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Abstract

A system was developed that uses an IR laser diode to fluoress an ink that absorbs at 785 nm and
has emission at 830 nm, and a CCD camera is used to capture this low strength ink emission.
There are many things that have emission in this band, and for this reason, the signal-to-noise
ratio is very small. Robust methods were developed to deal with the noise in the viewable
frame. The Perturbation/Correlation method is the most noteworthy method, and uses a sine
wave superimposed on a DC value for laser intensity, and then monitors the change in intensity
of the returned signal over this perturbation in laser intensity. These changes in viewable frame
intensity are then correlated to the known perturbation in laser intensity, giving a large
enhancement in the signal to noise ratio.

With the development of noise reduction methods that would result in a greater S/N ratio at any
given laser power, the next step was to classify the noise in the viewable frame. The
characteristics of the noise were investigated to determine when and how the signal processing
techniques should be applied, as well as to give a general classification of these sources of noise
for later intelligent scan planning.
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Chapter 1: Introduction

One of the main obstacles to home automation, such as home robotics, is the inability to locate

and identify thousands of objects in this highly unstructured environment. In a well-defined

environment, such as a laboratory, pattern recognition techniques have been used to identify and

locate a few items within a small area of search. However, in the home environment, this

stringent definition of environment does not exist. For this reason, a totally non-intrusive system

was developed to locate and identify objects without any requirements placed on item orientation

or search area.

1.1 Background and Motivation

Since there would be many thousands of items to identify within a large search area, emphasis

was placed on computational efficiency for all applicable image processing. Since it was to be

used in the home, the system had to be non-intrusive as well as meet ANSI standards on eye and

skin safety. Also, steps were taken to insure that a good item identification had taken place,

since mistakes at this level could prove costly to home occupants.

To illustrate the motivation of this project, Figure 1.10 depicts a typical kitchen table. The items

on the table have a variety of shapes, sizes, and orientations. Some have clear surfaces, and

others have opaque surfaces. The point of grip is different on each item. It would be very

desirable to have a system that could easily identify the objects and locate them in three space,

and from a database, pull information such as point of grip and special handling instructions.

With consideration of the home environment, it can be seen that the system that was to be used

had to be able to locate and identify thousands of items quickly and accurately, and do this in a

safe, non-intrusive manner. The objects would have to be identified at distances up to the

maximum dimension of the room of placement. Many different types of systems were

considered that might be able to locate and identify objects. A Pough chart was used to rate

these different approaches based on our criteria (See Figure Al in Appendix A).
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Figure 1.10: A Difficult Problem for Most Recognition Systems

Figure 1.11 is a summary of four different identification methods that were seriously considered,

with the main pros and cons of each listed.

Object Location and Indentification (The Possibilities)

Active Elements: Transponders Bar Codes
and Element Interrogation

+ Accurate Identification + Unlimited Object ID+ Accurate Identification
- Minimum Size and Power + Accurate Identification

Requirement - Noticeable
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and Shape Identification
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- Computationally Intensive
- Limited Object ID
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* SAFETY (ANSI Standards, Common Sense)

* COST (Standard Components, Modularity, Scaling, Complexity)
* ROBUSTNESS (Tracldking Rate, Noise Considerations)
* AESTHETICS (Non-Intrusive?)

Selection Mlatrix Indication: Develop a Bar Code Based Object Location and Identificatioin SN stem.

Figure 1.11: The Four Most Popular Methods of Object Identification
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As can be seen, transponders would be a desirable option for their accurate identification, but

would fall short due to their minimum power and size requirements. Bar codes would also be

desirable for their unlimited object identification capability, but would violate the "non-intrusive

requirement." Structured lighting and pattern recognition would be fairly undesirable based on

their computational intensity and the limitations on the number of objects that could be

identified. From these considerations and the construction of a Pough chart, it was decided that

a bar code reading system would be used, but due to the visibility of the bar code, steps would be

taken to make them invisible so as to fulfill the non-intrusive requirement.

A system was developed that could read bar codes printed in laser dye, which is normally used

in tunable cavity lasers to change the wavelength of emission. The system developed is

composed of a laser diode that emits at 785 nm and fluoresces a laser dye that has peak

absorption at this wavelength. The ink emission is at 833 nm, and a CCD camera that is

sensitive in this near IR region is used to capture this emission signal. Since both the laser and

ink emission are at wavelengths above what the human eye can see, both the activation and

acquisition are invisible to the human, meeting the non-intrusive requirement.

The laser dyes that have absorption and emission in the near IR also have low quantum

efficiencies associated with them, which is just the ratio of photons returned in emission to the

total photons that are used to fluoress the ink. Due to this low returned signal strength, very

robust signal processing methods had to be developed to enhance the signal-to-noise ratio (S/N).

With every increase in S/N ratio, the laser power could be reduced, making the system even

more eye and skin safe. However, with too great a reduction in laser power, the S/N ratio would

drop and errors in the read would occur.



1.2 Previous Work

In the development of an invisible coding system with vision-based signal acquisition, there

were many good pieces of research to reference over the past years. With regard to the

development of a readable bar code in three space, the design of the bar code geometry was of

particular interest in that particular visual cues may be used in the determination of shape [1][2].

Much work has been done with regard to light modulation and developed knowledge of

reflection characteristics in object identification [3][5][6] [11][ 15] [16]. Some work has also been

done in the other direction, using shadow information to determine surface characteristics [8].

As far as the methods that have been traditionally used in the determination of object identity,

many good methods were found. One method was a straight correlation of static object images

to references sets of object images [18][30][31][32][33][34][35]. A second method used object

contours for object identification. A last method used non-rigid models of object motion for

object identification, which is more of a dynamic analysis of a scene [43][45].

Many comparisons have been made between the amount of information that can be obtained

from successive acquisition of single perspective views [21][22][23][26][54][57] and

simultaneous, different perspective or stereo views of an object [12][13][14][29][49] with regard

to depth and location accuracy. This information then leads into the application of object

tracking and motion estimation, in which many research works have done

[36][44][46][47][48][50][51][52][53][55][56][58].

One interesting direction that can be taken when a system exists that can track objects is the

recognition of human intention. By analyzing the motion, human intention may be inferred, as

well as some idea of environment makeup, which can be found when looking at sudden changes

in trajectory which indicate an obstruction. In this analysis, if correct intention can be

determined then the motion itself, if reproduced mechanically, may be cleaned up and spurious

motion removed. Several references were found that dealt with these ideas

[7][9][10][20][38][39][40][41][42].



One problem that was found in object bar coding was the fact that the bar code may be occluded

at times, either from other objects or it's own body. Two very good references were found that

dealt with this problem [4][36].

Several books were found for general reference in image processing, signal detection and signal

design for ease in acquisition [59][60][66]. For consideration of general imaging challenges, an

article that was an overview of the basic concepts in vision based system's was found [68].

On the hardware side, many references were found. The problem of image variance between

difference acquisition systems had to be addressed [25]. Understanding of color information

gathered from a CCD camera with regard to the signal wavelength was needed [17]. To identify

many thousands of objects, a well-structured object database is needed [19]. In search of an

efficient coding method, many references were found dealing with digital coding and error

checking [62][63][64]. Also, for future application of this research, a need exists for parallel

processing and code refinement for computational efficiency [27][28].



1.3 Scope of this Research Work

This research will address such issues as the system architecture, the signal processing

algorithms used to deal with the low signal strength, and some work in the description of the

noise in the viewable frame. Modeling of the proposed system was used to find component

interaction relationships to be used at the design level. Some alternate designs will be presented

with regard to light diffusion and modulation, and some ideas for future applications of this

work will be discussed.

Some possible applications of this technology is in object location and identification of parts in

parts feeders, counterfeit checking, spotlight tracking of performers, surgical tool preparation,

stamp and money counting, and any inventory or logistics system. A provisional patent exists on

this system.



Chapter 2: An Invisible Code System

With the basic class of design solution set, requirements could be set for this approach. The

requirements for this bar code reading system are simple and will be stated briefly. This system

must be able to locate and identify, in three dimensions, all objects within a home environment

that have been bar coded, and do so in an efficient manner. It is desirable to have an overall

system that is totally invisible to humans, from the fluoresced ink to the light activation system.

The reader must be able to read a bar code at a distance equal to the largest dimension of the

largest room of the house, and the bar code must be of a size that can be mounted on small

curved surfaces, such as on the handle of a coffee mug. The bar code must be able to be read

correctly each time with some redundancy in error checking provided. The power flux provided

by the laser and diffusion\expansion elements must be high enough for ink detectability at a

given distance, but low enough to maintain eye safe requirements as set forth in the ANSI

standards. The ink\solvent combination must be non-toxic and non-flammable, with the

required viscosity a function of the printing method employed.

