an x-ray photon. The probability that (b) will occur
rather than (a) is the fluorescent yield, w.

source) 8 kV relative to the target, and electron optics focus the electrons emitted

from the filament onto a spot on the target.

Once the electrons enter the copper target, they undergo collisions within it.

These collision can generate many secondary effects, such as heat generation through

phonons, plasmon excitation, and electron emission from the target. In addition, both

backscattered electrons and secondary electrons (which are generated by scattering

events which excite valence or conduction-band electrons to higher energy states) are

generated.

X-ray Characteristic Lines: When a core electrons is excited, it leaves behind

an empty state which will be filled by a higher-energy electron. When this happens,

the energy difference between the initial (higher) energy state and the final (formerly-

empty) state must be transferred somewhere. This can happen by ionizing another

higher-energy core electron, in an Auger process, or by emitting an x-ray photon.

This is shown schematically in Figure 3-4. The energies of characteristic x-ray lines

for most materials are well-known and can be found in several references, including

Bertin [91] and the CRC Handbook of Chemistry and Physics [92].



The probability that x-ray emission will occur rather than an Auger electron being

ejected is called the fluorescent yield, w, of the material. For the L line of copper, the

fluorescent yield is quite small: WL = 0.006 [91]. This means that the copper target is

not very efficient at generating x-rays. One consequence of this is that exposure times

for lithography with this source tend to be quite long - usually around 8 hours or so.

Sources with higher power are available - an x-ray synchrotron exposure can expose

a die in about one second - but a synchrotron can cost over ten million dollars.

To excite a given x-ray line, an incident electron must have enough energy to

ionize the inner-shell electron which must be vacant in order for the photoemission

to occur. As the beam energy is increased above that threshold energy, the x-ray

intensity increases as more ionization events occur. At some point, however, the

more energetic electrons penetrate deeper into the target and more of the x-rays are

absorbed before they can exit the target. At this point the characteristic line x-ray

intensity begins to decrease.

This dependence has been measured for several x-ray lines in the soft x-ray regime

(0.1-2keV) for several elements by Henke and Tester [93]. For the CuL line the

maximum yield occurs near 10 keV incident electron energy. For an 8 keV incident

electron energy such as is used at MIT, the CuL x-ray intensity is 8.5 x 10-6 watts

per steradian per watt input power [93].

Bremsstrahlung: In addition to characteristic x-ray lines, there is a continuous

spectrum of x-rays which emanates from the bombardment source. This continuum

is called bremsstrahlung, or braking radiation. It is caused by inelastic Rutherford

scattering processes where the incident electrons radiate energy due to acceleration

by the Coulomb force of the target ion cores. The theory of this effect was origi-

nally worked out by Kramers in 1923 [94]. The bremsstrahlung energy spectrum per

incident electron for a thick target is given by [95]:

I,(v)dv = h2kZ(vo - v)dv

Ie(A)dA = Zh 2kc2 (1 - 1 ) 1 dA
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Figure 3-5: Copper target x-ray photon spectrum. Characteristic peak at 930 eV is
taken from experimental data [93]. Bremsstrahlung continuum is calculated theoret-
ically [95].

or in terms of energy,

le(E)dE = kZ(Eo - E)dE.

In the above equations, v is frequency, A is the wavelength, and E is the energy of the

x-ray. The subscript 0 refers to the minimum photon wavelength or the maximum

photon frequency or energy, which is set by the incident electron energy. Z is the

atomic number of the target, h is Planck's constant, and k is a measured constant

which is weakly material-dependent [95]. For copper, its value is approximately 2.2 x

10- 6 keV-' [95].

The total x-ray spectrum is the sum of the characteristic lines and the brems-

strahlung. The x-ray photon spectrum (which is found by dividing the above energy

spectrum by E) emitted from a copper target at 8keV incident electron energy is

shown in Figure 3-5.1 The ratio of CuL to bremsstrahlung power in this spectrum is

1The CUL line is in reality almost a delta function in energy. For the purpose of the plot it was
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1:1.88, i.e. the spectrum coming off the copper target is about 65% bremsstrahlung.

X-ray Absorption by Materials

For x-ray nanolithography, absorption of x-rays by the mask gives contrast, and

absorption of x-rays by the resist gives preferential dissolution in a developer. How

x-rays interact with and are attenuated by these and other materials in the system is

critically important.

In the soft x-ray regime of x-ray lithography, scattering is negligible, but photo-

electric absorption, due to the interaction of the x-ray photons with core electrons in

the solid, is significant. In this process, an incident x-ray photon is absorbed by an

atom, which emits an inner-shell electron as a photoelectron. The vacant core state

is then filled by a higher-shell electron (just as in the electron-irradiation case), and

another x-ray photon or (usually) an Auger electron is emitted.

For a monochromatic beam of x-rays incident on a thin absorber layer, the differ-

ential attenuation can be written as

dl = -plds,

where I is the intensity of the beam, p is the linear x-ray absorption coefficient, and

ds is the path length through the thin layer. This expression can be integrated to

yield the transmitted intensity I through a thick target:

I = Io exp(-p~s),

where Io is the incident intensity of the x-ray beam and s is the target thickness. This

is called Beer's Law or Lambert's Law. Because x-ray absorption is due to ionization

of deep core-level electrons, it is insensitive to chemical bonding or the arrangement

of the atoms in a material. A more useful number is therefore the mass absorption

represented as a triangle whose integrated photon count equals the delta function weight. The height
of the CuL peak in the plot is therefore somewhat arbitrary and was chosen so as not to dominate
the bremsstrahlung spectrum.
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Figure 3-6: Attenuation of several materials at soft x-ray wavelengths. Figure from
reference [90].

coefficient, lu/p, where p is the density of the material. 2

In order to be absorbed by an atom, the x-ray photon must have enough energy to

ionize a given core electron. As the photon energy is increased, deeper core levels can

be ionized. Absorption of x-rays is therefore highly material- and energy-dependent.

Mass absorption coefficients p/ip are tabulated in several sources, including Bertin [91]

Appendix 7, Henke [96], and in a booklet published by Lawrence Berkeley Labora-

tory [97].

The attenuation (in dB/pm) of several materials used in x-ray lithography is

plotted in Figure 3-6. As the wavelength is decreased and energy increased, ab-

sorption edges or steps are seen in the absorption corresponding to energies where a

2The value of using the mass absorption coefficient for x-rays is discussed in Bertin [91], who
quotes Sproull, "A beam of x-rays passing from the ceiling to the floor of a chamber filled with
hydrogen and oxygen may be [say] 10% absorbed, or 90% of it will reach the floor. If a spark
explodes the hydrogen and oxygen, filling the chamber with steam, 90% of the x-rays will still reach
the floor. Then if the chamber is chilled so that the steam condenses to a thin layer of water or ice
on the floor, 90% of the x-rays will still reach the floor. This is not true for light or ultraviolet or
infrared radiation, and it explains why the mass absorption coefficient of x-rays is commonly used,
whereas the linear absorption coefficient is ordinarily used in optics."
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Figure 3-7: Schematic of x-ray mask. The absorber is a 200 nm layer of gold which
is patterned on a 1 pm-thick, 31 mm-diameter SiN, membrane. The membrane is
attached to a -400 pm-thick silicon ring which is bonded to a three-inch Pyrex ring
for mechanical support. Figure from reference [98].

lower-energy core-electron ionization is possible. As the energy is increased above an

absorption edge, the absorption due to the ionization of that level decreases.

In the soft x-ray region where x-ray lithography is done, the figure shows that

gold and tungsten are strong absorbers, while SiNX, diamond, SiC, and PMMA are

not strongly absorbing. This gives a choice of mask materials which allow adequate

x-ray energy to pass through clear areas of the mask while still yielding a contrast in

the x-ray intensity at the substrate.

Post-Mask X-ray Spectrum

As indicated in Figure 3-3, the x-rays which leave the source must pass through a

1.7 1um-thick SiN, membrane and several centimeters of helium before they reach the

x-ray mask. These will attenuate the x-rays somewhat, and moreover the spectrum

will be modified because the attenuation is not constant with wavelength (cf. Figure 3-

6).



Figure 3-7 shows a schematic of the x-ray mask used for exposures at MIT [99].

The mask consists of a 31mm-diameter, 1 1 m-thick SiN, membrane which is pat-

terned with gold absorber which is 200 nm thick. The membrane is attached to a

-400 pm-thick silicon ring or mesa which is bonded to an optically-flat Pyrex ring

which provides mechanical support. In addition to the patterned absorber, the mask

has a thin layer of plating base everywhere, typically 10 nm of Ti and 10 nm of Au,

which allows electrical contact to electroplate the absorber gold. This plating base

is thin enough that it allows most of the incident x-rays to pass through, but it does

attenuate and modify the spectrum somewhat.

The modified spectrum which has come through the vacuum window and the

helium is therefore passed through an additional micron of SiNX and the plating base

layers. This spectrum is incident upon the resist on the substrate in the clear areas

of the mask. In the "dark" areas of the mask, the x-rays also pass through 200 nm of

gold. The "dark" spectrum is attenuated with respect to the clear spectrum, but a

not-insignificant amount of energy is transmitted through the absorber.

These x-ray spectra can be calculated by using the initial spectrum and the

wavelength-dependent absorption properties of the materials through which the x-

rays pass. The calculated spectra in the exposed and dark areas are plotted along

with the initial spectrum in Figure 3-8. The CuL peak is attenuated by about a

factor of ten in the clear areas, and by another factor of ten in the dark areas. The

higher-energy spectral components are less well-attenuated.

3.3.2 Resist Dose

Contrast

What really matters, however, is the energy absorbed in the resist. Figure 3-6 shows

that PMMA absorbs soft x-rays relatively poorly. This may at first seem to be

unfortunate, but in fact it is beneficial. If the PMMA absorbed strongly, then the

dose of absorbed energy would vary significantly through the resist thickness. Because

absorption is weak, the dose is approximately constant throughout the film thickness.
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Dose in J/cm3

Exposed Areas Dark Areas

CUL Peak 777 74

Bremsstrahlung 680 263
Total 1457 336

ABSORPTION RATIO 4.3 : 1

Table 3.1: Calculated absorbed dose in J/cm3 in 250 nm PMMA for a 12 hour x-ray
exposure at a 10.5 cm source-to-substrate distance.

To calculate the contrast between the exposed and unexposed regions, we need

to multiply the two spectra by the absorption in 250 nm of PMMA. Table 3.1 gives

the calculated absorbed dose in 250 nm of PMMA exposed for 12 hours at a 10.5 cm

source-to-substrate distance. The ratio of the total absorbed energies is 4.3:1. If the

radiation were only the CuL line, then the ratio would be 10:1.

This reduced contrast by itself is not too deleterious, however, since the devel-

opment rate of PMMA goes as approximately the absorbed energy to the third

power [100]. Therefore the development rate in the dark areas should be a factor

of 80 less than the rate in the exposed areas, and for 250 nm of PMMA we would

expect about 3 nm of resist erosion in the dark areas during development.

In an actual exposure which corresponds to the conditions of the simulation in

Table 3.1, the development time for 250 nm of PMMA was 20 seconds, or the develop-

ment rate was 12.5 nm/sec. According to Hawryluk et al. [100], this calculated dose

should correspond to a development rate in 2:3 methyl isobutyl ketone: isopropyl

alcohol (MIBK:IPA) of '1.9 nm/sec. However the data in Hawryluk et al. is for a

development temperature of 17' C. The development was done in the experiment at

210 C. Using the development activation energy for 1:3 MIBK:IPA of 2.426 eV found

in Greeneich [101], this temperature difference should correspond to a factor of 4.6 in

development rate. The expected development rate for the calculated spectrum should

therefore be 8.7 nm/sec, which is remarkably close to experiment.3

3 Similar comparisons done with other x-ray exposures were not as close. The cleanliness of the
source and vacuum window, alignment of the electron optics, and other factors (such as the presence
or absence of polyimide on the exposing mask) can affect development time. Results were within a
factor of 3-6, and experimental development rates were slower than predicted in the cases where the



Lateral Effects

In sub-50 nm x-ray lithography, lateral smearing of the pattern, even at length scales

which at larger feature sizes is negligible, becomes critically important. There are

three main mechanisms which are responsible for lateral pattern degradation: x-ray-

generated photo- and Auger electrons, penumbra, and diffraction.

X-ray Generated Electrons: As discussed in Section 3.3.1, the absorption of an

x-ray photon in PMMA gives rise to a photoelectron and an Auger electron. The

absorption of the photon occurs at one atomic site, but its energy is carried away

from that site by the generated electrons.

This energy redistribution occurs though interactions between the electrons and

the polymer molecules of the resist along the electron trajectory. The interactions

scission the polymer chains, making the resist more susceptible to dissolution in a

developer. The photo- and Auger electrons can therefore blur the pattern which is

incident upon the resist.

Understanding the effect of this blurring in an actual x-ray exposure can be quite

complicated. The photon spectrum is comprised of many energies, and each ab-

sorbed x-ray photon will generate a photoelectron with a different kinetic energy

Eei = aw - EI, where E1 is the energy required to ionize a particular inner shell

electron.

Ocola [102,103] has modeled the generation and scattering of photo- and Auger

electrons and their interactions with the resist. The results of this modeling can be

parameterized as a three-dimensional point-spread function (PSF). The PSF gives

the probability density of energy dissipation about the generation point. The PSF

can be determined for an electron of a given starting energy (electron PSF), and for a

distribution of photo- and Auger electrons which are generated by the absorption of

monochromatic x-rays (photon PSF). The photon PSF for a 1.3 keV x-ray absorbed

in PMMA is shown in Figure 3-9.

rate was off significantly, indicating that these other effects (all of which will decrease dose) could
explain the discrepancy.
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Figure 3-9: Photon point spread function (PSF) for a 1.3keV photon absorbed in
PMMA. Energy deposition per unit volume is given as a function of distance from
the source. A fit to three Gaussians is shown. Figure from reference [102].

Photoelectrons can be quite energetic and will therefore distribute themselves

over a larger volume than will Auger electrons, which are monochromatic and of

lower energy. This means that the dose, which is energy per unit volume, will be

higher from the Auger electrons than from the photoelectrons.

By convolving the photon PSF with the photon intensity incident upon the resist

for a line source in PMMA, it was shown that most of the dose falls far below the

maximum photoelectron range, and that its range more closely corresponds to the

carbon and oxygen Auger electron ranges of 3 and 6nm respectively. For 1.3keV

photons in PMMA, a developed PSF width of 3 nm is predicted, which corresponds

well to experiments done by Early [104], et al. which will be discussed in Section 3.5.1

Murata [105] also predicted a -5 nm range for a photon PSF.

We should therefore expect that generated photo- and Auger electrons would

broaden the image incident on the substrate by approximately 3-5nm. What that

incident image is, however, will depend on how the x-rays propagate between the

mask and the substrate.

Penumbra: It was mentioned in Section 3.3.1 that x-rays are generated in the MIT

bombardment source by focusing an electron beam into a spot on a copper target.

The electron-beam spot will have finite width. This width of the x-ray source gives
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Figure 3-10: Penumbral blur due to finite source size and gap between mask and
substrate. Penumbral effect is greatly exaggerated here for demonstration purposes.
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rise to another mechanism for lateral pattern modification, penumbral blur.

The effect (greatly exaggerated) of penumbral blurring is shown in Figure 3-10.

The finite source size, combined with a gap between the mask and wafer, create

a gradation in x-ray intensity between dark and exposed areas. The extent of the

blurring can be given approximately as

d
6 = G-

D'

where G is the gap between the mask and the substrate, d is the source size, and D

is the distance between the source and the substrate.

Typical gaps for x-ray nanolithography are 5 ym or less, and typical source-to-

substrate distances are 10-20 cm. The x-ray source size (determined by performing

an exaggerated penumbral exposure with a large mask-to-sample gap) is typically

1-2 mm for the sources used at MIT. For these conditions, the worst-case penumbral
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Figure 3-11: Mask-to-sample gap vs. minimum printable linewidth. a < 1.0 gives
excellent process latitude. a = 1.5 can give reasonable process latitude. Figure from
reference [108]

blur would be 100 nm. If D is increased to 20 cm and the gap is reduced by a factor

of 10 to half a micron, then the penumbral blur becomes 5 nm.

Diffraction: Penumbral blur is not a stand-alone effect, however. It is intimately

connected with diffraction due to their mutual dependence on mask-to-substrate gap.

In the near-field regime, the relationship between mask-to-substrate gap G and min-

imum printable feature size w is well-known to be

2

where A is the wavelength of the x-ray, and a is a scaling parameter. 4

Obviously the value of a is very important to how small a feature can be printed

4 This expression comes from a modification to the expression for period doubling of a grating
due to near-field diffraction, which would occur at a = 2 [106, 107].



for a given gap and x-ray wavelength. If one assumes that the fields immediately

after the mask have sharp boundaries (Kirchoff boundary conditions) good pattern

replication would be possible only at a maximum value for a of about 0.5 [109].

However, the assumption that the fields are sharply-defined is invalid for several

reasons. The absorber on an x-ray mask acts like a lossy dielectric, which tends to

reduce the intensity of higher-order spatial frequency components in the image [110,

111]. In addition, penumbral blurring [112] (or similar edge-softening effects due to

mask vibration or edge-wall taper [113]) will help to eliminate higher-spatial-frequency

components of the image. Phase-shifting by the absorber [114] can also improve

resolution at a given gap.

The result of the more complete calculations and experiments [112,115-119] indi-

cate that a values of 1.0 or even 1.5 can produce acceptable pattern replication. If

we define

w

the ratio of penumbral blur to linewidth, it is found [112] that ' = 0.6 yields good

process latitude with a = 1.0 or 1.5.

Figure 3-11 shows a plot of gap vs. linewidth for a = 1.0 and a = 1.5 and

A = 1 nm. For a = 1.0 it can be seen that 100 nm feature sizes can be printed with a

10 ym gap, and 50 nm feature sizes require a gap of 2.5 jm.

3.4 Device Fabrication with X-ray

Nanolithography

We have closely examined factors which contribute to the lithographic input and the

resist dose for a proximity x-ray exposure, and discussed what might limit the reso-

lution. For this work, however, we are interested in more than just x-ray exposures -

we are interested in going from a gate pattern design, such as the one described in

Chapter 2, to producing that pattern on a small wafer or chip. That process involves

patterning x-ray masks in addition to exposing the chip or wafer.
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Figure 3-12: Full x-ray fabrication sequence for a device. An x-ray mother mask is
written with an electron beam. The mask is then developed and gold is electroplated
into the developed PMMA mold. This mother mask is used to expose a daughter
mask with x-rays. The daughter mask is developed and plated as the mother mask
was. The daughter mask is of the correct polarity to expose a wafer with x-rays for
liftoff of metal.

3.4.1 Overview of Full Fabrication Process

The full x-ray device fabrication process is outlined schematically in Figure 3-12.

The first step is to electron-beam write a "mother" mask with the desired pattern.

This mask is then developed and gold is electroplated into the mold formed by the

developed PMMA. This gives a mask with x-ray absorber everywhere the electron

beam wrote (assuming a positive resist). This mask is the wrong polarity for liftoff of

fine features on a substrate, however, so a negative replica or "daughter" mask must

be made. In the fabrication of this daughter mask, an x-ray exposure is performed

using the mother mask to create a PMMA mold on the daughter which is the inverse

of that which was on the mother mask. This daughter mask is then electroplated

with gold. A fine gold line on the mother becomes a small gap in the gold absorber

on the daughter with approximately the same width. This mask is then the correct

polarity to expose a substrate for liftoff.

A more complete discussion of various aspects of the above process is given in the



Line Dose(nC/cm) Linewidth(nm)
0.75 0
0.9 29

1.00 32
1.50 57
2.00 60
2.50 75
3.00 71
3.50 78
4.00 83

Table 3.2: Table of single-pass electron-beam linewidths as a function of dose.

following sections. More specific details or recipes are, unless otherwise indicated,

given in Appendix A.

3.4.2 Mother Mask Fabrication

Pattern Design and E-Beam Writing

The desired pattern is designed in KIC or some other CAD program and converted to

the appropriate file format for the e-beam tool used. Masks for this work were written

at the Naval Research Laboratory (NRL) in Washington, DC on a JEOL JBX-5DII

electron-beam lithography system. The pattern data is transferred electronically.

Specifics of the data conversion and transfer are given in Burkhardt [6].

A mask is coated with approximately 250 nm of PMMA and focusing artifacts

(lightly-etched edges of gold fingers which protrude onto the membrane) are prepared.

The mask is then shipped to NRL.

The e-beam writing at NRL is done at 50 keV, with beam currents ranging from

10-15 pA for the smallest features to -3 nA for the largest features. For large pads

an areal dose of 350-400 puC/cm 2 is used. For single-pass-lines (SPLs), a linear dose

of about 1.0nC/cm is usually the minimum required for clearing in the standard

development time. By using a range of SPL doses, one can vary the developed

linewidth. Table 3.2 shows this variation of linewidth with dose for a typical mother

mask written at the NRL. Sub-40 nm linewidths are usually attainable.



Development and Electroplating

The mask is developed for 90 seconds in 1:2 MIBK:IPA which is held at 210 C. The

development time for e-beam exposures is kept constant. After developing, a short

oxygen RIE descum is performed to remove any thin layer of organic material which

might remain from the development.

A film of 200 nm of gold is then electroplated onto the mask. Electroplated gold

has been shown to be an excellent means of pattern transfer for feature sizes below

20nm with very high aspect ratios [120]. For our electroplating we use SEL-REX

BDT510, a commercially-available gold plating solution. The plating is done at

0.4 mA/cm 2 to minimize stress in the plated film. The bath is monitored to ensure

that the plated film will have a small grain size to allow for good pattern replication.

A good discussion of gold electroplating and plating bath characterization is found in

Burkhardt [6].

The advantage of e-beam writing on a thin membrane is that electron backscat-

tering from the substrate is all but eliminated. When e-beam writing on a thick

substrate, it is well-known that fine features which are close to a large feature tend to

widen. This is known as the proximity effect, and is due to the added dose from the

more widely-distributed backscattered electrons which emanate from the large fea-

ture. When writing on a 1 pm-thick membrane, the proximity effect is significantly

reduced. Figure 3-13 shows a scanning electron micrograph of a 55 nm-wide single-

pass line written between two large pads. The gap between the line and each pad

is also 55 nm. There is no appreciable widening of the line as it passes between the

pads. The pads were written with a dose of 400 ,C/cm 2 , and the single-pass line was

written at I nC/cm. A pattern such as this is unlikely to be successfully written on

a bulk substrate. See Ghanbari [90] for more discussion and Monte-Carlo electron-

beam exposure simulations and resist development simulations of fine patterns on

thick substrates and membranes.

