
GUIDANCE, NAVIGATION AND CONTROL OF A
ROBOTIC FISH

by

Mohan Gurunathan

Submitted to the Department of Electrical Engineering and Computer
Science, in partial fulfillment of the requirements for the degrees of

BACHELOR OF SCIENCE IN ELECTRICAL SCIENCE AND ENGINEERING

and
MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

C Mohan Gurunathan, 1998. All rights reserved.

A uthor:
Mohan Gurunathan

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

C ertified by:
J amieM.Anderson

Senior Member Technical Staff, Charles Stark Draper Laboratory
Thesis Supervisor

Certified by:
V 'John J. Leonard

Professor in Ocean Engineering, Massachusetts Institute of Technology
Thesis Supervisor

A ccepted by:
Arthur C. Smith

Chairman, Departmental Committee on Graduate Theses

MASSACHUSETTS INSTiE
OFTECHNOLOGY

JUL 14 1998

LIBRARIES

_ I

GUIDANCE, NAVIGATION AND CONTROL OF A
ROBOTIC FISH

by

Mohan Gurunathan

Submitted to the Department of Electrical Engineering and Computer Science on May 22,

1998, in partial fulfillment of the requirements for the degrees of Bachelor of Science in

Electrical Science and Engineering and Master of Engineering in Electrical Engineering and

Cogiputer Science.

Abstract

This thesis describes the development of specialized electronics for a robotic fish at the
Charles Stark Draper Laboratory in Cambridge, MA. The construction of this prototype
vehicle has required the expertise and interaction of several different disciplines, including
mechanical, electrical and ocean engineering. In particular, the complete electrical system of
the vehicle is responsible for gathering data from sensors, controlling actuators which drive
the tail, keeping track of the current state of the vehicle (including its current position),
monitoring its safety, and communicating with the outside world. This thesis focuses on a
small subset of the electrical system that is concerned with navigation, guidance and control.
These issues encompass the vehicle's knowledge of its position at a given time, and its ability
to coordinate actions so as to intelligently change its position. Here, an effort is described to
develop a groundwork for the guidance, navigation and control electronic subsystem of the
Vorticity Control Unmanned Undersea Vehicle (VCUUV) at Draper Lab.

Thesis Supervisor:
Title:

Thesis Supervisor:
Title:

Jamie M. Anderson
Senior Member Technical Staff, Charles Stark Draper Laboratory

John J. Leonard
Assistant Professor of Ocean Engineering, Massachusetts Institute of
Technology

Acknowledgments

This thesis was prepared at the Charles Stark Draper Laboratory, Inc., under Internal
Research and Development funding.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency
of the findings or conclusions contained herein. It is published for the exchange and
stimulation of ideas.

Permission is hereby granted by the Author to the Massachusetts Institute of Technology to
reproduce and or all of this thesis.

Mohan Gurunathan

Many a time I went to fellow students in the Unmanned Vehicle Lab to verify my sanity (or

just to distract me from going insane); all of you who helped, one time or another, include
Jamie Cho, Alan DiPietro, Ryan Norris, Tom Trapp, Rusty Sammon, Long Phan, Bill
Kaliardos, Paul Marquardt, John Thele, Chuck Tung, Jonah Peskin and Chris Gadda. In
particular, Jamie Cho taught me a great deal about electronics and software when I was just a
young tyke starting out on this project. Long and Rusty are experts in applied stress-relief.

Jonah and Chris continue to work on the fish and I wish you best of luck.

Thank you in particular Mark Little for your help in decision-making, debugging, and
regularly tolerating my "pessimism." Pete Kerrebrock was always willing share his
engineering expertise and ingenuity in any discussion, to help solve all sorts of problems.
Thank you Jamie Anderson for giving me the opportunity to work on this project and for
your sensitivity to my own goals and pursuits over the last year. I have learnt a great deal
this year through my research, as well as my interactions with everyone in the lab.

Elsewhere at Draper Lab, Tom Thorvaldssen and Pat Brown were gracious enough to sit
down with me and explain some basics of strapdown inertial systems; Pat also donated some
code to my cause. Your selfless help was much appreciated.

Many thanks to M.I.T. for helping to perfect the art of the all-nighter, without which I
would never have finished this thesis.

This thesis is devoted to my parents for their continuous love, support and inspiration of 22
years.

.....^--.- 11~ 11.~-- __11~ -1 el-^ -1-~e.-~rr.;-~,, ~, .r.l..-~_^--ilr._.~~. .i.r~~- ~-x*r~ ---~-- --I---~XLYiLI--II-X--1IXI-XLI'~--1~5^-1~~ 1_-~_1~--- . il--^I~---~----- I-~--pll~X~ . __~._I

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 The VCUUV project 1

1.2 VCUUV Electronics Subsystem 2

1.3 Objectives of this Thesis 4

CHAPTER 2 GUIDANCE AND NAVIGATION 5

2.1 Dead-Reckoning 5

2.2 Inertial Guidance Theory 6

2.3 Inertial Systems 8
2.3.1 Platform vs. Strapdown 8

2.3.2 Drift 10

2.3.3 External Sensors 10

2.4 Uses of Inertial Information in Guidance and Control 11

2.4.1 Short-term attitude stabilization and alignment 11

2.4.2 Kalman Filter 13

2.5 Summary 15

CHAPTER 3 GUIDANCE DATA ACQUISITION 17

3.1 Tattletale 17

3.2 Sensors 18
3.2.1 Depth Pressure Transducer 19

3.2.2 Compass 20

3.2.3 Inertial Measurement Unit 21

3.4 IMU Data Acquisition 23

3.4.1 Filter design for sampling 23

3.4.2 Precision Circuitry 30

3.4.3 Electromagnetic Interference (EMI) 30

3.5 Software architecture 32
3.5.1 Sampling and Digital Filtering 32

3.5.2 Compass Software 34

3.5.3 Talking to the 486 34

3.5.4 Smart Motor Control 37

3.5.5 Bandwidth Issues 38

3.5.6 QNX Software 39

3.6 Summary 40

CHAPTER 4 VCUUV INERTIAL SYSTEM 41

4.1 IMU Limitations 42

- 4.2 IMU Temperature Compensation 43

4.3 Determining Position and Attitude 44

4.3.1 Strapdown Computational Architecture 45

4.3.2 Reference Frame versus Body Frame 46

4.3.3 Alignment 49

4.4 Cart Tests 50

4.4.1 Results 51

4.4.1.1 Straight Run
4.4.1.2 Rectangle
4.4.1.3 Elevator

4.5 Conclusions

CHAPTER 5 MODELING, SIMULATION AND CONTROL

5.1 Model Development

5.2 Depth Control Loop

5.3 Summary

CHAPTER 6 CONCLUSIONS

6.1 Summary of Thesis

6.2 Current State of the VCUUV

6.3 Lessons from the Existing Work

6.4 Recommendations for the Future Generation VCUUV

REFERENCES

APPENDIX A: CIRCUIT SCHEMATICS

A.1 TT8 Surrounding circuitry

A.2 Interconnections Diagram

APPENDIX B: TATTLETALE 8

B.1 General Construction

B.2 Power Requirements

B.3 Schematic Documentation
B.3.1 Tattletale
B.3.2 General A-to-D Operation

B.3.2.1 A-to-D Modifications
B.3.3 IMU Circuit
B.3.4 Pressure Sensor Circuit
B.3.5 Electronic Compass

B.4 Programming the TT8
B.5 Parts List

APPENDIX C: CODE LISTING

C.1 Tattletale Code

C.2 QNX Code

C.3 MATLAB Code

DOCUMENTATION AND TROUBLESHOOTING

APPENDIX D: HYDRODYNAMIC COEFFICIENTS

81
81

100
116

121

11_1___11_____1__111I_-i g14 ~ I-~1~~~-- 11 (--~---- ~I_~ I---i~y l _

LIST OF FIGURES

Figure 1.1: Vorticity Control Unmanned Undersea Vehicle, CAD model 1

Figure 1.2: Complete VCUUV Electronics Diagram ... 3

Figure 2.1: Accelerometer and Gyro sensitive axes in a 6-DOF system 7
Figure 2.2: General Kalman filter architecture for VCUUV navigation.................................... 14

Figure 3.1: Tattletale Model 8 with custom circuitry .. 18
Figure 3.2: Model 93-015S Sensor.................................. 19
Figure 3.3: Depth pressure transducer circuitry ... 19

Figure 3.4: Vector 2XG Compass 20
Figure 3.5: Compass timing diagram (from Vector 2XG manual) 20
Figure 3.6: Systron Donner IMU.. 21
Figure 3.7: IM U O utputs ... 23
Figure 3.8: IMU Scaling and filtering circuitry.. 24
Figure 3.9: Oversampling, filtering and decimation in the frequency domain............... 26
Figure 3.10: Tattletale digital filter design... 28
Figure 3.11: Various types of IIR filter passbands .. 28
Figure 3.12: Direct Form I implementation of 3 rd order IIR filter................................ 29
Figure 3.13: Mechanics of IMU mounting 29
Figure 3.14: Theoretical control loop for navigation....................... 30
Figure 3.15: Shielding of each IMU signal 32
Figure 3.16: Software IIR Filter, storage of delayed elements.................. 34
Figure 3.17: Pectoral Fin G ear A ssem bly 37
Figure 3.18: "Echo" mode for TT8-to-Smart Motor communication................. 38
Figure 3.19: TT8 Bandwidth division 39
Figure 4.1: Gyro drift performance for various applications........................... 41
Figure 4.2: Illustration of size effect and alignment uncertainties in IMU 42
Figure 4.3: Temperature vs. Bias curves 44
Figure 4.4: Strapdown architecture.. 45
Figure 4.5: Mechanization from body to navigation frame46
Figure 4.6: Post-processed IMU data - Straight run .. 52
Figure 4.7: Post-processed IMU data - Rectangle ... 53
Figure 4.8: Post-processed IMU data - Elevator .. 54
Figure 5.1: 2D setting for model development (dive-plane)..................................... 59
Figure 5.2: Nonlinear state-space model for dive-plane analysis .. 61
Figure 5.3: Coordinate systems in used in dive-plane model 61
Figure 5.4: SIMULINK block diagram... 62
Figure 5.5: D epth feedback loop 64
Figure 5.6: Dive slope versus fin angle, at nominal velocity (4 knots) 64
Figure 5.7: Final feedback controller.................................. 65

LIST OF TABLES

Table 3.1: MotionPak Calibration Sheet.................................. 22
Table 3.2: FIR digital filter pros/cons 27
Table 3.3: IIR digital filter pros/cons ... 27
Table 3.4: TT8 Data Packet Structure............................... 35
Table 3.5: 486 Data Packet Structure 36
Table 5.1: Dive-slope versus forward speed and angle of attack 63

-- --II -- ---_. . _ ..~- s~--YY~IR- Y-*Y--~Y___._XL_~-- ~--E- .Y- .)~I -X~ I^I-YII

Chapter 1 Introduction

1.1 The VCUUV project

The Charles Stark Draper Laboratory is currently in the process of developing an
autonomous free-swimming robot fish to investigate the feasibility of fish-swimming motion
as compared to conventional underwater propulsion techniques. This project, known as the
Vorticity Control Unmanned Underwater Vehicle (VCUUV), is the successor to a 1996 MIT
project called Robotuna. Robotuna consisted of a flexible-hull vehicle shaped like a tuna that
was suspended in a tank by an overhead towing sled, which allowed movement of the fish in
one dimension. The hull could be articulated to imitate the motions of a fish, and
measurements of propulsive efficiencies could be taken while towing the fish through the
water. In particular, the project demonstrated that a man-made vehicle could obtain
increased propulsive efficiency via fish-like propulsion. Furthermore, Robotuna suggested
that drag reduction and greatly increased maneuverability may also be achieved by the same
swimming motion.

Figure 1.1: Vorticity Control Unmanned Undersea Vehicle, CAD model

The VCUUV is the next step in the study of fish propulsion. The primary goal of the
project is to develop a vehicle that can be used to investigate self-propelled swimming and
maneuvering. Unlike Robotuna, which was constrained by its towing sled to move along
one axis, the VCUUV will be free-swimming and autonomous, features which present many
additional challenges in its design. All computers, power supplies, sensors and actuators
must be self-contained within the vehicle, placing a fundamental space constraint on the
number of components and the heat they can dissipate. Since the vehicle is battery
powered, an effort towards power conservation must be made in electronics design in order
to maximize the mission duration. The vehicle itself must be neutrally buoyant, and its rigid
body dynamics (i.e. centers of gravity, buoyancy, etc.) must be well known and characterized.

Introduction

Some possible applications of such a vehicle include delivering underwater payloads in hard-

to-navigate areas on the ocean floor, or removing mines from underwater minefields.

However, these applications are far in the future; the goal for this project is simply a proof
of concept: to demonstrate that a man-made vehicle can be made to swim like a fish. If

VCUUV lives up to its designers' hopes, it will be more efficient and much more

maneuverable than propeller-driven subs of comparable size [2].

1.2 VCUUV Electronics Subsystem

In this modern era of high-technology, a good electronics design is essential to the successful
performance of any vehicle. An autonomous vehicle such as the VCUUV presents some
very unique challenges, since it must eventually function with no human intervention -
requiring sophisticated and robust development in the areas of safety and guidance.

The complete high-level design of the VCUUV electronics subsystem was done by Jamie
Cho, and is the subject of his Master's thesis, "Electronic Subsystems of a Free-Swimming
Robotic Fish [3]." The result of his efforts are summarized in the VCUUV architecture
diagram in Figure 1.2. Jamie was responsible for specifying all of the electronic hardware
necessary to make the fish operational; in essence, his work defines the capabilities of the
current design. Despite various superficial changes, the general architecture has remained
similar to his initial conception. His work included choosing the sensors and hardware
responsible for the Navigation Subsystem of the electronics, which is pictured in the lower
part of Figure 1.2.

The VCUUV uses a distributed-processing architecture. There are four separate micro-
controllers that control and interact with various local subsystems of the vehicle. In
addition, communication must exist between all of the processors. This occurs through the
central "host" processor, the 486 on the PC-104 stack. All coordination of the activities and
information from the other processors is handled by software running on the 486.

The remaining processors include a PIC microcontroller, a TI-C44 DSP (Digital Signal
Processor), and a Tattletale microcontroller. Each device is assigned a specific region of
responsibility. The PIC holds a vigil on the internal safety of the fish's electronics, by
monitoring leak sensors, temperature and battery monitors. The DSP is dedicated to closed-
loop motion control of the four hydraulic cylinders that make the tail move in a "fish-like"
manner. The Tattletale is the central hub of the Navigation Subsystem. This subsystem is
the primary focus of Chapter 3.

Various individuals were responsible for different sections of the electronics design. Jamie
Cho designed the architecture, Chris Gadda and Jonah Peskin worked on the fish's safety
features as well as software to actuate the tail. Mark Little, a Draper Lab engineer, designed
a power management board and has helped integrate all of the electronics into a tightly
functioning system. This work still continues, particularly in the software development
arena, where much remains to be done. Many fragments of test code need to be combined
and refined in order to truly make the fish an "autonomous vehicle."

Introduction

VCUUV Electronics Subsystem

Figure 1.2: Complete VCUUV Electronics Diagram

Introduction

The Navigation Subsystem was largely developed externally to the rest of the vehicle. The
electronics and software design for the Tattletale controller were designed using a separate
PC as the host computer; similarly, capabilities to communicate with the 486 through a serial
port were developed (in software) on a laptop that operates almost identically to the 486 on
the fish. At the publication of this thesis, the navigation work has been successfully
demonstrated outside of the fish; current work involves integrating this small system into the
already bustling electronic chassis.

1.3 Objectives of this Thesis

The VCUUV has been in development for over a year and a half, and its mechanical and
electrical systems have recently been completed. The next stage is a series of experimental
swims in a large tank at the University of New Hampshire, where data reflecting the
swimming behaviors of the fish can be collected and analyzed. What remains to be proven
is: will flapping the tail make the fish swim as expected?

Until this point, therefore, creating a vehicle that can propel itself via fish-like motion has
been the primary concern. Navigating such a vehicle has been a secondary goal; but if the
fish is demonstrated to swim well, guidance and control will become the next biggest
challenge.

This thesis documents the design of the VCUUV guidance and control electronics, from
initial conception to their current state. Hopefully the reader will get a sense not only of the
system's capabilities, but the challenges that constrain these capabilities. Chapter 2 presents
research done into general guidance and navigation principles, and how they might be
implemented on the VCUUV. Much of this work has been done without the benefit of a
proper testbed - i.e., a swimming tank in which to run navigation experiments - and so is
described in terms of theory and speculation. This is intended to provide direction for
future team members who might wish to continue development of the Navigation
Subsystem. Chapter 3 describes actual electronics that have been designed and built,
including sensors, hardware and software development. Chapter 4 analyzes the performance
of the existing system, using experimental data collected from the electronics. Chapter 5
explores a simplified modeling and control experiment to regulate the fish's depth during a
swim. Chapter 6 summarizes the research to date and makes recommendations for future
work.

The work presented in this thesis is intended to lay a groundwork for the guidance and
navigation of the VCUUV; however, by no means have all the capabilities been explored.
Several of the ideas proposed here cannot be completed until the dynamics and swimming
behaviors of the fish are better characterized. Numerous mathematical models should
eventually be created in order to design well-constructed feedback routines to navigate the
fish. With this in consideration, the central aim of this thesis is to thoroughly examine the
fish's navigational potential based on the current electronics. From this point many
possibilities may grow - largely through continued software development.

Chapter 2 Guidance and Navigation

Technically, navigation is the process of determining one's location with respect to some
reference (usually a coordinate system). Guidance involves acting in ways to bring one to a
desired location. Therefore navigation is a critical part of achieving guidance: it is the
feedback element. Most methods of vehicle guidance depend on the ability to navigate,
since a vehicle cannot accurately move from place to place without knowing that it has
arrived at each place, and with what accuracy [7].

This chapter introduces some very general principles of navigation, in order to acquaint the
reader with the issues involved. Special attention is given to inertial navigation, a dead-
reckoning technique which estimates vehicle position by integrating incremental changes in
the vehicle's accelerations and rotations. Inertial navigation is a very sophisticated technique
which is discussed in deep mathematical rigor in many texts; this chapter will give a general
discussion of its fundamentals and possible applications to the VCUUV. Chapter 4 presents
some of the math and examines the VCUUV inertial system in greater detail.

2.1 Dead-Reckoning

The term dead-reckoning can be applied to any vehicular navigation system which attempts
to estimate its position using only information that is internal to the vehicle itself. A good
example of this is the odometer in an automobile, which counts the turning of the car's
wheels. For travel in a given direction, the odometer reading gives the car's distance in miles
from the starting point. The driver might also determine his position by reading a mile
marker on the highway, but this would not be considered dead-reckoning: the distinction is
that the odometer is a sensor (technically, an "encoder") which provides information about
an internal property of the vehicle, versus the mile marker which is a source of information
from the external world.

Other examples of non-dead-reckoning sensors are compasses and altimeters, which rely on
external phenomena - the earth's magnetic field, and the atmospheric pressure - for their
measurements. The importance of this classification is clearly seen if the external world
were to go completely haywire; for instance if the earth's magnetic field were to reverse
itself, compass measurements would become duplicitous. In the example above, if someone
were to deceptively re-paint all of the highway mile markers, the only trustworthy indication
of position would be on the odometer. In a sense, dead-reckoning is equivalent to self-
sufficiency. The only reliable sensors under all external circumstances are instruments whose
measurements do not rely on the constancy of the external world.

Unfortunately, few vehicles can afford to rely on dead-reckoning and ignore the external
world for very long. This is mainly because dead-reckoning techniques are imperfect.
Returning to the car/odometer example: after the car travels in a straight line for a long time,

-r-----"-~l~ ~--~-^I~ I1I1 1I--"I1^1 srr~--- --- 1- I^~~*-^r~-...i...-^..---~- ---- ,-11_.. 1111 ---- ~...l~^..,._lrll----I~~l- ll ._I-LII.~ aP~I~YI.---~.-^.1*^11~-1111.~- 1 114~-n~--1 -_--- 1

Guidance and Navigation

the odometer reading will eventually accumulate errors due to effects such as wheel slippage
and tire wear. Sooner or later the driver will need to look at a mile marker to figure the
actual distance traveled, since the odometer reading will have "drifted" from the correct
distance. In general, this is an unfortunate property of dead-reckoning techniques: after
some amount of time, the dead-reckoned position estimate will have strayed from the true
position due to shortcomings of the sensors. At such a time, the position estimate must be
revised by glancing at the external world for supplementary information.

Often, complete navigation and guidance systems are based on such a fusion of dead-
reckoning and external information. Dead-reckoning is used to track position for short
intervals of time, and in between, periodic corrections are provided by external sensors. The
dead-reckoning information is often called "short-term" or "high-frequency" data since it is
guaranteed accurate for a bounded intervals of time, and the external information is called
"long-term" or "low-frequency" data since it is used less often, and only to correct the
drifting errors of the dead-reckoned estimate. Ideally, a navigation system will be as self-
sufficient as possible and rely almost entirely on dead-reckoning sensors; however, this is
only possible with near-perfect sensors, which come at prohibitive cost. The greatest
example of this is the ballistic missile, which can guide itself to a target thousands of miles
away with no communication or observation of the external world, using inertial dead-
reckoning techniques alone.

2.2 Inertial Guidance Theory

The ballistic missile provides a good first example of inertial dead-reckoning. For vehicles
that travel in three dimensions and have no spinning wheels, encoder-type sensors (such as
odometers) cannot be used to track position. Vehicles traveling through space must rely on
a completely different type of dead-reckoning: inertial dead-reckoning. This is built on the
fundamental principle that bodies of finite mass experience forces when they are accelerated
(in an inertial reference frame). These forces can be measured, and therefore the
accelerations can be measured. Similarly, when bodies are rotated around an axis, centripetal
forces arise that can be measured, which reflect the direction and speed of the rotation.
These two principles form the basis for inertial guidance theory, which states that the
changing position and orientation (or attitude) of a vehicle can be calculated through
measurements of its accelerations and angular rates of rotation. Essentially, by adding up -
or integrating - incremental accelerations, velocity information is obtained; and integrating
velocity gives position. The angular rates are needed to determine which directions the
accelerations are being measured in. The instruments needed to measure linear acceleration
and angular velocities are, respectively, accelerometers and gyroscopes [7].

Accelerometers and gyroscopes have been used in inertial navigation systems since the
1950's. They began to gain popularity as guidance instruments for the early ballistic missiles
of World War II. Inertial navigation was not possible until these instruments were made
much more precise than they had been; during WWII, Charles Stark Draper of MIT
pioneered the movement which made gyroscopes and accelerometers orders of magnitude
more accurate than the crude pre-war devices. Draper continued to push the envelope
through the Apollo era, where he built the inertial instruments that took the first astronauts

Guidance and Navigation

to the moon - and into the present day, where inertial instruments are so precise and so well
characterized that they can pilot a missile into your backyard launched from any point on the
surface of the earth.

Many types of accelerometers and gyroscopes exist, from simple springs and spinning
masses, to vibrating quartz tuning forks and electrostatically suspended spinning beryllium
spheres. This thesis will not go into the details of these various incarnations, but will suffice
to say that in general they obey the basic law of cost versus accuracy and complexity. There
are sometimes other tradeoffs that make certain instruments more suitable for certain
applications - such as varying susceptibilities to different types of instrument errors - but
the cost/accuracy one is the most predominant.

A full inertial guidance system uses three accelerometers and three gyroscopes, and is thus
known as a six degree of freedom (6-DOF) system. The accelerometers are mounted with
their sensitive axes pointing in three orthogonal directions, as shown in Figure 2.1. The
gyros are oriented so as to measure angular rates around the accelerometer axes.

Figure 2.1: Accelerometer and Gyro sensitive axes
in a 6-DOF system

The raw information in an inertial system consists of accelerations and angular rates. In
order to compute our position as a function of time, we need to know our starting position,
velocity, and orientation. This is a consequence of acceleration being the second-derivative
of position (leaving position and velocity as the unknown initial conditions), and angular rate
the first-derivative of angular position.

_Ulllls__YL__I_____JI~- ~1 - ~II^IIIC -- ~- IIX----- -C~-X-I1L-.SL~_. I~I~__II. -I C-q-~---~rl --_ILLIIII~L~I- _i-i-XI- ~-X^~-IX..1I~- I -.XI_-L~Y-P- ----L--.I. _I~~II~L-~YY~--~- III__

Guidance and Navigation

2.3 Inertial Systems

2.3.1 Platform vs. Strapdown

There are essentially two varieties of inertial systems: platform or strapdown. The difference

is that in a platform system, the gyros and accelerometers are mounted on a platform which

is mechanically "isolated" from the rotational movements of the vehicle through a set of

gimbals. In other words, the attitude of the platform (pitch, roll and yaw angles) can change
independently of the vehicle's attitude. In a strapdown system, the inertial components are

rigidly mounted (or "strapped down") to the vehicle's body, and are forced to experience all
attitude changes with the vehicle. The mechanics of each system are illustrated in Figures 2.2
and 2.3. This results in a fundamental difference of operation between the two types of
systems, as well as a tradeoff between size, cost, power consumption, error performance,
and mechanical versus computational complexity [7].

Figure 2.2: Strapdown inertial system

(taken from Lawrence [7])

Figure 2.3: Platform inertial system

(taken from Lawrence [7])

The primary difference between platform and strapdown systems is how they solve the
problem of the changing orientations of the vehicle. A platform system is mechanically
designed so that the orientation of the platform in inertial space is constant. This is arranged by a
feedback system with the rate gyros: when the gyros sense that the attitude of the vehicle is
changing, they send command signals to torque motors which counter this change in
attitude to keep the platform's spatial orientation fixed. Thus if the vehicle were to turn
completely upside down, the platform would spin 180" to maintain its original orientation.
The advantage of this in navigation is best demonstrated through an example.

,Computer

'Vehicle

Guidance and Navigation

Consider the following (two-dimensional) scenario: a plane with
an inertial navigation system (INS) accelerates forward, makes a
90 " turn to the right, and accelerates forward again. If the INS is
a strapdown system, the first acceleration is picked up on the x-
axis accelerometer, then a positive turning rate is seen on the yaw-
rate gyro, and then another acceleration is seen on the x-
accelerometer. In a platform system, the first acceleration would
also be picked up by the x-accelerometer, but the yaw-rate gyro
would command the platform to counter-rotate 90 * while the plane
executes its turn, so that the second acceleration is picked up by the y-accelerometer. In
this way the platform's orientation in space always remains fixed (i.e. x- and y-
accelerometers can always thought to be pointing north and east, respectively).

Given these sensor outputs, how would we compute the plane's position? In the platform
system, this is easy: we have acceleration signals in the x-direction and the y-direction, and
can integrate these twice to compute an (x,y) position in space - a simple task for an
onboard computer. Note that the change of attitude has already been taken care of by the
mechanical compensation of the platform. In the strapdown system, however, things are
not so simple. The gyro outputs must be fed to the computer, and must be dealt with by
number-crunching rather than mechanics. The onboard computer has the additional burden
of computing continuous coordinate transformations in order to determine which direction
in space the x- and y- accelerometers are pointing at all times. In essence, a strapdown
computer must emulate through software the mechanics of a fixed-attitude platform - a
"virtual platform" must be implemented. The process of implementing this virtual platform
is also known as resolving the strapdown measurements into a reference frame, and is
discussed in detail in Chapter 4.

An added complication is the presence of gravity. To an accelerometer, the force of gravity
is indistinguishable from physical acceleration: a stationary accelerometer lying on a table
with its axis aligned with gravity will read Ig of acceleration. Thus any inertial system must
know exactly what the magnitude and direction of gravity are at all times, in order to
subtract it out from the reading. In a platform system, this is relatively simple, since the
platform can be initially aligned perpendicular to gravity: then the z-axis will always see a lg
offset (since the platform's orientation will stay fixed) 1. In a strapdown system, the situation
is again more complex: the orientation of the accelerometers will constantly be changing
with respect to gravity. Based on the computer's current estimate of this orientation, it must
subtract out the appropriate component of gravity from each of the accelerometer readings.
In precision inertial systems (strapdown or platform), compensating for gravity is a major
problem due to many non-uniform properties of the earth's gravitational field. Complex
gravity models are needed that account for the earth's bulge near the equator, its varying
mass distribution, and so on.

The fundamental tradeoff between choosing a platform or strapdown system is

1 However, if the vehicle travels large distances over the earth (such as a ballistic missile), the platform will no
longer be perpendicular to gravity (if aligned in the U.S. and traveled to China, the platform will be upside
down!). The technique for continually compensating for the earth's curvature during travel is called Schuler
tuning, and is a detail not discussed in this thesis.

~lil i -11~-~111 -111~-*~-~-^4 11

Guidance and Navigation

computational versus mechanical complexity. Either a precisely constructed (and thus more
fragile) gimbaled structure with an analog attitude-control system is necessary, or a relatively
fast computer with the sophisticated software necessary to carry out all the strapdown
computations (in addition to other tasks it might need to perform, such as vehicle control).
Strapdown components are cheaper, lighter and more mechanically robust than their
platform cousins. Strapdown gyroscopes, however, require a much greater dynamic input
range than platform gyros, since platform gyros only experience incremental rotations. This
is one of the reasons why platform systems have superior accuracy over strapdown:
characterizing their gyros completely (errors, temperature stability, etc.) and ensuring
linearity is much easier over a small dynamic range than the large input range of strapdown
gyros. As it turns out, inertial navigation accuracy over time all depends on how well every
aspect of the inertial instruments themselves can be characterized.

2.3.2 Drift

Since it is a dead-reckoning technique, inertial navigation experiences drift. The nature of
this drift is amplified by the mathematics involved: accelerations are integrated twice to
determine position. Consider a small constant error in an acceleration measurement, known
as a bias. Over time, this is integrated twice and leads to a quadratic growth in error versus
time (i.e., error proportional to time-squared)! Gyro errors, as it turns out, cause even worse
overall error in the position estimate, since they distort the attitude of the vehicle, and skew
the accelerations from the actual directions they are measured in. Thus gyro error begets
acceleration error which in turn begets quadratic position error - so in the end, gyro biases
cause position drift that grows roughly proportional to the cube of time. In order for an
inertial system to navigate correctly for any useful amount of time, all of its errors must be
well known and compensated for. The best inertial systems characterize all of the
instruments to a very high order, including scale factors, temperature and bias stability, noise
characteristics, angular misalignments, nonlinearities, gravity-dependent errors, and many
more very subtle sources of error. Nothing is left to chance. Specification sheets for a
single accelerometer or gyro can span several hundred pages2! Furthermore, systems that
navigate large distances across the surface of the earth need a good model of its gravity field,
as well as its size, shape, turning rate, etc. Once these parameters are known, and assuming the
errors are systematic and repeatable, instrument readings can be compensated in software to give
the most precise acceleration and angular rate values possible - therefore the lowest drift.

2.3.3 External Sensors

Some external sensors that are typically used to augment inertial guidance are compasses,
velocity sensors (i.e. air-speed detectors), radar or sonar. More often, a precise fix on
location can come from an external reference such as the Global Positioning System (GPS),
or by star-sighting (which has been used by sailors for centuries). Systems which use a
combination of INS and external navigation aids are known as integrated systems.

2 As one can imagine, inertial testing equipment is extremely sophisticated and well-controlled, including
instruments such as precision centrifuges, rate tables, vibration ("shaker") tables, dividing heads, etc.

Guidance and Navigation

However, in some applications - particularly military, where GPS or radio might be jammed
by an enemy - reliance on external sources is undesirable. In these cases, the vehicle's
navigation over time is only as good as the sensors it carries with it: this is true "dead-
reckoning." For this reason many military vehicles (submarines, ballistic missiles, air and
space-craft) are designed with million-dollar inertial systems that have incredibly low drift
rates. These are vehicles designed to rely on nothing but themselves to bring them to their
targets.

2.4 Uses of Inertial Information in Guidance and Control

2.4.1 Short-term attitude stabilization and alignment

Not all guidance, navigation and control systems use inertial instruments to continuously
compute an estimate of the system's position. In fact, some systems use gyros and
accelerometers for short-term, local maneuvers, without much care for the long-term
position of the vehicle. For instance, the VCUUV (which carries a small strapdown inertial
system) might use feedback from gyroscopes to determine whether it is rolling or yawing
undesirably, and adjust fin angles and the tail-bias3 to stabilize its attitude (or "swim
straight"). Such momentary attitude-stabilization maneuvers are easier for a computer to
implement than a full navigation algorithm which continuously calculates the vehicle's
position and attitude in real-time. Furthermore, since the drift of a long-term navigation
algorithm will get very bad after some length of time, a series of short-term maneuvers might
be a more intelligent method of guidance. Consider the following thought experiment,
where we assume the fish has the capability to brake and to turn 90 in place4 .

