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Abstract

Recent developments in wireless communication technology combined with significant
increases in computing power have opened the way to Acoustically Focused Oceano-
graphic Sampling (AFOS). AFOS consists of a network of acoustic arrays connected
to a fleet of Autonomous Underwater Vehicles (AUV) and to a shore station using
wireless local area network technology. A real-time field estimate of temperature or
current in the region of interest is computed by combining the various integral and
local data sets available. The real-time field estimate and its associated error field are

then used to adaptively direct AUVs towards regions where high resolution is required
due to large gradients or large uncertainties. A feasibility experiment was recently
performed in Haro Strait, British Columbia (June-July 1996). The novelty of the Haro
Strait data set resides in its unusual tomographic features: ranges are short (less than
3 km), sound speed perturbations are small (2 to 3m/s), and currents are relatively
strong (up to 5 kts). Operational constraints require that the field inversion be robust
and computationally efficient. This thesis makes contributions to both the forward

and the inverse problem. Numerically efficient solutions to the windy wave equation
are presented in the wavenumber integration and the normal mode approaches using
a unified theoretical formulation. Accurate numerical predictions of the acoustic field

in the presence of a stratified flow are made using modified versions of the computer
codes OASES and KRAKEN. A robust, hybrid linear inversion scheme adapted to
the estimation of oceanic fields in coastal environments such as Haro Strait is then
developed. Expressions for hybrid field estimates as well as their associated estimate
variances are derived. These expressions enable the combination of multiple data

streams of global and local nature in a robust and and efficient fashion. Inversion
performance is subsequently assessed, showing significant gains in coverage and esti-

mated error from the combination of multiple data sets. Signal frequency coherence is

shown to be a key asset in the Haro Strait environment. Second-order field statistics

are computed, and the position of the Haro Strait front during flood tide on 06/20/96
was estimated.
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Chapter 1

Introduction

1.1 Forward and inverse problems

Acoustic waves have long been a privileged means of remotely sensing ocean sub-

surface structures, whether for military purposes such as surveillance, detection and

counter-measures, or civilian purposes such as oceanographic modeling and climate

monitoring. Remote sensing involves two fundamentally different problems. First, in

order to properly extract source or environmental information from signals propagat-

ing through the ocean, the physical mechanisms accounting for propagation must be

adequately modeled and quantitative field predictions must be available. This is the

forward problem, whereby the modeler is able to produce an accurate wave field pre-

diction based on an arbitrary environmental input. In the second and final stage, the

measured field is used to infer the value of different source or environmental parame-

ters such as source location, ocean temperature and salinity. This stage corresponds

to the inverse problem, whose mathematical analysis is strictly distinct from that the

forward problem. The forward problem is essentially a wave propagation problem

and as such is quite specific. On the other hand the inverse problem amounts, loosely

speaking, to properly inverting a matrix and is therefore relatively general. In partic-

ular the inverse problem draws on techniques developed from backgrounds as various

as seismic imaging (oil exploration), computerized axial tomography (medical imag-

ing) and data assimilation (atmospheric and oceanographic modeling) in addition to



modern ocean-specific techniques such as matched-field processing.

Over the last two decades acoustic waves have been proven to be a viable and

reliable tool for measuring deep ocean temperature and current fields. Ocean acoustic

tomography, thus called by analogy to medical imaging techniques, was repeatedly

and successfully used in order to image mesoscale structures in the Atlantic as well

as in the Pacific ocean. The advantage of ocean acoustic tomography over traditional

oceanographic sampling methods is clearly one of coverage, therefore of cost. With

only a few moorings areas of the order of hundreds of kilometers can be continuously

monitored. This however comes at the expense of resolution. The inherent spatial

averaging performed by acoustic waves in the course of propagation from source to

receiver limits the horizontal resolution of acoustic measurement to typically a few

kilometers along the path of propagation. Following advances in the deep ocean

case tomographic inversions are now being applied with varying degrees of success

to coastal environments, whose spatial and temporal scales are orders of magnitude

smaller than that of the deep ocean.

This raises several issues with respect to both the forward and the inverse prob-

lem. Whereas sound speed fluctuations almost always dominate current fluctuations

in the deep ocean case, the combination of tides and topography in coastal regions

yields currents whose magnitude may be in some cases comparable to that of sound

speed fluctuations. The influence of currents on acoustic propagation must therefore

be carefully modeled. In particular the traditional equivalent sound speed approach

does not take into account the anisotropic nature of propagation through a flow.

This can lead to significant phase errors in wide angle scenarios. Inversion algorithms

which are strongly dependent on the spatial dependence of the signal phase, such as

matched-field processing, will then no longer operate properly as they require a valid

forward model. Furthermore, the inverse problem analysis in coastal environments

must cope with the increased complexity and richness of coastal fields. One might

suggest attempting to combine various measurement systems and thus increase the



performance of the overall monitoring system. Combining for instance acoustic to-

mography with local, moored or mobile measurement platforms could potentially lead

to a system which provides the user with the large coverage of acoustic tomography

as well as the high resolution of local sensors. This idea is further explored in the

next section.

1.2 The Haro Strait experiment

While coastal tomography remains a topic of active research, recent developments

in wireless communication technology combined with significant increases in com-

puting power have opened the way to Acoustically Focused Oceanographic Sampling

(AFOS) [71]. AFOS consists of a network of acoustic arrays connected to a fleet of

Autonomous Underwater Vehicles (AUV) and to a shore station using wireless local

area network technology. Non-acoustic moorings may be integrated in the network

as additional nodes when available. A real-time field estimate of temperature or cur-

rent in the region of interest is computed by combining the various integral and local

data sets available. Integral, synoptic data is provided by the acoustic tomographic

inversion while non-acoustic sensors yield local point measurements. The real-time

field estimate and its associated error field are then used to adaptively direct AUVs

towards regions where high resolution is required due to large gradients or large un-

certainties. AFOS provides rapid environmental assessment, which is important for

coastal oceanography and operation of naval systems.

In this context a feasibility experiment was recently performed in Haro Strait,

British Columbia [4]. Its first objective was to test the available technology when

integrated into a single network. Its second objective was to demonstrate the scientific

relevance of AFOS by investigating mixing mechanisms in the highly active Haro

strait region. Three 16-element vertical receiver arrays were moored south of Stuart

Island around the location of a coastal front driven by estuarine and tidal forcing (see

figure 5-1). Four non-acoustic moorings were located around the acoustic network



(see figure 5-1), measuring local current, temperature and salinity. An extensive and

varied acoustic data set was generated in the course of five weeks (June-July 1996).

Tomographic signals were transmitted over a wide frequency band (150Hz to 15kHz).

The novelty of the Haro Strait data set resides in its unusual tomographic features:

ranges are short (less than 3 km), sound speed perturbations are small (2 to 3m/s),

and currents are relatively strong (up to 5 kts). Operational constraints place strin-

gent demands on the oceanic field estimate provided by AFOS. Its computational load

must be light enough, namely of the order of a few minutes at most. The inversion

must be able to withstand large environmental uncertainties as well as accomodate

a wide variety of data sets. In order to satisfy the robustness constraint, classical

deep ocean travel time tomography and oceanographic data assimilation techniques

are combined in this thesis and adapted to the Haro Strait environment. While these

techniques are not new in themselves, the combined use of interdisciplinary models

and data sets in the context of coastal ocean imaging raises several issues as of yet un-

resolved. Resolution and parameter sensitivity of the various models for instance have

been shown to be critical factors in successfully coupling oceanographic and acoustic

models [47]. The possible gains from jointly extracting environmental information

from integral and local data sets, while heuristically and qualitatively clear, are still

hardly quantified. Furthermore, the integration of synoptic acoustic estimates with

non-acoustic data sets and models in coastal environments remains a topic of active

research [67, 49].

1.3 Objectives

Far from exhaustively answering the issues outlined in the previous sections, this

thesis attempts to explore some aspects of both the forward and the inverse problem.

The effect of current on acoustic propagation is first investigated. A tomographic

inversion scheme complying with the constraints of AFOS and the Haro Strait dataset

is then developed. The objectives of this thesis can be summarized as follows:



* forward problem: the goal of this section is to develop a unified analytical for-

mulation for the equations governing propagation through a moving medium, in

particular through a stratified, low-Mach number flow. The resulting computa-

tional implementation in a wavenumber integration and a modal context leads

to an improved phase modeling capability. The anisotropic effect of flow on

waveguide properties and propagation mechanisms will also be assessed. The

feasibility of current matched-field processing will be discussed in a general

context as well as in the context of the Haro Strait experiment.

* inverse problem: in order to draw on the strengths of the various data sets

gathered in Haro Strait while coping with the high uncertainty associated with

coastal environments, a hybrid linear inversion technique is developed in this

section with an emphasis on water column imaging. Bottom effects are specif-

ically ignored and filtered out of the available data set. Issues associated with

combining several data sets of different origin and type in an acoustic context

are explored.

* performance analysis: the performance of the inversion scheme previously devel-

oped is assessed in terms of expected error, resolution and bias. The relevance

of frequency-coherent inversion algorithms is discussed in the context of the

Haro Strait configuration.

* experimental data analysis: finally, the inversion scheme discussed above is ap-

plied to a portion of the Haro Strait dataset, and the results are interpreted in

light of the a priori and independent information available for the Haro Strait

region.

Various works relevant to the present study are summarized in the next chapter in

order to provide the reader with some background information. Acoustic propaga-

tion through a stratified moving medium is investigated in chapter 3. A hybrid linear

inverse framework is developed in chapter 4. The experimental setup of the Haro

Strait experiment and some of the environmental data gathered during this experi-



ment are discussed in chapter 5. The performance of the inversion scheme previously

developed is assessed in chapter 6. Finally, applications of this inversion to the Haro

Strait dataset are presented in chapter 7, and conclusions are drawn in chapter 8.



Chapter 2

Background

2.1 Introduction

Acoustic propagation through a flow has long been a research focus. A great

wealth of articles has been published since the end of the second world war both

in atmospheric and underwater acoustics. Following advances in acoustic forward

modeling capabilities, ray-based ocean acoustic tomography was formally suggested

as a means of remotely sensing ocean properties about two decades ago by Munk

and Wunsch [58]. Since then a significant body of work has been accomplished,

proving the feasibility of ocean acoustic tomography in deep ocean environments over

ranges of several hundreds of kilometers. Far from exhaustively reviewing the existing

literature (a fairly complete review of tomographic works can be found in Munk et

al. [57]) this chapter summarizes some of the key works relative to both the forward

and the inverse problem. The following section deals with the forward problem; the

inverse problem is discussed in the next section. An attempt is then made to shed

some light on contemporary research issues relative to the propagation of acoustic

waves through oceanic currents as well as to the ocean tomographic problem.



2.2 Propagation in a moving medium

2.2.1 Ray theory

The problem of wave propagation through a moving medium has been extensively

studied in a ray-theoretic context over the past fifty years. As early as 1946 an isen-

tropic wave equation governing propagation through an irrotational flow was derived

by Blokhintsev [5]. It was then extended to the case of weak shocks, i.e., pressure

and velocity discontinuities, by Heller [38]. A generalized form of the Eikonal equa-

tion and Snell's law were subsequently derived by Kornhauser for stratified media.

The case of an arbitrary moving and inhomogeneous medium was finally handled by

Ugincius ten years later [82]. An interesting study of ray kinematics by Thompson

led to a better understanding of the effect of current on ray trajectories [81]. The

effective velocity along a ray was shown to be the sum of the local current vector and

a vector normal to the wavefront, with magnitude equal to the local sound speed. It

was also pointed out that, due to flow advection, the tangent to the ray trajectory is

not strictly normal to the propagating wavefront. Various practical cases were inves-

tigated by Stallworth and Jacobson [77, 79, 78] and Franchi and Jacobson [27, 29, 28].

These studies showed the significant impact a small current fluctuation could have

on the acoustic field, owing to the non-linear dependence of the wave equation on

environmental conditions. Furthermore, the effect of fluid motion perpendicular to

the direction of propagation was shown to be negligible in the case of a transmis-

sion across a simulated geostrophic flow. On the other hand, horizontal sound speed

gradients induced by the geostrophic flow were not negligible. Propagation through

actual current profiles was investigated by Sanford [68]. The strong current shears

measured in the northern Sargasso sea were shown to have a significant refractive

effect on propagating rays. With the emergence in the late seventies of parabolic

equation techniques, the ray-theoretic approach was progressively abandoned.



2.2.2 Wavenumber integration

The wavenumber integration method, based on a spatial Fourier decomposition of

the acoustic field, has been the method of choice for atmospheric acoustic propaga-

tion. Although the atmospheric literature is rich in references to the so-called windy

wave equation, a few only will be mentioned here for their relevance to the underwater

propagation problem. A formal wavenumber integral representation was first derived

by Pridmore-Brown for the case of a temperature- and wind-stratified medium, theo-

retically demonstrating the existence of a shadow zone upstream of the receiver [63].

The problem of causality in the case of propagation near a flow discontinuity (vortex

sheet) was pointed out by Jones and Morgan [43]. Their analysis showed that solv-

ing the wave equation in the presence a vortex sheet lead to a non-causal solution,

and that if a causality constraint was applied the resulting acoustic field included

an unstable, exponentionally-growing interface wave at the flow discontinuity. This

problem will be discussed in chapter 3. More recently an exhaustive theoretical analy-

sis of propagation through moving media was carried out by Brekhovskikh and Godin

[7]. In particular the magnitude of the acoustic field generated by a point source in

a free moving space was shown to be isotropic. This result, which is at variance

with experimental results by Ingard and Singhal [41] and numerical computations by

Collins et al. [14], is discussed further in chapter 3. In addition, it must be noted

that all the formulations discussed above are implicit and not suitable for numerical

field predictions.

2.2.3 Parabolic equation

The parabolic equation (PE) method, first introduced by Hardin and Tappert in

1973 [36], has become over the past two decades an extremely popular tool for numer-

ical simulations. A collection of parabolic equations with different domains of validity

was developed by Robertson et al. in order to study current and current shear effects

[64]. Confirming ray-based studies, small currents were found to have a significant

impact on shallow water propagation. Furthermore, the effect of current could be



taken into account through an equivalent sound speed profile for low-shear currents.

In a subsequent study Robertson et al. showed vertical current variations could have

a substantial effect in an isospeed shallow water channel [65]. Finally, azimuthal cou-

pling was shown to be negligible in the far field when horizontal sound speed gradients

are small [66]. Another PE scheme was developed by Lan and Tappert in order to

study the effect of ocean currents on acoustic reciprocity [46]. Their results showed

the effect of current on both travel times and amplitudes of received signals are sig-

nificant and should be measurable with available measurement techniques. Finally, a

generalization of the adiabatic mode parabolic equation for three-dimensional acous-

tic waveguides in the presence of wind was recently made by Collins et al., showing

discrepancies in the literature relative to propagation in a medium with no boundary

interaction (see chapter 3).

2.2.4 Normal modes

The normal mode approach did not receive much attention until the eighties, when

a few studies were published in the russian literature. Mathematical expressions for

the acoustic normal modes of an isospeed atmosphere with a non-uniform wind profile

were first derived by Chunchuzov [13]. The case of an atmospheric waveguide with

linear wind and sound speed profiles was later studied by Ostashev [59]. A more

general formulation was developed by Grigor'eva and Yavor and applied to a prac-

tical oceanic waveguide [33]. It was shown that, similarly to high-frequency signals

in the ray-theoretic approach, small currents could have a significant impact on the

transmission loss of low-frequency signal for certain source/receiver configurations.

A practical numerical scheme was developed at about the same time by Porter in

order to solve the modified Sturm-Liouville problem relative to propagation through

moving media for the case of two-dimensional flow [62]. Porter however focused exclu-

sively on numerically estimatting eigenvalues of the two-dimensional Sturm-Liouville

problem. By contrast this thesis will derive the three-dimensional wave equation and

investigate how the presence of a stratified flow influences mechanisms of propaga-

tion both in a wavenumber-integral context and a normal mode context. Finally, an



extensive normal mode formulation was recently developed by Godin as an extension

of the wavenumber analysis he developed with Brekhovskikh [31, 7]. In particular the

eigenvalue problem was shown to formally reduce to that of the medium at rest by

using an equivalent wavenumber and an equivalent, wavenumber-dependent sound

speed. This thesis will draw on some of Godin's work in order to derive explicit

general expressions for the pressure field allowing numerical field predictions.

2.3 Acoustic tomography

2.3.1 Mesoscale temperature field

The effect of the oceanic mesoscale structure on ray arrival times patterns was

shown early on to be measurable yet stable. In particular ray-based propagation

models were found to be good predictors of the arrival structure [75, 76, 84]. This

meant ray identification and therefore tomography was possible. The first experiment

demonstrating the feasibility of ocean acoustic tomography was performed in 1981

by the Ocean Tomography Group [3]. An ocean mass of 300km by 300km south-

west of Bermuda was mapped using 224-Hz M-sequence signals. A good agreement

was found between the acoustically-derived sound speed maps and independent CTD

measurements, although mapping error levels were found to be too high for oceano-

graphic purposes [18]. A subsequent study by Mercer and Booker showed the ray

paths through an evolving mesoscale perturbation were not stationary [54]. Changes

in acoustic travel times were found in some cases to be non-linearly related to the

sound speed perturbation, resulting in ray-fading, i.e., the appearance and disappear-

ance of some ray trajectories depending on the evolution of the mesoscale structure.

Their study also showed a single source-receiver pair could yield range information

relative to the mesoscale structure. This was later confirmed by Howe et al. in the

course of the RTE83 experiment [40]. In addition, Howe showed that by using receiver

arrays rather than single receivers the variance of the sound speed estimate could be

substantially lowered. The range information content of acoustic tomographic signals



was further investigated by Cornuelle and Howe [16]. Due to the spatially periodic

structure of ray propagation in a typical deep ocean environment, acoustic rays were

found to act as a spatial high pass filter. Features of scales as small as 10km were

recovered using simulated tomographic data at ranges of 600km. In order to over-

come the high uncertainty associated with the traditional tomographic estimates,

Cornuelle et al. suggested using moving (shipborne) receiver [17]. Numerical sim-

ulations showed the use of a moving receiver in addition to moored acoustic arrays

yielded a residual sound speed variance of 1 to 5%, compared to typically 50% for

the original 1981 tomography experiment.

