
MANAGEMENT OF INTEGRATED PRODUCT AND PROCESS

MODELS THROUGH AUTOMATED DECOMPOSITION

by

SHAUN M. ABRAHAMSON

B.Sc. Electro-Mechanical Engineering
University of Cape Town, South Africa, 1995

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1999
@ 1999 Massachusetts Institute of Technology,

All Rights Reserved

Signature of A uthor... - -------------------
Department Mechanical Engineering

// January 15, 199%

C ertified by..
David Wallace

Esther and Harold E. Edgerton Associate Professor of Mechanical Engineering
Thesis Supervisor

A ccepted by-
Ain A. Sonin

Chairman, Dep ment Committee on Graduate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

S JUL 121999

LIBRARIES

^.11_1I ---- --LC1LC- (~-LI-I~YI-~---~-.. .~--~-.~-.(~i-~- -.-~I~X-- - -~_

MANAGEMENT OF INTEGRATED PRODUCT AND PROCESS

MODELS THROUGH AUTOMATED DECOMPOSITION

by

SHAUN M. ABRAHAMSON

Submitted to the Department of Mechanical Engineering
on January, 1999 in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Mechanical Engineering

ABSTRACT

A method is proposed to assist participants in the design of complex integrated models
for engineering design. The approach builds on the DOME (Distributed Object-based
Modeling and Evaluation) framework, which is intended to facilitate the creation of
integrated models by allowing groups of designers to link services of models
encapsulated by distributed objects. The aim is to provide a tool for users to understand
dependencies between sub-models through the visualization and evaluation of the
resulting integrated model structures. A tool is designed and implemented and is used to
analyze DOME model networks and provide decomposition feedback for resource
allocation during the design process.

Integrated modeling concepts are introduced and an industrial case study is used to
describe a service exchange network approach to system modeling. Then, decomposition
methods are discussed and classified by dependency types as serial, functional,
informational and intellectual. The need for decomposition support to create integrated
models through the services of distributed objects, like those used in DOME, is evaluated
and illustrates the need for decomposition tools.

Thesis Supervisor: David Wallace

Title: Ester and Harold Edgerton Associate Professor of Mechanical Engineering

___~__~ r~-ul--~- ----- rr rr --- ---L~ .~--li--l;*~I~II LPII-r~--~.X-___ _ ~.. -i_- 1^~ . I -~I_-XI~-PI-

ACKNOWLEDGEMENTS

The author would like to thank a number of people who have made this thesis possible.
My family at home in South Africa and here in the United States, who have supported me
in every way possible throughout my time at MIT. Prof. David Wallace for his guidance
and patience and for giving me the opportunity to explore ideas. To all the member of the
Computer Aided Design Lab at MIT for providing a stimulating and entertaining work
environment.

Particular thanks to the following people for support with the software development:
Benjamin Linder, Mathew Wall for support with the DOME components. Nick Borland
for general assistance throughout my stay in the Lab. Thanks to those who were involved
in the construction of the case study model: Tom Almy, Inis Sosa and Tina Savage and
members of the Polaroid team. Also thanks to the following people for assisting in the
development of many of the ideas and concepts: Nichola Senin, Nader Sabbaghian, Samir
Patil and members of he Axiomatic Design Group. Work reported in this thesis was
supported (in part) by the MIT Center for Innovation in Product Development under NSF
Cooperative Agreement Number EEC-9529140.

---̂ ---.- --. .-~.--------r~-~- mur~ulll-~- ^-LIII-LI~~~**~ICI ~ *~PIP-*(II~~ (~*qp I-~-q~.

TABLE OF CONTENTS

ABSTR ACT .. 3

ACKNOWLEDGEMENTS .. 5

TABLE OF CONTENTS ... 7

LIST OF FIGURES .. 9

1 INTRODUCTION .. 11

1.1 PROBLEM STATEMENT .. 11

1.2 PROBLEM O VERVIEW .. 12

1.3 OVERVIEW OF THE THESIS DOCUMENT...................................... .. 14

2 BACKGROUND.. 15

2.1 OVERVIEW OF INTEGRATED MODELING 15

2.2 DISCUSSION OF APPROACHES TO INTEGRATED MODELING.................................. 16

2.2.1 Integration and data model representations.. 18

2.3 DESCRIPTION OF DOME IN THE CONTEXT OF THE POLAROID PROJECT 21

2.3.1 Creating inter- and intra-module service exchanges using relations.................. 24

2.3.2 Modules for evaluating the current state of the design model 25

2.3.3 Probabilistic Representation and Generalized Variables .. 26

2.3.4 Solution space searches using genetic algorithms.. 29

2.3.5 Addition of Voice of Customer and Environmental Models... 29

2.3.6 Publishing and subscribing from different software tools................... 30

3 DECOMPOSITION FOR INTEGRATED MODELING TOOLS .. 33

3.1.1 Relationships between the whole andparts 33

3.1.2 Heterarchies ... 37

3.1.3 Perspective and intellectual decomposition........................... 39

3.1.4 Object-based representations 41

3.1.5 Summary of decomposition types 43

4 DECOMPOSITION IN THE DOME FRAMEWORK 45

4.1 SUPPORT FOR USER DEFINED DECOMPOSITION IN THE DOME FRAMEWORK 45

4.1.1 Modules and mechanisms for creating dependencies... ... 45

4.1.2 Current views of the model structure 46

4.1.3 The needfor additional views of dependency structures............................. 47

4.2 VISUALIZATION OF DECOMPOSITION STRUCTURES... 48

4.2.1 The Design Structure Matrix for Visualization... 49

~_.. -~s~-- ----rc^- .------ -- - ^ll-^--l-r -- I-~xl_~--r-~ -C~L- - ----~CPl~i--?ilrr~~I__ ___ ~~I~ -^-____ __