We desire the fish to swim straight during a rectangular lap around the pool, without rolling
or yawing during the mission. If a continuous, long-term navigation routine is used, the
estimate of the vehicle's attitude would slowly drift during the whole mission; by the time it
completes one lap, it may have rolled over on its back, and yawed enough to miss its
destination by a significant margin. However, using a short-term attitude-stabilization5

scheme offers the possibility to zero-out the accumulated gyro errors at regular intervals.
This is done as follows:

This fish swims from the starting corner to the second using a short-term feedback scheme
from two gyros to stabilize roll and yaw. The fish brakes to a halt at the second corner, and

3 The fish can control roll-movement by holding its pectoral fins at unequal angles. Yawing can be controlled
by swimming with the tail centered slightly to the right or left of the central axis of the fish body, or applying a
"tail-bias."
4 These assumptions are not true at this time but may be implemented in the future. In any case, they clarify
the thought experiment.
5 In fact, many modern airplane autopilot systems implement attitude-stabilization using feedback with
strapdown gyros. Using gyros with sufficiently low drift, the plane can maintain a fixed roll, pitch and yaw for
long periods of time. Such arrangements are called Attitude and Heading Reference Systems (AHRS).

LII_ __1~11^~^ I-1I-1111_11-.---1-(~ills~ 11(IILIY~III-- III~~I- ^ ̂--Y1.11--^1--~- _ C..-.-I~I_^-II

Guidance and Navigation

due to an accumulation of errors in the feedback from the gyros, it has rolled and yawed
slightly (same as in the long-term navigation scenario). However, if we know the fish has

successfully braked to a halt, we can determine its actual attitude (relative to the vertical) by
measuring the tug of gravity on each of the accelerometers. This is known as re-aligning the
IMU. At each corner, the fish can brake to a stop, and replace the estimate of its attitude

(which has drifted) with an exact attitude measurement from the accelerometers. This chain

of short-term controlled runs should exhibit less drift than a system which is guided by a
continuous estimate of position and attitude. The tradeoff is that we no longer have
available an absolute estimate of our position (only an estimate relative to the corner where
we last re-aligned the system). But if an absolute estimate will inevitably drift so far to be
worthless, what good is it?

Thus, whenever we know the vehicle is not accelerating, we can re-align our knowledge of attitude by
measuring the "tilt" of the IMU, or the effect of gravity on the accelerometers. Tilt re-
alignment is very important, because in inertial systems the direction of gravity must always
be known. The alignment algorithm requires some way to know the vehicle is not
accelerating, i.e. information that is external to the inertial system (once again, the
accelerometers cannot distinguish between gravity and true acceleration; something else
needs to provide the knowledge that the vehicle is not accelerating). One possibility is that
the fish decides that it is "stationary" - and thus not accelerating - when it has applied its
brakes for a given amount of time. Another algorithm might calculate the variance of
accelerometer signals taken over a period of one second. If the vehicle is truly experiencing
motion accelerations, this variance is likely to be high (since motion accelerations are usually
"jerky" or momentary in nature, rarely constant). If however the vehicle is not accelerating,
all non-zero forces on the accelerometers must result from components of gravity which is
static, so the variance will be low. From these accelerometer readings, the fish can exactly
determine its present tilt and re-align itself with the direction of gravity.

These short-term techniques are a variation on traditional inertial navigation, which usually
calculates the full set of position, velocity and attitude information in real-time within the
feedback loop. However, in systems where the computer is not fast enough to compute all
the strapdown calculations, or where the IMU's bias and noise characteristics are very poor,
such short-term techniques might be advisable. They improve drift performance by re-
zeroing the attitude error whenever the vehicle can be brought to a stop (or, any known state
of acceleration). This method inherently relies on having a system that is able to make
sophisticated and intelligent decisions independently of the inertial information, such as:
when has the vehicle stopped accelerating?

Such "sophisticated" decision making, however, is really a simplified version of a very
rigorous mathematical technique that is used to significantly reduce errors in inertial systems.
Consider the task of deciding how long to apply braking before the vehicle has come to a
stop. This will involve some knowledge of the mass of the vehicle, the hydrodynamic forces
of the "brakes" in water, etc. Taking this idea to its logical extreme, suppose we can
mathematically characterize not only the fish's braking abilities, but all aspects of its motion
in water: the thrust and angular accelerations produced by swimming the tail at a certain
amplitude and frequency, the lift on the pectoral fins, etc. With this mathematical model of
the vehicle (an open-loop model), we can run a real-time simulation of the fish's motion as it
swims. If we give the fish a command to beat five strokes of its tail with a negative pectoral

Guidance and Navigation

fin angle, the mathematical model will generate a prediction in real-time of how far it will
travel, and how deep it will dive. At the same time, the IMU will provide information on the
observed motion of the vehicle. We now have predicted and observed motion information,
and there exists a mathematical technique to fuse these separate estimates in an optimal way
to generate the best combined estimate. This is known as Kalman filtering (or optimal-
observer design), and is the subject of the next section.

2.4.2 Kalman Filter

The Kalman filter is a mathematical tool used to combine several imperfect measurements
of a quantity into an "optimal" estimate of the quantity. It is often used in inertial navigation
to generate a position estimate using measurements from inertial sensors and predictions
from an open-loop model. In general, the Kalman filter is a tool for "fusing" or mixing data
from different sources. Therefore it can also be used to combine data from inertial systems,
GPS, altimeters, and any number of other sources, in an optimal fashion. It is called a filter
because in combining the various measurements, it reduces the measurement errors or
"noise" that are associated with each individual source of data, in a statistical sense.

Kalman filtering is an elaborate mathematical topic, so we will only describe it in generalities
here. In order for the filter to be effective, the correlation between the various sources of
data must be known. This essentially means that in order for the filter to combine two
"noisy" estimates to generate a better estimate, the filter must know if the noise (or
measurement error) on the first source is correlated with the noise on the second source.
There are various issues with determining this correlation, injecting "stabilizing noise" and
such; these are ignored in this general discussion. For more information, the reader is
referred to Appendix A of Titterton and Weston [13].

The filter can be formulated in a number of ways, but the most intuitive is as a state-space
observer. In a state-space system, an observer is a controller which is based on a model of
the plant or process of interest. The observer essentially runs a real-time simulation of the
process to predict what the output of the process will be, and then compares its prediction
with the measured output of the process. The difference between the predicted and
measured quantities is used in a feedback routine to correct the subsequent error of the
predictive model.

In the VCUUV, the Kalman filter might be used as follows. A linearized model of the full
hydrodynamic system is developed and written in state-space form. Since this Kalman filter
is concerned with navigation, the state variables should describe the position and attitude of
the vehicle. Thus, there should be at least 6 state variables, corresponding to three angles
(attitude) and three positions. The state vector will probably have an additional 3 state
variables for the first derivatives of the position variables. The system will also have inputs
and outputs. The inputs to the system might include quantities such as tail beat frequency,
amplitude, and pectoral fin angle. The outputs would include measurements that can be
observed, such as IMU, compass and pressure sensor readings (as will be discussed in the next
chapter, these are the basic navigational sensors for the VCUUV). A proposed Kalman filter
architecture for the VCUUV, assuming a linear model can be developed for the plant, is
shown in Figure 2.2 [13].

_~^~___Y__~___ ll _~_YII__~U__~WIIII~X ^~I- I--1I -~--1_. _1~---)-- -P-l~^~l--i-~CIll-_~--- ~.~--e~~lXI1~XI

Guidance and Navigation

Measurement process by Actual Sensor
Actual Hydrodynamic Plant: Measurements

Known Actual Hydrodynamic Plant: various sensors: (IMU, etc.)

Inputs u(t) x'(t) =function(x(t), u(t)) x(t)

y(t)

Measurement error Ax(t) KALMAN

Model of plant and
measurement

Predicted sensor output

x(t) = function(x(t), u(t), Ax(t)) 9(t)
9(t) = function(x(t))

Estimated state vector
x(t) gives position and

attitude estimates

Figure 2.2: General Kalman filter architecture for VCUUV navigation

Here, the state vector x(t) contains the variables describing the true position, velocity, and
angular rotation rates of the vehicle. The input vector u(t) contains variables describing the
fish's tail and pectoral fin actuation. The output vector y(t) are the "noisy" measurements
available to the external user, such as IMU and compass readings. The whole task of the
filter is to fuse the observed measurements y(t) with the predicted response of the process
model, in order to create an estimate of the state vector i(t).

Note the block labeled "Kalman Gain." In control-system terminology, this is sometimes
called the observer gain, but when this matrix is chosen in a specifically optimal way it is
called the Kalman gain. This is a special gain matrix that is determined by various
correleations between the "noise" characteristics of each of the sensor measurements. The

details of choosing the Kalman gain matrix are beyond the intended scope of this thesis, but
are widely available in the literature.

In presenting this generalized (linear) Kalman filter for the VCUUV we have left out many
details, including specific choice of state variables, input and output variables, and the
process model. Work on such a filter for the VCUUV has not yet begun, but the subject is
presented here as a suggestion for future work along with the generalized algorithm. More
complexity arises when we consider that hydrodynamic processes we wish to model are
extremely nonlinear, and linearizing them around a nominal point of operation would
destroy many useful properties of the equations. To deal with this, a variation on the above
known as the extended Kalmanfilter must be employed. The details of the EKF are left for the

Guidance and Navigation

reader to investigate.

2.5 Summary

The VCUUV is equipped with several navigational instruments, including a small strapdown
IMU (this will be discussed in more detail in following chapters). This chapter has presented
some of the theory behind using these sensors in a collective fashion to estimate a vehicle's
position over time.

The observations of this chapter all reinforce the basic fact that inertial navigation is ideal for
short-time or high-frequency navigation, and poor as a long-term navigational aid. Several
algorithms specific to improving the drift performance of an inertial system were also
discussed. Hopefully, these algorithms will eventually be developed for practical use on the
VCUUV.

--rrx~------~~_-~--r ri-rp~- ---- --- ur~ --- ~-----cl--^Plrrr~ _; -I r-- Ir . -- - ~--r~ ~-~----- Il P~---~^1 -^-r.ini~-rr rxrw ---lr~-r~--x -. ~ru~-- -lr X- ~- ~--~-- -r*r~----LrXliill*Y-((-i~

Chapter 3 Guidance Data Acquisition

All systems that interact with the external world require the power of observation: eyes and ears
in humans, sensors in machines. In particular, most vehicle guidance and navigation systems
rely heavily on information fed back from sensors. Sensor information generates an estimate of
position, which in turn compels actions to bring the position to the desired state. Thus sensor
accuracy is an important concern, and the circuitry that gathers data from the sensors becomes
a critical path in a large control loop. Typically this data gathering might include scaling, level-
shifting, filtering, and analog-to-digital (A-to-D) conversion of the sensor signal - all operations
which are intrinsically imperfect. The goal of any good data acquisition system is to collect
sensor data while corrupting this data as little as possible6.

This chapter describes the sensors used for guidance and navigation on the VCUUV, as well as
the design of custom hardware and software to interact with these sensors. This "Navigation
Subsystem" is shown in relation to the entire electronics architecture in Figure 1.2. We include
control of the pectoral fins as part of this subsystem, for several reasons. The fish will use its
pectoral fins to control its depth, which is a navigational aim (at least in one dimension).
Furthermore, control of the pectoral fins occurs entirely through the same local processing unit
which talks to all of the navigation sensors, the Tattletale. Grouping all of the Tattletale's
functional responsibilities as the "Navigation Subsystem" is a convenient categorization, and
also sets the stage for an experiment in closed-loop depth control which will be discussed in
Section 5.2.

3.1 Tattletale

The heart of the Navigation Subsystem is the Tattletale Model 8 (TT8) board. This is a
dedicated microcontroller board that is purchased commercially from Onset Computers, Inc.
The TT8 is a credit-card sized board that comes complete with switching-voltage supplies,
digital I/O, a 12-bit 8-channel A-to-D converter, a 68332 microprocessor, two RS-232 serial
ports, and other features. Along with it is also provided a software development package that
allows the user to write and compile C-programs directly onto the Tattletale, for ease of system
development and debugging.

The Tattletale was chosen largely because of its on-board A-to-D converter and serial ports.
These features give the TT8 the functional capabilities for talking to the navigation sensors,
pectoral fin motors and the host computer (486). Furthermore, the TT8 provides the
convenience of C-programmability, and can run programs stored in non-volatile Flash memory
from powerup (a necessity).

The navigation electronics consist largely of signal-conditioning circuitry for analog data from

6 This is particularly true for inertial systems, where errors in data acquisition get amplified through integration to
become serious drift and random-walk errors.

IY___*___ IY___*_LPI ~-.~^-~ EL~-L---I IYI~V L~-~I~ l-~~- I1111~-_11. ̂

Guidance Data Acquisition

the sensors. These include amplifiers, level-shifters and pre-sampling filters. Due to the tight

space constraints of the fish's electronic chassis, these circuits were built by hand on

protoboards that could be "piggy-backed" on top of the TT8 through header pins. The

compact assembly of stacked boards is shown in Figure 3.1.

Figure 3.1: Tattletale Model 8 with custom circuitry

Details on critical issues such as programming and setting the TT8 up for operation can be

found in Appendix B. A full schematic and interconnections diagram of the navigation

circuitry are provided in Appendix A.

3.2 Sensors

The choice of sensors to aid the fish's guidance was made early in the design phase of the

VCUUV. Given that this is a marine vehicle, several useful navigational aids were automatically
eliminated, such as GPS and triangulation with radio beacons7 - both of which are common

tools for many terrestrial or airborne autonomous vehicles. The final suite of sensors includes a

pressure sensor, a magnetic compass, and an Inertial Measurement Unit (IMU). The IMU is by

far the most elaborate and expensive of the sensors, and its potential uses in guidance and

attitude-stabilization is discussed at length in Chapter 2.

Other sensors that were considered included hydro-velocity flowmeters and proximity detectors

(for obstacle avoidance). It was decided that neither of these would be very effective in a

vehicle of this size. However, based on the current work some new ideas have come up that

may help improve the navigational capabilities of the next generation fish; these are presented

along with other conclusions in Chapter 6.

7 Radio waves in general do not penetrate water more than a few feet.

Guidance Data Acquisition

3.2.1 Depth Pressure Transducer

The simplest method for making a depth
measurement in an underwater vehicle is to
measure the water pressure at that level. The
sensor chosen for this task was the Model 93-015S
Sealed Gauge pressure sensor, made by EG&G IC
Sensors. The sensor has a linear range of 0-15 psi

(corresponding to 33.75 feet of water), but can
safely be loaded with three times that pressure.
"Sealed gauge" means that the sensor will give its
reading with respect to one atmosphere: at sea
level the sensor should nominally give a reading of Figure 3.2: Model 93-015S Sensor
zero.

+15V

7 &GICSe rs
Model 93-01 100K

Figure 3.3: Depth pressure transducer circuitrynF
LT1021 S

+5V Precision
.get a reading, the bridge is excited with a constant current of 0.996 mA, and a differential20.5K

circuitry is shown in Figure 3.3.
5 0. 1 uF L 5K 39.85K A2D

66.5K 24.3K

Figure 3.3: Depth pressure transducer circuitry

The sensor consists of a Wheatstone bridge with a pressure-dependent resistive element. To
get a reading, the bridge isexcited with a constant current of 0.996or, we can calibr mA, and a differential
voltage read across the remaining two terminals. This voltage is further amplified and level-
shifted by several op-amps before being delivered to the A-to-D converter. The depth-sensor
circuitry is shown in Figure 3.3.

One concern with using a pressure sensor is that of daily air pressure variation: the weight of
the atmosphere is never the same from day to day, and it is reflected in water pressure readings
as an additive offset. Since it is just an offset error, we can calibrate the measurement by
subtracting out the atmospheric pressure. For instance, take the fish to the surface, take a

pressure reading, and subtract that reading from all readings henceforward (so that the surface
reading becomes zero). This should be done before every new day that the fish goes
swimming. Another more difficult problem is that the density of water will vary depending on
its temperature, introducing variation into the pressure-vs.-depth scale factor. This problem
might be fixed with an external temperature sensor to compensate the pressure readings.
However, since the VCUUV does not need (extremely) precise knowledge of its depth, this

Guidance Data Acquisition

problem was not tackled.

3.2.2 Compass

An electronic compass is used to obtain
measurements of heading, or azimuth. The

model used is the Vector 2XG, made by
Precision Navigation Inc. This sensor is
built upon the principle of a two-axis
magnetometer, which measures the
strength of a magnetic field in two
orthogonal directions. In order to measure
the earth's field and compute heading
accurately, such a magnetometer must
remain parallel to the earth's surface. On
the V2XG, the coils which measure field
strength are each mounted in free-swinging
gimbals, so that they will remain parallel to
the earth even if the compass is tilted (up to Figure 3.4: Vector 2XG Compass
15 ").

Obtaining a reading from the compass is a purely digital task; the timing requirements are
shown in Figure 3.5. The compass obeys a serial protocol known as QSPI, where it can act as
either a "Master" or "Slave." We use it in Slave mode. In this mode the compass is polled for
a reading, takes 80-100 milliseconds to make its measurement, and sends a signal high when the
measurement is ready. Then the host system can serially clock out the 16 bits that carry the
heading information. The compass interface is easily implemented using the TPU digital I/O

1 - 10 msec minimum

II
/C Li - -- - -

14- 80 -100 msec minimum

EOC
W1 L 4- 10 msec minimum

I Don'
Care

Figure 3.5: Compass timing diagram (from Vector 2XG manual)

Guidance Data Acquisition

lines on the Tattletale. On average, following all timing constraints, taking one reading requires
about 200 milliseconds (during most of this time the compass is "thinking" and the host system
can switch to other tasks), which allows a 5 Hz sample rate for compass data.

There are several problems associated with using the compass. First of all, the same gimbals
which allow the coils to stay parallel to the earth will rock back and forth in response to vehicle
acceleration: once again, gravity - which tugs at the gimbals - is indistinguishable from the
accelerations of the vehicle. This may add significant errors to compass readings when the fish
accelerates. The only possible future fix for this problem is changing the V2XG out for a three-
axis magnetometer, which can compensate for tilt by measuring magnetic field in a third
orthogonal direction, rather than using gimbals.

The compass also suffers when the fields around it are distorted by ferromagnetic materials (i.e.
iron, steel, permanent magnets). Ferromagnetic distortion comes in two varieties: hard-iron and
soft-iron distortions. Soft-iron is iron that cannot be permanently magnetized; this iron creates
a non-uniform field distortion that varies with the strength and direction of the ambient fields.
Thus, soft-iron distortion cannot be corrected. Hard-iron distortion is caused by types of iron
and steel which retain a permanent magnetization. This is easily corrected for, since the
distortion appears simply as an additive offset to the ambient (earth's) magnetic field. To
calibrate the compass for hard-iron distortion within the fish, the CAL pin is pulsed once, then
the fish (with the compass inside it) is swung 180 , and the CAL pin is pulsed again 8.
Experiments demonstrated that calibration was very effective in correcting local magnetic
distortions near the fish. This calibration should be repeated every time the compass is
powered up.

3.2.3 Inertial Measurement Unit

The IMU is the gem of the VCUUV navigation
sensors. The device chosen for the VCUUV is built
by Systron Donner and is known as the MotionPak.
Inside this "black box" are the sensitive inertial
components introduced in Chapter 2: three
accelerometers and three rate gyros, mounted in an
orthogonal set of axes. As the inertial components
are rigidly fixed inside of the box, and the box will
be rigidly mounted to the VCUUV, this is a
strapdown inertial system. The case of the IMU
serves to protect the sensitive instruments from dust
and water, and can be connected to ground to shield
the instruments from external radiation.

Systron Donner delivers each IMU with an
individual calibration sheet, which lists Figure 3.6: Systron Donner IMU
characteristics (scale factors, biases, temperature

8 Cruder calibration can be achieved by swinging the fish less than 180 " between pulsing CAL. Calibration can be
erased by pulsing CAL twice without moving the fish.

Guidance Data Acquisition

coefficients, etc.) specific to that particular device. The calibration sheet information for the

fish IMU is shown in Table 3.1. We will continue to refer to the specs on this sheet throughout
this section.

Angular Angular Angular Linear Linear Linear
X- Axis Y-Axis Z-Axis X-Axis Y-Axis Z-Axis

Range ±200 /s ±200 /s ±500 * /s ±5 g ±5 g 15 g
Scale Factor 12.551 12.518 5.000 1.503 V/g 1.503 V/g 1.504 V/g

mV/ /s mV/ /s mV/ * /s
Bias (@22 C) +0.16 /s +0.07 /s +0.09 /s +3.20 mg +5.19 mg +3.38 mg

Temp < 3 " /s < 3 /s < 3 /s -8 mg/' C -25 mg/ C -4 mg/' C
Perform.
Alignment error 0.24 0.64 0.41 o 0.11 0.120 0.15'

Bandwidth 78 Hz 75 Hz 74 Hz 901 Hz 885 Hz 981 Hz
Damping 0.69 0.68 0.66 0.89 0.83 0.92
Noise(10-100Hz) 1 mVRMS 1 mVRMS .4 mVRMS .7mVRMS .9mVRMS .7mVRMS

Output 0 2 0 0 Q 500 Q 508 Q 513 2
Impedance

Table 3.1: MotionPak Calibration Sheet

From the calibration sheet alone we observe that the Systron Donner is an low-quality inertial
unit that is not intended for standalone use. To begin with, higher-end systems will have much
lengthier calibration sheets which describe sensor accuracies and imperfections to a much
higher order. For instance, error models for military-quality gyros include at least 10 "classical,
gravity dependent terms, [as well as] additional terms describing the error contribution of
temperature effects, float motion, magnetic effects, power supply variations," etc. etc.

(Mackenzie [8], p. 376). Furthermore, note the coarse temperature performance spec on the
bias of three angular channels: < 3 /s. This means that if the gyros outputs are integrated and
the nominal bias is as given, the integrated angle value can still drift as much as 3 o every second
because of temperature variation! Compared to most military systems, which guarantee gyro
biases to fractions of a degree per hour, this is an awful spec. Remember also that gyro drift rate
is the key limitation on inertial system performance. In practice, using temperature
compensation techniques that are explained in Chapter 4, the Systron Donner gyros can achieve
a worst-case overall drift rate of about 1 /min., which is still not quite good enough for
standalone navigation. This inertial system, ideally, should rely heavily on external sensor data
to keep the position estimate from drifting too far over time - or restrict itself to very short-
term navigational missions.

The IMU has seven outputs, all analog: three from accelerometers, three from rate gyros, and
one from an internal temperature sensor. Each accelerometer output acts as a dependent
voltage source whose voltage is proportional to the acceleration along one axis. It is also
important to note that there is a finite output impedance on each acceleration channel; the
value of this impedance is provided on the IMU calibration sheet. The gyro outputs also
behave as dependent voltage sources, but there is zero output impedance on these. Refer to
Figure 3.7.

Guidance Data Acquisition

The purpose of the temperature sensor is to allow dynamic temperature compensation of the
accelerometer and gyro outputs. Instruments such as gyros and accelerometers output a small
DC voltage even when there is no motion input; this is the bias. Furthermore, gyro and
accelerometer biases will change with temperature (approximately linearly in the Systron
Donner); note the specifications "bias" and "temperature performance" on the calibration
sheet. The temperature sensor allows us to compute in software the expected bias of each
inertial instrument at the current temperature, and dynamically subtract this bias to obtain a
zero-offset reading from each instrument. The temperature sensor in the Systron Donner IMU
is a dependent current source which delivers a current (in microamps) directly equal to the

Figure 3.7: IMU Outputs
IMU's temperature (in Kelvin)9.

The IMU outputs are scaled and low-pass filtered using the active filter circuitry shown in
Figure 3.8. Scaling is necessary to convert the full-scale range of the gyros and accelerometers
to the full-scale input range of the Tattletale's A-to-D converter (which is ±2.5V). Low-pass
filtering ("anti-aliasing") must be performed prior to sampling the analog signal and converting
it to discrete-time information. This is a subject that will be explored extensively in the next
section.

3.4 IMU Data Acquisition

3.4.1 Filter design for sampling

In an inertial system that uses a digital computer to execute the navigation algorithm, there is
the inherent issue of converting analog data from gyros and accelerometers into digital data that
the computer can work with. Several immediate concerns arise: these include choosing the
sample rate or control bandwidth, and designing filters to avoid aliasing.

9 When plugged in, the IMU dissipates about 8 watts of power, and thus "warms up" to some steady-state
temperature (which is a function of the ambient temperature as well as the material it is mounted to).

-r --I^-~ --~~--~r~---rr^ J~---------~- -I ^---^-----~--u- r.~.~ ~_ ..~~-------l-~_-- -r~

Guidance Data Acquisition

11. K 9K

Acceleration 35K Rate 90.
channel 1channel

from IMU1/4 to A2D from IMU 1/4 to A2D
T1114 converter converter

8.71 45.3

.184K

Temp
channel 1/4 to A2D

from IMU LT1114 converter

Figure 3.8: IMU Scaling and filtering circuitry

In electromechanical control systems, there is no precise science to choosing a suitable
sampling rate. There are however some rules of thumb commonly preached, such as "the
sample rate should be at least 20 times above the highest frequency that the mechanics are
expected to follow [5]." Considering that the VCUUV is not expected to make extremely rapid
movements in the water (the tail beat-frequency is nominally 1.5 Hz), a sampling rate of 50 Hz
was deemed more than adequate. In fact, this initial choice was made with the awareness that
the VCUUV computer might not have enough computing power to close a control loop at 50
Hz, but designing the system to have a sample rate surplus is always better than needing more
control bandwidth later.

The problem of aliasing is described as follows: when analog data is sampled at discrete
intervals, no one can predict the value of the analog signal between each sample. If the signal's
spectrum is rich in high frequencies, it is likely that there are some high frequency "wiggles"
occurring between each sample; but if the signal is concentrated in low frequencies, it is likely to
meander slowly during the time between samples. The Nyquist criterion tells us that we can (in
theory) exactly determine what happens in between the samples (or perfecty reconstruct the analog
signal from its discrete samples) if and only if the analog signal is "bandlimited" to frequencies
which are below one-half the sampling frequency. In other words, if the data is sampled at a
frequency f, any frequency components in the spectrum of the analog signal above f /2 must
be removed or filtered before digitizing the signall o. Otherwise, the sampled high frequencies
will "alias" down to corrupt the low-frequency components of the digital data. Thus for a
sample rate of 50 Hz, we must design low-pass filters which sufficiently destroy any
components of the IMU signals above 25 Hz - while passing the range of DC-25 Hz with good
fidelity.

Specifically, a good low-pass analog filter can cut the bandwidth of the analog signal to the

10 f, is known as the "Nyquist frequency."
2

Guidance Data Acquisition

appropriate size, so that all frequencies at or above the Nyquist frequency are sufficiently
attenuated. Usually the cutoff of the low-pass filter must be chose well below the Nyquist
frequency, since it is impossible to have a perfect "brick-wall" low-pass filter. However, this is
not the end-all solution, since using analog filters for anti-aliasing is often problematic.

One of the fundamental problems is that good analog filters are hard to build. Simple first and
second-order RC op-amp filters are often used, but their rolloff is pitifully sluggish, and they
don't provide enough attenuation at the Nyquist frequency. Attempting to remedy this by
lowering the filter cutoff compromises the filter passband; that is, the low-frequency data of
interest is corrupted by the filter. Higher order filters with sharper cutoffs usually involve
several op-amps, and a careful choice of resistors and capacitors to set the filter bandwidth.
Tolerances in these components can change the shape of the filter dramatically. It is possible to
buy good Butterworth, Chebyshev, and other analog filter types on a chip, but these have other
problems. They are often built with switched-capacitor technology which allows changing the
filter cutoff with a digital clock input, but also involves increased noise generation, and DC
offset errors.

In order to overcome the difficulties of building good analog anti-alias filters, a technique is
often used that also incorporates digital filtering [9]. In a nutshell, this is how it works:

Consider initially sampling the signal at higher than 50 Hz, say 100 Hz; at this rate, we can use a
simple analog filter, perhaps 1 pole at 20 Hz, to bandlimit the signal to the new Nyquist
frequency, 50 Hz. The desired passband of 0-25 Hz is not badly distorted by this filter. Now
we have twice as much data as we wanted (100 Hz over 50 Hz), so we would like to keep only
one out of every two samples. To prevent aliasing when we throw out these samples, however,
we need to use a sharply-designed digital filter to cut the effective digital bandwidth" to 25 Hz,
and then throw away every second sample (or decimate the 100 Hz data by a factor of 2). The
steps involved are oversampling, digital filtering and decimation, and their effect on a signal in
the frequency domain is depicted in Figure 3.9.

This technique uses the best features of both analog and digital filters. Analog filters work
nicely when they don't have to be precise in cutoff or steep in rolloff; the digital filter picks up
the slack, since its cutoff and sharpness can be precisely controlled. Of course, digital filters
have their own problems as well, such as finite-precision errors - quantization and roundoff.
An advantage to using the digital filter as the final filtering step is that sometimes noise is
introduced into the extra circuit paths of analog filter hardware, and this noise can be
attenuated by the digital filter which follows. However, this advantage should be weighed
against the amount of finite-precision "noise" that might be generated by the digital technique
itselfl 2.

" Note that cutting the "effective digital bandwidth" to 25 Hz means designing a digital filter with a cutoff at 7/2,
since in the discrete-time world, the frequency domain is "wrapped" around the unit circle, and any frequency (in
radians) is always referenced to the sampling frequency (100 Hz, which converts to 2t radians). This differs from
the continuous-time (analog) world, where frequency is absolute.
12 In the implementation of the digital filter on the Tattletale, finite-precision noise was considered to be minimal,
since all the computation was done using double-precision (8-byte) floats ("doubles").

__ __1_1__~__^_~ ~~__1__I_ _ ̂ _ _ X~I~X~ _C~~I ___~_~__111~ ..3-1~11~111111 .I. l--1(~II(~WI -----~LL. ---_~XCI--_II~l ~ ~------_~- -m^---XI- I--- I

Guidance Data Acquisition

Analog filter
response

Orignal 1. CT signal is filtered with
spectrum simple analog filter.

50'Hz

2. Result of Analog filtering.

50'Hz

sharp digital filter

3. CT signal is sampled at 100
Hz, and now can be drawn on
the DT Frequency Axis.

/2 n 3/2 2'n
(=25 Hz) (=50Hz)

ri> II 4. A sharp digital filter is applied.

A/2 k 3A/2 2n

5. Downsampling "expands" the
spectrum across the frequency
axis (by a factor of 2). The digital
filter has prevented aliasing (or
spectral overlap).

2;
(=25 Hz)

Figure 3.9: Oversampling, filtering and decimation in the frequency domain.

The analog filters used are illustrated in Figure 3.8. They are simple first-order active RC filters;
the more interesting task was choosing the best digital filter for the job. Quite a few digital
filter designs are available, and numerous tradeoffs exist among them in issues such as rolloff,
group delay and computational time. People have devoted entire textbooks to this subject, so
we will suffice here with two tables of pros and cons between choosing Finite Impulse
Response (FIR) versus Infinite Impulse Response (IIR) filters. For more information, a good
place to start is Oppenheim's Discrete-Time Signal Processing [9].

Guidance Data Acquisition

FIR PROS FIR CONS
Implemented through convolution of a finite Length of FIR impulse response in most cases

sequence of samples with the signal. For most has to be quite long ("higher order") to
FIR impulse response shapes (box, triangular, implement filters with sharp cutoffs. Long

etc.), all integer coefficients can often be impulse responses result in convolution
chosen, making the convolution becoming more computationally taxing.

computationally efficient.
For symmetrical impulse responses, FIR has For long impulse responses (sharp cutoffs),
linear phase (constant group delay). These the delay, though constant, will be rather long

constant delay filters are easily designed using (specifically, half the length of the impulse
the window method, for example. response). This is not acceptable in real-time

control loops.
When filtering with FIR before In most cases, FIR is more computationally

downsampling, sometimes a more efficient intensive overall than an IIR filter with similar
algorithm can be used which allows skipping filter shape/sharpness.

unnecessary steps in the convolution sum.

Table 3.2: FIR digital filter pros/cons

IIR PROS IIR CONS
Implemented through computation of a IIR requires floating point addition and

difference equation using delayed values of the multiplication operations, since the
input (x[n]) and output (y[n]). Thus each filter coefficients are non-integer. In some systems

computation involves only a few (i.e. no hardware floating point unit) this may
multiplications and additions, and no take an excessive amount of time, depending

convolution. Usually much faster to implement on filter type/order.
than a similar FIR filter.

Though the group delay is non-linear, it can IIR filters (Butterworth, Chebyshev, etc.)
often be acceptable in the frequency range of typically have grossly non-linear phase
interest (i.e., the low-frequency passband) in a responses/group delay, and thus unequally

control loop. disperse the frequency content of the signal.
Flexibility to design filters with well-known When filtering with IIR before downsampling,
attributes, such as Butterworth, Chebyshev, no steps can be skipped; all samples must be

Elliptic. computed, even those that will be discarded.

Table 3.3: IIR digital filter pros/cons

The final digital filter design was a third-order Chebyshev type II IIR filter. The coefficients
and characteristics of this filter were designed using MATLAB. The filter's discrete-time
frequency response is shown in Figure 3.10; recall that we desired a fairly sharp cutoff at 71/2.
This filter satisfies that requirement quite well.