2.3.2 Currents and tides

The development of current tomography parallels that of sound speed tomography.

Whereas sound speed tomography relies on the mean travel time between a source

and a receiver in the ocean, current tomography relies on the difference between

upstream and downstream arrival time along a source-receiver pair. Current tomog-

raphy is therefore based on reciprocal transmissions, in which sound is transmitted

in both directions along a source-receiver transect. The first reciprocal transmission

experiment (RTE83) was implemented in 1983 in the Atlantic Ocean west of Bermuda

[40]. Upstream and downstream ray paths were found to be nearly reciprocal. A good

agreement was observed between the acoustically-derived baroclinic current profiles

and geostrophic velocity profiles inferred from XBT and AXBT measurements. Un-

like the sound speed tomography case, adding receivers in depth was found to have

no effect on the accuracy of the baroclinic and barotropic current estimates, as the

estimated sound speed error was larger than the a priori current error [39].

A 1981 study of tidal effects by Munk et al. on long range travel time variability

synthesized the results of three different acoustic experiments performed at ranges

varying from 300km to 900km [56]. Although the interpretation of tidal fluctuations

was found to be varied and complex, Munk suggested these fluctuations could be

used to monitor deep-sea tides. Actual tidal tomographic measurements however



were not peformed until the 1987 Reciprocal Tomography Experiment, the results

of which were analyzed by Dushaw [22]. Tidal constituents were computed using

acoustic data from 1000-km transmissions across the central North Pacific Ocean.

The acoustic tidal estimates were found to be in good agreement with those com-

puted using current meter data and tidal models. A similar study by Headrick et al.

showed tidal signals could be successfully extracted from 4000-km transmissions in

the Pacific Ocean between Oahu and California [37]. Finally, analysis of Gulf Stream

tomographic data by Chester et al. confirmed the unique capabilities of acoustic to-

mography for measuring the relative vorticity of eddy fields as well as eddy energy,

Reynolds stresses and vorticity spectra [9].

2.3.3 Coastal techniques

While acoustic tomography in deep ocean environments is now well-established, its

application to coastal environments raises environmental as well as signal processing

issues. The spatial and temporal scales in coastal environments are substantially

smaller than that of the deep ocean, therefore increasing the complexity of the acoustic

signal as well as its variability. The nature of acoustic propagation itself changes as

bottom effects become paramount. In shallow water waveguides ray arrivals tends

to cluster and overlap one another. Ray identification becomes significantly more

challenging owing to this overlap as well as to poorly modeled bottom effects. Acoustic

transmissions across the Florida Straits were analyzed by DeFerrari [21]. The ranges

involved were approximately 25 to 45 km; the ocean waveguide was approximately

500-m deep. Arrival overlapping was dealt with by tracking the envelope of ray

clusters instead of individual rays. The envelope arrival time was then used to infer

the average temperature (one-way transmissions) and the average current (two-way

transmissions) across the acoustic propagation path. A fairly good agreement was

observed with local non-acoustic measurements. Using the same data set, Ko et al.

subsequently computed estimates of the current vorticity in this region [45].



More recently a formal tomographic scheme specifically dedicated to coastal envi-

ronment, Coastal Acoustic Tomography (CAT), was developed by Chiu et al. [11, 12].

In order to overcome the problem of arrival overlapping, CAT uses vertical arrays pro-

viding some arrival angle information. It then combines modal arrival times as well as

beamformed ray arrival times in the tomographic inversion. This scheme was recently

applied during the Barents Sea Polar Front experiment. Low frequency signals were

transmitted in a shallow, 200-m deep waveguide across a strong front at a range of

about 30 km. The resulting range-depth tomographic maps were found to be in good

agreement with concomitant CTD measurements [60].

Finally, acoustic scintillation was recently presented by Crawford et al. as a method

for acoustically measuring currents over short ranges (less than 2km) [20]. By esti-

mating the cross-correlation between two nearby receivers, the magnitude of the flow

perpendicular to the direction of propagation can be measured. The experimental

feasibility of this concept was demonstrated by Farmer and Crawford using a 67-kHz

source across a 700-m long well stirred tidal channel, and by Menemenlis and Farmer

using a 172-kHz source over a distance of 200 m under the arctic ice cap [24, 25, 53].

2.4 Conclusion

While ray-based acoustic tomography has demonstrated its feasibility in the deep

ocean, its applicability to shallow water waveguides remains problematic. High fre-

quency transmissions become less deterministic due to the small scale variability of

coastal regions. Ray tracing is then highly sensitive to initial conditions. Low fre-

quency transmissions on the other hand are known to yield robust results in shallow

water environments. But the full wave field must be modelled as diffraction effects

become non-negligible, i.e. propagation may take a strong modal character. These

constraints lead to two different approaches to coastal tomography. The first approach

is that taken by Chiu et al.; as shallow water propagation exhibits both a ray-like and

a modal behavior, ray and mode arrival times are combined in order to increase the



amount of information taken into account by the inversion. Furthermore the inclusion

of both rays and modes allows the tomographic scheme to capture equally important

mechanisms of acoustic propagation through shallow water waveguides. The second

approach, although theoretical and unproven in shallow water environments, uses

Matched-Field Processing (MFP) techniques in order to recover the environmental

information buried in the acoustic signal. Being a full field method, MFP has the

potential to yield high-resolution estimates although its use has been limited so far

by limitations of the available forward models as well as limitations of the available

a priori environmental information relative for instance to bottom properties.

Regardless of the relative merits of the two approaches, both assume an accurate

forward model of shallow water propagation is available. As discussed in the first

section of this chapter, the mechanisms of propagation through a moving medium

are still only partially understood. Insofar as currents effects in the Haro Strait ex-

periment might in some cases be as strong as temperatures effects, this aspect of the

forward problem demands further investigation. It must be noted that whereas nu-

merical simulations of propagation through a current can be reasonably well handled

by ray-based and parabolic equation codes today, neither is satisfactory for shal-

low water environments. Diffraction effects are completely ignored by ray models.

Parabolic equation codes on the other hand might yield reasonable field predictions,

but at the expense of not comprehending the mechanism of propagation analytically,

depriving us of a powerful interpretative tool. In addition, parabolic simulations need

to be compared to other computations in order to ensure their validity. The modal

approach on the other hand seems extremely promising in spite of its difficulty. If

valid assumptions can be made in the case of ocean acoustics, the modal formalism

will lead to a deeper understanding of sound advection by currents and thus to more

efficient inversion algorithms.

In addition to the challenges raised by the forward problem, inverse techniques

have limitations of their own when applied to coastal environments. Deep ocean



techniques become inadequate as the nature of propagation and its variability change

significantly. Some inversion schemes such as CAT have produced encouraging results

when applied to actual data. However, modern coastal tomography techniques are

still very computationally intensive. The temporally evolving nature of the ocean is

generally not taken into account; the water mass is assumed to be frozen in time at

the time of propagation and past data is usually only indirectly taken into account

in the inversion. Other data sets acquired at the same time are not used in the inver-

sion, thereby forgoing the opportunity to exploit complementarity between different

datasets. As discussed in chapter 1, this thesis proposes to explore some of these

issues, both for the forward and the inverse problem.



Chapter 3

Forward propagation through a

stratified moving medium

3.1 Introduction

A shallow water high frequency tomography experiment was conducted in Haro

Strait (British Columbia, Canada) [72] in June 1996. Its goal was to demonstrate

the feasibility of real-time acoustic imaging of a tidal front, for which salinity and

temperature effects can be of the same order of magnitude as current effects. A nu-

merically accurate forward model is then required in order to develop any realistic

inversion scheme. The purpose of this chapter is to generalize the existing medium-

at-rest wavenumber integration and normal mode approaches [42] to the case of a low

Mach number, stratified flow within a single formulation directly related to measur-

able or computable quantities. This leads to a modified eigenvalue problem which

can be solved numerically by a simple modification of the code KRAKEN [61]. The

modified wavenumber integration scheme amounts to an equally simple modification

of SAFARI/OASES [69]. A modal closed-form solution based on the medium-at-

rest mode set is then derived assuming adiabatic propagation (no current-induced

mode coupling). These results are subsequently applied to simple scenarios for low

and high frequency sources. Acoustic fields computed by KRAKEN and OASES are

compared to one another. Their agreement with the closed-form solution is then



discussed. Finally, assuming full knowledge of the acoustic waveguide, the feasibil-

ity of a matched-field current tomographic inversion for a realistic environment is

investigated.

3.2 Analysis

3.2.1 The wave equation

The wave equation for a point source in a stationary layered medium can be ex-

pressed, using classical tensor notation, as [7] (p11 9 ):

( 1 p(x,t) 1 0 8 dUj OU S
S() - ( + Uj )2p(, t) + 2p = -S(t)6(x - x) (3.1)axj P Daj C2 at axj dX3 axj

where U and u are the local hydrodynamic and acoustic flow velocities. Environmental

range dependence is implicitely neglected throughout this paper unless otherwise

stated. The hydrodynamic flow is assumed to be incompressible (V U = 0), stratified

(U - - = 0) and depends on depth only. Current shear may be arbitrarily large.

Taking the Fourier transform of (3.1) with respect to time then leads to the modified

Helmholtz equation :

Od 0 0 M 02
[p (- ) + k2 + 2ikMj - 2i~ ( ) ]P(x, W) = -S(W)(x- xs)

(3.2)

where the Mach number M = U/c is assumed to be small and terms of order M2

and higher are neglected. The acoustic velocity was expressed to a first order approx-

imation as a function of Vp. The term in M - V represents convective transport of

the acoustic wave and usually is the dominant flow-related term. The second term

in M becomes significant at low frequencies when the current profile exhibits sharp

variations over distances of the order of a wavelength.



The terms in M in (3.2) can equally be thought of as source terms. In this case,

assuming the pressure field is the sum of a perturbation and a mean field, the solution

to (3.2) could be written as the three-dimensional convolution of a Green's function

with the three source terms expressed using the mean field [55]. This approach is

however limited by the fact that, as range increases, so does the pressure perturbation

and one can then expect the small perturbation assumption to break down for krM >

1.

Transforming (3.2) into cylindrical coordinates (r, 0, z), the derivatives with respect

to 0 account for azimuthal coupling. These terms are however of order at least 1/kr

compared to other flow-related terms and were shown to be negligible in the far field

in the absence of strong horizontal sound speed gradients [28, 66, 48]. Consequently,

(3.2) can be rewritten for a given azimuth as :

1 a 0 0 1 2 dM 02

S (r )+ ) + k2 + 2ikM - 2i ]p(r, z, w)=
r Or dr z pd z Or dz k rz

-S(w) 6() - ,) (3.3)
r

where M is from now on the projected Mach number U cos 9/c. Thus the inherently

3D problem of acoustic propagation through a moving medium can be reduced to

a series of 2D problems corresponding to different azimuths for low Mach number,

stratified flows.

3.2.2 Wavenumber integration representation

Azimuthal coupling being neglected, the 2D propagation problem can be inter-

preted as that of acoustic propagation through a perfectly symmetric waveguide.

The total acoustic field can then be decomposed into a sum conical waves using the



Hankel transform defined as :

p(kr, , w) = f p(r, z, w)Jo(krr)rdr (3.4)

Combining (3.3) and (3.4) yields the following modified depth-separated wave equa-

tion :

dd dd M d
d[p ) + 2 - k - 2kkM + 2k-d ( -- ) ]p(kr, Z, w) = -S(w)5(z - z,) (3.5)
dz p dz dz k dz

The first term in M accounts for current-induced refraction. The second term rep-

resents the effect of shear stress or equivalently vorticity. While the former is almost

always the dominant flow-related term, the latter may under certain circumstances

become non-negligible. The ratio of shear over current can be represented by the

shear number ( [65]:

1 1 dU 1
(= -max ( ) = (3.6)

k U dz kL

For deep water, the length scale L is typically 100m [68]. This means the shear

term can be neglected above 20Hz. For shallow water L may be as small as 10m

[65], making the shear term negligible above 200Hz. Below this limit, shear may be

neglected for long range propagation insofar as the vertical wavenumber is small, i.e.,

for low grazing angles. The limit frequency is then given by c sin Oc/L where 0, is the

grazing angle of interest.

Assuming the current profile MA(z) is piecewise constant with respect to z, the

derivative of M with respect to z vanishes almost everywhere. Equation (3.5) there-

fore becomes identical to the classical depth-separated equation [42] provided the

sound speed profile is replaced by the following wavenumber-dependent equivalent

sound speed profile :

c(z)1(z) = (3.7)



In contrast to previous expressions for an effective sound speed [65, 6], we take here

into account the anisotropic nature of propagation, do not require that any derivative

of the current profile be known and do not require any current-dependent mapping

of the depth variable. Singularities arising between constant current layers are han-

dled through the boundary condition, i.e., by imposing continuity of pressure and

continuity of the modified particle displacement [62, 6]:

S(z) = w(z) (3.8)
(1 - M(z))2)

The presence of current shear can therefore be taken into account by discretizing the

waveguide into isocurrent layers whose thickness is small compared to the acoustic

wavelength. The current discontinuity arising between layers is known to introduce

additional poles in the complex k, plane [43] at the approximate location (1 ± i)k/M

(for small M). Its effect on acoustic reciprocity is briefly discussed in section 3.2.4.

When the traditional integration contour is considered (upper half plane), the pres-

ence of these poles makes the resulting acoustic field non-causal. This lack of causality

can be seen as the effect of having a pole above the real axis. In the case of a Pekeris

waveguide for instance poles corresponding to leaky modes are displaced slightly

above the real axis, breaking in a much more dramatic fashion the causality of the

field. This effect is important for receivers located in the near field (for a discussion

of attenuation effects on causality, see [83, 30]). In the far field however this lack

of causality has no visible effect on the modelled signal. It will thus be ignored in

the rest of this paper. The approach presented here is numerically convenient as its

implementation requires a very simple modification of a wavenumber-integration code

such as OASES.



3.2.3 Normal mode representation

Ignoring the branch line contribution the pressure field can be decomposed as the

following sum of normal modes (in matrix notation) [42]:

p(r, z, w) = T (z)h(r) (3.9)

where h is the projection of p on i(z), and O(z) is the medium-at-rest mode set

associated with the eigenvalue problem :

d ld
[P ( ) + k2]0 = Aip

dz p dz

with the normalization condition :

o-D (z), T (z)dz = I

where I is the identity matrix. A is a diagonal matrix whose elements are the modal

eigenvalues k2,. Equations (3.3) and (3.9) can then be recombined as (see appendix)

1d d d S(w) 6(r)S (r ) + 2iK + A]h(r) = 0 (z,) (3.10)
r dr dr dr p(Zs) r

where the current coupling matrix K is defined as :

D  
D I dM dz

K = [mn] = I -kM T dz - (j) Tdz
oP o pdz k dz

Equation (3.10) is similar in many respects to that recently derived by Collins [14].

The first term in K is hermitian and accounts for current-induced refraction. The

second term explicitely accounts for the presence of shear in the flow. Their relative

importance is characterized by the shear number (. In some cases the current profile

is smooth enough and K can be considered diagonal. Propagation is then adiabatic

and a closed-form solution for p can be derived as shown in the next section. In



general however off-diagonal elements of K do not vanish. This mode coupling can

be induced by either current-based refraction (first term in K) or shear stress (second

term). Equation (3.10) in this case is a set of fully coupled equations. In order to

decouple them, one could try to diagonalize K and reformulate (3.10) in the eigenbasis

of K. This would however introduce coupling in A, which unfortunately has a different

set of eigenvectors.

Assuming shear stress is negligible, i.e., for small shear numbers, the difficulty out-

lined above can be circumvented by using a modified mode set. Current-induced

refraction is then taken into account in the mode set by solving the following eigen-

value problem :

d ld
[p ( ) + k2]p = (A + 2kMA1 /2)1 (3.11)

dz p dz

The normalization condition becomes :

f -l (z) '(z)dz = J, (3.12)
0DoP

1 if m = n
[J]mn =

0L p krn+krnm' m ifm n

Thus the modified mode set is no longer orthogonal. As shown below this however has

a limited impact on the approximate representation of the field. The main features

of the effect of current are captured by the modified set of eigenvalues for small Mach

numbers. Combining (3.11) with (3.3) and (3.9) then leads to the following modified

modal equation :

id d d S(w)6(r)
[J (r ) + 2iK + 2A1/ 2K + AJ]h(r) S(w) 6(r (zS) (3.13)

r dr dr dr p(zx) r



where K accounts for refraction only and is thus hermitian. This equation is satisfied

in the far field by the medium-at-rest solution :

h,(r) _ e-ir/4S(w) (z) eikr (3.14)

where 0n and k,, are solution to the eigenvalue problem (3.11). The accuracy of

(3.14) is of order M/lkr. The contribution of off-diagonal terms in J is of order

M/(kr)2. The eigenvalue problem stated in (3.11) can be numerically solved by a

code such as KRAKEN, simply by replacing k2 in the code by k 2 + 2kkM and by

using the modified boundary condition stated in section 3.2.2. The pressure field is

then obtained by summing up modes as one would do for a medium at rest. This

solution is compared to the wavenumber integration approach in section 3.3.

3.2.4 Adiabatic mode solution

Equation (3.10) can be conveniently reformulated in the wavenumber domain as :

(k + 2krK - A)h(kr) = (z) (3.15)
p (z)(3.15)

where h(kr) is the transform of h(r). The current coupling matrix K includes again

both the effect of current refraction and current shear. The solution to this equation

is :

h(kr) =- S(w)(krI + 2krK - A)- ~ (z) (3.16)

The matrix inversion can be performed analytically if terms of order K 2 and higher

are negligible, i.e., for low Mach numbers and low to moderate shear (( < 1). A first-

order coupled-mode expression for p can then be derived. However, this procedure

appears to be numerically unstable and remains a topic of current research. In some

cases the current profile is smooth enough with respect to depth so that mode-coupling

can be neglected (adiabatic propagation) and K becomes diagonal. The wavenumber



domain pressure h(kr) can then be simplified and its components become :

S(w) ,(Zs,) (z) (317)
p(z , ) (k, + inn)2 - k(1

In this form it becomes apparent that the effect of current is to shift poles of the

Green's function by rnn in the complex kr plane. This pole translation is a funda-

mental property of moving waveguides which does not depend on adiabaticity. In the

adiabatic case the translation is parallel to the real axis and can be characterized by a

simple expression. This shift is the very reason acoustic reciprocity is broken, as poles

are no longer symmetric with respect to the imaginary axis (see figure 3-1). When

current discontinuities are present additional poles appear on the right half-plane as

pointed out in section 3.2.2, making the asymmetry even stronger.