4.2.2 Addressing Visualization Limitations of Design Structure Matrix .. 51

4.2.3 Description of the Visualization Tool............................... 54

4.3 DECOMPOSITION THROUGH ANALYSIS OF DOME MODELS 57

4.3.1 Current approaches to decomposition .. 57

4.3.2 Analysis algorithms for structural decomposition.............................. 58

4.4 OVERVIEW OF DSM TOOL ARCHITECTURE...60

5 DECOMPOSITION TO SUPPORT RESOURCE ALLOCATION 61

5.1.1 Current difficulties in constructing representations of the design process 62

5.1.2 Using decomposition for real-time resource allocation.............................. 65

5.1.3 Resource allocation using solution space searches.............................. 67

5.1.4 Resource allocation by evaluating the network structure 67

CONCLUSIONS .. 69

5.2 SUMMARY .. 69

5.3 LIMITATIONS OF THE APPROACH ... 70

5.4 FUTURE WORK ... 71

5.4.1 Decomposition to support model navigation 71

5.4.2 Analysis to suggest alternative model decompositions...................... 72

5.4.3 Formalization of the service marketplace... 73

APPENDIX A ... 74

APPENDIX B .. 76

APPENDIX C ... 79

C ++ PLU GIN .. 79

SERVER SIDE C++ AND JAVA .. 79

C LIEN T SID E JA VA ... 79

CLIENT A DAPTERS JAVA ... 80

CLIENT GU I COMPONENTS ... 80

6 REFERENCES ... 81

LIST OF FIGURES

Figure 1-1 Integrated model evaluation for product and process feedback 11
Figure 2-1 The role of DOME in product development. 16
Figure 2-2 The timeline for the evolution of the integrated modeling effort 21
Figure 2-3 Polaroid model first state in the DOME graphical user interface................ 22
Figure 2-4 Addition of a simple cost model 23
Figure 2-5 Operation of lenses and criterion in DOME models................................ 25
Figure 2-6 Illustration of variable generalization 26
Figure 2-7 Addition of a geometric tool from a CAD tool. 28
Figure 2-8 Diagram of genetic algorithm search process.. 29
Figure 2-9 Publishing interface designed for the TEAM software............................. 31
Figure 3-1 The role of structuring and relationships. ... 34
Figure 3-2 Relationships in a physical model. 35
Figure 3-3 Inferring behavior as a result of understanding relationships. 36
Figure 3-4 The partial structure imposed by a heterarchy. 38
Figure 3-5 Engineering system heterarchy................................ 38
Figure 3-6 Intellectual decomposition of an throttle body subsystem 40
Figure 3-7 Binding types defined in early object-oriented work................................. 41
Figure 3-8 Object hierarchy and inter-class call structure. 42
Figure 3-9 Classification of decomposition types. .. 43
Figure 4-1 Creation of dependencies using aliases and relations 46
Figure 4-2 DOME graph dependency visualization for contained modules 47
Figure 4-3 Alexander's model representation for an example automotive problem......... 49
Figure 4-4 Comparison of a directed graph and a design structure matrix 50
Figure 4-5 A design structure matrix view of the containers is presented in c and d....... 52
Figure 4-6 Matrix representation of containment, relations and aliases 53
Figure 4-7 Image of visualization tool 55
Figure 4-8 Expanded tree-view from figure Figure 4-7 ... 56
Figure 4-9 Ordered view of data from Figure 4-7 and Figure 4-8................................ 56
Figure 4-10 DEMAID Design Structure Matrix for the Polaroid project 58
Figure 4-11 The DSM tool as part of the DOME architecture 60
Figure 5-1 Comparative sampling frequencies of the design network. 63
Figure 5-2 Reduction in resolution during collection of design process information 66
Figure 5-4 The process of resource allocation through network analysis..................... 68

__I

Shaun M Abrahamson Page 11

1 INTRODUCTION

1.1 Problem Statement

The DOME (Phang 1997) software framework is being developed to support the

synthesis of mathematical system models from the numerous sub-models used in the

product development process. The aim of this work is to provide tools for users to

understand dependencies between sub-models through visualization and evaluation of the

resulting integrated model structures. This information should allow detailed analysis of

product development process and subsequently, better resource allocation as shown in

Figure 1-1.

Figure 1-1 Integrated model evaluation for product and process feedback. The left
side of the process shows the role of the integrated model for making decisions about the
design object. The right side reflects the objective of this work, providing feedback about
the design process by evaluating integrated models.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Shaun M Abrahamson Page 11

1.2 Problem Overview

There are a number of approaches to address the problem of integrating models in the

product design and development process. The objectives are generally the same, that is,

integration of models, which represent different considerations to facilitate global, rather

than local trade-offs.

Although there are a number of aspects that distinguish the various approaches, one of

the fundamental issues is problem representation. There is a continuum marked by two

distinct poles. On the one end, there are those who wish to build common representations

in which all participants can represent their problems (STEP 1999). The other pole is

defined by those who allow each model define the representation, which allows them to

best represent the problem they are considering. Mechanisms are then provided to locally

map one representation to another (Cutkosky, 1994). The DOME framework is based on

the latter.

DOME provides mechanism for users to create models within heterogeneous

environments or native to the DOME environment. Various mechanisms are provided to

allow organization of sub-models, using an object-based approach. Users are then able to

make model services available to other users who can subscribe to these services. As

services are connected using locally defined relationships, a service network is created

which can then be evaluated as a complete simulation.

Evaluation takes place by running the various sub-models according to the relationships

and service connections defined by each of the users. Independent variables can be

adjusted and variables can be evaluated to determine an overall score. In this way, the

locally defined models can be evaluated from a global perspective. The evaluation can be

automated since the number of scope and scale of the model rapidly becomes intractable

for any single person or group.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page12 Introduction

In addition to the complexity of the model operation, there are a number of challenges

related to the tractability of the resulting network. The organization of the global network

structure is referred to as the decomposition. This refers both to how models are reduced

to sub-models and how models are integrated to form integrated models. Although it has

been acknowledged in a variety of fields that decomposition and relationships are the

basis of problem solving and modeling (Minsky 1986, Pinker 1997), little is understood

about how these activities can be supported for individuals and even less about multi-

disciplinary groups.

The approach used in this work is to identify domain independent types of

decomposition. This is used to isolate mechanisms needed to support decomposition

activities and the construction of models. Heterarchies are identified as a likely

emergent structure and as a result the work was focused on providing tools to support the

navigation and understanding of such structures. Two tools are created to meet these

objectives.

The first is a visualization tool that facilitates the navigation of large heterarchies by

providing mechanisms for adjusting levels of abstraction. The other is an extensible

graph analysis algorithm, which can be used to organize sub-models according to their

relative connectedness' within the scope of the network under consideration. These tools

are combined to create an approach, which allows real-time responses to resource

allocation during construction of integrated models.