^~~ ~I_ __________/_OZIILli___~.LII- ...---il-~...Lli ~~Xl.^^l._l~r~l~~ ~II ~ --~----~ ~11^ ^.I~ _ _ IC --------__

Guidance Data Acquisition

Discrete Time Fourier transform of Digital FIlter: Chebyshev Type II, Order 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
DT Frequency, normalized by pi

1.6 1.8 2 0.1 0.2 03 0.4 05 0.6
DT Frequency, normalized by pi

Figure 3.10: Tattletale digital filter design

A few notes on choosing this filter: several other types of IIR filters were considered, including
a Butterworth and Chebyshev type I. The Butterworth is known for its maximally smooth
frequency response, and the Chebyshev type I for its nice rolloff characteristics. However, the
Chebyshev I exhibits ripples in the passband, which is very undesirable since we require a flat
passband. The ripple can be reduced only in exchange for a very slow rolloff. The Chebyshev
type II, on the other hand, exhibits stopband ripple, which is not so bad for our purposes. For
comparable filter designs of third-order, the Chebyshev type II appeared to be the best at
attenuating all frequencies above I/2 without sacrificing too much of the passband (see Figure
3.11).

Digital Lowpass filter Passbands: Butterworth, Chebyl, Cheby2
1.2

1

08

C byl

S0.6 _1_

Butte rth

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Normalized Frequency (Filter cutoff = 1.0)

Figure 3.11: Various types of IIR filter passbands

Magnification of Passband

Guidance Data Acquisition

Figure 3.12: Direct Form I implementation of 3rd order IIR filter

The Chebyshev type II filter is implemented through the solution of a difference equation.
Figure 3.12 shows the generalized third order difference equation, and the "computational
structure" used to carry out the filtering. Note that each output y[n] is computed as a weighted
sum of the current input x[n], the previous three inputs x[n-1], x[n-2], x[n-2], and the previous
three outputs y[n-1], y[n-2], y[n-3]. The coefficients A i and Bi (i = 0,1,2,3) necessary to make
this a Chebyshev type II filter were obtained using MATLAB. The actual software used to
compute the difference equation will be revisited in section 3.5.1.

How well did the composite filtering scheme work? The Mechanical Model of ,MU ounted on foam

following simple experiment demonstrated its effectiveness.
When the IMU is sitting upon a piece of foam (similar to the
material it is mounted on within the VCUUV), the mass of the IMU
IMU coupled with the compliance of the foam forms a
second-order system, that exhibits a resonance frequency (see
Figure 3.13). This was demonstrated by looking at a filtered
analog output of the IMU with a scope, and lightly tapping
the IMU: as it stopped vibrating, a damped sinusoid was
clearly seen on the scope, with a frequency of roughly 40 Hz. Typical2dorderresponse

However, observing the outputs of the digital filter, there is "*tL
practically no response to the 40 Hz excitation, which is
convincing evidence that the digital filter is working as
promised to cutoff sharply at 25 Hz. If it didn't, the 40 Hz
would alias down to appear as a 10 Hz disturbance.

A serious issue which has not yet been mentioned is that of '-
filter phase. Remember that the IMU, pressure sensor and
compass data will eventually be used for real-time navigation
and control of the fish. If the filtering is part of a large
control loop, the phase lag of the filters can introduce enough

~l~_lL_ III__III___~LLY____l~-IL--~i-i -~lll~ I _X_ _- ...-ll_--~I1.~L~. _C1. _.p~-- -*L1IIC ~.. slL _IIII--- C__ ^ill -~--l - ---L^_i~-LII~-l* li ll*

Guidance Data Acquisition

delay into the loop to cause instability. It is thus necessary to try to minimize all sources of

phase lag in the system. These include not only the analog and digital filters, but also the data-

transmission and processing delays to and from the 486 (see Figure 3.14). Unfortunately, it is

too early to determine the specific navigation and control techniques that the VCUUV will use,
and so no rigorous bound can be placed on the total allowable delay in the control loop.
Creating such a bound will involve characterizing not only the response of the navigation
electronics, but the hydrodynamic behavior of the VCUUV itself - a challenging task in system
ID that will probably commence several months from now.

Figure 3.14: Theoretical control loop for navigation

3.4.2 Precision Circuitry

Hopefully it has been clear how important it is to obtain the most precise analog-to-digital
conversion of the IMU signals as possible. The op amps chosen to scale and filter the IMU
outputs (shown in Figure 3.8) were LT1114s, a precision low voltage-offset device made by
Linear Technologies. Care was taken to use 1% precision resistors in each amplifier 13; where
possible, the gains were measured using a signal generator and precision voltmeter. Note the
resistor from the non-inverting terminal to ground: this resistor value is set to the parallel
resistance of the other two, and eliminates offset due to input current bias.

3.4.3 Electromagnetic Interference (EMI)

Historically, the Unmanned Vehicle laboratory at Draper Lab has had a losing battle with EMI.
A number of otherwise well-designed vehicles ultimately failed to meet their goals because of
unanticipated EMI which plagued the electronics and caused a range of failures. In designing
the VCUUV electronics, considerable efforts were made to minimize this potential show-

13 In retrospect, 0.1% resistors would have been more appropriate for the desired precision.

Guidance Data Acquisition

stopper.

EMI is often given the ubiquitous label of "noise," which includes such effects as antenna
radiation, magnetic/inductive pickup, and capacitive coupling. In the VCUUV, there are many
sources of EMI, and several different ways in which they affect signals.

The main source of EMI on the VCUUV is its switching power converters. These efficient
supplies operate in principle by rapidly pulsing charge onto a capacitor through an inductor: the
fast switching of current through an inductive medium tends to generate a whole spectrum of
random electromagnetic junk. This electronic litter is very proficient at jumping from place to
place within the electronic chassis, corrupting analog and digital signal lines alike. The VCUUV
also contain four microprocessors (486, DSP, PIC and 68332-Tattletale), all running at speeds
in the Megahertz range, which are very likely candidates for generating EMI.

Debugging noise problems often seems like black magic; techniques which seem to work in
some cases fall short in others. The first step is to diagnose where noise tends to appear, since
it shows up in very selective places. For instance, electrical signals that come out of a high
source impedance often pick up transients from fast switching digital signals that run physically
nearby. This is because the small capacitance between the wires combines with the large source
impedance to form a high-pass filter, bringing high-frequency transients over to the line. As for
magnetic pickup, circuitry with "ground loops 14" or large stray inductances are susceptible.
Almost anything might show a particular affection for picking up antenna radiation.

In the VCUUV navigation hardware, the greatest concern regarding noise is that the IMU signals
remain pristine. A good deal of noise was originally seen on the IMU signals, as well as all other
signals that ran near the Tattletale: this was attributed to its processor (running at 32 MHz) and
its on-board switching power converters. Capacitive noise coupling (described above) was also
found between the Tattletale's serial port and the IMU signals: millivolt-level bursts of noise
were seen on IMU signals that coincided with each data packet being sent to the serial port at
115Kbaud.

The IMU signals were somewhat cleaned up by adding 200 nF capacitors to ground directly at
the A-to-D inputs. This is very effective against capacitive coupling because the high-frequency
noise is shunted to ground through the large capacitor (which is greater than the stray coupling
capacitance). This technique is a little risky, since it is usually a bad idea to drive a large
capacitance directly from an op-amp output (due to phase margin and stability problems); but
for this particular op-amp (LT1114) and the gains involved, it turned out to work quite well. In
general, a small resistor between the op amp output and the capacitor is a good idea.

In order to further protect the clarity of the IMU signals, each signal wire from the IMU was
shielded with a grounded metal sheath. Care was taken to connect the shields to only one
ground point (at the IMU), thus avoiding ground loops (see Figure 3.15). In principle, these
shields "swallow" electromagnetic fields and divert them from signal lines. Following the same
idea, large squares of grounded metal foil ("ground-planes") were added to empty spaces on the
PC board.

14 Ground loops are completely independent paths to ground from the same electrical node.

ill^W-- IYI-~--. -~. -X- I-~F-^l~ ~ i~ --~Q- --C-Lil-_ ~C~lrX -t-~~YIIIII~L--l ~~ii- --̂-I-I- ----~I.~ ~YII~-l-CX IIP-~

Guidance Data Acquisition

Figure 3.15: Shielding of each IMU signal

Using these techniques, IMU signal noise at the A-to-D converter was reduced from about 10
mV peak-to-peak to about 2 mVpp, which is about two A-to-D quanta. After sampling, the
digital filter further cleaned up this noise.

3.5 Software architecture

Making the Tattletale perform all of the duties described above required the creation of well-
crafted program code. Specifically, this software is real-time: it is responsible for sampling and
processing data at very precise intervals at time, and cannot afford to fall behind. The major
challenge in designing such software is having absolute knowledge of how long each process
takes to execute, and determining the bandwidth available to each process. Overall bandwidth
can be used most efficiently by implementing a multitasking scheme which never allows the
processor to "sit idle." On the TT8, this multitasking was achieved through an interrupt
handler to manage strictly periodic events (sampling, digital filtering, packet transmission), and
in between, a loop to handle slower, asynchronous tasks (processing 486 commands, reading
the compass, sending Smart Motor commands). These issues are discussed in detail below.
The actual program code is provided in Appendix C.

3.5.1 Sampling and Digital Filtering

As described in Section 3.4.1, the IMU and pressure sensor data is sampled by the Tattletale at
100 Hz, and then digitally filtered before downsampling the data to 50 Hz. In order to sample
the data precisely every 10 milliseconds (100 Hz), the Tattletale's processor provides a
convenient mechanism called the Periodic Interrupt Timer (PITR), which can be programmed
to generate hardware interrupts at very accurate intervals of time. Once this interrupt timer is
set up to generate interrupts at 100 Hz, an interrupt handler can be written to sample the data
each time it is called. The digital filtering also takes place within the handler, immediately after
a new set of samples arrives.

Guidance Data Acquisition

Sampling is accomplished by direct access to a peripheral on the Tattletale CPU called the
Queued Serial Module (QSM). The QSM can talk to devices using a serial protocol known as
the Queued Serial Peripheral Interface (QSPI). This protocol allows a processor to quickly
obtain data from a list or "queue" of devices that support QSPI. Thus, when the eight separate
channels of the Tattletale's A-to-D converter are placed as separate elements of the "queue,"
and a QSPI start bit is set high, it rapidly selects each channel in turn, collects the data and
stores it in memory. Now the data has been captured, and is ready to be digitally filtered.

One of the most challenging tasks in implementing the composite filtering scheme was
developing a digital filter that would run fast enough to allow real-time processing of the data,
concurrent with all the other tasks of the Tattletale. Eight channels of data (seven IMU signals,
one pressure signal) must be sampled every 10 milliseconds, and each run through an IIR
filtering structure (remember Figure 3.12) so that a new filter output is computed for every
sample. If we want the Tattletale to have time to do anything more than just sample and filter,
then, the filtering has to occupy far less than 10 milliseconds. Originally, designing a filter to
run faster than 10 milliseconds was very difficult, especially considering that the Tattletale's
CPU has no floating-point unit: this means that all floating-point calculations (necessary to
implement a digital IIR filter) are done through software emulation, which is notoriously slow 15 .
After doubling the original CPU clock rate and some optimization of the code, the filtering
time for each set of 8 new samples was brought down to about 4 milliseconds. This leaves
about 6 milliseconds out of every 10 for the Tattletale to perform other tasks, or about 60%
bandwidth. The issue of available bandwidth is very important, and will be returned to later.

To implement the digital filter, a software construction was used that mimics the IIR filtering
structure of Figure 3.12. Each of the delayed inputs and outputs are stored in two circular
linked-lists, structures in memory where "nodes" store data and also point to adjacent nodes
(see Figure 3.16). As new data (x[n]) arrives, the pointers shift to replace the x[n-3] data with
x[n], and a new output y[n] is computed from the values in both linked-lists. This cycle of
pushing in a new input, pushing out old filter history and computing a new output is repeated
100 times a second on each of the 8 channels of data.

The whole point of the digital filter is allow downsampling to 50 Hz; that is, to allow discarding
one of every two samples that are filtered. Thus while the interrupt handler is called at 100 Hz,
it only transmits the filtered data to the 486 every other time it is called - 50 Hz.

15 Also, programming the TT8 in C resulted in fairly inefficient code generated by the compiler and assembler; this
is the tradeoff for the convenience of using C.

_~__1_~II_~_~III1____~^IILI~U --L~II~ ~^.1I--~II IPICYIII~ - -LII~ *~ ll ..____. .I ~1I~L--_I^--F_~C~1IIIII^IIII~PIX~~I*~-IY ~- I^III~I~-~ .i~(l~~~-Y ~^YI- -~~--~FIIL.

Guidance Data Acquisition

current-x-node current-y-node
pointer pointer

Node 1 Node1
Data Data

X-data Y-data

circular M o circular 0 0.

z linked-list z linked-list

'5 apo. I% & E, poN '

These two circular linked lists hold the current x- and y-data and history. When
a new input x[n] is sampled, it is stored at the current-x-node location,

replacing the previous x[n-3]. Next, a current output y[n] is computed based
on x[n] and the delayed values of x and y. This new y[n] is stored at the

current-y-node location. Then the current-x- and current-y-node pointers both
shift to the left, by following the "Node-left" pointer: what were "current" filter

values have become filter history. Finally, the new x[n] is sampled, stored in
the new current-x-node location, and the next y[n] computed; the cycle repeats.

Figure 3.16: Software IIR Filter, storage of delayed elements

3.5.2 Compass Software

Since the compass takes up to 100 milliseconds to compute each new heading, it is impossible
to sample it at 100 Hz with the other sensors. It must be dealt with asynchronously. The
compass is interfaced through TPU digital I/O lines from the Tattletale, which can be set high
or low through software. A sequence of "compass events" is established where each event is
either the proper time to set or clear a TPU line, or a wait state. Cycling through the 12
compass events corresponds to playing the digital "song-and-dance" with the compass that is
necessary to obtain a reading. This technique amounts to a method of multitasking, where the
Tattletale won't waste time (or get "blocked") while waiting for the compass to compute its
heading: it checks the compass event status periodically, and moves on to its other duties when
the compass is still thinking. The compass readings arrive about every 200 milliseconds, or 5
Hz. This data is then placed into a "data packet" with the IMU and depth sensor data, and sent
to the 486.

Guidance Data Acquisition

3.5.3 Talking to the 486

A data packet is built during every other call to the interrupt handler, and sent out through the

Tattletale's serial port. Each packet contains the following sequential information:

DATA NUMBER OF BYTES

Sample Number 4
X-Accel 4
Y-Accel 4
Z-Accel 4
X-Rot 4
Y-Rot 4
Z-Rot 4
Temp 4
Depth 4

Compass 2
Collision Flag 1

Extra Flag 1

Table 3.4: TT8 Data Packet Structure

Thus a total of 40 bytes per packet, or 320 data bits that need to be sent to the 48616.

The first question is: how much time do we have to serially transmit this data? Remember that
the building and transmission of each packet occurs during the interrupt handler, which has a
total of 10 milliseconds execution time before the next handler is called. Also, 4 milliseconds of
this time are already occupied by sampling and filtering activity. A data rate of 115.2 Kbps was
settled on 17, at which speed it takes about 2.8 milliseconds to send one data packet.

Using such a fast rate for serial transmission can sometimes be risky. If the data were not being
sent along such a short distance of wire, it would not be wise to run at this speed. In fact, the
RS-232 serial protocol is only guaranteed accurate up to about 26 Kbaud, but it is often run
much faster in special circumstances - such as this one.

In order to allow the 486 to synchronize to the incoming packets, each packet is pre-pended
with a special header byte that the 486 can identify. Unfortunately, there are some problems
with this scheme. It is impossible to find a "unique" header byte, meaning a byte that will never
be seen in the data packet itself, since most of the data bytes can take on the full range of byte
values (0-255). Though seldom, the 486 sometimes synchronizes on the wrong byte and
translates a packet of "garbage." Another packet-reception problem occurs when the 486 serial

16 The compass data, which arrives more slowly than the other data, is set to a dummy value when unavailable.
17 Unlike the 486, the Tattletale cannot operate at 115.2 Kbaud exactly; the closest it can come is 111.1Kbaud.
Serial transmission, however, is typically tolerant of baud rate rmsmatches up to 5%, and this is only a 3.6% error.

~1..I~~ -_- ^ ..-~r^--- -- l -~-- ---- - I-- ~ I~---- l-rr--- s~ 1~~~-~,~~-~--- -L. rr-WrMM AMMOMM I L

Guidance Data Acquisition

input buffer overflows (i.e. the 486 cannot read the packets fast enough to keep data moving
through the buffer), and packets are truncated or filled out with garbage 18. To abate these

problems, the sample-number quantity was always made an even value, so the header byte
which precedes the sample-number (which has an odd ASCII value) can never be confused
with its neighbor. A checksum was also added to the end of each packet: this is a two-byte
quantity that equals the sum of all the data bytes in the packet. The 486 computes its own
checksum of the data it receives, and if this checksum doesn't equal the Tattletale's checksum,
decides that the packet is corrupted, and throws it out. In the end, data transmission was
observed to be over 99.99% error free.

It is important to mention that no handshaking occurs between the 486 and the Tattletale
during packet transmissions; the TT8 does all the talking. Even at 115.2 Kbps, the TT8 has
virtually no extra time to wait for 486 acknowledgments of packets received - and absolutely no
time to re-transmit any packets that were received incorrectly. The only information the 486
can send to the TT8 are the following commands:

1) Reset the compass
2) Perform compass hard-iron calibration
3) "Ping:" respond if you are alive
4) Start sampling and sending data at 50 Hz
5) Move the Smart Motors to commanded position
6) Shut down, reboot and reinitialize the system

These commands are sent to the TT8 in a 7-byte packet built by the 486 with the following
structure:

Byte # Contents
0 Header byte (ASCII 'q')
1 Reset Compass, or pulse CAL pin on Compass
2 Home the fins, or start sampling the sensors, or reply to a

"Ping," or stop sampling and reboot the whole system
3 Left Smart Motor Most Significant Byte
4 Left Smart Motor Least Significant Byte
5 Right Smart Motor MSB
6 Right Smart Motor LSB

Table 3.5: 486 Data Packet Structure

Notice that bytes 1 and 2 can be coded to send any of several different messages to the TT8.
This functionality can be expanded further in the future if necessary. The Smart Motors can
take possible commands of +25000 to -25000, and so 2 bytes are required per command. If no
Smart Motor movement is required, the value of 30000 ("MOTOR_DO_NOTHING") can be
sent to the TT8. Transmission of this packet appeared to be extremely reliable.

18 These errors occur particularly when the 486 has to do something time-consuming between reading TT8 packets,
such as pnnt data to the screen.

Guidance Data Acquisition

3.5.4 Smart Motor Control

The VCUUV has two pectoral fins, one on each side of
the body. These act as control surfaces that allow the fish
to rise or dive while it is moving forward. The pectoral
fins are driven by an off-the-shelf motion control package
known as Smart Motors'9. Smart Motors are manufactured
by Animatics, and are used in many industrial and robotics
applications which require position or velocity
servomotors. They offer excellent programmable
versatility, and can communicate with a host system using
a fairly simple serial string protocol. Each pectoral fin is
driven by a Smart Motor through a worm gear assembly

(see Figure 3.17).

A Smart Motor is a servomotor with a built-in
microprocessor, digitally tunable PID filter 20, and serial
port all in one. The device can be commanded to servo
to a velocity or position command, with a resolution of
2000 counts/revolution. Best of all, any of a small army Figure 3.17: Pectoral Fin Gear
of servo parameters can be changed on-the-fly through Assembly
the motor's serial port: these include the P, I, and D gains,
maximum current draw, maximum steady-state error, and many more.

A typical serial command sent to the Smart Motors might be the following string:

"-0A=1000 -0V=900000 -1P=200 -2P=300 -OG"

The prefixes "-0", "-1" or "-2" are addressing operators, which respectively address both
motors, motor #1, or motor #2. The "A=" command sets initial/final
acceleration/deceleration, "V=" sets the cruising velocity, and "P=" the final position
command. Once a Smart Motor receives the GO command "G", it computes a trapezoidal
velocity profile from those three parameters, and follows this profile to its destination.

The motors are wired in what is called "Echo mode," where the host system sends a serial
string to the first motor which is echoed to the second motor, and eventually echoed back to
the host system. Using addresses to identify each motor, it is possible to communicate with and
control them individually.

When the fish is first powered up, the motors have no way of knowing the current angle of the
pectoral fins. Thus after every powerup, a ritual called "homing" must be performed. This is
made possible by a small magnet on each worm gear which trips a magnetic reed switch buried
on the opposite side of the gear: the fixed location of the switch serves as a reference (or

19 The Smart Motor mechanics and assembly were specified by Steve Bellio, a Draper engineer.
20 PID control (Proportional-plus-Integral-plus-Derivative) is usually the best choice of feedback compensation for
motors. The proportional gain attributes for the overall "stiffness" of the motor response, the integral term kills
any steady-state error, and the derivative acts as a "shock absorber" for high-frequency disturbances.

Guidance Data Acquisition

"homing") location. The status of the reed switches are read by the TT8's digital TPU inputs.
To home a pectoral fin, the Smart Motor turns the fin until the reed switch is tripped by the
magnet. Since there is about a 20 arc within which the switch can be tripped by the magnet,
the homing algorithm finds the two edges of this arc, averages them to find a center point, and
calls this center point "home."

Tattletale

Rx

(TPU Serial Port) Serial Echo
is returned to

TT8 Sends Tx

out Serial Serial Command
String is Echoed by

L(M Motor 1Rx >Tx Rx
Pectoral Fin 1 Pectoral Fin 2

SMART MOTOR 1 SMART MOTOR 2

Figure 3.18: "Echo" mode for TT8-to-Smart Motor communication

3.5.5 Bandwidth Issues

The Tattletale has a variety of tasks to perform at specific times, and the way it distributes its

computational abilities over these tasks might be called bandwidth management. Certain duties
such as sampling, filtering and data transmission take a fixed amount of time that is known, but
others (such as compass management and Smart Motor control) are largely a function of other
devices. An important question is: what is the maximum rate that the Tattletale can send
commands to the Smart Motors? This question is motivated by the ultimate desire for depth
control: in order to establish a feedback loop to maintain a depth in the pool, we need to know
the delay between when the Tattletale receives a smart-motor command from the 486, and
when this command is actually performed by the motors.

We begin with the assumption that the longest periodicity the Tattletale follows is obtaining a
reading from the compass, which occurs about once every 200 milliseconds. Due to the
compass event-multitasking scheme, we can put an upper bound of 5 milliseconds of actual
processor time devoted to the compass. During this 200 milliseconds, also, the interrupt
handler is called 20 times. On half of those calls the handler consumes about 4 milliseconds of

processor time (sampling and filtering), and on the other half an additional 3 milliseconds is
used to transmit a data packet (refer to Figure 3.19). Adding another 10 milliseconds or so for
processor overhead in saving registers, etc., we have:

5ms + 10 x 4ms + 10 x 7ms + 10ms = 125ms

Guidance Data Acquisition

or 75 of every 200 milliseconds left over to control the Smart Motors. In other words, the
Tattletale can devote about 37% of its bandwidth to Smart Motor control.

Tattletale CPU Division of Tasks

Interrupt handler calls

10 ms
division

= Sampling and Digital filtering

= Transmit packet to PC-104

Remaining time is available for Compass management and Motor Control

Figure 3.19: TT8 Bandwidth division

As described in Section 3.5.4, each Smart Motor command is a string of ASCII characters sent
serially to the motors at 38.4 Kbaud. A typical motor string command might be "-1P=100
-2P=100 -OG ", commanding each motor to go to position 100. At 38.4 Kbaud these strings
would be sent quite fast, but the limiting factor becomes a 2 millisecond delay between
characters that is necessary for the Smart Motors to read a string without errors. Thus this
string should take about 40 milliseconds of the Tattletale's processor time to prepare and send
(adding a few milliseconds for overhead). With the 37% bandwidth available, this time
stretches out to almost 110 milliseconds per Smart Motor command.

This back-of-the-envelope calculation implies that the maximum rate we will be able to control
the Smart Motors is just under 10 commands per second. However, this does not consider the
delays that occur in the filtering process, or at the 486 end. These delays amount to a filter
group delay of a few tens of milliseconds, and a data-transmission (from the 486) delay of about
30 milliseconds - resulting in a more realistic control rate of 5 commands per second. Even
though our navigation data is arriving at 50 Hz, an 5 Hz control rate should be adequate for the
pectoral fins, since the VCUUV is not expected to exhibit high-frequency behavior in its depth.
This can be accomplished by averaging every group of 10 samples that arrive at 50 Hz to
generate 5 Hz data.

Design of an actual depth control loop using this information will be revisited in Chapter 5.

3.5.6 QNX Software

The 486 processor on the PC-104 stack is running the QNX real-time operating system. In
order to communicate with the TT8, a C-program was written which is able to write and read
bytes from the 486's serial port. This program can instruct the Tattletale to do such tasks as
reset or calibrate the compass, sample and return data to the 486 at 50 Hz, and home the
pectoral fins or set them to a desired angle of attack. When sensor data arrives at the 486, the

Guidance Data Acquisition

program can display the data to the screen, log it to memory (and eventually the hard drive),
and/or use it in a feedback loop to set the pectoral fin angles through the Tattletale. Some

primitive code was also written to integrate IMU gyro readings, giving the user a dynamic look

at attitude drift; however, this function can be refined much further. The main challenges of

maintaining an error-free communication link with the TT8 have already been tackled. What is

remains is to continue developing software that takes advantage of the data acquired and sent

back from the TT8 to perform more complex navigational routines.

3.6 Summary

The electronics described in this chapter were developed externally to the fish, and perform

admirably in that setting. Pressure sensor and compass data can be accurately acquired, pectoral
fin control is robust, and TT8-to-486 communication is efficient and reliable. The performance
of the inertial system in particular will be discussed in more detail in the next chapter. Current
work is directed at integrating this subsystem into the fish's electrically noisy environment, and
protecting these circuits from a range of EMI-induced failures.

Chapter 4 VCUUV Inertial System

Having introduced the basics of inertial navigation systems and the particular IMU used on

the fish, the next step is to characterize the performance possible with this instrument.

The first task is to characterize the IMU's drift behavior. It has already been mentioned that
the drift of inertial position estimates is dominated by gyro (or attitude) errors. Thus, the
performance of an inertial system is usually described by the performance of its gyros, and in
particular, by a bound on the gyro error. This "gyro drift2 1" is specified in degrees per
second (degrees per hour for more accurate instruments), and the lower the value, the better
the accuracy of the computed position over time. However, it is still important to
characterize accelerometer biases as well.

The gyro drift in an inertial system usually defines its performance over time, and therefore
defines the range of applications that system is suited to. Figure 4.1, taken from Titterton
and Weston [13], shows the different accuracies necessary for various inertial navigation
tasks. For comparison, note that the earth rotates at about 15 " /hour.

I I I I I I I I

0.0001 0.001 0.01 0.1 1.0 10 100 1000
GYROSCOPE ERROR (I/HOUR)

SUBMARINE INS STABIUSATION APPUCATIONS

SHIP INS AIRCRAFT INS AIDED INS AIRCRAFT AUTOPILOT

STRATEGIC MISSILE INS TACTICAL MISSLE INS

SPACECRAFT INS AIRCRAFT AHRS TACTICAL MISSILE GUIDANCE

LAND VEHICLES INS UAV GUIDANCE

TORPEDO GUIDANCE I

Figure 4.1: Gyro drift performance for various applications

An effort can be made to measure and characterize both accelerometer and gyro bias/drift,
and thus compensate for it in software. This is the subject of Section 4.2. However, even
after that compensation, drift will occur, due to the integration of electrical noise (producing
"random-walking" of the angle/velocity), imperfections in the IMU, and quantization errors.
In any inertial system (which includes the IMU, data acquisition circuitry, and computer)
there is some fundamental limit to how well you can characterize the sensor errors, how
susceptible they are to external phenomena (i.e. magnetic fields, cosmic rays, etc.), and how
repeatable (or stable) these errors are between each run. Ultimately, this limit defines the

21 In the literature, "drift" is used ambiguously to describe either position estimate drift, gyro error, or both.
Additionally, the terms drift and bias are used interchangeably.

~Li~- ll~--- -~~- ^111 II..^-.IIIYI(IW -U~.~X -I^.1I__.

VCUUV Inertial System

"drift" of the compensated system.

The performance of the VCUUV inertial system is tested at the end of this chapter, using a
MATLAB routine to post-process data acquired and from the sensors and hardware.

4.1 IMU Limitations

The IMU sensors are solid-state, vibrating quartz accelerometers and gyros. These are

commonly used in low-quality strapdown systems intended for use with GPS or similar
external sensors. While they are very rqgged, they usually are produced with biases of in the

range of 0.1 to 1 * /s.

Systron Donner provides a CAD drawing of the
IMU internals, showing the locations of the
sensors within the case. This information is
important to compensate against an error known
as size effect. when the instruments are not all
located at the center of the IMU, compensation is
necessary for lever-arm (or centripetal) forces on
the accelerometers. However, the Systron
Donner CAD sheet is deficient in that it only

gives the sensor locations in two dimensions, not
three! Refer to Table 3.1, and notice the
Alignment error parameter. These are the angles
made between the sensitive axes of the sensors
and the true orthogonal directions; alignment
error information can be used to compensate for
cross-coupled accelerations and rotations Figure 4.2: Illustration of size effect
between the channels. However, to describe and alignment uncertainties in IMU
alignment error completely, two such angles are
needed! One angle only provides the alignment within a cone of error. In general, several
of Systron Donner's specifications for this IMU are incomplete and therefore useless. The

size effect and alignment uncertainties associated with the Systron Donner calibration

information are pictured in Figure 4.2.

Obviously, the Systron Donner IMU is not intended for stand-alone navigation; it is a good

instrument for integrating into a combined GPS/INS navigation system. On the VCUUV, it

might perform well for short test runs (less than thirty seconds) around the tank. Its

ultimate value might be found in attitude stabilization rather than complete navigation of the
fish.

VCUUV Inertial System

4.2 IMU Temperature Compensation

While we cannot compensate for many of the IMU's shortcomings, we can attack its greatest
source of error: bias. While (coarse) bias values and temperature coefficients are provided
for each channel on the calibration sheet, better accuracy can be achieved by measuring the
biases ourselves, using the actual hardware that will eventually acquire the IMU data. For
instance, by hooking the IMU up to the data acquisition system and measuring how the
biases change with temperature, we are calibrating for a composite bias error that is associated
with the IMU as well as the op amps and A-to-D converter that measure the IMU signal.
The biases can also be measured in terms of A-to-D quanta, so software compensation need
not worry about unit conversion to vblts or degrees Celsius. This is sometimes called a
"hardware in-the-loop" calibration.

The goal is to characterize the bias (or "zero-input offset") of each channel as a linear
function of temperature:

Bias = A1 (temp) + A2

where A1 and A2 are the parameters of interest: respectively, the temperature-dependent and
fixed components of the bias. Determining A1 and A2 is fairly simple for the gyro channels.
The Tattletale samples and digitally filters the gyro readings while the IMU is placed on a
stable, vibration-free surface that is kept absolutely still- thus, there is zero motion input. The
IMU is allowed to warm up, and is cycled through several slow heating and cooling cycles
(using a heat gun) while data (in A-to-D units22) is being sent to the 486 and logged to the
hard drive. In order to improve the signal-to-noise ratio (since the biases are on the same
order of magnitude as the noise on the signals), the logged data is averaged and decimated in
groups of 100 - thus at 50 Hz, one value is logged every 2 seconds. The resulting data can
be plotted versus the temperature measurements to give a temperature-vs.-bias plot, as
shown in Figure 4.3. Usually, this procedure is repeated a handful of times to check for
consistency. Each channel's plot from each run is then fitted with a least-squares linear
estimate (using 'polyfit' in MATLAB), to give coefficients A1 and A2; finally, these
parameters are averaged for each channel across the runs to give more accurate values for A1
and A 2.

The measurement of A1 and A2 for the acceleration channels uses the same procedure, with
one added consideration. Remember that the bias is the zero-input response; for the gyros,
we can achieve zero input by keeping them still. But the accelerometers respond to gravity,
so in order to have zero input, we must have the accelerometer's sensitive axis perpendicular
to gravity while taking data. This was done very carefully by mounting the IMU on an
extremely level granite calibration table, whose surface plane was checked to be
perpendicular to gravity using a precision level. Note that we can only measure biases on
two acceleration channels at a time this way, because if the x- and y- channels are
perpendicular to gravity, the z-channel is necessarily parallel to gravity. After making sure
the zero-input condition is satisfied, the IMU is again subjected to heating and cooling, and

22 Even though the data is in A-to-D units, it is still processed by the digital filter. This is why the data assumes
non-integer value in the plots in Figure 4.3.

^(~~IY__I__IWI___*__.I..IYIY~-^I~-- ~~~~-~--~-IW-YI IY--___

VCUUV Inertial System

the acceleration measurements logged and averaged. Following this, least-squares linear

fitting and averaging across experiments produce values for At and A2.