In addition, Figure 2.00 shows the six main categories of design issues that were of concern in

the development of this system.

Figure 2.00: The Main Design Issues
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2.1 Principle of Invisible Code Systems

A system was desired that could be totally invisible to the humans within the home environment,

as well as provide a signal that could be easily differentiated from noise. To accomplish this, a

detection method had to be found that would detect at wavelengths above or below what a

human could detect. A silicon CCD chip was found to have a spectral response that started at

around the same wavelength as the human eye, but extends roughly 200 nm above the top end of

the human eye. Figure 2.10 gives a graphical illustration of this feature. The red area denotes

the desirable design range for picking an ink and its corresponding detection system.

Quantum
Efficiency E

1-

400 Wavelength (nm) 750

Ink Absorp

Laser Diode
Emission

Notch Filter absorption/emission
range

Wavelength (nm)

Figure 2.10: The Spectral Responses for the Human Eye and a Typical CCD Chip

Some basic design rules were developed at this point to constrain the design direction for the

laser dye activation system. First, the bottom end of the ink absorption curve must be higher

than the top end of the human eye spectral response. Specifying this rule leads to a search of all

inks/dyes that have absorption at just above 750 nm, the top end of human spectral response.

Second, the peak of the ink emission curve must be below the top end of the CCD spectral

response. This rule is intended to keep the cost of detection relatively cheap, since cameras



designed specifically for IR applications are upwards of $10,000, and a monochrome CCD

detector can be obtained for a few hundred dollars. Third, the top of the laser emission curve

must be below the bottom end of the notch filter response curve. If this rule were not obeyed, a

very intense noise source, the laser, would be introduced, making detection of the low strength

ink emission very difficult. This also gives motivation for finding a laser source with a fairly

narrow wavelength operating range. The fourth rule that was used to select an ink\activation

system was that the product of the quantum efficiencies for the camera, camera optics, ink, and

filter must be such that at a given laser power flux, the ink is detectable. This is the most

limiting rule, and does not take into consideration such issues as light diffusion and search time.

Finally, the "nominal" power flux provided by the laser source/diffuser combination must still

be eye safe. A strong coupling between laser light diffusion and signal detectability should be

noted. Figure 2.10 also shows the values of the ink absorption and emission, laser emission and

the notch filter pass range for the given system.



2.2 System Configuration

With great consideration of the above issues, as well as some trial and error with different inks

and their respective absorption and emission wavelengths, a combination was found that seemed

to meet the design requirements. Figure 2.20 gives a functional block diagram of the developed

system.

The system consists of a laser diode that emits at 785 nm with a nominal power of 20mW. This

emission wavelength is the peak absorption frequency of a special formulation of IR 125 laser

dye and solvent. This solvent/dye combination has a peak fluorescent emission at 833 nm. This

laser light is taken through a spatial filter to reduce the effects of spatial aberrations in the laser

source optics and provide a nice gaussian distribution in power. This light is then taken though a

double convex and concave lens combination that is used to expand the 6.96 mm elliptical beam

to 42 mm (1:6).

On the side of image acquisition, the image is taken through a notch filter with a pass range of

825-835 nm, with the center wavelength roughly the wavelength of the peak ink fluorescent

emission. This is passed through a 10:1 motorized zoom lens. Three channels of D/A are used

to control the iris, zoom, and focus of the lens, and one channel of A/D is used to bring in the

zoom position information.

Since the ink emission signal is fairly weak due to a low quantum efficiency (measured

experimentally to be less than 15%), an image intensifier was used to amplify the light signal by

a factor of 30,000. A monochrome CCD camera is then used to measure this conditioned image

intensity signal, with a PCI bus frame grabber used to bring this information into the computer.
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2.30 The Signal: Evolution of the Bar Code

Up until now, all of the focus has been on system development and methods to deal with the

presence of noise in the viewable frame. However, there has been some clear changes in the bar

code from the original 1D bar code.

Figure 2.30 depicts the original 2D bar code that was used to replace the iD version. It consists

of three dots that are used for orientation information, and a four by four matrix of dots that are

used to give 16 bit identification.

This bar code is read by first identifying the reference points which are at the extreme edges.

Then, the distances between the reference points are measured in frame pixels, and used to give

a spacing value for the pixel reads. Angles are computed that relate the orientation of the bar

code to the frame array, and these angles are used in the coordinate transformation to the bar

code coordinate frame. Also shown in Figure 2.30 are the important angles and lengths that are

measured. With the pixel read spacing calculated, the center of each bit of the identification

matrix can be checked for fluorescence (a 1) or no fluorescence (a 0). However, since nothing is

perfect, some error is introduced due to integer roundoff\discretization in the measurement of the

angles and reference distances, as well as from aberrations or inconsistencies in the bar code

print.

Early on, there were many problems maintaining an accurate bar code due to ever changing

lighting conditions, changes in background reflections, and an ever changing magnitude of

noise. A need was present to implement a parity check, and one that could be used on not only

the rows but the columns as well. For this reason, a fifth column and row were added to the bar

code and serve as nothing more than an even (or odd) parity check (also shown in Figure 2.30).

The point where this column and this row meet is termed the "redundant parity check bit," in

that a change in any row or column parity bit will cause a corresponding change in this bit.
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One of the more difficult challenges in this project was to know where to set the threshold to

capture the bar code position and identification information. From experience it was observed

that the magnitude of the noise and the magnitude of the signal are of the same order. This

means that, without any noise removal methods, the threshold must be very precisely set to

avoid bogus information. To reduce the probability of an incorrect threshold selection, the "

Asymmetric Calibration Patch" was added. Since the positional errors propagate outwards from

reference point 0 due to roundoff error, the patch was placed at the extreme end across from this

reference point. This works in such a way as to allow the iterative selection of a threshold based

on a measured read of the expected values for this patch. If the expected "l's" are being read as

"O's", the threshold needs to be lowered. If the expected "O's" are being read as "l's", the

threshold needs to be raised. From this, a range of suitable thresholds can be found, which gives

insight into the signal to noise ratio.

At this point, all of the bar codes have been printed using a stencil printer. With the given

stencil dimensions, the resulting bar code is a 0.325" (8.25 mm) square without the parity bits

and calibration patch, and 12 mm with these features included. The ink dot drops were on the

order of 15 mils. In the future, it is hoped that this technology will catch on, and manufacturers

will apply these bar codes to their product.



2.4 An Alternative Approach to Light Modulation

Up until now, the light modulation has been through motion of a pan and tilt, which, because of

it's weight, is very slow. The light diffusion is accomplished through a galilean beam expander,

but other methods of diffusion were tried. With the current setup, the more the laser is diffused,

the less signal that will be received at the CCD. To measure the emission of the ink at varying

radial distances, a motorized zoom lens is used, but there is definitely time associated with this

process when changing fields of view. The frame rate of the frame grabber is the limiting factor

to search velocity, and for these reasons, an alternate design was made for future implementation

of this technology.

Figure 2.40 depicts a two-axis galvo scan system. The laser diode beam is taken through a

collimator and is reflected off the notch filter (this works since the filter blocks this wavelength).

This light is then taken through the two axis's of the galvos, and when it returns, the image

returns on the same axis of the outgoing beam. The part of the image that corresponds to ink

emission is then passes through the notch filter. This is taken to a mirror-type beam splitter that

breaks into two perpendicular beams of 50% power each. These beams are then taken to another

set of beam splitters which splits them again. The overall beam (image) intensity is now 25% of

the original beam intensity. At the output of each beam splitter a double convex and double

concave lens are used to give a fixed magnification zoom, and another double convex lens is

used to make a radiometer to focus this image energy on to an avalanche photo-diode. Four

distinctly different magnification settings are used to a system that can, almost instantly, look at

four different radial ranges. This removes the slow zoom and focus of the motorized zoom lens.

The avalanche photo-diode was selected because it produces a current proportional to intensity

but with a very large gain. The sample time for these modules can be up to 1012 Hertz, which is

compared to the 30 Hz frame rate of the frame grabber.
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Chapter 3: System Modeling

With the hardware selected, it was time to take a look at the processes involved starting from the

image activation to the image acquisition, and everything in between. This chapter deals with

the modeling that was performed to get an idea of the interaction of the components within the

design, as well as to give insight into design changes that could be made to give more weight to

the signal with regard to the noise.

3.1 Modeling of the Ink Fluorescent Emission and Capture

With the selection made for the ink, laser, and notch filter, it was possible to find some relations

between the laser power, quantum efficiencies of the camera, optics, filters, and ink, and the

CCD frame dimensions and to relate this to a signal to noise ratio. For this derivation, some

basic assumptions had to be made:

-Assume the laser is perpendicular to the fluoresced material to give a circular and not an
elliptical coverage area. This also assumes that the laser has a circular beam and not an
elliptical beam.