The reduced backscattering from e-beam writing on a membrane also allows for

finer linewidths than could be attained on a substrate. Figure 3-14 shows a 30 nm-



Figure 3-13: Scanning electron micrograph of test pattern on a mother mask showing
remarkable lack of proximity effect. Image is of electroplated gold on SiNx membrane
coated with a Ti/Au plating base. The 55 nm-wide line shows no appreciable broad-
ening as it passes between the 2 pm-square pads which are spaced 165 nm apart. It is
highly unlikely that this pattern would be successfully written on a bulk substrate.
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Figure 3-14: Scanning electron micrograph of device pattern on a mother mask. Image
is of 200 nm-thick electroplated gold features on a 1 1 m thick SiN, membrane. The
center line is 30 nm wide.



Figure 3-15: AFM image of device pattern on a mother mask. Electroplated gold
features are 200 nm thick on a 1 p m-thick SiNx membrane. The center line is 0.9 ym
long and 40 nm wide. In this case it was found that the thickness of the absorber in
the fine line was less than that of the other gates.

wide line on a device pattern on a mother mask.

After stripping the PMMA, the thickness of the plated gold can be checked with

an AFM with little chance of harming the SiNx membrane. Figure 3-15 shows an

AFM image of a device gate pattern on a mother mask.

3.4.3 Daughter Mask Replication

Once the mother mask processing is completed, it can be used to create a negative

replica which will have the correct polarity for a liftoff exposure on a substrate. For

a mother mask with fine features, the gap between the mother and daughter mask

during this process will be critical.
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Figure 3-16: Schematic of gap monitoring in microgap exposures. A monochromatic
green light source is used to illuminate the mother-daughter pair. As the angle 0
of the source and eye are moved from 450 to perpendicular to the membrane, the
number of fringes passing a particular point on the mother mask are counted. The
gap at that point on the mask is approximately the number of fringes less one.

The gap is monitored as indicated in Figure 3-16. A monochromatic (A = 543 nm)

green light source is used to illuminate the mother-daughter pair from above. As the

angle 0 of the source and eye are moved from 450 to perpendicular to the membrane,

the number of fringes passing a particular point on the mother mask are counted.

The gap at that point on the mask is approximately the number of fringes less one.

This technique was published by Schattenburg et al. [87] for a mask above a silicon

or SiO 2 substrate illuminated with a sodium (yellow) lamp.

To confirm that the technique was valid for two masks illuminated with green

light, and with the mother mask possibly having a coating of polyimide (a technique

which is used in contact printing, which will be discussed in detail in Chapter 4),

simulations were performed using the program "layer", an ellipsometric simulation

program written by Mark Schattenburg. The results of a simulation for a 10 /m gap

between two masks with and without a 1 /m layer of polyimide on the mother mask

are shown in Figure 3-17. To perform this simulation the index of refraction n of

the spun-on thin-film polyimide (which is birefringent) was interpolated with angle
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Figure 3-17: Simulation of reflectance of mother/daughter mask pair vs. angle for two
mask membranes. The simulated gap is 10 tm, the light wavelength is 550 nm, and
the two curves are for a mother mask with and without a 1 pm polyimide coating. 11
dips can be counted in the reflectance.



between its in-plane and perpendicular values of 1.9 and 1.6 [121]. Little difference

is seen between the two cases, and the number of dips in the reflectance is the gap

in microns plus one. Similar results were obtained with simulations for gaps down to

one micron.

When one x-ray mask is placed on top of another in the manner shown in Figure 3-

16, a gap of 4-5 pm is typically found. This is due primarily to buildup of resist and

polyimide at the edge of the mesa, although non-flatness of the mesa does set a

lower limit. As discussed in Section 3.3.2, for feature sizes below 50 nm a gap of

less than 5 pm is required. Chapter 4 will discuss previous methods used and new

methods developed for this thesis to eliminate this gap (and do "soft-contact" x-

ray exposures). Even without gap reduction, however, feature sizes of 60-70 nm and

above should be replicable.

The daughter mask is exposed using the copper electron-bombardment source, as

discussed in Section 3.3. Typical exposure times are 5-10 hours, depending primarily

on the distance between the source and mask. Shorter distances result in shorter

exposure times, but can also result in decreased uniformity of dose across the daughter

mask membrane.

After exposure, the daughter mask is developed in 2:3 MIBK:IPA. Unlike the de-

velopment of the e-beam-written mother mask, the daughter mask development is

monitored by interrupting the development several times and measuring the PMMA

step height at a feature edge with an AFM. This is necessary because of the uncer-

tainty in dose from the x-ray exposure. As discussed in Section 3.3.2, x-ray dose

is uncertain because source properties can change over time. In addition, there is

some variability in nitride membrane thickness, plating base thickness or plating base

composition from one x-ray mask to another. From the discussion of the spectrum in

Section 3.3.1 it is apparent that these can all affect the spectrum and therefore the

dose at the exposure plane.

The developed mask is then descummed and electroplated.



3.4.4 Device Patterning

The device substrate is then patterned with the processed daughter mask. For very

fine features, the gap between the mask and substrate is again important. Unlike

creating a daughter mask, for device exposures alignment of the gate level is usu-

ally necessary. Overcoming the problem of aligning a small chip or wafer and then

achieving soft contact is discussed in Chapter 4.

The aligned chip is exposed and developed as for the daughter mask. The gate

pattern is then deposited by liftoff. The processing of the GaAs/A1GaAs heterostruc-

tures is discussed in Appendix B.

3.5 Previous Pattern Replication Results

The goal of this work was to reliably fabricate structures with feature sizes below

50 nm on a device wafer or chip. Most attempts to fabricate sub-50 nm features, and

certainly all sub-50 nm features produced in the NanoStructures Laboratory at MIT,

have been done as demonstrations, using techniques which cannot yield arbitrary

aligned device patterns on a wafer.

The last two sections of this chapter will investigate previous efforts at fabrication

at below or near 50nm size scales. Section 3.5.1 will examine previous ultra-fine

pattern replication, and Section 3.5.2 will look at device results obtained prior to this

work.

3.5.1 Pattern Replication Below 50 nm

Several authors have reported replication of features with dimensions less than 50 nm

using x-ray lithography. Until recently, however, all ultrafine feature replication has

been done using non-standard techniques which were useful for some device applica-

tions but not for arbitrary patterns.

Flanders [122] replicated 17.5 nm features with a CK bombardment source. The

mask was prepared by evaporating a thin film of tungsten at an angle onto a relief



structure in a polyimide membrane. This coated the sidewalls with a 17.5 nm-wide

tungsten absorber which was several tenths of microns thick. Substrates were then

exposed in contact with the mask. For this geometry and exposure setup, 17.5nm

was the minimum feature size which was able to be replicated; finer-pitched struc-

tures were not replicable. By using clever "bootstrapping" techniques, a variety of

fine-pitched grating were produced and shown to be useful for liquid crystal align-

ment experiments, polarizers and artificial dielectrics, and a permeable-base transistor

structure.

Early [104] et al. used a similar shadow evaporation technique to produce a mask

with 30 nm features. The mask was used to expose substrates with three different

electron-bombardment x-ray sources: CUL (A = 1.32 nm), AlK (A = 0.83 nm), and

CKA (A = 4.5 nm). The linewidth of the developed PMMA was comparable for all

three sources, proving that the maximum range of the photoelectrons generated in

the resist (which varies significantly among these sources) is not the limiting factor

in resolution for x-ray lithography.

These experiments clearly show that pattern replication is possible in the sub-

50 nm regime with x-ray lithography. The shadow evaporation used for mask-making,

however, is not a technique suitable for general purpose lithography.

A recent experiment by Simon et al. [119] has shown the capability of producing

arbitrary features with sizes below 20 nm using both additive (Au electroplating) and

subtractive (etching of W) mask processing. By using monochromatized (A = 1.1 nm)

radiation from a synchrotron, feature sizes as small as 15 nm were replicated as resist

lines, and spaces were replicated in gold which was electroplated around those lines.

3.5.2 Previous Device Patterning Results

However, using the CuL source and gold electroplated masks available in the Nano-

Structures Laboratory at MIT, pattern replication for actual devices has been, before

this work, limited to feature sizes greater than or equal to 50 nm.

Probably the smallest previously-reported feature size replicated with convention-

ally-produced (i.e., e-beam written and gold-electroplated) x-rays masks was a 50 nm



line-space pair of interdigitated electrodes which had been designed for a planar-

resonant-tunneling field-effect transistor (PRESTFET) structure [98,115]. This pat-

tern was written on an x-ray mother mask and the mother mask was used to expose

a Si substrate which was then lifted off with Cr/Au. This was done at several gaps

and showed that values of a up to 1.44 produced excellent pattern replication.

The 50 nm line-space structure is only shown as a lift-off pattern, not as a daughter

mask. In Chu's PhD thesis [98], gate patterns on a wafer are shown with wider gaps

between the electrodes, and the linewidth is said to be "approximately 50 nm," but

no daughter mask is shown.

Eugster [25] also reported that the smallest features which could be replicated by

x-ray lithography were 50 nm.

Burkhardt [6,123] reported several devices made with the full device fabrication

process (mother, daughter, device) which have linewidths of 70 nm and up. He also

shows a mother mask which has a 40 nm feature, and a daughter mask which was

replicated from it. The linewidth on the daughter is not measured. However it

appears to be broadened with respect to the mother (probably by 20-30% within the

accuracy of the measurement from the image).

Although sub-50 nm features can be replicated with x-ray nanolithography, no

device features of that size had been made at MIT using the full device fabrication

sequence outlined in Section 3.4.1 prior to this work. The remaining chapters of this

thesis will detail what parts of the full process were responsible for the inadequate

process latitude below 50 nm and how the process was modified to extend the useful

limits of x-ray nanolithography well into the sub-50 nm regime.



Chapter 4

Soft Contact Technology

4.1 Microgap X-ray Lithography and Limits to

Replicable Feature Sizes

As discussed in Chapter 3, diffraction of the image is the most important factor in

limiting the resolution of x-ray nanolithography. For sub-50 nm lithography, having

a small gap becomes critically important. Table 4.1 presents the minimum feature

size vs. gap data from Figure 3-11 in tabular form for a = 1 and a = 1.5, where a is

a parameter which is proportional to the largest allowable gap for a given minimum

feature size and exposure wavelength.

In microgap x-ray lithography, gaps for 100 nm feature sizes and larger are typi-

Minimum Feature Gap (pm)
Size (nm) a=1.0 a=1.5

100 10 15
70 4.9 7.4
50 2.5 3.8
40 1.6 2.4
30 0.9 1.4
20 0.4 0.6
10 0.1 0.15

Table 4.1: Minimum feature size vs. gap presented in tabular form. a = 1.5 gives the
largest gap which has been shown to yield good processing latitude.



cally set by evaporating several-micron-thick aluminum studs through a metal shadow

mask onto the mesa of the x-ray mask [87]. By depositing a known thickness of alu-

minum, the gap formed when placing the mask onto a wafer can be well-controlled.

Non-flatness of the mesa sets a limit to this gap of about 2 pm, which would

limit replicable feature sizes to about 40-50 nm for an exposure on a wafer.' When

exposing onto another mask for a daughter exposure or onto a small chip (rather than

a whole wafer), resist buildup on the mesa of the mask or the corners of the chip will

increase the gap to typically 4-6 pum, limiting replicable features sizes to more like

55-75 nm. Some means of decreasing the gap is therefore necessary for replicating

feature sizes below 50 nm.

4.2 Previous Methods for Reducing

Mask-to-Sample Gap

Technologies for gap reduction have been in existence in the NanoStructures Labo-

ratory for several years, both for small-sample exposures and for daughtering. They

are described below.

4.2.1 Gap Reduction for Mask Daughtering

A clever scheme for gap reduction when daughtering masks was devised by Burkhardt

[6,125]. By partially evacuating the space between the two masks, the membranes

are pushed closer together by the force of atmospheric pressure from the outside. By

monitoring the gap-dependent capacitance between the two masks (conveniently both

have a layer of gold plating base on their membranes) and using feedback to a control

valve in the vacuum system, minimum gaps of a micron or below can be maintained

over the course of a several-hour x-ray exposure.

'There are mask fabrication schemes which would all but eliminate this mesa non-flatness by
fabricating an optically-flat mesa in the Pyrex ring and bonding the membrane directly to it [124].
These masks, although in development, are not commonly available yet, and would most likely still
be susceptible to resist buildup at the mesa edge.



There are some problems with this method of reduced-gap daughtering, however.

Under the uniform loading of the pressure difference between atmosphere on the

back side of the membranes and the partial vacuum between them, the membranes

deflect parabolically. This means that for an initial mask-to-mask gap of 6 Pm and a

partial-vacuum-induced center gap of 1 pm, the gap halfway out from the center of

the membrane would be 2.25 pm.

Diffraction effects could therefore vary significantly across the mask, and lead to

changing linewidths or even loss of the finest features as the edge of the mask was ap-

proached. This problem could be avoided by designing a mask with the finest features

only at the center, and for purely research purposes that would certainly be possible.

However, this was not a technology which met the goal of being "manufacturable" in

the university setting.

There was also a more serious practical problem with the method. Because it

relied on the capacitance between the two masks to monitor the gap, control was

susceptible to electrical shorts which could develop between the masks. Electrical

insulation between the masks was provided by the PMMA layer on the daughter

mask. Often in the several placements of the mother mask which were required to

initially orient the masks as close to parallel as possible (due to the nonuniformity of

PMMA buildup at the mesa edge), this PMMA layer would become scratched and

the masks would short together.

Even if the masks were successfully placed and a partial vacuum was pulled, in a

not insignificant percentage of exposures, a short would develop (and often go away

and redevelop several times) during the course of the exposure. This would cause the

gap to vary uncontrollably and fine features to be washed out.

A means of avoiding this more serious problem was tried. The shorting arose

because of electrical contact between the plating base on the daughter mask and

either the studs or the plating base on the mother mask. Replacing the conducting

studs with insulating studs should have prevented the shorting problem. However

the means of doing that were impractical. Evaporating SiO 2 studs was considered,

but evaporated SiO 2 films tend to be high in stress, and a several-micron-thick film



would likely not adhere well. In addition, the evaporator must be cleaned after every

series of SiO2 evaporations to prevent contamination of other materials. This did not

seem to be a practical solution.

Instead, polyimide studs were patterned onto the mesa of mother masks. Although

in theory this could have been a workable solution, the nonuniformity of the polyimide

thickness, even near the inside edge of the mesa, made for a large (many micron)

gradient or "wedge" in the gap. This was also an impractical solution.

Yet a third problem existed with this method of gap reduction. Occasionally,

either due to carelessness when initially setting the gap or because of mask-to-mask

shorting and subsequent oscillations of the control circuit, the mask membranes would

come into contact. Once this happened, upon reduction of the vacuum they would

usually not come out of contact, presumably due to van der Waals forces holding

them together. Separating the two masks without destroying one or both of them

was quite difficult. The SiN, mask membranes are quite robust, but will not hold

up well to shear stress. When the two masks were in van der Waals contact in the

old fixture, lifting the top mask by hand or with thin wires placed between the two

Pyrex support rings would usually end up destroying the masks.

Fortunately, an alternative method was devised which overcame all of these prob-

lems - the masks were pulled by vacuum into intimate contact over most of their

surface. The development of this technique (and the method of removing the masks

from contact) is discussed in Section 4.3.1.

4.2.2 Gap Reduction for Small Samples

Another clever scheme had been devised by Chu and Ghanbari [90,98,126] for placing

small (a few mm on a side) chips into contact with an x-ray mask. This procedure

allows alignment of the chip to the mask before achieving contact, a necessity for any

procedure which is to be used to print real device structures.

The procedure is as follows: The chip is aligned to the mask using an XYZO

stage. Once alignment is achieved, the stage is raised a few tens of microns so that

the corners of the chip (which are raised because of resist buildup) push into the mask.



A voltage is then applied between the mask and the chip, which electrostatically pulls

them into intimate contact. Once this happens, the applied voltage can be removed,

and van der Waals forces hold the chip to the mask. The two can be transported

across the laboratory to another fixture which pulls a partial vacuum in the space

between the mask and a latex membrane. The vacuum deflects the latex membrane,

pushing the chip against the mask to hold it in place during an exposure. The mask

membrane is quite flexible and will conform to dust particles and the resist buildup

on the corners of the chip.

With this contact method, the gap is in principle well-known. For a contact

exposure, it is necessary to allow an escape path for gas (presumably lower-molecular

weight PMMA fragments and/or residual solvent) which evolves out of the resist

during x-ray irradiation. If this is not done a bubble builds up between the mask and

the substrate, increasing the gap. The escape path is created with a double layer of

polyimide on the mask. The first layer is slightly thicker than the gold absorber and

serves to planarize the surface. The second layer is much thinner (,70nm) and is

patterned in a 100 ,m-period grating pattern. When the mask is pushed against the

substrate, gas can exit through the channels in the top polyimide layer. The exposure

gap is therefore the thickness of the polyimide layers, approximately 250-320 nm.

The advantage of electrostatic contact is that in this system, once the force from

the applied voltage pulls the mask membrane within a threshold distance from the

chip, the two are pulled into intimate contact without further increase of the voltage.

This can be shown by modeling the system as a movable conducting plate (the mask

membrane) held above a fixed conducting plate (the chip) by a spring (the tension of

the membrane). Figure 4-1 shows a schematic diagram of the model.

A force balance for this system in equilibrium gives

6oAV 2
Kx =

2(Go - x) 2 '

where K is the spring constant, x is the displacement from the initial gap Go, A is
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Figure 4-1: Schematic of electromechanical model for electrostatic contact. Plate
is suspended by spring at an initial gap Go. Applied voltage V results in a force

between the two plates. At a voltage Vpj = 2C 3 ) (where x = Go/3), there
is no stable static solution and the plate experiences 'pull-in" where it runs into the
bottom plate.

the area of the plate, and V is the applied voltage. Solving for V, we find

V = Kr(Go - ).

This function rises as x increases from zero and has a maximum at x = Go/3. For V

greater than this maximum value there is no static solution.

It can be shown that x = Go/3 is also an inflection point of d2E/dx2 , where the

system energy E = !CV 2 + !Kx 2. For x < Go/3, the solution is stable and the plate

will remain at a fixed x, while for x > Go/3, it is unstable and the plate will be pulled

into the bottom electrode. The voltage at which this occurs is called the "pull-in"

voltage,

Vpi = 2 2K

For the pull-in to occur requires that the gap be reduced to 2/3 of its initial value.

This should (and often does) allow for a "zippering" effect where one part of the



chip comes into contact with the mask and the contact propagates across the chip.

However, particles and resist edge buildup can prevent contact from occuring across

large portions of the wafer (if they hold the membrane further than 2G 0 /3 away from

the conducting part of the wafer) and sometimes prevent contact altogether.

For non-conducting substrates (such as the semi-insulating GaAs substrates on

which the heterostructures are grown for the quantum dot devices) the insulating

substrate is much thicker than the gap between mask and chip. Go is the gap between

conducting plates, which in this case is the thickness of the wafer plus the mask-to-chip

gap. Since in this case the gap can never be less than 2G 0/3, the pull-in mechanism is

not at work. The voltage must therefore be increased further and further to increase

the force between the mask and the chip.

The voltage required to pull the chip and mask into contact can vary significantly,

not only between different types of chips, but also from alignment to alignment with

the same type of chip due to differences in resist edge buildup or particle number and

size. Silicon chips are usually relatively easy to pull into electrostatic contact at low

voltages (,10-30 V), although frequently only some portion of the chip (maybe 1/4

to 1/2 of the surface area) will come into intimate contact, while the rest of the chip

remains at some gap - probably a micron or so, although this is hard to estimate

since the area is small.

Pulling GaAs chips into contact with a mask is much more problematic. If the

chip comes into contact at all, it is often only on a tiny part of one corner, while the

rest of the chip is at an unknown gap. Also, because of the larger voltages required to

achieve contact (sometimes as high as 100-150 V), it is not uncommon for an arcing

event to occur which destroys both the mask (breaking it into shards) and the chip

(creating a large crater where the arc occurs).

Two means were tried to improve the performance of the electrostatic contact

process. For insulating substrates, a thin film of Ni was evaporated on the surface

of the PMMA, around the side of the chip, and onto part of the back of the chip.

This allowed electrical contact to be made to the front of the chip and the pull-in

voltage to be easily reached. Unfortunately, it also created a large conducting surface



Figure 4-2: Optical micrograph of GaAs chip and membrane shard destroyed by
arcing when attempting electrostatic contact. The arc originated from the alignment
mark on the mask which had been cleared of polyimide in previous processing.

on top of the PMMA which made electrical contact to the alignment marks which

were stripped of polyimide.

Figure 4-2 shows an optical micrograph of a Ni-coated GaAs chip which was

destroyed while trying to make electrostatic contact with a daughter mask in an

attempt to create a gate pattern. The micrograph shows the chip and a shard of the

mask membrane. From the micrograph it is apparent that the arcing occured from

an alignment mark on the mask (the bright cross) where the polyimide coating had

been removed in order to improve optical contrast for alignment.

Since the PMMA on the GaAs was coated with a thin film of nickel, it is not

surprising that a failure occured in this case. It should be noted, however, that arcing

also occured in masks which were fully coated with polyimide. This micrograph shows

the extent of substrate damage which can occur from an arcing event.

Making electrical contact to the back side of the SiN, membrane was also tried.

A thin film of Ti/Au (about plating base thickness) was evaporated onto the back

side of the membrane. It was electrically contacted with a ball bearing which was



attached with conducting epoxy to a movable probe arm. It was thought that the

insulating SiN, membrane would allow large voltages to be applied which could pull

the Ni-coated front of the chip into contact with the mask. Unfortunately arcing

occured in this case as well, probably because of high field concentrations at the

edges of the chip or at particles combined with the poor isolation characteristics of

the silicon-rich SiN, used for low-stress x-ray mask membranes.

In the end a contact method which used partial vacuum was developed which al-

lowed for alignment and reliable full-chip contact with no danger of mask or substrate

damage due to arcing. This technique is discussed in Section 4.3.2.

4.3 Full Vacuum Contact

Vacuum contact was the technology chosen to provide a known gap for exposures of

both daughter masks and small samples. The techniques developed have resulted in

a robust process which can reliably produce sub-50 nm features with a much-reduced

risk of mask breakage and substrate damage. The methods for achieving vacuum

contact for daughter exposures and aligned small-chip exposures are described below.

4.3.1 Vacuum Contact for Daughter Exposures

The main problem with placing a mother and a daughter mask into intimate contact

was how to pull them out of contact after the exposure was finished. As was mentioned

in Section 4.2.1, with the previous setup, if the masks were put into contact by mistake

it was usually not possible to separate them without destroying them. This was

because mechanical force was applied, usually manually, to separate the membranes,

and any lateral motion of the masks resulted in shear stress on the membranes.

The solution was to design a fixture in which the masks were rigidly clamped before

being pulled into contact, during the exposure, and while being separated. Instead

of mechanical force, gentle pressure between the two membranes (the opposite of the

vacuum which pulled them together) is used to push them apart. This is achieved

by gently blowing into the tube which was used to pull the masks into contact. The
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blowing technique can best be described as being similar to puffing on a cigar but

with the opposite gas flow direction. This could, of course, be automated and done

without the human breath.