Bias versus temperature curves for 5 IMU channels (Z accel. not shown)

-1580 -1570 -1560 -1550 -1540
Temperature, A2D quanta (increasing negative)

Figure 4.3: Temperature vs. Bias curves

-1510

The bias plots in Figure 4.3 appear linear in general, but some have some slight nonlinearity
associated with them. For this system, it was decided that a linear fit was good enough and
that higher-order fitting wouldn't be much more effective, considering that nonlinear error
was slight compared to the amount of noise on the signals.

Once the parameters A1 and A2 have been determined for each IMU channel, they are
entered into a software algorithm on the TT8 that subtracts the bias from each channel
immediately before sending the IMU data to the PC-104 stack.

A result of the temperature compensation, observed experimentally, is the improvement of
the gyro drift rate from the coarse bound of 3' / s to an approximate bound of 1 /min. -
almost 200 times better drift performance. This is still not standalone quality for long
missions, but at least may allow satisfactory standalone performance for short runs.

4.3 Determining Position and Attitude

The next task is to solve the navigation algorithm. This section is somewhat mathematically
oriented; much of the background material comes from Titterton and Weston [13], an
extraordinarily thorough and up-to-date volume on strapdown inertial technology.

VCUUV Inertial System

4.3.1 Strapdown Computational Architecture

A strapdown system consists of accelerometers and gyros, support electronics, and the

computing devices that continuously implement the navigation algorithm (see Figure 4.4).
The algorithm itself is split into two stages: first attitude is computed, then position and

velocity. The reason for this hierarchy is that vehicle attitude must first be known in order

to resolve the measured accelerations into the correct directions. In other words, the

accelerations cannot be integrated to find velocity and position until we know which

directions the accelerations were measured in.

Often strapdown systems will use a separate "attitude computer" and "navigation computer"

for the two stages. This is a more conCeptual organization of the algorithm, and makes the

software design easier at the expense of more hardware.

Figure 4.4: Strapdown architecture

(from Titterton and Weston [13])

The actual algorithm used to compute attitude, position and velocity is known as the

mechanization. A mechanization describes the sequence of computations needed to convert

raw IMU signals (measured in the "body frame") to movements in a given reference frame.
An example is shown in Figure 4.5. The diagram also includes certain corrections that need

to be made for variations in gravity, rotations of the earth, and Coriolis forces. These are

subtleties of inertial navigation that for the most part we will choose to ignore.

VCUUV Inertial System

INITIAL
ATTITUDE

Figure 4.5: Mechanization from body to navigation frame

(from Titterton and Weston [13])

4.3.2 Reference Frame versus Body Frame

There are six or seven different Cartesian coordinate systems (or "frames") that are defined
for different applications of inertial navigation. In strapdown systems, the one frame that is

always of interest is the body frame. This is defined by a set of x, y, and z coordinates that are
based on the vehicle and travel with the vehicle - essentially, these axes are aligned with the
accelerometers on the vehicle's IMU. Thus the body frame of axes is equivalent to the
orthogonal axes of the vehicle's IMU.

As the vehicle travels in space, the body frame changes attitude and distance with respect to
another frame of axes, the reference frame. Reference frames can be any one of several
common choices; usually, they involve the fixing of the center of the earth, or the stars, as a
reference origin. The reference frame most useful for local navigation over small (essentially
flat) regions of the earth, such as the VCUUV will perform, is called the navigational frame.
This frame has its origin at some point on the earth, with the axes pointing north, east, and
down.

During vehicle travel, the body frame axes change attitude with respect to the navigational
frame. The critical part of the strapdown computation is to be able to track this change in
attitude. This is because before the acceleration signals can be double-integrated to provide

position, they must be correctly resolved into the north, east, and down directions of the

reference frame. Resolving the acceleration vector (and compensating for gravity) requires

precise knowledge of the vehicle's changing attitude.

Angular Rate of
Navigation Frame

Estimate of
Velocity,
Position
V

n
, X

n

VCUUV Inertial System

For this reason, the strapdown algorithm always involves updating the current vehicle
attitude as the first step of every position update. This is also a large part of why attitude (or
gyro) errors are the limiting factor in inertial system performance. Gyro error not only
contributes to attitude errors that increase proportional to time, but they result in resolution
of accelerations into incorrect directions - and it can be shown that this causes position
estimates to drift roughly proportional to time cubed23.

Perhaps the trickiest part of the strapdown computation is the representation of attitude.
Knowing the vehicle's attitude means knowing the relationship between the vehicle's body
frame axes and the axes of the reference frame. This relationship must be updated using
angular rates arrive from the gyros - but the catch is, attitude cannot be characterized by
integrating each of the angular rates alone to get three angles, because rotations do not commute.
In other words, rolling an object 90 * and then pitching it 90 * (in body axes) will produce a
different attitude than pitching it 90 first and then rolling it, even though separately
integrating the resulting gyro signals would produce the same "attitude" in each case.
Changing attitude must be updated by considering a small set of three orthogonal unit
vectors which represent the body frame, and how these vectors are each rotated by each of the
gyro signals relative to the three orthogonal unit vectors that define the reference frame.
The geometry can get quite complicated when working this problem in three dimensions, so
only the fundamentals will be discussed here.

There are several different ways attitude can be represented in navigational systems: these
include direction cosine matrices, Euler angles, and quaternions. The direction cosine matrix
is a three-by-three matrix that evolves with time as the vehicle attitude changes, where the
(i,j) element of the matrix represents the cosine of the angle between the ith axis of the
reference frame and the jth axis of the body frame. For instance, if the body-frame attitude
coincides with the reference frame axes, the direction cosine matrix is simply the identity
matrix. In essence, this matrix describes (as a function of time) how each body-frame axis
can be resolved (or projected) into the reference-frame axes, and thus provides a complete
picture of attitude. Euler angles are a more intuitive approach for some, since they involve
three angles (evolving in time) which describe successive rotations of the reference frame
that are needed to make it coincide with the body frame. However, Euler rotations must
occur in the correct order, since as mentioned before, rotations do not commute!
Quaternions are a more complicated system involving four parameters instead of three, and
have the advantage that their equations have no singularities - a problem seen in both
direction cosine matrix and Euler angle navigation. Such singularities, which occur during
particular attitude maneuvers, can be disastrous in spacecraft and other high-importance
navigation tasks24.

The chosen method for the processing the VCUUV navigation data is the direction cosine
method. This is a popular algorithm, and we do not expect singularities with the fairly
standard changes in attitude that the fish will experience. The basic idea is the following:

23The derivation of this is beyond the scope of this thesis, but can be found in Titterton and Weston [13].
24 It is interesting to note the analogies here between strapdown and platform systems. Quaternions, a four-
parameter strapdown algorithm, prevent singularities in the attitude computation; whereas in a platform system,
a mechanical assembly with four gimbals instead of three completely prevents a possible mechanical failure
called gimbal lock! Quaternions are the computational analog to a set of four gimbals.

.- -.. I'--- - LI"-II-PIlI ---. C-*LlkI -- SIIEl",X L.IlY CI-^ n~a k-lil """1*-I~ _ _~^_~~ _ I~IY~LLCI---~CIIL -~--li~~-ll-~--l*LllnWIIIII~^ ----XI~Y ~I -.Y~-C---I~- II~LI

VCUUV Inertial System

For a set of x, y, and z accelerations that arrive at (discrete) time interval k, these

accelerations can be resolved into the axes of the reference frame by multiplying by the

direction cosine matrix at time k:

X n X b

yn _Cb yb
Zn Zb

where the superscripts n and b refer to navigational and body frames respectively, and the

direction cosine matrix C is designateq to make the transformation between these frames.

Once this relationship is established, all that remains is to determine the time-evolution of

the direction cosine matrix, or equivalently, the changing attitude of the vehicle over time.

Since we are simply post-processing the inertial data in this section, we will compute the

complete attitude path before resolving all of the acceleration vectors.

In continuous time, the direction cosine matrix evolves as a function of the current attitude

and the input rate values from the gyroscopes, as follows:

Cb (t) = Cb (t)n f b) where = O 0 -O

However, since the gyro inputs (notated as co(ais) above) in all strapdown systems arrive as

discrete-time values to a digital computer, a slightly different analysis is used. The discrete-

time (DT) evolution of the direction cosine attitude matrix can be shown to be (see Titterton

and Weston [13], pp. 294-97):

sin (T 1 - cos (
Ck+1 CkAk where Ak I 3 3

+ [a] ,2 [X]2

with the input matrix of gyro signals (CX) similar to Q above:

0 -w w
[X]= Oz 0 - c x jAt and OAt 0 x 2 +(0y2 + Wz 2

- y Cox 0s

where At is the sample period 5 .50Hz)

VCUUV Inertial System

There is one immediate problem: the evolution equation requires an initial condition for the

matrix Co; in other words, the initial attitude of the vehicle must be supplied! This is known

as alignment. Alignment is a critical matter, since if the initial attitude is wrong, all the

subsequent attitude calculations will drift even worse, and the position drift will be obscene.

The best method of determining the initial attitude is to recall the alignment technique

discussed in Section 2.4; using the accelerometers to measure the gravity vector, and back-

tracking to determine the "tilt" of the IMU with respect to gravity.

4.3.3 Alignment

In platform systems there is a mechanical procedure used to align the initial platform

attitude, called gyrocompassing. There is an analogous analytic procedure for strapdown

systems. This essentially involves determining attitude by measuring the tug of gravity on
the accelerometers, using the prior assumption that no true acceleration is being
experienced.

Note that there are a few things we ignore while aligning the VCUUV inertial system.

Gyrocompassing usually involves measuring the rotation of the earth, to align the attitude in

the azimuth (compass heading) plane. However, we have chosen to ignore the earth's

rotation, as well as Coriolis forces, etc.; the earth rotates at 0.004 /s, a rate which is

considered beneath the resolution of our gyros. Therefore the only alignment we are truly

concerned with is alignment with the vertical: that is, making sure we know the attitude of

the IMU relative to the direction of gravity. The azimuth alignment, which determines
where north and east are, is considered unimportant for the local navigation the fish will
implement. When navigating in a local environment (i.e. a pool), we can reference a
"relative azimuth" by calling some direction "north" and its perpendicular "east."
Eventually, the compass can be used to augment this and bound drift errors in relative
azimuth.

Alignment is equivalent to determining the initial direction cosine matrix. If the IMU is

stationary, the force of gravity measured by each accelerometer is the measuredgravity vector

[gx g g,. This vector is measured in the body frame, and is related to the gravity field

by a direction cosine matrix transformation:

gx 0
Cb gy = 0

gz L- 9.80

where -9.80 is the value of the gravitational acceleration (m/s2) in the reference frame25. The

task is to determine C'.

25 This is very close to the gravitational acceleration in Boston, MA. Gravity is assumed to be aligned with the
vertical, or very close to it.

r^ -- --- -I-_^_I^ ..r- .-̂ -- l --1P"--(^ i ~l ^~ ~cr-lxx;^,llr*rx**r~- -. -i I-~- -^ -L-~ -- T*PL^~-- -----LI~-~~------ -ll~---~-- ~- -I I~-^PL - ---L-- II~IIIII~-C --_ .

VCUUV Inertial System

Multiplying both sides by the matrix inverse gives us

g, = C 0

g =C - 9.80

One very nice property of all direction cosine matrices is that they are orthogonal. This
means that each column is of unit magnitude, and the dot-product of any two columns is
zero: the columns form an orthogonal unit-vector subspace. In addition, this means that the
inverse of a direction cosine matrix is simply the transpose. Thus if

C11 C12 C13 C11 C21 C31

b C21 2 2 C2 3 , then C = Cb 1 2 C22 32

31 32 33 J Cl13 c23 C33

From the previous equation, then, it is easy to solve for the last column of Cb, i.e. the

terms C31, C32, and 03:

31 9.8' 32 9.8' C33 - .8

This is the important part of the alignment: the part of the matrix which aligns the body
frame level with respect to gravity in the reference frame. The rest of the matrix terms deal
with azimuth alignment, which we are unconcerned with. Therefore, the matrix is filled out
using the Gram-Schmidt orthogonalization process, which constructs two unit-magnitude
vectors orthogonal to [o1 C2 c33] by taking the reference frame axes ([1 0 0], [0 1 0]),
projecting them onto [c1 c32 o3], and subtracting these projections from the original
reference frame axes. This is a standard technique discussed in most linear algebra

textbooks [12]. Having determined C , the alignment is complete.

4.4 Cart Tests

The direction cosine algorithm is easily coded into MATLAB. To test it, a number of short
trips were taken while logging IMU data on a portable cart around Draper Lab. These tests
ranged from 30 to 40 seconds, and involved straight runs, turns, rectangular paths, and up
and down in the elevators. Some data analysis of this IMU data will be attempted using the
MATLAB code developed.

VCUUV Inertial System

The code for the MATLAB algorithm is provided in Appendix C. The program begins by
taking a long vector of repeating IMU "packets" and unraveling it into vectors for each
channel (accelerometer and gyro) of IMU information. The data26 is then multiplied by
appropriate scale factors to change the numbers into engineering units (m/s 2, and rad/s).
Next, the initial attitude is determined using the alignment technique just described. The

initial attitude takes form as the first direction cosine matrix Co.

Using the three vectors of gyro information, the entire sequence of direction cosine matrices
is computed using the recursive algorithm described above - that is 1500 matrices for a 30
second run! The sequence of matrices can be plotted to visualize the changes in attitude.
Finally, position can be computed as follows. Each triad of accelerometer measurements at
time k is multiplied by the direction cosine matrix of the same time: this resolves all the

body-frame measurements into the reference frame axes. Now, the value of gravity can be
removed from the resolved z-axis, since in the reference frame, the z-axis coincides with the
direction of gravity! Having resolved the accelerations into the reference frame, position in

the reference frame is easy to compute: just double-integrate each of the resolved
acceleration channels. This of course requires the initial conditions of position and velocity,
but since the cart test began at a standstill, the initial conditions are zero. The resolved
accelerations in x, y, and z can be integrated separately, since accelerations in different
directions, unlike rotations, do commute.

4.4.1 Results

Six cart tests were done in all. Three are presented here: a straight run, a rectangular
trajectory, and a trip in an elevator. The following pages show 3 plots for each experiment:

* Attitude plot: To understand these graphs, imagine the body axes of the IMU as an
orthogonal triad of unit vectors. This plot shows the endpoints of the body axes plotted
with respect to the three-dimensional reference frame. (It is easier to visualize this
changing attitude in MATLAB because as the axes move with time, each endpoint is a
tracked with a different color asterisk.) The direction of gravity is along the reference
frame z-axis. Because of our alignment procedure which ignores azimuth, the body-
attitude at time zero is always perfectly aligned with the reference frame axes.

* Resolved accelerations plot: These are the accelerations measured by the IMU and
resolved using the direction cosine matrix. Thus the accelerations pictured should
(theoretically) be directed along the axes of the reference frame. Notice that they are
somewhat noisy; this is largely because the tests were conducted on a cart that was quite
prone to vibration. Theoretically, these vibrations should be seen equally to any other
motion input, but in some cases (as we will see) they are an undesirable disturbance to
the system.

* Position plot: The separate X, Y, and Z coordinates of the position are shown versus
time. These graphs are just the double-integrations of the resolved accelerations in the
previous plots. Zero initial position and velocity are assumed for all the
experiments.

26 Remember that the data has already been temperature-compensated by the Tattletale.

_11__~1~~ ____1 FIJ_^___X1 ~_IIXUWIIII__III___ -l.-~*~_~l ~ ___II~----s__llYLIIIII~- ..-.-.. -^I*1*~I1I~__I1~--~~^L~ ~~ _IXI ~----^-L

VCUUV Inertial System

Attitude plot*

1

0.5

0

-0.5
1

Y-axis, reference frame -0.5 -0.5

-2 0.5

X-axis, reference frame

Resolved x-acceleration

oC

% h- M* 1 0 .. .I -"mW aI .a 1L1,1 0 11 DJ, PA- App. I

-0.5
0 5 10 15 20 25 30

Resolved y-acceleration

< -10 M

0 5 10 15 20 25 30
Resolved z-acceleration

.o 0

0 5 10 15 20 25 30
Seconds

X, Y, and Z Position Trajectories

5 10 15 20 25
Seconds

Figure 4.6: Post-processed IMU data - Straight run

Resolved

x-acceleration

~I. I...r l Ir ~..ul..ru.. . .1

VCUUV Inertial System

Attitude plot*

0.5

0

-0.5
1

Y-axis, reference frame X-axis, reference frame

Resolved x-acceleration

8<-1
0 5 10 15 20 25 30 35 40

Resolved y-acceleration
22

-0

8
<--2

0 5 10 15 20 25 30 35 40
Resolved z-acceleration

0.5

0 5 10 15 20 25 30 35 40
Seconds

X, Y, and Z Position Trajectories

E 2

0'

-2

I-
-4

-6

0 5 10 15 20
Seconds

25 30 35 40

Figure 4.7: Post-processed IMU data - Rectangle

VCUUV Inertial System

Attitude plot*

0.5

0

-0.5
1

Y-axis, reference frame -1 -1

0.51
0

X-axis, reference frame

Resolved x-acceleration

-5

0 5 10 15 20 25 30 35 40
Resolved y-acceleration

2

-2~~~YJf-"F

0 5 10 15 20 25 30 35 40
Resolved z-acceleration

5
a - - I --- - --- I

-5
0 5 10 15 20 25 30 35 40

Seconds

X, Y, and Z Position Trajectories

6

4

E2
co

0o

0.

.3 -2

-4

-6

0 5 10 15 20
Seconds

25 30 35 40

Figure 4.8: Post-processed IMU data - Elevator

VCUUV Inertial System

Below we describe the experiments that generated these plots, and make some qualitative

observations on the system performance. These experiments themselves were somewhat

qualitative, and were performed in order to get a "feel" for the inertial system.

4.4.1.1 Straight Run

The straight run experiment simply involved rolling the cart (initially at rest) in a straight line

for approximately 8.5 meters and then decelerating to a stop. The IMU was positioned so

that the direction of the straight line was aligned with the IMU's Y accelerometer axis.

The attitude plot shows three roughly static points; each corresponds to the endpoint of a

body-frame vector. The orthogonal body-axis set can be imagined by connecting each point
to the origin with a vector. Notice that the points do meander a small amount due to the

slight angular wandering of the cart, but in general, the data correctly shows that no angular
rotations are experienced during this experiment.

The position plot shows that the Y coordinate begins to increase negatively, and gets to

about 7.5 meters before it turns back up again. This motion reflects the straight line run,
and can be explained as follows. As the cart is accelerated from rest, the Y coordinate

displays a quadratic position change. The cart steady states to about a constant velocity, and
so we see a linear ramp in position between 5-13 seconds. At about 13 seconds, there seems

to be a slight "kink" in the graph; this is where tiny errors have been integrated to the point
where they begin to blow up, in a positive direction. Thus, the graph never makes it all the

way down to the actual 8.5 meters traveled, since the drift takes over at around 13 seconds in

the Y direction.

The X coordinate motion appears to be fairly well behaved; since virtually no motion
occurred in the X axis, this plot appears to be correct. Similarly, the Z coordinate hardly
moves, since there is no motion input. In this experiment both X and Z seem to be fairly
well compensated against drift.

The conclusion from this experiment is that estimating position using the IMU alone can be

done fairly accurately for a maximum of about 13 seconds.

4.4.1.2 Rectangle

This experiment was also performed in the X-Y plane (i.e., no vertical motion except
perhaps vibrations). It consisted of rolling the cart in a rectangle of approximate dimensions
6 meters by 2 meters. At each corner of the rectangle, the cart was rotated 90 * before
traveling along the next side.

Rotation of 90 at each corner results in the entire IMU being rotated a full 360 " (in the

yaw plane) over the course of the experiment. The attitude plot reflects this fact: the X and

Y body vectors of the IMU have each traced out the circle in the yaw plane of the reference

frame. Meanwhile, the Z vector has not changed attitude, since no pitching or rolling

occurred (except perhaps due to vibrations).

riil^ ~C~-- ----- ~-- L"D ~P'"-~ -"---U1- -------- ---~ .~II~-I-~----l-ll-^l^*L.~ I~I^--- IIIYI^-~~_L t ̂ _~IIIX~ .-(II*IL- .-UY C-~UI l _I~I~-.I~.ll-*1YIY- .i~-lli

VCUUV Inertial System

The position plot shows a linear ramp of the Y position coordinate until about 12 seconds;

then the cart is rotated and linear position commences along the X axis. However, drift

takes over before these two sides of the rectangle have been traversed; by 20 seconds, the
estimates are worthless. The Z direction appears to have drifted more in this experiment
than the last; about 2 meters within 20 seconds. However the overall Z drift is less than that
seen in the X and Y directions. Overall, the position estimate again seems to be reasonably
good up to about 13 seconds from the start of the experiment.

4.4.1.3 Elevator

Finally, we desired an experiment to test motion along the Z axis. The elevator experiment
involved first rotating the cart 90 ', walking about 1 meter straight into an elevator, traveling
up one floor, backing out of the elevator and rotating backwards 90 * (so that our net
rotation in the yaw plane is 180 ").

The attitude plot clearly shows the X and Y body vectors each rotating 180" in the yaw
plane of the reference frame. The Z vector, as expected, is stationary. In general, the
attitude plots we have seen so far have been quite accurate and shown little drift. This
indicates that the gyro bias-temperature compensation was done successfully.

The position plot lends some insight to the a serious limitation of the system. Look at the
graph in the middle of the page, of resolved accelerations. The Z direction travel of the
elevator is clearly seen between about 14 to 18 seconds; a very nice trapezoidal acceleration
and deceleration profile. However, we also see some very large and high frequency
acceleration spikes occurring at 5 seconds and 26 seconds; what are these? What happened
in the experiment was that the cart was seriously jolted when crossing the threshold into and
out of the elevator - consequently, the large spikes of acceleration. While ideally the IMU
should see these spikes as normal motion input, we see that at around 5 seconds (at the first
jolt) the X and Y position begin to drift like mad. The plausible explanation is the following:
when the cart was jolted, the IMU bounced around and changed attitude very rapidly. The
change in rotation (or angular acceleration) was fast enough that the low-pass anti-aliasing
filters corrupted the high-frequency motion information, resulting in a perceived gyro error.

This gyro error subsequently caused errors in the attitude computation, and attitude error

will quickly lead to extreme drift in position. The fact that only the X and Y coordinates

were affected - notice that the Z coordinate correctly tracks the elevator motion, despite

some drift - implies that the high frequency attitude change occurred mostly through

yawing.

The observation, therefore, is that the position estimate can be severely affected by sudden
motion shocks to the system, due to the corruption of high-frequency motion by the anti-

aliasing filters, and perhaps also from gyro errors induced by conical vibrations.

VCUUV Inertial System

4.5 Conclusions

A lot of insight on the system's performance was gained from the cart tests. One qualitative

observation was that the measured accelerations for various maneuvers were not as great as

expected; for instance, during all of the tests rarely did we see accelerations of above 1g. The

conclusion is that the IMU full-scale range of ±5g on each accelerometer is probably
excessive; and since our circuitry scales the signals to use this full range, we can probably
significantly increase the signal-to-noise ratio (SNR) and resolution of or accelerometer
readings by not using the full range. This is definitely an improvement worth making to the

system in the future. It involves replacing a precision resistor in the scaling circuit of Figure
3.8 to change the gain, and recalibrating the temperature-bias compensation and scaling
factors in both the TT8 and QNX software (more bias testing would probably need to be

done). This improvement could potentially improve the drift performance quite
significantly.

We also learned from these tests that large and sudden g-shocks and vibrations in the system
cause errors which can cause the position error to blow up prematurely, even if the
accelerations are all under 5g. The reason for this, again, is probably in the anti-alias filtering
which destroys all high-frequency components of the measured accelerations upon sampling.
Furthermore, out-of-phase vibrations around two axes (a motion called "coning") can occur,
which causes false rotational input to the gyros; this throws off the attitude estimate. As a
general rule, this system was not designed for and does not deal well with high-frequency
(>20 Hz) motions.

Finally, we have demonstrated that on a typical run, inertial dead-reckoning alone on the
VCUUV can provide a reasonably good position estimate for about a maximum of about 15
seconds. Immediately after this time, however, position errors blow up rapidly, as expected.
What seems to be much more stable and accurate than position estimation was attitude
estimation. The plots above indicate that tracking the fish's attitude might be achieved with
good accuracy over a period of several minutes or more.

Was the temperature compensation worthwhile and/or successful? A similar inertial system
can be presented for comparison. The Unmanned Aerial Vehicle(UAV) group at Draper
Lab has developed an autonomous helicopter that uses the same Systron Donner IMU as
the VCUUV. In this system, standalone IMU navigation can not be relied on for more than
5 seconds: it is usually corrected at 5-10 Hz using GPS and altimeter readings in a Kalman
filter. Unlike the system described in this thesis, the helicopter inertial system performs no
temperature compensation of the bias. The VCUUV system has demonstrated position drift

improvement of perhaps a factor of two over that of the copter. Of course, the fish has no
GPS capability, and its position error can only be bounded in the z-direction using the

pressure sensor. This unfortunate fact means that until a new means is found to correct the

position drift in x- and y-channels, only short navigational missions of under 20 seconds are

feasible. Attitude stabilization may still be achieved for longer periods of time, however.

~IIIY~YIP~ I~llll~------- ---- L---- -1 ~ ~---- ---~-^- .^ --II- -~- -I--IX-1I1-CP"WI- -I~Cr~-LI~I~L III CY-~ iil~ IQPI-~- ~ - - ---L -~- ~

Chapter 5 Modeling, Simulation and
Control

Within the VCUUV, there are two levels of control: controlling the tail to swim in a
"fishlike" manner, and controlling the larger vehicle to swim to a desired location in the
pool. The latter task, also known as guidance, is the main concern of this chapter. In general,
guidance and control of any vehicle is an extremely complicated problem, involving a
considerable amount of modeling and statistical analysis. This chapter attacks only a small
piece of the puzzle, by developing a simple model to analyze the behavior of the VCUUV in
two dimensions.

One important issue addressed here is the fact that vertical forces on the fish can only be
generated by changing the "angle of attack" of the pectoral fins, which act as control
surfaces. The upshot of this is that fish cannot move in the z-direction, or "dive-plane,"
without first having some horizontal velocity. Much of the work in this chapter, therefore, is
directed towards modeling the relationships between horizontal motion, vertical motion, and
pectoral fin angle of the VCUUV. A simple depth controller is designed and implemented
as well.

5.1 Model Development

In the course of this research, some steps were taken towards creating a dynamic
mathematical model of the fish. For simplicity, this model ignores the third dimension and
is developed in a two-dimensional pool (see Figure 5.1), also known as the dive-plane. Its
primary usefulness will be shown in analyzing the depth control capabilities of the VCUUV.

2-Dirensional Pool
z o

Figure 5.1: 2D setting for model development (dive-plane)

nl"x -~---r~--r -_rrr~nr~, r~- ~-r~-~--- -~^-c --~ -I--- -ll l ~-X -ICIYII-I~-----I ~- L-~.~l-_. .- .. --1 -r~-- -- 111 --_i rl~.~. -_XI--~Xn~- -~^---II^~. i -I .I~ r~..- 1~ I~-._ .- -^~lll-_lllll^-mX-~-- I-Y- I---P-~ -LI.

Modeling, Simulation and Control

The model assumes that there are two physical means of controlling the movement of the

fish: the propulsive force from swinging the tail, and the angle of attack of the pectoral fins.

The tail thrust is modeled as a propulsive force in the positive x-direction (in Newtons) that
can be directly controlled27; this force will be called Fx. Any vertical forces on the fish are

created by angling the pectoral fin, which acts as a control surface. These forces will be

characterized later. Finally, note that the position of the fish is designated by coordinates

(x,, with - defined positive in the down direction.

To model the motion of the fish in water, we turn to classical hydrodynamics. In general,
the three-dimensional motion of an underwater vehicle is characterized by state equations
which involve the continuous-time evolution of 6 state variables: velocity in x, y, and z,
directions, plus pitch, roll and yaw rates. However, since we are dealing with a two-
dimensional system, we do not deal with roll, yaw, or velocity in the y-direction 28. Thus we
are left with three state variables of interest: horizontal velocity, vertical velocity, and pitch
rate (u, w, q). These are velocity terms (linear and angular); in addition, we would like our
state-vector to have positional variables (essentially the integrals of u, w, and q), so we add

three more variables (x, z, 6). As explained above, the two controlling inputs are the

horizontal thrust F,, and the pectoral fin angle (which we call Q).

Thus the general state-space representation of the system is of the form:

= f(u,w,q,x,z,,F,)

i

This form describes the rate of change of the state variables as a function of the current state
variables and the control inputs; in other words, the time-evolution of the system as the
control inputs are varied.

Using the decoupled hydrodynamic model from [1], we can fill in the equations that make
up this state-space system. Unfortunately, we find that the actual system is extremely
nonlinear, even after a number of simplifications are applied. The state equations for the
system are given in Figure 5.2.

27 While the tail-motion/thrust relationship has not yet been characterized, that is one of the eventual goals of
the VCUUV project.
28 In removing these, we are "decoupling" the longitudinal-plane equations from the lateral-plane equations.
The simplifications necessary to do this are outlined in a paper by Jamie M. Anderson, entitled "Unmanned
Undersea Vehicle Model Analysis for Low speed Controller Development [1]."

Modeling, Simulation and Control

(= XX, - m wq + (X +ll uul+ F.,hr.s, + (ipA)u 'tan'

Z= Z + m q + (Z)uw - (CpA)u2 tan-l-+ cos tan -1

q= IM uq + (M)uw - (zGW - zBsin (irpA)u t an -

* = ucos0 + w sin0

i = -u sin 0 + w cos0

=q

Figure 5.2: Nonlinear state-space model for dive-plane analysis

These equations are arrived at through the decoupling of the lateral (x-!) plane equations

from the general three-dimensional hydrodynamic equations that describe the motion of a

rigid-body in water. Note is that u, w, and q are in vehicle body-coordinates, and x, , and 0 are

in global coordinates (see Figure 5.3). Thus, the x-,-0 variables represent not only a time-

integration of the u-w-q velocity variables, but a coordinate transformation as well. Note also
the numerous constants throughout the equations, that correspond to vehicle mass, moment

of inertia, center of gravity, etc., as well as skin-friction and drag coefficients. We will not

dwell on the meanings of these coefficients, but trust that their derivation is accurate. The

values chosen for these constants (derived by Jamie Anderson, group manager) are available

in Appendix D.

Figure 5.3: Coordinate systems in used in dive-plane model

Global vs. Body Coordinates
_X-direction(position)

X-dreon

*Y_1IIII___I_~_ILII 1.. IP---~ I.^I1II_-. l-.IXIL---II1IC- ~(- l~ ICI~ LI- l^ -___ ^I_

Modeling, Simulation and Control

In developing these equations several simplifications were made, including:

* no fin drag model

* neglect viscosity effect except for forward, simple drag

* grossly simplified propulsor model

* no pitch damping

* prolate ellipsoid estimates for inertial coefficients (not including caudal fin)

The highly nonlinear model was further analyzed using SIMULINK 29. The state equations
of the model were incorporated into a SIMULINK model (pictured in Figure 5.4), which
allows a user to run a real-time simulation of the two-dimensional fish. The simulation also

drives an animation of the fish swimming through the pool as the inputs (F,,) are
manipulated manually. The animation shows the (x, D position of the fish, as well as its

pitch angle 0.

Constant PHI Input

Constant FXTHRUST Input u' = f(state)
U

1/s Demu

Integrator Mux

I at.n th'

Demux

1/S) =f(state)

Inegrator8

z'outUsing the SIMULINK model, various "virtual" experiments could be run. By simulatingSimulation
Animation he dive slope a function of forwa-Velocy thea'outqr only of pectoral

Demue

THETA
XZ tish posngle do the pectoral fins stop providing useful lift, or stallon

Figure 5.4: SIMULINK block diagram

Using the SIMULINK model, various "virtual" experiments could be run. By simulating
trial runs with various thrusts and pectoral fin angles, some of the following important
questions could be investigated (qualitatively, in some cases):

" What is the steepest slope (Ag/Ax) at which the fish can dive?

* Is the dive slope a function of forward velocity or only of pectoral fin angle?

* At what angle do the pectoral fins stop providing useful lift, or stall?

* How stable is the fish's pitch during rising or climbing? How much pitch oscillation

occurs when the pectoral fin is "stepped" from 0 * to some positive angle of attack?

29 SIMULINK is an add-on to the MATLAB software package which allows very sophisticated nonlinear
systems to be modeled and simulated using a very easy block-diagram interface.