-Although the laser is gaussian in power and wavelength, assume an RMS value at a given
wavelength, and assume it is constant over the coverage area. This makes it possible to say all
of the laser energy is at a given wavelength X a-

-Assume that the laser beam diameter is less than the diameter of the ink substrate so that all of
the laser photons are used in the fluorescence process.

-Assume that the full CCD array sees the emission, and that there is no dead space between
pixels.

-Assume other sources of light at ink emission wavelength are negligible for contribution to
measured intensity.

-Assume no blockage of incoming light due to improper use of the iris.

-Assume that the CCD area is much less than the surface area of the virtual sphere of radius L
from the laser source to the fluoresced ink.

-Assumes the number of photons incident on the CCD is less than some saturation value.

-Assumes there is no divergence to the laser beam (perfectly collimated).



By knowing the laser emission wavelength, X,, it is possible to calculate the energy of one light

photon at this wavelength:

Shc
E = (3.101)

Xa

where h is plank's constant (6.626x10 -34 Js), c is the speed of light in vacuum (3x10 8 m/s), and

E is in Joules. By knowing the power at which the laser is operating, it is possible to calculate

the number of photons per second, T, , that are emitted by the laser:

t- Ps a  
(3.102)

he

where P, is the operating power of the laser source. The number of photons returned (4 R), per

second, from the fluorescent emission is related to the number of photons into the process

through the quantum efficiency of the ink, ,li, evaluated at the absorption wavelength:

_R = (3.103)
hc

These photons are returned to the environment in a "half-sphere" manner, as shown in Figure

3.10:

Laser

Sphere f Emission

Substrate

Ink

Figure 3.10: The Sphere of Photon Emission

The photon flux is related to the surface area of this half sphere and the total number of photons

returned per second:



" = R (3.104)
2nL

where L is the distance from the fluoresced ink to the CCD detector. If each pixel of the CCD

camera detects these photons, the number of photons per second to the CCD may be determined:

,CCD = "x LYLI1z, eIlc le (3.105)

where xL and YL are the horizontal and vertical dimensions of the CCD array, rl is the

quantum efficiency of the zoom lens, l,, is the quantum efficiency of the camera optics, and iq f

is the quantum efficiency of the notch filter. These efficiencies are evaluated at the fluorescent

emission wavelength, X,.

CCD = (XLYLLz 1eic lelf le (3.106)

Given the shutter time of the camera, t, it is possible to determine the number of photons that

hit the CCD in one shuttered frame. It is also possible to determine the number of photons

hitting an individual pixel over this same time if the horizontal and vertical pixel resolution

values, P, and P,, are known:

pixel = CCDts (3.107)
PHPV

Combining the above equations gives:

= PsatsXLYL1zl X1e9CXelf l elila (3.108)
Spixel = L2hPH(3.108)

2L2hcPHPV

At the CCD detector, a current is produced that is proportional to the measured intensity through

a gain gp, (mA/photon), which relates the number of photons hitting the pixel to a current. This

current is converted to a voltage through gain g,, (volts/mA). The voltage range of the A/D can

be denoted as R., and is normally 5V. The digital value range can be denoted DA. For an 8

bit A/D, this value is 255. Using this information, a rough idea can be formed as to the number

of photons hitting a pixel based on the measured digital value, Nm, representing intensity:

S=PsXatsXLYLlz 1Xeicle hlf el i Ma gpigivDD 1(
Nm =int 2 2 hPPRA (3.109)m 2nL2 hcPH PR A



It should be noted that there is a saturation value to the number of photons that may enter and

still be detected:

AT RAD (3.110)

gpigiv

Due to the discrete nature of the measured digital value, a range of incident photons may give

the same measured digital value. Now that a relation has been developed to relate the measured

digital value of a CCD to the laser power and wavelength, and the characteristics of the optics in

between, a more general form may be developed. A summation may be made for the power

source, over all wavelengths, of the energy due to a light photon at that particular wavelength,

and noting that each element's quantum efficiency is also a function of wavelength:

( I Ps(X)rlz,(X)qc( )lnf (X)9i(X)X)tsxLYLgpigivDAD
= it =(3.111)

2nL2 hcPH PV R AD

At this point, it is possible to consider laser emitters that are slightly divergent, and are not

circular but elliptical. Let the major and minor axis diameters be d, and d2 , respectively, and

the divergence angles from the major and minor axis 0 and 4, respectively. Figure 3.11 shows

the beam divergence variables. The new diameter, larger due to the divergence of the beam over

a distance L, is given by:

d1 = 2LtanO +d1  (3.112)

d 2 = 2Ltan4 + d 2  (3.113)

Z d1

z d1

Figure 3.11: The Laser Beam Divergence



The area of the resulting ellipse, at the fluoresced object, is just the major and minor axis

multiplied by a constant:

Al = -- dl d2  (3.114)
4

or

A1 = -[2Ltan0 +dI12Ltan +d 2 ] (3.115)
4

At this point, it would be appropriate to include a beam expander term. Assuming that there is

no change in the divergence angles, and given a magnification factor L,, the area A1 is

increased by a factor of LMF

Ai = A 1L2F (3.116)

and the passed photons are affected by the quantum efficiency of the expander, I,:

( E Ps()9z( )lc(r )qf(X)i()qle(X)X)tsxLYLgpigivDAD
N = int 1=0RD (3.117)

2ntL2hcPH PRA

If the laser emission totally covers the bar code substrate, but there isn't ink everyplace that is

covered by the laser ellipse, then a simple area ratio adjustment must be made. If there are n ink

points of diameter d3 composing the bar code, then the following is the adjustment that can be

made to equation 3.108 to give the actual number of photons returned due to the ink dots:

, ixel = pixel (3.118)
Al

where the area of the bar code, Abc , is:

Abc nd3i (3.119)
4

which leads to:

nd pixel (3.120)
4 pixel 2pel L [2L tan +dl 2Ltan4 +d 2]

Modifying equation 3.117 appropriately gives:



( Ps(A) zl ()c()( )qf( )ri(X)rle(X))tsxLYLgpigivnd DAD

m 2= 2L 2 hcPHPVRADL2MF [2L tanO + d 12L tank + d2 ]

Most of the earlier assumptions have been eliminated. However, the above equation still

assumes that the full CCD array sees the emission, there is no dead space between the pixels, and

the number of photons incident on the CCD is less than some CCD saturation value. There is

also the assumption that other sources of light at ink emission wavelengths are negligible for

their contribution to the measured intensity, that there is no blockage of incoming light due to

improper use of the iris. Also assumed is that the CCD area is much less than the surface area

of the virtual sphere of radius L. These all seem to be reasonable assumptions, except possibly

the assumption about a total absence of noise in the form of other sources of light photons.

If equation 3.121 is said to be the measured intensity due to signal only, it is possible to modify

this equation with a noise term in the following manner, where Noise is the photons, per pixel,

due to noise:

00 2

NM = int tsxLYL pigivDAD X= +Noise~k) (3.122)
2 i L2hcPHPtVRA L [2L tan0 + dI2Ltan +d 2 ] Noie

As shown before in Figure 2.20, an image intensifier is used to amplify the viewed light signal.

This is inserted between the camera zoom and the camera. This intensifier amplifies the light

signal by a gain L,, and also shifts the wavelength by Xs. This only affects the quantum

efficiency term associated with the camera. There is also a quantum efficiency associated with

this element, lap:

igtxLyLgpigivD Lg ( oPs(X)lz(X)Tlc(X -XS )q f(X)ie( -)ap( )X)nd'  (3.123)

N 2L 2hcPHPVRAD L2y [2LtanO + di2Ltan + + d 2]

Figure 3.12 summarizes the elements in the design with respect to the component variables.



Figure 3.12: Photon Counting

It should be noted that the image intensifier amplifies not only the signal, but the noise as well.