1 Connectedness refers to the degree of interdependence between a given element and others

Massachusetts Institute of Technology - Center for Innovation in Product Development

-1~---- --~---~- ---ull rr-- ar---~ -rl~l ~l- -~-~l~~ UI*pW-Y r-ir~-- rrirr~~ L1P-X ^ ~-L;,-----r_- -_~------rrru_-ur---.-r_ I --Lii r- i.^aris- ~ .il- .

Shaun M Abrahamson Page 13

Although there are a number of approaches suggested for managing the design process,

they suffer from lack of timely, detailed information about the process state. The

information quality is a function of the effort expended to collect the data, as can be

determined from an example collection process. In the creation of a design process

outline for a small (less than 20 parts) automotive subsystem, which takes 6 person

(Dong 1998) weeks to collect, the data can be used once during the three month design

process. The proposed method makes process information available in real-time, allowing

responses to the dynamics of the design process. Analysis of the integrated model

structure is used to produce a design process view, without additional overhead.

1.3 Overview of the thesis document

The thesis begins by describing integrated modeling approaches for product design and

development. The DOME (Distributed Object-based Modeling Environment) approach is

introduced and an example industrial problem is used to review current capabilities and

limitations. This is followed by a broad discussion of decomposition intended to provide

an overview of the scope of the problem The result is a classification of decomposition

types.

The current DOME implementation is then discussed, identifying mechanisms, which

support different decomposition types. This identifies the need for additional support

forming the requirements for a prototype decomposition tool. An implementation of an

analysis and visualization tool is then presented, reflecting on different analysis and

visualization approaches.

A design process management process is then introduced. Current limitation of design

process management are explained and particular areas are identified which can be

addressed through the use of the DOME modeling environment and the integrated

visualization and analysis tool. Finally conclusions are drawn, focusing particularly on a

number of possible directions for future work.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Pagel4 Introduction

2 BACKGROUND

This section consists of two main parts. Section 2.1 introduces ideas of integrated

modeling in general and section 2.3 explains DOME (Distributed Object-based Modeling

and Evaluation) framework in particular.

2.1 Overview of integrated modeling

Predicting product performance and the ability to make informed decisions are critical to

improving the product design and development process. In particular, integrated

modeling and decision making can improve quality and reduce development time through

the elimination of costly design, build, test and refine cycles. The objective of integrated

modeling is to facilitate real-time coupling between design attributes derived from

product design models. Figure 2-1 contrasts the physical and analytical aspects of design

process modeling with respect to degrees of integration. Integrated analytical models,

both large in scope2 and scale, have traditionally been considered infeasible. There are a

number of reasons for this, as expressed in the following statements (Cutkosky 1994).:

1. It is very difficult, if possible, to formulate a complete explicit product development

model that can be solved, both because of its size, complexity, and its dynamic,

uncertain and evolving nature

2. The different product development domains use different tools, data models, and

often even different data management systems.

3. All necessary data are not available to a single entity, due to either consolidation

logistics or proprietary issues.

It is clear that the scope and scale of the effort is large and there are a number of ongoing

projects attempting to solve parts of the problem. Some information technology issues are

being resolved through new technologies intended to enable integration of heterogeneous

systems. Further, in certain areas, there is increasing effort to form open standards and

collaboration between vendors, for example in Computer Aided Design (CAD),

Computer Aided Machining (CAM) and Product Data Management (PDM).

2 Scope refers to the number of different disciplines and analysis, while scale refers to the overall size in
terms of the number of people and software tools.

Massachusetts Institute of Technology - Center for Innovation in Product Development

pix_- -^ -^1-. ----I ill -----~III-I.-~~ -LY*l~t~Y-YII~Y--L- WL-~-~U-L IC--~ I -X-ll_--s~ llll~ Y_

Shaun M Abrahamson Page 15

Physical
manufacturing market
pilot beta response

casing 0 O O O O
prototype 0

O optical alpha final product
subsystem

actual return
0 on investment

foam customer
model focus group

0

Focused r Comprehensive
concept customer
sketches model traditional

o infeasible

manufacturing
simulation

o virtual
product

casing optical geometric DOME
geometry subsystem assembly models integrated
model simulation• model

Analytical

Figure 2-13 The role of DOME in product development. The comprehensive analytical
model has traditionally been considered infeasible. This is in part because of the
difficulty in modeling some elements of the design, but also because of the integration
difficulties associated with connecting different sub-models.

The following sections will show how integrated modeling is being addressed in the

DOME framework. We begin by presenting our definition of the requirements for

integrated modeling. Within this context, different approaches are discussed and the

DOME implementation is introduced. DOME is then explained in the context of the

development of an integrated model for a Liquid Crystal Video Projector.

2.2 Discussion of approaches to integrated modeling

A number of groups have described requirements for integration frameworks (Molina,

Akman Cutkosky, Tomiyama). Based upon these readings and work with industry

collaborators, the developers of the DOME framework feel that the key requirements for

an integrated product development system include:

1. Low barriers to participation: information system architectures that allow distributed

users in different environments to participate in a transparent manner without

investing significant time for training to learn systems, tools, or modeling languages

outside of their own expertise.

3 Adapted from Product Design and Development, Ulrich and Eppinger 1995

Massachusetts Institute of Technology - Computer Aided Design Laboratory

BackgroundPage16

2. Domain specific choice of tools: allowing each design participant/expert use the tools,

representations, simulations, heuristics or models which are most suitable within their

domain.

3. Flexibility at the user level: flexibility to allow for the spontaneous and robust

growth, extension, change, revision and reuse of integrated models, tools, or

resources to solve evolving or new problems.

4. Mixing of level of detail and quality of models: incorporate a seamless mix of detailed

models and incomplete or approximate models to support both top down and bottom

up design.

5. Real-time simulation: provide the ability to explore the design solution space,

concurrently elicit trade-offs or causality between disciplines and goals, and monitor

design evolution-in both a manual and automated fashion.

6. Decision support: support decision making through visualization and evaluation.

7. Support different collaboration models: accommodate both tight and loose

collaboration ranging from close colleagues to outside consultants or suppliers while

respecting a diverse set of intellectual property and work-sychronization needs.