In order to compare (3.16) with results previously found in the literature, let us

assume that the coupling matrix K is diagonal, i.e., the current profile is approxi-

mately constant. Substituting the inverse Hankel transform of (3.16) in (3.9) leads

then to :

(r,z,) () w n (Zs)n(z)H()((krn - Kin)r) (3.18)

If M is constant this expression becomes identical to that derived by Schmidt and

Kuperman for a source and receiver moving at the same speed in a medium at rest

[73]. Bearing in mind that mode coupling is neglected, the previous result can be

generalized to the case of weakly range-dependent flows M (r, z)

p((, Z, )n(Zs)n(Z) =x H k
p(r, ) = 4p(z) Cn(z)n(z) H i)(knr- (r')dr') (3.19)

The notion of weak range dependence is voluntarily left undefined as a precise validity

statement for the heuristic expression above lies beyond the scope of this thesis.

Hence in the case where mode-coupling can be neglected, the effect of an arbitrary

range-independent stratified current profile is modelled by a simple modal wavenum-
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Figure 3-2: Shallow water waveguide with a uniform current of 100m/s in the water column.

Two kinds of bottoms were considered : rigid and fluid.

ber shift. Having computed the normal modes {1,} with a code such as KRAKEN

[61] the coefficients {n~} can be straightforwardly evaluated and included in sum

(3.18), yielding an adiabatic estimate of the acoustic pressure field in the presence

of a stratified flow. However, as shown in the next section, this result is limited to

smooth current profiles and no bottom penetration.

3.3 Numerical results

Practical applications of the wavenumber and normal mode representations are

presented below for two simple isovelocity waveguides. Versions of KRAKEN and

OASES modified as indicated in the previous section are compared for a low fre-

quency scenario. A high frequency source for a similar environment is subsequently

considered. In both cases the validity of the closed-form solution outlined in section

3.2.4 is discussed. A simple application to matched-field current tomography is then

presented.

3.3.1 Low frequency case

Rigid bottom The case of a 10Hz omnidirectional source in a rigid bottom waveg-

uide with a uniform current in the water column is considered here (see figure 3-2).

An unrealistic current speed of 100m/s is chosen here in order to emphasize the

air



qualitative features of the acoustic field. A single mode is propagating in the water

column. As no energy is exchanged with the bottom, this is somewhat akin to a cylin-

drical wave propagating in free space. As shown on figure 3-3 the current-modified

versions of KRAKEN and OASES as well as the modal closed-form solution agree

to within 1dB beyond 1km in range both upstream and downstream. The acoustic

field is, for all practical purposes, axisymmetric as shown figure 3-4. This result is

at variance with previous experimental measurements by Ingard and Singhal [41], as

well as with numerical simulations recently performed by Collins [14]. On the other

hand figures 3-3 and 3-4 are in agreement with Godin's result for a spherical wave

in free space [7]. Ingard and Singhal's result is based on single mode propagation

through a duct. A careful examination of their analysis shows shear effects near the

duct boundaries were completely ignored in spite of their physical relevance. Their

measurements showing asymmetry between upstream and downstream propagation

appears, in light of the present analysis, to be due to these strong shear effects taking

place at the surface of the duct. Following discussions between Collins and the author

of this thesis, the parabolic equation computations of the former were shown to be

biased due to an energy conservation problem and now agree with figures 3-3 and 3-4

[15]. Consequently, the magnitude of the acoustic field generated by a point source

in a uniform flow in the absence of boundary interaction is isotropic, i.e. azimuthally

symmetric. This of course does not apply to the phase of the acoustic field.

Signals received 5km upstream and downstream at the same depth (50m) were

computed using OASES and are shown figure 3-5. The difference in arrival times

matches the theoretical value of 0.4s. Amplitudes are identical, as expected from

figure 3-4.

Fluid bottom The same source is now placed in a waveguide of identical dimensions

with a fluid bottom (see figure 3-2). The outputs of KRAKEN and OASES are

compared in figure 3-6 and show very good agreement with each other, whereas a

large discrepancy with the closed-form solution can be noted. Although no azimuthal
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Figure 3-3: Transmission loss vs range for a 10Hz source in a free/rigid waveguide with a
uniform current (100m/s) flowing towards positive ranges. Solid line : KRAKEN. Dashed
line : OASES. Dash-dotted line : closed-form solution.
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Figure 3-4: Transmission loss vs azimuth for a 10Hz source in a free/rigid
a uniform current (100m/s) flowing eastwards. Receiver depth : 50m.
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Figure 3-5: Received signal for a source signal of bandwidth 20Hz and center frequency
10Hz. in a free/rigid waveguide with a uniform current (100m/s). Receiver depth : 50m.
Receiver range : 5km. Solid line: receiver is upstream. Dotted line : receiver is downstream

coupling was taken into account, the nature of the bottom has a clear impact on

the azimuthal dependence of the acoustic field. In particular the bottom reflection

coefficient is going to be lower downstream due to a decreased equivalent sound speed

contrast at the interface, resulting in a higher level of energy transmitted in the

bottom and a larger transmission loss in the water column. The transmission loss

pattern in the horizontal plane is dictated by this mechanism (see figure 3-7). This

furthermore provides an interpretation of the failure of the closed-form solution to

match KRAKEN and OASES's result : based on the medium-at-rest mode set, this

solution merely shifts modal wavenumbers by a certain amount and does not take

into account changes in the bottom reflection coefficient.

Similarly to the rigid bottom case, time arrivals are shifted by roughly half a second

(see figure 3-8). As expected from figure 3-7 the upstream signal is stronger. It is

preceded by a head wave, which reaches the receiver at the same time regardless of

the direction of propagation since the bottom is azimuthally symmetric.
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Figure 3-6: Transmission loss vs range for a 10Hz source in a free/fluid waveguide with a

uniform current (100m/s) flowing towards positive ranges. Full line : KRAKEN. Dashed

line : OASES. Dash-dotted line : closed-form solution
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Figure 3-7: Transmission loss vs azimuth for for a 10Hz source in a free/fluid waveguide

with a uniform current (100m/s) flowing eastwards. Receiver depth : 50m.
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Figure 3-8: Received signal for a source signal of bandwidth 20Hz and center frequency
10Hz. in a free/fluid waveguide with a uniform current (100m/s). Receiver depth : 50m.
Receiver range : 5km. Solid line: receiver is upstream. Dotted line : receiver is downstream

3.3.2 High frequency case

The high frequency shallow water environment considered in this section is shown

in figure 3-9. Its features are very similar to that of the Haro Strait tomography

experiment (British Columbia, Canada) [72]. Upwelling however is explicitely ne-

glected. The current magnitude is chosen ten times larger than its actual value in

order to emphasize qualitative features of the acoustic field. The time-domain output

of a vertical line array spanning the entire water column was computed separately

by KRAKEN and OASES. The corresponding synthetic I/Q demodulated time series

shown in figures 3-10 and 3-11 exhibit a remarkable agreement. The array range is

2km. The bottom is at a depth of 225m. The different types of wave predicted by

Jones and Morgan [43] are present as outlined on figure 3-10 : a primary wave in the

non-moving layer (45 to 225m), various specularly reflected waves, a transmitted wave

in the moving layer (0 to 45m) and a head wave linking the transmitted and direct

waves. The gray scale is in Pascals. No unstable interface wave is present since we



did not impose any causality constraint. Numerical noise caused by wrap-around is

absent of the OASES output as a complex frequency was used in the Fourier synthesis

[42].

The modal closed-form solution output is plotted in figure 3-12 and shows a strong

discrepancy with the previous numerical solutions. The transmitted wave and the

head wave have vanished. In addition the whole primary wave front is shifted slightly

towards earlier arrivals. This stems from the fact that the wavenumber shift "n" is

proportional to the current velocity integrated over the entire water column. The

current profile being sharp enough to break the orthogonality of the medium-at-

rest mode set, the current coupling matrix K in equation (3.10) can no longer be

considered diagonal. It is worth noticing that this coupling depends on the current

profile and not its magnitude, which can be factored out. In other words the pertinent

variable from an acoustic perspective is not the current magnitude but its length

scale L as defined in section 3.2.2. More generally, current effects are averaged over

the entire water column in the adiabatic approach and mode shapes remain those

of the medium at rest. It is then impossible to observe any transmitted or head

wave regardless of the current magnitude, because the adiabatic representation is

fundamentally unsuited to describe the relevant propagation mechanisms.

An important consequence of this result is that if the medium-at-rest mode set

is to be used, e.g. for tomographic purposes, the propagation cannot be considered

adiabatic. Modes are then inherently coupled through K and expression (3.16) must

be used. In terms of computational efficiency this makes the forward as well as the

inverse problem at least one order of magnitude more intensive.

3.3.3 Matched-field current tomography

Reciprocal matched-field current tomography can be simulated as described in [42]

using the model developed in this paper. Two vertical receiver arrays are moored 2km

apart and consist of 32 elements equally spaced along a cable spanning the upper 100m
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Figure 3-9: High frequency shallow water waveguide with a uniform current (15m/s) in
the upper 45m. The transition zone is 10m deep (40 to 50m).
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Figure 3-10: KRAKEN synthetic data : signal received at 2km for a 1kHz source of
bandwidth 200Hz in a free/fluid waveguide with a uniform current (15m/s) in the upper
45m. The transition zone is 10m deep (40 to 50m).
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Figure 3-11: OASES synthetic data: signal received at 2km for a 1kHz source of bandwidth
200Hz in a free/fluid waveguide with a uniform current (15m/s) in the upper 45m. The
transition zone is 10m deep (40 to 50m).
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Figure 3-12: Closed-form solution synthetic data: signal received at 2km for a lkHz source
of bandwidth 200Hz in a free/fluid waveguide with a uniform current (15m/s) in the upper
45m. The transition zone is 10m deep (40 to 50m).
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of the water column (similar to the high frequency scenario, see figure 3-9). A 55m-

deep source on each array transmits a CW signal at 8 different frequencies equally

spaced from 200 to 250Hz. The source level is 120 dB re 1 Pa. Both sources transmit

alternately so that reciprocal transmissions are available for the eight frequency bins.

Replicas of the channel response function are generated by KRAKEN for various

current velocities and various current layer depths. Each replica is then subtracted

from its reciprocal counterpart, so that the quantity matched is the coherent difference

in acoustic pressure between upstream and downstream propagation.

The true current layer extends from 0 to 45m. The actual transition zone goes

from 40 to 50m. Current shear can then be neglected as argued in section 3.2.2. The

true current magnitude is 1.5m/s and the true current depth is 45m for MFP pur-

poses. The corresponding broadband ambiguity surface, generated using a minimum-

variance beamformer, is the frequency average of the output in decibels of an MLM

beamformer [1](see fig. 3-13). The true current velocity and current layer depth can

be resolved with an accuracy of +/-0.1 m/s and +/-5 m, respectively. The depth

resolution is limited by the smooth transition zone from 40 to 50m where the true

current goes from 1.5m/s to Om/s. The width of the main lobe is extremely narrow

considering that the Mach number is very small (0.001).

Environmental mismatches are known to dramatically decrease the performance of

MLM beamformers [35]. This is due to the fact that the MLM main lobe is extremely

narrow at high signal-to-noise ratios, making this beamformer highly sensitive to any

parameter offset. Bartlett beamformers on the other hand have a good mismatch

tolerance at the expense of an increase in main lobe width. In the case of current

tomography, the Bartlett main lobe is so wide that no current inversion is possible.

Since the MLM beamformer degenerates into a Bartlett beamformer at low signal-to-

noise ratios, artificially increasing the level of noise in the data provides the means of

controlling the MLM mainlobe width. By increasing the noise level we are effectively

destroying information, degrading the array gain but also decreasing the sensitivity
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Figure 3-13: Ambiguity surface for a vertical 32-element receiver array (dB scale). Receiver
range : 2km. Source frequency : 200-250kHz. Current velocity : 1.5m/s. Current layer
depth : 45m. MLM beamformer. White noise level : -50dB.

to mismatch while achieving a controllable main lobe width. The ambiguity surface

for a white noise level of 40dB is shown in figure 3-14. The velocity resolution is

expectedly somewhat lower than that of the no noise case (about +/-0.2m/s). The

depth resolution remains unchanged. The same ambiguity surface is shown in figure 3-

15 in the case of a range mismatch of 2m and a bottom mismatch of 25m/s. The range

mismatch corresponds to an error of 1.3ms in travel time assuming a high frequency

range positioning device is available. The main lobe level is 5dB lower than in the no

mismatch case, and the -8dB ambiguity ridge is only 3dB below, making the inversion

less accurate. Adding more noise to the data would broaden the main lobe, making

it even less distinguishible from the -8dB ridge. Less noise on the other hand would

lower the main lobe further below.

Shallow water current tomography appears to be an achievable goal provided ac-

curate information about the medium is available. This result is at variance with

Godin's result for the deep ocean case [32]. Godin considered a 50Hz CW signal with
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Figure 3-14: Ambiguity surface for a vertical 32-element receiver array (dB scale). Receiver
range : 2km. Source frequency : 200-250kHz. Current velocity : 1.5m/s. Current layer
depth : 45m. MLM beamformer. White noise level : +40dB. Contour lines are 2dB apart.
Main lobe level: OdB.

a range mismatch close to one wavelength and showed that reciprocal matched-field

tomography was not feasible if mismatches were present. The present paper however

assumes the source is broadband (200-250Hz) and the range mismatch is only one

third of a wavelength. Furthermore we use an MLM beamformer where Godin simply

looked at the normalized difference between the actual and the synthetic field.

3.4 Conclusion

The classical depth-separated and modal equations have been modified to account

for the effect of a low Mach number, horizontal, depth varying current profile. It has

been demonstrated that these equations can be solved by making minor modifications

of existing wavenumber integration and normal mode codes. Numerical results for low

and high frequency sources in a simple waveguide show a high degree of agreement

between the two solutions, and confirm previous theoretical results [43, 7, 73]. An
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Figure 3-15: Ambiguity surface for a vertical 32-element receiver array (dB scale). Receiver
range : 2km. Source frequency : 200-250kHz. Current velocity : 1.5m/s. Current layer
depth : 45m. Range mismatch : 2m. Bottom sound speed mismatch : 25m/s. MLM
beamformer. White noise level : +40dB. Contour lines are 2dB apart. Main lobe level :
-5dB.



analytical solution was also derived based on the mode set of the medium at rest.

In so doing the waveguide propagation was however assumed to occur adiabatically.

Comparison with the numerical model presented in this paper shows this assumption

breaks down if there is bottom penetration or if the current profile exhibits sharp

variations with respect to depth. The theoretical feasibility of reciprocal matched-

field current tomography is then demonstrated. Assuming accurate knowledge of the

acoustic waveguide, a current velocity of 1.5m/s can be measured at a range of 2km

with a resolution of 0.2m/s using a multi-tone CW signal spanning 200-250Hz.



Chapter 4

Inverse problem analysis

4.1 Introduction

Although reciprocal coherent matched-field processing was suggested in the pre-

vious chapter as a theoretically feasible inversion scheme for the Haro Strait envi-

ronment, practical and experimental constraints have led to the development of an

inversion scheme along substantially different lines. In order to reliably model acous-

tic propagation in the actual Haro Strait environment, direct and surface ray arrival

times were extracted from the data set. The purpose of this analysis being water

column imaging, bottom effects were altogether filtered out and ignored. In order

to draw on the strengths of the various data sets available the inversion combines

acoustic and non-acoustic data. The resulting field estimate can then be thought of

as the best picture which can be produced in real time given the uncertainty and the

nature of the available data. The data sets available in Haro Strait were of two kinds:

acoustic data was provided by the three acoustic moorings deployed around the area;

non-acoustic data was provided by two current and temperature sensor arrays located

at two corners of the area surveyed. The inversion scheme presented in this chapter

takes advantage of these two different data sets. A more complete description of the

Haro Strait experiment will be given in chapter 5.



The inversion strategy can be summarized as follows: local current-meter mea-

surements are combined with acoustic array shape data by objective analysis, then

externally assimilated into a tidal model of the region in order to produce the cur-

rent field estimate. The sound speed profiles computed by Gauss-Markov inversion

of the acoustic data are subsequently combined with local non-acoustic temperature

and salinity measurements through objective analysis again in order to produce the

sound speed field estimate. The advantages and limitations of this approach will be

discussed in chapter 6 and 7.

4.2 Preliminary results

4.2.1 Maximum-likelihood estimation

The observation model of many oceanic field estimation problems can be written as:

y = bh(x) + n (4.1)

where y represents a vector of data points, e.g., pressure field values or ray travel

times; x represents the oceanic field being estimated, e.g., temperature or current at

different locations; and n represents additive noise. Although n is in general also a

function of x, it will be assumed here to be independent of x in order to make the

analysis tractable. The function h is in general non-linear. The factor b accounts for

multiplicative noise terms such as phase randomization. All four random terms are

assumed to be jointly Gaussian. Individual distributions are as follows:

y - N(yo, RyY) (4.2)

b ~ N(O, a2) (4.3)

x N(xo, Rxx) (4.4)

n N(O, Rnn) (4.5)



where N(O, I) is the standard vector normal probability density of mean 0 and co-

variance I. The random variables b, x and n are further assumed to be statistically

independent of one another. Using classical Bayesian analysis the maximum a poste-

riori estimator of x can be derived as:

XML = argmax [py(ylx)p (x)] (4.6)

where p,(.I.) is the probability density function of y conditionned on x, and px is the

probability density function of x. Combining equations (4.2) to (4.6) leads to the

following expression for XML (see appendix):

XML = argmin[(y - ph(x))t (Rnn + ah(x)h(x)t) - 1 (y - ph(x))

+ (x - xo) t R - (x - xo)] (4.7)

Expression (4.7) can be simplified in a number of cases.