With this in mind, a signal to noise ratio can be defined, which is the ratio of the signal variance

to the variance of the noise:

a 2 4piel (3.124)S/N =
a4 Noise

This ratio may be determined experimentally by taking a frame with the laser on and with it off,

positioned to point to a bar code. With the laser off, the spatial deviation of the resulting frame

can be found and used for the noise component value. By taking a filtered version of the "laser

on frame" and calculating the square of this deviation, the signal deviation may be

approximated. This method is only approximate, since the true signal deviation may change

slightly due to the filtering.
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3.2 The Optics

Up until this point, the assumption that every pixel sees the bar code photons equally has been

used. However, relations can be developed to find the number of pixels in the CCD frame that

actually "see" the photons, as shown in Figure 3.23. The following is a list of variables that are

used to find these relations:

Z
LFL
L
cf

fovH
fovv
Pv
PH
XL
YL
XBC

SH,BC

Svac

a
J3

= zoom setting
= lens focal length
= distance to the bar code
= camera format
= field of view, horizontal
= field of view, vertical
= vertical pixels in frame
= horizontal pixels in frame
= horizontal dimension of CCD chip
= vertical dimension of CCD chip
= horizontal dimension of bar code
= vertical dimension of bar code
= number of horizontal pixels that see the bar code
= number of vertical pixels that see the bar code
= horizontal rotation angle of bar code respect to the camera plane
= vertical rotation angle of bar code respect to the camera plane

Figure 3.23: The Camera Optics

The distance, d, from the camera lens to the viewed object (bar code) can be found by

multiplying the zoom setting by the lens focal length and the horizontal field of view, and

dividing by the camera format:

Distance of Zoom Lens
I _ to object, d _

Cce

iC



d = Z(LFL)(fovH) (3.225)

cf

The horizontal and vertical field of views are related by:

fovH = -fovV (3.226)
r

where r is the ratio of the number of vertical pixels to the horizontal pixels for a given CCD

chip:

r= (3.227)
PH

This gives the following two expressions for the horizontal and vertical field of views,

respectively:

fV,H f )(d) (3.228)
(Z)(LFL)

r(c f)(d)
fov,v = (3.229)

(Z)(LFL)

The distance d varies according to the following:

d = L- LFL (3.230)

The ratio of the projected horizontal bar code side (xcosa) to the horizontal field of view is

equal to the horizontal pixels of the CCD that see the bar code (S,c) to the total horizontal

pixels (P, )of the CCD:

xBC cosa SH,BC (3.231)

fOV,H PH

A similar relationship can be found for the vertical direction:

YBC cos SV,BC (3.232)

fov,V PV

Solving for the number of pixels seeing the bar code in the above two expressions, and

substituting what is known about the horizontal and vertical fields of view, the following two

expressions can be given:

SHB C  (Z)(LFL)xBCPH cosa (3.233)
(L - LFL)(cf )



SH,BC = (Z)(LFL)yBCPH cos (3.234)
(L - LFL)(cf )

Multiplying the above two quantities, an area, in pixels, that see the bar code can be found. To

find the actual number of pixels that are "lit" from the bar code presence (Sut) it is possible to

ratio the area of the bar code dots to the total area of the bar code, and multiply by the pixel area

that sees the bar code:

Slit = SH,BC SV,BC (nid / 4) (3.235)
xBC YBC

It should be noted that dividing both sides of equation 3.235 by n gives the number of pixels lit

per bar code dot, which can be used at the design stage to specify the minimum number of pixels

required to give a measured "high." When specified, this information can be used to eliminate

spatial noise in the viewable frame.

Simplifying the above equation and solving for the pixels lit per bar code dot, as well as a

conversion between square feet and square inches:

Slit  (di ) ((Z ) (LFL)(PH))2 osa os (3.236)
cosa cos P (3.236)

n 576((L - LFL)(f ))2

Assuming that the Length L to the object is much greater than the Lens Focal Length

(L>>LFL):

Slit (ndi2 )((Z)(LFL)(PH ))2 cosa cos P3 (3.237)
n 576((L)(cf ))2

The above equation can be used to set a length L in feet and maximum bar code rotation angles,

a and 01, and based on the camera zoom optics, calculate the number of pixels lit per bar code

dot. It should be noted that the dot diameter, d,, is in inches, and the lens focal length, LFL, and

camera format, c, are in millimeters. If it is desired to calculate the maximum distance L,,. that

the object can be at and still provide a given number of pixels lit, the following applies:

(ndL )((Z)(LFL)(PH))2
ax= c2 osa cos P (3.238)

5 7 6(cf ) (Slit / n)



A relationship exists between the bar code dot diameter and the actual size of the bar code. A

ratio must be given for the dot diameter to the "space" length for a given template, since the dots

will not be exactly next to one another. Assuming a square bar code and a ratio R,,., as well as

m array columns for the signal and parity checking, the following relationship exists:

Xbc = Ybc = mRd 3 ,sd 3  (3.239)

Plugging in a modified version of equation 3.237 into the above equation, it is possible to see the

effect of changing the system parameters on the overall bar code size:

X 576(Si t / n)((Lmax)(cf ))2 (3.240)
Xbx = Ybc = mRd3,s (3.240)

( )((Z)(LFL)(PH))2 cosa cos (.

It should be noted that the above equation is meaningless for bar codes that are perpendicular to

the camera plane. Also, the accuracy of the 2D location information is dependent on the pixel

resolution of the camera, which is dependent on the zoom setting and view length. The

resolution Rp,, is in inches/pixel and L is in feet The horizontal resolution is used, since this

value is larger than the vertical resolution:

Rp,h = f )(L) (3.241)
S (Z)(LFL)(PH )



3.3 Design Considerations from Modeled System

As can be seen from the previous sections, much design insight can be obtained through proper

tracking of photon movement through the system as well as some consideration of the optics and

bar code geometry. By analyzing equation 3.123, it can be seen that to increase the actual signal

part of the measured photon emission, many design adjustments can be made. The laser power

could be increased, which would give more returned photons from the ink emission, or the

quantum efficiencies of the notch filter, beam expander, zoom or image intensifier could be

increased within the wavelength of ink emission and reduced in the other wavelengths. The bar

code dot size could also be increased, increasing the number of returned photons for the same

laser power. On the reception side, the CCD surface area could be increased, which basically

increases the view factor from the bar code to the CCD. The sample time could be increased to

"count" photons for a longer time, which is "time averaging." The distance from the bar code to

the camera could be reduced, which would give a disproportional increase since the returned

signal would quadruple for a halving of this distance. The same idea applies to the beam

expander; for a one half reduction in beam expansion, the signal would be four times as large.

Of course, one of the more important considerations is the reduction of the noise around the ink

emission wavelength. Since this is very hard to do with pure hardware solutions, other methods

were found to get past this problem. This is the subject of chapter 4.



Chapter 4: Methods to Increase the Signal to Noise Ratio

In the first system which used UV activated ink, the problem of a small signal to noise ratio was

addressed in depth. A technique dubbed the "Perturbation\Correlation Method" was developed

that worked fairly well to reduce the effect of noise in the viewable frame.

4.1 The Perturbation\Correlation Method

The Perturbation\Correlation Method is designed specifically to increase the signal to noise ratio

by actively changing the parameters that are known to bring the most change in the signal, and

then performing a correlation to the known perturbation input. For this application, the ink was

known to fluoress at a given wavelength, and the fluorescent emission strength was a function of

the power of the light source at this wavelength.

Due to a lack of sensitivity to this parameter change, the magnitude of the noise remains fairly

constant over this perturbation. When a correlation is made between the noise+signal

measurement and the perturbation, the noise falls away due to a weak correlation and only the

signal, the ink spot, remains. It should be mentioned that this method need not be restricted to a

power variance of the light source, but could be applied to any measurable parameter that is

sensitive to perturbation.

For the case of this application, a sinusoid perturbation in light power is applied, and a certain

number of frame array (intensity) are sampled over the sine period, and for each frame, a spatial

gradient is performed. This gives an idea of the areas of the frame that are most sensitive to the

given perturbation. A sequence is then formed that is composed of pixel intensity values for the

same pixel over the many frames, and a discrete time correlation is made of this sequence to the

perturbation input. Figure 4.10 gives an illustration of this concept.



Figure 4.10: Discrete Sampling of Intensity Gradient for a Pixel Over Many Frames

The sequence that would be made would be the following:

Y[n,i,j] = [ Ao(i,j), A(i,j),A2 (i,j), A3(i, j),.,.,AN(i, j)] (4.101)

This sequence would then be correlated to the power perturbation sequence:

X[n,i, j] = [B0 + B1 sin(2nn/Tk)] (4.102)

At this point, an argument can be made that each pixel is not independent from one another, and

in fact, there is a "smearing" between pixels when creating a composite signal. Knowing that

the brightness of one pixel is the weighted superposition of the brightness of each of the

neighboring pixels plus a nominal brightness, a new matrix can be found that accounts for this

neighboring effect form the correlation matrix.

A square Laplacian matrix can be composed to "weight" the value of each of the neighboring

pixels contribution to the overall pixel brightness. The number of elements of one row should

be made proportional to the distance from the detector to the fluorescent emission. This can be

interpreted to mean that the further away the object is from the detector, the less area of the CCD

actually sees this emitted light from the object, and the less the contribution of neighboring

AO(i,j)

Al(i,j)

A2(i,j)

Grabbed Camera
Frame Arrays

A3(i,j) 0

AN(i,j)



pixels to the pixel intensity. If the object is very close to the detector, then most all of the CCD

pixels see the same light, and the more of a contribution that the neighbor pixels make.