Theses requirements are focused on participants in the process, who fulfill the various

disciplinary roles. These people must have the capability to affect the modeling

environment without having to work through intermediaries such as system

administrators. The approach supports individuals and groups of people as well as

individual and networked computation and the combinations of these elements. The

following combinations capture this view (adapted from Branki 1995):

1. communication between designers

2. communication between designers and tools

3. communication between tools

Massachusetts Institute of Technology - Center for Innovation in Product Development

......lrr-^x~l -~----- ~----~-- --- I.;rpl---- ~C- ------~--~~-n L3~LI~ lrCPUrP.-*.UI *~ sll^iiii_*5411- -~Y~PI~- -I I~-- I~lYI

Page 17Shaun M. Abrahamson

We expect that the people and applications will observe and represent the world in a way

that is amenable to the tasks which they wish to perform. One of the integration

challenges is facilitating interaction of designers and tools with different views and data

representations. Another critical aspect of integration is support for model construction

and decision support, since as we move to incorporate multiple domains, it becomes

increasingly likely that the resulting solution spaces, will be intractable. Providing tools

that allow users to represent desired states or outcomes are important; as are means to

assist users in finding promising solutions.

2.2.1 Integration and data model representations

Integration can be approached in a variety of ways, however it can be viewed as a

continuum, bounded by two approaches. One end requires participants to represent their

views in a common way, which can then be understood by other people or machines. The

other end integrates by translating between elements, which wish to communicate. An

example of the first, are standards such as STEP, which create a general data

representation in which people can communicate. An example of the second are

ontologies (Cutkosky 1994) used to define exchanges between entities, with no central

definition. Somewhere in the continuum are approaches such that use intermediate

representations such as qualitative process theory (Tomiyama 1994), which allow

integration once concepts from the new modeling domain has been mapped to the overall

representation. The representation issue is at the heart of the decomposition issue which

will be introduced in the section 3.

The DOME framework supports a model that allows users to work with the tools they are

familiar with and as a result, there is minimal prescribed representation. Part of the

motivation for this, is that we expect that representations for different domains will

evolve in directions that best serve the particular domain, making a central representation

intractable. Following a similar approach to that of Cutkosky, we allow users to wrap

applications and publish interfaces. Rather than use ontologies for translation, we

provide a publish/subscribe mechanism through a service marketplace. Services can be

published and then manipulated in a graphic programming environment and used by

other users and tools.

Massachusetts Institute of Technology - Computer A ided Design Laboratory

Pagel8 Background

Shaun M Abrahamson Page 19

It is worth mentioning that integration through language specification provides a number

of advantages for automation of aspects of the integration. Richer representations

facilitate more elaborate processing. For example, Tomiyama et al use qualitative process

theory as an integrative language requiring each sub-model to be mapped to this global

representation. This holds the potential of automating the integration step, however the

designer is required to understand the global view as well as the mapping of the tool. It is

not clear what overhead is involved in the creation of the mapping.

A further consideration is the representation is uncertainty. At different stages in the

evolution of a model, some parts will be uncertain. For example, we might be able to

state exactly the geometry of an object, but we might not be certain about the process,

which will be used to manufacture it or the consistency of its material properties.

Similarly, we might have a model of a given resolution, that is correct within a certain

range, such as a first order estimate. We view this as essential aspect of the design

process, therefore we have generalized probabilistic representations, allowing users to

represent uncertainty and facilitating the mixing of different levels of modeling detail.

Design is increasingly a distributed activity, including distributed data storage and

computation as well as network access. In most cases, it is likely that when dealing with

multiple data owners, there is little hope for central data storage. This issue is tightly

coupled to security concerns as well as different representation schemes. This in turn

means that no system can expect to have a complete model view, making centralized

approaches such as blackboard architectures less desirable. The network capabilities and

appropriate mechanisms are built into the DOME modeling environment, such that as

long as services can be published on a network, they can be included in the modeling

environment and therefore be integrated.

Massachusetts Institute of Technology - Center for Innovation in Product Development

....~..~.-~--- --v-l---------------rr -----p- rsp--r" --Y- i- I/YI-ii- I--I~P"~-W- r~ ~PI~I~YL CIYL-~~-~I~~~I~- -I-

Shaun M Abrahamson Page 19

Page20 Background

Once integration is achieved, it becomes essential to provide decision support tools, given

the anticipated size of resulting integrated models. Although there are numerous

optimization schemes, most require a classification of the problem beforehand. Also, in

incomplete models, the focus will be on identifying potential solution, rather than optimal

ones. The current DOME approach makes use of genetic algorithms to identify areas if

interest within the solution space. Users are able to specify independent variables and

specify criteria for different metrics, which are then used by the GA to define objective

functions. The modular architecture, means that objects encapsulating other optimization

or search strategies might also be used.

Although integrated models, promise a great deal, a number of issues conspire to make

them unmanageable, like with any large software system (De Pauw 1997) At the heart of

this problem is understanding the relationships between different parts of the model. If

one considers that there are multiple participants creating different parts of the model, the

overall structure is continually evolving, creating the need for a capability to monitor and

understand the form at any time. This can be referred to broadly as decomposition. The

case study in the following section will introduce the idea and section 3 is devoted to a

more comprehensive discussion.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Shaun M Abrahamson Page 21

2.3 Description of DOME in the context of the Polaroid Project

This case study introduces the implementation of the DOME integrated modeling

environment. The case is used to demonstrate the scale and scope of integrated modeling

efforts and affords an opportunity to explain the current features of the DOME

framework. The particular challenges of integrated modeling relate to the management of

large models, which have been evolved by multiple people. A review of the

implementation process that it is unlikely that any individual or group will understand the

complete model structure. This results in a number of model management challenges.

The development of an integrated model is explained for a Liquid Crystal Projector. In

the following sections, the model evolution is explained as per the timeline in Figure

2-2.The integrated model begins with a broad statement of the design objectives,

considering initial marketing data as well as existing and potential critical component

suppliers. The model evolves to address a variety of technical, supplier, marketing,

environmental, cost and financial questions, through the participation of multiple

suppliers, consultants and engineers and the connection of services from their respective

models.