Case 1: Travel time tomography

In the case of perturbational travel time tomography, the transfer function h(x) is

linear and can be written as Hx. The phase randomization term is assumed to be

deterministic; its mean / is equal to 1 and its probability density function tends to a

Dirac delta function as ao tends to zero. Equation (4.7) then becomes:

XML = argmin[(y - Hx)t R - 1 (y - Hx) + (x - xo0 )t R - 1 (x - xo)] (4.8)

which can be solved analytically as [57]:

XML = xo + K(y - Hxo) (4.9)

K = RxxH t (HRxxHt + Rn) - 1 (4.10)



and the error covariance matrix of the estimate XML is:

PX = (I - KH) Rxx (4.11)

Case 2: Matched-Field Tomography

In the case of Matched-Field Tomography the transfer function h(x) represents the

Green's function of a given source-receiver pair, and is strictly non-linear. The phase

randomization term is zero-mean, i.e., 3 is equal to zero. The model vector x is

now assumed to be a unknown, non-random parameter. Its inverse covariance matrix

therefore tends to zero. In scalar terms the variance of x tends to infinity as no a

priori information is available. Equation (4.7) becomes then:

XML = argmin [yt (Rn + o'h(x)h(x)t)-' y (4.12)

As h is strictly non-linear, 'ML is likely to be biased and its variance will not be

minimal. For these reasons 'ML is replaced in practice by its so-called minimum-

variance counterpart:

XMV = argmin [h(x)t (Rn, + o~h(xo)h(xo)t) h(x)] (4.13)
x

which can be derived in a linear systems context [1]. The minimum variance estimator

is a valid estimator, i.e., it does not require prior knowledge of x0, as the covariance

matrix [Rn + h(xo)h(xo)] is estimated using the data y.

4.2.2 General inverse formulation

Oceanic fields such as temperature and current are estimated using a priori as well

as a posteriori information. A posteriori information refers to measurements made

locally or globally, using intrusive as well as remote-sensing techniques. The data

thus gathered can be related to the field being estimated through an observation

model. Although this observation model is often non-linear, e.g., the Matched-Field



Tomography case, it may be cast in a linear form under certain circumstances, namely

in the cases of local field measurements and perturbational travel time tomography.

Equation (4.1) then becomes:

y = Hx + n (4.14)

This system of equations may include several types of data measured at different

locations in space and time. A priori information about the field x is provided by a

statistical characterization of x, y and n, and by the state model:

Bx = f (4.15)

where the operator B relates the forcings and boundary conditions f imposed on a

given oceanic region to the field x being estimated. In some cases, e.g., using a finite-

difference scheme, (4.15) can be cast in a linear form and subsequently combined with

(4.14). This leads to a global linear inverse problem in which the field is estimated by

interpolating the available data y while taking into account the statistics of the model

and the data as well as the physical equations governing the evolution of the field of

interest. This approach is unfortunately intractable in many cases, either because of

the large size of the matrices involved, or because the physical model B is simply not

linearizable over the space and time spans involved.

Assimilating oceanic data into models has been the object of intense research ef-

forts by the oceanographic community over the past 15 years. Many assimilation

techniques have been developed, and the reader is refered to [51, 57] for an exhaus-

tive description of the various methods available today. For a variety of reasons

discussed in Chapter 1 the present study focuses on linear melding techniques in or-

der to combine different types of data as well as data and models when the latter are

available. More specifically, the assimilation technique used in this chapter is based

on optimal interpolation [51]. Optimal interpolation is performed in two stages:



* Objective analysis: the available data are combined through equation (4.14)

and a data-only estimate of x and its associated error covariance matrix P,. are

computed using (4.9) and (4.11). In an oceanographic context, where y consists

mostly of sparse, local measurements of x, objective analysis is interpreted

as regridding the data on a regular grid using a Gauss-Markov interpolation

scheme. In a perturbational acoustic-tomographic context, objective analysis is

viewed as performing the tomographic inversion itself.

* Blending: the data-only estimate of x and its theoretical prediction are linearly

combined in order to produce the final field estimate. The respective weights are

assigned using error estimates. This step is also refered to as external melding,

as it does not require any additional model run making use of the data.

The following section describes the various observation models used with the Haro

Strait data set. These models are the necessary components of the objective analysis

stage.

4.3 Observation models

The current and temperature (sound speed) fields are probed using acoustic means,

which are global in nature, or non-acoustic means, which are local in nature. Although

the two types of data may appear to be fundamentally different they are only different

projections of the same field being measured, namely sound speed or current. In order

to be able to reconstruct the original field which generated the data set, the observa-

tion process must first be understood and modeled. An observation process typical

of the Haro Strait experiment is shown in figure 4-1. Local non-acoustic probing of

current and sound speed is symbolized by the two "local sampling / IOS" boxes.

The observation consists simply of directly measuring sound speed and temperature

at a given point in space and time, with some noise added to it. The current field

is also locally measured by the acoustic array displacements. Array displacements

are measured by acoustic probing, which itself also provides a global measure of the



sound speed and current field.

As the reader may guess the mix of local/global and acoustic/non-acoustic data

eventually leads to an observation system which is non-trivial. In order to be able

to combine the various data sets and estimate the original sound speed and current

fields each individual part of the observation process must be carefully modeled.

Three individual observation models need to be developed:

* an acoustic sensor model, relating the acoustic array displacements to the local

current field perturbation.

* a current model, relating local non-acoustic current measurements to the current

field perturbation. Incidentally this model will assume a form very similar to

that of the local non-acoustic sound speed observation model.

* an acoustic model, relating ray travel time perturbations to the global sound

speed field perturbation

Each individual observation model will also incorporate a priori knowledge in the

form of first- and second-order statistical moments of both the additive observational

noise and the sound speed and current fields.

4.3.1 Sensor model

The horizontal displacements of a moored line array placed in a uniform flow can be

expressed as [44]:

r = a [z - bln(1 - )] v = af(z)v (4.16)
6r = [z c
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Figure 4-1: Measurement model of the sound speed and current fields through global
acoustic means (WHOI) and local non-acoustic means (IOS)

where v is a unit vector in the direction of the flow,

d
a =- (4.17)

D W
b = (4.18)

d w

c =- + L (4.19)
W

and d is the cable drag per unit length, w is the cable weight per unit length, D

is the drag of the subsurface buoy, W is the buoyancy of the subsurface buoy, L

is the total length of the cable. The coefficients b and c are true constants which

depend on the design of a given array. The coefficient a depends quadratically on

current magnitude and may be more conveniently expressed as a = aU2 , where U

is the current magnitude at the location of the array. An acoustic transmission in

the horizontal direction p will then be affected by the projection 6R of the array

displacements in that direction:

6R = af (z)(vTp) (4.20)



Let us now assume the uniform current U at the array can be decomposed into a

reference state Uov and a perturbation u'. Let us further assume the term vTp is

included in a. The coefficient a can then be expressed as:

a = ao + a' = ao + 2aUo(vTp)vTu '  (4.21)

where the subscript o refers to the reference state and second-order terms have been

neglected. In the case of short range transmissions, an acoustic estimate ~i of a' can be

easily computed by minimizing the mean square error between measured ray arrival

times at the array and their theoretical value using an adequate sound speed profile

(uniform or historical average) and a reference current vector Uov. The measured

array shape perturbation can be written as:

a = 2 Oa(vTp)vTu' + na (4.22)

where the noise term na is assumed to be Gaussian. Equation (4.22) establishes a

direct linear relationship between the measured value a and the current perturbation

u' at the array.

4.3.2 Current model

An accurate three-dimensional, baroclinic finite-element model of tidal currents in

the Haro Strait region was recently developed by Foreman et al. [26]. In order to de-

crease the computational load involved in predicting local currents, a two-dimensional,

barotropic version of Foreman's model is used in this paper. The latter model is able

to properly account for 90% of the tidal flow variance at the SW IOS mooring and

72% at the NE IOS mooring in Haro Strait (see chapter 5). For the purpose of this

analysis, Foreman's model can be summarized as:

Uo = g(r, t) (4.23)



where Uo is the predicted tidal current at the location r at the time t. The predicted

field is used throughout the analysis as the background field. The current perturbation

u measured by the IOS current-meters can be related to the true value u' as:

ii = u' + nu,cm (4.24)

where the measurement noise vector nu,cm is assumed to be Gaussian.

4.3.3 Acoustic model

For a given source-receiver geometry acoustic travel times perturbations r can be

related to sound speed perturbations by the following linear expression [57]:

7 = Ec' + nu,a (4.25)

where the noise vector nu,a is assumed to be Gaussian of covariance matrix R(nn. In

order to reduce the number of degrees of freedom of the original inverse problem the

range-independent sound speed perturbation 6c(z) is decomposed using an arbitrary

set of orthogonal functions:

6c(z) = k(z)Tc '  (4.26)

In the present paper the functions qj(z) are assumed to be "gate" functions, set to

zero everywhere except within a specified depth interval [zj, zj+l] where it is set to

unity. These depth intervals are non-overlapping and cover the entire water column

(from 0 to 200m). The matrix E can then be expressed as:

[E]-ij - (zi) dsi (4.27)
y#i c(ri, zi)(42

where co is the background sound speed profile. The range ri and depth zi along the

ith ray are an implicit function of the ray curvilinear abscissa si.
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Figure 4-2: Flow chart of the current and temperature field estimation scheme

4.4 Inversion formalism

Now that relationships relating observed quantities to original fields have been

derived, the different data sets available can be combined in order to produce a field

estimate (see figure 4-2). In a first stage an estimate of the current field is computed

by objective analysis of the available current data [8]. The current estimate is then

externally melded with the tidal current model prediction following a standard data

assimilation procedure. The sound speed field is then objectively analyzed using

range-averaged acoustic tomographic estimates and local non-acoustic data.

4.4.1 Current inversion

Three types of information can be combined in the estimation of the current field:

point measurements of current at non-acoustic moorings, array shape acoustic es-

timates at the acoustic moorings and a priori predictions by the tidal model. The

available point measurements of current can be consolidated through equation (4.24)



as:

mu+,cmnz m (4.28)
u0,cm O I U'y,cm ny,cm

where the x subscript refers to the east-west direction and the y subscript refers to

the north-south direction. Similarly, the array shape data can be consolidated using

equation (4.22) as:

a = H 2  xa + nx,a (4.29)
u y,a ny,a

The matrices H 1 and H 2 are both diagonal and

[H1]jj =2aj (vTpj) j,x (4.30)

[H2]jj =2aj(v 'pj)v,y (4.31)

The term aj corresponds to the shape factor a of the acoustic array involved in the

jth transmission. Combining (4.28) and (4.29) leads to the global observation model

of the current field:

U'x,cm nx,cm

u UOx,a nx,a
U!  nx,jUx,cm I 1000O

u-,cm OOOI + (4.32)
U y,cm ny,cm[a] O H1 OO H2
U y,a ny,a

/ y,i ny,i

where u'x,i and u'y,i represent the current field perturbation interpolated at the nodes

of a specified grid. Equation (4.32) can be recast in a more compact format as:

u = Hu' + n, (4.33)



The covariances matrices R,, of ii and R() of n, can be computed using the space-

time correlation function F1 of the current field. The model covariance matrix in

(4.33) is defined by:

RU, = E [uniT] (4.34)

where the first half of u' includes East-West components and the second half includes

North-South components. Due to the complexity and the variability of the cross-

correlation between the East-West and North-South components, each component is

assumed to be uncorrelated with its counterpart. The model covariance matrix can

therefore be written as:

RU =1 (4.35)

and

[R,/yi j = ,x0/yPu(ri, rj, ti, tj) (4.36)

where ri and ti refer to the location in space and time of the ith node. The exper-

imental estimation of the correlation function Fu and the variances a 2  and U2 is

discussed in the next chapter.

Similarly the noise covariance matrix R2 is given by:

RUX O RTau,x
R(u) 0, Tu, (4.37)
R n = O R,, R T  I (4.37)

Rau,x Rau,y Raa

where the matrices Ru,/y are computed using the definition of Ru,/y with the actual

measurement locations. The covariance of the array shape factors d with the current



components uxly can be expressed as:

Rau,x = HIE [Ux,au T ] (4.38)

Rau,y = H 2E [UyaU] (4.39)

where H 1 and H 2 are given by (4.30) and (4.31) and the expectations by (4.36). For

simplicity's sake the covariance of array shape factors is assumed to be:

Raa = al2I (4.40)

where the standard deviation a, is estimated by comparison of the array shape data

with the predictions based on the tidal model (see chapter 5).

Once the covariance matrices are computed, equation (4.33) can then be inverted

as [80, 57]:

u' = Kuii (4.41)

where the gain matrix K, is given by:

KU = RuuHT (HRHT + Rn) - (4.42)

The associated error covariance matrix of the current perturbation estimate is [57]:

PU = (I - KuH)Ruu (4.43)

This concludes the first stage (objective analysis) of the current data assimilation

procedure.



The current perturbation estimate u' can then be merged with the model prediction

using the following melding scheme. The final field estimate at a given node r for a

given component is asssumed to be a linear combination of the predicted field and

the measured field [49]:

U(r) = (1 - A(r)) Uo(r) + A(r) (Uo(r) + U(r)) (4.44)

The north/south and east/west components are melded independently of each other.

Based on the statistical properties of the model and measurement errors a minimum

variance estimate of A can be derived [49]:

am(r) - p(r)am(r)ad(r)
AMv(r) = (r) + ad(r) - 2p(r)am(r)ad(r)

where am(r) is the estimated error of the model prediction Uo(r), ad(r) is the error of

the data-based perturbation estimate u'(r), and p(r) is the correlation between the

two. The measurement error ad(r) is given by the relevant diagonal term of P, in

equation (4.43). In the absence of an accurate error model of the current prediction

made by the tidal model, the optimal interpolation scheme used by the Harvard Ocean

Prediction System is adopted [51]:

Aoi(r) = Umax - Ud(r) (4.46)
Omax - Omin

where amin and Uma, are the minimum and maximum values of ad(r). The melded

estimate is therefore equal to the model prediction at points where the measurement

error is maximal, and is set equal to the measured estimate at point where the mea-

surement error is minimal. The robustness of this melding scheme was demonstrated

in several oceanographic data assimilation experiments [52].

4.4.2 Sound speed inversion

Two types of information can be combined in the estimation of the sound speed

field: point measurements of sound speed at the non-acoustic moorings and acoustic



travel times measured at the acoustic moorings. This is done in two stages: first the

acoustic travel times are used to estimate range-averaged sound speed profiles and

their error covariance along the available transmission tracks. These sound speed

profiles are then merged with the point measurements and interpolated in order to

yield an estimate of the sound speed field.

Similarly to the current inversion, the covariance matrix R( ) of the sound speed

perturbation in equation (4.25) can be estimated using the space-time correlation

function PF of the sound speed field:

R a) = a Fc(ri, rj , ti, tj) (4.47)

where ri refers to the location (depth) of the ith node of a given acoustic inversion

(single shot, range-independent). The times ti and tj are set equal to each other since

all nodes are estimated at the same time during the acoustic tomographic inversion.

The standard deviation ac can be estimated using CTD data (see chapter 5). The

acoustic noise covariance matrix R$n is modeled as:

Rnn = a R I (4.48)

where R is the source range and co a reference sound speed. The first term accounts

for local travel time errors induced by residual sensor displacements or local medium

variability. The second term accounts for the presence of current variations in depth

along the acoustic track, which are unaccounted for in the inversion. Both standard

deviations are estimated by statistical analysis of the data set available.

Equation (4.25) can then be inverted as [57]:

c' = K~)r (4.49)



where the gain matrix K a) is given by:

K a) = R)ET (ER)ET + R )l (4.50)

The associated error covariance matrix of the range-averaged sound speed estimate

is [57]:

p(a) = (I - K(a)E)R() (4.51)

The range-averaged sound speed estimate at a given depth z, can be expressed as:

c'(zo) = J 3(rsrc, r zo, 77)c'(rsrc + ?rrcv)d7 (4.52)

where rsrc and rrcv are the source and receiver location, c' is the true sound speed

perturbation. The weighting or ray sampling function / is given by:

(rsrc, rrcv, zo, r) = o O (zi) (4.53)
cos Oi

where 0o is a normalization factor such that 0(77) integrates to one between 0 and

1. The term qj is the orthogonal function of equation (4.27) corresponding to the

depth bin zo. The sum is performed over all rays joining the source and the array

of receivers. The local ray depth zi and the local ray grazing angle Oi are implicit

functions of r. The weighting function 3 is equal to 1 for a source and a receiver

located at the same depth in the absence of boundary interaction. The acoustic

profile estimates of several transmissions can be consolidated for a given depth as:

ca = Fc'i + nc,a (4.54)



where c'i is the interpolated sound speed field on a specified grid and nc,a represents

additive gaussian noise. The matrix F is given by:

[F]kj= (r ( , r ok) , Zo, 77k))'Aqk) (4.55)

where rI and rcv are the end points of the kth transmission, k) is the local non-

dimensional range corresponding to the jth node of the global interpolated grid ci and

A . k ) is the non-dimensional length of the jth cell intercepted by the ray considered.