For example, consider a 3x3 chunk of the correlation array, f(i, j), and a Laplacian of weights,

W(i,j):

foo i o f2o0

f(i,j)= ffo1 il f21 (4.103)

f02 fi2 f22

w(i,j)= 2 4 2 (4.104)

A new value for the center correlation coefficient, f1,, can be found:

m=+1 n=+1
fil= E Xf(m +1,n+ 1)W(m +1,n+1) (4.105)

m=-I n=-1

This new factor can then be normalized by the factor s :

m=+1 n=+1
S = E W(m + 1,n + 1) (4.106)

m=-lIn=-1

This operation is then performed for each element of the correlation matrix, with the result a

matrix that accounts for the brightness of the neighboring pixels.

Figure 4.11 is a block diagram of the Perturbation/Correlation method.
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4.2 Verification of the Perturbation\Correlation Method

Within the software developed for this identification system, the perturbation/correlation was a

method that was applied to "pre-process" a region of interest (ROI) when the noise in the ROI

was of the same order as that of the signal. The signal, in this case, was a 2D bar code that used

a four by four matrix of ones (an ink dot) and zeros (no dot), with three reference dots. The bar

code was a 0.325" (8.25 mm) square without the parity bits and calibration patch, and 12 mm

with these features included. The ink dot drops were on the order of 15 mils.

It should be noted that the light source was a 30 mW laser diode emitting at 785 nm, but for the

use of this type of active image processing technique, any light source could be used that could

be modulated (not with the given ink, though).

The laser power perturbation was produced by feeding a sinusoid in current to the laser diode

driver. This AC current was superimposed on a nominal DC current that was used to forward

bias the diode. The resulting power from the diode in the form of photon emission at 785 nm

was proportional to this current.

I = I o + A sin( 2nn /s) (4.201)

Io is the DC current value, A is the magnitude of the sinusoid perturbation in current, n is the

discrete sample number, and s is nothing more than a frequency divider. For the lab prototype, a

value of 20 was used for s.

It should be noted that for very long camera-to-object distances, a sinusoidal variation in laser

power will still work, but the intensity magnitudes are so tiny that it is impossible to detect the

variation with the CCD camera without some conditioning optics such as a zoom lens. Also, the

software searches for an appropriate value of Io by looking for the largest changes in correlation

magnitudes from one frame process event to another. This, in effect, adapts to changing

distances to the viewable object, as well as changes in the characteristics of the forward bias

level of the diode.



Twenty CCD frames were taken from a trial run of this method in the prototype software, and

are included in appendix A. Frame 5 corresponds to the frame grabbed with the least laser

power out in the perturbation sequence, and frame 15 corresponds to the frame that was grabbed

with the most laser power out. Figures 4.21 and 4.22 depict various views of the sensed

intensity for frame 5 and frame 15. These figures should be compared carefully to appreciate

the "noise" problem that results. Noise in this setup can come from reflective surfaces, objects

that contain a similar color makeup spectrum, or light sources. Since the ink that was used for

this experiment fluoresces at about 830 nm, which is near IR, there are many items that can fall

within the same bandwidth and confuse the read. Tungsten filament lamps and sunlight

reflections are the most common sources, since they have a wideband spectral emission.

The actual bar code "signal" is the sharp peaks that can be seen clearly in the middle of the

frame, with the outlying edges containing the noise. The side view of Figure 4.21 clearly shows

the problem that is faced in reading the bar codes in distinguishing the bar code from the

surrounding reflective, since the signal and the noise are of the same order.

In the beginning, a correlation was made between the perturbation sequence and the intensity

information; a sample of this can be found in Figure 4.23. As can be seen, the signal to noise

ration is greatly enhanced, but noise is still a problem when setting thresholds. For this reason,

in the final version of the prototype software, the change in intensity was used in the correlation.

This spatial intensity gradient information can provide a better signal to noise ratio since it

basically finds the edges with the frame. Figures 4.24 and 4.25 show various views of the

spatial gradient of intensity for frame 5 and frame 15, respectively. The gradient of the intensity

function can be written as follows:

VI = (a/ax)2 + (I 2 Z tan -l((aI/ay)/(aI/ax)) (4.202)



Figure 4.21: The Sensed Intensity for Frame 5
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Figure 4.22: The Sensed Intensity for Frame 15
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Figure 4.23: The Perturbation to Sensed Intensity Correlation
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Figure 4.24: The Gradient of the Sensed Intensity for Frame 5
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aI I(x + h)- I(x) I(x)-I(x-h)
(4.203)ax h h

a I(y + m)- I(m) I(y)- I(y - m)
(4.204)

ay m m

This provides some insightful information in that the biggest changes in the frame should occur

within the bar code ink area, since this ink is "selectively" stimulated by using the laser

wavelength (785 nm) that is known to fluoresce the ink. The correlation used in the prototype

software was between the laser perturbation and the change in sensed intensity at the CCD

camera. The correlation function [61], in discrete time, can be written as:

oo
4[n] = 2 x[n + k]y[k] (4.205)

k = -oo

In this case, x[n] is the laser power, and y[n] is the change in sensed intensity (gradient)

function for each pixel over the discrete sample period. This correlation was performed for each

pixel over 20 frames, and the results can be seen in the various correlation views depicted in

Figure 4.26. As can be seen, the noise is greatly reduced, giving a significant increase in the

signal to noise ratio.

As a side note, a monochrome CCD camera will give a "white" color corresponding to an area of

great intensity ( R+G+B ), such as what is found at the ink surface, and a "black" color to areas of

low intensity. These facts should be kept in mind when interpreting gradient information with

regard to intensity change and the direction of change. The bar code ink corresponds to the

"peaks" of the gradient function, since the ink normally has a higher intensity than that of its

local environment, although globally it may not.

It should be noted that for this run of the prototype software, the bar code and the CCD camera

frame of view were made parallel to one another. The CCD camera and bar coded object were

kept at a fixed distance from each other, and the camera was focused to the bar code depth.

Other than that, no attempts were made to improve the quality of frame information that was to

be taken.



Figure 4.26: The Correlation of the Perturbation to the Gradient of Sensed Intensity
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A little information should be given about the software that was developed and used in the above

mentioned bar code read. Since the correlation is a computationally intensive operation, a basic

methodology has been developed for giving a bar code read of reduced computation. Step one is

to compare images when the lamp is on and when it is off through intensity subtraction. Figure

4.27 give various views of this on/off subtraction. As can be seen, the area that contains the bar

code can be seen clearly, although the side view shows that there is still a lot of noise in the

frame. A window is then set about this bar code area, reducing the number of pixels to be

considered.

Step two consists of the perturbation in the laser power, and the corresponding correlation. This

step "pre-processes" the frame by removing as much of the noise as possible before any attempt

is made to read the bar code. The third step is the read of the "Asymmetric Calibration Patch"

bits. The value of the bits in this patch are known already, and are placed at the extreme

distance from reference 0, since the spatial error in calculating the read points propagates

outward from this point. This is an intuitive fix in that if the extreme edge bits can be read

correctly, then the probability of a correct read for the internal four by four matrix bits is

increased.

At this point, the software threshold is raised or lowered until a correct read of the calibration

patch is found. A range of thresholds are found that give a 100% correct calibration patch read,

and the middle threshold value is picked. With this complete, the geometric information about

the bar code is used to read the internal four by four matrix, and this information is used in the

row and parity checks. If the read is error free, the read is complete; if not, the DC value of the

laser current is adjusted and the same process is reapplied to the same area. It should be noted

that the first software threshold (the base threshold) is picked by setting a threshold on a

histogram made of the intensity gradient to perturbation correlation information. Figure 4.28

gives a software map of the prototype software.
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4.3 The Perturbation/Correlation Method and Radiation Heat Transfer

A closer look is taken at the information that is actually measured by the CCD camera in

determining the bar code number. Since light and heat are often analogous quantities, a simple

analogy is drawn from the experimental setup measuring reflected light intensity to a heat

radiation problem. The input perturbation in lamp intensity and the corresponding sensed frame

intensity of the CCD detector can be analyzed in the following manner (See Figure 4.30: An

Analogy to Radiation Exchange). The lamp intensity is on the order of the lamp power:

P I (4.306)

Inputs: Lamp Power/Intensity Perturbation

- Surface Irradiation, G

Outputs: Reflectance Intensity
Radiosity of Surface, J

Gradient of Reflectance Intensity

EbX =Monochromatic Emissive Power (W/m 2 jrm)

s =Total Emittance (Emissivity) of a Real Surface

oa=Absorptance (Absorptivity)

p=Reflectance (Reflectivity)

Assume: Opaque Surface: Transmittance term is zero

CCD
Detector

Q

Lamp/Laser
Source

J=sEbl +pG G

I - - -
I 7 I I---" -

&EbX aG

Figure 4.30: An Analogy to Radiation Exchange

If G is defined as the surface irradiation flux, then it can be seen that, for small irradiated areas,

that the lamp intensity is on the order of the surface irradiation:

G - I (4.307)



The fraction of this irradiation that is absorbed in the object surface is just the material

absorptivity, a , multiplied by the irradiation flux.