This "suck and puff" technique has proven highly successful at contacting and

separating masks for exposure. The mask membranes are pulled into contact over

most of their 31 mm diameter; perhaps 1 mm at the edge of the membranes is not in

contact during an exposure. The technique is shown schematically in Figure 4-3.

Since the daughtering exposure is now done in contact, the mother mask must be

coated with polyimide to allow for evolution of gas out of the PMMA on the daughter

mask during exposure. However, the 100 ym-period polyimide relief grating which is

used for this purpose in mask-to-sample exposures is not adequate for mask-to-mask

exposures. The flexible daughter mask easily conforms to the 50 Pm channels and can

block them. Instead a 20 /m-period grid is used. The smaller channel size seems to

prevent blockage by the daughter mask, and using a grid rather than a grating allows

any generated gas to find a percolative path to the edge of the membranes. With

the two-dimensional grid, if a particular path is blocked, the gas can find another

way around. Modifying the polyimide processing required some optimization of the

polyimide etching, which is described in Appendix A.

4.3.2 Aligned Vacuum Contact for Small Samples

A similar means was used to pull small chips into contact with the mask. In this

case it was necessary to allow for alignment of the chip to the mask before pulling

the vacuum to achieve contact. Most methods of forming a vacuum seal, however,

prevent movement of the two pieces to be sealed. It was therefore necessary to devise

a means of creating the vacuum seal after the alignment took place. Since the mask

and substrate were in partial contact at that point, it was important that the vacuum

seal not cause any lateral motion, both for the sake of the alignment and to avoid

shearing the mask membrane.

The fixture was designed as an inexpensive modification to the small-chip align-

ment fixture which was already in existence in the NanoStructures Laboratory [127].
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Figure 4-4: Schematic of vacuum contact technique for performing aligned small-chip
exposures in intimate contact. Top: The mask is leveled with respect to the sample,
the sample is aligned at a small gap, then the sample is pushed up so that it contacts
the mask. Bottom: The sealing plate is raised, creating a sealed space which is
evacuated through a vacuum hole in the side of the sealing plate. The flexible mask
membrane conforms to the chip.



This allows switching between vacuum and non-vacuum alignments with minimal

changes in tooling. It is shown schematically in Figure 4-4. The small chip is either

held directly by a hole in the vacuum chuck (as shown) or it is glued with polyvinyl

alcohol (which is soluble in water) to a two-inch silicon wafer which is held down by

vacuum. (n.b. this vacuum is separate from the vacuum which pulls contact between

the chip and the mask). The mask is clamped against a viton gasket seal on the mask

holder.

The mask holder is leveled with respect to the chip and the chip is aligned at a

small gap. It is then raised to just touch the mask. This is similar to the alignment

procedure for non-vacuum contact. The top of Figure 4-4 shows the chip after the

alignment procedure.

The bottom of Figure 4-4 shows how the vacuum contact is made. After the

alignment, the sealing plate is raised with three thumbscrews (not shown) to seal

against a gasket which is attached to the bottom of the rigidly-held mask holder.

A flexible gasket between the sealing plate and the sample holder allows the sealing

plate to move the few millimeters required to seal against the mask holder. Once

the sealing plate is raised, a partial vacuum is pulled through a hole in its side. The

mask conforms to the small chip and is held in place by the atmospheric pressure

from above during the exposure.

When the exposure is finished, the partial vacuum in the mask-sample gap is

released. Since the chip is still held to the sample holder by vacuum, lowering the

stage overcomes the van der Waals force between the chip and the mask and separates

the two without damage.

A photograph of a small GaAs chip placed in vacuum contact with a mask using

this fixture is shown in Figure 4-5. The mask deflects rather dramatically around the

chip. Several small particles which are on the chip can be seen in relief through the

membrane. The mask conforms around these particles to give a minimal gap over

most of the chip.
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Figure 4-5: Photograph of small GaAs chip in vacuum contact with an x-ray mask.
The mask deflects significantly around the chip and conforms to particles on the chip.
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Figure 4-6: Schematic of membrane deflection for single mask and mother-daughter
mask pair when placed under vacuum. Single mask deflects parabolically. Pair of
masks contact each other at edges of membrane rather than at center as might be
expected.

4.4 Analysis of Issues in Soft-Contact

In the course of developing the technology for vacuum soft-contact exposures for

daughter and device exposures, some issues arose which seemed worthy of further

investigation and analysis. They are discussed below.

4.4.1 Squeeze-Film Analysis of Membrane Dynamics

When differential pressure is applied across a circular membrane, the membrane de-

flects in a parabolic fashion, as described in Section 4.2.1. It would therefore not be

surprising if when two daughter masks were placed in close proximity and the space

between them was partially evacuated that the membranes would initially contact

each other in the center. With the vacuum daughtering setup, however, it was invari-

ably found that the masks initially contacted each other at the edge of the membranes,

leaving a bubble of air in the center. This is shown schematically in Figure 4-6.

This bubble does not remain for long, however. The polyimide relief grid on the

mother mask provides a path for the air trapped between the membranes to escape.

Usually after about half an hour, the masks are in intimate contact. A time-lapse

sequence of pictures of two masks coming into intimate contact is shown in Figure 4-7.



Figure 4-7: Time-lapse photograph sequence of two masks coming into vacuum con-
tact. Masks are illuminated in monochromatic (green) light. Interference fringes
indicate how gap changes across membrane. (a) Masks before vacuum is applied.
The membranes are not perfectly parallel. (b) Vacuum first applied. The edges of
the membranes come into contact first, trapping an air bubble in the center. (c)-(e)
Area of contact increases. As membranes pull closer together, more particles can be
seen. (f) Almost perfect contact. There is some trapped air around a few particles.
Eventually that will also dissipate.
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The masks are illuminated by monochromatic (green) light. In part (a) no vacuum

has been applied. A few interference fringes across the membrane indicate that the

masks are not perfectly parallel, although in this case they are quite close to being so.

Part (b) shows the membranes immediately after the partial vacuum has been applied.

The edges of the mask come into contact first, as shown by the fringeless ring and

the central concentric fringes which indicate the bubble of air in the center. As time

evolves, parts (c)-(e) show the bubble decreasing in size as more of the membranes

come into intimate contact and more, smaller particles (surrounded by concentric

rings of fringes) are evident. Part (f) shows the membranes almost totally in contact.

Only a few particles have a significant amount of air surrounding them. Eventually

there will be no visible interference fringes over the center of the membranes - only

about 1 mm or so of the edge will show fringes.

The reason that the membranes do not contact each other in the center has to

do with the dynamics of flow between the two closely-spaced membranes. This is a

so-called "squeeze-film" effect [128]. An air molecule which is in the center between

the two membranes can travel -5 Ym up or down before hitting the membranes, but

has a radius in the X-Y plane of 1.5 cm where it can travel and still remain between

the masks. This is quite a large aspect ratio. Vacuum is applied to the membranes

by reducing the pressure in the space outside the mask mesas. Gas molecules at

the edge of the mask therefore immediately experience a pressure or density gradient

and diffuse out from between the membranes. Because of the narrow gap between

the membranes, it takes time for this rarefaction to propagate to the center of the

masks, and by the time it does, the pressure at the edge is reduced enough to cause

deflection, allowing the membranes to touch there.

The pressure profile immediately after the vacuum is applied can be modeled as

a double step or II function with a reduced pressure outside the membranes and

atmosphere between the membranes. This is the same relative pressure profile we

would expect if we had two closely-spaced rigid plates and we quickly stepped one

plate closer to the other, causing a compression of the air between them.

We will use the system of two closely-spaced rigid plates as a model for the mem-
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Figure 4-8: Model system and initial pressure profile for squeeze-film analysis.

brane system. An illustration of the model system is shown along with the initial

pressure profile in Figure 4-8. This modeling will ignore any flexing of the membrane.

The analysis follows Griffin [1291 and Yamanami [130].

We assume that the separation between the plates is much smaller than their

radius, h <K R. We also assume the motion of the plates is only towards each other;

there is no rotational or lateral motion. We also assume that the flow of gas is viscous

(i.e. the inertial energy is small compared to viscous dissipation) and the system is

isothermal (therefore the pressure p is proportional to the density p) with constant

viscosity.

We begin with the continuity equation:

V .p i = t "

For viscous flow in a narrow channel, the velocity is proportional to the pressure

gradient [131]:

V= - Vp,
12,q )

where 7 is the viscosity. Substituting this expression into the continuity equation and

substituting pressure, p, for density, p (since they are proportional), we arrive at the

governing equation for the pressure distribution:

24 &
V2p2 4 t (ph),

=3d



where t is time.

This is a non-linear partial differential equation. However, by assuming small

variations in the pressure p = Pa + 6p (or in the plate displacement h = ho + 6h),

where Sp < Pa and Sh < ho, we can linearize the equation to yield

h 2 Pa (Sp) _a (Sp a (Sh

12u Pa at Pa t ho

This describes pressure as a function of position given Sh(t). In our case, since the

plates are instantaneously stepped together at t = 0, Sh(t) is a step function at t = 0.

By normalizing variables, converting to cylindrically-symmetric coordinates, and

assuming a solution of the form Sp(r, t) = P(r) exp (-at), we find an equation for

P(r) for t > 0 (after the step has been applied) of

ho a [I a a [a a
121 R2 [rar a P(r) + aP(r) = 0.

This is the Helmholtz equation. Since the problem is in cylindrical coordinates,

the solutions are Bessel Functions. We use the form

P(r) = AJo(kr),

where Jo is a zeroth order Bessel function. Plugging this solution into the equation

gives
121PR 2

k 2
h Pa

The complete solution will be a sum of Bessel functions which meet the boundary

conditions P(r = 1) = 0 for all t > 0 (i.e. at the edge of the mesa the pressure above

equilibrium is zero) and P(t = 0+ ) = II(1) (i.e. the initial pressure profile is a Pi or

hat function which drops to zero at the edge of the mesa). Each mode will decay at

a different rate, with higher-order modes decaying more quickly. Figure 4-9 shows a

plot of the first 15 terms in the Bessel series for the above problem plotted for T = 0
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Figure 4-9: Plot of pressure profile as a function of time for simplified squeeze-film
model. The first 15 terms in the Bessel function series are plotted. At T = 0 the pres-
sure profile resembles a step function. As time progresses, higher-order modes decay,
leaving only the lowest-order mode. T is normalized to the system time constant 7
described in the text.

to 5, where T is normalized to the first mode decay:

kh hP P t
12pR2  t

where ko is the first zero of the Jo(k), which falls at ko = 2.4048.

For a 2 cm mesa and membrane radius and a one micron gap at atmospheric

pressure, the time constant r for this system is 1.5 seconds. The time constant r

scales as

radius 2

gap

The real double-membrane system will respond to the decreased pressure at the

edges by closing the gap further, causing the air to leak out more slowly. Yanof

et al. undertook an analysis which modeled both the air flow and the membrane

response [131]. An expression for the time constant of the system was found which
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scales as
radius4

gap 3

Comparison between the model and experiments was quite good.

The equilibration time has been discussed above in the context of pulling masks

into intimate contact for daughtering. It will also be important for any situation

which results in a non-equilibrium pressure configuration, such as bringing an x-ray

mask into proximity to a substrate for exposure. On a laboratory time scale which

involves an 8-hour x-ray exposure, a one-second membrane response is insignificant.

However, for those interested in using x-ray lithography in industry, that amount of

settling time may be unacceptable.

The gap used in commercial x-ray lithography is much wider than that used in

the NanoStructures Laboratory (typical gaps are 10-20 pm). However, the radius of

the industrial mask/support configuration is also much larger (10cm). Membrane

dynamics could be important for the commercial use of x-ray lithography. Other

papers have been published which investigate membrane dynamics theoretically and

experimentally for motion perpendicular and parallel to the wafer [132-134].

4.4.2 Membrane Strength

It is evident from the photograph in Figure 4-5 that the vacuum soft contact methods

developed for this work can subject x-ray mask membranes to rather severe stresses

and strains. This can be cause for concern, particularly when one is considering

subjecting a critical mask, which has required many days of processing by several

people, to these extreme conditions. Anecdotal evidence indicates, however, that the

membranes are able to stand up to the handling used in the methods described above,

which were carefully designed to avoid shearing the membranes.

In the course of this work, the "suck and puff" daughtering method was used

more than thirty times, with one mother mask being pulled into contact more than

ten times. Small chips were pulled into contact many times, and in a test where the

vacuum was increased to the maximum which is attainable with the present setup
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(about half an atmosphere) to try ascertain at which point the mask would break,

the mask survived with no damage.

There were some masks broken - before the rigid daughtering fixture, three masks

were broken while trying to separate the pair by pressure while holding the old fixture

by hand. One mask broke in the small-chip fixture, but the place where it broke (as

evidenced by the tear pattern of the membrane) was far removed from either the chip

or the mesa edge. There were indications of an imperfection in the membrane near

the area where it broke. One other mask was broken inexplicably while being pulled

into contact with a wafer (in a modification of the daughtering process). This mask

had a region of polyimide removed, and the breaking point was at the air bubble

formed in that region.

In recent years, the SiN, used for x-ray masks in the NanoStructures Labora-

tory has had defects in the form of particles embedded in the membrane. It is quite

probable that these particles are responsible for many of the broken masks described

above, and others which have occured (with the exceptions of the ones where mi-

croscope objectives are pushed through the membranes). If the particles are foreign

objects around which the nitride has grown, the membrane can be modeled as a plate

with a hole or an elastic occlusion. In either case, stresses can be increased by a factor

of 3-4 in the vicinity of the hole [135]. Since the stress under loading at the center of

a perfect circular membrane is one half of that at the edge, it is quite possible that

this stress concentration could cause failure at the point of the defect.

Defect-free membranes, however, are quite strong. This can be demonstrated with

the so-called "Q-tip test," which uses a wooden-sticked cotton swab and a mask (this

test is not recommended for a mask which one requires in order to graduate, for

instance). The cotton tip of the swab is pressed into the center of the membrane,

causing it to bow by several millimeters. Typically the wooden stick of the swab will

break before the mask membrane does as long as no shear stress is applied by rotating

the swab.

This is pictured in Figure 4-10. In the top photograph, an x-ray mask membrane

is shown with a cotton swab pressing down on it. The force was increased until the
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Figure 4-10: Photograph of membrane vs. wooden-sticked cotton swab. Top: the
membrane is being deflected by the swab. Force is increased until the wooden stick
breaks. Bottom: Victorious membrane with vanquished swab pieces.
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stick broke in two. In the bottom photograph, the intact membrane is shown with

the broken wooden stick. Although this is hardly a well-controlled quantitative test,

it is nonetheless impressive to see how robust the masks can be.
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Chapter 5

Substrate Photo- and Auger

Electrons 1

With the technologies presented up to this point, there is no apparent reason why

it would not be possible to produce arbitrary features with sizes below 50nm on

a device substrate using CuL x-ray nanolithography. The x-ray source and mask

technology described in Chapter 3 are certainly capable of providing the necessary

contrast for proper lithographic input for sub-50nm feature sizes. The soft contact

exposure technologies described in Chapter 4 provide a means of gap reduction which

reduces diffraction effects and penumbral blurring to a range where the resist dose

should yield faithful pattern reproduction for feature sizes as small as -15-20 nm.

For these exposures, photoelectrons and associated Auger electrons generated by

x-rays should have a noticeable impact on the linewidth and affect the ultimate res-

olution. As discussed in Section 3.3.2, in a PMMA film, the image blur due to these

electrons is approximately 3-5 nm. This amount of line broadening should be observ-

able in the sub-50 nm regime.

The effect of electrons generated due to x-ray absorption in the substrate during

an x-ray exposure have not yet been discussed. A substrate that absorbs x-rays more

strongly than the resist will also generate more photoelectrons and Auger electrons

1Parts of this chapter were published in the Journal of Vacuum Science and Technology B [136].
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Figure 5-1: Scanning electron micrograph of patterned gold and PMMA on a daughter
mask with "thick-gold" plating base following replication from a mother mask. The
electroplated gold formed the correct pattern around the large features in the PMMA
mold, which adhered to the substrate. The 80 nm-wide PMMA line, however, did not
properly adhere and was dislodged by the gold plating.

per unit distance than the resist does. Substrate electrons which are generated near

the resist-substrate interface can scatter into the resist and create a higher dose near

the interface than would be present if the substrate were not there. Under certain

circumstances this excess dose can create adhesion problems for very small resist

features.

5.1 Unsuccessful CUL X-ray Daughter Exposures

The effect of substrate photo- and Auger electrons was evident in the daughtering

process. The x-ray daughter mask has a thin plating base of 10nm Ti/10nm Au

deposited on the mask membrane. PMMA is spun on top of this plating base. With

this configuration of plating base and resist, it was not possible to print sub-50 nm

lines from a mother mask onto a daughter mask. When the daughter mask was

electroplated with gold after resist development, it was found that fine PMMA lines,
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Figure 5-2: Scanning electron micrograph of patterned gold on a daughter mask with
thick-gold plating base following replication from a mother mask. In this case the
PMMA has been removed, and a small "foot" can be seen in the plated gold which
extends about 50 nm into the areas which previously were covered with PMMA. For
small PMMA features, two "feet" could meet and undercut the plating mold.

which were supposed to form the mold to create fine spaces in the gold, were not

adhering to the plating base. With this particular plating base, referred to as "thick-

gold," we were never able to get sub-50 nm lines to adhere. When the, same exposure

was done on a silicon substrate the PMMA had no adhesion problems.

Figure 5-1 shows a scanning electron micrograph of a daughter mask with thick-

gold plating base which has been exposed, developed, and electroplated with gold.

An 80nm-wide PMMA feature can be seen rising up from the plated gold, while

larger PMMA features adhered to the substrate and formed a proper mold for the

electroplated gold. In this case, the pattern on the daughter mask is obviously a poor

reproduction of that on the mother mask.

Some insight into the problem can be gained by examining a daughter mask with

the PMMA removed, as in Figure 5-2. In this scanning electron micrograph a small

"foot" of gold can be seen extending approximately 50 nm into the areas of the mask
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Figure 5-3: Scanning electron micrograph of daughter pattern in PMMA on silicon
which is coated with thick-gold plating base. Rather than having straight sidewalls,
the bottom of the PMMA is rather severely undercut, even though the development
is incomplete (as indicated by the clumps of PMMA left in the exposed areas). Any
gold plated onto this structure would show a foot, and small PMMA features would
be completely undercut.

which were previously filled with PMMA. For large PMMA features the foot does not

compromise adhesion, but for small (in this case 100 nm) PMMA features the two

gold feet from either side can meet and totally undercut the PMMA electroplating

mold.

Figure 5-3 shows a scanning electron micrograph of developed PMMA on thick-

gold plating base which was deposited onto a silicon wafer. Here the undercut at the

resist-substrate interface is clearly evident, even though the development is incomplete

(as evidenced by the clumps of PMMA in the exposed areas of the substrate). Even

this amount of undercut would lead to a foot in plated gold, and could compromise

very fine lines.
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Several characteristics of this resist undercut and subsequent gold foot pointed to

photo- and Auger electrons coming from the substrate as the cause. The undercut

occurred near the resist-substrate interface. It was of a uniform extent everywhere for

a particular exposure. It was also only problematic on high-atomic-number substrates.

5.2 Position Dependence of Dose in X-ray Lithog-

raphy

As discussed in Section 3.3.2, x-ray absorption gives rise to photoelectrons and Auger

electrons which are responsible for cutting polymer chains, thereby exposing the

PMMA. The effect of electrons which are generated in and which travel through

PMMA was described by a point spread function (PSF) which has an effective range

of -5 nm.

In a case where a substrate or other materials are present, however, the elec-

trons which eventually expose the resist may be generated in and/or travel through

the other materials. The PSF of the generated electrons depends on a combination

of factors, including at what energies the electrons are generated (which is highly

material-dependent), how they scatter in the various materials through which they

travel, and the details of their absorption by the PMMA. This means that the PSF

will depend on the depth into the resist, and will be different for each particular

combination of substrate, resist, and x-ray energy spectrum. Nevertheless it can be

calculated [137,138].

A simple physical picture can be developed to help guide understanding of the

more complicated modeling. A schematic is shown in Figure 5-4. In the bulk of the

PMMA, the effective range for generated electrons is ,5nm. Electrons generated

above and below a given point in the bulk of the resist will contribute equally to

chain scissioning at that point. The dose through the bulk of the resist should be

uniform. Near the surface of the resist, some of the generated electrons can escape

from the PMMA film and therefore do not contribute dose to the resist. We should
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Figure 5-4: Schematic of x-ray absorption and photo- and Auger electron generation
during x-ray exposure showing the effect of the substrate. In the bulk of the PMMA,
the effective range of the generated electrons is -5 nm. Near the surface, some of the
generated electrons can escape, which should cause a decrease in dose. Higher x-ray
absorption in the substrate generates more electrons there. This can create a higher
dose in the resist near the resist-substrate interface.
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therefore expect a lower dose near the surface.

Similarly, photoelectrons generated in a substrate can escape into the resist. If

more x-rays are absorbed per unit length in the substrate (which is almost always

the case), then we should expect an increase in electron generation in the substrate.

Electrons generated near the resist-substrate interface will spill over into the resist

and create a higher dose in the resist there.

At first glance this would not seem to be detrimental to the pattern replication

process. In exposed areas, we should expect a decreased development rate near the

surface, a uniform rate in the bulk of the resist, and an increased rate near the resist-

substrate interface. By understanding the changes in development rate, successful

pattern replication should be possible. However, the generated electrons can also

compromise resist adhesion due to imperfect contrast in the "dark" regions and lateral

spreading of electrons from the exposed regions to the "unexposed" regions.

5.3 Substrate Effects Reported in the Literature

The problem of photoelectron generation from a substrate was first noted by Mal-

donado et al. [139] in 1975 with a simulation of increased resist dose from substrate-

generated electrons created by a very energetic PdL x-ray source (A - 4.4 A). In

1978, Hundt and Tischer [140], also using hard x-rays (TiK, A - 2.75 A) reported

an increase in development rate of x-ray-exposed resist on a gold substrate over that

on lower-atomic-number substrates. Since then numerous other experiments and

simulations have focused on the effect the substrate can have on soft x-ray nano-

lithography [105,108,137, 138, 141-151].

In these references there are many variables, and accurate cross-comparisons are

not possible. Different x-ray spectra are used for experiments and simulations. X-ray

sources vary from electron-bombardment sources operated with various targets over

a wide range of accelerating voltages, to synchrotrons operated at various energies, to

plasma sources. For some simulations monochromatic x-rays are used. The several

initial x-ray spectra pass through a variety of vacuum windows and masks, and some
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spectra reflect off mirrors. Substrates of silicon, molybdenum, and gold, to name a

few, are used. Resist thickness also varied. Despite these differences, however, two ef-

fects due to photoelectrons generated in the substrate are evident in both experiment

and simulation. First, an increase in dose is seen above higher-atomic-number sub-

strates. This excess dose is seen to have an extent anywhere from a few nanometers

to a few hundred nanometers, although this range was not well-characterized experi-

mentally and is attributed to substrate-generated electrons and photons. Second, an

undercut is often seen in resist features near the resist-substrate interface.