Similarly to what was done for the current data, the sound speed perturbation E

measured by the non-acoustic moorings at various times can be related to the true

perturbation c' as:

Ccm = C cm + nc,cm (4.56)

where the measurement noise vector nc,cm is assumed

and (4.56) can combined to yield:

Ca j
I [ccm

to be Gaussian. Equation (4.54)

+ nc;M]
nc,a

(4.57)

which can in turn be recast in the more compact form:

& = Gc' + nc (4.58)

Equation (4.58) can be inverted using the method outlined for equation (4.25). The

model covariance matrix Rc ) of c' is defined as:

[R()]ij = Urc(ri, rj, ti, tj)

where ri and ti refer to the location in space and time of the ith node of the cor-

responding grid. A particular attention must be paid to the covariance matrix of



C. As pointed out by Cornuelle and Worcester, the covariance matrix of acoustic

sound speed estimates is often non-diagonal and significant errors can be induced by

neglecting covariance terms, which is often done in oceanographic data assimilation

[19] The noise covariance matrix Rn( used in the inversion of (4.58) is computed as:

[2I  o1
(c)]_ ICl O

[ Pc(a)J

The sound speed time series standard deviation Sc is estimated using the IOS mooring

data (see chapter 5). The relevant acoustic sound speed estimate error matrices P(a)

given by (4.51) are aggregated in P . The present method therefore allows error

correlations among different acoustic sound speed estimates of the same profile to be

taken into account by simply inserting the relevant terms of P(a) (equation (4.51))

into the covariance matrix of .

In the case of the Haro Strait data set the absence of a known source transmission

time made it necessary to include a global acoustic sound speed offset in the model

vector c' in equation (4.57), as only sound speed differences across depths and tracks

could be acoustically resolved. Equation (4.57) was consequently rewritten as:

LC Ocm j cLc
0= ic + ne,a (4.59)

AC nac

In the absence of any accurate model of the temperature and salinity fields in

Haro Strait the field estimate produced by objective analysis was taken as the final

field estimate. This can alternatively be viewed as an asymptotic case of blending

where the a priori variance of the predicted field is infinite and the blended estimate

is equal to the objectively analyzed estimate.



4.4.3 Computational issues

A flow chart of the complete current and temperature field estimation scheme is

given in figure 4-2. The acoustic sound speed profiles were first computed along each

propagation track and then melded with the non-acoustic data instead of being in-

cluded directly in the three-dimensional inversion for several reasons. Due to the

particular experimental configuration of Haro Strait, the acoustic inversion has virtu-

ally no resolution in range for a given shot. The acoustic data provides good resolution

in depth and across shot tracks. This information can be efficiently extracted by pro-

cessing shots individually before the global inversion. In addition the computational

load associated with a global three-dimensional inversion is of order O(N') for a grid

of dimension N3 . On the other hand the segmented three-dimensional inversion is

of order O(N 5) if carried out depth by depth, or even O(N 4) if a single depth or a

few selected depths are of interest. This decrease of the computational load by one

to two orders of magnitude is critical in enabling this inversion to be performed in

a few minutes (on a DEC-Alpha 3000) and then fed back to the sampling network,

in particular to the moving sources and AUV's. Segmenting the sound speed in this

manner also facilitates inversion quality control by enabling the operator to verify the

validity of the acoustically-derived sound speed profiles prior to melding with other

data sets. The computational load of the inversion is further decreased by clipping

the data sets. Data points within 3 correlation depths of the desired depth and ac-

quired during a period of 3 correlation times before the time of inversion are taken

into account. Other data points are discarded. The current field estimation was made

first. It was then used as background field in the sound speed estimation.

4.5 Conclusion

A hybrid linear inversion scheme was presented in this chapter. This scheme com-

bines global (acoustic) and local (non-acoustic) measurements while taking into ac-

count the specificities of each data set. Expressions were derived for the temperature

and the current field estimates as well as their expected covariance matrices. The



performance of this inversion will be assessed in chapter 6 using synthetic data.



Chapter 5

The Haro Strait experiment

5.1 Introduction

The experimental setup used in the Haro Strait experiment is described in this

chapter. The data conditioning procedures applied to the data before inversion are

presented for both the acoustic and the non-acoustic data. Acoustic sensor localiza-

tion is then discussed. Finally the current and sound speed correlation functions are

estimated for the water mass surveyed during the Haro Strait experiment.

5.2 Experimental configuration

5.2.1 Arrays

Four vertical acoustic line arrays (hereafter called WHOI moorings) were initially

deployed south of Stuart island (see figures 5-1 and 5-2). The southeastern mooring,

located near Danger Shoal, was lost at an early stage of the experiment because of

unexpectedly strong tidal currents. Each mooring consisted of 16 receivers, a 1.5-kHz

tomographic source and a 15-kHz communication source (see figure 5-3). A chain of

thermistors was added to moorings NW and NE. The acoustic data acquired on each

receiver array was sent back to shore via a surface radio link at a rate of 35 kbps.



Four non-acoustic moorings (hereafter refered to as IOS moorings) were deployed

along the Haro Strait channel (see figure 5-1). Local temperature, salinity, current

magnitude and current direction were recorded by these moorings at discrete depths.

Only the two IOS moorings closest to the network of acoustic arrays are used in this

analysis. The IOS mooring sensors were located at a depth of 25, 70 (NE only) and

120m. During the two-hour time period studied in this analysis, current magnitudes

of up to 3.5 kts and temperatures variations of up to 1.50C were observed.

5.2.2 Sources

The moving source consisted of ship-deployed light bulbs. Source locations were

obtained using differential GPS data, and the locations corresponding to the shots

used in this analysis are shown in figure 5-2. These shots were recorded on all three

moorings, and were all deployed within a time period of approximately 90 min-

utes. Source depths ranged from 30m to 70m. Source levels were approximately

160 tol70dB//1paPa. The light bulbs were lowered to a specified depth in the casing

apparatus shown in figure 5-4. The shot was then triggered by breaking the bulb at

depth using an operator-released lead mass that dropped along the cable from the

ship to the casing. Light bulbs generate a short reproducible bubble pulse waveform

whose spectral density is plotted in figure 5-5 for two different source depths. The

source spectral density was estimated by computing the spectrum of a single direct

arrival and averaging across several shots. The peak frequency is strongly dependent

on the depth of the source. It varies from 400 Hz to 600 Hz as the source depth goes

from 30 m to 70 m. The 6-dB bandwidth of the measured source signal is approxi-

mately 200 to 300 Hz. Although there is significant spectral content to several kHz,

the band was limited in this experiment by the relatively low sampling frequency of

1750 Hz. An example of the raw acoustic signal from one of the light bulbs is shown

in figure 5-6.
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Figure 5-1: Topographic map of the Haro strait region with predicted ebb tide currents dur-

ing the experiment. Tomographic arrays (blue circles) were deployed to investigate the front

south of Stuart island. Current meter moorings (green circles) and a meteorological surface

buoy (green cross) will help clarify the larger-scale circulation (courtesy of R.Pawlowicz,
IOS).
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Figure 5-2: Bathymetric map of the experimental site. Contours are 10m apart. Blue

circles : WHOI receiver arrays. Green starts: IOS moorings. Red dots: source locations.

Figure 5-3: Haro strait mooring design
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Figure 5-4: Source design (courtesy of N. Ross Chapman, University of Victoria)
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5.3 Data conditioning

5.3.1 Acoustic time series

Individual acoustic time series were match-filtered using a single arrival as a sub-

stitute for the actual source signal. The magnitude of the matched filter output was

then lowpass-filtered using a zero-phase third-order Butterworth filter with a cutoff

frequency of 500Hz. Direct and surface ray arrival times were subsequently measured

by identification of the corresponding local maxima of the filtered time series (see

figure 5-7). Absolute timing was provided by the AMS-driven acoustic acquisition

system [34]. A time stamp in seconds was provided with each acoustic time series. In

addition, the number of time samples elapsed since the last second was also provided.

The beginning tt,,art of a given time series was computed as:

ttart = tstamp + fsN + M (5.1)

where tstamp is the time stamp in seconds, N is the number of samples elapsed since

the last second, fs is the sampling frequency, and M is an unknown integer number of

seconds. The unknown M accounts for the fact that tstamp is given with an accuracy

of one second. The term M can therefore be -1, 0 or is. This ambiguity was lifted

by adding (subtracting) seconds to (of) the measured arrival times until they were

consistent with an isovelocity estimate based on the a priori sensor locations.

5.3.2 Sound speed time series

Temperature and salinity time series were measured by the IOS moorings at a

frequency of 12 samples per hour (At = 5min). These two parameters were converted

to sound speed using Mackenzie's formula [50]. Individual samples were grouped by

50-minute bins and averaged (see figure 5-8). The average standard deviation of

the resulting average was found to be of the order of 10cm/s (see table 5-1). Rms

fluctuations of the time series were of the order of 50cm/s. The vertical variability of

the sound speed field was estimated using a set of CTD casts taken every day from
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mooring
SW
SW
NE
NE
NE

depth (m)
25
120
25
70
123

m/s
0.155
0.060
0.137
0.142
0.102

m/s
0.332
0.129
0.355
0.502
0.480

Table 5.1: Temporal variability of the sound speed field, in m/s (IOS mooring data). First

column: average standard deviation of the 50-minute average. Second column: standard

deviation of the raw time series.

19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21
Time (day)

Figure 5-8: Local sound speed measured at the IOS NE mooring.

50-minute moving average. Dots: raw data.
Depth: 70m. Solid line:
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Figure 5-9: Depth variability of the sound speed field (CTD data)

06/21/96 to 07/03/96. The depth profile standard deviation was found to be of the

order of 0.2m/s to 1.5m/s, with variations in time (see figure 5-9).

5.3.3 Current time series

Current magnitude and direction were measured by the IOS moorings at a fre-

quency of 12 samples per hour. Rather than lumping and averaging data points as

in the case of the sound speed time series, the raw current time series was low-pass-

and high-pass-filtered. The sampling frequency of the time series was thus kept at its

initial value, therefore reducing interpolation and round-off errors when comparing

the current data with Foreman's tidal model output. The low-frequency component

was obtained by low-pass-filtering the raw data using a third-order zero-phase But-

terworth filter with a cut-off frequency of lh - 1 . The high frequency component was

computed by subtraction of the low-frequency component from the raw data. The

resulting time series are compared to Foreman's tidal model in figures 5-10 and 5-11.

The standard deviation of the high frequency component was found to be between 6

and 13cm/s. The rms variations of the current perturbation u' (actual current minus
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mooring component W f
SW E/W 0.180 0.125
SW N/S 0.217 0.129
NE E/W 0.216 0.060
NE N/S 0.155 0.062

Table 5.2: Temporal variability of the current field, in m/s. First column: rms magnitude
of the current perturbation. Second column: standard deviation of the high frequency
component (characteristic time shorter than 1 hour)

21 22
Trne (day)

Figure 5-10: Tidal current at
low-pass filtered data. Dotted

IOS SW mooring. Depth: 120m. Dots: raw data. Solid line:
line: Foreman's model prediction.

predicted current) were measured between 15 and 22cm/s (see table 5-2). The low-

pass filtered current time series was used as input for the current field inversion. The

high-frequency standard deviation was used as an estimate of the noise associated

with the smoothed current time series.

5.4 Acoustic sensor localization

Acoustic sensor localization was carried out by minimizing the mean square differ-

ence between the measured arrival times and the arrival times predicted using the

2
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0
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Figure 5-11: Tidal current at IOS NE mooring. Depth: 70m. Dots: raw data. Solid line:
low-pass filtered data. Dotted line: Foreman's model prediction.

sensor model described in section 3.1. The cost function was expressed as:

(1(tsrc, {Cj}jE[1,M-1], {aj}jE[1,M]) = :(Fij - Ti,j(tsrc, Cj, aj))2  (5.2)
i,j

where M is the number of moorings involved in the acoustic transmission (1, 2 or 3);

i,j is the ith travel time measured at the jth mooring; Ti is its theoretical prediction

using an isovelocity profile; trc is the time at which the shot was fired. Each acoustic

array consisting of 16 elements, the number of arrival times per mooring was 32. For

any given shot, travel times cannot be measured at all acoustic arrays either because

the shot was not captured by the acquisition system, or because the direct and surface

arrivals were undistinguishable. The actual acoustic receiver configurations observed

in the data set are {SW,NW}, {SW,NE} and {SW,NW,NE}.

In order to keep the minimization of (D well-constrained while estimating the source

transmission time t8s., the sound speed along the SW track was set equal to an

arbitrary value co. The SW track was chosen as the reference leg because of its

reliability. The average sound speeds {cj} along the other legs were estimated using



mooring b (m) c (m)

SW -269 437
NW -269 417
NE -249 377

Table 5.3: Sensor model parameters used for each acoustic array
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Figure 5-12: NW WHOI mooring shot 22. Circles: measured direct and surface arrival
times. Crosses: predicted arrival times. Note the strong array shape effect. Source range:
670m. Time axis is absolute (post-synchronization).

(5.2) and are thus relative to co. A global sound speed offset term Ac was subsequently

included in the sound speed inversion as discussed in chapter 4.

Predicted travel times incorporating array shape effects are shown in figure 5-12.

The array shape factor a was estimated through the minimization of ( (see equation

5.2). Note the negative convexity of the arrival pattern due to the strongly distorted

array shape. The source range is approximately 670m. The rms difference between

predicted and measured arrival times is 0.8ms in this case. Residuals were found to

vary between 0.5 and 4ms over the two-hour period covered by the acoustic data set.
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Figure 5-13: Array shape factor a vs time. Crosses: model prediction. Circles: data. Top
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mooring.
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5.5 Correlation functions

5.5.1 Current field

The current field perturbation was assumed to be stationary in time and space. The

temporal correlation function was estimated using the current time series measured

at the IOS moorings (see figures 5-15). Figure 5-15 shows two types of correlations:

* the correlation measured in the main direction of the flow, i.e. North/South at

the IOS SW mooring and East/West at the IOS NE mooring, is smooth and

has a relatively broad peak.

* the correlation measured across the flow has a narrow peak and denotes the

presence of turbulence. Inasmuch as this turbulence is not properly acounted

for in the tidal model and cannot be spatially resolved by the array of moorings,

it will be ignored in the present analysis.

The current correlation function in time is therefore fitted using the measurements

made in the North/South direction in the middle of the channel, which accounts for

most of the flow energy. In the absence of detailed experimental data regarding the

spatial variability of the tidal flow, the current spatial correlation was estimated using

the field predicted by Foreman's model (see figure 5-16). The correlation function of

both flow components was assumed to be of the form [8]:

F,(Ax, Ay, At) = e - R (5.3)

where

R2 (AX 2 (A)2 ( )2

Lx ) LY TU

The correlation lengths Lx and L were both set equal to 1000m for the East/West

component and 1500m for the North/South component. The correlation time Tu was

estimated to be approximately 2 hours.



5.5.2 Sound speed field

The sound speed field perturbation was assumed to be stationary in time and space.

The temporal correlation function was estimated using the sound speed time series

measured at the IOS moorings (see figure 5.14). The sound speed correlation function

in depth was estimated using a set of CTD casts taken over the month of June 1996

(see figure 5-14). Detailed experimental data of the sound speed spatial variability

being scarce as well, the horizontal spatial correlation function of the sound speed

field was assumed to be identical to that of the North-South component of the tidal

flow. The temporal correlation function of the sound speed field was fitted using a

modified Gaussian as suggested by Carter and Robinson [8]. The complete correlation

function of the sound speed field was assumed to be as follows:

F(Ax, Ay, Az, At) = 1 - e- R (5.4)

where

= (A)2 (A)2 +( )2 +( )2

Lx L, Lz Tc

The correlation lengths Lx and L, were set equal to 1500m. The correlation depth

Tz was estimated at 12m. The correlation time Tc was estimated at 3.5 hours. The

difference in correlation times between the current and the sound speed correlation

functions is due to variations in the functional form used to fit to the data. The width

of both main lobes is approximately the same.

Due to the periodic character of tidal forcing, the data shows a relatively high

degree of temporal correlation over the course of several days, However the actual

correlation level past the first 12 hours is highly dependent on location and, for

current, orientation of the measurement. The model correlation functions rF and

r, were consequently constrained to vanish for lags extending beyond approximately

half a day, so that a single functional form could fit a wide variety of data. Data
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Figure 5-14: Sound speed correlation function. Left panel: temporal correlation (IOS
mooring data). Right panel: correlation in depth (CTD data). Solid line: average measured
correlation. Dotted line: 95% confidence interval. Dashed line: modeled correlation (T, =
3.5h, Lz = 12m)

gathered more than a few correlation lengths or times away from the estimation time

were therefore not taken into account.

5.6 Conclusion

In this chapter the Haro Strait experimental configuration was introduced. A priori

statistics of the sound speed and current fields were estimated. A simple procedure

for acoustic sensor localization was outlined. Armed with statistical moments of the

oceanic fields in Haro Strait and the inversion procedure presented in the previous

chapter, a quantitative assessment of the inversion performance can now be carried

out.
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Figure 5-15: Current temporal correlation function. Left panel: east/west component.
Right panel: north/south component. Solid line: IOS SW mooring. Dash-dotted line: IOS
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Chapter 6

Performance analysis

6.1 Introduction

6.2 Inverse resolution

6.2.1 Resolution formalism

The resolution matrix T relates the field perturbation estimate Z to its true value

c'. For the case of the combined field estimate computed by inversion of (4.58), the

resolution matrix satisfies the following identity [57]:

S= KGc' = Tc' (6.1)

where G is given by (4.58) and Kc is computed as outlined in equations (4.9-4.10).