The material has a certain radiant emissive energy, E b ~, which is a function of wavelength

and temperature, and is usually referenced about the "black body" emissive power through the

emissivity constant, 6 , which is specific to the material. The portion of this energy that is

transferred to the atmosphere is just sE b , where E b is the black body emissivity.

In addition, some of the irradiation energy is reflected back from the surface, and the

reflectivity, p, is used to quantify this energy amount. The sum of the reflected irradiant energy

flux and the material specific emissive energy flux is the surface radiosity flux, J:

J = sEb + pG (4.308)

Since a perturbation in lamp intensity is given, which is proportional to the surface irradiation at

a given wavelength, a perturbation in surface irradiation can be defined:

G' = G +8G (4.309)

From this relation, a radiosity flux as a function of this perturbation can be given:

J' = (sEb)'+ p(G + 8G) (4.310)

The wavelength of the perturbation source remains fairly constant, so:

(&Eb)'= (sEb) (4.311)

Substituting equation 4.311 into equation 4.310, and subtracting equation 4.308 from it, we

obtain:

J'- J = p(8G) (4.312)

The perturbation in irradiation of the surface is known, and a dimensionless measure of the

relative radiosity of the surface can be made. From this, and a dimensional scaling factor, a, the

reflectivity of the surface can be evaluated at a given lamp source wavelength:

a(J'- J) =L (4.313)
SG

This reflectivity parameter is fairly important in that there is a reflection component to the bar

code signal as well as to the overall noise. In correlating the gradient of the intensity to the input



perturbation in lamp intensity, the largest magnitude reflectivity coefficients for the frame are

preserved over time.

Now, from the work in section 2.4, it is possible to make the following equalities:

8G = 4t2 - 4tl (4.314)

J - J= 1R2 - R (4.315)

The interpretation of this is that the change in surface irradiation is simply the difference in

transmitted photons over two frames, and the change in radiosity of the surface over two

grabbed frames is the difference in photons returned from the surface. Dividing these two

quantities, a quantum efficiency for the surface, rlS(,xn,yn), may be obtained, where xn and

yn are the horizontal and vertical pixel frame coordinates:

rls(X,xn,yn) = 4R2 -R1 (4.316)
4t2 - tl

It can be seen that if this is then evaluated at the known absorption wavelength of the ink for

each pixel, then the ink is present at that particular pixel when:

Ss (Xa , X, y) = 9i(,a) (4.317)

It should be noted that the constant a in equation 4.313 accounts for the quantum efficiency of

the zoom lens, camera optics, filter, beam expander, and the light amplifier. It also accounts for

the distance L from the target to the detector, the ratio of areas of the beam to the bar code dot

area, the beam divergence, the light amplification factor, the laser power, and the CCD

characteristics. It does not account in any way for the presence of noise. The following is the

equivalent value for a:

002

a L y LtsxLYLp AD g 1X=0 (4.318)

2L2 hcPHIRA L2 [2L tan0 + dI2L tant + d2]

This approach uses information about a measured surface quantum efficiency and then attempts

to match this to the known quantum efficiency of the given ink, evaluated at the emission

wavelength of the ink. Since the ink is more sensitive to changes in lamp power at the

absorption frequency, this approach works well.



Chapter 5: Noise Modeling and Measurement

As mentioned in section 4, a lot of work has been done with regard to signal to noise

enhancement through the above mentioned Perturbation/Correlation method and signal time

averaging, and very remarkable gains in S/N ratio have been realized. However, up until now,

these methods have been applied blindly to both the large amplitude noise case as well as the

low amplitude noise case, without any real means of capturing the characteristics of the noise in

the viewable frame at any instant in time. With some knowledge of the noise makeup, it is

possible to apply these image processing algorithms in a smart manner, as well as to find an

optimal search path based on the probability of signal detection at any spatial location (if the

signal were present).

5.1 Hardware Setup for Noise Measurement

Figure 5.10 shows a simple spectrum sampler that was constructed by using a bank of photo-

diodes that were placed behind notch filters at different center pass wavelengths (refer to Figure

5.11 for specific filter information). The photo-diodes were chosen on the basis of the high gain

requirement as well as the linearity of the spectral response for the photo-diode for wavelengths

between 430 nm and 880 nm (the visible to the near IR range). Some signal conditioning was

performed to change the small amplitude current, produced from incident radiation on the

detector's surface, to a 0-5 V signal that could be read by the DAS 1800 A/D. Op-amps were

used to provide isolation to the converted current to voltage signal, as well as to provide a "zero

and span" for the calibration of the individual detection system. A requirement was found for

this calibration since each diode had a different base voltage signal (voltage when there is no

radiation on the detector surface). This problem was taken care of by using the zero portion of

the circuit, and the different filter pass gains could be nulled by appropriate settings of the span

circuit.



Figure 5.10:The Noise Measurement System

Figure 5.11: Signal Conditioning and Pass Ranges for the Spectrum Sampler



Figure 5.12: The Signal Conditioning and Multiplexing Circuitry

5.2 Calibration Procedure for the Noise Measurement System

The circuitry developed for the collection of the incident radiation at a particular wavelength

was calibrated by using a narrow band light source of known intensity. Before the filter was

placed in front of the photo-diodes, each diode was covered with black electricians tape and the

zero circuit potentiometer was adjusted to give zero volts out for each photo-diode, measured at

the output of the signal conditioning circuitry. Then, with the tape removed, a hollow tube was

placed over the diode and the light source was shined upon the detector surface. The span

potentiometer was then adjusted to give 5V at the output of the signal conditioning circuitry.

This was done for each of the twelve diodes.

At this point, the calibration became rather intuitive. The feedback resistance of each span

element was measured at the given calibration. Then, after checking the pass gain found from

the spectral response curve for each filter, this gain was divided into 1 and multiplied by the

span resistance measured. This gave a new resistance to which the span potentiometer was then

set. This, in effect, compensated for the attenuation of the signal as it was passed through the



notch filter. By doing this, it was possible to equate a 5V signal to the wattage of the light

source used in the calibration, but now at a given wavelength. From this calibration procedure,

it was possible to develop curves that represented the noise in the viewable frame and find the

power of this noise signal over a given wavelength range.



5.3 One Motivation for this Noise Power Estimation

Often, a simple, black body emission model is used to describe noise sources such as tungsten

lamps and other broad band emitters. For instance, a good approximation for the tungsten

element in an incandescent light bulb is a 1mm black body emitter at 3000K. For these

particular black body approximations, a relationship for the monochromatic emissive power for

a black surface is used:

q -5 (5.30)
EbX =

eC2 ()T)-1

Where C,=3.742x10 s Wtm4/m 2 and C2=1.4389x10 4 jtm K [67], and EbX is in [W/(m2gm)].

Figure 5.30 gives a plot of the black body emissive power as a function of wavelength and at

five discrete temperatures.

Figure 5.30: The Black Body Emission Curve for Varying Body Temperatures



The total emission of a black body over all wavelengths is:

Ebb = UT4  (5.31)

The amount of power contained between zero and some wavelength, X, can be found by

integrating equation 5.30 with respect to lamda, and the percentage of total power found in this

range can be found by dividing by the total black body emissive power. This new quantity is

referred to as the external fractional function (Mills):

f( ) 4 (5.32)
fa(T,T) 4 (5.32)

This fractional function is shown in Figure 5.31

Figure 5.31: A Plot of the External Fractional Function For Varying Body Temperatures

In the case of noise measurement in a specific band, what is required is the emissive power

between two wavelengths, which is obtained by first subtracting the fractional function at the

bottom wavelength from the fractional function of the top wavelength:

Afe = fe(,T)t,, - f,(,T)bo0om (5.33)

This quantity is then multiplied by the total blackbody emissive power:



AfT 4 =

.0

Eb (T, )dX
Sbottom

-0 (5.34)

which can also be written as:

AfaT4 9= top  Fb (T,X)dk (5.35)

Sbottom

This quantity now represents the power contained between two wavelengths for a noise source

modeled as a black surface and at a given temperature. The two wavelengths, in this case, are

the bottom and top cutoff wavelength for the notch filters. However, this does not give the

amount of radiation incident at the detector, but rather the total power flux emitted into the

environment between two wavelengths.