Despite the many papers published on the subject of substrate photo- and Auger

electrons, there had been no direct measurement of their effect. Experimental evi-

dence was for the most part limited to descriptions of poor resist adhesion and SEM

micrographs of resist undercut of the sort shown is Section 5.1. The one experimental

paper which had numerical data only measured total development times for resist

films.

5.4 Experiments and Simulations

5.4.1 Experimental Setup

Experiments were performed to measure the dose from substrate-generated photo- and

Auger electrons in the resist as a function of height above the substrate. Substrates

of thick-gold plating base, "thin-gold" plating base (10 nm Ti/1.8 nm Au), and bare

silicon were coated with 250 nm of 950K PMMA and exposed in our x-ray system.

The dissolution rate of PMMA in 2:3 MIBK:IPA depends on the absorbed energy per

unit volume raised to the -3rd power [100,152]. This is the case irrespective of the

type of ionizing radiation, making PMMA an excellent medium in which to record

the effects of the photoelectrons generated in the substrate.

A half-plane exposure was desired. For these experiments the effect of partial

transmission of the x-ray absorber was eliminated by masking the x-rays fully using

a thick gold foil shadow mask placed on the the surface of the PMMA. This masking
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was confirmed by measuring the PMMA erosion underneath the shadowed areas and

finding it almost nonexistent on the time scale of the development of the exposed

regions. Samples were exposed to yield a 120 second development time. This is only

slightly longer than the standard development time of 60-90 seconds.

After exposure, the step height at the boundary between the exposed and unex-

posed areas was measured. A Digital Instruments Dimension 3000 AFM was used in

tapping mode to avoid excessive contact between the tip and the sample. A 40 x 5 Yum2

area was scanned with the step in the middle of the scan. The AFM yielded a his-

togram with two peaks associated with the exposed and unexposed areas. The step

height was defined as the distance between the two peak maxima. Before develop-

ment, the step height was typically found to be a few nanometers due to compaction

of the exposed PMMA.2 A screen shot of the AFM image and the histogram for a

partially-developed step is shown in Figure 5-5.

The sample was then developed in 5 second increments in a 2:3 MIBK:IPA solution

which was temperature controlled to 21 0 C ± 0.10 C. The step height was measured at

approximately the same point (within about 50 pm) after each development interval.

Step heights as a function of time were then used to calculate the PMMA dissolution

rate as a function of height above the substrate.

5.4.2 Simulation Parameters

Simulations were done by Leo Ocola at the University of Wisconsin 3 using the Monte

Carlo code Low-energy Electron Scattering in Solids (LESiS), which simulates x-ray

absorption and subsequent photoelectron and Auger-electron generation to yield dose

as a function of position [102,138]. The spectrum used for the simulations was the

spectrum incident upon the resist after passing through the vacuum window, the

mask membrane, and plating base, as calculated in Chapter 3. For the purposes

of the simulation, the spectrum was binned into 40 energy ranges. The number of

2The exposure breaks the long polymer chains, allowing some material to exit the resist in gaseous
form during the exposure. Since there is less material in the exposed regions, some latent image is
seen in the resist before development.

3 Now at Bell Laboratories, Lucent Technologies.
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Figure 5-5: Screen shot of AFM image and height histogram for a partially-developed
step. The image is shown in the upper right. The box indicates the area for the
height histogram. The histogram is shown at the bottom (the scale numbers are not
in nanometers - there is a software bug). The measured peak-to-peak height is given
in the table on the upper left.
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photons incident on the sample was calculated for each energy range for a 5-hour

exposure, and the complete set of photons was simulated. The dose generated by

this simulation was converted to PMMA molecular weight, which was then used to

simulate dissolution rate as a function of position. There was one fitting parameter

used to make the total development time equal to that found in experiment.

Photons generated by fluorescence emission were not simulated. For our substrates

and our spectrum, the conversion efficiency for fluorescence is less than 1%. Also,

the simulation was done only for energies up to 5 keV. X-ray photons with energies

in the range 5-8 keV account for only about 1% of the total energy absorbed in the

PMMA, so they should also have little effect on the dissolution rate. By comparison

of simulations, it was determined that secondary electrons generated by the photo-

electrons and Auger electrons also had little effect on the simulation (< 2%), so to

increase simulation efficiency, these were also neglected.

The simulated dissolution rate as a function of height above the substrate was

then integrated in 5-second increments and used to calculate a dissolution rate in the

same manner that the actual dose in the PMMA was developed and measured. A

comparison of the experimental results and simulations follows.

5.4.3 Results

Figure 5-6 plots the measured PMMA dissolution rate versus height above the sub-

strate for PMMA on substrates of thick-gold plating base on silicon, thin-gold plating

base on silicon, and bare silicon. The most notable feature of the data is the dramatic

increase in dissolution rate near the thick-gold plating base, which is not seen for the

silicon or thin-gold-plating-base substrates.

The data show that the thick-gold plating base generates a significantly higher

dose near the PMMA/substrate interface than bare silicon or thin-gold plating base,

and that the range of this increased dose is approximately 50 nm. All three systems

exhibit a drop-off in dose in a range of about 25 nm near the surface of the PMMA,

which gives an indication of the escape depth of the electrons generated in the resist.

The difference between the thin-gold and the thick-gold results indicates that the
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Figure 5-6: Measured PMMA dissolution rate versus height above the substrate for
substrates of thick-gold plating base on silicon, thin-gold plating base on silicon,
and bare silicon. A dramatic increase in dissolution rate near the thick-gold plating
base contrasts with only a slight increase near the silicon and thin-gold-plating-base
substrates. A decrease in the PMMA dissolution rate near the top surface of the
PMMA is seen for all three cases.

effective range of electrons generated in the gold is greater than 1.8 nm. If this were

not the case, increasing the thickness should have no effect, since electrons generated

further from the interface than their effective range in gold will not escape into the

PMMA. The Gruhn range for electrons [1531 in a material is proportional to the

inverse of its density. With 1.3 g/cm3 as the density for PMMA and 19.3 g/cm3 as

the density for gold, the Gruhn range should differ by a factor of 14.8 in the two

materials. Since we observed a range of -50nm above the substrate interface in

the PMMA, we should expect a range of approximately 3.4 nm in the gold. This

simplistic calculation matches well with our experimental observation.

Figure 5-7(a) shows a Monte-Carlo simulation of the data presented in Figure 5-6.

The same trends are clearly evident, and both the magnitude and the range of the

effect are in excellent agreement with the experimental data.

The success of the comparison between the experimentally measured data and

the simulations lends credibility to the use of the simulations as a tool for examining
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Figure 5-7: (a) Simulation of the exposures measured in Figure 5-6. The same trends
are clearly evident, and both the magnitude and the range of the effect are in excellent
agreement with the experimental data. (b) Simulation using the spectrum for "dark"
areas, i. e. in the shadow of the 200 nm-thick gold absorber. For the thick-gold plating
base, an increase is seen near the plating base where the dissolution rate approaches
the bulk development rate in the exposed regions of the PMMA.
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Figure 5-8: Two-dimensional simulation of a half-plane x-ray exposure on thick-gold
plating base. The left half plane received x-ray exposure, while the right half plane
received none. A gray-scale plot of the logarithm of the dissolution rate is shown,
with darker areas corresponding to higher dissolution rate. Note that even though
there were no x-rays present on the right half-plane, a bump appears in the dose
profile due to lateral scattering of photoelectrons near the substrate from the exposed
area.

situations which cannot be experimentally measured. Figure 5-7(b) shows the same

simulation for a dose and spectrum corresponding to the "dark" region, i.e., in the

shadow of a 200 nm-thick gold absorber. Here we see that for both the silicon and the

thick-gold plating base substrates the dissolution rate of the PMMA at the top surface

and in the bulk of the film is very low. However, for the thick-gold plating base an

increase in dissolution rate is seen near the plating base. In fact, near this interface

the development rate approaches the bulk development rate in the exposed regions.

Hence, overdevelopment would lead to undercutting of the PMMA and possible loss

of small features.

So far, we have discussed only the "one-dimensional" effect of increased dose at

the resist-substrate interface, which can lead to an undercut due to partial exposure

in the shadow of the x-ray absorber. One might think that a way around the latter

problem would be to increase the absorber attenuation or modify the x-ray spectrum

to minimize high-energy components which are not well-attenuated by absorber ma-
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terials. This would suppress the increased rate at the resist-substrate interface in the

dark areas. However, there would still be a potential undercut problem arising from

the fact that the substrate-generated electrons travel laterally as well as vertically in

the resist. That is, substrate-generated electrons from open areas of the pattern can

scatter into shadowed areas, causing an undercut.

Figure 5-8 shows a gray-scale plot of the logarithm of the PMMA dissolution

rate for a two-dimensional simulation of a half-plane x-ray exposure, with diffraction

effects ignored. Darker regions correspond to higher dissolution rate. The left half-

plane corresponds to an exposure of PMMA on thick-gold plating base with the

spectrum used in our experiments. There is no exposure at all in the right half

plane, simulating a fully-attenuating absorber. However, we still see an increased

development rate near the boundary between the exposed and unexposed regions in

the vicinity of the substrate.

The presence of this undercut is easily understood as an extension of the one-

dimensional effect which we measured. Even in the bulk of the PMMA, there is some

spillover of electrons from the exposed to the unexposed area. This creates some

lateral blur. Since there is an increased dose near the PMMA/gold interface, the

spillover into the unexposed areas is also increased near the substrate, giving rise to

the undercut.

5.5 Successful Daughter Mask Replication

The slight increase in dissolution rate at the resist-substrate interface seen for the

thin-gold plating base (comparable to that of silicon) points to an obvious solution to

the problems encountered in replicating mother masks onto daughter masks described

in Section 5.1. Before that solution was discovered, however some other means were

tried to eliminate the foot.
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Figure 5-9: Scanning electron micrograph of a plated daughter exposure on thick-gold

plating base coated with a thin layer of polyimide and PMMA. The polyimide layer

(which has been removed) was 25 nm thick. No foot in the plated gold is seen.

Unsuccessful (But Promising) Attempts at Daughtering

Because the foot occured in the first few nanometers above the plating base, a 25 nm

layer of polyimide was spun between the thick-gold plating base and the PMMA. With

this configuration, the photoelectrons generated in the plating base should deposit

most of their energy in the polyimide layer rather than in the PMMA and therefore the

PMMA profile should not be undercut. After developing the PMMA, the polyimide

was etched in the reactive ion etcher with a combination of oxygen and helium.

The results were quite promising and are shown in Figure 5-9. This scanning elec-

tron micrograph shows a device pattern in plated gold (150 nm thick) on a substrate

which had a 25 nm layer of polyimide between the plating base and the 250 nm-thick

PMMA layer. No foot is seen in the gold, and the pattern replication was quite

good at the substrate. However, the oxygen RIE attacked the PMMA more quickly

than the polyimide, causing rounding and erosion of the PMMA. The success of this

experiment in eradicating the gold foot pointed to the substrate photo- and Auger

electrons as the culprit, but the degraded PMMA did not give the proper sidewall

profile in 200 nm-thick plated gold.
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In order to get around the PMMA erosion problem, a trilayer process of anti-

reflection coating (which was PMMA-based), SiO 2 , and PMMA was also attempted

with some success, but the difficulties encountered in optimizing the process made it

clear that a simpler process would be preferable.

Other plating bases were also considered, and exposures and plating on nickel

were attempted. The absorption of the incident x-rays from our exposure system by

nickel is several times smaller than that of gold (although at the CuL energy they

are approximately equal). The gold film appeared to plate well, but it washed away

upon rinsing with water. This was probably due to oxides on the nickel surface which

prevented gold adhesion. Although there are possible ways around this problem,

usually involving etching the nickel surface before dipping the sample into the gold

plating bath, none have been successful with our BDT-510 gold plating bath [154].

Success with Thin-Gold Plating Base

As the data presented in Section 5.4.3 suggests, modifying the plating base to a thin-

gold configuration (10 nm Ti/1.8 nm Au) was the solution chosen to overcome the loss

of resist adhesion due to substrate photo- and Auger electrons.

Figure 5-10 shows an example of a grid pattern fabricated on a daughter mask

which had thin-gold plating base. 25 nm-wide spaces were successfully replicated. The

PMMA clearly formed a proper mold for the electroplated gold with no undercut.

Figure 5-11 shows the coupled quantum dot device pattern with a 20 nm fine-line

gate. In this case the width of the line was smaller than that on the mother mask due

to overdevelopment. The fact that the PMMA held up without undercutting even

in the case of overdevelopment clearly indicates that the thin-gold plating base is a

robust solution to the problem for fine features on daughter masks.

The previous two examples showed very fine features which were successfully repli-

cated onto daughter masks from mother masks. Because of their geometry, however,

it is possible that these fine features were completely undercut but were supported

by larger features to which they were attached. If this were the case, it would be

likely that the plating-base gold in the fine features would be thicker than that in
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Figure 5-10: Scanning electron micrograph of a successfully-plated daughter with
-25nm feature sizes done on thin-gold plating base. Figure courtesy of Mark
Schweizer.

the larger areas, and that the thickness would depend on the details of the geometry.

Although such a process would allow some devices to be made, it would not suit the

requirement of a robust process for arbitrary patterns.

Figure 5-12 shows an example of an astigmatism test pattern on a daughter mask

where on one end the fine features are not attached to larger structures. In this
case, one micron-long, -40-45 nm-wide PMMA lines acted as proper molds for gold

electroplating. If the narrow PMMA lines had been undercut, with no support at the

outside end, they would certainly have fallen over.

These examples clearly demonstrate that the thin-gold plating base prevents un-

dercutting of fine features in the daughtering process. With the daughtering com-

ponent of the process successfully controlled, the goal of a robust, "manufacturable"

process for arbitrary features in the sub-50 nm regime has been met.

122



Figure 5-11: Scanning electron micrograph of a successfully plated daughter mask
with a -20 nm line, thinner than on the mother mask. The very narrow resist feature
was not undercut even in this case of overdevelopment.
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Figure 5-12: Scanning electron micrograph of a sub-50 nm starburst pattern on a
daughter mask. In this case the PMMA mold had no larger features which could
have supported the fine lines. If the lines were completely undercut, they would
certainly have fallen over.
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Chapter 6

Sub-50 nm Exposure Results

The ability to produce sub-50 nm features on a substrate had previously been limited

by two factors: the inability to replicate such features onto a daughter mask because

of the detrimental effects of substrate photoelectrons, and the inability to reliably

control the gap during exposure. The limitations imposed by these two factors have

now been curtailed. The -300 nm gap which results from the soft contact technology

described in Chapter 4 creates exposure conditions where diffraction is no longer the

limiting factor for feature sizes larger than -20 nm. The "thin-gold" plating base

discussed in the previous chapter allows for replication of these feature sizes onto

daughter masks, making polarity reversal possible. Arbitrary feature geometries with

dimensions below 50 nm can now be printed onto substrates.

6.1 Individual Sub-50 nm Replication Results

Many different patterns with feature sizes as small as ,30 nm have been replicated

using the techniques described in Chapters 4 and 5. A successful replication and liftoff

of the coupled quantum dot device gate pattern is shown in Figure 6-1. The left half

of the figure shows scanning electron micrographs of device patterns on the daughter

mask. The right half of the figure shows the metallic gate patterns resulting from

an x-ray exposure onto a substrate and subsequent liftoff of a metal (Ti/Au) film.

The linewidth replication from mask to device is quite good, even at these ultra-fine

125



X-ray Mask
X-ray Replication
& Liftoff (Ti/Au)

Figure 6-1: Scanning electron micrographs of device pattern replication by liftoff onto
a substrate with sub-40 nm linewidths. Left: Images of the device structures on the
x-ray daughter mask. Right: Images of metal (Ti/Au) gate patterns on a substrate
which were formed by soft contact x-ray lithography and liftoff.
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Figure 6-2: Scanning electron micrograph of a sub-50 nm test pattern replicated by
liftoff onto a substrate. Top: Image of the structure on the x-ray daughter mask.
Bottom: Image of metal (Ti/Au) pattern on a substrate which was formed by soft
contact x-ray lithography and liftoff.

127



linewidths.

Figure 6-2 shows a liftoff replication of the astigmatism test pattern which was

previously shown in Figure 5-12. The daughter mask is shown at the top and the

metal pattern on the substrate is shown on the bottom of the figure. Once again, the

pattern was faithfully reproduced.

These images show that reproduction of features as fine as -30 nm is possible, and

that the fidelity of the replication is at least qualitatively good. However, measuring

the linewidths of a few of exposures does not give statistical data about the process

latitude - sensitivity to changes in dose and development time. In addition, the cali-

bration of the measurement on the scanning electron microscope may be inaccurate

due to image drift or changes of scale with focus.

6.2 Statistical Analysis of Sub-50 nm Replication

6.2.1 Description of Experiment

The problems of SEM scale calibration and the small number of linewidth measure-

ments possible on the coupled quantum dot device were addressed with a set of

experiments. The basis for these experiments was a test structure which was created

with feature sizes ranging from well below to well above 50 nm. Measurements on

this structure can be self-calibrated, and they can yield a large number of linewidth

measurements to allow for statistical analysis.

Test Structure/Mother Mask

A new mask was designed with cells containing single-pass-line grating structures

which varied in period from 40 to 500nm. Gratings oriented in both the horizontal

(X) and vertical (Y) direction were written. Half of each grating overlapped its

orthogonal partner grating to create a grid structure. The cell design is shown in

Figure 6-3. This cell was repeated 12 times on a die, each at a different single-pass-

line electron dose.
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Figure 6-3: One cell of the mask design for sub-50 nm exposure experiments. Each
inverted L-shaped structure consists of an X-oriented and a Y-oriented grating of
single-pass lines which overlap to form a grid in the upper right corner. Periods from
40 nm to 500 nm were written in each cell. The cell is repeated 12 times on each die,
each time with a different single-pass line dose. There are eight dies on the mask.
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The mask was electron-beam written at the Naval Research Laboratory in Wash-

ington, DC. The total writing time for this mask was 31 hours, with most of that

time dedicated to writing single-pass lines. After development and electroplating,

many of the finest-period gratings were washed out due to proximity effects in the

electron beam writing, as was expected. However, the larger-period gratings did plate

successfully. The mother mask had linewidths ranging from -30-100 nm.

By creating a grating test structure, the problem of SEM scale calibration was

overcome. Since each grating was written within a single field of the electron-beam

writer, the accuracy of the grating period should be quite good - certainly to well

within one percent, or within -600 pixels in a 16-bit field. Since the period of the test

structure is known to a high precision, the period of an image of the test structure

can be used to set the length scale, and subsequently the pixel scale (nm/pixel) of

that image.

In addition, a grating test structure enables several linewidth measurements to

be made from a single SEM image. We define a "linewidth" as the average width

of a line over a length which is some small number of times longer than the width.

A single SEM image of 4 to 6 periods of a grating can yield 50 to 100 "linewidth"

measurements in this manner.

Linewidth Measurement Algorithm

The masks and liftoff replications printed from them were viewed in the scanning

electron microscope. Images of the gratings were stored in TIFF format. Linewidths

of the gratings were then measured from the TIFF images using the program extraxt

written in LabView on a power Macintosh computer. A screen shot of extraxt

running on a 140 nm-period grating is shown in Figure 6-4. The algorithm used to

perform the measurement is described below.

The user specifies the image input file and the grating period, its orientation, and

whether peaks (for mother masks and liftoff patterns) or valleys (for daughter masks)

are of primary interest. A power spectrum is taken of each line of the image, and

the pixel scale and a standard deviation (SD) are calculated by taking the average
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Figure 6-4: Screen shot of the program extraxt used to extract linewidths from a
TIFF image of a grating. Inputs (grating period and orientation and whether signal
peaks or valleys are of interest) are in the upper left corner. Parameters relating
to the linewidth measurement are in the lower left corner. The top right shows the
outputs (line/space widths with standard deviations (SDs), fundamental frequency
and pixel scale with SDs, nominal linewidth (multiplied to set the averaging length for
the more precise linewidth measurement), image slope, and number and percentage of
good line/space measurements). Below this information, one line of the raw waveform
is seen. Below that, the averaged waveforms used to measure (in this case) valleys
(left) and peaks (right) are plotted. The bottom graph shows the power spectrum of
the raw waveform.
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of the fundamental frequencies of all the lines. Typically the SD is about 1% of the

fundamental frequency.

The position of the first peak or valley of each line is used to remove any slope

or angular misalignment between the gratings and the pixel axes of the image. This

typically involves at most a shift by two or three pixels across the entire image. Since

the measured linewidths will be from several averaged rows, however, removing any

image slope helps to minimize linewidth errors (n.b. the slope does not affect the

measurement of the fundamental frequency).

A nominal linewidth, measured while removing the slope, is used with a multiplier

set by the user to average the now-properly-aligned image. The full width at half

maximum of each peak in the new, averaged image is measured and multiplied by the

pixel scale to yield a linewidth. The image is then inverted and the spacewidths are

measured in the same manner. If a peak measurement is not perfectly clean (e.g. if

two peaks are found in the measurement window rather than only one as expected),

that measurement is discarded.

The program outputs the following:

* Fundamental frequency and SD

* Pixel scale (nm/pixel) and SD

* Nominal linewidth and image slope (angular misalignment of original image)

* Measured linewidth SD

* Measured spacewidth and SD

* Number and percentage of good line/space measurements

The measurement program is quite efficient. An SEM image takes about 8 seconds

to analyze on a 100 MHz Power Macintosh 8100. A series of measurements from one

die can be performed in about 5-10 minutes.
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6.2.2 Linewidth Measurement Results

The test structure and linewidth measurement algorithm described above were used to

investigate linewidth replication in the sub-50 nm regime. A daughter mask was made

of the mother mask, and the daughter mask was used to expose wafers coated with

PMMA resist. The exposed wafers were then developed, and metal was deposited

and lifted off.

Measuring linewidth in the scanning-electron microscope can be tricky, and com-

paring different linewidth measurements introduces further complications. Under-

standing exactly how feature sizes change from a mask (where the relevant features

are spaces) to a substrate (where the relevant features are lines) becomes even more

difficult. The following sections describe the data and the techniques used for analysis,

and show that linewidth replication down to -30 nm using CuL x-ray nanolithography

can be done with excellent repeatability and a wide process latitude.

Individual Image Measurements

This experiment attempts to compare linewidth measurements to investigate how

they change with development or exposure time for differing feature sizes. Any com-

parison of linewidth measurements is critically dependent on the accuracy of the

individual linewidth measurements being compared. This section presents results of

measurements on individual gratings and shows that typical measurements can yield

statistical data with a standard deviation (SD) of about 2.5-3.5 nm.

The first test of the linewidth measurement technique was to compare the auto-

mated algorithm with the tried-and-perhaps-not-true method of measuring linewidths

using the software routine in the SEM. Comparisons of measurements made by hand

with those made by the program extraxt for a few grating images yielded very con-

sistent results, with linewidths and SDs agreeing to within a few percent.