Modeling, Simulation and Control

These questions were addressed as follows. The simulation experiment involved applying a
constant tail thrust with zero angle of attack until the fish's horizontal velocity steady-stated
(due to drag forces countering the thrust). Then the pectoral fin angle was "stepped" to

some value, and the slope of the resulting dive and oscillations in pitch were observed. Thus
the dive-slope is characterized as a function of both the forward velocity of the fish (which,
at steady-state, is a direct function of the thrust from the tail) and the pectoral fin angle of
attack. The following data were obtained:

Constant thrust Steady-state horizontal Fin Angle of Slope of dive,
Fx, newtons velocity, m/s Attack, radians Ag/Ax (unitless)

5 1.25 0.1 0.064
10 1.75 0.1 0.088

1630 2.06 0.1 0.112
20 2.15 0.1 0.136
5 1.25 0.2 0.120
10 1.75 0.2 0.160
16 2.06 0.2 0.200
20 2.15 0.2 0.233

Table 5.1: Dive-slope versus forward speed and angle of attack

The data clearly shows that dive-slope is an increasing function of both angle of attack and

forward velocity. In other words, the amount of dive A- the fish can achieve in a horizontal

distance Ax can be increased either by swimming faster, using a greater angle of attack on
the pectoral fins, or both.

Furthermore, the SIMULINK animation predicted that upon stepping the fin angle, the fish
can experience large pitch oscillations on the order of tens of degrees before settling. This
result is somewhat surprising. Along with the other interesting observations presented here,
it should soon be tested against experimental data from actual swim tests.

5.2 Depth Control Loop

We can apply the insight gained from the simulated fish's dive-plane behavior to a simple
controller design. The design goal is a feedback controller that will regulate the fish's depth
through readings from the pressure sensor31 . The pressure sensor readings alone are used
for feedback since the navigation software for the IMU is not yet complete. Furthermore,
the pressure sensor is a far more effective sensor for depth measurements, since it does not
provide a measurement that drifts with time. The controller is developed around the
simulated fish's behavior at a nominal speed of 4 knots.

30 16 Newtons of tail thrust results in the nominal forward velocity specified for the VCUUV, 4 knots (2.06
m/s).
31 Though the controller will be implemented in discrete time (DT), it will be designed in a continuous time

(CT) setting. Observation from the SIMULINK model suggests that our DT control rate is sufficiently fast
(compared to the dynamics of the depth behavior) to justify a CT analysis.

~....~~~,~~.~-.~I~,~ I~.-~.~-~p---uuu - -I -,~__I .__ 1_1-- ---- ---~^.II____~. cl-rru-~--i~r~,^------^ l.r^.- --~i~^-- -- -- ----C-yC

Modeling, Simulation and Control

Figure 5.5: Depth feedback loop

The control system is single-input, single-output (SISO), and takes the general form shown
in Figure 5.5. Essentially, we want to design a good controller K that suits the properties of
the plant, P. The plant represents the (linearized) input-output relationship from a pectoral

fin angle (with both fins set at the same angle of attack 0) to the depth (z-coordinate) of the
fish.

The plant was characterized using the SIMULINK model. It was observed that a fixed angle

of attack eventually results in a fixed-slope dive (i.e., fixed A/Ax), while traveling
horizontally at its nominal velocity of 4 knots. Furthermore, the relationship between angle

of attack and dive-slope (Az/Ax) - at the nominal velocity - is very nearly linear. This
observation comes from a two-dimensional "slice" of the data from Table 5.1, and is plotted
in Figure 5.6.

Since the fish responds to a constant fin angle by a linear "ramp" in depth, the plant acts like
an integrator. Specifically, the transfer function of the plant is approximately 1.8335, where

1.8335 is the slope of the plot in Figure 5.6 (in units of radian-') times
(4 knots, or 2.06 m/s). In other words, 1.8335 represents the dive rate
pectoral fin angle, while swimming forward at 4 knots.

Slope of dive (dz/dx) vs. pectoral fin angle
0.3

0.25

0.2

o .
60.15

0.1

0.05

0
0 0.1 0.2 0.3 0.4 0.5

Pectoral fin angle, radians

Figure 5.6: Dive slope versus fin angle, at nominal
velocity (4 knots)

the nominal velocity
in m/s per radian of

Modeling, Simulation and Control

It is known that the fin will become ineffective (or stall) with an angle of more than ± 15 ', or
±0.2618 radians. Thus the controller should not allow the pectoral fin to exceed this range.
Proportional control was chosen, since depth control did not need to be extremely precise,
nor was high-frequency disturbance a major concern (ruling out integral and derivative
control, respectively). Furthermore, since the angular range is so limited, fancy control
schemes are really unnecessary. This means that K becomes a scalar proportional gain. The

value of K is chosen as follows: with P=1 (which can be arranged in software), the closed

loop transfer function is 1.8335K . This is a first-order response which has a bandwidth of
s+1.8335K

0o= 1.8335K. K was thus chosen by recognizing that with a 5 Hz digital control rate of the
Smart Motors, we can approximately control a continuous time bandwidth of 2.5 Hz
(according to Nyquist). Setting 1.8335K= 25"2z, we arrive at K=8.57.

A number of shortcuts were taken in this analysis. To begin with, the derivation of K was
made by recognizing at the last minute that we are using a CT analysis for a DT system.
Furthermore, the "control" of the Smart Motors is difficult to characterize, because the
motors are so "smart." Sending a command to the motors does not generate an
instantaneous movement (as the model assumes), but rather it is an input to another
feedback loop (the Smart Motor PID loop) which can be approximated as a source of delay.
Several other small delays in the loop related to data transmission and processing were

ignored as well. In the end, the assumptions were justified by the fact that the overall depth
control is expected to be a very low-frequency control task, and that the value of K was not
extremely critical - especially considering that the pectoral fins are constrained to such a
small angular range anyhow.

The final feedback design is shown in Figure 5.7.

Desired pectoral fin
depth input depth error angle,4 depth of fish

o 8.57 Plant

(normalized in
software)

Figure 5.7: Final feedback controller

Finally, remember that the TT8 is sampling depth information at 50 Hz, while Smart Motor
control occurs at 5 Hz. The simplest solution for this control loop was to average every 10
samples of depth information to generate the lower frequency 5 Hz data.

To summarize the control loop: the TT8 samples depth information from the pressure
transducer at 50 Hz. This data is sent to the 486 and processed by the QNX program. The
program which averages each group of 10 samples, determines the depth error (difference
between actual and desired) and computes a new pectoral fin angle. The pectoral fin angle is
sent back to the TT8, which sends serial commands to the Smart Motors.

-~----- ~-.~I--I -- --- --- 1 11~-------- -- ---- ----~1~1-..~ ~1.--- -- e ----------- ------~ LLU-----------.-... inllll~LP~~~ l ~-.-~-~-l - ~-(- i-XIII r~

Modeling, Simulation and Control

5.3 Summary

By no means does this chapter even begin to describe all of the "Feedback and Control"
issues surrounding the VCUUV; it is merely one tip of a many-tipped iceberg. The
motivation for the SIMULINK model development is to gain a better understanding to the
VCUUV's behavior in the dive-plane only. Depth control is a sufficiently important
guidance task that it deserves a separate analysis. At present, it is probably the easiest
dimension of the fish's motion to put into simulation, since the full three-dimensional
dynamic model of the fish is expected to be quite complex.

Unfortunately, the depth control loop has not yet had a chance to be tested in water. On
land, the loop was demonstrated by applying a variable source of pressure to the sensor to
simulate changing depths in water. As the pressure was varied, the pectoral fins responded
by setting the appropriate angle of attack; however, for most cases (where the depth error is
greater than a foot or so), the fins sat at either the positive or negative limit of 15 ".

Future work should include measuring the dive-slope vs. pectoral fin and forward speed
relationship, and comparing it to the SIMULINK results. The SIMULINK model should be
revised and updated as new data arrives from the field and from others who are working on
hydrodynamic modeling of the VCUUV.

Chapter 6 Conclusions

"So long, and thanks for all the fish. " -- Douglas Adams

6.1 Summary of Thesis

This thesis has studied guidance and navigation of the VCUUV from several different
theoretical and practical perspectives. The work discussed so far includes the following:

* Research on general guidance and navigation theory, and potential application of these
ideas to VCUUV navigation.

* Design of electronics to gather data from navigation sensors. In some respects, the
electronics design constrains the navigational capabilities of the vehicle.

* Performance characterization of the VCUUV inertial system (which collectively includes
IMU, electronics, and software).

* Modeling and simulation applied to studying the behavior of the VCUUV in the dive-
plane.

6.2 Current State of the VCUUV

The fish has recently gone swimming in a large tank at the University of New Hampshire. It
has demonstrated the capability to swim in a straight line, execute simple turns, and swim in
a circle. The primary goal to "swim in a fish-like manner" seems within grasp.

The next focus is on guidance and navigation of the VCUUV, and so the work described in
this thesis will soon be put to the test. While the navigation electronics have been
successfully demonstrated outside of the vehicle, it has experienced a few problems
operating inside of the fish, attributed largely to EMI induced failures. Current work is
directed at seamlessly integrating the navigation electronics into the electrically noisy
environment of the VCUUV.

As mentioned several times in the preceding chapters, a great deal of work remains in
mathematically modeling the fish and its hydrodynamic behavior. Since the dynamics are
expected to be very complex, most of this modeling will be based on observations of how
the actual vehicle swims - in other words, an exercise in system identification. Inertial
measurements from the IMU might actually be very useful in creating such a model.

Il -.-llt-l^*~--.~-.I_-. ~-IYUII II~- CI*UC. ~L~-- IIILtl. -il. Us- ---- -~-- -_--- -I i.. ---- I .~P-CLI^LICI~- .ilL-^-.-ll*LI~~_I~I.-l.^i- I-lln11L~I-~ lll-Ll~qyt~

Conclusions

6.3 Lessons from the Existing Work

Anyone who has designed something will admit to wishing he had done something
differently at the beginning; this is because design itself is a powerful learning experience. A

lot of insight was gained while designing the navigation electronics. Hopefully these lessons

can be applied if and when a second-generation VCUUV is built. Some of the ideas and
observations collected during the course of this project are presented below.

The first potential improvement to the current navigation electronics might be to design and
build a special precision low-noise analog-to-digital (A-to-D) board specifically to sample
IMU signals, with at least 16 bits of resolution per channel. Electrical noise is a very
troublesome problem throughout the VCUUV; primarily noise generated by the power
converters. This EMI couples to virtually every signal, even shielded lines, and has caused
several mysterious failures. The best form of noise-protection for the IMU signals is to
convert the analog signals to digital data before the information is sent over cables that can
pick up EMI. Thus this special sampling board would have to be mounted very close to the
IMU, right near the connector, and be shielded itself - perhaps in a metal cage that was
connected to the shielded IMU casing. Furthermore, the board would need analog scaling
and filtering circuits as well as the A-to-D converter, so components would have be of very
small size, probably surface mount; building and mounting such a board would present a
number of electrical and mechanical challenges but certainly is not an impossible task.

Such a board would seemingly "waste" seven input channels on the Tattletale's A-to-D
converter, but could potentially improve noise problems by orders of magnitude. A suitable
A-to-D converter would have 8 channels of bipolar inputs, preferably differential (since the
IMU provides differential outputs), that can transmit the digitized data via a serial link. The
serial data can then go to a TPU channel on the Tattletale, which can be programmed to
transmit and read serial information. At the moment, all TPU inputs are being used (for
compass and Smart Motor homing), but detection of the Smart Motor homing sensors can
easily be switched over to the analog A-to-D inputs which have now been freed up.

A 16-bit A-to-D converter is desirable because signal quantization was clearly evident with
the TT8's 12-bit conversions. While quantization never caused any serious problems in the
existing system, a few more bits of resolution would improve signal quality significantly.

A related revision would be to change the gains of the precision IMU scaling circuits (and of
course, software constants to reflect the hardware change). As it is, the circuit scales the
accelerometer and gyro signals so that their full-scale ranges correspond to the full-scale
input of the A-to-D converter, ±2.5V. However, it seems that only a fraction of the IMU's
full-scale ranges will ever be used; for instance, when will the accelerometers ever see a +5g
input? From experimental observations, it appears that the full-scale ranges of the IMU are
a bit extreme, and that we could increase resolution by looking only at a smaller dynamic
range: for instance, ±3.5g of the acceleration channels. More importantly than resolution, we
would gain a much better signal-to-noise ratio (SNR), since the relative scaling of the signals
would be larger compared to the fixed amplitude of the noise. This change would involve
modifying the resistor ratios in the scaling circuits, changing some software constants, and

Conclusions

re-measuring the temperature/bias parameters (as explained in Chapter 4). In the next-
generation vehicle, this is certainly worth consideration.

6.4 Recommendations for the Future Generation VCUUV

If the VCUUV proves successful, it may lead to the design and development of a new
generation of robotic fish which are more maneuverable and efficient than propeller-driven
subs of comparable size. In this case, many improvements can be made on the existing
VCUUV design, particularly in the areas of guidance and navigation.

A main finding of this thesis is that the present inertial system can only track position for a
very short time without external correction. Since the VCUUV is a prototype vehicle and
the first of its kind, an inertial system of this quality may be useful for short-term tasks such
as attitude stabilization, velocity measurement, and direct acceleration and rotation rate
measurements during various maneuvers. It is quite clear, however, that in a future
generation of this vehicle estimation of position will be a much more critical task, and so a
better navigational system must be designed. Below we discuss some possibilities for
improvement.

In general, strapdown IMUs of similar size, weight and cost to the Systron Donner have
similar drift performance, since they are constructed using similar solid-state inertial sensor
technologies. However, a number of 6-DOF IMUs are available with digital outputs, a
feature which has significant advantages over the analog outputs of the Systron Donner. In
the digital IMUs, the gyro and accelerometer signals are already digitzed within an electrically
shielded case, preventing external EMI from corrupting the measurements. This also
eliminates the hassle of designing analog scaling, filtering and sampling circuitry. The inertial
measurements are often delivered from the IMU over a standard interface such as RS-232,
and in some cases they have already been digitally compensated for bias and temperature-
dependent errors within the IMU. More advanced IMUs are designed to plug directly into a
standard GPS receiver for periodic corrections, and can even implement a Kalman filtering
algorithm! Such features eliminate a great deal of design effort and external hardware, but
do not come without cost. A very good IMU made by Boeing, with most of these features,
costs nearly double the price of a Systron Donner 32. In many applications, however, the
price is well worth the savings in time, effort and cost of external components associated
with a custom system.

We still have not solved the drift problem on the VCUUV, since any IMU of this size and
cost range will not be suitable for standalone navigation. There is no getting around the fact that a

future generation VCUUV will need better external navigation aids. The present vehicle has only the
pressure sensor and compass, which can only bound drift of the position estimate in depth
and azimuth respectively. Access to an external correction source such as GPS is vital if
such a system is to navigate correctly for any useful period of time. A possible solution is to
have a small GPS antenna which floats on the surface, attached to the fish through a cable.
This, however, has the disadvantage of a long wire continuously dangling between the fish

32 Other digitally-interfaced IMUs are made by Crossbow and Litton.

___ _~..^~~-- ----X-- ~- __I___. .~~r__~---ri-*-ry---~-~-~-~-- -I r~-~l-l- --nar-rr+lr~-i~-- ^^ y-- - -~--

Conclusions

and the surface of the water. Another possibility is to set up a local system of sonar beacons

in the vicinity where the fish will need to navigate. By calculating the time delays between

synchronized "pings" transmitted by each beacon, the fish can triangulate its position. An

on-board sonar system 33 might also be used by the fish to "map" its environment, and to

measure its own movement by the relative movement of the environment around it. The

bottom line is that if low-quality strapdown inertial systems are used, better methods of

externally correcting the inertial system are necessary.

Sonar in general is a very useful tool for underwater systems, and should definitely find its

place in a future VCUUV. The present vehicle has no means of detecting or avoiding
obstacles, which should be a major concern for any autonomous vehicle! While sonar
environment-mapping would require very sophisticated hardware, obstacle detection is a
much more feasible and essential application of sonar.

The last recommendation, not necessarily related to guidance and navigation, also involves
the use of sonar - for communication. Sonar modems can be purchased which allow digital
information to be modulated as sound and transmitted through the water. Next-generation
VCUUVs would greatly benefit from the ability to communicate with a ground station (or
other robotic fish!) through a wire-free channel.

In conclusion, future robotic fish will need a sophisticated combination of instruments in
order to truly demonstrate intelligent action and autonomy in their underwater environment.
The navigational system described in this thesis may be sufficient for the prototype VCUUV,
but is most instructive in exposing the limitations of standalone inertial navigation using a
small low-cost inertial system. The future breed of robotic fish will certainly need to take
much greater advantage of external navigational aids.

3 Perhaps using a phased-array scanning sonar system, such as those manufactured by the Interphase
Corpotaion.

References

1. Anderson, Jamie M., "Unmanned Undersea Vehicle Model Analysis for Low Speed
Controller Development," Technical Memorandum, Naval Undersea Warfare Center
Division, Newport, Rhode Island, 30 Sept. 1992.

2. Anderson, Jamie M., Kerrebrock, Peter, Triantafyllou, Michael S., "Concept Design of
a Flexible-Hull Unmanned Undersea Vehicle," Draper Lab Document ID# CSDL-P-
3555, April 1997.

3. Cho, Jamie L., "Electronic Subsystems of a Free-Swimming Robotic Fish," Master of
Science Thesis, Massachusetts Institute of Technology, December 1997.

4. Eduardo, Nebot, Salah, Sukkarieh, and Hugh, Durrant-Whyte, "Inertial Navigation
aided with GPS information," Dept. of Mechanical and Mechatronic Engineering,
University of Sydney, Australia, http://mecharea.me.su.oz.au/people/nebot/papers/
m2v_insgps/m2vinsgps.htm.

5. Horowitz, Paul, and Hill, Winfield, "The Art of Electronics," Second Edition,
Cambridge University Press, 1989.

6. Karu, Zoher Z., "Signals and Systems Made Ridiculously Simple," ZiZi Press,
Cambridge, MA, 1995.

7. Lawrence, Anthony A., "Modern Inertial Technology: Navigation, Guidance and
Control," Springer-Verlag, New York, 1993.

8. Mackenzie, Donald, "Inventing Accuracy: A Historical Sociology of Nuclear Missilie
Guidance", The MIT Press, Cambridge, MA, 1990.

9. Oppenheim, A.V., and Schafer, Ronald W., "Discrete-Time Signal Processing,"
Prentice-Hall, Englewood Cliffs, NJ, 1989.

10. Savant, C.J., Howard, R.C., Solloway, C.B., and Savant, C.A., "Principles of Inertial
Navigation," McGraw-Hill, New York, 1961.

11. Siebert, William M., "Circuits, Signals, and Systems," McGraw-Hill, New York, 1986.

12. Strang, Gilbert, "Introduction to Linear Algebra," Wellesley-Cambridge Press,
Wellesley, MA, 1993.

13. Titterton, D.H., and Weston, J.L., "Strapdown Inertial Navigation Technology," Peter
Peregrinus Ltd., London, 1997.

14. Trott, Christian A., "Electronics Design for an Autonomous Helicopter," Bachelor and
Master of Science Thesis, Massachusetts Institute of Technology, June 1997.

l.~i~... ..,_. _.~__rrar~;r~,--r~----- -*- --- --- -^.II-I ^-- CI-LPP Y-I I~ -~ -~_-----L l-l.^_ --~~IIX^r__l ~-311~-~ ~-----YII-~--_^YC~--1111~ I-L1I~I~

Appendix A: Circuit Schematics

A.1 TT8 Surrounding circuitry

Connector to pressure
sensor cable not

shown in this diagram

320 nF

0.5 uF

568 nF

568 nF

568 nF

73 nF

145.3K

Power from
Switching
Converters

VREF ADO
(B20) (B19)

AD1 AD4
(818) (815)

AD2 ADS
(817) (814)Tattletale 8

AD3 AD6
(816) (813)

Appendix A: Circuit Schematics

A.2 Interconnections Diagram

TATTLETALE END

T-
0I-
0

zz
0

C14
cc
0I-
0
wZ
z

00I--0I!Z
Z
0
0

I:

IMU Cable Specs. :
+/-15, Temp 22AWG stranded
3Accel+3Rot 22 AWG single conductor with shield
Power GND 3 wires 22 AWG stranded

5 Pin D-Connector to IM

TT8 Signal Name
(Pin# on 10-8

Extender Board)

TP2(B8)

PCS2(A6

TP1(B9)

TP3(B7)

TP4(B6)

TPO(B10)

TP8(B2)
T

*-

*-

0-

8.

10

- m I

Compass Cable Specs.
12 Conductor 22-AWG
Ribbon, Unshielded

P6(B41 a- I

12-pin Molex connector

= Analog Ground (AGND), = Digital/System Ground

Compass Board

1OK

~i~/I

- L

12-pin Molex connector

5 /P/C
6 /CAL

HI 7 /RES
HI 8 /M/S
HI 9 /BCD/BIN

10 YFLIP
HI 11 /XFLIP
INC 12 CI

15 VCC("HI")
16 GND("LO")
17 /RESET

To avoid excess clutter, some pins are labeled as connected to "HI"
or "LO" (VCC or GND respectively). NC = "Not Connected."

(These grounds are intemally jumpered in the
Tattletale)

IMU END

-b I r t ~ -

NC

PIN NUMBER DESCRIPTION

1 SCLK

2 SDO

EOC
r- 14 /RAW

r... . . I .

10K
a w -- 7 o-.7

~. . . .: Y~ "' " '

L 4-

I 1 I II .

I)C

- Q

,, "]::k

-1 -3 -6*
2 "4 6 *8

17 1 4 p4

Appendix B: Tattletale 8 Documentation and
Troubleshooting

B.1 General Construction

The TT8 is provided along with a choice of two prototyping boards that are necessary to
interface with the TT8. One is the large PR-8 board, and the other is the smaller (credit-card
sized) 10-8 board. For space considerations we have chosen to use the 10-8 board, which is
compactly "piggy-backed" on top of the T'T8 microprocessor board. The 10-8 allows
access to a number of signal lines from the TT8, such as the A-to-D inputs and some of the
TPU digital I/O pins. As we will explain later, the choice of the 10-8 (which does not allow
access to all the TT8's signals, unlike the PR-8) necessitates a "hack" be done on the TT8
board.

The 10-8 consists of header-pins to piggy-back it to the TT8 as well as a blank prototyping
space. This is where we begin to build our interface/signal-conditioning circuitry. As it
turned out, this space was not large enough to contain all the circuitry. The solution was to
add a third piggy-backed board, which was created from a sheet of standard prototyping
board. This third board attaches on top of the 10-8 through two rows of header that pass
all of the TT8 signal lines to the third board.

The TT8 also talks with a host computer through an RS-232 port located on the 10-8 board.
Furthermore, the 10-8 has a number of screw-terminal blocks which can be used to connect
external wires to the assembly (we will use them for connectors).

If all of this circuitry is someday put on a custom PCB, many things may change. It will be
impossible to use the 10-8 prototyping space. The 10-8 and its internal connections (which
are vital to TT8 operation) should be re-created on the custom board, as well as the
navigation circuitry. The custom board can then plug into the TT8 just as the original 10-8
did, through header pins. For maximum versatility, the custom board might instead expand
upon the more flexible PR-8 prototyping board, which attaches to the TT8 through a
"squishybus" interface (see the Tattletale manual for details).

B.2 Power Requirements

The TT8, circuitry and associated sensors all run off of ±15 Volts and ground, which are
supplied from an external source. This supply should be accurate to at least 2% and
relatively noise free.

Power enters the board through a three-pronged Molex connector on the third piggy-backed
board. From here it is routed to the 10-8 through the intermediate power connector, and

~ __~__~~_~__~_~_~~~~~~ ~~_~~~_~_~~________ ~~_~_.~.___~---"L- ̂ I- yinn --~-~----x -~ ~__.__.I_.-^--~-Li__r *ri-----u-i--- XII--L~~--- ~- -I----- ~l~-l~slr

Appendix B: TT8 Documentation

the 10-8 powers the TT8, IMU, etc. At the input to the TT8 assembly, the +15V lines are

filtered with 10uF filter caps.

B.3 Schematic Documentation

This section dissects the schematics provided in Appendix A.

B.3.1 Tattletale

The large box in the center of the schematic represents the Tattletale. The circuitry outside
this box is the added signal conditioning circuitry, which connects to various input and
output pins on the 10-8 board. Remember that all of this circuitry is divided between the
10-8 prototyping space and the space on third piggy-backed board. Note that all
connections to the 10-8 in the schematic are labeled by two identifiers: a signal name (i.e.
VREF or ADO), and a pin number (which refers to the pin number on the 10-8 board).

Note the important exception to this: the AVSS signal at the bottom right of the rectangle in
the schematic drawing has no pin number. This is because on the 10-8 board, we do not
normally have access to the AVSS signal (we would normally need to use the much larger
PR-8 board). In order to save space, we are using the 10-8 board and have "hacked" a
connection directly to the TT8. This goes along with the detailed description of the "A-to-
D hacks" explained below; please refer to that discussion.

B.3.2 General A-to-D Operation

The Tattletale 8 uses the MAX186 12-bit, 8-channel serially-accessed A-to-D converter to
sample analog data. The IMU data we will be reading has two important properties: 1) it is
bipolar, and 2) it has precise scale factors associated with it. We must make sure we are
sensitive to these properties.

Two chips in the schematic are necessary for precision and bipolar A-to-D operation. One
is the LT1021-CCN8-5 in the upper left corner of the schematic. This takes a +15V input
and provides a very accurate +5.00V reference (0.05% accuracy). This precision reference
allows the A-to-D to make accurate conversions. The second is the ICL7660s negative
voltage converter in the bottom center of the schematic, made by Harris. This takes the
regulated 5 Volt supply (generated on the TT8, called "VREG"), and flips its polarity. This
provides the proper negative supply (-5V) for bipolar operation.

With this external circuitry the A-to-D is configured to have its bipolar input range between
+2.5V and - 2.5. These limits correspond to digital values of +2048 and -2048, respectively
(a 12-bit range).

Appendix B: TT8 Documentation

B.3.2.1 A-to-D Modifications

To make use of the precision and bipolar features, several board-level changes are
necessary. To begin with, the Tattletale 8 manual indicates that in order to get bipolar
readings a trace must be cut on the main microcontroller board (see details in Section 7.1
of the manual). Cutting this trace separates the pin called "AVSS" from ground.
AVSS is pin 9 of the MAX186 (a surface-mount chip), and is the negative power input
to the A-to-D converter. Thus after cutting the trace we must supply a -5V source to
AVSS (which is generated by our ICL7660s voltage inverter chip). Unfortunately, with
the 10-8 board we do not have access to the AVSS signal! (Though the PR-8
prototyping board can access AVSS, we do not want to use it because of its much
greater size.) So, we must "hack" a connection to pin 9 of the MAX186 chip. This is
done by carefully soldering a wire to the pin (it is tiny!), checking the connection under a
magnifier, and then creating a strain-relief to keep the delicate connection from
breaking (either epoxy or some other method is necessary). The other end of the wire
is then connected to a single pin connection which can plug into the ICL7660s's -5V
output.

The second hack is necessary in order to supply a precise reference to the A-to-D

converter. The converter comes with an internal precision reference of ± 2.048 volts,
but this turns out to be an inconvenient value. Thus we provide a +5.00 precision
reference with our LT1021 chip, to the signal VREF (pin B20 on the 10-8) board. In
order to use this reference, however, we must tie the pin on the MAX186 called
"REFADJ" to Vdd (5 Volts). And once again, we don't have access to REFADJ on
the 10-8 board. So this is done through another careful hack directly on the Tattletale
board: pin 20 of the MAX186 chip (Vdd) must be connected to pin 12 of the
MAX186 (REFADJ). This hack is similar to the AVSS one, but this time there is no
wire hanging off of the board; the hack is internal to the TT8.

These hacks are illustrated below:

Note that these hacks are
o being done on a surface

mount board with many fine
Attach connector to
wire and connect to traces and pins, and mistakes

-5Vsource - - may cause the Tattletale to be

A MAX186 ruined.

For clarification of these
V 9 12 REFADJ hacks, study the Tattletale 8

manual: Chapter 7, and the
MAX186 datasheet in the

cut this
cutthis appendix.connection

T_

Appendix B: TT8 Documentation

B.3.3 IMU Circuit

The interface to the IMU is through two connectors on either side of the schematic in A.1.

IMU Connector 1 brings ±15V power and ground to the IMU, and brings the x, y, and z

linear acceleration signals back to the 10-8. IMU Connector 2 brings the three angular-

rotation signals and the IMU temperature signal back to the 10-8.

These are the seven raw signals from the IMU. The three linear acceleration signals on the

left pass through op-amp circuits that scale them by a factor of -1/3, and filter them with a

single pole at about 25 Hz. The three rate signals on the right go through op-amp circuits
that scale them by a factor of -1 and also filter them with one pole at 25 Hz. Finally, the
temperature signal, which is a current-signal, is buffered, filtered (1 pole at 12 Hz), and
converted to a voltage signal by the op-amp at the bottom right.

A note about scale factors: While 1% resistors are used, scale factors in the op-amp circuits will
necessarily have some error. Thus after constructing these circuits, it is wise to precisely
measure the gains of each op-amp circuit, and to make calculations in software so as to correct
for gain errors. This technique was used whenever possible.

The seven op-amps used are from two LT1114 quads. (The spare op-amp is used in the
Pressure Circuit; see below.) After this signal conditioning, the seven IMU signals are passed
to seven A-to-D inputs on the 10-8 board (AD1-AD7).

There is an additional issue with grounding. The IMU has a number of ground returns: the
power ground, case ground, and then six individual signal grounds. The reason for separate
signal grounds is that there is current that returns through the power ground line. The IMU
draws about 250 mA from the +15V supply, but only sinks 190 mA into the -15V line; thus
the difference of 60 mA returns to the power supply through the ground line. This causes
an "IxR" offset in the ground line, especially if it is a long wire. In order to prevent this
offset from adding to signal bias, each signal is provided with its own ground. These
grounds are all connected to power ground internally at the IMU; however, the extra grounds
are provided so that the circuitry can make a differential measurement, so that this 60 mA
will not return partially in each of the 6 lines and cause an IxR offset. Due to complexity of
making so many differential measurements, we have not taken advantage of the separate
grounds. Given the shortness of the cable (about 8 inches), and the fact that a well-
conducting ground wire is being used, the IxR bias should be insignificant; thus we have
simply considered the voltage drop across the power ground wire to be zero. The case is
also grounded to suppress noise around the IMU.

B.3.4 Pressure Sensor Circuit

The pressure sensor used is a Model 93-015S (sealed-gauge) sensor made by EG&G IC
Sensors. It measures pressure with respect to one atmosphere. There is usually a bias, since the
internal one-atmosphere reference has some error to it; this can be accounted for in
software. The maximum pressure reading guaranteed accurate is 15 p.s.i., but it can safely go
to about 45 p.s.i.

Appendix B: TT8 Documentation

The circuit occupies the upper part of the schematic. The sensor itself is in the gray box,
and it consists of a pressure-sensitive Wheatstone bridge. Our circuit uses five op-amps:
four from an LT1114 quad, and one 1/4LT1114 left-over from the IMU circuit.

The leftmost op-amp is used as a current-sink. The pressure sensor requires a that a precise
0.996 mA current be drawn through it. Thus, one end of the sensor (pin 6) is connected to
+15V (through a 5K resistor which is necessary to establish the correct output level), and
the other end (pin 7) is connected to the drain of a MOSFET. Through feedback, the op-

amp drives the MOSFET to precisely draw + 5.00V = 0.996 mA.
50209

The outputs of the sensor are differential, and come from pins 1 and 5. These are passed to
a pair of op-amps which calibrate the values with respect to an internal reference resistor
(pins 4 and 8). The last two op-amps do level-shifting, scaling and filtering (again one pole
at 25 Hz). The final output is passed to an A-to-D input (ADO), and has the following
characteristics:

* Zero-pressure (w.r.t. 1 atmosphere) output, assuming zero bias: +2.5V
* 45 p.s.i. pressure output, assuming linearity and no bias: -2.5V

This corresponds to the full range (+2048 to -2048) of our 12-bit A-to-D converter. 15
p.s.i., which corresponds to 33.75 feet of water, falls at +0.8333V (digital value of +683).
Thus our A-to-D has a full range of 0-45 p.s.i. in this circuit - if the pressure sensor were
linear above 15 p.s.i. (which it is not guaranteed; but it is guaranteed not to break up to 45
p.s.i.) Note the assumption of zero-bias; in reality, the zero-pressure output was a bit less
that +2.5V, since the one-atmosphere reference in the sensor was a bit low (this also varies
day-to-day). This can be corrected for in software. (However, that if we were working at
higher altitudes, with lower atmospheric pressures, this circuit might have to be redesigned
since the A-to-D might saturate at +2048 at the surface...)

B.3.5 Electronic Compass

The compass used is the V2XG, manufactured by Vector. It is powered from VREG (+5)
from the Tattletale. The compass requires no signal-conditioning; it is a purely digital
instrument. It is up to software to actuate digital signals in the appropriate manner to
recover data from the compass. See the Vector manual for timing details.

B.4 Programming the TT8

Programs for the TT8 are written in C and compiled into Tattletale object files (.RHX and
.AHX) using the Aztec C compiler. A "makefile" is used to compile and link the files
correctly.