To find the actual radiation that is incident upon the surface of the photo-diode detector, the total

power flux from the noise source must be multiplied by a view factor. By modeling the noise

source to detector combination as two parallel coaxial disks (See Figure 5.32), a view factor may

be found.

Figure 5.32: The Parallel Disk Approximation
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It should be noted that r, is the radius of the noise source, rd is the radius of the photo-diode

detector surface, and d is the distance from the noise source to the detector. Although the

tungsten lamp filament is spherical in nature, only the frontal area of the filament is seen by the

detector, so the coaxial disk approximation is justified. The main point to be made here is that

the view factor is a strong function of the distance from the sensor surface to the noise source

surface. Figure 5.33 illustrates the view factor as a function of d for varying ratios of the sensor

radius to the noise source radius.

rd=.005 (fixed)

.n=rd

Figure 5.33: The View Factor as a Function of Suiface to Suiface Distance

Assuming a general form for the transfer function for the photo-diode as Gd =Gd(.) and for the

filter as Gf = GfX), then the total power flux incident upon the photo-diode detector is:

- ( )rd 
2m1+rn e)2 1+ r 2

Pesured =Gd X)f (k) 1+ - 1+ d
2 ~ rd rd 2

2d _d

top

Sbottom

Fb (T, X )dX (5.37)

This quantity is actually a power flux. To get the actual power received by the detector, then the

area of the detector must be multiplied by the flux. It should be noted that the measured power

is very sensitive to the distance d from the noise source to the detector. However, since each

detector is mounted very close to one another on the mount, the radiation must travel



approximately the same distance to each detector. This approximation breaks down at extremely

low distances in which the distances are not of the same order for each detector, as well as large

angles of rotation of the detector mount. Also, at very long distances, the view factor is very

tiny and the measured radiation is very small in magnitude, which gives a breakdown in this

noise measurement system.

The motivation of this exacting measurement of noise is that it makes it possible to get an idea

of the overall wavelength makeup of the noise in the viewable frame. If the noise characteristics

follow that of a blackbody surface at a given temperature, then the noise is of the repeatable

type, and the location of this noise source can be determined as well as a basic classification for

the noise. Also, if the noise is repeatable in nature, the Perturbation/Correlation method works

very well to remove this noise. If it doesn't follow the black body surface characteristics, then it

is random, dark current noise, and can be effectively removed by just time averaging the frames

at this given spatial location. In addition, with some information about the distance from the

sensor surface to the noise source, which could be found from a ranging sensor (such as a sonar

based device), the actual power of the noise source may be determined and compared to the

known power of various noise sources.



5.4 Explanation of Measurements Made by the Noise Detection System

Figures 5.40 and 5.41 are actual plots of the noise measured by this detection system. The

measurements are of power flux incident on the detector, with the 0-255 representing a 0 to PM

of the calibration light source. Figure 5.42 then plots the noise, as a function of wavelength, for

two different spatial locations; one with a noise source present and one without. This basically

gives the spectral response curve for two different spatial locations; one that contains large

amplitude, repeatable noise; and the other, low amplitude dark current or random noise. Figure

5.43 is a weighted spectral response for the viewable frame. More weight is given to the noise

that falls in or near the band of the notch filter (825-835nm), and less weight is given to the

noise well outside the notch filter range. A gaussian function is used in picking the weights,

with the center of this corresponding to the center of the notch pass range. This gaussian

multiplier determines the net weight of each noise measurement at a given wavelength in the

overall accumulation, much like what the notch filter does in hardware. This is in effect is a

"penalty schedule" for the viewable frame, and can be used in the design of search patterns for a

particular bar code. The probability of detection, given the presence of a bar code, goes down

with an increase in elevation of the penalty schedule, so the intuitive search would be the

shortest path to connect all areas of equal and least elevation. The following is the penalty

schedule, where N(X, x, y) is the actual noise measurement:

Xtop 2
PS = Z N(X, x, y)(.6e-((- 830) / 20000)) (5.40)

Xbottom



Figure 5.40: Frame Noise at 433, 480, 530, 580, 630, and 680 nm



Figure 5.41: Frame Noise at 730, 780, 830, 830, 830, and 880 nm
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Figure 5.42: A Spectral Emission Curve for Two Spatial Locations

Figure 5.43: A "Penalty Schedule" for Scan Trajectory Planning



Chapter 6: Applications of this Technology

6.1 Application: Monitoring Human Hand Motion in a Task Manipulation

The monitoring of human motion has been a topic of research for many years. A person's "gait"

has been studied in the Newman Laboratory at MIT []. The motion of dots mounted at various

places on the leg were monitored to develop ideas about the mechanics of walking. However,

these dots were red, and for this reason, visible. The main difference between the Newman lab's

research and this application is that the dots that are used in this application are invisible, as well

as having the capability of being uniquely identified if bar codes were used to replace the dots.

However, this would require the use of a high resolution camera as well as a tracking motion

that could be obtained from a pan and tilt.

For this application, the same approach was taken, but this time the dots were placed at various

points on a surgical glove. The dots were roughly 4 mm in diameter, and were placed in a

triangle configuration as shown in Figure 6.10. The ink is invisible, but was printed on white

paper so that the configuration could be easily seen in print.

Figure 6.10: The Task



The hardware was modified slightly for this application. The galilean beam expander was

replaced by a hologram diffuser which gave a 10 degree cone of diffusion. Figure 6.11 shows

this new diffusion setup. The desire was to have a 2 foot diameter of coverage in which the

motion could be tracked.

Figure 6.11: A Conical Diffusion Scheme

The acquisition hardware was also modified slightly. Figure 6.12 shows this new setup; the

main differences being that the setup is fixed on a tripod and the image intensifier is added.

Great care was also take to remove all sources of noise from the area that would be amplified

when passed through the image intensifier. It should be noted that due to different focal lengths

needed between the image activation and image acquisition, the diode was mounted separately

from the camera and intensifier.

Figure 6.12: Hardware Setup for Human Motion Monitoring



The task that was undertaken for monitoring was the placement of a coffee mug on a tin canister.

This task seemed to be appropriate since inaccurate motion could result in either damage to the

mug or to the tin can.

Figure 6.13 shows the motion of the dots in Cartesian coordinates. The spatial scaling is 40

pixels to 1 inch, and the time scaling is 0.2 seconds between frames. Since only one camera is

used in this task monitoring, the actual depth of motion is not evident. However, two pieces of

information may be extracted from Figure 6.13 that give insight into the depth of motion. Since

the camera field of view is known, as well as the size of the dots (4 mm), the distance from the

camera to the dot may be determined. This feature is referred to as "pose estimation [ ]" in

which multiple points on the same object are monitored. In this case, the multiple points are the

reference dots at known size and location on the hand and mug. Additionally, if the ink print is

uniform and the laser power is constant, then the intensity of the return signal varies as the

square of the distance from the dot to the laser diode, which is mounted at a different position

than that of the camera. This gives inherent triangulation.

Figure 6.13: The Motion of Four Discrete Dots (on the Hand) During Task Manipulation



From this information, the centroid of each dot may be calculated for each frame. In the case of

this task, since unique identity of each dot is not established (since dots are used and not bar

codes), the initial position is established prior to the task, and "temporal consistency" is used to

identify the dots as they progress through the task. When a series of images are acquired at a

frame rate that is much higher than the inverse time for task completion, then there will be only

a slight change in the appearance of a small region from frame to frame. This method is used to

identify the dots as they transition through the area of the grabbed frames during the

performance of the task. Figure 6.14 gives a plot of the calculated dot centroid as it moves

through the motion of the task. It should be noted that when calculating the dot centroids, the

center calculated is very sensitive to software thresholds as well as inconsistencies in ink

anlication on the dots.

Figure 6.14: The Trajectory of the Dots in the Task Manipulation



6.2 Application: Tracking

The prototype has a simple tracking algorithm included, although limited success has actually

been found due to the extremely small area of diffusion with the galilean beam expander as well

as the need for a change in zoom setting with a change in depth. A camera basically gives a 2D

representation of cylindrical motion, with an associated acceptance angle. The tracking routine

given in this section uses setpoints in the form of desired spatial Cartesian locations of dot

centroids in the viewable frame. The region of interest is set about the given beam diffusion

area, and this is a function of zoom setting.