Evaluation of cu
with respsect to
Light Engine te

modeling
started

Simple Cost Model

irrent product
suppliers and

chnical performance

Voice of Ci
from the m

Component supplier catalogs,
vendor preliminary custom PC boards
and first order geometric and thermal
models

increasing time . "-

Solidworks geometric model and
more detailed thermal model

ustomer analysis
arketing consultant

modeling
stopped

Environmental Impact Assessment
from the environmental consultant

Figure 2-2 The timeline for the evolution of the integrated modeling effort. Modeling
begins with an evaluation of current product attributes and continues through a variety of
expansion stages culminating in an integrated model including customer, supplier,
engineering, financial, costing and environmental sub-models.

Massachusetts Institute of Technology - Center for Innovation in Product Development

_ ._...... ._____._____.____..______~,~____~I~~. ~,, 1, II^I~-*PI~-LII_ III II Y~YCI-~D~--I^I~-~ --Yi.~. -..--- ^I .-~l~-*IYII^~.^II---~-._

Shaun M Abrahamson Page 21

Figure 2-2 shows the model structure for the initial objectives, which were to evaluate the

performance of the current light-engine component against new alternatives. The circles

represent modules, or containers, which encapsulate data and models. The lines

connecting the modules reflect information paths. This representation reflects the object-

based nature of the framework. The light-engine module contains data pertaining to 3

different suppliers. The other modules contain the light-engine technical performance

specifications and light-engine vendor metrics, respectively. In this case, the modules

are created by different individuals.

Figure 2-3 Polaroid model first state in the DOME graphical user interface. On the
left are modules, connected by arcs, illustrating information exchanges. Right of center
are two panels which display evaluations of various attributes with respect to
specifications.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

BackgroundPage22

The two panels on the right show evaluation scores of various parameters with respect to

the light-engine specifications. These displays are a specific type of module, which

provide evaluation services, calculating and displaying the relationship between the

current design-state and various objective functions (specifications and metrics). The

vertical lines represent the state of the design, while the sloping forms represent the

specifications expressed as probability distributions. Figure 2-4 shows the addition of a

cost module for the assessment of cost attributes of the light engine.

Figure 2-4 Addition of a simple cost model. The image shows the addition of a simple
cost model to extend the capabilities of the evaluation.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Shaun M. Abrahamson Page 23

SBackround

2.3.1 Creating inter- and intra-module service exchanges using relations

We add a simple cost estimator based on the light engine cost and scale factor intended to

represent the effect of different sales volumes on the costs. A relation is formed as

follows:

(Predicted Manufacturing Cost) = (LECost) + (LECostScale)

LECostScale is created locally, as is the relation result (Predicted Manufacturing

Cost), however an additional service is required to provide the light-engine cost which is

"owned" by another module. It is important to note that while this might simply be a data

point obtained from a supplier, it might also represent the result of a mathematical

computation. This might in fact be the result of the suppliers' model, which computes a

predicted cost based on combinations of features (as might be the case if the component

is in the process of being designed). The relationship statements4 might consist of control

flow statements or algebraic functions. For example, the scaling factor for the light-

engine cost, is conditional on certain production volumes.

When multiple relations are created, a change occurring in part of the model results in the

network re-evaluating the requisite relations. The result is a recursive update of the

service network. In this way different model components react to changes in real-time

and the connected modules behave as an integrated system. The behavior of the system is

not determined centrally, but is emergent, based on locally defined relations. This

mechanism has been refined in the latest implementation and is discussed in detail in

Section 4.1.1.

4 The relationships can be any C++ style statement

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page24 Background

2.3.2 Modules for evaluating the current state of the design model

Evaluation of the design is carried out by comparing attributes of the current design-state

to the specifications provided by the various participants in the design process. Although

a number of multi-attribute utility-based methodologies exist, a satisficing methodology

(Kim 1997) is used. The evaluation can be thought of as a comparator, which takes in a

specification and a performance attribute and then produces an output which reflects the

relationship between them (in this case a score from 0 to 1.0).

When a new Light-Engine vendor is selected, the lenses and the propagation mechanism

cause an update to reflect the new scores for this selection. This update happens because

the lens is using services from the light engine catalog. In this case, the relation is defined

by a criterion, which compares the stated performance to the desired performance

specification. In addition to the graphic view provided of this evaluation, the results are

used by a decision module, which calculates a multi-attribute evaluation, providing an

overall view of the design state. The evaluation process is shown in Figure 2-5.

Decision
Criterion

Overall evaluation

eSingle evaluation
Criterin service

Figure 2-5 Operation of lenses and criterion in DOME models. This graphics show
how attributes are evaluated with respect to specifications, the results of which are used
to compute a multi-attribute utility for the given state. Specifications are presented in the
form of probabilistic representations and compared to the attributes (in whatever form the
are presented).

Massachusetts Institute of Technology - Center for Innovation in Product Development

Shaun M Abrahamson Page 25

2.3.3 Probabilistic Representation and Generalized Variables

Probabilistic representation allows the representation of uncertainty encountered in

different stages of the design. An example might be first order calculation results for

initial estimates such as the inputs for the cost model. In the case of the detailed cost

model, some of the inputs to the model are uncertain, such as sales volume. This does not

prevent us from using the model; rather, we represent the variables appropriately and

expect to have uncertain results. Other examples of the application include service

quality, where data is passed through an "uncertainty filter", to account for confidence.

Computation using probability is, however, transparent to the user; the system selects

appropriate solution techniques, depending on the distribution types and the relationship

between variables as shown in Figure 2-6 below.

C=AxB

Deterministic scenario

: : :I..

. IS:::::: :: :Ai

0 ,I 0

Stochastic scenario

Figure 2-6 Illustration of variable generalization. The figures on the left illustrate the
difference between the computation of the statement C = A + B. The upper case is the
deterministic case, where the result C is a delta function because both A and B are delta
functions. The lower case replaces A with a probabilistic value and shows the result C to
be probabilistic as well. The images on the left are from a real model showing the input
values and the resulting output.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

BackgroundPage26

The flexibility in the definition of variable types and creating and connecting services,

provides an extensible environment where models can be evaluated at any time regardless

of the completeless or uncertainty of information. Additionally, we can connect

different modeling tools and maintain the integrated model performance. In this regard,

the framework provides functionality associated with agent-based sysytem such as

flexibility and extensibility.