~.. .._ . ---- -I..~,-~,~Y~_~-_~.~~.I~s_.__~-lli-Y11111 ~-* IIIIL- II~-.--LI~.~-~_1._ - -. .--II~.) C~ .i- I~-~P -~-*--~~~l~--r~- I~^L~-I*ls~llYP/s~. I-~IPI~I~*rYI~YL- I

Appendix B: TT8 Documentation

Programs can be loaded into the TT8 in either .RHX or .AHX format. .RHX files are

loaded in Tattletale RAM, and are lost from memory as soon as the TT8 is powered down.

.AHX are intended to be finalized programs that boot up automatically every powerup, and
are stored in flash memory. Flash memory can be reprogrammed many times over.

Programs are loaded into the TT8 from a host computer running the Crosscut terminal

program. The TT8 must be plugged into the computer's serial port, and 'crosscut' must be

run. Then when the TT8 is powered and the gray switch on the piggy-back board is up, the
<TOM> monitor interface34 should appear in the Crosscut window. When using Crosscut,
make sure the switch is up before powering up the 7Tg (you will see a red LED light up on the TT8)!
This bypasses any stored program on powerup and jumps to the <TOM> monitor program
stored in TT8 ROM. Once the <TOM> monitor is running, you can use Crosscut to
download .RHX and .AHX files to the TT8. Once a .AHX file is loaded, power down the
TT8 and push the gray switch down to allow the flash program to automatically run on the next TT8
powerup.

The source code for the latest version of the Tattletale
<c:/tt8/mohan/final/pitr.c>. To compile and link this file, go
'make.'

software is located in
to the directory and type

B.5 Parts List

Part Number Part Description Quantity Unit Cost

Tattletale Model 8 Data Logger/Controller 1 $500.00

LT1114ACN Quad Precision Op Amp, DIP 3 $12.75

LT1021 CCN8-5 5V Precision Reference, DIP 1 $6.38

ICL7660s (Harris) Voltage Inverter, DIP 1 $1.95

BS170 (National) MOSFET, TO-92 1 $1.00

+ Handful of Resistors (1%), Capacitors, LEDs.

Sensor Type Function Vendor Approx. Cost
IMU MotionPak Inertial Guidance Systron Donner $13,800

Pressure Sensor Model 93-015S Depth EG&G IC $100
Sensors

Compass V2XG Heading Vector $100

34 The <TOM> monitor is a mini-operating system that the Tattletale runs when it is powered up with the gray
switch in the up position. The monitor is necessary to load new programs into the TT8's RAM or flash
memory..

Appendix C: Code Listing

C.1 Tattletale Code

The following code is written in C, and is burned into the flash memory on the TT8 so as to
automatically boot on powerup. The TT8 code includes three separate C programs and two
custom headers:

* C-files: pitr.c (main file which #includes the others), motors.c, compass.c

* Headers: bias.h, coeffs.h

PITR.C

/*** A2D sampling using the Periodic Interrupt Timer (PIT)
and the QSPI ***/ /*** Mohan Gurunathan Last Edit: 5/1/98

5 March 1998
11 March 1998
20 March 1998 ***/

/*** 100 Hz Version ***/

/***** What is going on in this program:

EXTAL is 40 kHz. The PIT is clocked at this rate.
PTP is the periodic timer prescaler value, which either
multiplies the PITR period by 512 (if MODCLK=0) or by
1 (if MODCLK=1).
Interrupt frequency is calculated as follows:

PIT Frequency = XTAL Freq. /(PITM * PTPvalue * 4)

In this program we will make PTP 1 by setting MODCLK to 1.
We will write the value 100 into the PITM(Per.Interr.Timer
Modulus.) this gives a freq of 100 Hz (=40K /4 /100).
The interrupt priority and vectoring are set in the
the values PIRQL and PIV in the PICR control register.
We will leave PIRQL at 1, where it is initialized.
We will leave the exception vector number
as previously defined (vector 80), PIT_INT_VECTOR.

Note: PITINTREQLEVEL is previously defined as 1.

Data filtering also occurs as follows:

*** data filtering program uses 3rd-order Chebyshev Type II;

*** difference equation is implemented as
follows:

Ay*y[n] + By*y[n-l] + Cy*y[n-2] + Dy*y[n-3] =
Ax*x[n] + Bx*x[n-l] + Cx*x[n-2] + Dx*x[n-3]

where Ai,Bi,Ci, and Di are the difference equation
coefficients for i=x and i=y, and Ay
is assumed to be 1 [after normalization].

#include <stdio.h>
#include <stdlib.h>

#include <tt8libnew.h>
#include <qsm332.h>

~__~ ___ ~ _~l^l~_^_~r~~ _~I~_ ~I^_~I_~ -L~---^-l.^ ._^.. ~_ ~_~1. _~-^ --rr~---_~rl-_~.__ ... ~-_u-m~-~---nxr~-~-;ur-i~+- r~----- --~-^urrwlh--- 1C-~I

Appendix C: Code Listing

#include <sim332.h>
#include <tpu332.h>
#include <math.h>

/*** Coefficients for data filtering: 3rd order ChebyII filter***/
#include "coeffs.h"
#include "bias.h" /*** Temperature-bias compensation for the IMU ***/

/***** Definitions to make code more readable ******/
#define CXND (current_x node->data)
#define CYND (current_y_node->data)
#define CXNRD (currentx_node->right->data)
#define CYNRD (currenty_node->right->data)
#define CXNLD (current_x_node->left->data)
#define CYNLD (current_y_node->left->data)
#define CXNRRD (current_x_node->right->right->data)
#define CYNRRD (current_y_node->right->right->data)

/***** Collision flags ***************/
also... ***/
#define XCOLL 1
#define YCOLL 2
#define ZCOLL 3
#define NO COLLISION 4

/** these should appear in QNX code

/***** QNX based definitions (for QNX sending packets)*****/ /** these should appear in
QNX code also... ***/
#define QNX_PACKETSIZE 7 /** in bytes (uchars)... ***/
#define MOTOR DO NOTHING 30000 /*** long (2-byte) word: appropriate string is "uO" ***/
#define QNX_PACKET_HEADER 'q'
#define RESET COMPASS 'h'
#define COMPASS CALPULSE 'a'
#define STARTNAV 'r'
#define STOP NAV 'w'
#define TT8_PACKET_HEADER1 'p'
/***#define TT8_PACKETHEADER2 ((uchar)15)***/
#define TT8 PING 'n'
#define TT8_PACKET_SIZE 42 /** includes CHECKSUM, but not header ***/
#define TT8_HOME_YOUR_FINS 'g'
/**#define TT8_SET_COLLISION_FLAG 'c'***/ /*** to be implemented later **/

/***Compass definitions ****/
/*** TPU Pin Assignments ****/
#define V2XG RESET 2
#define V2XG EOC 1
#define V2XG SS 3
#define V2XG CAL 4
#define V2XG PC 0
#define V2XG SDO 8
#define V2XG SCLK 6
#define HIGH 1
#define LO 0
#define NO COMPASS DATA 999

/***Motor Definitions ******/
#define MOTOR CHANTx 13
#define MOTOR CHAN Rx 14
#define MOTOR BAUD 38400
#define QSIZE 1024
#define MAXCOMMANDLENGTH 20
#define RIGHTFINHOME 7
#define LEFTFINHOME 5
#define BAUD_RATE 111000

/*** TPU CHANNEL ***/
/*** TPU CHANNEL ***/

/*** for talking to QNX: actual is
115.2Kbaud but the closest TT8 can
come is 111.1KBaud
(3.5% error is tolerable***/

/**** QNX packet structure: one type of packet; 7 bytes (THIS STRUCTURE IS NOT USED)
*****/

struct QNX_packet {
uchar QNX_header;
uchar reset_or_cal_compass;
uchar nav_start_stop_or_ping;
uchar left_motor_MSByte;
uchar left motor_LSByte;
uchar right_motor_MSByte;

Appendix C: Code Listing

uchar right_motor_LSByte;

typedef struct QNX_packet QNX_packet;

/***** Packet structure for TT8
checksum) ******/
struct packet {
ulong samplenum;
double xval;
double yval;
double zval;
double xrot;
double yrot;
double zrot;
double temp;
double depth;
long compass;
short flagl;
short collflag;

typedef struct packet packet;

Data: one type of packet; 40 bytes (without header and

typedef struct loop {
packet data;
struct loop *right;
struct loop *left;

};
typedef struct loop NODE;
typedef NODE *NODEPTR;

/*** Function prototypes: ***/
int setup_system(void); /***** Set CPU freq and Baud rate ****/
void inthandler(void); /***** 100 Hz periodic interrupts for sampling ***/
double twos_comp(short); /***** Twos complement function ****/
int spi_setup(void); /***** Set-up the QSPI Serial interface (A2Ds) ****/
void create_loops(void); /***** Set-up IIR filtering structure ****/
void initloops (NODEPTR, NODEPTR); /***** Erase all IIR filter values ****/
void computefilter (void); /***** Update the output of digital filter ****/
void transmitpackettoPC104(void); /***** Sends the current_y_node packet to QNX
****/

uchar* listen to PC104(void); /***** Listen for commands from QNX on serial
line ****/

void TT8_comminit(void); /**** Setup TT8 to communicate with PC104 ****/
void execute_PC104_command(void); /***** get PC104 command; decode it; execute it
****/

void move_motors(long, long); /***** set motor position after getting PC104
command ****/

/**Compass***/
/*** Motors ****/

/*** Global var.s ****/
/*register*/ NODEPTR basenodex, basenodey, current_xnode, current_y_node;
/*register*/ ulong calls=l;
ulong oldcalls = 0;
ushort toggle = 0;
ushort oldclk=0;
ushort compass_flag = 0;
long compass_reading=NO_COMPASS_DATA;
long collision_threshold = 700;

uchar motor_init[] =
"Z\nZ\nZ
\n-OSADDRDDR2\n-2ECHO\n-lWAKE\n-E=9000\n-0AMPS=KL=2\1SL EKL=22\nF\n
-0BAUD38400\n";

uchar QNX_receive[QNX_PACKET_SIZE];

/*** put an error flag here... ***/

#include "motors.c"
#include "compass.c"

II.-_-.lr---- ILIII _Il__ _I~.-~. -il~I~C sll~ CII~- -- lll-----LL-S------I~ ~^-PI I~IIIU~- --~L~~_.._ _.__ 1-. -_li .~i_-illll-ll^li~-.--*~.I~

Appendix C: Code Listing

/*************************************

/************************** MAIN ************ **********/

/**************************************

int main(void)

ushort n = 1;
char conv[8] = (0,4,1,5,2,6,3,7);
static ExcCFrame framebuf; /** frame pointer for the handler routine

to find its way back to the function
***/

InitTT8(NO_WATCHDOG, TT8_TPU);
setupsystem(); /*** CPU rate, baud rates, etc. ***/

create_loops(); /*** IIR filtering structure creation **/
initloops(currentxnode, currenty_node);
TT8_comm-init();

/*************** create interrupt handler routine: *****************/
InstallHandler(inthandler, PIT_INT_VECTOR, &framebuf);

DelayMilliSecs (100); /*** Wait for motors to be powered up ***/

/***** init motors and home ****/
if (!init_motors())

{ /** printf ("Motor init failed\n");**/
/**exit(l); /*** Error initializing the motors ***/
while(l) {PutStr ("Motor init failed... \n");}

if (motors_are_there() /** checks if motors are connected ***/{
/**homefin(2);

home_fin(l);
home_fin(2);
home_fin(l);
offset_home); **/} /*** removed automatic home: 5/1/98 ***/

/*** init compass (reset it; it still needs to be calibrated) ***/

init_compass(); /*** we should see the green LED go on now: ***/

/**other possible interrupts? -- emergency shutdown/memory cleanup;
restart/reset/recalibrate; PECTORAL FIN CONTROLLERS ***/

/***** set up the QSPI queue: ****/
spisetup();

/******** Idle Housekeeping Loop Begins here: *******/

while (1)

compass_process();
execute_PC104_command();

return(0); /*** never should get to this point... ***/

/**** end of main *****/

void inthandler(void)

short temp;

/*** interrupt handler ****/

Appendix C: Code Listing

ulong t;
short i;

current x node = current_x_node->left; /*** Advance IIR filter pointers **/
current_y_node = current_y_node->left;

/*** get A2D READINGS: ***/

SPCRl->SPE = 1; /* start the read */
while (_SPSR->SPIF != 1);

/***** PERFORM THE SAMPLING USING QSPI ****/
CXND.temp = twos_comp((short)(((SPIRCV[0]) <<1) >> 4));
CXND.xval = twos_comp((short) (((SPIRCV[2]) <<1) >> 4));
CXND.yval = twoscomp((short) (((SPIRCV[3]) <<1) >> 4));
CXND.zval = twos_comp((short) (((SPIRCV[4]) <<1) >> 4));
CXND.xrot = twos_comp((short) (((SPIRCV[53) <<1) >> 4));
CXND.yrot = twos_comp((short) (((SPIRCV[6]) <<1) >> 4));
CXND.zrot = twoscomp((short) (((SPIRCV[7]) <<1) >> 4));
CXND.depth = twos_comp((short)(((SPIRCV[1]) <<1) >>4));

compute_filter(); /**** DIGITALLY FILTER THE DATA ****/

/************ COLLISION DETECTION ************
/**** We do this here because after filtering, a collision
value may be swallowed by the filter *****/

if ((CXND.xval > collision_threshold) II (CXND.xval < (-collision_threshold)))
{
CYND.collflag = XCOLL;
CYNLD.collflag = XCOLL;

}
else if ((CXND.yval > collision_threshold) II (CXND.yval < (-collision_threshold)))

CYND.collflag YCOLL;
CYNLD.collflag = YCOLL;

else if ((CXND.zval > collision_threshold+100) II (CXND.zval < -
(collision_threshold+100)))

CYND.collflag ZCOLL;
CYNLD.collflag = ZCOLL;

/*** ONCE A COLLISION IS DETECTED, THE COLLISION FLAG IS
PERMANENTLY SET TO A VALUE LESS THAN 4, UNTIL THE TT8 IS REBOOTED;
4 means "NOCOLLISION". WE MIGHT WANT TO CHANGE THIS LATER SO
THE COLLISION FLAG RESETS TO "NOCOLLISION" AFTER BROADCASTING
"XCOLL," "YCOLL," OR "ZCOLL" FOR SOME TIME. ***/

if (toggle == 1) /*** Every other call to handler, Xmit data ***/

{
/***************** TRANSMIT DATA: *******************/

CYND.samplenum = calls; /** only even numbers sent, thus we can
send an unambiguous packet header ***/

/***** now transmit the packet CYND: *****/

transmit_packettoPC104();

toggle = 0;
} /** end of "if toggle" ***/

else toggle = 1;

calls++; /** Update # of calls to handler **/

_SPSR->SPIF = 0; /*** clear finished flag ***/

----u u..xll.---~_.-.r~_-r.I-*-^il-~------~-n- ~*l ~ l~---r^---^-~___.^_.. --- -i-r~r _-;-x.^-- ~^-ir.*l~-i n~ I*-re~u ----LLII -I*IX ~- YL~Y)I~--C--I -*L(~

Appendix C: Code Listing

double twos_comp(short num)

double ans;
if (num >= 2048)

(ans = num - 4096;)
else ans = num;
return (ans);

int setup_system(void)
{

/** two's complement correction **/

/** SET cpu FREQUENCY and serial baud rate:***/
SimSetFSys (32000000);
SerSetBaud (BAUD_RATE, 32000000); /*** 115200... ***/
DelayMilliSecs (100); /**** Just in case system needs to settle ***/

int spi_setup(void)

ushort index;

Maxl86PowerUp();
Maxl86Setup(pdExtClk,

*SPCRO = 8
(0 << 10)
M MSTR &
M_WOMQ &
M_CPOL &
M_CPHA &

*SPCR2 = 0;
*SPCR2 = 7 << 8

M_SPIFIE & CLR
MWREN & CLR
M_WRTO & CLR;

extComp);

SET
CLR
CLR
CLR

/*8 = 1 MHz 4 = 2 MHz */ // baud rate (2 is max)
// bits per transfer (0 = 16)
// 1 = Master, 0 = Slave
// 1 = open drain, 0 = cmos
// 1 = inactive SCK high
// 1 = chg iding edge, capt folng

/** clear register; NEWQP is at $0***/
/*** 8 channels on the queue ***/

/** disable finished interrupts **/
/** no wrap around ***/
/** no wrapping to ***/

*SPCR3 = MLOOPQ & CLR M_HMIE & CLR MHALT & CLR;

*SPCR1 = 0 | 16 << 8 1 M_SPE & CLR; /** check the delays here later **/

_SPSR->SPIF = 0;

/** set up the QSPI command and transmit RAM: ***/

SPIXMT[O]
SPIXMT[1]
SPIXMT[2]
SPIXMT[3]
SPIXMT[4]
SPIXMT[5]
SPIXMT[6]
SPIXMT[7]

= 0x87;
= OxC7;
= 0x97;
= OxD7;
= OxA7;
= OxE7;
= OxB7;
= OxF7;

/*** later add pressure sensor(done) and compass ***/

for (index = 0; index < 8; index++){
SPICMD[index] =

M BITSE & SET
M_DT & CLR
M_DSCK & SET;

M_CONT & CLR /** SET***/

/**** Set up Periodic Interrupt Timer (PITR) *****/
_PICR->PIV = PIT_INT_VECTOR; /*** defaulted to 80 ***/
_PICR->PIRQL = PIT_INT_REQ_LEVEL; /*** defaulted to 1, i think ***/}

Appendix C: Code Listing

void initloops (NODEPTR x_node, NODEPTR y_node)

packet clean ={0,0,0,0,0,0,0,0,0,0, 123, NO_COLLISION};
/**** 123 is just a dummy value for flagl... ***/
x_node->data = clean;
x_node->right->data = clean;
x_node->left->data = clean;
x_node->right->right->data = clean;
ynode->data = clean;
y_node->right->data = clean;
y_node->left->data = clean;
y_node->right->right->data = clean;

void create_loops(void)

basenodex = malloc(sizeof(NODE));
current x node = basenodex;
basenodex->right = malloc(sizeof(NODE));
basenodex->left = malloc(sizeof(NODE));
basenodex->right->right = malloc(sizeof(NODE));
basenodex->left->left = basenodex->right->right;
basenodex->left->right = basenodex;
basenodex->right->left = basenodex;
basenodex->right->right->right = basenodex->left;
basenodex->right->right->left = basenodex->right;

basenodey = malloc(sizeof(NODE));
current_y_node = basenodey;
basenodey->right = malloc(sizeof(NODE));
basenodey->left = malloc(sizeof(NODE));
basenodey->right->right = malloc(sizeof(NODE));
basenodey->left->left = basenodey->right->right;
basenodey->left->right = basenodey;
basenodey->right->left = basenodey;
basenodey->right->right->right = basenodey->left;
basenodey->right->right->left = basenodey->right;

void compute_filter(void)

/*** This computation is done all using global variables... ***/

CYND.temp = Ax*(CXND.temp) + Bx*(CXNRD.temp) + Cx*(CXNRRD.temp) + Dx*(CXNLD.temp) -
By*(CYNRD.temp) - Cy*(CYNRRD.temp) - Dy*(CYNLD.temp);
CYND.xval = Ax*(CXND.xval) + Bx*(CXNRD.xval) + Cx*(CXNRRD.xval) + Dx*(CXNLD.xval) -

By*(CYNRD.xval) - Cy*(CYNRRD.xval) - Dy*(CYNLD.xval);
CYND.yval = Ax*(CXND.yval) + Bx*(CXNRD.yval) + Cx*(CXNRRD.yval) + Dx*(CXNLD.yval) -

By*(CYNRD.yval) - Cy*(CYNRRD.yval) - Dy*(CYNLD.yval);
CYND.zval = Ax*(CXND.zval) + Bx*(CXNRD.zval) + Cx*(CXNRRD.zval) + Dx*(CXNLD.zval) -

By*(CYNRD.zval) - Cy*(CYNRRD.zval) - Dy*(CYNLD.zval);
CYND.xrot = Ax*(CXND.xrot) + Bx*(CXNRD.xrot) + Cx*(CXNRRD.xrot) + Dx*(CXNLD.xrot) -

By*(CYNRD.xrot) - Cy*(CYNRRD.xrot) - Dy*(CYNLD.xrot);
CYND.yrot = Ax*(CXND.yrot) + Bx*(CXNRD.yrot) + Cx*(CXNRRD.yrot) + Dx*(CXNLD.yrot) -

By*(CYNRD.yrot) - Cy*(CYNRRD.yrot) - Dy*(CYNLD.yrot);
CYND.zrot = Ax*(CXND.zrot) + Bx*(CXNRD.zrot) + Cx*(CXNRRD.zrot) + Dx*(CXNLD.zrot) -

By*(CYNRD.zrot) - Cy*(CYNRRD.zrot) - Dy*(CYNLD.zrot);
CYND.depth = Ax*(CXND.depth) + Bx*(CXNRD.depth) + Cx*(CXNRRD.depth) + Dx*(CXNLD.depth) -

By*(CYNRD.depth) - Cy*(CYNRRD.depth) - Dy*(CYNLD.depth);

/**** see if compass data is ready... ******/
if (compass_flag == 12)

{
CYND.compass = compass_reading; /*** Put compass data in packet ***/
compass_flag = 0; /*** Go to start of compass_process ***/

}

9~_ I X_ _II_-~~-C -~XI~ILII---X.I. -. ^i-ll- - ~- -1~-^.---- , - M~ll~--II-. l^1.~I 1-~-C

Appendix C: Code Listing

else CYND.compass = NO_COMPASS_DATA; /** No compass data ready; insert dummy
value **/

/**** Remember: collflag value is set AND LOCKED in handler if collision occurs ****/

/**** flagl as of yet has no meaning: reserved for TT8 status message ***/
/**** Compass data arrives about one-tenth the rate packet transmission:
(compass data at about 5 Hz); and is sent about once every 10 transmissions.
Otherwise the dummy value NOCOMPASS_DATA is sent. ***/
/**** remember to subtract biases here, or on QNX side.... ****/

/******* Communications functions for the TT8<--->PC104 ******/

void transmitpacketto_PC104(void)

uchar* char_ptr;
uchar send_string[TT8_PACKET_SIZE];
short i;
float dummy_float;
double tt = CYND.temp;
long cksum = 0; /*** 4 byte value, we only use first two bytes ***/

/*** Data in packet is 40 bytes, + 1 byte sent as a header byte,
+ 2 bytes sent as a checksum, which is a long value that is the
sum of the IMU data fields (which are the most likely to be corrupted) ***/
/*** Note QNX stores floats and longs in "Big Indian" format, so we
must byte-reverse the TT8 values ****/
/*** for the Digitally filtered values, we convert the doubles
to floats so they can be sent in 4 bytes ***/
/** WE ALSO TEMPERATURE COMPENSATE THE VALUES HERE, though

some fine-tuning of gyro compensation is also done on the
QNX side ***/

char_ptr = (uchar*) (&(CYND.samplenum));
send_string[0] = charptr[3];
send_string[l] = char-ptr[2];
sendstring[2] = char_ptr[l];
send_string[3] = char_ptr[0];
cksum += (char_ptr[3]+char_ptr[2]+char_ptr[l]+char_ptr[0]);
dummyfloat = (float) (CYND.xval - MX*tt - BBx);
char_ptr = (uchar*) (&dummy_float);
send_string(4] = charptr[3];
send_string[51 = charptr[2];
send_string[61 = char ptr[l];
send_string[7] = char_ptr[0];
cksum += (charptr[3]+charptr[2]+char-ptr[l]+char-ptr[0l);
dummyfloat = (float)(CYND.yval - My*tt - BBy);
/***char_ptr = (uchar*) (&dummy_float);***/
send_string[8] = char_ptr[3];
send_string[9] = char_ptr[2];
send_string[10] = char_ptr[l];
send_string[ll] = char_ptr[0];
cksum += (char_ptr[3]+char_ptr[2]+charptr[l]+charptr[0]);
dummyfloat = (float) (CYND.zval - Mz*tt - BBz);
/***charptr = (uchar*) (&dummy_float);***/
send string[12] = charptr[3];
sendstring[131 = char_ptr[2];
sendstring[14] = charptr[l];
send string[15] = charptr[0];
cksum += (char_ptr[3]+char_ptr[2]+char_ptr[l]+char_ptr[0]);
dummy_float = (float)(CYND.xrot - Mxr*tt - BBxr);
/***char_ptr = (uchar*) (&dummy_float);***/
sendstring[16] = charptr[3];
send_string[17] = char_ptr[2];
send_string[18] = char_ptr[l];
send_string[19] = char_ptr[0];
cksum += (char_ptr[3]+char_ptr[2]+char_ptr[l]+char_ptr[O]);
dummy_float = (float)(CYND.yrot - Myr*tt - BByr);
/***char-ptr = (uchar*)(&dummy_float);***/
send_string[20] = char_ptr[3];
send_string[21] = char_ptr[2];
send string[22] = char_ptr[l];
send_string[23] = charptr[0];
cksum += (charptr[3]+char_ptr[2]+char_ptr[l]+char_ptr[0]);
dummy_float = (float)(CYND.zrot - Mzr*tt - BBzr);

Appendix C: Code Listing

/***charptr = (uchar*) (&dummy_float);***/
send_string[24) = char_ptr[3];
send_string[25] = char_ptr[2];
send_string[26] = char_ptr[l];
send_string[27] = char_ptr[0];
cksum += (char_ptr[3]+char_ptr[2]+char_ptr[l]+char_ptr[0]);
dummyfloat = (float)(CYND.temp);
/***char_ptr = (uchar*) (&dummy_float);***/
send_string[28] = char_ptr[3];
send_string[29] = char_ptr[2];
send_string[30] = char_ptr[l];
send_string[31] = char_ptr[0];
dummyfloat = (float)(CYND.depth);
/***char_ptr = (uchar*)(&dummy_float);***/
send_string[32] = char_ptr[3];
send_string[33] = char_ptr[2];
send_string[34] = char_ptr[l];
send_string[35] = charptr[0];
/**** ONLY 2 bytes for compass: ****/
send_string[36] = CYND.compass>>8;
send_string[37] = CYND.compass%256;
/**** One-byte shorts ****/
send_string[38] = CYND.flagl;
send_string[39] = CYND.collflag;
/*** CHECKSUM: 2 bytes ***/
char_ptr = (uchar*)(&cksum);
sendstring[40] = char_ptr[3];
sendstring[41] = char_ptr[2];

SerPutByte (TT8_PACKET_HEADERl);
for (i=0O; i<TT8_PACKET_SIZE; i++)
{

SerPutByte (send_string[i]);
/*** eventually use PutStr; this is slow ***/

}

uchar* listen to PC104(void)
{

short i;

if (!SerByteAvail()) {return(NULL);}
/***else printf ("Getting data...\n");***/

QNX_receive[O0] = SerGetByte();
if (QNX_receiveO0] != QNX PACKET_HEADER) /*** look for header**/

{ return (NULL); I /** if header is not there**/
for (i=l; i<QNX_PACKET_SIZE; i++)
{
QNX_receive[i] = SerGetByte(); /** add timeout **/

return (QNX_receive);

/***** QNX packet format: 7 bytes
Byte 0: HEADER Byte 'q'
Byte 1: Reset Compass or Pulse Cal low on Compass
Byte 2: Start NAV or Stop NAV, home fins, or TT8 ping;
Byte 3-4: Left Motor Most Sig BYTE, LS BYTE
Byte 5-6: Right Motor MSByte, LSByte

WE SHOULD ADD MORE OPTIONS TO FIRST FEW BYTES, AND
WE SHOULD LEAVE BYTES 3-6 FOR GENERAL DATA USAGE SO PC104 CAN
SET VARIOUS VALUES ON THE TT8: For instance,
1) Collision detection thresholds: Right now they are set for
1.75 G's in any direction (A2D value of +/- 700)

MUCH more functionality can be made out of the first three bytes,
if desired. The last 4 MUST be reserved for motor use.

****/

1 _...-. -----~-.~LI- ~------YII lr-r-+ ------ ~---- --*^1-~~--- -r~-^--- ----r-;r --I r~r--~-- lax^-~-- ---~III~---I-LI-~X-L~_

Appendix C: Code Listing

void TT8 comm init(void)

ptr buffer;

buffer = malloc(2048*sizeof(uchar));

SerSetInBuf(buffer, (long)(sizeof(buffer)));
DelayMilliSecs(10);
SerInFlush();
/**** set baud rate *****/
/**** What else? *****/

void execute_PC104_command(void)

uchar* dat;
long left_motor, right_motor;

dat = listen_toPC104();
if (dat == NULL) return(); /*** NO PC104 command waiting ****/

/**** remember: static arrays are free'd at the end of function! ****/
if (dat[l] == RESET_COMPASS)

/**printf ("Compass being reset... \n");**/
init_compass();

if (dat[l] == COMPASS_CAL_PULSE)

compass_cal_pulse();
/**printf ("Cal Pulse sent to compass...\n");**/

if (dat[2] == TT8_PING)

PutStr("TT8 is alive and bitchin'\n"); /*** add various status messages ***/
if (!motors_are_there())

PutStr("Please connect the Smart motors and Reset the TT8\n");

else
PutStr("TT8 is hungry for some action\n");

/*** read motor positions... ***/

if (dat[2] == TT8_HOME_YOUR_FINS)
{ /*** Only home the fins if we are not sampling... ***/

if (*PITR != 0x064)

if (motors are there())

homefin(2);
home_fin(l);
offset_home();

if (dat[2] == START_NAV)

*PITR = 0x064; /*MODCLK=0O, 0x13 = 19 in decimal,
thus freq. is 40000/(512*19) = 1.02Hz
0x014 = 500Hz, 0x113 = 1.02Hz
0x064 = 100Hz *//**** start interrupt handler... ****/

}
if (dat[2] == STOP_NAV)

*PITR = 0; /*** stop sampling ****/
exit(l); /*** COMPLETELY restart the Tattletale:

init motors, reset compass, etc... ***/

left_motor = ((int)(dat[3]))*256 + ((int)(dat[4]));
right motor = ((int)(dat[5]))*256 + (int)(dat[6]);

move motors(left_motor, right_motor);

Appendix C: Code Listing

/**** can't do this until motors are initialized! *****/

void move_motors (long left, long right)
{

char f[10], g[10];

if (left != MOTOR_DO_NOTHING)
(

sprintf (f, "-2P=%ld G", left);
motor_send (f);

if (right != MOTORDO_NOTHING)
{

sprintf (g, "~-P=%ld G", right);
motor_send (g);

}

-.~--L-LI-~- . -I -s~--~-I - ~YIIIIIIYL~ XLB ---I--~-I;-U XI ._iY-.~~^C~~I L ---i n li~i-r--~----~(---~--II--~------- ~ --i - -l -~~--*-pl~- rr~~

Appendix C: Code Listing

MOTORS.C

/***** Motor function prototypes *****/

void motor_string_convert (uchar*); /***** obsolete function? ******/
void SMsendstring(uchar*); /***** Send uchar string to motors *****/
long SM sendand read(uchar*); /***** Send uchar string; listen for response **/
void homefin (int); /***** Bring the fin to switch-homing position **/
void putstr (uchar*, const char*); /*** converts char strings to uchar strings ***/
void motor send(const char*); /***** HIGH LEVEL function for sending "strings"**/
long motor_send_and_read(const char*);/***** HIGH LEVEL function for send_andread **/
void finish_moving(void); /***** Wait for fin to finish moving ****/
void offset home (void); /***** Move both fins to horiz. AFTER home fin **/
void Wait5ms(void); /***** Delay between sending characters ****/
int initmotors(void); /***** Setup Smartmotor communications ****/
int motors_are_there(void); /***** Checks if motors are connected *****/
/*** warning motors_are_there function checks if the proportional constant
in the motors, KP, is = 500 (default value). be aware of this if you ever decide to
change
the prop. gain in the smart motors. ***/

/*************** MOTOR FUNCTIONS ********************/

int init motors(void)

/*** This fct. sets up the TPU Serial Ports to talk
ptr Txbuf;
ptr Rxbuf;

to the motors ***/

if ((Txbuf = malloc(QSIZE+TSER_MIN_MEM))==0)

printf ("\nError allocating Tx memory.\n");
return(0);

if ((Rxbuf = malloc(QSIZE+TSERMIN_MEM))==0)

printf ("\nError allocating Rx memory.\n");
return(0);

if (TSerOpen(MOTOR_CHAN_Tx, HighPrior, 1, Txbuf, QSIZE, 9600, 'N',8,1) != tsOK)
/***????***/

printf ("\nError Opening the TPU Serial port on channel %d\n\n",
MOTOR_CHAN_Tx);

return(0);

if (TSerOpen(MOTOR_CHAN_Rx, HighPrior, 0, Rxbuf, QSIZE, MOTOR_BAUD, 'N',8,1) != tsOK)
{ printf ("\nError Opening the TPU Serial port on channel %d\n\n",

MOTOR_CHAN_Rx);
return(0);

TSerlnFlush (MOTOR CHANTx);
TSerInFlush(MOTOR_CHANTRx);
SM_send_string(motor_init);
DelayMilliSecs(500);
TSerInFlush(MOTOR CHANRx);
TSerClose(MOTORCHAN Tx);
if (TSerOpen(MOTOR_CHANTx, HighPrior, 1, Txbuf, QSIZE, MOTOR_BAUD, 'N',8,1) != tsOK)

printf ("\nError Opening the TPU Serial port on channel %d\n\n",
MOTOR_CHAN Tx);

return(0);