The SD of the measurement gives information about its variability. Any variability

in the measurement is due to a combination of actual changes in linewidth of the

feature and artifacts introduced by the measurement technique.
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Figure 6-5: Plot of standard deviation (SD) of linewidth measurement on mother
mask versus measured linewidth. The average SD of a measurement is about 2.5 nm,
with a standard deviation (of the SD) of about 0.8 nm. There is no apparent trend
of the SD with linewidth.

Standard deviations for many grating structures on the mother mask are plotted

versus measured linewidth in Figure 6-5. There is no apparent linewidth dependence

of the measurement SD. The mean SD of all measurements is about 2.5 nm, and

the consistency between measurements is quite good, as indicated by the standard

deviation of the SDs of about 0.8 nm. Although not shown in the plot, there is no

significant difference between the SDs of horizontally- and vertically-oriented gratings.

When measurements are performed on a daughter mask which was replicated

from the mother mask, SDs for measurements of feature sizes larger than -45 nm are

similar to those on the mother mask. Smaller features (spaces on the daughter mask)

have a slightly larger SD. A plot of the average SD for daughter mask measurements

is shown in Figure 6-6. In the plot, all linewidth measurements from 30-40 nm were

averaged, as were measurements from 40-50 nm, etc. Whether the increase for the

smallest feature sizes is an artifact of the measurement or a real effect is unclear.

However, the daughter mask measurements are still "good" to within -3.5 nm in the

worst case.
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Figure 6-6: Plot of average SD of linewidth measurement on daughter mask versus

measured linewidth. Measurements are binned into 10nm groupings. The average
SD of a measurement for features larger than - 45 nm is about 2.5 nm, similar to
that for the mother mask. Smaller feature sizes show in increase in measurement SD
to about 3.5 nm.

Since the linewidths and spacewidths are measured independently, another check

of the measurement method is to compare the sum of the two with the known pe-

riod of the grating. When this is done for the grating measurements performed in

this experiment, the difference is always well below the standard deviation of the

measurement. 1

Comparisons of Linewidth Measurements

With some understanding of the variability in the linewidth measurements yielded by

the technique, we can now begin to compare different linewidth measurements. Even

though there are uncertainties in the measurement and the comparisons, the results

broadly show that the repeatability and process latitude for replication of features

1This lends some credence to the increase in SD seen on the daughter mask being a real effect.
The consistency of the line-space measurements as indicated by their sum being very close to the
grating period means that the two measurement results are probably not dramatically different. It
is unlikely that the increase in SD seen for the the finest features only on the daughter mask is due
to the fact that spaces are measured rather than lines as on the mother mask.
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Figure 6-7: Plot of difference between two sets of linewidth measurements of the same
die on the daughter mask. The data shows remarkable consistency between the two
measurements, with a mean difference of only 0.18 nm, and a SD of the difference
which is comparable to the SDs of the individual measurements.

ranging in size from 30-80 nm is quite good and is independent of feature size in this

range.

For these measurements, selected gratings were measured in selected cells on every

die on the daughter mask to yield a set of linewidths for each die which ranged

from -30-80nm. The daughter mask was then used to expose a PMMA-coated

wafer. After exposure, the wafer was cleaved into individual dies. Each die was

then developed in an interrupted fashion and the time required for large features to

clear (the "base development" time) was noted and found to be consistent (within

,5%) for each die, indicating a uniform exposure across the wafer. Dies were then

developed for differing times beyond the clearing dose, from 100% of clearing dose

to 200% of clearing dose. The individual dies were then measured by imaging in the

SEM following liftoff and comparisons were made between linewidth measurements

from the daughter mask to the die and from die to die.
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Apples to Apples - Two different sets of measurements on the same die

on the mask: Sets of SEM images were taken of a particular die on the mask on

two different days, and the two sets of images were analyzed. The difference between

the two sets of measurements for each grating image is plotted in Figure 6-7.

The data shows remarkable consistency between the two sets of measurements.

The mean difference between two measurements is only 0.18 nm, and the SD of the

difference is comparable to (and actually less than) the SD of the individual mea-

surements. The excellent comparison between two measurements on the same sets of

structures allows confidence in comparisons of different structures.

Apples to Oranges - Mask measurements compared to liftoff pattern mea-

surements: Ultimately it is desirable to know exactly how features on the mask are

replicated onto a substrate. However, measuring exact feature sizes with the SEM is

difficult - the finite width of the electron beam combined with scattering of electrons

through the specimen can yield secondary electron generation at points other than

at the location where the SEM thinks its beam is being aimed. This tends to smear

out an image in geometrically-dependent ways. Sometimes the effect can be easily

understood (for instance the Gaussian beam profile causes broadening of lines and

narrowing of spaces), but in some cases (for instance two lines of the same width but

of differing thickness) the effect on linewidth might not be as obvious.

In addition to uncertainty in how the SEM measurement might differ from the

actual feature size, the choice of pattern transfer method, such as liftoff or electro-

plating, can introduce modifications to the measured linewidth, either by not exactly

reproducing the pattern in the resist or by introducing geometrical artifacts which

affect the secondary electron signal.

Mindful of the above caveats, plots of the difference between measured linewidths

on the daughter mask and measured linewidths of the lifted-off pattern on a substrate

are shown in Figure 6-8. The top plot shows the comparison for a die that was

developed for the base development time. A positive linewidth change means that

the line on the substrate is wider than the corresponding feature on the mask. The
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Figure 6-8: Plots of difference between mask and liftoff pattern linewidth measure-
ments versus mask linewidth for differing development times. Top: Measurement for
one die developed for the time required to clear large features (the base development
time). The average linewidth change is small - ,-2.5 nm. However there is a linear
trend in the data; wider features tend to narrow more than narrow features. This is
possibly, although not obviously, an artifact of the measurement. Bottom: A similar
plot (without error bars for clarity) for 1.OX, 1.1X, 1.5X, and 2.OX base development
time. The lower development times all show little difference between them, partic-
ularly for the 1.1X and 1.5X developments. The 2.OX development is clearly shows
much wider features than the others.
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most remarkable feature of the data is the linear trend which indicates that for every

-4nm increase in feature size on the daughter mask, the printed feature on the

substrate narrows by about 1 nm. It is unclear whether this is a real effect or an

artifact of the measurement.2

If we ignore for the moment the linear trend in the data, we see that the average

change in linewidth is quite small - only -2.5 nm. The bottom plot in Figure 6-8

shows a similar plot (without error bars for clarity) for 1.OX, 1.1X, 1.5X, and 2.OX

base development time. The lower development times show little difference between

them, particularly for the 1.1X and 1.5X developments. The 2.OX development clearly

shows much wider features than the others.

This data would seem to indicate that for development times up to 50% more than

the base development time that linewidths do not change significantly. To further

investigate the linewidth change with development time without possible artifacts

from measuring different objects, we now compare the dies among themselves.

(Fuji) Apples to (Golden Delicious) Apples - Comparisons between lifted-

off patterns with different development times: To compare the linewidths

between lifted-off features, we use the die which was developed to 1.OX the base dose

as a reference. For each die corresponding to a longer development time, we take

the measured linewidth from a particular grating on that die and subtract it from

the nominal measurement of the same grating on the 1.OX developed die. Figure 6-9

shows a plot of the result of such a comparison.

Again we see that lines generally appear to widen as development time increases,

2It is difficult to see how this effect could be related to the x-ray exposure. The narrower
lines tended to be on the more widely-spaced gratings because of proximity effect in the electron-
beam writing. Since many doses were used in the measurement sets taken on each die, however,
except for the very finest and very widest lines, a range of periods is represented. Any type of
proximity effect which might exist in the x-ray exposure would tend to widen out the wider lines
rather than narrowing them. On the other hand it is difficult to understand how the measurement
could induce such a linewidth change, since any differences in measuring lines and spaces would be
expected to introduce some constant offset (for instance the width of the electron beam in the SEM).
One possible, although highly speculative, explanation would involve tensile stress in the PMMA.
Narrower lines have more PMMA between them (even in the absence of their generally being more
widely spaced in this experiment). If the PMMA were to be under enough tensile stress, it might
tend to widen the narrow lines more than the wide ones.
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Figure 6-9: Plot of difference between lifted-off pattern linewidth measurements ver-
sus linewidth for differing development times. Lines generally appear to widen as
development time increases, with the 2.OX base development widening more than
the others. There is excessive scatter to the data, however, due to the fact that the
gratings being compared were themselves printed from gratings (of the same period
but from different dies on the mask) which had different linewidths.

with the 2.OX base development widening more than the others. There is excessive

scatter to the data, however, due to the fact that the gratings being compared were

themselves printed from gratings (of the same period but from different dies on the

mask) which had different linewidths.

(Empire) Apples to (Empire) Apples - Binned comparisons between lifted-

off patterns at different development times In order to overcome the problems

associated with comparing somewhat different test objects (lines and spaces) whose

measurements are known exactly and comparing similar test objects which were fab-

ricated at differing linewidths to start with, a combination approach was used. The

ideal comparison is between gratingthemselves prwhich were fabricated from mask gratings of

the same linewidth which were developed for different times. A comparison similar

to this one can be extracted from the data of Figure 6-8.

Linewidth measurement Slinewis of this data are about 2.5 nm. By taking the linewidth

change from the mask given in Figure 6-8 and binning it into regions of ±2.5 nm, we
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Figure 6-10: Plot of linewidth change from mask versus binned mask linewidths for
differing development times. This plot uses the same data as Figure 6-8, but by
binning the data into regions of ±2.5 nm, gratings which were printed from essen-
tially similar mask structures are grouped together. This data will form a basis for
comparison between the different development times.

have in each bin a collection of measured linewidths for features which were printed

from essentially the same sized grating on the daughter mask. If we do this for each

development time, we have a set of data which approximates our ideal data set. This

binned data set is shown in Figure 6-10.

By using the nominal linewidth change from the 1.OX base development as a

reference, we can plot the linewidth change from nominal as a function of development

time. Figure 6-11 shows four plots of the data organized in this manner for mask

linewidths of 30, 40, 50, and 60 + 2.5 nm.

The data is quite similar for all feature sizes. Development for 10% and 50%

beyond the time required for large features to clear does not widen the features in a

statistically significant manner. 100% overdevelopment does increase the linewidth

by approximately 5-10 nm.

The data presented above shows quantitatively that sub-50 nm feature replication

can be performed with good repeatability and process latitude. Data taken for 30 nm

feature replication was essentially similar to that for 60 nm and larger feature sizes.
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Figure 6-11: Plot of linewidth change from nominal versus development time for mask
feature sizes of 30, 40, 50, and 60 - 2.5 nm. This data is taken from Figure 6-10. For
development times up to 50% greater than the time required to clear large features,
linewidths do not change in a statistically significant manner.
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For all feature sizes measured, development of 50% greater than the time required for

large features to clear showed no statistically significant change in linewidth.
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Chapter 7

Transport Measurements

The previous chapters have described a robust process for producing arbitrary pat-

terns with sub-50 nm features on device substrates with x-ray nanolithography. This

chapter presents a test of this technology which goes beyond merely examining litho-

graphically-defined features as in Chapter 6. Real devices are produced on substrates

and their electrical characteristics are measured.

The coupled quantum dot device structures described in Chapter 2 were fabri-

cated. Gate patterns for the device were defined in PMMA with an aligned vacuum

contact exposure as described in Chapter 4. Schottky gates were then deposited by

liftoff onto the GaAs/AlGaAs heterostructure, which had previously been processed

to have mesa isolation structures and ohmic contacts to the 2DEG. The heterostruc-

ture was grown by MBE by Professor Michael Melloch at Purdue University. It had a

measured electron mobility of 250,000 cm 2/Vs, and a measured electron density in the

2DEG of 3 x 1011 cm - 2. This corresponds to an electron mean-free-path of -2.25 Ym.

Details of the GaAs/AlGaAs heterostructure processing can be found in Appendix B.

Some details of the characterization of the 2DEG can be found in Burkhardt [6]. A

good general reference for characterization techniques for semiconductor materials

and devices is Schroder [155].

As discussed in Chapter 2, it is desirable to have a relatively large voltage range

over which the interdot tunnel barrier is modulated from having effectively no con-

ductance (infinite resistance) to a conductance of 77 pS (a resistance of 13 kQ), the
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latter being the value at which the number of electrons on the quantum dot is no

longer well-defined. If the voltage range of this transition is too narrow, the ability to

control the conductance of the barrier between the two dots could be compromised

by noise on the gate voltage signal.

Successful performance of the device depends on the pinchoff characteristic of this

tunnel barrier, which depends on the lithographic dimensions of the Schottky gates.

The pinchoff characteristic of the barrier is therefore the performance parameter for

this device which indicates whether or not fabrication was successful.

Transport measurements were performed at cryogenic temperatures to analyze

the fine-line tunnel barriers. The device was bonded to a header and placed in the

Oxford Instruments Heliox probe, which has a base temperature of .300 mK. The

current vs. gate-voltage characteristic was measured using a small (-10-100 PV) AC

voltage excitation from source to drain. A transimpedance amplifier (which converts

current to voltage) and a lock-in amplifier were used to detect the current. Details of

the cryogenic system and the measurement electronics are given in Appendix C.

7.1 Conductance vs. Gate Voltage Curves

A scanning electron micrograph of the coupled quantum dot device whose measure-

ments are presented in this chapter is shown in Figure 7-1 superposed with gate labels

and schematically-depicted ohmic contacts. The two quantum dots are formed in the

oval-shaped spaces bordered by the Schottky gates. There are four ohmic contacts,

labeled 1-4. The top and bottom gates, labeled A, B, C and S, T, U are symmetric

about the middle gate, labeled M. Gate M forms the fine-line tunnel barrier. The

QPCs are defined by gate M in combination with gates A, C, S, or U.

To perform a measurement, a small bias is applied across two ohmic contacts

which are on opposite sides of the barrier of interest. This bias is held constant, and

the current is measured while the Schottky gates are ramped to a negative value with

respect to the 2DEG. The measured current is then proportional to the conductance

through the barrier resistance (although series resistances must be accounted for).
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Figure 7-1: Scanning electron micrograph of coupled quantum dot Schottky gates on
GaAs/AlGaAs heterostructure. Gates are labeled, and ohmic contacts are depicted
schematically. The fine-line tunnel barrier gate width was 44 nm.

Figure 7-2 shows conductance vs. gate voltage curves for the middle gate, M, and

a QPC formed by gates M-U on the device. As the Schottky gates are ramped to a

negative voltage with respect to the 2DEG, they begin to deplete the electrons un-

derneath. Initially no change is seen in the conductance of the whole system because

the series resistance of the wires in the probe limits the current. Once the 2DEG is

depleted enough that its resistance begins to dominate, the conductance drops. For

the measurement in Figure 7-3, this occurs at about -0.5V. The conductance con-

tinues to drop until the 2DEG underneath the Schottky gates is fully depleted. At

this point a standard depletion-mode FET would be considered to be at threshold or

pinchoff.

In our case, however, there is still some current allowed at this point, either

through the gap in the QPC or through the leaky tunnel barrier. As the voltage

on the gates is made more negative, the conductance continues to decrease, but

at a lower rate, because the fields must extend laterally from the gates to further

deplete the 2DEG. For the QPC, this is the point at which the conduction becomes
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Conductance vs. Gate Voltage, 323 mK
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Figure 7-2: Conductance vs. Gate Voltage for the fine-line tunnel barrier and a QPC
on the coupled quantum dot device. The point where the 2DEG underneath a large,
continuous gate is fully depleted is indicated by a dashed line on the plot, labeled the
2D to 1D transition. As the gate voltage is decreased below this point, significant
differences are seen in the behavior of the QPC and the tunnel barrier.
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one-dimensional. This point is therefore termed the 2D to ID transition. For the

measurements above, this kink in the conductance curve occurs at about -1 V.

Beyond the 2D to 1D transition point, the characteristics of the QPC and the

tunnel barrier are strikingly different. The next two sections will examine the char-

acteristics of the two cases in more detail.

7.2 QPC Pinchoff Characteristic

Figure 7-3 shows the conductance vs. gate voltage characteristic for the QPCs formed

by gates M-S and M-U on the device structure. The region where the barriers just

begin to open is shown. Quantized conductance steps can clearly be seen with plateaus

occuring at integer multiples of the quantum of conductance, 77 PS. (The decreasing

spacing between conductance peaks and the slightly low conductance value for the

first step can be accounted for by a series resistance of about 1.1 kQ). The plateaus

are relatively flat, particularly for QPC M-U, indicating a lack of scattering in the

one-dimensional channel.

The inset to Figure 7-3 shows a blowup of the transition to the first conductance

step for QPC M-U. Since the double-dot system is intended for experiments where

the barriers are transitioned from fully-closed to being open to approximately the

quantum conductance, the voltage shift, AVg, required to transition the QPC barrier

from fully closed to 50 pS (one channel -2/3 opened) is measured as a benchmark.

For the QPC, AVg I 0.04 V.

7.3 Tunnel Barrier Pinchoff Characteristic

Figure 7-4 shows the conductance vs. gate voltage characteristic for the fine-line tunnel

barrier plotted with the same y-scale as the QPC in Figure 7-3. The horizontal dotted

lines are at the quantized conductance plateau values of the QPCs. The conductance

rises much more smoothly with no plateaus at the conductance values expected for a

one-dimensional channel.
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Conductance vs. Gate Voltage, 323 mK
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Figure 7-3: Conductance vs. Gate Voltage for QPCs on a high mobility GaAs/AlGaAs
heterostructure. Several conductance steps are seen. Each corresponds to one con-
ductance channel which is fully transmissive and which has a conductance of 77 S.
In this case a series resistance of -1.1k reduces the spacing between steps as the
number of modes increases. Inset: A closeup of the conductance rise from 0 to 80 iS
for one of the QPCs. The change in voltage required to open the barrier to 50 pS is
-0.04 V.
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Conductance vs. Gate Voltage, 323 mK
, , . . . . . .

-1.4 -1.38

0.04V

Tuinel ------ ----- --------
Barder M

-1.36 -1.34 -1.32

Tunnel
Barrier M

-1.38 -1.36 -1.34 -1.32 -1.3 -1.28 -1.26

Gate Voltage

Figure 7-4: Conductance vs. Gate Voltage for a fine-line tunnel barrier on a high
mobility GaAs/AlGaAs heterostructure. In this case the conductance rises smoothly
with no steps as the barrier is lowered. The dotted horizontal lines are the QPC
conductance plateaus from the previous figure. Inset: A closeup of the conductance
rise from 0 to 80 pS. The change in voltage required for an opening to 50 pS is -0.04 V
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The inset shows a closeup of the conductance rise to the quantum conductance.

Although the tunnel barrier opens to large conductance values (much greater than

the quantum conductance) in a smaller gate voltage swing than for the QPC case,

the gate voltage shift required to open the barrier to 50 yuS is approximately 0.04 V,

the same as for the QPC.

Although this device and several others performed satisfactorily upon initial mea-

surement, measured characteristics of the tunnel barriers tended to become more

QPC-like over time, developing plateaus at integer multiples of the quantum conduc-

tance. A discussion of this phenomena is given in Appendix C. The lithographic

dimensions of the gates do not change with time, however, so the data shown above

and similar data from other samples indicates that the lithography was successful at

placing the proper gate pattern on the substrate.

The fine-line gate therefore has been shown to act as a tunnel barrier whose control

by a gate voltage is comparable to that of a QPC for the transition from being fully

closed to being open to the quantum of conductance. This demonstration of the

sub-50 nm x-ray lithographic process shows that the process is capable of producing

devices on substrates which meet previously-unattainable performance specifications.
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Chapter 8

Conclusions

This thesis was described at the outset as an example of an interplay between litho-

graphic technology and microelectronic device technology. The desire to fabricate

a coupled-quantum-dot structure with a sub-50 nm fine-line tunnel barrier created

a need to push the x-ray lithography process further than it had been previously

pushed.

The work of this thesis was in large part a response to the requirements of the

device technology, and those requirements were successfully met. The gate pattern

which was required for the device was created, and it was shown that the structure

had the desired geometry and that the device behaved as expected electrically.

The work far exceeded the requirements of the coupled quantum dot structure,

however. A process was developed which allows the creation of arbitrary patterns

on a substrate, and it was shown to have a repeatability and process latitude which

remains very good for feature sizes as small as -30 nm. The process is quite robust

and shows a significantly-improved yield and much less risk of mask breakage than

the previous technologies on which it is built. It should have broad applicability to

many device applications.

The vacuum soft contact replication technology, particularly for small chips, should

result in an improved overall yield for x-ray exposures done on small chips in the

NanoStructures Laboratory at MIT. Similarly the suck-and-puff technique for mask

replication should result in improved feature uniformity in mask replication.
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47.7 nm a)"Mother" Mask
(Au on SiNx membrane -

written at NRL)

52.1 nm
b)"Daughter" Mask

(Au on SiNx membrane)

c) Coupled Quantum
Dot Device
(AuPd on GaAs)

/Users/davidc/Figs/Archive/moth_daught_dev.ai

Figure 8-1: Scanning electron micrographs of the same device structure patterned on
a mother mask (by electron-beam lithography), a daughter mask (by x-ray replication
from the mother mask), and a device substrate (by x-ray replication from the daughter
mask).
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The Semiconductor Industry Association Technology Roadmap was also refer-

enced at the beginning of the thesis. If indeed 50nm feature sizes are to be com-

mercially manufactured by the year 2012, as suggested by this document, it is not

improbable that contact techniques such as the ones described in this thesis may be

required. Industry has historically avoided contact techniques for lithography, fearing

damage to the mask or the sample, but with the many exposures done for this the-

sis, no damage was ever seen to a mask or a substrate because of contact. Printing

50 nm features in production will be extremely difficult, and contact lithography can

in many ways decrease the level of difficulty involved in the lithography. I would

suggest that it would be wise to at least not totally rule out contact lithography as a

possible technological choice for industry.

The observation of the effect of substrate photo- and Auger electrons also has

broader application than making a coupled quantum dot device. In addition to elec-

troplated gold masks, many researchers in x-ray lithography are using subtractive

processes where continuous films of absorber metal on the x-ray mask are etched

away to leave the desired mask pattern. In a subtractive process, thinning the ab-

sorber metal will not be an option. The understanding of the effect developed from the

measurements and simulations presented in this thesis should aid in the development

of solutions to problems which may arise due to substrate-generated electrons.

This work has shown the capability robust pattern fabrication with feature sizes

as small as approximately 30 nm. This minimum size was set by the smallest feature

which could be written with electron-beam lithography on the mother mask. It

is quite likely that replication of 10 to 20 nm features might be possible using the

techniques developed for this thesis if smaller features could be fabricated on masks.

This could be done with some trick (perhaps overdeveloping a daughter mask) to

show the capabilities, but finding a way to do so reliably and repeatably would open

up another new area for nanofabrication.

The methods used to measure the statistical results presented in Chapter 6 could

be put to further use. Several questions arose in their development about whether

some results which were seen in the data (such as the decreasing linewidth change
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in replication with increasing linewidth) were an artifact of the measurement or a

real effect. Further investigation might yield interesting results. It might be possible

to experimentally measure the -3 to 5 nm effective range of the photo- and Auger

electrons in PMMA - a 6 to 10nm linewidth reduction should be observable in a

30 nm feature.