The addition of a gemoetric model presents an opportunity to show how the two

previously discussed features can be combined. The geometric model provides services

for thermal models, cost and marketing models. The model is however using partically

complete information. For example, the components are at different satges of

completeness. Off the shelf items such as speakers and fans are complete. The power

supply however, will be made to fit the available space, within certain constraints. It's

form can therefore be computed by considering the power requiremnets and available

dimensions. The results can then be used by the power supply manufacturers.

As can be seen from Figure 2-7, thermal performance of different components are

monitored by comparing their rated operating temperature range to the calculated internal

temperature of the case. This demonstrates a similar idea to constraint propagation. Users

interested in a different aspect of the model, for example the fan cost or size, are able to

experiment with alternatives and receive real-time feedback about the thermal

performance impacts.

The model has been extended from a basic customer and cost based analysis, to include

some of the interactions between different aspects of the design, from an engineering

perspective. The network resulting from the various relations and the update

mechanism make this integrated understanding possible. However, solving this network

rapidly becomes intractable considering the number of independent parameters and the

objective functions, which must be satisfied. We can automate the search, using a search

technique based on a genetic algorithm, to identify promising areas of the solution

space.

Massachusetts Institute of Technology - Center for Innovation in Product Development

~___~_.....~~xl----^I --- -__I I___-__-;- .-ar.r*riilc."-ll- l11(1~- (*-)- I*^ iiDYIP111 ~s~sOL

Page 27Shaun M Abrahamson

Pae8 akgon

Figure 2-7 Addition of a geometric tool from a CAD tool. The addition of a geometric
model is completed to provide services to a variety of other sub-models. Material usage
and thermal calculations can be completed more accurately in response to changes to
configurations and part dimensions. Further, abundant information is now available to the
marketing by way of form and mass properties.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page28 Background

2.3.4 Solution space searches using genetic algorithms

The current implemented search technique is a genetic algorithm search (Senin 1996).

The search manipulates catalog choices and continuous independent variables and

evaluates resulting scores by receiving feedback from the decision modules. In this way it

moves through the space identifying combinations of variables which yield higher scores.

These may or may not be globally optimal, but will reflect combinations that produce

solutions, which are relatively better than others.

Design Changes to the design Optimization Module
Model variables

Search

able to make changes to a user- defined group of design variables based on userSearch
Engine

bjective
Function

Evaluation services
(from Decision Modules)

Figure 2-8 Diagram of genetic algorithm search process. The optimization module is
able to make changes to a user- defined group of design variables based on user
selections. The changes result in an update of the network, which in turn cause the
evaluation modules to update. The result of the update is then used to further direct the
search.

2.3.5 Addition of Voice of Customer and Environmental Models

The final evolution of the integrated model includes two more distributed connections;

the first of which, is TEAMs, an environmental expert system. This model provides life

cycle analysis feedback to the designers using a variety of impact assessment schemes.

This allows designers to receive detailed feedback on environmental issues, while also

allowing different evaluation schemes to be substituted depending on the use location or

particular preference set for the target market segment.

5 TEAM is a product of Ecobilan

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page '2 'Shaun M Abrahamson

The second extension includes the connection to a remote marketing consultant, using

utility metrics to assess customer responses to different designs. The connection can be

run as either synchronous or asynchronous, allowing the consultant to evaluate only

selected solutions and then make their assessments available to the designer. This

functionality allows participants to select the mode in which they wish to participate.

2.3.6 Publishing and subscribing from different software tools

The connection of the environmental model provides an opportunity to revisit the

manner in which services are published. Figure 2-9 shows a snapshot of an interface to a

publishing program. The upper part of the interface allows users to define an interface to

this model along with descriptions. The lower frame area, provides a means for setting up

the model as a server, so that the services are published. The process for creating the

wrapper is shown on the right although this is intended to be transparent to the user.

The other important aspect of the environmental model is the impact of the integrated

modeling approach on environmentally conscious design (Borland 1998). As for other

attributes of the design, much of the product's environmental impact is determined early

on in the design process. The number of dimensions requiring consideration and expertise

required for analyses make the task difficult and time consuming for designers. The

integrated modeling approach provides the means to evaluate designs as they are defined

and provide real-time feedback to designers, without requiring the designers to conduct

the analysis.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page. 3) Background

In a similar manner, the customer model provides designers with real-time feedback

about anticipated customer responses. The ideal scenario would allow full-time

interaction with customers to determine potential responses to different product

attributes. Integrated modeling provides similar functionality through the connection of

online customer models. These models include data about competitor products as well as

utility models for product attributes of different market segments. This enables designers

to receive real-time feedback about different product attributes. The other important

aspect of the customer model, is feedback to other parts of the model. The manufacturing

cost effects final sale price, which will effect sales volume, which in turn effects the

estimated manufacturing cost. These scenarios can now be considered in the design

process as a result of integrated modeling.

Figure 2-9 Publishing interface designed for the TEAM software. The diagram on the
right shows the process whereby the isolated program is wrapped and made available to
DOME. The objective is to minimize the overhead for making services available,
therefore these helper programs are being written for different software applications.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Shaun M Abrahamson Paze 31

A noticeable thread through this discussion has been the ability to flexibly evolve the

model with any number of participants and software tools. While this is desirable it

introduces model management issues in the form of activities such tractability,

debugging and maintenance of the model structure. During the creation of this model,

users routinely published their interfaces or input/output requirements. Although this

was useful, it became clear that since there were specialists creating the sub-models, it

was difficult for anyone to understand the intersection of the input/output requirements.

The limitation on comprehending the integrated model structure, made it difficult to

predict what to do next or how best to allocate resource to create new pieces of the

model. An analysis of the model structure was used to overcome this problem and

became the seed for much of this thesis. This analysis will be explained in section 4.3.2.

This need to understanding and evaluate the emerging model structure, leads to the

discussion of decomposition in the following section.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page32 Background

Shaun M Abrahamson Page 33

3 DECOMPOSITION FOR INTEGRATED MODELING TOOLS

The previous section discussed the DOME framework for integrated modeling and

demonstrated the need for methods to understand the structure of large distributed models

as they are evolved dynamically. The creation of integrated models relies on two semi-

distinct processes; reducing a whole model into parts and connecting parts to form a

whole model. We refer to this activity as decomposition, a term which shares concepts

with ideas such as chunking, perspectives, views, frames, morphs, granules or schemes

from areas such as artificial intelligence and cognitive sciences.