The resolution matrix is more conveniently expressed in dimensionless form:

T* = R-1/2TR 2  (6.2)

where the square root operator is defined for semi-definite positive matrices. The

resolution matrix T* can be be thought of as the prism through which the observer

perceives reality. In the ideal case T* is the identity matrix and the estimated quantity

is equal to its true value. In practice it is rarely so. The kth column of T* represents



the field estimate generated in response to a true field which is zero everywhere

except at the kth node where it has a unit value. This response is sometimes called

the resolution kernel; an example is shown in figure 6-1. The width of the resolution

kernel, i.e., the resolution length, is a measure of the spatial distance over which

the estimate is averaged, and as such gives an indication of the level of detail the

inversion procedure might be able to resolve. Various metrics can be chosen in order

to compute the resolution length. Chiu suggested computing the width of the region

which contains half the total energy spread by the kernel around the original true value

[10]. However this becomes a problem when sampling is very sparse and irregular

as the resolution kernel is no longer necessarily well behaved and energy might be

unevenly spread. By interpreting the resolution kernel (or its absolute value) as a two-

dimensional probability density function, one can easily compute its second moment,

which will provide a measure of resolution length. Thus if T(x, y; xo, Yo) is defined

as the absolute value of the resolution kernel corresponding to the node located at

(x0, Yo), the first moments of T can be written as:

PX = dx dy x T(x, y; x o, Y o) (6.3)
f-00 -OO

/+oo p+oo

Py = dx dy y T(x, y; o, Yo) (6.4)
--00 -00

where T is normalized as:

dx dy T(x, y; xo, Yo) = 1 (6.5)

regardless of x0 and yo. The intended location of the field estimate is (x0 , YO). The

centroid (tx, jIy) of the resolution kernel is interpreted as the effective location of the

interpolated field. Let us for instance assume the interpolated estimate at location

(xo, yo) is based mostly on field values at another location (xj, yi). The centroid

will then be approximately (xI, y), reflecting the fact that the estimated value is



really a mean of the measured field values at location (xt, yi). If we now assume the

interpolated estimate is based on measured values which are approximately uniformly

distributed around (xo, yo). The centroid (px, p,) will then be approximately equal

to (xo, Yo), reflecting the fact that the vicinity of (xo, Yo) was properly sampled when

carrying the interpolation. The resolution bias of the inversion is consequently defined

as the distance between the target location and the centroid:

b = V/(p - xo) 2 + (py - y0) 2  (6.6)

The bias is in general close to zero within the sampling network and starts becoming

non-negligible outside the network envelope. The resolution lengths are heuristically

defined as the width along both x and y axes of the main lobe of the resolution kernel.

This can be formally expressed as:

r+oo 
+oo00

L(xo, yo) = dx] dy (x - )2T(x, y; x, yo) (6.7)

L2(x, Yo) = dx dy (y - Y) 2T(x, y; xo, y0o) (6.8)
S--O - 'OO

Thus far resolution lengths and bias have been defined for a two-dimensional inversion

kernel T(x, y; xo, yo). Similar definitions can be made for a one-dimensional kernel

T(x; zo). The two-dimensional kernel of equations (6.3), (6.5) and (6.7) is simply

replaced by T(x; xo)6(y), where S is Dirac's delta function. The one-dimensional bias

b becomes then jIx - xzo.

6.2.2 Acoustic inverse vertical resolution

As a first step we investigate the properties of the kernel of the acoustic inverse, i.e.,

the resolution and bias properties of the range-averaged sound speed field estimate

computed using a single acoustic transmission. The simulated environment is inspired

by the Haro Strait experiment and consists of 16 receivers equally spaced from 20 to
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Figure 6-1: Resolution kernel of the sound speed inversion. Solid lines: isokernel lines (0.5
to 1.0). Dotted lines: isobaths. Stars: IOS moorings. Circles: WHOI moorings.

120 m in depth. Unless otherwise stated, the source is located at a range of 2 km

and a depth of 50m. The acoustic inverse is formally defined by equation (4.49). The

resolution matrix is written in non-dimensional form as:

T(a) = R (a) -1/ 2 K(a)ER(a) 1/2 (6.9)

and the resolution kernel is defined as:

T(a)(zi; zj) = [T(a)] ij (6.10)

where z3 is the target depth, or depth of the estimate, and zi is the kernel's depth

variable. The vertical resolution length is shown in figure 6-2 as a function of depth

of estimate and source range. The resolution length is generally of the order of 15

m, which is a little above the medium's vertical correlation length (12 m). The large

correlation length observed at short range around 80 to 100 m in depth is due to the

fact that as the source range decreases, so does the insonification of the lower layers

of the water column. Being poorly sampled, the lower layers are therefore poorly
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Figure 6-2: Vertical resolution length vs source range and depth of estimate. Source depth:

50 m.

resolved. The same reasoning applies to the surface layer as well and also explains

the increased resolution length near the surface at short ranges. Another noticeable

feature is the sharp decrease observed near the surface at larger ranges. Here again

this feature is explained by the sampling of the corresponding layers; as the source

range increases, acoustic rays intercept more of the surface layers and are therefore

able to resolve them more accurately. Figure 6-3 shows the vertical resolution length

as function of depth of estimate and source depth. For source depths below 120 m

the vertical resolution length is, as previously computed, of the order of 10-15 m. A

sharp increase is observed as the source depth increases past 120 m and the resolution

length increases then to values of up to 25m.

The resolution bias is shown in figure 6-4 for various source ranges and depths of

estimate. The source depth is 50 m. The bias is generally small, i.e. smaller than 3

m, except at small source ranges. The surface layer and the deeper layers are then

poorly sampled by acoustic rays; the inverse is then based on the nearest available

data points, which are all located on the source side of the estimated bin. This results
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Figure 6-3: Vertical resolution length vs source depth and depth of estimate. Source range:

2 km.

in a non-negligible resolution bias. The same type of behavior is observed in figure

6-5 for the bias vs source depth and depth of estimate. The source range is 2 km.

The bias is virtually zero everywhere except near the surface and the lower layers at

selected source depths. The lower layers are biased for shallow source depths; the

surface layer is biased for deeper source depths.

6.2.3 Combined inverse horizontal resolution

East-West and North-South resolution length maps for the combined field are shown

in figures 6-6 and 6-7. The East-West and North-South resolution lengths are respec-

tively about 950m and 1000m at the center of the network of arrays. The East-West

resolution length estimate is biased near the eastern and western boundaries of the

computational domains as the kernel cannot extend beyond the boundary and be-

comes distorted. The same effect is seen along the northern ans southern boundaries

for the North-South resolution length estimate. In particular the low length region in

the south-western corner is an artifact due to the proximity of the boundary combined
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Figure 6-6: East-West resolution length of the sound speed inversion. Solid lines: isobaths.
Stars: IOS moorings. Circles: WHOI moorings.

with the experimental geometry. The bias magnitude is shown in figure 6-8. As ex-

pected, it is small relative to the correlation length within the sampling network, and

increases significantly outside. The correlation length is approximately 1 km. The

bias outside the sampling network is due to the fact that although the interpolation

takes place at the location (x0 , Yo), the available and relevant data points no longer

surround the interpolation location. The resulting estimate is a weighted average of

the nearest data points. These data points are located on the same side of (x0, yo),

and the "true" location of the estimate as measured by the bias (bx, by) is shifted

towards the mean location of the interpolated data.

6.3 Inverse error and accuracy

In order to evaluate the accuracy of the inversion procedure a synthetic data set

was generated. The simulated environment was identical to that of Haro Strait.

The sound speed field was assumed to be split in two isovelocity regions: the water

sound speed was equal to 1484m/s on the eastern side of the -123.20 meridian, and
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Figure 6-7: North-South resolution length of the sound speed inversion. Solid lines: iso-
baths. Stars: IOS moorings. Circles: WHOI moorings.
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Figure 6-8: Horizontal resolution bias of the sound speed inversion. Solid lines: isobaths.
Stars: IOS moorings. Circles: WHOI moorings.
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Figure 6-9: Inverted acoustic sound speed profiles (synthetic data, actual source positions).
Shots 20 to 42. Shots which were not properly captured by the acquisition system, or for
which surface and direct arrivals were undistinguishable, are missing. Top panel: SW WHOI
mooring. Middle panel: NW WHOI mooring. Bottom panel: NE WHOI mooring.

1482m/s on the western side. The transition at the meridian was set be discontinuous,

which is not physical but allows a better understanding of the resolution limits of the

inversion. The environment was assumed to be steady. In the absence of cyclical tidal

variations, the sound speed correlation function was assumed to be a pure Gaussian.

The respective impacts of the acoustic and non-acoustic data sets on the final sound

speed field inversion were assessed by computing a field estimate using the acoustic

data only, then the non-acoustic data only, and finally a combined field estimate.

6.3.1 Acoustic-only field estimate

The sound speed profiles computed using equation (4.49) are shown in figure 6-9.

Actual profiles are isovelocity. The lower half of the water column is not insonified by

the direct and surface rays and is therefore not resolved by the inversion. The surface

layer is weakly resolved by the first few shots, which were fired at short range between

the SW and NW WHOI moorings. Some inaccuracies are consequently observed in

the corresponding sound speed profiles.
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The final sound speed field estimate based on acoutic data only is computed by

inverting equation (4.54). It is shown in figure 6-11. Actual source positions were

taken into account (see figure 6-10). The associated error field is shown in figure

6-12. Two separate effects can be observed. First the sound speed field is smeared

in space due to the assumed correlation. The front is no longer a sharp discontinuity

but a smooth transition zone with a width of about 1200m, or a little less than a

correlation length (1500m). Then the front is shifted by about half a correlation

length to the west of the actual front line at the latitude of maximum discrepancy.

This is related to the confidence level in the acoustic data gathered between the two

westernmost WHOI moorings. Due to the short ranges of the shots fired between

these two moorings, the estimated error of the acoustic sound speed profiles is high

relative to those measured along longer tracks east of the SW WHOI mooring. When

the various acoustic profiles are merged with the local IOS measurements, the inverse

estimate is contrained to be 1484m/s on the east side of the -123.20 meridian with

a relatively low error and 1482m/s on the west side with a somewhat higher error

level. The smoothness constraint imposed by the correlation function then shifts the

estimated front position towards the region of higher uncertainty.

In order to validate this interpretation a synthetic data set was generated assuming

source positions were uniformly distributed over the region encompassing the acoustic

moorings (see figure 6-13). The resulting sound speed field estimate and its error field

are shown in figures 6-14 and 6-15. As anticipated the front is no longer shifted. The

estimate below the 48.64 N parallel is inaccurate as this region of the ocean was not

insonified by the acoustic transmissions.

6.3.2 Time-series-only field estimate

The sound speed field estimate based on non-acoustic data only is computed by

inverting equation (4.56). It is shown in figure 6-16. Its associated error field is

shown in figure 6-17. The field is properly estimated within a correlation length of

the IOS moorings. Since the measurements are local, no information is gained about
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Figure 6-10: Acoustic transects, actual source positions.
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Figure 6-11: Inverted sound speed field perturbation using acoustic data only (synthetic

data, actual source positions). Solid lines: isobaths. Dash-dotted line: actual front location.

Dotted lines: isovelocity lines (1482 and 1484m/s) Stars: IOS moorings. Circles: WHOI

moorings.
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Figure 6-12: Estimated error of the inverted sound speed field perturbation using acoustic

data only (synthetic data, actual source positions). Solid lines: isobaths. Stars: IOS

moorings. Circles: WHOI moorings.
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Figure 6-13: Acoustic transects, simulated source positions.
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Figure 6-14: Inverted sound speed field perturbation using acoustic data only (synthetic

data, simulated source positions). Solid lines: isobaths. Dash-dotted line: actual front

location. Dotted lines: isovelocity lines (1482 and 1484m/s) Stars: IOS moorings. Circles:

WHOI moorings.
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Figure 6-15: Estimated error of the inverted sound speed field perturbation using acoustic

data only (synthetic data, simulated source positions). Solid lines: isobaths. Stars: IOS

moorings. Circles: WHOI moorings.
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Figure 6-16: Inverted sound speed field perturbation using non-acoustic mooring data only

(synthetic data). Solid lines: isobaths. Dash-dotted line: actual front location. Dotted lines:

isovelocity lines (1482 and 1484m/s) Stars: IOS moorings. Circles: WHOI moorings.

the sound speed field beyond the immediate vicinity of the moorings. The error level

is relatively high compared to the acoustic estimate, reflecting the comparatively poor

information content of the mooring data. This derives from the fact that the mooring

data is essentially local in character, whereas the acoustic data is global to the extent

that acoustic waves sample large masses of water and provide integral information

about the ocean environment.

6.3.3 Combined field estimate

The sound speed field estimate combining acoustic and non-acoustic data was com-

puted by inverting equation (4.58). The field estimate for actual source positions is

shown in figure 6-18. Its associated error field is shown in figure 6-19. As discussed

in section 6.3.1 the actual front location is shifted slightly to the west. The final field

incorporates information gathered by both acoustic and non-acoustic means. The

error field therefore shows decreased levels which are consistent (i) with the acoustic

inverse error within the acoustic moorings, and (ii) with the non-acoustic inverse er-

ror near the non-acoustic moorings. Figure 6-20 shows the field estimate for the case

of simulated source positions. The original field is properly recovered except in the
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Figure 6-17: Estimated error of the inverted sound speed field perturbation using non-

acoustic mooring data only (synthetic data). Solid lines: isobaths. Stars: IOS moorings.

Circles: WHOI moorings.

lower right quadrant which was probed by neither acoustic nor non-acoustic means.

The smoothing observed is inherent to the inversion and cannot be avoided.

The error field of the combined estimate is compared to the error field of the

acoustic only field estimate in figure 6-30. The relative variance decrease due to the

addition of local, non-acoustic data is plotted with respect to latitude and longitude.

While the relative variance decrease is only of approximately 5% within the acoustic

network, it grows rapidely up to 55% near the non-acoustic moorings. The impact of

incorporating non-acoustic data in the inversion can also be assessed by computing

the average estimated variance across the whole grid used for the inverted field. On

average, 17.4% of the a priori variance can be accounted for by the non-acoustic

only estimate (average residual variance of 82.6%); 48.4% of the a priori variance can

be accounted for by the acoustic only estimate (average residual variance of 51.6%);

55.5% of the a priori variance can be accounted for by the combined estimate (average

residual variance of 44.5%). Near the center of the acoustic network, these figures

become 7.1% (92.9%), 84.8% (15.2%) and 85.2% (14.8%) respectively.
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Figure 6-18: Inverted sound speed field perturbation using both acoustic and non-acoustic

data (synthetic data, actual source positions). Solid lines: isobaths. Dash-dotted line: ac-

tual front location. Dotted lines: isovelocity lines (1482 and 1484m/s) Stars: IOS moorings.

Circles: WHOI moorings.
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Figure 6-19: Estimated error of the inverted sound speed field perturbation using both

acoustic and non-acoustic data (synthetic data, actual source positions). Solid lines: iso-

baths. Stars: IOS moorings. Circles: WHOI moorings.
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Figure 6-20: Inverted sound speed field perturbation using both acoustic and non-acoustic

data (synthetic data, simulated source positions). Solid lines: isobaths. Dash-dotted line:

actual front location. Dotted lines: isovelocity lines (1482 and 1484m/s) Stars: IOS moor-

ings. Circles: WHOI moorings.
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Figure 6-21: Estimated error of the inverted sound speed field perturbation using both

acoustic and non-acoustic data (synthetic data, simulated source positions). Solid lines:

isobaths. Stars: IOS moorings. Circles: WHOI moorings.
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6.3.4 Effect of current mismatch

Tidal currents are taken into account in the sound speed inversion by including the

barotropic (depth-independent) current field estimate in the sound speed reference

state when estimating the sound speed field. The current field taken as a reference

being an estimate itself, the effect of a possible mismatch is investigated in this section.

An examination of the predicted current field at the time the acoustic sources

transmitted shows the effect of tidal currents is strongest between the NW and SW

WHOI moorings. These two moorings are located near the center of the channel and

are oriented in the direction of the main flow. Acoustic transmissions made when the

source was between these two moorings, i.e., shots 20 to 25, are the most susceptible

to a possible current mismatch. Other transmissions are significantly less prone to

current mismatches simply because the local current or its projection on the acoustic

track is significantly smaller. This fact is partially reflected by the array shape factors

shown in the previous chapter (fig 5-13); the NE WHOI shape factor is significantly

smaller and more stable than that of its NW and SW counterparts.

The effect of current mismatch was simulated by adding a uniform current of ar-

bitrary amplitude to the region between the SW and the NW WHOI moorings in

the combined field estimation. The reference sound speed field used in the inversion

therefore included the effect of an added North-South current uniform between the

two westernmost WHOI moorings and vanishing everywhere else. Figure 6-22 shows

the influence of a 10-cm/s mismatch (0.2 kt). The magnitude of the current mismatch

being consistent with the magnitude of the error field imposed on the inversion, the ef-

fect of the mismatch is barely perceptible. The 1484-m/s isospeed line is very slightly

inflected as a result of the mismatch. Figure 6-23 shows the influence of a 50-cm/s

mismatch (1.0 kt). The magnitude of the mismatch is now equal to the a priori sound

speed standard deviation. The effect of the mismatch starts becoming more visible.

The 1484-m/s isospeed line is shifted a little more south. However, the rest of the

field is unaffected and the overall structure of the field is unchanged. Figure 6-24
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shows the inflence of a 100-cm/s mismatch (2.0 kt). The frontal structure is now

inflected a little more in the East-West direction, and the position of the recovered

front starts being more markedly affected by the current mismatch.

When evaluating the performance of Forman's tidal model in the Haro Strait region,

two measures of accuracy can be considered. The first and most easily observed is

the temporal variability of the time series recorded at the SW and NE IOS mooring

locations. The corresponding current perturbation (actual minus prediction) was

shown in the previous chapter to have a measured a priori standard deviation of about

15 to 20 cm/s. The second measure of accuracy is given by the spatial variability of the

perturbation, which is difficult to evaluate due to practical sampling considerations.

However, the overall effect of spatial variations in an environment such as Haro Strait

is likely to be very small as the different variations along the acoustic track are likely

to cancel out one another. On the other hand the systematic current offsets which

will build up along an acoustic ray are well captured by the temporal variability

measured at the IOS moorings since they are to some extent spatially invariant. The

magnitude of the actual mismatch is therefore expected to be at most 20cm/s, which

is the maximum a priori standard deviation of the current field perturbation. In

most cases the actual mismatch is smaller than 10 cm/s once the current data is

assimilated. This of course does not include the small scale spatial variability which

cannot be captured by an observational system such as the one deployed in Haro

Strait. The effect of current mismatch on the final field estimate therefore appears

to be minimal. This low sensitivity was enabled by the use of a reasonably accurate

tidal model and by factoring the current uncertainty in the error estimate used in the

field inversion.
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Figure 6-22: Inverted sound speed field perturbation using both acoustic and non-acoustic
data (synthetic data, actual source positions) with a 10cm/s current mismatch in the north-
western section. Solid lines: isobaths. Dash-dotted line: actual front location. Dotted lines:
isovelocity lines (1482 and 1484m/s). Stars: IOS moorings. Circles: WHOI moorings.
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Figure 6-23: Inverted sound speed field perturbation using both acoustic and non-acoustic
data (synthetic data, actual source positions) with a 50cm/s current mismatch in the north-
western section. Solid lines: isobaths. Dash-dotted line: actual front location. Dotted lines:
isovelocity lines (1482 and 1484m/s). Stars: IOS moorings. Circles: WHOI moorings.
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Figure 6-24: Inverted sound speed field perturbation using both acoustic and non-acoustic
data (synthetic data, actual source positions) with a 1m/s current mismatch in the north-
western section. Solid lines: isobaths. Dash-dotted line: actual front location. Dotted lines:
isovelocity lines (1482 and 1484m/s). Stars: IOS moorings. Circles: WHOI moorings.