The push by device technology to create smaller feature sizes has resulted in a

lithographic technology with extended capabilities. Fabrication which was previously

either totally inaccessible or so difficult as to be impractical for all but the most

critically important tasks can now be done reliably, repeatably, and with an improved

yield. Now that the technology exists for robust replication of arbitrary patterns with

sub-50 nm feature sizes, it is hoped that x-ray lithography will push back at device

technology and start the next cycle of the process.
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Appendix A

Mask Fabrication

This Appendix contains process flows or recipes used for processing masks as outlined

in the main section of the thesis. Rather than present the whole process flow in one

piece, I have chosen to break it up according to particular processes which would

typically happen in one session or day. This method of presentation does involve

some repetition between processes, but should make the recipes more suitable for

actual use in the laboratory.
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A.5 Polyimide Coating of Masks ................. 174

A.6 Clearing Polyimide from a Mask or Part of a Mask . . . 178
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A.1 Mother Mask Preparation for NRL

These are the steps that should be done to prepare a mother mask for shipping to the

Naval Research Laboratory for writing on their e-beam. Masks should have plating

base evaporated and 220 nm of PMMA spun on and baked by a technician.

EQUIPMENT NEEDED:

Hood Space for Developing, Etching OAI UV Source at 200 nm

* Choose a mask that is free from particles embedded in the membrane and which

has thick-gold fingers which extend slightly onto the membrane. 1

* Flood expose the mask with 200 nm wavelength UV in the OAI for 30 minutes

(typical power level is -0.9 mW/cm 2 on the Mimir meter) using the foil "lol-

lipop" head which has holes corresponding to the thick-gold fingers. Align the

mask so that the slots are over the fingers.2

* Develop the PMMA for about 30 seconds in 2:3 MIBK:IPA. Rinse with IPA and

blow dry.

* Using a plastic eye dropper to place drops of etchant over the fingers, etch each

of the fingers (it's easiest to do one at a time) for 10 seconds in 10:1 DI water:Au

etch. After each etch, rinse the mask in DI water and blow dry.

* Place the mask in fluoroware with a plastic spring between the back and the

cover. CAUTION: This spring can make placing the cover somewhat difficult.

Tape the fluoroware shut with tape around the edge and crossed across the top

and bottom.

1The shadow evaporation fixture for masks should be modified so that all masks have these
fingers. At this point only half of the processed masks do. Having the fingers does not interfere with
the mask's use as a daughter mask.

2This lollipop head, being made of foil, is rather fragile. A more robust one should be made out
of thin sheet metal.
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* Wrap the masks securely in bubble wrap, foam, and/or styrofoam peanuts and

ship them.
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A.2 Developing and Plating a Mother Mask

Parts of this process were adapted from the process presented in Burkhardt [6], which

is also a good reference for more information about the plating bath I-V characteris-

tics.

EQUIPMENT NEEDED:

PlasmaTherm RIE Plating bath

AFM Hood Space for Developing

Optical Microscope Digital Multimeter

* Turn on the pump and the temperature controller for the plating system. Open

the chilled water loop for the water bath. The plating system needs about an

hour or so to stabilize to the desired bath temperature (330C). The set point for

the water bath might have to be adjusted to reach the desired bath temperature.

It is generally around 30 0 C.

* Mix the developer (1:2 MIBK:IPA) in a 1-liter beaker. The temperature should

drop to about 160 C upon mixing. It will take some time to come to the devel-

oping temperature of 21'C, but this will happen while other preparatory work

is being done for the plating. Warming can be accelerated by placing the hands

on the outside of the beaker. It's also common to use pre-mixed (and therefore

pre-warmed) developer. However it needs to be stored in an airtight container,

because preferential evaporation of MIBK will change the concentration over

time.

* Do a clean-up run on the Plasma-Therm RIE to condition the chamber and

fixturing for a successful plasma strike for the oxygen descum etch of the mask.

- Make sure the mask fixturing and the dummy mask are in the chamber

and properly mounted.
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- Pump out the chamber to below 1 x 10-4 Torr (this is a bit higher pressure

than is preferable for the actual mask, but for the cleanup it should be fine).

- Run the process program dsclean.prc. It does two ten-minute etches,

the first at 300 W power with He/0 2 and the second at 50 V DC bias with

He/0 2.

- Leave the chamber under vacuum while you develop the mask.

* During the clean-up run, the plating bath can be characterized. This involves

I-V characterization and measuring the temperature and conductivity.

- Inspect the water levels in the plating bath. When the pumps are running,

the plating solution level in the outer container should be about one inch

below the rim of the inner container. If it is too low, more plating solution

should be added from the makeup reserve. The water bath should come

to about one inch below where the plating bath container necks outward.

If it is too low, water should be added using the spray gun located next to

the plating solution.

- After the bath has been circulating for -10-20 minutes after any additions

of water or plating solution, measure the temperature and the conductivity

of the bath. Enter the information (including any bath makeup solution

added) in the bath.dp database (this database entry will later be refer-

enced in the samples.dp database).

- Take I-V data.

* Place the calomel electrode in the bath, using the Tyvex insert to raise

it so that its water level is higher than that of the bath (If the electrode

water level is still lower than the level in the bath, add a few drops of

DI water to the electrode through the hole in the "open" position).

* For the I-V characterization, use a 3" wafer which has plating base

on it. This gives a known area for plating. The wafer can be reused

many times for the I-V curve. If it has been in fluoroware for a while, it
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should be UV-ozone cleaned for 1-2 minutes prior to being mounted in

the plating fixture. Before putting the contact ring into place, scrape

the three contacts lightly with a razor blade. Place contact ring, then

grid, onto fixture.

* Use a digital multimeter to monitor the voltage between the calomel

electrode and the wafer. Use alligator clips to attach the ground to

one of the three white/black wire connectors on the sample holder (not

the red/red wire connector). Attach the positive lead to the calomel

electrode. Open the calomel electrode by turning the white ring near

the top.

* Measure the reference voltage (between the electrode and the sample)

and the bias voltage (as read on the plating power supply) at the fol-

lowing bias currents, in this order: 35 mA, 25 mA, 15 mA, and 35 mA

(again). The total measurement time should take about 2-4 minutes.

Enter the results in the database (bath.dp)

* If the reference voltage for the final 35 mA reading is above about

0.60 V, brightener should be added. Typically 7-10ml is adequate. If

brightener is added, wait about 30 minutes and re-characterize the

bath I-V, making another bath. dp entry.

* Enter total amp-hours (TOTALIZER on plating PS) into database.

* Close calomel electrode and remove from plating bath (making sure

that Tyvex spacer comes with it). Rinse well, dry, and put away (with

plastic cap covering tip).3

3 Juan Ferrera has suggested a new method for I-V characterization which would probably yield
more consistent results. The problem with the method presented here is that the reference voltage
tends to drift with time as the plating progresses, rising after reaching a minimum about 30 seconds
or so after beginning plating. Juan has suggested monitoring the reference voltage using a 35 mA
plating current and using its minimum as the marker for when to add brightener. This would
remove some of the variability in the method described here between people who might be more or
less adept at changing currents and reading and writing down voltages. In order to implement this
scheme, studies should be done to correlate the minimum reference voltage to the 0.60 V used as the
threshold in this procedure. Preliminary results suggest that Vmin > 0.580 volts is a comparable
threshold.
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* Once the developer temperature has settled to 21 + 0.2°C, develop the mask for

90 seconds by slow and constant agitation in the developer. The development

conditions should be the same for all mother masks.

* When the development time is up, immediately rinse the mask with IPA using

the squirt bottle. Then rinse briefly under running DI and then again with

IPA. Blow the sample dry with the filtered N2 gun. It is crucial not to blow

on the membrane with too much force. The pressure on the N2 gun can be

reduced. The idea is to push the IPA off the membrane before it can evaporate

and potentially leave behind residue.

* Inspect the mask in the optical microscope.

* Measure the PMMA height on the membrane in the AFM. Take a couple of

measurements and note where they were taken so that after plating the same

places can be measured to monitor the gold height before stripping the PMMA.

* Load the sample into the RIE for descum and allow the chamber to pump down

to 7 x 10- 5 Torr.

* Run descum.prc, which etches in He/O2 for 5 seconds at 20mTorr. Monitor

the run and watch as the plasma strikes. The "spark plasma" step is set for

50 mTorr and 5 seconds. If the plasma strikes early in the step, you may need

to hit "End Step" so that the total time in the plasma is not too long. There

is also a few seconds lag time while the pressure is reduced from 50 mTorr. If

the plasma won't strike, it may be necessary to run the process descumi.prc,

which strikes the plasma at 70 mTorr.

* Keep the sample under vacuum in the RIE until you are ready to plate.

* Electroplate 200 nm of gold.

- Calculate plating current for 0.4 mA/cm2 and the total mA-min for 8 min-

utes of plating. The area of a mother mask is ,32.3 cm 2 , and the area of a
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daughter is -35.75 cm2. These areas will have to be adjusted for pattern

density, and in the case of mis-aligned daughters, for unexposed area.

- Use resistor (found near plating PS) attached to PS output to preset the

plating current to the proper value. Set the counts indicator to the proper

amp-minutes.

- Remove mask from RIE and place in plating fixture (removing the backing

disc which is used for wafer plating). Before putting contact ring onto the

pins, scrape the three contacts lightly with a razor blade. Place contact

ring, then grid, onto holder. Tighten knurled nuts.

- Measure resistance between the three contacts. These should be low

(-1-2 Q). Write them down for entry into database later (samples.dp).

- Place fixture into plating bath, gently rocking back and forth to release air

bubbles.

- Plate: push down EOC button (to RES.) momentarily. Adjust plating cur-

rent with fine control knob if necessary. Jot down the bias voltage every

minute or so.

- When plating is done, alarm sounds. Disconnect fixture from PS, turn off

PS, and remove mask from the bath, holding above bath to allow liquid

to drip into bath for a few seconds.

- Before mask can dry, rinse with DI water using spray gun next to plating

setup. Try not to spray directly on membrane to avoid possible breakage.

After a few rinses with the spray gun, fill the mask holder with water and

remove grid and mask contacts.

- Rinse mask in running DI (from faucet) and blow dry.

- Thoroughly rinse the mask holder and the area around the plating setup.

The brightener for the bath contains arsenic, so it is best to not have

residue all over the laboratory.

- Enter plating information into the database (samples.dp).
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* Inspect the mask. The gold should look shiny and gold-colored. In the opti-

cal microscope at high magnification using differential interference contrast, it

should appear to have an eggshell texture.

* AFM the mask in the same areas which were AFM'ed previously to find the

plated gold thickness.4 If the gold isn't thick enough, the mask can be placed

back into the plating solution and more gold plated. If this is done, however,

the surface tends to be rougher than if all the plating is done in a single run.

* If the plating is satisfactory, turn off the plating bath pump and the bath heater,

and close the valve for the chiller loop.

* Check the pattern by inspection in the optical microscope and, if needed, the

scanning electron microscope.

* Strip the resist by soaking in acetone for about 10 minutes then rinsing with

acetone then methanol. Alternatively, the resist can be stripped by soaking the

mask in hot NMP (-900 C). Plasma ash the mask for 10 minutes to remove any

residual organics.

* Check for large particles on the mask and mesa. This is best done by scanning

the fiber light (held perpendicular to the mask) across the membrane while

looking at a wide angle for scattered light. The mask can also be scanned under

the optical microscope (lowest-powered objective) while looking for scattered

light and/or looking through the eyepieces. A dark-field objective is especially

well-suited for detecting particles. The mask can also be brought in close prox-

imity with another mask, as if a daughter exposure was being done, to check

for particles with interference fringes and to see if there is a large wedge, which

would indicate a particle on the mesa. To remove particles, spin photoresist

(PR) over the whole mask and expose the region around the particle for about

4It can often be difficult to accurately determine the gold thickness in this manner in the AFM.
The gold is much rougher than the PMMA and only a small (typically 10-20nm) step is being
measured, so the gold roughness can make determining the height difficult. Nevertheless, one can
get some idea of the gold height relative to that of the PMMA.
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2 minutes in the optical microscope with maximum white-light intensity. Then

develop the PR and use an eye dropper to put drops of gold etch on the openings

in the resist to "lift off" the particles. The etch of the largest particles should

be completed in about 20 minutes. For some particles it is necessary to also use

Ti etch (TFT-type) heated to 50'C (make sure that the hot plate is well back

in the hood and that only a minimal amount of TFT Ti etchant is used, since

Ti etchant is HF-based!)

* For mother masks which are to be replicated in intimate contact, polyimide

should be spun on. Details of polyimide spinning are given in Section A.5
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A.3 Suck-and-Puff Daughtering

EQUIPMENT NEEDED:

Head 2,4, or 5 Suck-and-Puff Fixture

* Choose a daughter mask. For finest features use thin plating base (PB) - 10 nm

Ti/1.8 nm Au. 220-250 nm of PMMA should have been spun on the mask by a

technician. Inspect the mask carefully for large particles, and choose one that

is relatively particle-free and has no obvious defects.

* Place the daughter mask face-up in the daughtering fixture, making sure the

bottom center o-ring is properly seated. Make sure the flat on the Pyrex is

between two alignment pins, to prevent lateral motion of the mask.

* Under green-light illumination, place the PI-coated mother mask face down on

the daughter mask (again keeping the flat between alignment posts). There

should be quite a large bow to the membranes, as indicated by fringes. The air

bubble should decrease in size over the course of a couple of minutes.

* Check the gap (as described in Chapter 3) and wedge using the green light

and also look for particles. If the wedge is very large (> 3-4 ,m or so), try

repositioning the masks by separating them and rotating the mother mask.

Rotating the mother mask can also determine whether a particle is on the

mother or the daughter mask. Try blowing away particles with a nitrogen gun

(reducing pressure first if necessary).

* Check the outer o-ring on the base and the o-ring in the Teflon cover to make

sure they're properly seated. Make sure the Tyvex tube is connected to the

barbed fitting on the cover before placement.

* Carefully place the cover over the masks. Try to line up the bolts with the

tapped holes in the base to minimize rotation once the cover is placed. Tighten

the bolts part-way by hand to ensure that each is properly threaded.
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* Tighten the cover with a hex key while monitoring the fringes. Use a star pattern

(like putting on a car tire) so as not to tighten one side without balancing with

the other. Don't over tighten, otherwise the Teflon will flow.

* Once the cover is clamped down, attach the Swagelock end of the vacuum tube

to the vacuum fitting on the head (which should be at atmosphere).

* Apply vacuum. The needle valve on the fixture should be open to -1.75, then

the vacuum level should be slowly increased (with the vacuum regulator) until

the fringes start to move (usually at around 2.0-3.0 inches of Hg vacuum). Make

small changes.

* Once the edges of the membranes are in contact, wait for 10-30 minutes while

the bubble in the middle dissipates. Monitor with interference fringes from the

green light.

* Once the masks are in contact, place them in the x-ray head and expose.

* When the exposure is finished, remove the mask fixture from the head. Dial

down the vacuum and disconnect the vacuum tube from the Swagelock fitting.

* Prepare to puff. The technique is the opposite of smoking a cigar, or sort of like

blowing soap bubbles with a child's toy pipe. Gentle pressure should be applied

in short puffs. You should see more air being forced between the membranes

with each puff. After a few puffs the masks should separate.5

5 Occasionally some stubborn masks will go back into contact after separating. If this happens it
is sometimes necessary to puff the masks apart, loosen the cover, push the cover down by hand and
puff some more air between the membranes, then quickly remove the cover and separate the masks
before they can contact each other. In this case the several-second squeeze-film time constant works
to your advantage.
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A.4 Developing and Plating a Daughter Mask

EQUIPMENT NEEDED:

PlasmaTherm RIE Plating bath

AFM Hood Space for Developing

Optical Microscope Digital Multimeter

* Flood expose the daughter mask, shadowed by the lollipop, for 30 minutes at

220 nm in the OAI (power level should be - 0.9 mW/cm2 on the Mimir meter).

* Turn on the pump for the plating system and the temperature controller. Open

the chilled water loop for the water bath. The plating system needs about

half an hour or so to stabilize to the desired bath temperature (330 C). The set

point for the water bath might have to be adjusted to reach the desired bath

temperature. It is generally around 300 C.

* Mix the developer (1:2 MIBK:IPA) in a 1-liter beaker. The temperature should

drop to about 160 C upon mixing. It will take some time to come to the devel-

oping temperature of 21 0 C, but this will happen while other preparatory work

is being done for the plating. Warming can be accelerated by placing the hands

on the outside of the beaker. It's also common to use pre-mixed (and therefore

pre-warmed) developer. However it needs to be stored in an airtight container,

because preferential evaporation of MIBK will change the concentration over

time.

* Do a clean-up run on the Plasma-Therm RIE to condition the chamber and

fixturing plates for a successful plasma strike for the oxygen descum etch of the

mask.

- Make sure the mask fixturing and the dummy mask are in the chamber

and properly mounted.
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- Pump out the chamber to below 1 x 10- 4 Torr.

- Run the process program dsclean.prc.

- Leave the chamber under vacuum while you develop the mask.

* During the clean-up run, characterize the plating bath.

- Inspect the water levels in the plating bath. When the pumps are running,

the plating solution level in the outer container should be about one inch

below the rim of the inner container. If it is too low, more plating solution

should be added from the makeup reserve. The water bath should come

to about one inch below where the plating bath container necks outward.

If it is too low, water should be added using the spray gun located next to

the plating solution.

- After the bath has been circulating for -10-20 minutes after any additions

of water or plating solution, measure the temperature and the conductivity

of the bath. Enter the information (including any bath makeup solution

added) in the bath.dp database (this database entry will later be refer-

enced in the samples.dp database).

- Take I-V data.

* Place the calomel electrode in the bath, using the Tyvex insert to raise

it so that its water level is higher than that of the bath (If the electrode

water level is still lower than the level in the bath, add a few drops of

DI water to the electrode through the hole in the "open" position).

* For the I-V characterization, use a 3" wafer which has plating base

on it. This gives a known area for plating. The wafer can be reused

many times for the I-V curve. If it has been in fluoroware for a while, it

should be UV-ozone cleaned for 1-2 minutes prior to being mounted in

the plating fixture. Before putting the contact ring into place, scrape

the three contacts lightly with a razor blade. Place contact ring, then

grid, onto fixture.
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* Use a digital multimeter to monitor the voltage between the calomel

electrode and the wafer. Use alligator clips to attach the ground to

one of the three white/black wire connectors on the sample holder (not

the red/red wire connector). Attach the positive lead to the calomel

electrode. Open the calomel electrode by turning the white ring near

the top.

* Measure the reference voltage (between the electrode and the sample)

and the bias voltage (as read on the plating power supply) at the fol-

lowing bias currents, in this order: 35 mA, 25 mA, 15 mA, and 35 mA

(again). The total measurement time should take about 2-4 minutes.

Enter the results in the database (bath.dp)

* If the reference voltage for the final 35 mA reading is above about

0.60 V, brightener should be added. Typically 7-10ml is adequate. If

brightener is added, wait about 30 minutes and re-characterize the

bath I-V, making another bath. dp entry.

* Enter total amp-hours (TOTALIZER on plating PS) into database.

* Close calomel electrode and remove from plating bath (making sure

that Tyvex spacer comes with it). Rinse well, dry, and put away (with

plastic cap covering tip).

* When the developer has reached 21 ± 0.2 0C, develop the daughter mask. Use

interrupted development, which allows monitoring of the development rate.

- Develop for 15 seconds using slow agitation in the developer. Rinse in IPA

and blow dry.

- Measure the step height in a couple of places on the mask in the AFM.

- Repeat this cycle a couple of times to get a sense for the development rate.

The development time increment can then be increased.

- When the end of the development is approached, decrease the development

time increment again to try and hit the clearing development time. The
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cleared plating base should appear much smoother in the AFM than the

developing PMMA did. The clearing can also be monitored in the opti-

cal microscope by looking at the roughness with differential interference

contrast.

- Develop about 10% beyond the clearing dose for large features. For the

final rinse, go from IPA-+DI-+IPA, then blow dry.

- Do a final AFM, noting the height and location for comparison after gold

electroplating.

* Load the sample into the RIE for descum and allow the chamber to pump down

to 7 x 10- 5 Torr.

* Run descum. prc. Monitor the run and watch as the plasma strikes. The "spark

plasma" step is set for 50 mTorr and 5 seconds. If the plasma strikes early in the

step, you may need to hit "End Step" so that the total time in the plasma is not

too long. There is also a few seconds lag time while the pressure is reduced from

50 mTorr. If the plasma won't strike, it may be necessary to run the process

descuml.prc, which strikes the plasma at 70 mTorr.

* Keep the sample under vacuum in the RIE until you are ready to plate.

* Electroplate 200 nm of gold.

- Calculate plating current for 0.4 mA/cm 2 and the total mA-min for 8 min-

utes of plating. The area of a mother mask is -32.3 cm 2, and the area of a

daughter is -35.75 cm 2. These areas will have to be adjusted for pattern

density, and in the case of mis-aligned daughters, for unexposed area.

- Use resistor (found near plating PS) attached to PS output to preset the

plating current to the proper value. Set the counts indicator to the proper

amp-minutes.

- Remove mask from RIE and place in plating fixture (removing the backing

disc which is used for wafer plating). Before putting contact ring onto the
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pins, scrape the three contacts lightly with a razor blade. Place contact

ring, then grid, onto holder. Tighten knurled nuts.

- Measure resistance between the three contacts. These should be low

(-1-2 f). Write them down for entry into database later (samples.dp).

- Place fixture into plating bath, gently rocking back and forth to release air

bubbles.

- Plate: push down EOC button (to RES.) momentarily. Adjust plating cur-

rent with fine control knob if necessary. Jot down the bias voltage every

minute or so.

- When plating is done, alarm sounds. Disconnect fixture from PS, turn off

PS, and remove mask from the bath, holding above bath to allow liquid

to drip into bath for a few seconds.

- Before mask can dry, rinse with DI water using spray gun next to plating

setup. Try not to spray directly on membrane to avoid possible breakage.

After a few rinses with the spray gun, fill the mask holder with water and

remove grid and mask contacts.

- Rinse mask in running DI (from faucet) and blow dry.

- Thoroughly rinse the mask holder and the area around the plating setup.

The brightener for the bath contains arsenic, so it is best to not have

residue all over the laboratory.

- Enter plating information into the database (samples.dp).

* Inspect the mask. The gold should look shiny and gold-colored. In the opti-

cal microscope at high magnification using differential interference contrast, it

should appear to have an eggshell texture.

* AFM the mask in the same areas which were AFM'ed previously to find the

plated gold thickness. If the gold isn't thick enough, the mask can be placed

back into the plating solution and more gold plated. If this is done, however,

the surface tends to be rougher than if all the plating is done in a single run.
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* If the plating is satisfactory, turn off the plating bath pump, the bath heater,

and close the valve for the chiller loop.