In the following sections, different aspects of decomposition are discussed to clarify the

concept and understand what is needed to support activities related to creation of

integrated models. Examples are used to explore relationships between parts and wholes.

This leads to the identification of structures known as heterarchies, which are variants of

traditional hierarchical structures. Object-based approaches are introduced as a

formalism to support the creation of these structures. Types of decomposition are

identified and classified along the lines proposed by Bird and Kasper (1995). This leads

to the identification of model properties that can be used generally in integrated

modeling for model structure comprehension and analysis.

3.1.1 Relationships between the whole and parts

At the heart of decomposition are relationships. Relationships are important because it is

the assumption of their absence that allows the subdivision of tasks or the breaking of

systems into parts. At the same time, the need to connect different sub-models into a

larger model, requires the creation of relationships between otherwise independent units.

Two examples are used to identify different types of relationships: sequential and

functional. The first is a function diagram for a robot "Builder" and the second is an

excerpt from a LegoTM instruction kit. The examples show two very different applications,

but clearly show the importance of relationships for understanding the result of the

combination of parts.

Massachusetts Institute of Technology - Center for Innovation in Product Development

_I .. _.-a-~--r~ -UCYYL~-r-ln;-znnrrra~ -- r~r

Shaun M Abrahamson Page 33

Page34

The first diagram in

Figure 3-1 shows the instruction set for a "Builder '", illustrating three levels of capability

that allow it to achieve different actions. The contrast between the parts on the left and

the structure on the right emphasize how relationships facilitate understanding. The left to

right organization introduces the first type of decomposition, which is a simple I/O

(input/output) network. Each element performs a transformation from one state to

another, such that in a sequence, the end-state of one step is the beginning state of

another.

The second type of relationship is less clear, that is the grouping of sequences of

transformations which form a "higher level" function, such as FIND+GET+PUT =

ADD. The math for this is workable. Assuming a beginning and end state, the result of

the application of ADD will have the same effect as the sequential transformations

resulting from FIND+GET+PUT.

BEGIN ADD END

END

PUT FIND

RELEASE MOVE

SEEGRASP

FIND GET PUT

GRASP MOVE RELEASE

A\/

Figure 3-1 The role of structuring and relationships. The labels on the
or no information about the whole, however the structure on the right uses
sequential decomposition to show how the actions work together.

left yield little
functional and

6 "Builder" is adapter from Society of Mind, M. Minsky 1986

Massachusetts Institute of Technology - Computer Aided Design Laboratory

BEGIN

GET

SEE

ADD

Decompositionfor integrated modeling tools

The next example is intended to show how these relationships appear in the context of a

simple example. The Lego components on the left in Figure 3-2 are "related" to produce

the device on the right. We might ask a number of questions about the decomposition of

this problem. Firstly, we can identify a number of possible serial relationships, such as

the sequence of steps required to assemble the components, or a sequence of actions

which relate the rotation of the motor to the motion of the arm as shown in Figure 3-3.

Figure 3-2 Relationships in a physical model. The components on the left can be

associated with various functions. As unique components however, it is unlikely that

anyone would identify the intended configuration on the right. The integrated view

allows us to understand how these components combine to provide a larger function.

Functional relationships are less clear here. If we are mechanical engineers, we will

recognize a transmission and a transmission housing. It is simple to show how

elements of the transmission combine to produce a mapping of motor rotation to angular

motion of the arm. It is not trivial to construct a similar diagram for the "housing". This

demonstrates concepts defined in Locus of Control (Bechtel 1992), which define

relationships allowing some parts to be easily identified or separated while others are

more difficult as a result of the tight interaction.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 35Shaun M Abrahamson

The Locus of Control allows us to associate certain elements with behavior or function.

For example, removing a gear from the drive-train will cause it to fail. Removal of parts

of the housing are not guaranteed to have the same effect. We could break the housing

down into artificial blocks and identify areas of different load bearing capacity as is the

case in Finite Element Analysis (FEA). In the case of the transmission, the components

are easily identifiable as independent physical parts. Not so in the case of the housing, the

behavior is emergent. We have to uncover mechanisms at the material and geometric

level, to understand it.

Figure 3-3 Inferring behavior as a result of understanding relationships. The

identification of relationships between components provides a means to understand the

system behavior. This allows us to predict the movement of the Lego crane if the motor is

activated.

If we consider the creation of an integrated model for this Lego contraption, we might

wish to relate the transmission and the housing. In particular, we might consider the

reaction forces on the shafts of the transmission elements and relate that to the load

bearing surfaces of the housing. How do we do this?

We will very likely have two distinct hierarchies; one for the transmission system and

one for the housing (which includes material and geometric representations) and they are

now connected by forces. Although the hierarchies remain, the new relationships that

connect the branches of the hierarchies, result in a new structure called a heterarchy.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Decomposition for integrated modeling toolsPage36

3.1.2 Heterarchies

A heterarchy is a representation structure in which some (but not all) of the parts can be

organized into a hierarchy. The structure of this document can be derived based on the

relationship between the different sections. If we consider each idea to be a node and the

relationship between nodes to be arcs, we could construct a graph representing the input-

output structure of concepts. Figure 3-4 shows an unstructured network and a heterarchy

for the same set of nodes and relationships. The nodes in the network represent hyper-

linked documents and the connections between them represent hyper-links.

If we consider the arrangement on the right in Figure 3-4, we can observe, what looks

like a summary and then subsequent sections, where the hierarchy represents abstraction.

Although there is feedback (arrows from higher detail back to more abstract levels), the

hierarchy formalization remains visible. Hierarchies are useful for displaying structure,

even if the hierarchy is only partially valid.

Another important aspect of these structures is the possible mixing of sequential and

functional decompositions. If we imagine node a to be a summary which links to b,c,d

and e, we don't have a strict relationship that says b+c+d+e = a, however there is some

grouping with a summarizing relationship. This summary is in many ways similar to the

idea of first order models. A complex representation can be reduced to a simpler one, by

extracting the critical elements.