In this tracking routine, the zoom is servoed to give roughly the same area taken up in pixels for

a given dot, and an autofocus routine is used set focus at varying levels of depth of zoom. This

autofocus was developed from the observation that when an item is in focus, such as a bar code,

the relative area that the object takes up in the frame is at a minimum when the object is in

focus. In a given range of focus, the area in pixels taken up by an object will be parabolic in

shape, with the minimum of the parabola the "in-focus" point. Figure 6.20 illustrates this

autofocus logic. The minimum is found by taking the derivative of pixels taken up to focus

percentage and finding where this quantity is zero. Of course, this whole process is very

sensitive to correct software thresholds. It should also be noted that this process is the limiting

factor in the speed of track, since it takes much more time to stroke the zoom than it does to pan

or ilt. I Software Autofocus I

Focus (%)

Figure 6.20: The Autofocus Logic

Number of
Pixel Hits



Given the quantities found in section 3.2 for the horizontal and vertical fields of view, and if the

bar code has x and y dimension of X, and YBc, respectively, but basically gives a circular

emission such that the diameter of this emission is:

DBC = XBC = YBC (6.201)

This gives the number of horizontal and vertical pixels that see this emission:

S XBCcosa(PHXZXefl) DBCcosa(PHXZXefl) (6.202)
SH,BC = (dXCf) I (dXCf)

SB C = YBC COS (P V XZXefl) - DBC CoS P (PV XZXefl) (6.203)
V,BC = (dXCf) (dXCf)

Simplifying the approach by assuming small angles of rotation, a and [, then the distance d

from the camera to the bar code is:

d = Z(efl)(DB)(PH )  (6.204)
(Cf )(SH,BC)

If an origin is assigned to the camera frame, for instance at the dead center of the frame, and

measurements from this origin in pixels are denoted X and Y, then the physical location of the

bar code in Cartesian coordinates from this origin may be denoted Xp and Y,:

X(Cf)(d) (6.205)
X Z(efl)(PH)

Y(Cf )(d)
YP Z(efl)(PH)

It should be noted that this method does not worry about strict definition of the origin or

coordinate transformations, but is concerned with the relative motion from one frame to the next.

Figure 6.21 gives an illustration of this. The change in pixel location in the X and Y directions

is denoted 8x and 8 , respectively. The relative change in physical position is denoted 6px and

6py, and represents the actual change in position from one frame to the next.

8px = 8xDBC cosa SHBCi+l SH ,BC1 (6.207)

8py = yDBC cos P 1 _ 1 (6.208)
(SV,BCi+1 SV,BCi



8d - Z(efl)(H) DBC cosaCf H,BCi+1 SH,BCi (6.209)

Figure 6.21: Frame to Frame Motion

The relative velocity may be determined knowing the frame rate of the acquisition, fs:

Vpx = (6px)fs (6.210)

Vpy = (py)fs (6.211)

Vpd = (d)fs (6.212)

Since the pan and tilt is servoed with respect to the angle of pan or tilt, it makes sense to convert

the Cartesian measurements to an angular system of measurement (See Figure 6.22). Denoting

the angle of pan rotation as Ox and the angle of tilt rotation as Oy, and noting that the following

relationships can convert the X and Y pixel positions to angles:

X'= tan

y'= tan

(6.213)

(6.214)

Frame i



fov V

Figure 6.22: Cartesian to Spherical Coordinates

With these definitions, then the absolute angles to the tracked bar code centroid (9 and (py,

respectively) are:

Px = Ox+4x'= Ox +tan -1 XCfVH) (6.215)

/ 2

9(P = y 4 y'= y +tan-1 Yfo r) (6.216)

A spatial setpoint or desired spatial location may be set in Cartesian coordinates, and then later

converted to spherical coordinates. The spatial error is defined as the difference between this

setpoint and the actual spatial location of the bar code:

errorx = SPx - x (6.217)

errory = SPy - y (6.218)

The zoom error is defined a little differently. Since it is desired to keep the same amount of

frame area occupied by the bar code as it changes depth, the setpoint is a desired pixel area

(SPdA) and the measurement is the number of pixels taken up by the bar code (SH,BC * SV,BC). It

should be noted that due to limits on the stroke of the zoom, some setpoints may not be possible.

-I fov



errordA = SPdA - (SH,BCXSV,BC) (6.219)

The derivatives of the error are as follows:

d (errorx) = ((SPxi+l - i+l)- Pxi -xi)fs) (6.220)

dterrry)= SPi+ -i+l- (SPyi -Yi s) (6.221)

d (errord) = ((SPdAi+1 - (SH,BCi+1 XSV,BCi ))- (SPdAi - (SH,BCi XSV,BC ))f s ) (6.222)

Under simple PD control, the controller output is of the form:

x = Kpxerrorx+Kdx (errorx)

It should be noted that the controller output rx is a speed command to the pan axis of the pan and

tilt. When the error and the change in error go to zero, this command goes to zero, and the pan

"servos there," meaning it stops. If pure position control were desired, then an integral term

would be added to the control action and the controller output would be in pan position. The

controller terms for the tilt and zoom axis are similar in form.

A version of this control is found in the prototype software. However, since the diffusion area

of the beam is small (with the galilean beam expander) and the speed at which the zoom may be

changed is fairly slow, tracking becomes difficult in anything but relatively slow, fixed depth

motion. However, the galvo design of section 2.6 offers a solution to these inadequacies in light

modulation and zoom speed.



Chapter 7: Conclusions and Future Work

A system was presented that can be used to measure the fluorescent emission of a bar code

printed in laser dye. The dye absorption was at 785 nm, and the peak ink emission was at 833

nm. The system architecture that was used in the prototype in the "read" of this bar code was

also presented.

Some of the methods that were used to enhance the signal to noise ratio (S/N) were presented,

with emphasis on the Perturbation/Correlation method. This method used a perturbation in laser

intensity to give a corresponding change in ink emission magnitude, and these changes were

correlated to separate the noise in the viewable frame from the signal.

With noise reduction methods outlined, research in the description of the noise was also

presented. A system that could be used to determine the wavelength content of the noise in the

viewable frame was presented. The calibration of this system was also discussed, with the basic

architecture of the system described. Some motivation for this type of analysis was shown

through black body model approximations to measure the relative intensity of the power flux at a

given wavelength for a particular noise source. Examples of this noise measurement were

presented, and some uses of this information were discussed.

For future work, a system was presented that would be one alternative to the prototype of the bar

code reader that exists in the lab. It utilizes galvos to modulate the outgoing laser beam, as well

as to bring in the incoming image. It also reduces the time required to sample the emission at

different radial distances from the detector, which was found to be quite large with the

motorized zoom lens. Finally, it uses avalanche photo-diodes in the emission detection since

they have quite a large gain, which is useful for low-signal strength radiation measurement. In

addition, they have a very high sample rate, much higher than the frame rate of the frame

grabber used in the current system.



The emphasis at the design level was to produce a system for high bandwidth tracking

applications, such as "Teaching by Showing," in which a human demonstrator performs a task,

to be later reproduced in robot motion. The first step for this application has been completed in

that human hand motion has been monitored with discrete points of the human hand tracked

through the completion of a task. Also, a simple tracking routine has been included within the

prototype software. With these steps taken, it is a small step to implement this technology in a

"Teaching by Showing" application.
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Appendix A



Concept raditional Laser Scan Smell
Vision\ Invisible Invisible Active ar Code for Sonar or Miniature EmittersSelection Pattern Coding Coding Objects eader Geometry Acoustic Tuning and

Criteria Recognitio (UV) (IR) (Transp.) Reference) (Shape) (Shape) Forks Detectors

Safety 0 0 0 -0 0

Cost 0 0 0 - 0 0 - -

Location Accuracy + + + + 0 + + + +

ID Accuracy + + + + 0 0 0 + 0

Robustness 0 + + 0 0 + + 0 0

Noise 0 + + + 0 + + + 0

Tracking Rate - + + 0 0 0 0 - -

Modularity - - - 0 - - - -

STD Components 0 0 0 - -

Complexity 0 0 - 0

Ergonomics + + - 0 0 0 -
Range + 0 + 0 0 + 0 0

Sumof+'s 4 5 7 3 0 4 3 3 1
Sum of O's 3 4 4 4 12 3 5 3 4
Sum of-'s 5 3 1 5 0 5 4 6 7

Net Score -1 +2 +6 -2 0 -1 -1 -3 -6
Rank 4 2 1 7 3 4 4 8 9

Continue? NO YES YES NO COMB NO NO NO NO

Figure Al: The Pough Chart Used in Method Selection
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Figure A2: Frames 1-4 in the Perturbation/Correlation Example
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Figure A3: Frames 5-8 in the Perturbation/Correlation Example
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Figure A6: Frames 17-20 in the Perturbation/Correlation Example
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