* Check the pattern by inspection in the optical microscope and, if needed, the

scanning electron microscope.

* Strip the resist by soaking in acetone for about 10 minutes then rinsing with

acetone then methanol. Alternatively, the resist can be stripped by soaking the

mask in hot NMP (-90'C). Plasma ash the mask for 10 minutes to remove any

residual organics.

* Check for large particles on the mask and mesa. This is best done by scanning

the fiber light (held perpendicular to the mask) across the membrane while

looking at a wide angle for scattered light. The mask can also be scanned under

the optical microscope (lowest-powered objective) while looking for scattered

light and/or looking through the eyepieces. A dark-field objective is especially

well-suited for detecting particles. The mask can also be brought in close prox-

imity with another mask, as if a daughter exposure was being done, to check

for particles with interference fringes and to see if there is a large wedge, which

would indicate a particle on the mesa. To remove the particles, spin photore-

sist (PR) over the whole mask and expose the region around the particle for

about 2 minutes in the optical microscope with maximum white-light intensity.

Then develop the PR and use an eye dropper to put drops of gold etch on the

openings in the resist to "lift off" the particles. The etch of the largest particles

should be completed in about 20 minutes. For some particles it is necessary to

also use Ti etch (TFT-type) heated to 500 C (make sure that the hot plate is

well back in the hood and that only a minimal amount of Ti etchant is used,

since TFT Ti etchant is HF-based!)

* For masks which are to be replicated in intimate contact, polyimide should be

spun on. Details of polyimide spinning are given in Section A.5
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A.5 Polyimide Coating of Masks

EQUIPMENT NEEDED:

Hood Space for Developing and Etching

Oven at Various Temperatures

Optical Microscope Resist Spinner

Plasma Asher OAI at 400 nm

* It's a good idea to run a silicon monitor wafer or two in parallel with the masks

in this process to confirm various development and exposure times, particularly

for the 20 ym grid pattern.

* If the plating base is to be removed in the alignment mark regions (for daugh-

ters), perform the following steps:

- Spin Shipley 1813 photoresist at 4.7 krpm for 30 seconds. Bake for -20

minutes at 900 C.

- Expose the alignment mark regions in the optical microscope with the

white light source for 20 seconds with the 50X objective. The lamp should

be turned up all the way and the diaphragm aperture should be opened

fully. Use the field aperture to set the exposure size. It's a good idea to run

a monitor wafer first. With many dies and several alignment marks per die,

this can be quite time-consuming. These can also be exposed through the

back of the membrane using the arc lamp source. This method maintains

photoresist on the absorber in the alignment mark areas so there is no

contrast reduction due to gold absorber etching.

- Develop with Shipley CD-30 or Shipley 351 (1:5 351:DI) developer for

about 30 seconds.
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- Plasma ash the sample in He/0 2 for 6 seconds at about 50 W power. This

step is absolutely critical to get etching in all areas at the same time with

good uniformity. Because of the metal film below the resist, there is a

node in the field intensity at the resist-substrate interface which prevents

exposure and development there [6].

- Etch the gold in 10:1 dilute gold etchant for 20 seconds (10 seconds if using

"thin-gold," (i.e. 1.8 nm-thick Au) plating base).

- Etch the Ti for 5 seconds in TFT Ti etchant which has been heated to

50'C. This etch is much more dangerous than the gold etch because it

can etch laterally at an incredible speed and undercut everything, causing

Moire alignment marks, for example, to fall over easily [6].

- Strip the PR in acetone and methanol.

* Spin on about 300 nm of PI, use 3:2 PI2610:NMP (n.b. what we call "NMP"

is labeled on the bottle as 1-methyl-2-pyrrolidinone) at 3.6 krpm for 60 sec.

* In case electrostatic contact will ever be used with the mask, clean off the

polyimide at the edges of the Pyrex ring with a Q-tip soaked in NMP to allow

for electrical contact.

* If the polyimide does not need to be stripped in the alignment mark areas (e.g.

for a mother mask), bake at 1400 C for 30 minutes then ramp to 2500 C for a

total bake time of 60 minutes.

* If the polyimide should be stripped in the alignment mark areas (e.g. for daugh-

ter masks), do the following:

- Bake at 1800C for 30 minutes.

- Spin on Shipley 1813 photoresist at 4.7 krpm for 30 seconds. Bake at 900 C

for 20 minutes.

- Expose the alignment mark regions in the optical microscope with the

white light source for 20 seconds as before.
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- Develop the photoresist for 45 seconds with Shipley CD-30 developer or

5:1 Shipley 351 developer:DI. This will also etch the soft-baked (but un-

cured) PI. Confirm that the PI has fully etched by inspecting in the optical

microscope.

- Strip the photoresist in acetone and methanol.

- Hardbake the polyimide at 250'C for 30 minutes.

* Spin on 1:3 PI:NMP at 3.1 krpm for 60 seconds to get 70 nm of polyimide.

* Bake at 1800C for 30 min. This temperature is critical.

* Spin on Shipley 1813 photoresist at 4.7 krpm and bake for 30 minutes at 900 C.

* Expose with a 100 pm-period grating flex mask (adequate for daughters to be

exposed in contact with small chips) or a 20 tm-period grid mask (necessary

for masks to be exposed in contact onto other masks or whole wafers). The

100 pm-period mask has much more process latitude; the 20 tm-period mask

can sometimes be difficult to get to work. The optical mask is simply laid on

the x-ray mask and exposed for 7.0 seconds in the OAI at 400 nm (for a Mimir

power reading of 28 mW/cm 2).

* If clearing alignment marks, expose them in the optical microscope as before.

* Use an acetone-soaked swab to clear resist from the edge of the Pyrex ring.

* Develop using Shipley CD-30 developer or 5:1 Shipley 351 developer:DI for 45

seconds using continuous flow development. This is important to make sure that

the developer solution which is saturated with resist gets carried away so that

the etching of the PI is uniform across the mask. Etch the monitor before you

do your mask, doing an interrupted development and watching the PI etching

to determine a time for the mask development. The idea is to have the PR clear

everywhere very quickly and to have the PI etch slowly (relative to the resist

development). It's often easier to monitor the PI etch by looking at defects in

the grating mask (joined squares, for instance).

176



* Once the development is done, strip the remaining resist using acetone and

methanol.

* Bake at 200 'C for 1 hour.
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A.6 Clearing Polyimide from a Mask or Part of a

Mask

Polyimide can be cleared from a mask in the plasma asher. To remove the cured

,370 nm double layer takes quite a long time - 50 minutes at 200 W, 300 mTorr.

In addition to clearing PI from the whole mask, portions of the mask have been

successfully cleared by placing a foil shield over the membrane. A hole was made in the

foil in the region over the area which is to be cleared. This foil shield was mounted on

an aluminum ring which had previously been used as a mask for shadow evaporation

on a membrane (there are several such rings in the cleanroom). It therefore was the

proper height to rest on the Pyrex part of the mask and provide a small gap between

it and the mask membrane.

By mounting the foil on the back side of the ring and carefully tearing a hole and

folding back the foil, the shield could be used with no danger to the mask membrane.

In order for etching to occur, the hole had to be larger than the dark space or the

plasma sheath for the conditions in the asher. A hole of -5 mm on a side satisfactorily

etched the polyimide from one die on the mask.
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Appendix B

Device Fabrication

This Appendix contains information relevant to the fabrication of MODFET-type

devices on GaAs/AlGaAs heterostructures. I have again chosen to break up the

process into pieces which might be performed in one session.
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B.1 Mesa Isolation

EQUIPMENT NEEDED:

Hood Space for Solvent and Aqueous Processing

OAI UV Source at 405 nm

Spinner

Oven at 900C

It's a good idea to run a GaAs monitor through this process to monitor etch rates

before committing the heterostructure.

B.1.1 Solvent Cleaning of Sample and Surface Clean

* For solvent clean, use TCA, ACE, METH beakers and DJC-SOLV dipper.

* Prerinse beakers and dipper with solvents.

* Rinse sample in TCA.'

* Boil in TCA for 10 min (hotplate designation -90 0C). It's usually a good idea

to place tweezers in the TCA to provide a nucleation point for boiling.

* Ultrasound in acetone for 10 min.

* Ultrasound in methanol for 10 min.

* Blow sample dry.

* Post-rinse beakers with solvent.

* Let beakers dry in hood.

1TCA (1,1,1 trichloroethane) was used in this work as a solvent for "degreasing." It is considered
to be relatively "safe" and has few long-term side effects for low exposure levels. However, it is no
longer available, as it is responsible for depletion of the ozone layer. Unfortunately, the recommended
replacement, trichloroethylene (TCE) is a suspected carcinogen and must be treated much more
carefully.
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B.1.2 Spin and Bake Photoresist

* Spin and bake resist. Lithography on small (few-mm on a side) samples can

be challenging. The buildup of resist on the corners of the chip can make

optimizing exposure and development quite difficult. In addition, holding the

small pieces without tweezers slipping and scratching can be an art unto itself.

- Spin Shipley 1813 resist at 4500 rpm for 30s for a -1.2 pm-thick resist film.

Use filtered glass syringe located in drawer below Next station.

- Bake at 90C for 30 minutes. Use quadrant bowl located near ovens.

- The small samples often have a very thick resist layer on their back side

due to resist being pulled into the vacuum channels in the chuck (which are

not totally covered by the chip). This must be removed for good planarity

of the chip to the alignment chuck. There are two ways to do this, the

second being the preferred method:

* Using a swab which has been dipped in acetone then dried slightly by

pushing against a wipe, carefully swab the back of the chip to remove

the built-up resist. Be careful not to let acetone wick around to the

front of the chip or the resist there will dissolve away.

* Flood expose the back of the chip (many can be done in parallel) in

the OAI, using several times the typical clearing exposure (a minute

or so is usually sufficient). A swab soaked in developer can then be

used to clear the built-up resist without the danger of the resist film

on the front being etched away.

B.1.3 Photolithography and Development

* Expose resist with the mesa-level mask for 4 seconds at 21 mW/cm2 power (as

measured on the Mimir meter) in the OAI contact aligner at 400 nm.

* Develop exposed resist for -20s with straight Shipley CD-30 developer (al-

ternatively use Shipley Microposit Developer Concentrate mixed 1:1 with DI)
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followed by 1 min rinse in DI. Use dipper labeled DJC-AQ. Use 351-1 beaker for

developer and 351-2 beaker for DI. Transfer to running DI. CD-30 (which is

the same as Microposit:DI 1:1) does not etch GaAs.

* Inspect in microscope.

* Continue developing in 10-15 second increments until pattern clears. Total

development time should be -45-60 seconds. Pay attention to corners where

resist is thickest. It is often necessary to overdevelop the center of the die in

order to get the corners to clear

* Spray mask with acetone/methanol.

* Blow dry mask.

B.1.4 Etch A1GaAs

* Run a GaAs monitor sample first to calibrate etch rate.

* Ammonium hydroxide/hydrogen peroxide etch:

- Put 500 DI : 10 NH 40H : 3 H2 0 2 in large RCA beaker (put in H20 2 last)

- Mix well and put small amount into ACID beaker.

- Etch ~17seconds (~600-750 A).

- Rinse in DI for 2 min. Transfer directly to running DI water in sink if

possible.

- Blow dry.

* Inspect in microscope.

* Strip resist:

- Spray with acetone.

- Spray with methanol.
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- Blow dry.

* Inspect in microscope.

* Measure mesa height in Alpha-Step profilometer or the Linnik interferometer.
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B.2 Ohmic Contacts Processing

EQUIPMENT NEEDED:

Hood Space for Solvent and Aqueous Processing

OAI UV Source at 405 nm

Evaporator for Ni, Au, Ge

Spinner

Oven at 900 C

Strip Heater for Anneal

Probe Station to Check Contact Resistances

B.2.1 Solvent Cleaning of Sample and Surface Clean

* For solvent clean, use TCA, ACE, METH beakers and DJC-SOLV dipper.

* Prerinse beakers and dipper with solvents.

* Rinse sample in TCA.

* Boil in TCA for 10 min (hotplate designation -90 0 C). It's usually a good idea

to place tweezers in the TCA to provide a nucleation point for boiling.

* Ultrasound in acetone for 10 min.

* Ultrasound in methanol for 10 min.

* Blow sample dry.

* Post-rinse beakers with solvent.

* Let beakers dry in hood.

B.2.2 Spin and Bake Photoresist

* Spin Shipley 1813 resist at 4500 rpm for 30s. Use filtered glass syringe located

in drawer below Next station.

* Bake at 90'C for 30 minutes. Use quadrant bowl located near ovens.
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* Clear built-up resist from the backside of the chip in one of the following ways:

- Using a swab which has been dipped in acetone then dried slightly by

pushing against a wipe, carefully swab the back of the chip to remove the

built-up resist. Be careful not to let acetone wick around to the front, or

the resist will dissolve away where you want it.

- Flood expose the back of the chip (many can be done in parallel) in the

OAI, using several times the typical clearing exposure (a minute or so is

usually sufficient). A swab soaked in developer can then be used to clear

the built-up resist without the danger of the resist film on the front being

etched away.

B.2.3 Photolithography

* Expose resist with ohmic-level mask for 4 seconds at 21mW/cm 2 power (as

measured on the Mimir meter) in the OAI at 400 nm.

B.2.4 Evaporation of Ohmic Contact Metal

It's a good idea to run a bare Si monitor with the evaporation in case you might need

to analyze the films later...

Do the following steps only if you can load directly into the evaporator following

the NH 40H rinse:

* Develop Sample:

- Develop exposed resist for -20s with straight Shipley CD-30 developer.

Use dipper labeled DJC-AQ. (alternatively use Shipley Microposit Developer

Concentrate mixed 1:1 with DI) followed by 1 min rinse in DI. Use 351-1

beaker for developer and 351-2 beaker for DI. Transfer to running DI.

- Inspect in microscope.

- Continue developing in 10-15 second increments until pattern clears. Total

development time should be -45-60 seconds. Pay attention to corners
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where resist is thickest. It is often necessary to overdevelop the center of

the die in order to get the corners to clear

- Spray mask with acetone/methanol.

- Blow dry mask.

* UV ozone sample for 15s. Run UV ozone a minute or so before placing sample

inside.

* Rinse in DI water for 1 min.

* Rinse in 5% NH 40H for 15 seconds. Use SEM beaker. (n.b. 5% NH4 0H is mixed

5:1 DI:NH 40H(30%)).

* Remove from NH 40H and immediately blow dry.

* Thermally evaporate ohmic contact metal. The evaporation sequence (from the

wafer up) is:

- 5 nm Ni

- 25 nm Ge

- 50 nm Au

- 10 nm Ni

- 50 nm Au.

* Liftoff by soaking for ,10 minutes in acetone in Li beaker. Then place beaker

in ultrasound for -10 seconds for full liftoff. Do not use a dipper for this step.

Quickly remove sample from Li beaker and transfer to L2 beaker (also filled

with acetone), spraying with acetone during the transfer. Inspect the chip, in

acetone, in the stereo microscope. If the liftoff looks successful, remove and

squirt with acetone then methanol, then blow dry.

* Place sample directly into vacuum container for transport.
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B.2.5 Annealing Contacts

* Transport the sample to the second floor lab in Bldg 13 in a vacuum container.

* Sinter in strip heater in forming gas (95% N2/5% H2) at 4250C for 30seconds.

Cap sample with a clean piece of GaAs which is placed face-down on the sample

to help prevent Ga out-diffusion during sintering.

B.2.6 Check Contact Resistances

* Check resistances in 5th floor lab in building 39. They should be < 1 Q-mm.

Verify sheet resistance using the 4-point van der Pauw structure. Details of

TLM (which stands for either transmission line model - a poor designation,

or transfer length model) and van der Pauw measurement and characterization

techniques are given in Schroder [155]. The original van der Pauw reference is

from Phillips Research Reports [156].
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B.3 Gate Processing

EQUIPMENT NEEDED:

Hood Space for Solvent and Aqueous Processing

Oven at 1800 C

Spinner

Evaporator for Ti, Au

X-ray Head 4 with Small-Sample Vacuum Alignment Chuck

It's a good idea to run a bare Si monitor with the evaporation in case you might

need to analyze the films later...

B.3.1 Solvent Cleaning of Sample and Surface Clean

* For solvent clean, use TCA, ACE, METH beakers and DJC-SOLV dipper.

* Prerinse beakers and dipper with solvents.

* Rinse sample in TCA.

* Boil in TCA for 10 min (hotplate designation ,90 0 C). It's usually a good idea

to place tweezers in the TCA to provide a nucleation point for boiling.

* Ultrasound in acetone for 10 min.

* Ultrasound in methanol for 10 min.

* Blow sample dry.

* Post-rinse beakers with solvent.

* Let beakers dry in hood.

B.3.2 Spin and Bake PMMA

* Spin PMMA (950K, 3% in chlorobenzene) at 2.7 krpm for 60 seconds.

* Bake at 1800C for one hour.
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* Clear the backside of the chip by flood exposing for 30 minutes at 220 nm UV in

the OAI and using a swab dipped in 2:3 MIBK:IPA to wipe away the built-up

PMMA.

B.3.3 Small Sample Vacuum Contact Exposure

* Attach small chip to 2" silicon wafer:

- Place a drop of polyvinyl alcohol (PVA) in the center of the wafer using a

glass pipette (no bulb needed, capillary action of the pipette will deposit

enough PVA).

- Place the chip in the PVA.

- Bake at 90 0 C for 20 minutes.

* Remove the top plate and the mask holder from the Head 5 aligner.

* Install the small-chip vacuum fixture:

- Place chip holder on pin chuck with rubber gasket in-between.

- Replace top plate, using 1/2" Swagelock spacers.

* Place 2" wafer with chip onto vacuum gasket on alignment stage.

* Make sure stage is fully lowered and the mask vacuum line is opened to atmo-

sphere.

* Place mask holder with gasket onto top plate.

* Mount the two mask leveling clamps which are to the back of the fixture.

* Check chip mounting for vacuum leaks:

- Place a dummy x-ray mask onto the mask holder, place the plexiglass

spacer ring on top of it, and tighten the mask clamps.
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- Place the third mask leveling clamp and tighten it down, watching to make

sure there is still a gap between the rubber gasket on the mask holder and

the sealing plate.

- Raise the sample and use the leveling clamps to level the mask with respect

to the chip.

- Raise the sealing plate with the three thumbscrews, and seal the vacuum

line (so that it's neither pulling vacuum nor open to atmosphere). This

checks for vacuum leaks from the chip vacuum. We want to be able to

independently control the chip and the mask vacuum.

- If the dummy mask deflects and there is a leak, lower the sealing plate,

remove the mask, reposition the 2" wafer and the gasket to which it seals,

re-level, and check again for a leak.

* When there are no leaks, re-open the mask vacuum line to atmosphere, lower

the sealing plate, replace the dummy mask with the real mask, level the mask

to the substrate, and align the two.

* Raise the sealing plate with the thumbscrews to create a vacuum seal. Some-

times raising the wafer stage will help strengthen the seal. Monitor the align-

ment as things are being raised and moved, as it sometimes shifts. Small mis-

alignments can be corrected even with the sealing plate raised.

* When the alignment and seal are satisfactory, open the needle valve on the

vacuum control system to 2.0, making sure the vacuum regulator reads zero.

* Turn the tee valve from atmosphere to vacuum, and slowly dial up the vacuum

regulator.

* Move the alignment stage into the helium box and expose.

* When the exposure is over, dial down the mask vacuum, lower the stage with

the stage vacuum still on (this should pull the chip from the mask if it is stuck
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by van der Waals forces), remove the mask, and remove the 2" wafer with the

chip.

B.3.4 Removal of Small Chip from 2" Wafer

Because a drop of PVA was used to glue to chip to the wafer, special care must

be taken to remove the large volume of PVA (relative to the volume which is left

when something is spun on a wafer) from the chip. If these steps are not followed,

PVA residue remains on the chip and can interfere with development and subsequent

processing.

* Hold wafer and chip (still attached) in DJC-AQ dipper under running DI water

until the two separate.

* While the water is still running, remove the 2" wafer and keep the chip in the

running water for two more minutes.

* Place the chip and the dipper into the DI-1 beaker and soak in DI for two

minutes.

* Transfer the chip only into the DI-2 beaker and soak in DI for five minutes

more.

* Remove the chip and blow dry.

B.3.5 Development and Schottky Gate Evaporation

Perform the following steps only if you will be able to put the chip directly into the

evaporator after the NH40H rinse:

* Use 2:3 MIBK:IPA at 21*C as the developer.

* Do an interrupted development, where the development occurs in short time

intervals and the resist thickness at a step edge in the pattern is checked in the

AFM or the Alpha-Step. Try to find the clearing time for large features. Rinse

with IPA and blow dry after each interval.
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* Develop 10% beyond the large feature clearing time to ensure that little PMMA

residue remains.

* Rinse with IPA and blow dry when finished.

* Remove any resist residue in the RIE:

- Run the process dsclean in the PlasmaTherm RIE with the 3" or 4"

dummy wafer and fixturing in place to condition the chamber for a suc-

cessful plasma strike for the descum of the chip.

- Vent the chamber, place the chip on the dummy wafer, and evacuate the

chamber. Allow it to pump out to 7 x 10-5 Torr.

- Manually descum with the following parameters:

* He/0 2 10/2.5 sccm.

* 35 mTorr pressure

* Plasma controlled at 20 Volts (,-14 W power).

* 15 seconds descum.

- Remove chip from chamber.

* Clean surface oxides:

- Rinse in DI water for 1 min.

- Rinse in 5% NH 40H for 15 seconds. Use SEM beaker. (n.b. 5% NH 40H is

mixed 5:1 DI:NH 40H(30%)).

- Remove from NH 40H and immediately blow dry.

* Immediately load sample into the electron-beam evaporator.

* E-beam evaporate Schottky metal (100 A Ti/600 A Au).

* Liftoff the gate pattern:2

2 NMP heated to - 900 C is much more effective at stripping PMMA than acetone is. If small
particle deposition is problematic, however, acetone is preferable because it can be sprayed, which
helps carry away particles.
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- Begin with an acetone spray (one bottle full) using the atomizer in the

outer lab (no smoking, please!). The chip can be mounted by a clip to the

stainless steel fixture which is located in the outer lab hoods.

- When the atomizer is almost empty, before the sample has a chance to

dry, place the chip and the holder into acetone. Separate the chip from

the holder while in the acetone and remove the holder.

- Let the chip soak in acetone for several hours.

- Remove the chip from the acetone, spraying with acetone while doing so

to remove the bulk of the metal. Immediately place the chip into another

acetone beaker.

- Inspect the chip, in acetone, in the stereo microscope. If the liftoff looks

successful, remove and squirt with acetone then methanol, then blow dry.
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B.4 Patching Holes and Fixing Shorts

Occasionally, because of tweezer slips across the small chips, patterned metal lines are

severed or resist is scratched, causing opens or shorts in the lifted-off metal pattern,

respectively. If this happens on a device gate pattern on a mesa, there is little that

can be done to remedy the situation. Usually, however, the shorts or opens occur on

the metal traces which go from the bonding pads to the devices, where features sizes

are relatively large. In this case the problem can often be remedied.