6.4 Acoustic inverse Cramer-Rao bounds

6.4.1 Background

The Haro strait acoustic data set was processed using a perturbational travel-time

tomographic approach. The data set could presumably have been processed using

for instance a classical incoherent matched-field processing aproach [42] In order to
appraise the performance of both approaches in the context of the Haro Strait exper-

iment, Cramer-Rao bounds of the acoustic inverse were computed. The Cramer-Rao

bound is a theoretical limit of accuracy. It depends on the information content of

the data only. In particular it does not depend on the inversion algorithm. Alterna-

tively the Cramer-Rao bound can be interpreted as a measure of the sensitivity of the

Green's function to any parameter of interest. For the case of a Gaussian parameter

a, the Cramer-Rao bound CRB is given by its inverse, the Fisher Information Matrix
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[2]:

[CRB-_]ij = Tr K1K K rK1 r) ij (6.11)
iOai - Oaj

where Tr is the trace operator, K, is the covariance of the total observation vector,

and Ra is the covariance matrix of a. The first term accounts for a posteriori in-

formation contained in the data. The second term accounts for a priori information

contained in the probability density function of a. Although an attempt was made

in section 4.2.1 to present travel-time tomography and matched-field tomography un-

der a single framework, the two approaches are still often presented and investigated

independently of each other in the ocean acoustic literature. In particular, different

assumptions are made about the field or parameter estimated. Matched field tomogra-

phy assumes no a priori knowledge of a, which is considered unknown but non-random

(Ra1 vanishes). Travel-time tomography on the other hand relies heavily on a priori

knowledge of a, which is considered random. In practice however, some degree of a

priori information is required in both approaches. The key difference then appears to

rest in the use of frequency coherence. Although nothing formally restricts the use of

frequency-coherent matched-field tomography algorithms, matched-field tomography

is traditionally frequency-incoherent for reasons of stability when estimating the data

sample covariance matrix. Travel-time tomography on the other hand is by definition

frequency-coherent since travel times can be interpreted as a coherent phase integral

across frequency.

Cramer-Rao bounds were computed assuming both frequency-coherent and frequency-

incoherent processing for the waveguide depicted in figure 6-25. This waveguide is an

idealized model of the conditions of propagation in Haro Strait. The source frequency

was lowered to 300Hz in order to decrease computational load. The actual light bulb

source center frequency is approximately 500 Hz. However, the source spectral con-

tent below 500Hz only was used in the acoustic inversion (see chapter 5). The Source

Level of 160 dB and the Noise Level of 90 dB are observed but pessimistic values.
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Figure 6-25: Simulated waveguide. Source Level: 160dB. Noise Level:
frequency: 300Hz. Source bandwidth: 100Hz. Observation time: is.
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The actual Source Level could be as high as 170 dB and the actual Noise Level could

be as low as 70-80 dB. Although multiple arrivals can be observed over the course of

several seconds at the ranges considered in the computations, in practice the Haro

Strait light bulb signals rarely extended beyond one second due to bottom scattering.

The observation time used in the computations was therefore set to 1 s. The bounds

were evaluated using Green's functions generated by OASES [70].

6.4.2 Effect of source bandwidth

Figure 6-26 shows the dependence of the bounds on source bandwidth. The total

energy of the source signal being kept constant, the frequency-incoherent bound is

independent of bandwidth. The frequency-coherent bound varies as AW-1/3 at lower

bandwidths. The effect of frequency coherence appears most pronounced at large

bandwidths, for which the bound varies as AW - 1/ 2

By contrast, computations by Baggeroer for the deep ocean case lead to similar

error bound levels, but with a bandwidth dependence of the order of AW - 1. The
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difference might be due to the influence of the waveguide on acoustic propagation. The

simulations presented in this thesis include strong bottom interactions in a shallow

waveguide whereas Baggeroer's work modeled deep ocean propagation with little

bottom interaction. More recent simulations by Daly for a similar shallow water

waveguide show much smaller bounds and virtually no effect of frequency coherence.

This discrepancy is attributed to two factors. First, the observation time in Daly's

simulations is 50 s, or 50 times larger than the observation time used in the present

computations. Second, the source range is 15 km instead of 3 km in the present case.

The argument was made that given the spread of group velocities in the shallow

water waveguide at 15 km, a spacing of 0.02 Hz (and therefore an observation time

of 50s) was required in order to statisfy Nyquist's criterion in the frequency integral

involved in the computation of the bound. The integral formulation however is of

pure analytical convenience and has no physical basis. The derivation of Cramer-

Rao bounds is made using the algebraic notation of equation (6.11) for an arbitrary

frequency spacing which depends on the experimental configuration chosen by the

observer. The amount of information contained in Daly's simulated acoustic data is

therefore significantly larger than that of the present simulated data, leading to error

bounds of significantly different levels.

6.4.3 Effect of source range

Figure 6-27 shows the dependence of the bounds on source range. Range affects

the bound in two separate ways:

* from a perturbational perspective, an increase in range leads to a corresponding

increase in the field perturbation, i.e., in signal level. Put differently a small

sound speed variation will have a larger effect on the measured field at larger

ranges.

* from a wave propagation perspective, larger ranges correspond to larger trans-

mission losses and therefore larger signal attenuation.
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Figure 6-26: Cramer-Rao bound vs signal bandwidth. Solid line: frequency-coherent pro-
cessing. Dashed line: frequency-incoherent processing

These two effects can be seen with the frequency-coherent bound. The bound de-

creases at smaller ranges when the signal-to-noise ratio is still large enough and the

signal keeps building up. The bound degrades at larger ranges when the effect of

transmission loss becomes overwhelming. In order to separate these two effects, the

bounds were computed while keeping the receiver signal-to-noise ratio constant (see

figure 6-27). The Cramer-Rao bounds then show a significant decrease with range.

As an element of comparison, actual acoustic inverse error estimates are plotted

vs source range (figure 6-28). These error estimates were computed using equation

(4.51). Before any comparison is made with figure 6-27, several important differences

must be pointed out:

* the error estimates are computed assuming a significant body of a priori knowl-

edge, described earlier in this chapter and in chapter 4.

* the acoustic inversion is a partial field inversion since it uses travel times of the

direct and surface arrivals only. The Cramer-Rao bounds on the other hand are
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Figure 6-27: Cramer-Rao bound vs source range. Left panel: source level and noise level
are kept constant. Right panel: source level is adjusted in order to keep the receiver signal-
to-noise ratio constant. Solid line: frequency-coherent processing. Dashed line: frequency-
incoherent processing
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Figure 6-28: Acoustic inverse error vs source range. Crosses: SW WHOI mooring. Circles:
NW WHOI mooring. X's: NE WHOI mooring.

based on full-field information.

* the Cramer-Rao bounds are computed assuming a realistic but pessimistic

signal-to-noise ratio. The average signal-to-noise ratio observed in Haro Strait

might be 5 to 10 dB larger.

The acoustic inverse error estimate exhibits a r-1/2 dependence on source range,

whereas the Cramer-Rao bound's dependence was approximately r-1 / for the frequency-

coherent bound. Both standard deviations are in the vicinity of 0.1 to 1.0 m/s. The

actual Cramer-Rao bound corresponding to the acoustic estimates would likely be

decreased by a factor of 5 if actual signal-to-noise ratio levels were considered.

6.4.4 Effect of signal-to-noise ratio

The effect of signal-to-noise ratio (constant range) is shown in figure 6-29. Expect-

edly, the effect of a receiver signal-to-noise ratio increase at constant range is similar

to a range increase at constant receiver signal-to-noise ratio. Both the frequency-
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Figure 6-29: Cramer-Rao bound vs signal-to-noise ratio. Solid line: frequency-coherent
processing. Dashed line: frequency-incoherent processing

incoherent and the frequency-coherent bounds decrease by an order of magnitude

for a 20dB increase in signal-to-noise ratio. However, such a decrease in unlikely to

be observed while actually processing acoustic data from a practical shallow water

waveguide. The increase in source power will merely increase the reverberation level;

unless the latter is properly modeled the additional information buried in the received

signal will not be extracted by the inversion algorithm.

6.5 Conclusion

The performance of the inversion scheme presented earlier was analyzed in this

chapter. Horizontal resolution lengths as low as 900 m and error levels as low as 15

cm/s (10% of the a priori variance) were achieved by combining the various data sets

available across time and space. The actual source configuration was shown to induce

an East-West bias of about half a correlation length when inverting the position of a

sharp North-South front intersecting the center of the acoustic network. Finally, the
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Figure 6-30: Relative difference in estimated sound speed variance (in percentage terms)
between the combined estimate error and the acoustic only estimate error.

importance of exploiting signal frequency coherence was investigated by computing

Cramer-Rao bounds for a synthetic Haro Strait-like environment. Given the short

ranges and relatively high noise levels encountered in Haro Strait, taking into account

frequency coherence, e.g. by using travel times, was found to substantially lower the

corresponding error bounds.
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Chapter 7

Experimental inversion results

7.1 Introduction

The inversion scheme which was developed in chapter 4 and tested using synthetic

data in chapter 6 is now applied to the low frequency Haro Strait data set. The

acoustic data covers a two-hour period during flood tide on 06/20/96. As the non-

acoustic data is continuously available, the sound speed and current fields will be

initially estimated using the non-acoustic data only. As acoustic shots are fired and

acoustic data becomes available, it is included in the inversion and the evolution of

the estimated field will then be discussed. Finally the adequacy and the relevance

of the inversion is discussed in light of the experimental constraints encountered in

Haro Strait.

7.2 Haro Strait data

7.2.1 Inversion summary

Using the procedures outlined in chapters 4 and 5, the data is first conditionned.

The sound speed and current time series measured at the IOS moorings are low-

pass filtered. Ray travel times are extracted from all past and present acoustic time

series available at the time of inversion. Acoustic array shapes are estimated by
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projecting the acoustic data on the array displacement model (bearing in mind ranges

are relatively short). Travel time residuals are then inverted to produce a range-

averaged acoustic tomographic sound speed profile for each acoustic shot.

The various data sets available for the combined field inversion are then:

* individual range-averaged sound speed profiles for each acoustic shot fired

* acoustic array displacement data

* point measurements of sound speed at the IOS moorings

* point measurements of current at the IOS moorings

The inversion starts with the last two data sets only as shots have not been fired yet.

In time shots are fired and past and present acoustic data is included in the inversion

as it becomes available. These four data sets are combined as discussed in chapter 4

in order to produce the field maps shown in this chapter.

7.2.2 Acoustic sound speed profiles

The acoustic sound speed profiles estimated using the actual Haro Strait data set

are shown in figure 7-1. As discussed in section 6.3.1, the first five shots were fired

near the SW and NW WHOI moorings at short range and are less accurate than the

subsequent profiles. Further inacurracies might be introduced by the fact that the

region near the SW and NW WHOI moorings was the most active region. Barotropic

currents were included in the background profile. Although current fluctuations in

depth were taken into account as travel time noise in the inversion, strong fluctuations

in depth which are consistent over space and time might bias the sound speed profile

estimate.

7.2.3 Time-series only field estimate

The field inversion begins before acoustic shots are fired. The only available data

are a priori statistical information and local current and sound speed at the IOS

129



0-

, 50-

O[

50-
r

00100

150

0 5

o 5
0-

50

100 .

150
0 5

10 15 20

10 15 20

10 15 20
Sound speed perturbation (m/s)

Figure 7-1: Inverted acoustic sound speed profiles (Haro Strait data, shots 20 to 42). Shots
which were not properly captured by the acquisition system, or for which direct and surface
arrivals were undistinguishable, are missing. Top panel: SW WHOI mooring. Middle panel:
NW WHOI mooring. Bottom panel: NE WHOI mooring.

moorings. The first field estimate is shown in figures 7-2 and 7-3 for two depths:

25 and 75 m. The sound speed and current fields are estimated at 00:30 GMT on

06/20/1996 during flood tide. Cold Pacific water is flowing northward in the middle

of the channel (near the 123.25 W meridian) from the Juan de Fuca Strait towards

the Strait of Georgia. Higher temperatures are measured in the strait between Stuart

Island and Spieden Island (NW IOS mooring)at a depth of 25 m. This might indicate

the presence of warmer fresh water from the Frasier River. The estimated field at 75

m relies on data from the NE IOS buoy only since the SW IOS mooring has no sensor

near that depth. Cold water similar to that observed at shallower depths near the

SW IOS mooring is found near the NE mooring as well at 75 m. At 01:00 the balance

starts changing (see figures 7-4 and 7-5) and by 01:30 GMT a warm eddy appears to

have reached the SW IOS mooring (see figures 7-6 and 7-7). Thus far our sampling

capabilities are limited by the fact that the estimate is based on local information

from two moorings only. The error levels of the estimated field are relatively high

except near the immediate vicinity of the IOS moorings.
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Figure 7-2: Top view Haro Strait area at 00:30 GMT at a depth of 25m. Upper left panel:

sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current

field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed

lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-3: Top view Haro Strait area at 00:30 GMT at a depth of 75m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-4: Top view Haro Strait area at 01:00 GMT at a depth of 25m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings

133

0.4

0.2

0

0.06

0.04

0.02

0



06/20 01:00 (GMT)

-123.22 -123.2 -123.18
Longitude

1

0.5

0

-0.5

-1

48.67

48.66

48.65

-948.64

48.63

48.62

48.67

48.66

48.65

48.64

-123.22 -123.2
Longitude

-123.18

48.67

48.66

C 48.65

. 48.64

48.63

48.62

48.67

48.66

48.65

- 48.64

48.63

48.62

-123.22 -123.2 -123.18
Longitude

06/20 01:00 (GMT)

-123.22 -123.2 -123.18
Longitude

Figure 7-5: Top view Haro Strait area at 01:00 GMT at a depth of 75m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-6: Top view Haro Strait area at 01:30 GMT at a depth of 25m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current

field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings

135

0.4

0.2

0

0.06

0.04

0.02

0

06/20 01:30 (GMT)

I



06/20 01:30 (GMT)
- *

-123.22 -123.2 -123.18
Longitude

06/20 01:30 (GMT)

48.67

48.66

Q 48.65

. 48.64

48.63

48.62

48.67

48.66

S48.65

948.64

48.63

48.62
-123.18

1

0.5

0

-0.5

-1

e 48.65

. 48.64

48.63

48.62

48.67

48.66

C 48.65

S48.64

48.63

48.62

-123.22 -123.2 -123.18
Longitude

06/20 01:30 (GMT)

-123.22 -123.2 -123.18
Longitude

Figure 7-7: Top view Haro Strait area at 01:30 GMT at a depth of 75m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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7.2.4 Combined field estimate

From 02:00 GMT on acoustic shots are fired, acoustic data is acquired, and the

inversion can now combine both the non-acoustic data with the acoustic data avail-

able. Figures 7-8 through 7-15 show the evolution of the field estimates as more and

more acoustic data is taken into account in the inversion. The absence of sound speed

sensor near 70 m in depth at the location of the SW IOS mooring leads to a higher

error level at that location relative to the 25 m case. The low sound speed error region

expands in a way which is consistent with the locations of the shots fired before the

time of inversion. The current field error decreases near the acoustic moorings as a

result of the melding of array shape data into the current estimate. The 03:30 GMT

estimate includes all acoustic data. By this time the sound speed error level has been

significantly lowered over the entire region surrounded by the WHOI moorings. The

combination of acoustically-derived array shape data at the NE WHOI mooring with

data from the nearby IOS mooring leads to a sharp decrease of the current error

level. Interestingly enough, this decrease is not observed at other locations where the

current estimate relies on a single type of data only.

7.3 Discussion

The scarcity of relevant oceanographic data, particularly in coastal environments

such as Haro Strait, makes it difficult to compare the field estimates described above

with an independent data set. Aside from the synthetic data test discussed in chapter

6, the actual estimates can be compared to independent temperature records taken at

the NW and NE WHOI moorings. Although no concomitant salinity measurements

were performed, these temperature records can be converted into an equivalent sound

speed by taking into account the strong correlation between temperature and salinity.