TSerInFlush(MOTOR CHAN Tx);
TSerInFlush(MOTOR_CHAN_Rx);
return(l); /*** Motor Initialization OK ****/

void SMsendstring(uchar* string)

Appendix C: Code Listing

int i;

for (i=0; string[i] != '\0'; i++)
{

if (string[i] == 126)
{ i++;
string[i] = (string[i]) + 80;)

TSerPutByte (MOTOR_CHAN_Tx, (int)(string[i]));
Wait5ms();

TSerPutByte (MOTOR_CHAN_Tx, 13); /** Send carriage return **/
TSerInFlush (MOTOR_CHANRx); /*** FLUSHES ECHOED CHARACTERS ***/

long SMsendand_read(uchar* string)
{
/**** This function sends a string to Motors and reads the returning

VALUE sent from motor. Only ONE command that requires a
response should be sent, addressed to a SINGLE motor. ****/

int i, j;
uchar echo[80]="";
uchar receive[80]="";
char receive2[80]="";
long num;

/****** SEND **********/

for (i=0; string[i] != '\0'; i++)

if (string[i] == 126)
{ i++;
string[i] = (string[i]) + 80;}

TSerPutByte (MOTOR_CHAN_Tx, (int)(string[i]));
Wait5ms(); /*** NEED 4 OR 5 ms HERE FOR MOTORS ***/

TSerPutByte (MOTOR_CHAN_Tx, 13); /** Send carriage return **/

/*** transmitted characters will be echoed; total i+l transmitted ***/

/********* RECEIVE ***********/
for (j=0; j < (i+2); j++)

if (TSerByteAvail(MOTORCHAN_Rx))
{

echo[j] = (uchar)(TSerGetByte(MOTOR_CHAN_Rx));
}

echo[j] = '\0';
j=0;
Wait5ms();
Wait5ms(); /** probably is not necessary **/
while (TSerByteAvail(MOTOR_CHAN_Rx))

{
receive[j] = (uchar)(TSerGetByte(MOTOR_CHAN_Rx));
j++;

receive[j] = '\0';
j=0;
while (receive2[j]=(char)receive[j]) ++j; /** copy string..? **/
num = strtol(receive2, NULL, 10); /*** convert received string to long ***/

TSerInFlush(MOTOR_CHANRx); /** flush buffer now that we've read everything in it
**/
return (num);

/**** The proper calling sequence for the homing functions is: ****
home_fin(l);
home_fin(2);
offsethome();

~_I__ ________I1_I__/L_~I ~X.. ~-~I~-Y~ --~U llll^~s*PL-_LI__I _~~~I II --LI ~- -LLI-II~_Y1 I IIIIIY--II-

Appendix C: Code Listing

void home fin (int fin)

short TPUfinchan;
char f[10];
uchar command[40];
long a, hitl, hit2, hit3, mid, offset=0;

/*** Turn up the integrator limit in motors: ****/
motor send ("-0 KL=700 F ");

/**** Choose fin to home: *****/

if (fin==l)

TPUfin_chan = RIGHT_FIN_HOME;
motorsend ("-1 MP V=0 G\n");

else
{
TPU fin chan = LEFT FIN HOME;
motor_send ("-2 MP V=0 G\n");

/******* Initial crude homing: ******************/

motorsend ("O0 D=200000 V=920000 A=750\n");

a = TPUGetPin(TPU_finchan); /***** See if home switch has been tripped ***/

if (a == 1) hitl = motor_send_and_read("RP"); /*** Switch has been tripped ***/
if (a == 0) /*** a=0: Switch has NOT been tripped ***/

motor_send("G"); /** start moving "G" ***/
while (a == 0) /** while switch has NOT been tripped... ***/

a = TPUGetPin (TPU_finchan); /** keep looking at switch ***/

/***** a=l: switch has tripped; read position ********/
hitl = motor_send_andread("RP"); /** hitl = switch tripped position

motor_send ("X"); /*** stop moving ****/
sprintf (f, "P=%ld G", hitl); /** create string to hitl position

motor_send (f); /*** move to hitl position ****/
finish_moving(); /*** wait to arrive there ****/

/**** Precise homing begins here: ****/

motor_send ("V=430000 A=550 D=-50000");
motorsend ("G");
a = TPUGetPin (TPU_fin_chan);
while (a == 1)

a = TPUGetPin(TPUfin_chan);

/*** hit edge of hysteresis limit ***/
hit2 = motor_send_and_read ("RP");
motor send ("X");
motorsend ("V=894784 A=750\n");
sprintf (f, "P=%ld G", hitl);
motor_send (f);
finish_moving();
DelayMilliSecs ();

motor send ("V=430000 A=550 D=50000");
motor_send ("G");
a = TPUGetPin (TPU_fin_chan);
while (a == 1)

a = TPUGetPin(TPU_fin_chan);

/**** hit edge of hysteresis limit ***/

/*** move slowly ***/

/*** still withing homing hysteresis ***/

/*** find left edge of switch limit ***/

/**
/**
/**
/**

/***

/***

hit2 = left edge position **/
STOP ***/
FAST move again ***/
create string to hitl position **/
go back to hitl position ****/
wait to arrive there ****/

/*** move slowly ***/

/*** still within homing hysteresis ***/

/**** find other edge of switch ***/

Appendix C: Code Listing

hit3 = motor_send_and read ("RP");
motor send ("X");
mid = (hit2 + hit3)/2;

motorsend ("V=894784 A=950\n");

/** hit3 = "RP" **/
/** STOP ***/
/** find average of switch positions ***/

/*** FAST move again ***/

sprintf (f, "P=%ld G", mid); /** create string to mid
motor_send (f); /*** move to mid position
finish_moving(); /*** wait to arrive there

/** printf ("\n\n\n\t\tMOTOR IS HOMED!!!\n\n"); ***/

motor_send ("O0");

/***

void

position **/
****/

****/

/** set home as new origin ***/

use this function on EACH fin, THEN invoke offset home **/

offset_home (void)

/*** This function sends the fins from their switch
homed position to a horizontal position. ***/

/*** Smart Motor 1 is on the Fish's left fin ***/
motor_send ("-1P=-25750 ");
motor send ("-2P=-47975 ");
motor send ("-0V=1000000 A=950 ");
motor_send ("-OG ");
motor send ("-1 "); finish_moving();
motor_send ("-2 "); finish_moving();
DelayMilliSecs (250); /*** let motor settle ***/
motorsend ("-0 KL=22 F A=880");
motor send ("-0 00 P=0 ");

/***** I DO NOT KNOW WHY THIS FUNCTION (put_str) IS NECESSARY,
MOTOR CONTROL LOCKS UP WITHOUT IT. IT IS BASICALLY A STRING
TRANSLATION FUNCTION FROM CHARs TO UCHARs. I'm PRETTY SURE
IT IS NOT A TIMING ISSUE, BECAUSE REPLACING THIS FUNCTION WITH
A SMALL DELAY DOES NOT WORK. SO, LEAVE IT ALONE! ****/
void put_str (uchar* command, const char* string)

int i=0;

BUT SMART

while (*(string+i) != '\0')
{ *(command+i) = (uchar)

i++;

*(command+i)='\0';

(*(string+i));

void
{

motor_send(const char* string)

uchar command[40];

put_str (command, string);
SM_sendstring(command);

long motor_send_and_read(const char* string)
{

uchar command[40];
long ans;

put_str (command, string);
ans = SM_send_and read (command);
return (ans);

void finish_moving(void)

/**** FCT. TO WAIT TILL MOTOR IS FINISHED MOVING (WATCH RBT) ****/

...~^------1.--1*--------LI-- -- r.r-.~-~ --I~-Y~P~--L~n-

Appendix C: Code Listing

/*** This function works on whatever fin has been already selected...

while (motor_send_and_read("RBt") != 0);

void Wait5ms (void)

auto long i;
for (i=0; i<5600; i++);

}

int motors_arethere (void)

long val;

val = motor_sendand_read ("-lRKP");

if (val != 500)
return (0);

return(l);

/*** get the motor to report some value

/*** the default value ***/
/*** motors not connected ***/
/*** motors are there ***/

Appendix C: Code Listing

COMPASS.C

/*** Compass function prototypes *****/

void init_compass(void);
void compass_process(void);
void Wait2ms(void);
void compass_cal_pulse(void);

/******
/****
/*****
/*****

Reset the V2XG compass
Compass DataAcq process
Wait about 2 msecs.
Pulse Cal pin low ****/

*****/
*****/

*****//**COMPASS**/

/****** COMPASS FUNCTIONS: ********/

void init_compass(void)
{
TPUSetPin(V2XG_PC, 1);
TPUSetPin(V2XG_SS, 1);
TPUSetPin(V2XG_CAL, 1);
TPUSetPin(V2XG_RESET, 1);
TPUSetPin(V2XGSCLK, 1);

DelayMilliSecs (300);
TPUSetPin(V2XG_RESET, 0);
DelayMilliSecs (300);
TPUSetPin(V2XG_RESET, 1);
DelayMilliSecs (300);

/*** Pulse RESET low ****/

/*** Here is the multi-tasking compass event loop that is looped over
and over, while being interrupted by the sampling handler. ***/

void compassprocess(void)

int bit[9], i;

switch (compass_flag) {
case 0: oldcalls = calls;

compass_flag = 1;
break;

case 1: if (calls > oldcalls)
{compass_flag = 2;)

break;
case 2: TPUSetPin(V2XGPC, 0);

compass_flag = 3;
break;

case 3: if (TPUGetPin(V2XG_EOC) =
{compass_flag = 4;)

break;
case 4: if (TPUGetPin(V2XGEOC) =

{ TPUSetPin(V2XG PC, 1
compass_flag = 5;

break;
case 5: oldcalls = calls;

compass_flag = 6;
break;

case 6: if (calls > oldcalls + 1)
{compass_flag = 7;)

break;
case 7: TPUSetPin(V2XG_SS, 0);

compass_flag = 8;
break;

case 8: oldcalls = calls;
compass_flag = 9;
break;

case 9: if (calls > oldcalls + 1)

{compass_flag = 10;}
break;

case 10: for (i=0; i<7; ++i)

TPUSetPin{(V2XGSCLK,
TPUSetPin(V2XG_SCLK,

compass_flag = 11;

/** Wait for one interrupt cycle**/

/** Set PC low **/

= 0) /** Wait for EOC low **/

= 1) /** Wait for EOC high **/
1); /** If EOC==l raise PC **/

/** Wait for one cycle (10ms) **/

/** Set SS low **/

/** Wait for one interrupt

/** ACQUIRE COMPASS DATA **/

LO); /** Clock out 7 dummy bits **/
1);

cycle**/

---- - ^-l~- -*--ir~F-~.1-r~ ll L-L* l a~- rrr^a~ar~- ~ l~~ -il i .~m~^- rr~-rr*ar*lll~ L1 --~i-T~~~._

Appendix C: Code Listing

break;
case 11: for (i=0;i<9;++i) /*** Clock out 9 data bits **/

TPUSetPin(V2XG_SCLK, LO);
bit[i] = TPUGetPin(V2XG_SDO);
TPUSetPin(V2XG_SCLK, 1);

compass_reading = 256*bit[0]
+ 16*bit[4] + 8*bit[5] + 4*bit[6] + 2*bit[7] + bit[8]

TPUSetPin(V2XG_SS, 1);
compass_flag = 12;

ready**/
break;

case 12: break;

return;

+ 128*bit[l] + 64*bit[2] + 32*bit[3]

/** Raise SS high **/
/** Set compass flag to data

} /*** end of switch ***/

void Wait2ms(void)

auto long i;
/** THis function waits about 2 milliseconds of delay at 32 MHz **/

for (i=0;i<2750;i++);

void compass_cal_pulse(void)

TPUSetPin (V2XG_CAL, 0);
Wait5ms();
Wait5ms();
Wait5ms();
TPUSetPin (V2XG CAL, 1);
compassflag = 0;

Appendix C: Code Listing

BIAS.H

/*** bias.h header file

This file contains Temperature compensation for each of the channels.
The temperature compensation includes a term which is proportional
to the current temperature (called "M_") and a constant term (called
"BB_"), thus a linear model of bias vs. temperature. These terms
are derived from experimental measurements and MATLAB linear fits.
****/

/*** Temperature dependent biases: *****/

#define Mx -0.00079476
#define My -0.00213411
#define Mz -0.000319362
#define Mxr 0.005790534
#define Myr 0.0079685214
#define Mzr 0.00237073

/*** Constant offset ***/
#define BBx -1.8814
#define BBy -5.839556
#define BBz -1.87283
#define BBxr 4.885233
#define BByr 9.000
#define BBzr 0.745244

COEFFS.H

/*** coeffs.h header file

The (uncommented) coefficients at the top are the ones
being used. These are for:
Chebyshev type II order 3, cutoff pi/2.5, -35 dB stapband ripple ***/
/**** Passband gain is 1 ****/

#define Ay 1
#define By -1.86198578362921
#define Cy 1.29421395659688
#define Dy -0.31036146437923
#define Ax 0.03687717667614
#define Bx 0.02405617761808
#define Cx 0.02405617761808
#define Dx 0.03687717667614

.... _ _ _ --- ----rrL.....----- --II^UI l~l.-.l.-ll(~--plllll L CI-1.~. ~ 60WWWW -- ~~~--. -~4 L1.1-01 L--l l-~YY_~----_ I

Appendix C: Code Listing

C.2 QNX Code

This is the QNX program that runs on the 486, which is responsible for communicating
with the Tattletale. It uses a menu interface to send various messages to the TT8 or to

receive messages and/or data packet information from the TT8.

Some notes:

* The code shown here is only as recent as 5/12/98 and has probably been modified on
the system by now.

* This code uses 'switch' commands, which should be replaced with 'if-else' commands
for bug-free operation on the VCUUV computer.

* The code here has a slight error in the log-data-and-maintain-depth operations; this
should be fixed in the code operating on the fish.

QNX2.C

/**************** QNX Comm port test code 2, Mohan G. 4/8/98 *****************/
/****** Last update 5/12/98: fully functional Tattletale communication

program ******/

#include <stdio.h>
#include <ioctl.h>
#include <fcntl.h>
#include <stdlib.h>
#include <termios.h>
#include <unistd.h>
#include <math.h>
#include <string.h>
#include <ctype.h>
#include <sys/qnxterm.h>
#include <time.h>

/**** still need to implement/fix:

1) Checksum's in both directions
2) HUGE arrays if necessary
3) Multiprocessing structures...
4) Logging AND depth control simultaneously...
5) Manual control while logging

***/

/**** Notes: QNX stores all the 4 byte values in reverse format to the
TT8. I'm not sure how this affects right shifting, but I think
right-shifting operates in reverse on both platforms, so the end
value after the bit-shift remains the same for a given direction shift
for both QNX and TT8. **/

/*** Note: when Input serial Buffer is full, QNX does NOT accept new data
into the buffer until data is removed from the front of the buffer. ***/

/*** Notes: I had a lot of trouble getting the QNX serial port FIFO to keep
from overunning with the data arriving at 50 Hz packets, 40 bytes/packet
(2kB per second data). When the serial port FIFO gets full, it doesn't accept
any more characters until space is freed up. If you are trying to read packets
and the buffer gets full momentarily, this will result in packet errors, since
bytes will be missed. For instance, trying to packet_print data to
the screen in-between reading packets is enough of a delay to make the
buffer fill up and incur packet errors.
So, QNX has to continually read its serial port to clear
incoming data, but it is hard to do this quickly enough if other processes
are running in this code as well.

100

Appendix C: Code Listing

I am implementing check-sum error detection on incoming packets. Since any errors
almost always affect the last half of a packet, the checksum is the sum of bytes
of only the xrot, yrot, and zrot fields. In a mission that logs data, the mission
data can be printed to a file at the end. If packet_errors occur, then the
current packet written is just the previous packet, and packet_errors is incremented.
*****/

/************** DEFINEs

#include "imuc.h"
engineering values ***/
#define COMM_PORT "/dev/serl"
#define PC104_BUFFER_SIZE 4096
#define BAUD RATE B115200
#define WAITCOUNT 42000
****/
#define PI 3.141592

/**** Coefficients to convert IMU values to

**** QNX Serial port Device file (FIFO) ****/
/**** This is not used yet ***/
**** B115200, 57600, 38400, 9600 ***/

/**** Used to implement a fixed-length wait

/*** Note the "delay(ms)" function has high overhead for small delay (i.e. 1-5 ms
delays take much longer than 1-5 ms, accuracy is poor for these small delays).
That is why we use a for-loop and count WAITCOUNT to implement a small delay. ***/

/*** note: WAITCOUNT may have to be modified depending
on the platform this program runs on, since it
is used to implement a fixed-time delay (and
different systems count at different speeds...) ***/

/*** On this 100MHz 486 PC, a WAITCOUNT of 40000 results in a delay
of 4 Msecs. (thus 10000 counts per msec.) ***/

/***** Common TT8 definitions ******/
#define TT8_PACKET_SIZE 42
TT8 (NOT including headers)+2 checksum ***/
#define QNX_PACKET_SIZE 7
byte ***/
#define MOTOR DO NOTHING 30000
string is "uO" ***/

#define QNX_PACKET_HEADER 'q'
TT8 to identify a packet ***/
#define RESETCOMPASS 'h'
#define COMPASSCALPULSE 'a'
#define START_NAV 'r'
#define STOP_NAV 'w'
#define TT8 PING 'n'
#define TT8_HOME_YOUR_FINS 'g'
#define TT8 PACKETS_PER_SEC 50

#define TT8_PACKET_HEADER1 'p'
QNX ***/
#define NOCOMPASSDATA 999
#define XCOLL 1
#define YCOLL 2
#define ZCOLL 3
#define NOCOLLISION 4

/**** Mission types *****/
#define NOMISSION 0
#define LOGDATAONLY 1
#define DEPTHCONTROLONLY 2
#define LOG AND DEPTH 3

#define RADIANS_TO_MOTOR_COMMAND 15915.494
#define MAX_PECTORAL FIN ANGLE 0.2618
#define MINPECTORALFIN_ANGLE -0.2618

#define DEPTH_METERS_PER_QUANTA 0.007534424

/*** typedef's to ensure compatibility with
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;
typedef char* ptr;
typedef void (*vfptr)(void);

/*** forty bytes of data sent from

/*** in bytes (uchars), INCLUDING header

/*** long (2-byte) word: appropriate

/*** header byte that QNX sends to

/*** header bytel that TT8 sends to

/*** = (180/pi)*(25000/90) ****/
/*** in radians (this is 15 degrees)***/

/*** in radians ***/

/*** convert A2D Quanta to depth in meters

TT8 code ****/

101

___1_____1_111111411_._IY . .i~l~i- i~pll ~l~ ~..,.I~._~.~. ...̂ .~-. ----- ^.".^~x~~ ~ ~^L.^__ --r___.,~l--U-~,~L -~~ ______~~~~-~ I1(P~

Appendix C: Code Listing

/***** Packet structure for TT8 Data: one type of packet; 40 bytes
struct packet {
ulong samplenum;
float xval;
float yval;
float zval;
float xrot;
float yrot;
float zrot;
float temp;
float depth;
long compass;
short flagl;
short collflag;

typedef struct packet packet;

/**** Internal mission-planning structure *****/

struct mission {
ulong mission_num;
int mission type;
ulong mission_length;
float depthtomaintain;

/*** see define's above
/*** in seconds ***/

typedef struct mission mission;

/*** later we can construct arrays of missions to be scheduled, etc. ... *****/
/*** we should put filenames to log data as part of mission structure, later...

/************** function prototypes *****************/

void comm_init(void);
void write_datacharto_port(char*);
int send_packettoTT8(uchar*);
uchar* build_packet(char, char, lon
void resetcompass(void);
void cal_compass(void);
void TT8_ping(void);
void getmotor_commands(void);
void Waitcount(void);
int get_TT8_packet(packet*);
void send_TT8_start_NAV(void);
void send_TT8_stop_NAV(void);
void packet_print (packet);
void set_zerodepth(void);
int log_data to file (void);
void view_instructions(void);
void lookatcompass(void);
void log_biases(void);
void send_TT8_homefins(void);
int define_mission (mission);
int execute_mission(mission);
int logdata_to_memory(long);
int maintain_depth(float, long);
int log_and_depth_control (float, 1
void show_relative_attitude (void);

g, long);

/** returns 1 if successful, 0 if not ***/

ong);

/************** Global variables *******
static int comm port;
static int comm_wait;
static int buffer_size; /*** pr
uchar send_packet[QNX_PACKET_SIZE] = {QNX_PAC
default packet does nothing ***/
packet getpacket;
float ZERO_DEPTH_VALUE = 2030.0;
long LAST_GOOD_COMPASS_DATA=0;
double xsum=0, ysum=0, xrsum=0, yrsum=0, zrsu
double CUR_TEMP=-1544;

obably get rid of this... ***/
KET_HEADER,'O','O','u','O','u','0'}; /***

/**** used in option 6 ****/
/**** default depth reading for surface ***/

/*** Important Globals... for mission execution ***/
packet* GET_PACKETS; /*** This is an array which will be dynamically
allocated

to log the incoming data ****/
mission current_mission;

102

Appendix C: Code Listing

int packet_errors; /*** counts number of packets missed from TT8 ***/

/**** STILL HAVE TO IMPLEMENT CHECKSUM ****/

void main()
{
unsigned char c;
unsigned char receive_buffer[4096];
int i=0, j=0, b=0;
long left_motor, right_motor, a;
long read_secs;
int h=0;

/** term_load(); **/ /** screen control functions that DON'T WORK! ***/
/** term_clear (TERM_CLS_SCR); ***/

current_mission.mission_type = NO_MISSION;
current mission.mission_num = 0;
current_mission.mission_length = 0;
current_mission.depthtomaintain = ZERODEPTH_VALUE;

comm_init();

printf ("Comm port 1 has been initialized. \n\n");
printf ("CLOCKS_PER_SEC is:\t%ld\n", CLOCKS_PER_SEC);
printf (" (for use in clock function\n");
printf ("Sizeof(int) is: %%d char(255) is %c\n" , sizeof(int), 255);

printf ("Warning: This program does NOT implement any handshaking\n");
printf ("from the TT8 except for the 'TT8 Ping' menu option.\n");
printf ("Checksum error correction is being implemented on packets.\n");

set_zero_depth();
set_zero_depth();

/**** Implement MENU: *****/
j=0;
while (1)

j++;
fflush (stdin);
printf ("\n***************** MENU[%d] ******************\n\n", j);
printf ("0 -- View OPERATING INSTRUCTIONS\n");
printf ("1 -- Reset Compass\n2 -- Calibrate Compass\n3 -- TT8 ping -- Don't invoke

when logging data!\n");
printf ("4 -- Send Single Motor Commands\n5 -- Start TT8 sending NAV data\n");
printf ("6 -- Read TT8 packets for a while to screen\n7 -- Home the Fish's Pectoral

Fins (Do this BEFORE option 5 always!)\n");
printf ("8 -- Stop TT8 sending data; RESET the Tattletale\n");

/** printf ("9 -- ");***/
printf ("A -- Set current depth as surface (zero feet)\n");
printf ("B -- \n");
printf ("C -- Read asynchrounous COMPASS packets to screen for a while\n");
printf ("D -- Log biases for 30 minutes: Mohan only!\n");
printf ("E -- Define a navigation mission plan\n");
printf ("F -- Execute th current mission\n");
printf ("G -- Show vehicle attitude relative to current\n");
printf ("\nChoose:\t");

c=getchar();

switch(c)
case '0': view_instructions();

break;
case '1': reset_compass();

break;
case '2': cal_compass();

break;
case '3': TT8_ping();

break;
case '4': get_motor_commands();

break;
case '5': send_TT8_start_NAV();

break;
case '6': printf ("\nHow many seconds?\t");

scanf ("%ld", &read_secs);
tcflush (comm_port, TCIFLUSH);
for (i=0;i<read_secs*50;i++)
{
if(getTT8_packet(&getpacket)!=1) /**break**/;

103

xl------- -l-i --s_-_I ^~.-- r-r---- s~---LL r--~-~--^C ~--I.- ~-)-1_LLLCllir.-I IlI ~~-II..

Appendix C: Code Listing

packet_print (getpacket);
delay(20);
tcflush (comm_port, TCIFLUSH);

break;
case '7': send TT8_home_fins(); break;
case '8': send_TT8_stopNAV(); break;
case 'A': set_zero_depth(); break;
case 'B': /**if (logdatatofile() == 0)

printf ("Data logged INCORRECTLY.\n\n");**/
break;

case 'C': lookat_compass();
break;

case 'D': logbiases(); break;
case 'E': define_mission(current_mission); break;
case 'F': execute_mission(current_mission); break;
case 'G': show_relative_attitude(); break;

/*** define a mission ***/
/*** execute a mission ***/
/*** write mission data to file ***/

/*** start TT8 sending data ***/
/*** start QNX logging Data (for how many seconds) ***/
/*** start QNX gathering pressure data ****/
/**** start QNX controlling fins based on pressure data ***/
/*** start QNX controlling motors while logging data ***/
/*** home fins ***/
/*** set session parameters: ignore collisions, etc. ***/

} /*** end of while ***/

/**** When NAV is running, we should not send a packet more than
5-7 Hz frequnecy. When NAV is not running, this should be like
20 Hz MAX. See if we can have this interrupt-driven. ****/

/**************** program to send various data packets to the TT8 ******/

void comm_init(void)

struct termios comm_termios;

/*** set up serial port ****/
/*** fcntl (comm_port, FSETFL, ONONBLOCK);***/ /*** this causes QNX to reboot at
the end... ***/

comm_port = open(COMM PORT, /**O_NONBLOCKI**/O_RDWR);
buffer_size = PC104_BUFFER_SIZE;

/**- comm_wait = 0;
**/

if (commport == -1)

printf ("error opening serial port\n");
exit(l);

tcgetattr(comm_port, &comm_termios);
commtermios.c cflag = /**BAUD_RATEI***/CS81CREADICLOCAL;
comm termios.c_iflag = 0;
comm_termios.c_1flag = 0;
comm termios.c_oflag = 0;
comm termios.c_cc[VEOF] = 1;
commtermios.c_cc[VEOL] = 0;
cfsetispeed(&commtermios, BAUD_RATE);
cfsetospeed(&comm_termios, BAUD_RATE);
tcsetattr(commport, TCSANOW, &comm_termios);

tcflush(comm_port, TCIOFLUSH);
tcflow (comm_port, TCOONHW);

104

Appendix C: Code Listing

/**tcdrain(comm_port);***/

/**comm_send...initialization packet***/

void writedatachartoport (char* data)

write (comm_port, data, 1); /** send one byte beginning at address data
Waitcount(); /*** about a 4 millisecond delay ***/

/** delay(l); /*** A DELAY IS NECESSARY FOR TT8 TO READ OK; MAYBE CAN BE <1;
later... ***/

check

/**** 'delay' command needs to be replaced with something more reasonable ***/
/*** too much overhead in 'delay' command, it's inaccurate ***/
tcdrain (comm_port); /*** tcflow, tcdrain?? **/

printf ("Char sent..."); **/

send_packet_to_TT8 (uchar* packet_address)

int i;

for (i=0; i<QNXPACKET_SIZE; i++)
{

write_datacharto-port (packet_address+i);
}
/*** have a response ready for TT8ping; return TT8 value***/
return(0);

/*** This is the 7-byte packet structure that QNX sends to the
of uchars ***/

uchar* build_packet (char compass, char nav_homeor_ping, long
right_motor){

send_packet[0]
sendpacket[l]
sendpacket[2]
send_packet[3]
send_packet[4]
send_packet[5]
send_packet[6]
return (send_packet);

TT8: it is simply an array

left_motor, long

QNX_PACKET_HEADER;
compass; /** RESET or CAL ***/
nav_home_or_ping;
(uchar) (left_motor>>8);
(uchar) (left_motor%256);
(uchar) (right_motor>>8);
(uchar) (right_motor%256);

void reset_compass (void)

build_packet (RESET_COMPASS, 'O', MOTORDONOTHING, MOTORDONOTHING);

send_packet to TT8 (send_packet);
delay (200);
printf ("\nCompass Reset\n");

void cal_compass(void)

fflush(stdin);
printf ("\nKeep Compass in one direction: press enter");
build_packet (COMPASS_CAL_PULSE, '0', MOTOR_DO_NOTHING, MOTORDONOTHING);
getchar();
send_packet_to_TT8 (send_packet);
delay (200); /*** if cal_pulsed too fast, compass will hang... ***/
printf ("\nNow turn compass to face 180 degrees from before: press enter");
getchar();
send_packetto TT8 (send_packet);
delay(100);
printf ("\n\nCompass calibrated\n\n");

v

void sendTT8_start_NAV(void)

105

int{

^^ _jll__ __ ~~II~

Appendix C: Code Listing

buildpacket ('0', START_NAV, MOTOR_DO_NOTHING, MOTOR DO NOTHING);
tcflush(comm_port, TCIOFLUSH);
send_packettoTT8 (send_packet);
delay(50);
set_zerodepth();
set_zerodepth();
setzero_depth();

void send_TT8_home_fins(void)

buildpacket ('0', TT8_HOME_YOUR_FINS, MOTOR_DO_NOTHING, MOTOR_DO_NOTHING);
tcflush(comm_port, TCIOFLUSH);
send_packet to TT8 (send_packet);

void send_TT8_stop_NAV(void)

build_packet ('0', STOP_NAV, MOTOR_DO_NOTHING,
tcflush(comm_port, TCIOFLUSH);
send_packettoTT8 (send_packet);
printf ("\n\nTT8 is now resetting itself; give
delay(800);

MOTORDO NOTHING);

it a few seconds.\n\n");

void TT8_ping(void)

char ping_receive[80];
int i;

tcflush (comm_port, TCIFLUSH);

printf ("\nSending TT8 ping..\n.\n.\n");
build_packet ('0', TT8_PING, MOTORDONOTHING, MOTOR DO NOTHING);
send_packet_to_TT8 (send_packet);
delay(100); /*** wait for TT8 to respond ***/
i = devread (commport, ping_receive, 80,5,1,1,0,0);
if (i<=0) {printf ("No response from TT8...\n\n"); return;}
ping_receive[i] = '\0';
printf ("TT8's response is:\t%s\n", ping_receive);

void getmotor_commands(void)

long left_motor;
long right_motor;
char junk;

printf ("\nEnter left motor command (-25000 to +25000, 30000 does nothing):\t");
scanf ("%ld", &left_motor);
if ((left_motor > 25000) && (left_motor != 30000)) left motor=25000;
if (left_motor < -25000) left_motor=-25000;
printf ("\nEnter right motor command (-25000 to +25000, 30000 does nothing):\t");
scanf ("%ld", &rightmotor);
if ((right_motor > 25000) && (right_motor != 30000)) right_motor=25000;
if (right_motor < -25000) rightmotor=-25000;
buildpacket ('0','O',left_motor,right_motor);
tcflush (comm_port, TCIFLUSH); /*** we DON't want to have to do this! ***/

/** read(comm_port, &junk, 1); ***/
send_packettoTT8 (send_packet);
printf ("\n\nMotor commands sent to TT8.\n\n");

/**** THIS FUNCTION IS VERY IMPORTANT: CALLED BY MOST OTHER
DATA GATHERING FUNCTIONS ********/

int get_TT8_packet(packet* packet_addr)
{
/*** This function places the packet into the packet space pointed
to by packet_addr; returns 1 if successful, 0 if unsuccessful ***/

int i=-l;
uchar receive[TT8_PACKET_SIZE];

106

Appendix C: Code Listing

uchar headerl = 'o', header2 = 'o';
ulong* longptr;
ulong sample=0;
float* floatptr;
float floatval;
long j=0, wt=O;
char cksum[4];
long* cksumptr;
long cksumrcv = 0;

while (headerl != TT8_PACKET_HEADER1)
{

i = dev_read (commport, &headerl, 1, 1, 1, 1, 0, 0); /** use dev_read to do
timeout... **/

if (i<=0) {printf ("Packet not found\n\n"); return(0);}
}

/**** here is dev_read: ****/

if (i=dev_read(commport, receive, TT8_PACKET_SIZE, TT8_PACKET_SIZE, 1, 1, 0, 0)
== -1)

{ printf ("FUCKING error\n"); return(0);}

/*** else printf ("\n\n%d Bytes gotten\n\n", i); ****/

/**** CHECKSUM ERROR CORRECTION: ***/
cksum[0] = receive[40];
cksum[l] = receive[41];
cksum[2] = 0;
cksum[3] = 0;
cksumptr = (long*)(cksum);
for (i=0;i<28; i++)

cksumrcv += receive[i];

if (*(cksumptr) != cksumrcv) /** CHECKSUM error... **/
{
printf ("Checksum error: calc %ld rcv %ld \n", *cksumptr, cksumrcv);
printf ("receive[40] is:%d\treceive[41] is:%d\n", receive[40], receive[41]);
return (0); /** exit without reading packet data ***/