The method used to fix shorts between traces outside the mesa has been to use

the probe station both as a clamp to hold the chip and as a scalpel to scrape away

extra metal. Since the traces are often long, straight lines, the unidirectional action

of the probe is well-suited to this purpose. By placing one or two probe tips away

from any pattern to clamp the chip to the stage and using a third tip as a scraper, the

short can often be removed (and other probes can be used to monitor the resistance

between the lines in real time).

To replace open circuits in the traces caused by slipped tweezers (or poorly-

manipulated probes), photoresist is spun on the wafer and the areas where metal

is desired are exposed with the optical microscope. The resist is developed, the sam-

ple is UV-ozoned, and metal is evaporated and lifted off to patch and repair the

chip.
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Appendix C

Electronics and Cryogenic Design

for Device Measurements

This appendix details the cryogenic system and the electronics used for the measure-

ments described in Chapter 7. Modifications which were made to these systems are

detailed and the operation of the 3He system is given in the "recipe" format adopted

in Appendices A and B. The last section of the appendix describes some of the

problems encountered in measuring the coupled quantum dot structure.

C.1 Cryogenic and Electronic System Design

The cryogenic and the electronic systems are somewhat coupled due to the fact that

electron transport to a sample at cryogenic temperatures also involves thermal trans-

port, and the device properties are very temperature-dependent. Noise in a device at

cryogenic temperatures can be detrimental not only from its effect on the signal, but

also because of resistive dissipation in the sample, which can warm it and alter its

electrical characteristics. Thermal radiation can also affect device electrical properties

in some cases [157].

Even though the two systems are coupled, they are described separately in the

sections to follow. The general principles of the method of operation of each system

are described and then specific details are given of the improvements made to enhance

195



system performance and ease of use.

C.1.1 Cryogenic System

A schematic of the cryogenic system, an Oxford Instruments Heliox insertion probe, is

shown in Figure C-1. A detailed procedure for probe operation is given in Section C.2.

A good general reference for cryogenic experimental techniques is Richardson and

Smith [158].

An overview of the probe operation follows: The sample is mounted on the sample

block which is in an evacuated space (labeled the "inner vacuum can" (IVC)) which

has been back-filled with a small amount of helium (a few mTorr) for heat exchange.

The probe is placed in liquid nitrogen to cool the whole system to 77 K. Once this is

accomplished, the probe is placed into liquid helium, which cools the system to 4.2 K.

To cool the sample below 4.2 K, the helium exchange gas is removed either by a

charcoal sorb in the IVC (not shown) or by evacuating the IVC with a high-vacuum

pump once the system is at 4.2 K. If this is not done, the helium exchange gas can

transfer thermal energy from the walls of the IVC, which are at 4.2 K.

Once the exchange gas is removed, the 1 K pot is evacuated and the needle valve

for the 1 K pot drinking straw is opened. This allows a flow of 4He through the 1 K

pot. Since the boiling point of liquid helium is reduced at low pressures, the 1 K pot

will cool to 1.2 K.

The Heliox probe contains a closed 3He system. As the 1 K pot cools, the 3He

sorb pump is heated to drive off gaseous 3He, which condenses to a liquid at the place

where the closed 3He system makes thermal contact to the 1 K pot. The liquid 3He

collects in the 0.3 K pot and absorbs thermal energy from the sample block, cooling

it to -1.2 K.

Once the 3He has condensed, the 3 He sorb pump is cooled to 4.2 K by thermal

coupling to the sorb isolation system, and it begins to lower the pressure in the closed
3He space. The 3 He bath can achieve temperatures of ,300mK in this manner,

and heat is extracted from the sample block and the sample to cool them to this

temperature.
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Figure C-1: Schematic of Oxford Instruments Heliox insertion probe for 300 mK
device measurements. Figure after Burkhardt [6].
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Modifications were made to the sample mounting system to improve ease of use

and cryogenic performance. The sample is attached with silver paint to a 44-pin

header and bond pads on the sample are connected with wire bonds to pads on the

header. The header fits into a socket at the bottom of the probe which has electrical

connections to the top of the probe. When under vacuum, the sample is cooled only

by conduction through the substrate and through the leads.

Thermal connection between the header and the stage is made by placing a small

copper spacer between them. The chip carrier was previously taped into place and a

sample shield was placed over the chip. Two problems occured with this arrangement

- mounting the chip carrier and the copper spacer was often quite difficult, and the

sample shield was attached at only one point to the stage, since space was required

to run the wires to the sample. This meant that the shield was not in good thermal

contact to the sample block, possibly allowing it to warm well above 300 mK and

subsequently warm the sample with thermal radiation.

The sample mount was completely redesigned. Instead of using tape to mount

the chip carrier to the stage, the new stage has tapped holes to accept bolts which

pass through the socket, rigidly connecting the chip carrier assembly and the copper

spacer to the stage. Holes drilled in the stage allow the wires to pass through it,

which improves their heat sinking and reduces heat leaks from higher-temperature

stages.

In addition, the sample shield can now be well-connected to the stage, since no

space is required for wires to pass between them. The new shield snaps onto the

stage, making good electrical and thermal contact. It should be noted that for good

contact, the shield and the stage should be free from tarnish. Since the shield is

regularly handled, often with gloves which have vacuum grease on them (which seems

to accelerate tarnishing), it should be cleaned when it appears dirty. Careful experi-

ments have shown that Heinz ketchup, followed by a detergent, does an excellent job

of removing the tarnish and restoring a bright shine to the copper.
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wires

sample stage

sample loosely
held with tape

sample shield
(loose-fitting)

(a)

wires pass through
sample stage for
additional heat-sinking

sample stage

sample
rigidly clamped

sample shield
(well-connected

to 300 mK stage)

(b)

Figure C-2: Schematic of modifications made to the sample mount for improved ease
of use and performance. (a) The old mounting setup. Placing the sample on the
stage was awkward and good contact between the chip carrier and the cold stage was
not assured. Because wires had to run between the sample shield and the cold stage,
the shield was not well-connected to the stage. (b) The modified setup. The chip
carrier is now rigidly clamped to the stage, improving ease of mounting and thermal
connection. Wires now run through the stage, improving heat-sinking and allowing
for a sample shield which is in good thermal and electronic contact to the stage.
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C.1.2 Design of Measurement Electronics

The measurement electronics were also redesigned and a new system was built to

minimize noise and to allow for fully-automated gate control and measurement. A

very good general reference for noise in electronic systems is Ott [159]. There are also

chapters devoted to low-noise measurements in cryogenic systems (including one with

reference to the non-cryogenic but interesting application of designing and implement-

ing circuitry to run the shark in the movie "Jaws") in Richardson and Smith [158].

Electric fields and magnetic fields can couple to a circuit and induce voltages

and currents which are seen as noise in the signal, particularly for the 1 V, pA signals

expected for quantum dots. As discussed above, for device measurements at cryogenic

temperatures, this noise can also produce additional ohmic heating in the sample

which can raise its temperature and change its electrical characteristics. Reducing

electronic noise is therefore critical for quantum dot measurement.

Placing the circuit in a grounded box will eliminate a large part of the induced

noise. High-frequency electromagnetic waves will reflect off the box, and low-frequency

or DC electric fields will terminate on the box. Low-frequency magnetic fields, how-

ever, can still couple to the circuit. To minimize the effects of this coupling, large

loops which can couple a large db/dt into the circuit (where 4 is magnetic flux)

should be eliminated. The circuit should be connected to the grounded box only

at one point, preferably the input of the amplifier. Any long current supply/return

paths should be on twisted pairs so the a positive dD/dt in one small twisted loop is

cancelled by a negative d/dt in a neighboring loop.

Digital measurement equipment can also introduce noise into the system. Several

pieces of digital equipment in the lab were found to have spiky noise at one to several

MHz frequency on their outputs or even their inputs. This was checked by using an

analog oscilloscope, connecting its ground to a good earth ground, and connecting

its positive input to the instrument in question. The input of one electrometer in

the lab (whose manufacturer shall remain nameless) was found to have voltage spikes

of -1 V on both the center conductor and the ground of its BNC input! Since the
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quantum dot devices were being measured with a lock-in amplifier, the voltage noise

at frequencies far from the lock-in frequency (typically 77 Hz or so) would in theory

have a minimal effect on most measurements, but 1 V spikes could heat the sample

significantly and modify the gate bias voltages relative to the 2DEG.

The old measurement setup used some filtering and had proper grounding, but did

not use shielded twisted pairs in all places where cables were run, and left many pieces

of digital equipment connected to the circuit with no filtering. The measurement setup

was redesigned with supply and return currents traveling from the source, through a

cable to the probe, and through the probe to the sample on the same twisted pair.

In addition, low-pass "Pi" filters (80 dB attenuation at frequencies above 100 kHz)

were added to the signals and grounds of all pieces of digital equipment which were

attached to the device.

A schematic of the measurement circuit is shown in Figure C-3. The shield, which

is connected to earth ground, is indicated with a heavy line. The output of the EG&G

Princeton Applied Research 5210 lock-in amplifier was found to have its ground hard-

wired to the case ground. In order to allow for some choice as to where to ground

the circuit to the shield, a transformer was used to decouple the input ground from

the circuit. A 10000:1 resistive divider (not pictured) then reduced the voltage to the

required 10-100 pV range. The transformer could be switched in and out or replaced

with an optical isolator circuit.

Current passes down into the dewar, through the sample, out of the dewar (on

the same twisted pair), through a current-to-voltage converter/amplifier (either one

of two home-built units which consist of an op-amp with a 108 or 106Q resistor or

an Ithaco 1211 current preamplifier), then back to the transformer to complete the

circuit.

The gate bias, which is controlled by a D/A board from a PC, is referenced to half

of the sample input voltage to allow for symmetric gate biasing at relatively large dot

bias voltages (for I-V measurements, for instance). The circuit ground can be chosen

at several places by switches on the panels of the instruments.

The new measurement setup worked well for measuring QPC and fine-line tunnel
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barrier characteristics such as the ones shown in Chapter 7. It was used to mea-

sure electron-beam fabricated quantum dot devices by Sokolinski [160] and its noise

characteristics were no worse than the previous setup as indicated by comparison of

data from that reference with Kumar [24] and Burkhardt [6]. It should be noted that

none of these measurements really pushed the noise floor of the measurement. Test

measurements showed a factor of about two improvement of noise when the current

supply and return were on the same twisted pair on the probe versus when they were

on separate pairs. The main advantage of the setup was the automation of gate volt-

age control and the capability to perform many sweeps at one sitting with no human

intervention.
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C.2 3He Probe Operation

Cool to 77 K

* Wear vinyl or latex gloves when handling interior probe components.

* Vent probe and remove inner vacuum can (IVC) using sliding hammer. Place

IVC in a safe place to prevent it from falling, getting dirty, etc. The vacuum

seal relies on two tapered metallic surfaces making good contact, so be very

careful not to scratch either.

* Mount sample

- Mount the chip carrier into the socket and plug the connectors from the

sample block to the chip carrier together.

- Place a copper spacer on the back of the socket using a thin film of Apiezon

vacuum grease on both sides of the spacer.

- Screw the sample assembly onto the sample stage, checking that the spacer

is properly seated. DO NOT OVERTIGHTEN!

- Place the sample shield onto the stage. It should click into place.

* Replace vacuum can.

- Clean the tapered surfaces on the can and the probe with a clean wipe.

- Apply silicone grease liberally to the probe tapered surface (use a clean

wipe to get grease in the area behind the drinking straws), and a thin film

of grease to the can tapered surface.

- Place a paper cylinder around the wires to prevent thermal shorts to the

IVC.

- Carefully slide the IVC onto the probe. It need only be pushed gently up

to the tapered seal.

- Pump out the IVC with the roughing pump to -250-300 mTorr.
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* Tape the drinking straws to the outside of the IVC to prevent them from hanging

up on the dewar.

* Bleed in a few Torr of He exchange gas to the IVC. Pinch off a small section of

helium-filled hose attached to the IVC pumping port and use your other hand

to very slowly open the IVC vacuum valve, monitoring the pressure. If you

bleed in too much, pump out the IVC and try again. When done, place a blank

over the vacuum port to prevent accidental venting of the IVC.

* Connect the He lines to the 1 K pot and sorb isolator connections at the top of

the probe. Pressurize the line to a few psi, and open the Speedivalve and the

needle valve on the 1 K pot, and the needle valve on the sorb isolator. Check

to make sure that He is flowing from the bottom ends of both drinking straws

(you can cover them with your fingertips and listen for the flow to make sure).

* Carry the probe over to the probe stand and LN2 dewar. Move carefully to

make sure the helium lines don't get caught. Slowly lower the probe into the

LN2. There should be lots of bubbling due to the warm He gas which is flowing.

(Now would not be the time to be wearing sandles, as the LN2 can splash out

of the dewar).

* When the probe is fully lowered into the LN2, close the needle valves first, then

the 1 K pot Speedivalve, then the helium valve at the wall. Tighten the clamps

which hold the probe upright.

* Leave the probe in the LN2 for an hour or so, checking the temperature with the

high-temperature sensor on the temperature controller. The high-temperature

sensor is connected through cable B, and is connected or disconnected through

one of the switch boxes located on top of the temperature controller.

* The probe can be left indefinitely in LN2. Be sure to top off the nitrogen level

so that it doesn't fall below the level of the drinking straws, otherwise water

could freeze in them.

205



Cool to 4K

* Disconnect the high-temperature sensor (use the switch on the box located on

top of the temperature controller).

* Push the Leitish-style mounting ring on the probe shaft down all the way so

that the probe will not initially drop too low in the He storage dewar.

* Disconnect thermometer and pressure sensor cables. Resume He gas flow through

the drinking straws.

* Transfer the probe to the liquid He storage dewar, being careful not to tangle

the gaseous He lines. It's often helpful to have another person around for this

step.

* Once the probe is in the He dewar, close off the gaseous He flow as before -

needle valves, then Speedivalve, then wall valve. Clamp the Leitish-style flange

and close the dewar vent valve.

* Slowly lower the probe into the dewar, pausing when the dewar safety valve

pops open to allow pressurized gas to escape.

* Monitor the temperature at the sample. It should reach 4.2 K in an hour or so.

* Monitor the pressure in the IVC. If the charcoal IVC sorb is in place it should

drop to below zero (the needle should be pinned - this is not a new physical

phenomena, just a mis-calibrated gauge). If it does not, or the IVC sorb is not

in place, use a high-vacuum pump to evacuate the IVC. Make sure the pumping

line is evacuated before opening the IVC can valve to it, otherwise you'll get

pump oil and water vapor coating your sample and everything else in the IVC.
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Cool to 300 mK

* Connect the rotary pump to the 1 K pot line and evacuate the line. After a

couple of minutes, open up the 1 K pot Speedivalve and pump out the 1 K pot

line. At this point the needle valve should be closed.

* The temperature sensors are connected as follows: Sensor 1 is the sorb temper-

ature, sensor 2 is switched between the 3He pot and the 1 K pot temperature,

and sensor 3 is the high-temperature sensor (which should be disconnected at

this point).

* Cool to 1 K and condense 3He:

- Set the sorb temperature set point to 45 K. Do not heat the sorb yet.

- Monitor the pressure and temperature in the 1 K pot.

- Open the 1 K pot needle valve all the way for a few seconds. The pressure

should shoot up.

- Close the 1 K pot needle valve to pump on the liquid He which has collected

in the pot. The pressure and temperature should start to drop.

- Open the sorb isolator needle valve a turn or so.

- Turn on the sorb heater (by pressing auto).

- Now the balancing act begins:

* The 1 K pot needle valve should be opened just enough to maintain a

steady 1 K pot pressure (and therefore temperature). This is typically

just a few degrees open.

* The sorb isolator flow should be maintained such that a heater voltage

of 5.5-7 V will maintain the sorb at 45 K.

* Adjusting either needle valve will affect the other setting, so the 1 K

pot temperature and pressure, the sample temperature, the sorb tem-

perature, and the sorb heater voltage should be constantly monitored.
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- Once the 1 K pot temperature and the sample block temperature have

stabilized, continue to condense for another -10 minutes to ensure most

of the 3 He has condensed.

* Cool to 300 mK:

- Turn off the sorb heater by manually lowering the heater voltage on the

temperature controller.

- Leave the sorb flow the same. This will cool slowly and conserve 3He for

a longer hold time.

- When the sorb temperature reaches -20 K, it should start to pump on the
3 He and the sample stage temperature should start to drop.

- Continue to monitor the 1 K pot pressure, and tweak the needle valve if

necessary.

- Once the sorb has cooled to 4 K, let it stay for an hour or so then close the

sorb needle valve.

* When the run is finished, close the 1 K pot needle valve and allow the 1 K pot to

be pumped out for a few minutes. Then close the 1 K pot Speedivalve and turn

off the pump. From this configuration it is relatively easy to condense again.
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C.3 Device Measurement Difficulties

As mentioned in Chapter 7, QPC and tunnel barrier measurements were not con-

sistent with time. This instability, along with other problems, prevented successful

measurement of the full coupled quantum dot structure. This section will present

some of the measurements which were taken in an attempt to understand what was

happening with the device.

The variability of QPC and tunnel barrier pinchoff characteristics is shown in

Figure C-4. During a given cooldown, or even over the course of a day, the voltage

at which a given QPC gate pair would pinch off would tend to drift more and more

negative. For the tunnel barrier, the pinchoff characteristic would tend to become

more and more QPC-like, with steps developing at the quantum of conductance.

The reverse-bias leakage current of the Schottky gates also changed with time.

Problems had occured previously with Schottky gate leakage, and the process was

optimized to minimize the reverse bias leakage and to improve consistency among

gates on a chip. Even with this optimization, however, Schottky gates which initially

showed very little reverse-bias leakage at cryogenic temperatures would become more

leaky over time, experiencing reverse-bias breakdown at voltages which were higher

than those required to operate the device. An example of a Schottky gate measure-

ment in two different cooldowns (with a thermal cycle to 300 K between) is shown in

the top half of Figure C-5.

The bottom half of Figure C-5 shows how the reverse bias current of the leaky

Schottky gate changes over the course of minutes. The current is plotted on a linear

scale. The current of ,15 nA seems to switch between a few different states in an

abrupt manner. This telegraph noise creates a modulation which is on the order of

10% of the total current, so this is quite a large effect.

These measurements would seem to point to charge motion in the substrate. At

cryogenic temperatures, a layer of partially-ionized dopants lies beneath the Schottky

gates in the heterostructure. Over time the distribution of the dopants should reach

an equilibrium configuration, although if the activation energy for motion from one
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QPC Characteristics over Time,
One cooldown to 323 mK
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Figure C-4: Pinchoff characteristics of QPCs and tunnel barrier showing change in
pinchoff voltages and nature of tunnel barrier conductance with time. Top: QPC
drift in one cooldown to 323 mK. Bottom: Change in nature of fine-line tunnel barrier
conductance between two cooldowns with thermal cycle up to 4.2 K in-between. Note
the step appearing at the quantum of conductance (indicated by dashed line) in the
second measurement.
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donor site to the next is large, this equilibrium state could take some time to be

reached at low temperatures. A biased device will have a different equilibrium donor

configuration than a non-biased device.

In Figure C-4, the QPC pinchoff voltages are seen to drift to a more negative

value over the course of a few hours. Since measurements were being made during

this time, the gates were biased, and is it quite likely that the negative bias could

have moved electrons from un-ionized donors out from underneath the gates, more

effectively ionizing the donors there. If there are more ionized donors under the gates,

then there should also be more electrons under the gates, requiring a larger negative

voltage to fully deplete them.

Reverse-bias leakage current in Schottky diodes is typically due to avalanche break-

down, where a charge is accelerated such that it gains enough energy to ionize an

electron-hole pair and these charges similarly generate more pairs, leading to a large

current. Avalanche breakdown will occur when a threshold electric field is exceeded.

In a reverse-biased Schottky diode on a GaAs/AlGaAs MODFET structure such as

the ones used in this experiment, more complete ionization of donors will create a

larger electric field in the material, as can be seen by examining the band diagram,

Figure 2-4. The reduction of reverse-bias breakdown threshold voltage could be ex-

plained by more complete ionization underneath Schottky gates which have been

biased.

The telegraph noise shown in the bottom of Figure C-5 could also potentially be

explained by a charge switching between two donor sites. If the switching charge

were to modulate the field in a particular region which is close to the critical field

for breakdown, a current channel might be expected to open and close as the charge

switches between the two locations. The large percentage change in the current is a

bit hard to understand with this explanation, but it is conceivable that there could

be something like 10 channels which are opened underneath the gate. If each channel

relied on a group of charges moving away from a particular point to increase the local

field underneath the gate, one moving charge could open or close a particular channel.

The change of QPC and tunnel barrier characteristics with time and the unreli-
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Comparison of Two Schottky Leakage
Characteristics, Gate S, Two Different Cooldowns

(Measurement at 4 K, Thermal Cycle to 300 K)
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Figure C-5: Measurements of Schottky barrier characteristics at 4.2 K. Top: The
same Schottky gate measured before and after a thermal cycle to room temperature.
The reverse breakdown occurs at a reverse bias which would be necessary to operate
a quantum dot. Bottom: Reverse-bias leakage versus time for the leaky measurement
from the top graph. There appears to be switching or telegraph noise in the data.
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ability of the Schottky gates prevented measurements from being made on quantum

dots. It is possible that the heterostructure was to blame for these problems. Al-

though the dies were taken from wafers which had previously been used successfully

for measurements by Arvind Kumar, the wafers were several years old by the time

they were processed for these devices. It is also possible that age has nothing to do

with the change in behavior of the material - variation across the wafer could be the

cause, although this is unlikely.

The most important indicator that something had happened to the material was

the fact that Kumar's measurements were done simply by cooling the sample. For

these measurements, the 2DEG sheet density was very low (as indicated by QPC

pinchoffs less than -0.2 V) unless an LED was used at cryogenic temperatures to free

more electrons from the donors.

Problems with instability of QPCs, Schottky reverse bias breakdown, and tele-

graph noise have been experienced by other researchers.1 For the coupled quantum

dot device to be measured, it would be advisable to get new material and carefully

characterize test FET, Schottky, and Hall bar structures on it in parallel with de-

vices. This combination of test structures should allow a better understanding of any

problems which might occur.

'David Goldhaber-Gordon at MIT and Carol Livermore at Harvard have both seen similar prob-
lems with their devices. The Harvard group's experience is that unless the 2DEG is freshly-grown it
will not produce good devices. They suspect that oxidation of the aluminum in the heterostructure is
responsible. Livermore has seen devices with apparently good QPCs which would not show Coulomb
blockade effects. Goldhaber-Gordon reports that some devices remain functional after many years of
storage, while other seem to experience aging which makes them unusable. In contrast, Ray Ashoori
at MIT reports using ten-year-old heterostructures to make devices with no problems, although
many of his group's measurements are made on quantum dots which do not require biased Schottky
gates for their formation.
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