A linear regression on a set of CTD casts taken a week after this experiment yields

the following result:

c = 1.3043T + 1470.6 (7.1)

137



48.67 1 48.67

66- 4 48.66 0.4

- 48.65 48.65
\o0 .2

48.64 548.64 0.2

48.63 48.63

48.62 - -1 48.621 0
-123.22 -123.2 -123.18 -123.22 -123.2 -123.18

Latitude Latitude

06/20 02:00 (GMT) 06/20 02:00 (GMT)
48.67 48.67

48.66 4 F Z 48.66 0.06

48.65 \ 48.65
SJ o 0.04

S48.64 48.64

t 0.02
48.63 48.63

48.62 48.62--- 0
-123.22 -123.2 -123.18 -123.22 -123.2 -123.18

Latitude Latitude

Figure 7-8: Top view Haro Strait area at 02:00 GMT at a depth of 25m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-9: Top view Haro Strait area at 02:00 GMT at a depth of 75m. Upper left panel:

sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed

lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-10: Top view Haro Strait area at 02:30 GMT at a depth of 25m. Upper left panel:

sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current

field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-11: Top view Haro Strait area at 02:30 GMT at a depth of 75m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-12: Top view Haro Strait area at 03:00 GMT at a depth of 25m. Upper left panel:

sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current

field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed

lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-13: Top view Haro Strait area at 03:00 GMT at a depth of 75m. Upper left panel:

sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current

field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed

lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-14: Top view Haro Strait area at 03:30 GMT at a depth of 25m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-15: Top view Haro Strait area at 03:30 GMT at a depth of 75m. Upper left panel:
sound speed (m/s); upper right panel: sound speed error (m/s); lower left panel: current
field (m/s); lower right panel: current perturbation error prior to melding (m/s). Dashed
lines: isobaths. Stars: IOS moorings. Circles: WHOI acoustic moorings
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Figure 7-16: Comparison with thermistor data. Left panel: NW WHOI mooring. Right
panel: NE WHOI mooring. Solid line: top thermistor (approximate depth: 25m). Dashed
line: second thermistor (approximate depth: 35m). Circles: sound speed estimate at the
relevant mooring location at a depth of 25m.

where c is the sound speed in m/s and T is the temperature in OC. The regression

correlation (R 2) is 0.94. The 95% confidence intervals for the gradient and constant

terms are +/ - 0.0233 and +/ - 0.22 respectively. The resulting comparison is shown

in figure 7-16. Acoustic data is assimilated from 02:00 on. The temperature being

around 10C00, the error induced by the regression is approximately 0.43m/s, which

accounts for some of the 0.8m/s bias observed in figure 21. The remainder is at-

tributable to the inversion itself and possible calibration offsets between the WHOI

thermistors and the IOS temperature sensors.

The combination of multiple data sets enables the inversion procedure to overcome

the individual limitations these might have. The acoustic data set for instance is

limited in its ability to measure an absolute sound speed by the fact that the source

transmission time is not known accurately and must be estimated when localizing

array elements. Thanks to clock synchronization across the acoustic network, sound

speed differences can still be measured across different depths and different tracks.

On the other hand the IOS mooring time series provide us with an absolute sound
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speed reference, but are obviously limited in coverage as shown in figure 7-2, which

shows the field estimates before any acoustic data is taken into account. The acoustic

array shapes by themselves are a local indication of the current magnitude, but con-

tain almost no information regarding its direction. However, they yield a relatively

low-error current estimate in magnitude and direction when combined with the IOS

time series and assimilated into Foreman's tidal model. By furthermore coupling the

sound speed inversion with the current inversion, the current/sound speed ambiguity

inherent to any acoustic inversion can be to some extent resolved without resort-

ing to reciprocal transmissions. This is made possible by extracting the information

contained in different data sets through the combined inversion described in section

3.

Combining oceanographic with acoustic data and models traditionally brings up

several issues, both theoretical and computational. The resolution of an oceanic field

estimate for instance must match that of the acoustic model if an accurate acoustic

prediction is to be made based on this field estimate and at an acceptable computa-

tional cost [74]. If the field estimate is itself inaccurate the acoustic prediction might

diverge widely from reality due to the non-linear dependence of the wave equation

on environmental fields. In the present analysis the current field used as input to the

acoustic model is produced by a barotropic tidal model. No vertical stratification is

therefore added to the reference acoustic sound speed profile. Furthermore, given the

short ranges involved in the Haro Strait experiment an individual acoustic transmis-

sion has no resolution in range and rays are sensitive primarily to the range-averaged

sound-speed profile. The effect of using the tidal current field estimate as input to the

ray tracer is then linear for all practical purposes. The effective sound speed profile is

offset by some small constant quantity, which yields an approximately constant shift

in travel times at the receiver array. The vertical variability of the current field is

modeled as additional noise.
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The robustness of the current melding scheme (see equation (4.44)) is ensured by

the fact that data and model are melded externally, i.e., linearly. Of the four basic

operations described in figure 4-1 three are therefore linear. The only non-linear

operation is the array shape estimation, based on mean square travel time difference

minimization. Due to the short ranges involved in this paper this operation can be

carried out before the actual sound speed inversion by assuming some constant sound

speed profile. Were longer ranges to be involved, the shape estimation would need to

be either based on independent short range acoustic transmissions or included in the

sound speed inversion. The robustness of the overall inversion scheme derives then

from its linearity, i.e., its simplicity, and the combination of different data sets with

different resolutions and coverages.

Finally it is worth noticing that due to the particular experimental configuration

adopted in Haro Strait the final field estimate might be somewhat biased (see chapter

6). In addition the error estimate of the sound speed field does not formally propagate

the error of the current estimate it used as its input. Error modeling, in particular

in the case of oceanographic and acoustic model coupling, is still an active area of

research and an accurate error model for the final field estimate lies beyond the scope

of this paper. However the error fields analyzed with the Haro Strait experiment

do show the potential impact of melding different types of data and models on the

resulting estimate uncertainty. The combination of various data streams and models

is able to exploit the advantages of each data set, e.g., resolution or coverage, and

compensate to some extent their limitations.
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Chapter 8

Conclusion

8.1 Summary

Forward propagation through a low Mach number, stratified flow was investigated

in chapter 3 using a wavenumber integration and a normal mode analysis. Both

approaches were unified in a single mathematical formulation suitable for efficient

numerical computations. The resulting equations were implemented by modifying

existing wavenumber integration and normal mode codes (OASES and KRAKEN).

Numerical results for low and high frequency sources in a simple waveguide were

shown to exhibit a high degree of agreement between the two approaches, as well

as confirm previous theoretical results [43, 7, 73]. An analytical solution was also

derived based on the mode set of the medium at rest. Comparison of the analytical

solution with the previously computed numerical solution showed that the medium-

at-rest mode set cannot adequately account for the presence of flow regardless of

the flow magnitude if bottom penetration is present or if the current profile exhibits

sharp variations with respect to depth. The theoretical feasibility of coherent recip-

rocal matched-field current tomography was then demonstrated. Assuming accurate

knowledge of the acoustic waveguide, a current velocity of 1.5m/s was shown to be

measurable at a range of 2km with a resolution of 0.2m/s using a multi-tone CW

signal spanning 200-250Hz.
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Remote-sensing of current and temperature fields at short ranges in a highly vari-

able, highly uncertain coastal environment was subsequently investigated. A hybrid

linear inversion scheme combining heterogeneous data sets, yielding a field estimate

within a short amount of time (a few minutes at most), was developed. In order to do

so a comprehensive set of observation models linking acoustic ray propagation, array

motion, and tidal current as well as temperature sampling was developed in chapter

4. Formal expressions for the field estimates and their expected covariance matrices

were derived. A final field estimate was produced by combining various data types

over several correlation lengths and times.

The oceanic fields observed in Haro Strait, British Columbia, were then character-

ized in chapter 5. Second-order statistics were estimated for the current and sound

speed fields. The horizontal correlation length was found to be approximately 1km.

The vertical correlation length of the sound speed field was measured at 12m. The

correlation time was found to be between 2 and 3.5h, depending on the functional

form used to fit the data. Sound speed standard deviations of up to 1.5m/s were ob-

served with respect to depth. Sound speed standard deviations with respect to time

were measured between 0.13 and 0.50m/s. Current perturbation standard deviations

with respect to time were measured between 0.15 and 0.22m/s. The tidal model used

in this thesis (Foreman's tidal model), when coupled with the adequate observation

model, was found to be a good predictor of acoustic array shapes.

A performance analysis of the inversion algorithm was carried out in chapter 6.

Field estimate bias and resolution were explicitely and formally defined. The effect of

source position on estimate resolution was found to be consistent with the sampling

of the medium by acoustic rays. Acoustic vertical resolution lengths were computed

and found to be approximately 15m for the Haro Strait case. Horizontal resolution

lengths were estimated to be as low as 950m for the combined field estimate. Field

bias was found to be generally negligible within the envelope of the sampling network

and non-negligible outside. A synthetic data set was generated in order to calibrate
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the inversion algorithm. The actual locations of the acoustic sources were found to

be sub-optimal, resulting in an East-West shift of the theoretical front position by

approximately 800m near the WHOI SW mooring. Except for this shift, the sound

speed field was properly recovered. The estimated field was shown to be unbiased

when acoustic sources were properly (uniformly) distributed around the region of

interest. The effect of current mismatch was found to be negligible as long as current

uncertainties were accounted for in the noise model. The influence of frequency

coherence on the inversion accuracy was subsequently assessed by computing Cramer-

Rao bounds for a typical Haro Strait environment. The frequency-coherent bound

was found to decrease with source bandwidth, source range (up to 6km), and signal-

to-noise ratio. The frequency-incoherent bound was found to be insensitive to source

bandwidth, at best insensitive if not adversely affected by source range, and decrease

with signal-to-noise ratio.

Finally, the inversion algorithm was applied to a two-hour segment of the Haro

Strait data set, including 45 acoustic transmissions across the sampling network. The

benefit from combining acoustic and non-acoustic data was demonstrated. While the

combination of acoustic and non-acoustic data decreased the smallest estimated er-

ror of the sound speed field by only a few percents of the a priori variance, it also

significantly increased the coverage of the low-error area, extending it to almost the

entire area covered by the interdisciplinary sampling network. The effect of combin-

ing the acoustic and non-acoustic data sets on the current field field estimate was

qualitatively different. Coverage was only locally increased, owing to the local nature

of both the non-acoustic and the acoustic data (bearing in mind the acoustic data is

the acoustically-estimated array shape, not the reciprocal travel time estimate). On

the other hand the combination of acoustic and non-acoustic current data near the

WHOI NE mooring led to a residual variance of approximately 10%, compared with

approximately 30% near the other two WHOI moorings. The resulting sound speed

field estimate was found to be in reasonable agreement with independent temperature

measurements. The estimated front position was found to be consistent with visual
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observations made that day.

8.2 Contributions

This thesis makes contributions to both the forward problem and the inverse prob-

lem. The contributions to the problem of acoustic forward propagation through a

moving medium are:

* a unified theoretical formulation combining the wavenumber integration and the

normal mode approaches was developed. Equations governing the acoustic field

were derived for an arbitrary stratified flow. The non-reciprocity of propagation

through a flow was shown to be attributed to a non-symmetric distortion of the

wavenumber plane as well as the emergence of single poles on one half of the

wavenumber plane.

* the problem of computing the upstream and downstream transmission loss in

the absence of boundary penetration was solved using modified versions of the

computer codes OASES and KRAKEN. Accurate numerical predictions of the

acoustic field in the presence of a stratified flow can now be made. Inconsisten-

cies previously found in the literature were resolved.

* regardless of the magnitude of the flow, the medium-at-rest mode set was shown

to be fundamentally unsuited to modeling propagation in a non-uniform flow.

Chapter 3 was published in condensed form in the Journal of the Acoustical Society

of America [23]. The contributions of this thesis to the inverse problem are:

* a robust, hybrid linear inversion scheme adapted to the estimation of oceanic

fields in coastal environments such as Haro Strait was developed. A variety

of observation models adapted to AFOS-generated data sets was formulated

in a single framework. Expressions for hybrid field estimates as well as their

associated estimate variances were derived. These expressions enable the com-

bination of multiple data streams of global and local nature in a robust and

versatile fashion while maintaining a manageable computational load.
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* the performance of this inversion algorithm was assessed, showing significant

gains in coverage and estimated error from the combination of multiple data

sets. Signal frequency coherence was shown to be a key asset in shallow water,

short range inversion scenarios such as Haro Strait.

* second-order statistics of sound speed and current fields in Haro Strait were com-

puted, and the position of the Haro Strait front during flood tide on 06/20/96

was estimated.

8.3 Future work

The analysis presented in this thesis suggests new avenues of research, drawing

on both the forward and the inverse problem as well as tying it to what could be

termed the acoustic data assimilation problem. In particular, the flow propagation

analysis needs to be formally extended to the case of range-dependent environments.

The normal mode formulation based on the medium-at-rest mode set should be in-

vestigated assuming the "coupling" matrix K in equation (3.16) is not diagonal. The

benefit from this improvement is that if the (measured) pressure field is projected

on the known medium-at-rest mode set and the coupling matrix K estimated using

reciprocal transmissions, a simple singular value decomposition of K will yield the

actual current profile seen by the measured acoustic field.

The inversion scheme would benefit from a number of improvements. First a more

sophisticated error model would lead to a better field estimation: in particular the

error of the blended current field estimate was not properly modeled in this thesis

for lack of analysis of the tidal model error field. Once this error is adequately mod-

eled, error propagation from the current estimate to the sound speed estimate should

also be investigated. Second another coastal field estimation experiment should be

implemented, validating some of the lessons learned in Haro Strait. Trivial as it may

seem, a special attention must be paid to practical issues such as source timing and

independent array localization. Proper mastery of these issues will greatly decrease
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the uncertainty of the resulting field estimates. Although the algorithm presented

in this thesis claims to be fast on robust based on post-processed data, it needs to

be put to the test by being actually interfaced with an Adaptive Ocean Sampling

Network, either during an Ocean System Simulation Experiment or during an actual

experiment at sea.

Finally a great deal of work remains to be done in acoustic data assimilation. So far

only travel time perturbations (and in some cases wavenumber perturbations) have

been used owing to the linearity of their associated observation model. Although the

wave equation depends non-linearly on sound speed and current, an observation model

could be cast in linear form using an adequate mapping. The classical finite difference

parabolic equation formulation for instance can yield a suitable linear observation

model by using the standard two-term expansion of the square root operator, and

by using the squared refraction index c /c 2 (x) instead of the sound speed c(x) as

the field of interest. Sparse physical sampling will simply show up as a projection

matrix multiplying both sides of the observation model equation. The door to full

field acoustic data assimilation, or the combination of acoustic data and parabolic

equation predictions in a single squared refraction index field estimate, will then be

open.
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Appendix A

Conditional probability density

function of the data vector y

The data vector y and the model vector x are related by the observation model:

y = bh(x) + n (A.1)

where n and b are noise terms. The expectation of y conditioned on x is then:

E [ylx] = E [bh(x) Ix] + E [njx]

= E [b] h(x) + E [n] (A.2)

= ph(x)

The covariance of y conditioned on x can be expressed as:

E [(y - h(x)) (y - ph(x))t Ix] = E [(b - 0)2h(x)h(x)t lx] - E [onh(x)t lx]

- E [ph(x)ntlx] + E [nntlx]

= aoh(x)h(x) t + R,,

(A.3)
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Assuming b and n are jointly Gaussian, the probability density function of y condi-

tionned on x can be written as:

(A.4)py (Y X) = C e - (y- h(x))t(R~ + o h(x)h(x)t) - '(y-Oh(x))

where C is a normalization constant.
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Appendix B

Light bulb acoustic transmissions

in Haro Strait

About 45 light bulb acoustic transmissions were used in the combined field estima-

tion. The main source and receiver characteristics are given in the chart below.

shot date GMT source source source receiver capture

ID (s) LAT LONG depth mooring file

20 06/20/96 06600 48.649750 123.218580 70.0 NW 17206453.btd

20 06/20/96 06600 48.649750 123.218580 70.0 SW 17206450.btd

21 06/20/96 06660 48.650467 123.218170 30.5 NW 17206544.btd

21 06/20/96 06660 48.650467 123.218170 30.5 SW 17206540.btd

22 06/20/96 06840 48.651967 123.217250 70.0 NW 17206733.btd

22 06/20/96 06840 48.651967 123.217250 70.0 SW 17206731.btd

23 06/20/96 06960 48.652583 123.216780 30.5 NW 17206804.btd

23 06/20/96 06960 48.652583 123.216780 30.5 SW 17206802.btd

24 06/20/96 07080 48.653500 123.216120 70.0 NW 17206963.btd

24 06/20/96 07080 48.653500 123.216120 70.0 SW 17206960.btd

25 06/20/96 07200 48.653950 123.215750 30.5 NW 17207059.btd

25 06/20/96 07200 48.653950 123.215750 30.5 SW 17207057.btd
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shot date GMT source source source receiver capture

ID (s) LAT LONG depth m ooring file

27

27

29

29

31

31

31

32

32

32

33

33

33

34

34

34

35

35

35

36

36

36

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

06/20/96

08400

08400

09000

09000

09780

09780

09780

10020

10020

10020

10500

10500

10500

10740

10740

10740

10860

10860

10860

11040

11040

11040

48.647967

48.647967

48.650167

48.650167

48.651617

48.651617

48.651617

48.652083

48.652083

48.652083

48.645017

48.645017

48.645017

48.645433

48.645433

48.645433

48.645833

48.645833

48.645833

48.646050

48.646050

48.646050
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123.206300

123.206300

123.204000

123.204000

123.200430

123.200430

123.200430

123.198430

123.198430

123.198430

123.199250

123.199250

123.199250

123.198580

123.198580

123.198580

123.197830

123.197830

123.197830

123.197170

123.197170

123.197170

70.0

70.0

70.0

70.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

NW

SW

NW

SW

NE

NW

SW

NE

NW

SW

NE

NW

SW

NE

NW

SW

NE

NW

SW

NE

NW

SW

17208260.btd

17208257.btd

17208864.btd

17208861.btd

17209628.btd

17209631.btd

17209628.btd

17209816.btd

17209819.btd

17209815.btd

17210599.btd

17210602.btd

17210597.btd

17210769.btd

17210774.btd

17210769.btd

17210950.btd

17210954.btd

17210950.btd

17211115.btd

17211119.btd

17211115.btd
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shot date GMT source source source receiver capture

ID (s) LAT LONG depth mooring file

37 06/20/96 11460 48.647550 123.191720 50.0 NE 17211528.btd

37 06/20/96 11460 48.647550 123.191720 50.0 SW 17211527.btd

38 06/20/96 11640 48.647500 123.190450 50.0 NE 17211697.btd

38 06/20/96 11640 48.647500 123.190450 50.0 SW 17211697.btd

39 06/20/96 11840 48.647433 123.189170 50.0 NE 17211874.btd

39 06/20/96 11840 48.647433 123.189170 50.0 SW 17211873.btd

40 06/20/96 12140 48.647183 123.187350 50.0 NE 17212149.btd

40 06/20/96 12140 48.647183 123.187350 50.0 SW 17212149.btd

41 06/20/96 12320 48.646933 123.186080 50.0 NE 17212339.btd

42 06/20/96 12320 48.646617 123.184750 50.0 NE 17212513.btd
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