}
longptr = (ulong*)receive;
sample = *longptr;
packet_addr->samplenum = sample/2;
for (i=4; i<=32; i=i+4)
{

/** read 8 float values, 4 bytes each ***/
floatptr = (float*) (receive+i);
floatval = *floatptr;
switch(i) {

/******* IMU data is stored in engineering units *********/
case 4: packet_addr->xval = floatval; break;
case 8: packet_addr->yval = floatval; break;
case 12: packet_addr->zval = floatval; break;
case 16: packet_addr->xrot = floatval-(0.000765*CUR_TEMP) - 1.2682;

break;
case 20: packet_addr->yrot = floatval - (0.00104*CUR_TEMP) -

1.7367; break;
case 24: packet_addr->zrot = floatval - ((-0.00048127)*CURTEMP) +

0.422866; break;
case 28: packet_addr->temp = floatval; CUR_TEMP = floatval; break;
case 32: packet_addr->depth = ZERO_DEPTHVALUE - floatval; break;

/*** note depth is positive DOWN; zero at the surface ***/

packet_addr->compass = receive[36]*256 + receive[37];
packet_addr->flagl = receive[38];
packetaddr->collflag = receive[39];
xsum+= packet_addr->xval*.02; /** These are little integration **/
ysum+= packetaddr->yval*.02; /** hacks, please ignore ***/
xrsum+=packet_addr->xrot*.02;
yrsum+=packet_addr->yrot*.02;
zrsum+=packet_addr->zrot*.02;

/** FILTER OUT DUMMY COMPASS VALUES: ***/

if (packet_addr->compass > 359) /** includes NO_COMPASS_VALUE=999 **/
(packet_addr->compass = LAST_GOOD_COMPASS_DATA;)

else {LAST_GOOD_COMPASS_DATA = packet_addr->compass;}

107

^--r -lil-X- YiCrpIYIPIII- 1~3C~-~SIIL iiX i~iiiiYLEY~L-ll _CIIIIIIWJ~-*II*PI~-LI-Y--L .--~-iir^^-II~_1L pll*L ---- -l~__

Appendix C: Code Listing

return(l);

void Waitcount(void)
(/*** NOTE THIS FUNCTION IS SYSTEM DEPENDENT!!! ***/
/*** talking to Tattletale may not work if the

value of WAITCOUNT is not sufficient to implement
a 4 millisecond delay. ****/

int i;

for (i=O;i<WAITCOUNT; i++);

void packet_print (packet p)

/*** term_clear (TERM CLS_SCR); *
printf ("-------------------------------------- -\n);
printf ("\nSamplenum:\t\t%ld\n", p.samplenum);
printf ("Raw X Accel:\t%lf\tsum: %if\n", p.xval, xsum);
printf ("Raw Y Accel:\t%lf\tsum: %if\n", p.yval, ysum);
printf ("Raw Z Accel:\t%lf\n", p.zval);
printf ("Raw X Rate:\t\t%lf\tsum: %if\n", p.xrot, xrsum);
printf ("Raw Y Rate:\t\t%lf\tsum: %if\n", p.yrot, yrsum);
printf ("Raw Z Rate:\t\t%lf\tsum: %if\n", p.zrot, zrsum);
printf ("Raw IMU temp:\t%lf\n", p.temp);
printf ("Raw depth:\t\t%lf\n", p.depth);
printf ("Compass:\t\t%ld\n", p.compass);
printf ("Flagl:\t\t\t%d\n", p.flagl);
printf ("CollFlag:\t\t%d\n\n", p.collflag);
printf ("---
printf ("\n\n\n\n\n\n\n\n");

/** delay(l); /** get rid of this!****/

/*** Need to study:

1) Interrupt driven stuff
2) writing and reading to serial ports in QNX; what happens when full
3) how to best allocate bandwidth -- multitasking

/*** need to figure out: why isn't compass working,
why isn't collision flags working
why is pressure value erratic overly sensitive
why does xval have a large bias (when connected

or floating) **/

void set_zerodepth (void)

packet now;

tcflush(comm_port, TCIFLUSH);
if (get_TT8_packet(&now) == 1)

printf ("\nCurrent Raw depth is %4.51f (A2D quanta); setting this as the
surface value.\n", now.depth);

ZERO_DEPTH_VALUE = ZERO_DEPTH_VALUE - now.depth;

else

printf ("No current value available for current depth.\nUsing last value
set:\tRaw surface value is %4.51f\n\n", ZERO_DEPTH_VALUE);

int log_data_tofile (void)

int secs;

108

Appendix C: Code Listing

FILE *fp;
char filename[10];
int data_points, i;
packet get_it;

printf ("How many seconds do you want to log data for?\t");
scanf ("%d", &secs);
datapoints = secs*50;
printf ("\nEnter the filename to store IMU data in:\t");
scanf ("%s", filename);
if ((fp=fopen(filename, "w")) == NULL)

printf ("File not open-able.\n\n");
return (0);

}

tcflush (comm_port, TCIFLUSH);
for (i=0; i<data_points; i++)

if (getTT8_packet(&get_it) == 0)

fclose (fp);
printf ("Packet not gotten correctly\n\n");
return (0);

if (fprintf (fp, "%ld\n%f\n%f\n%f\n%f\n%f\n%f\n%f\n", get_it.samplenum,
get_it.temp, get_it.xval, getit.yval, get_it.zval, get_it.xrot, get_it.yrot, get_it.zrot)
< 0)

fclose (fp);
printf ("Packet not written to correctly\n\n");
return (0);

fflush (fp);
fclose (fp);
return (1);

void view_instructions(void)

printf ("\n\n\n\n\nHere are some rules for this menu.\n\n");
printf ("Rule 1 -- When you first run this program, use option 3 several\n");
printf ("times to verify the TT8 is connected, working and happy.");
printf ("If you don't see 'TT8 is alive; TT8 is hungry for action'\n");
printf ("SOMETHING:IS AWRY: see Mohan.\n\n");
printf ("Rule 2 -- Next thing to try is to Reset the Compass, option l.\n\n");
printf ("Rule 3 -- Now, Calibrate the Compass, option 2. Note that this is\n");
printf ("a 'hard-iron' calibration, which requires you to turn the whole fish\n");
printf ("around in its place between hitting 'Enter' a second time.\n\n");
printf ("Rule 4 -- Use the 'send single motor' command to test out the

communication\n");
printf ("through the TT8 to the Smart Motors. Test this for a few values and\n");
printf ("visually verify the motors go to the correct angles. +25000 corresponds\n");
printf ("to 90 degrees positive angle, -25000 to 90 degrees down.\n\n");
printf ("\n\nEnter to continue...\n\n"); getchar(); getchar();
printf ("Rule 5 -- Now we are ready to get data. The Tattletale is NOT\n");
printf ("talking to its sensors (IMU, depth and comapss) UNTIL you tell it\n");
printf ("to 'Start NAV data.' Once you do this, you can verify that it is\n");
printf ("talking to it's sensors by a periodic green LED pulse (about 3 Hz)\n");
printf ("on the compass board. If this does not happen SOMETHING is AWRY. Talk\n");
printf ("to Mohan.\n\n");
printf ("Rule 6 -- NEVER: Ping the TT8 while it is sending data. May corrupt

data.\n");
printf (" Try to Reset or Calibrate compass while TT8 is sending

data.\n");
printf ("???\n");
printf ("More options to be described later: logging data; viewing real-time;\n");
printf ("Logging data in background, Multitasking with motor control; \n");
printf ("implementing a depth-control loop.\n\n\n\n");

printf ("Enter to continue...\n");

109

...........~...~~ - I ---- - ~- -- ~r~~~ll - -~IPIL- *----" -ily-^La~~_--xr r~plIll~_---r~L-rlllbYiY X--L ---̂-P -~-P---~P~M -LII~- ~--- ~-- IY1I--

Appendix C: Code Listing

getchar();

void lookatcompass (void)

int i, num;
packet p;

p.compass = NOCOMPASS_DATA;
printf ("\nHow many compass samples do you want to see?\t");
scanf ("%d", &num);
printf ("\n\n");
tcflush (comm_port, TCIFLUSH);
for (i=O;i<num;i++)
{

p.compass = NO_COMPASS_DATA; /** figure out a better way to do this ***/
while (p.compass == NOCOMPASS_DATA)

if (get TT8_packet(&p) == 0) return;

printf ("Heading:\t%ld\n", p.compass);

printf ("\n\n");

void logbiases(void)
{

FILE* fp;
char fnm[15];
long i,j;
packet getit[100];
packet avg;
float tempsum=0, xsum=0, ysum=0, zsum=0, xrsum=0, yrsum=0, zrsum=0;

sprintf (fnm, "BIASLOG");
printf ("\nOpening file...\n");
if ((fp=fopen("BIASLOG", "w")) == NULL)

printf ("File can't be opened\n");
return;

}
printf ("File opened successfully\n");
printf ("Writing IMU data...\n");
fflush(fp);

for (i=0; i<10000; i++)
{

printf ("\nWriting to file(%d]:\t%s\n", i, fnm);
printf ("Temp is\t%f\n", avg.temp);
tcflush (comm_port, TCIFLUSH);
for (j=0; j<100; j++)

while (getTT8_packet(get_it+j) == 0)

printf ("Packet errors...\n");

tempsum=0;xsum=0;ysum=0;zsum=0;xrsum=0;yrsum=0;zrsum=0;
for (j=0; j<100; j++)

tempsum+=get_it[j].temp;
xsum+=get_it[j].xval;
ysum+=get_it[j].yval;
zsum+=get_it[j].zval;
xrsum+=get_it[j].xrot;
yrsum+=get_it[j].yrot;
zrsum+=getit[j].zrot;

avg.temp=tempsum/100;
avg.xval=xsum/100;
avg.yval=ysum/100;
avg.zval=zsum/100;
avg.xrot=xrsum/100;
avg.yrot=yrsum/100;
avg.zrot=zrsum/100;

110

Appendix C: Code Listing

if (fprintf (fp, "%f\n%f\n%f\n%f\n%f\n%f\n", avg.temp, avg.xval, avg.yval,
avg.xrot, avg.yrot, avg.zrot) < 0)

fclose (fp);
printf ("Packet not written to correctly\n\n");
return;

fflush(fp)

fflush (fp);
fclose (fp);

/***** WE SHOULD IMPLEMENT CHECKSUM IN BOTH DIRECTIONS *****/
/***** TT8 should NOT mess-UP MOTOR COMMANDS!!! ****/

int define_mission (mission MS)
/**** defines the current_mission; actually needs no arguments ***/

printf ("\nWhat type of mission?\nO-NO MISSION\tl-LOG DATA ONLY\t2-DEPTH CONTROL
ONLY\t3-LOG AND DEPTH\nChoose:\t");

scanf ("%d", &(current_mission.missiontype));
if (currentmission.mission_type == NO_MISSION) {printf ("Goodbye...\n");

return(0);)
if (current_mission.mission_type == LOG_DATA_ONLY)

printf ("\n\nHow many seconds do you want to log data for?\t");
scanf ("%ld", &(current_mission.mission_length));
printf ("\n\n"); return(l);

if (current_mission.mission_type == DEPTH_CONTROL_ONLY)
{
printf ("How many seconds do want depth control for?\t");
scanf ("%ld", &(current_mission.mission_length));
printf ("\nWhat depth (in meters) do you want to maintain?\t");
scanf ("%f", &(current_mission.depthto maintain));
printf ("\n\n"); return(l);

if (current_mission.mission_type == LOG_ANDDEPTH)
{
printf ("How long do you want to log data and control depth for?\t");
scanf ("%ld", &(current_mission.missionlength));
printf ("\nWhat depth (in meters) do you want to maintain?\t");
scanf ("%f", &(currentmission.depthto_maintain));
printf ("\n\n"); return(l);

printf ("Huh?\n");
return(l);

/*********** Execute a mission **********

int execute_mission (mission M)
{

/**** returns 1 if mission successful, 0 if unsuccessful ***/
long pnum;
char ans;
char fnm[10];
FILE* fp;
long i;

/***** make sure tt8 is sending packets ****/

packet_errors = 0;
M.missionnum++;
printf ("\nMISSION NUMBER %id:\t", M.mission_num);
if (M.mission_type == LOG_DATAONLY) printf ("Log Data Only for %ld seconds\n",

M.mission_length);
if (M.mission_type == DEPTH_CONTROL_ONLY) printf ("Depth Control Only for %ld

seconds\n", M.mission_length);
if (M.mission_type == LOG_AND_DEPTH) printf ("Log Data and Control Depth for %ld

seconds\n", M.mission_length);

111

~_~1~, .~~ .~... .. -1..~ ...~1~3 P~-~~-.. il_-~----C-- l--- -. ~ -- i _r_ ._r~l~L~ I~-L- -r~- *PI-*PIII~ ~ -FPI~ P-I ~ II%- ~-sP----

Appendix C: Code Listing

pnum = TT8_PACKETS_PER_SEC * M.mission_length; /*** number of packets to get
***/

if ((M.missiontype == NO_MISSION))

printf ("\nNo current mission has been defined, or mission length is set to 0\n");
return(0);

if (M.mission type == LOG_DATA_ONLY)

printf ("Finding memory storage to log data...\n");
GET_PACKETS = malloc(pnum*sizeof(packet));
if (GET_PACKETS==NULL) /*** is this right? ****/

printf ("Memory allocation failed. Mission being cancelled...\n");
return(0);

printf ("Memory allocation successful. Beginning data logging for %ld
seconds:\n\n", M.mission_length);

/******* put data logging function here *******/
log_datatomemory(pnum);
/*** returned from mission...
printf ("\n%d packet errors occurred during logging.\n", packet_errors);
printf ("Write data to file(y/n)?\t");
fflush(stdin);
scanf ("%c", &ans);
if ((ans=='y') i (ans=='Y'))

getf: printf ("\nAll logged data will be dumped into file: Enter
filename:\t");

scanf ("%s", fnm);
printf ("\nOpening file...\n");
if ((fp=fopen(fnm, "w")) == NULL)

printf ("File can't be opened\n");
goto getf;

printf ("File opened successfully\n");
printf ("Writing IMU data...\n");
for (i=O; i<pnum; i++)

if (fprintf(fp, "%ld\n%f\n%f\n%f\n%f\n%f\n%f\n%f\n%ld\n",
GET_PACKETS[i].samplenum, GET PACKETS[i].temp, GET_PACKETS[i].xval, GET_PACKETS[i].yval,
GET_PACKETS[i].zval, GET PACKETS[i].xrot, GET_PACKETS[i].yrot, GET_PACKETS[i].zrot,
GET_PACKETS[i].compass) < 0)

fclose (fp);
printf ("Packet %ld not written to correctly\n\n", i);
free (GET_PACKETS);
return(0);

fflush(fp);
fclose (fp);
free (GET_PACKETS);
printf ("\nFile write successful.\nPress Enter...\n"); getchar();
return(l);

free(GET_PACKETS);
printf ("\nLogged Data is thrown away...\nPress Enter...\n"); getchar();
return(l);

if (M.missiontype == DEPTH_CONTROLONLY)

printf ("Beginning a mission to maintain depth to %if meters, for %ld
seconds...\n", M.depth to maintain, M.mission_length);

maintain_depth(M.depth to maintain, pnum);
/***** Return from maintaining depth *****/
printf ("\n%d packet receive errors occurred during depth control loop.\n",

packet_errors);
printf ("\nType enter to continue...\n\n"); fflush(stdin); getchar();
printf ("Returning to main menu...\n");
free (GET PACKETS); /*** this shouldn't be necessary ***/
return(l);}

112

Appendix C: Code Listing

if (M.mission_type == LOG_AND_DEPTH)

printf ("Beginning a mission to log data and maintain a depth of %lf meters
for %ld seconds...\n", M.depth_to_maintain, M.mission_length);

printf ("Finding memory storage to log data...\n");
GET_PACKETS = malloc(pnum*sizeof(packet));
if (GET_PACKETS==NULL) /*** is this right? ****/

printf ("Memory allocation failed. Mission being cancelled...\n");
return(0);

printf ("Memory allocation successful. Beginning data logging for %ld
seconds:\n\n", M.mission_length);

log_and_depth_control(M.depth_to_maintain, pnum);
/**** Return from this function ***/
printf ("%d packet receive errors occurred during logging and control

loop.\n", packet_errors);
printf ("Write data to file(y/n)?\t");
fflush(stdin);
scanf ("%c", &ans);
if ((ans=='y') I (ans=='Y'))

gf: printf ("\nAll logged data will be dumped into file: Enter
filename:\t");

scanf ("%s", fnm);
printf ("\nOpening file...\n");
if ((fp=fopen(fnm, "w")) == NULL)

printf ("File can't be opened\n");
goto gf;

}
printf ("File opened successfully\n");
printf ("Writing IMU data...\n");
for (i=0; i<pnum; i++)

if (fprintf(fp, "%ld\n%f\n%f\n%f\n%f\n%f\n%f\n%f\n",
GET_PACKETS[i].samplenum, GET_PACKETS[i].temp, GET_PACKETS[i].xval, GET_PACKETS[i].yval,
GET_PACKETS[i].zval, GET_PACKETS[i].xrot, GET_PACKETS[i].yrot, GET_PACKETS[i].zrot) < 0)

fclose (fp);
printf ("Packet %ld not written to correctly\n\n", i);
free (GET_PACKETS);
return(0);

}

fflush(fp);
fclose (fp);
free (GET_PACKETS);
printf ("\nFile write successful.\nPress Enter...\n"); getchar();
return(l);

free(GET_PACKETS);
printf ("\nLogged Data is thrown away...\nPress Enter...\n"); getchar();
return(l);

printf ("HuhHuh?\n"); /**** shouldn't be here ***/
return(0);

/***** This function does not yet work... needs minor changes *****/
int log_and_depthcontrol (float refdepth, long numof_packets)

long i,j,k;
float avg_depth=0, errr;
float PROP_GAIN=8.2; /*** prop. gain for control loop; first-order guess ***/
float command;

j=numof_packets/10;
tcflush (comm_port, TCIOFLUSH); /*** flush input and output serial FIFOs

for (i=0; i<j; i++)

avg_depth=0;
for (k=0; k<10; k++){

113

Appendix C: Code Listing

if (get_TT8_packet(GET_PACKETS+((10*i)+k)) != 0)

packet_errors++;
GET_PACKETS[i] = GET_PACKETS[i-1];

avg_depth += GET_PACKETS[i .depth;

/***what if collision?

/*** this is in meters

avg_depth = avg_depth/10;
errr = avg_depth-ref_depth; /*** this is in meters ***/
command = (PROP_GAIN * errr); /*** this should be in radians ***/
if (command > MAX_PECTORAL_FIN ANGLE) command = MAX_PECTORAL_FIN_ANGLE;
if (command < MIN_PECTORAL_FIN_ANGLE) command = MIN_PECTORAL_FIN_ANGLE;
command = command * RADIANSTOMOTOR_COMMAND;
tcflush (comm_port, TCIOFLUSH); /*** we don't want to do this! ***/
build_packet ('O','O',command, command); /** both fins do same thing **/
send_packettoTT8 (send_packet);
printf ("."); /*** JUST A TEMPORARY CHECK TO MAKE

SURE WE DON't LOCK UP ***/

return(l); /*** successful ***/

int log_datatomemory (long numofpackets)

long i;

tcflush (commport, TCIFLUSH);
for (i=0; i<numofpackets; i++)

if (get_TT8_packet(GET_PACKETS+i) != 1){

good packet...

packet_errors++;
GET_PACKETS[i] = GET_PACKETS[i-1];

***/

/*** unsuccessful get ***/

/*** replace bad packets with last

return(l);

/*** depth loop is implemented at 5 Hz, initially: we take an average
depth every 10 incoming packets and use this as the fed-back depth value
****/

int maintaindepth(float ref_depth, long num_of_packets){
long i,j,k;
packet ptemp;
float avg_depth=0, errr;
float PROP_GAIN=8.2;
float command;

j=numof packets/15;
tcflush (comm_port, TCIOI

/*** prop. gain for control loop; first-order guess ***/

FLUSH); /*** flush input and output serial FIFOs

for (i=0; i<j; i++)

avg_depth=0;
for (k=0; k<15; k++)

if (get_TT8_packet(&ptemp) == 0)

packet_errors++;
/***old packet should

avg_depth += ptemp.depth;

still be in ptemp ***/
/***what if collision?

/*** this is in meters ***/

114

Appendix C: Code Listing

avg_depth = (avg_depth*DEPTH_METERS_PER_QUANTA)/15;
errr = avg_depth-ref_depth; /*** this is in meters ***/

command = (PROP_GAIN * errr); /*** this should be in radians ***/
if (command > MAX_PECTORAL_FIN_ANGLE) command = MAX_PECTORAL_FIN_ANGLE;
if (command < MIN_PECTORAL_FIN_ANGLE) command = MIN_PECTORAL_FINANGLE;
command = command * RADIANS_TO_MOTOR_COMMAND;
buildpacket ('O','O',command, command); /** both fins do same thing **/
tcflush (comm_port, TCIFLUSH); /*** see note below ****/
sendpackettoTT8 (send_packet);
printf ("avg depth is: %lf meters\n", avg_depth);

return(l); /*** successful ***/

/***** Note eventually we don't want to have to flush the serial inport, but
this is a hack. I couldn't find a better way (for the moment) to allow
writing serial output when the input buffer is 'clogged.' Later we
might have a separate process to constantly be 'cleaning' the input
buffer while the data is either logged, used for depth control, or both. ***/

void showrelativeattitude(void)
{

packet getp, lastp;
double curpitch=0;
double curroll=0;
double curyaw=0;

while (!getTT8_packet(&lastp));
while (1)
{

if (getTT8packet(&getp) != 1)
{ getp = lastp; }

curpitch += (((getp.xrot+lastp.xrot)/2) * Axr * 180)/(50*PI);
curroll += (((getp.yrot+lastp.yrot)/2) * Ayr * 180)/(50*PI);
curyaw += (((getp.zrot+lastp.zrot)/2) * Azr * 180)/(50*PI);
printf ("Pitch: %lf\tRoll: %if\tYaw: %if\tTemp: %if\n", curpitch, curroll, curyaw,

getp.temp);
lastp = getp;

}

115

_ ~- -- --p-lrrl.lr~r~ lrxU--- I"---- --- LL"1

Appendix C: Code Listing

C.3 MATLAB Code

This MATLAB code is used to post-process data logged by the Navigation Subsystem. It
implements the strapdown algorithm on IMU data as follows:

1) First compute an alignment (or the "tilt" of the system relative to the gravity vector).
2) Compute the time-evolution of the direction cosine matrices (attitude).
3) Resolve all the accelerations into the reference frame; remove gravity from the z-axis.
4) Double integrate the resolved accelerations to track position.

These various steps are then graphically plotted to visualize position and attitude.

NAVIGATE.M

function [xval, yval, zval, xres,yres,zres, XPOS, YPOS, ZPOS] = attitude(vect)

%NAVIGATE.M--- Calculate direction cosine matrices for Attitude,
% then calculate position trajectory and generate plots.
% Mohan Gurunathan - 5/12/98

% This program calculates the attitude of the vehicle using direction
% cosines. Then accelerations are resolved and position computed.
% The outputs are resolved accelerations and positions.
% The input is a repeating vector in the following format:

% samplenum, temp, xval, yval, zval, xrot, yrot, zrot, compass.

% Each of these is a packet of info at 50 Hz.
% This program does not use the compass info yet; eventually can
% use them to determine actual azimuth.

% Initial attitude (ALIGNING the system) is determined by measuring
% gravity vector with the accelerometers. In order for this to be
% accurate, the vehicle should be not have any motion-accelerations
% when the data begins (for at least 1/2 second) so the initial
% attitude can be computed by measuring the gravity vector with the
% accelerometers.

load INSgains.mat;

N=9; %INSERT NUMBER OF DATA PER PACKET HERE

samps = length(vect)/N; % number of samples of data
secs = samps/50; % number of seconds of data
dt = 1/50;

disp ('Data is the following number of seconds long:')
disp (secs);
disp (''); disp (');

% Separate long vector into components:
%--
sampnum = vect(l:N:length(vect));
temp = vect(2:N:length(vect));
xval = vect(3:N:length(vect));
yval = vect(4:N:length(vect));
zval = vect(5:N:length(vect));
xrot = vect(6:N:length(vect));
yrot = vect(7:N:length(vect));
zrot = vect(8:N:length(vect));
compss = vect(9:N:length(vect));

%SCALE THESE to engineering units, i.e. m/s/s and delta theta's (radians):

116

Appendix C: Code Listing

xval = xval*Ax;
yval = yval*Ay;
zval = zval*Az;
xrot = xrot*Axr*dt;
yrot = yrot*Ayr*dt;
zrot = zrot*Azr*dt;

% later can change this scaling for a trapezoidal integration algorithm...?

% DETERMINE INITIAL ATTITUDE (or C at time 0) using Accelerometer data:
% This assumes the vehicle experiences no physical acceleration in the first
% 25 samples (1/2 second) when data logging is started, to measure gravity.
% Average first 20 values of xaccel, yaccel, zaccel to get
% initial gravity vector gO:
% we can later determine how many to average by seeing how long the
% averaged acceleration vector magnitude is valued at about 9.8

% [0 0 1] = C(1)*g(0); solve this to find initial cosine matrix (C), MUST
% BE SOLVED SO THAT C is orthogonal in columns...?

initxval = mean (xval(l:20));
inityval = mean (yval(l:20));
initzval = mean (zval(l:20));
initmag = sqrt (initxval^2 + inityval^2 + initzval^2);
initxval = initxval/initmag; inityval = inityval/initmag; initzval=initzval/initmag;
%(NORMALIZE THE SIZE!--same as dividing by 9.8, if vehicle has not moved)

% If we want to watch the time evolution of matrix C let us define C as 9
% SEPARATE vectors in time:
% C = [cll c12 c13; c21 c22 c23; c31 c32 c33] -- > each at any given time k

% so above for initial C matrix, we find cll(l), c12(l)...c33(1)
c

c31(l) = -initxval;
c32(l) = -inityval;
c33(1) = -initzval;

% now we perform gram-schmidt orthogonalization:
AA = [c31(l) c32(l) c33(1)]';
BB = [0 1 0]';
CC = [1 0 0]';

BB = BB - ((AA'*BB)/(AA'*AA))*AA;
CC = CC - ((AA'*CC)/(AA'*AA))*AA - ((BB'*CC)/(BB'*BB))*BB;

% normalize length:
BBmag = sqrt (BB(1)^2 + BB(2)^2 + BB(3)^2);
CCmag = sqrt (CC(1)^2 + CC(2)^2 + CC(3)^2);
BB = BB/BBmag;
CC = CC/CCmag;

% now we have orthoganalized the system and determined initial attitude,
% except for ignoring absolute azimuth (which we can later correct with
% compass measurements if desired)

cll(l) = CC(1); c12(l) = CC(2); c13(l) = CC(3);
c21(l) = BB(1); c22(l) = BB(2); c23(l) = BB(3);

% Initial attitude is complete!

% Loop to continually figure out the direction cosine matrix, C(2) to C(samps)
% using recursion: C(k+l) = C(k)*A(k) (see page 297 in Titterton and Weston)
% first try uses rectangular algorithm 5/9/98 (later make trapezoidal)

oldC=[cll(l) c12(l) c13(l); c21(l) c22(l) c23(l); c31(l) c32(l) c33(1)];
disp ('Initial attitude')
disp (oldC);

%return;

117

Appendix C: Code Listing

%oldC = eye(3); % initial attitude is same as reference for testing

disp ('Evolving the direction cosine matrix...');
for i=2:samps,

% Create skew-symmetric matrix from body rotation inputs
sigmax = [0, -zrot(i), yrot(i); zrot(i), 0, -xrot(i); -yrot(i), xrot(i), 0];
magsigma = sqrt (xrot(i)^2 + yrot(i)^2 + zrot(i)^2);

A = eye(3) + (((sin(magsigma))/magsigma)*sigmax) + ((1-
cos(magsigma))/(magsigma^2))*((sigmax)^2);
newC = oldC * A;

cll(i) = newC(1,1);
cl2(i) = newC(1,2);
cl3(i) = newC(1,3);
c21(i) = newC(2,1);
c22(i) = newC(2,2);
c23(i) = newC(2,3);
c31(i) = newC(3,1);
c32(i) = newC(3,2);
c33(i) = newC(3,3);

oldC = newC;
end;

end

figure(l);
clg;

plot3 (cll(l),c21(l),c31(l),'y');
hold on;

% PLOT ATTITUDE
%----------------------------------
plot3 (cll, c21, c31,'y*');
plot3 (c12,c22,c32,'r*');
plot3 (c13,c23,c33,'g*');
title ('Attitude plot*');
grid;
xlabel ('X-axis, reference frame');
ylabel ('Y-axis, reference frame');
zlabel ('Z-axis, reference frame');

disp ('Calculating the position trajectory...')

%START CALCULATING THE TRAJECTORY IN X-Y-Z coordinates...
% First, resolve the accelerations using the direct-cosine matrix at time i:
%--------------- ---
for i=l:samps,
Cmatrix = [cll(i) c12(i) cl3(i); c21(i) c22(i) c23(i); c31(i) c32(i) c33(i)];
resolved = Cmatrix* [xval(i);yval(i);zval(i)];
xres(i) = resolved(l);
yres(i) = resolved(2);
zres(i) = resolved(3) + 9.822; %compensate for gravity;
end;

% Double integrate the resolved accelerations
% assumes zero initial position and velocity here -- easy to change later...
%---
XPOS = integ(integ(xres));
YPOS = integ(integ(yres));
ZPOS = integ(integ(zres));

disp ('Plotting...');

%RESOLVED ACCELERATION PLOTS
%----------------------------
figure(2);clg;
subplot (3,1,1);
plot ((l:samps)/50, xres,'b');grid;
title ('Resolved x-acceleration');
ylabel ('Accel, m/s/s');

118

Appendix C: Code Listing

subplot (3,1,2);
plot((l:samps)/50, yres(l:samps),'b');grid;
title ('Resolved y-acceleration');
ylabel ('Accel, m/s/s');
subplot (3,1,3);
plot ((l:samps)/50, zres,'b');grid;
title ('Resolved z-acceleration');
xlabel ('Seconds'); ylabel ('Accel, m/s/s');

%POSITION PLOTS
%------------------------------------
figure(3); clg;
plot ((l:samps)/50, XPOS, (l:samps)/50, YPOS,
title ('X, Y, and Z Position Trajectories');
grid;
axis ([0 secs -7.5 +7.5]);
xlabel ('Seconds');
ylabel ('Trajectory profile, meters');
grid;
text (7, XPOS(350)+0.8, 'X');
text (7, YPOS(350)-0.6, 'Y');
text (7, ZPOS(350)-0.6, 'Z');

(l:samps)/50, ZPOS); grid;

% END

% EXPERIMENTAL VARIATIONS TO TRY:

% 1)

% 2)

%

This algorithm appears to be a rectangular integration
algorithm..? Could better accuracy be gained by modifying it
to a trapezoidal, or even an Euler integration method?

Perhaps the tilt alignment could be recomputed any time
the windowed variance of the accelerations was below
some nominal value, suggesting that no accelerations
were occurring (since accelerations are spiky and
produce larger variances). "Windowed variance" means
if we are at time k, compute the variance for the last
n samples, i.e. the variance of each acceleration between
[k-n] and [k].

The integration might be done more smoothly by re-designing this
algorithm in SIMULINK.

INTEG.M
function vout=integ(vect)
% Integrates function numerically at 50 Hz
% Mohan Gurunathan
% 5/6/98

K = length(vect);
sm=0;

for i=l:K,
sm=sm+vect(i);
vout(i)=sm;

end

vout=(vout')./50;

end;

119

_ IIILILIXW__YI__~__YCIIIIY -^ -~lll)lie~ltl-~-L1~ --^-LIPI ~_~I*-(I~IPL-~. I i ̂ -~LI^.- - -1I1II~- ~ III~~--- 1I-YIIII -~YYf~YZlsY -I~- YP-~DYYIUL- l~n~D--~l~sPIIII

Appendix D: Hydrodynamic Coefficients

The following coefficients were used in the SIMULINK model described in Section 4.1.

They are for the most part standard hydrodynamic coefficients representing physical

characteristics of the fish such as mass, moment of inertia, center of gravity, center of

buoyancy, drag and skin-friction coefficients, etc. These numbers are the first crude

estimates produced for the fish, and are the only ones made available at the present time.

Therefore they may need to be revised in future models.

m = 136.36kg.

X, = -10.9kg.

Xwq = -122.4kg.

X -3.9kg

p 10 0 0 kg

A = 105.5in2 = 0.06806m 2

Zw = -122.4kg.

Zq = 10.9kg.

Z = -300 kg
W m

I, = 48.5kg -m2

M = -29.1kg - m2

M = -100 kg
q m

M w = 111.5kg.

ZG = +0.20m.

ZB = -0.20m.

W = B = 3001b.= 1336.4N

Inputs: Fxthrust '

State Vars:u,w,q,x,z,8

~_lru--rrr^- ------ rrar*-.--.~~~.. I-- -^-l~--C -LI--~----rrur~ ---~~CPI P~~ -i~rrl~f~-------~-UI-i3i~