A further example of a heterarchy is a simple mechatronic system shown in Figure 3-5.

This is a physical decomposition, where parts can be combined to form each higher level

sub-assembly as in Figure 3-5 (a.). Figure 3-5 (b.) shows a heterarchy, which results

when different perspectives are used to analyze the system. An electrical engineer, for

example will consider the relationship between the position sensor and the engine's

electronic controller. The designer of the accelerator sub-system, must consider the

relationship between the throttle cable and cam.

Massachusetts Institute of Technology - Center for Innovation in Product Development

--u~ --i -r*- ~-~- l-.--I~------- -~1~L~ II^-~P~ --C-~~P----~Q~-~^IIIs~--~~_IQ-~ 11-i~i.--*-1~-~ ~ Y~- -I LIIY-I~-Y~fl~L--~---- lli~~ll.

Page 37Shaun M Abrahamson

Page38

Figure 3-4 The partial structure imposed by a heterarchy. The nodes in the graph on
the left are documents and the arcs are hyper-links. The figure on the right is a
heterarchy, a structure that is for the most part a hierarchy, but for three exceptions.

When considering integrated modeling environments, similar heterarchical structures will

emerge because of the manner in which people structure information. This can be thought

of intellectual decomposition or perspectives.
Engine

Engine Management Module Intake Manifold

Accelerator Pedal Electronic Controller Throttle Body

Throttle Cable Return Spring Position Sensor Sprng Plate Cam

Engine

Engine Management Module Intake Manifold

Accelerator Pedal Electronic Controller Throttle Body

Throttle Cable Return Spring Position Sensor Sprng
'0. '

Plate Cam

--- ,

Figure 3-5 Engineering system heterarchy. (a.) The hierarchy shows a partial structure
of an engine. The decomposition which is focused on assembly. (b.) Shows the
interactions during design and operation, which result in a heterarchy.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Decompositionfor integrated modeling tools

-. :... .- .: _ _ .° - ..-

3.1.3 Perspective and intellectual decomposition

Different types of decomposition are useful for different considerations. They can be

thought of as filters, where certain information about a system is suppressed and other

information in enhanced. The activity of modeling, is an example of such a filter. During

modeling it becomes harder to define the nature of the relationships between elements

since the particular expertise of the modeler will determine what is relevant and that

which can be suppressed. The expert's knowledge will be used to construct or manage the

relationships between the elements. This has been referred to as Intellectual

decomposition by Kasper and Bird (Bird 1995).

Intellectual decomposition is the most difficult to generalize because the algorithms and

representations represent the specialized knowledge for an individual or group. The

intellectual domain will determine how a scope is defined (what information is

suppressed). Further, the perspectives are somewhat unique to the domain. In fact it is

argued that in problem solving, decomposition is achieved in very different ways for

experts and novices, resulting in different level of success in solving the problem.

The throttle body example Figure 3-6 illustrates a mixture of relationships related to how

different experts might choose to break down a problem. In the case of the overall

hierarchy, it is not clear how this structure emerged. When an engineer with 20 years of

experience in a manufacturing organization was asked to explain similar decomposition

structures, he responded "It is historical!"7 .

7 The comment was made by Shaun O'Reilly of the Advanced Manufacturing Technology Division at Ford
Motor Corporation

Massachusetts Institute of Technology - Center for Innovation in Product Development

_ _~ __~1_1__ __~ _r ~LC .-C.~~l~illlt~ - ~ iC~ l~ ~

Shaun M Abrahamson Page 39

The example in Figure 3-6 is used to demonstrate how a designer might decompose the

system to reflect those elements that he or she is interested in. This is important if we

consider the myriad different decompositions, which will result in a collaborative project

with multiple participants in the modeling process. This example contains few elements.

An existing model for the throttle body has more than 100 elements with the number of

dependencies of the same order! This is not unlike the number of attributes and methods

encountered in software programming. Object-based representations have been used to

manage large-scale decompositions in software design, with some success (Stevens

1974).
Engine

Engine Management Module Intake Manifold

Accelerator Pedal Electronic Controller Throttle Body

Throttle Cable Return Spring Position Sensor Spring Plate Cam

(b.)

Cam

pedal angle Throttle Cable plate angle

pedal return spring plate return spring
(YYYV1 (yYYY\

(a.)

Figure 3-6 Intellectual decomposition of an throttle body subsystem. (a.) A
heterarchy for the design of an engine system. (b.) Elements considered by the
accelerator subsystem designer, which result in a relationship between the Cam and the
Throttle Cable.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page40 Decomposition for integrated modeling tools

3.1.4 Object-based representations

Although much has been written about object-oriented approaches, some of the earliest

work reveals most about the decomposition strategy (Stevens 1976). The focus was on

binding, or the relationships that defined what should be placed in the same object

structure. Initial work produced a list of binding or cohesiveness for software programs as

shown in Figure 3-7.

Types of Brief Description

Cohesiveness

Coincidental no identifiable relationship

Logical Classification i.e. performing the same function

Temporal Used in the same space of time - constructor methods

Communicational Refer to similar data or have a section of code in common

Sequential I/O relationship

Functional A = f (B,C) therefore B and C are related by mutual effect in A

Figure 3-7 Binding types defined in early object-oriented work.

The methods and attributes, which the object implements, are grouped together. The

relationship between objects is then limited to the manner in which they use methods and

data from one another. Among other things, this structure has been shown to facilitate the

following (Stevens 1976):

i. Comprehension of the program structure.

ii. Maintenance and debugging which depend on understanding, but also on

arrangement of parts to create areas of high and low dependence.

iii. Task allocation, which is enabled through the definition of parts.

iv. Code Reuse, which becomes possible if objects are sufficiently abstract/general.

Massachusetts Institute of Technology - Center for Innovation in Product Development

_ .~. ----- -i-u------ --~r~- - r__ -~---^~- ------ -~---~tp^L~ ---C-~ -^ Ln;~~Lrrru~;lyCh~pr~sLq~*'~_r~- -a.~-~-u~l-r_-r----- --ll-x.cr- -l r_ rr^~----x -----

Shaun M Abrahamson Page 41

Page42

The object concept represents one of the best formal representations for decomposition.

The advantages listed above are attributes of decomposition in general. While, it is not

within the scope of this thesis, it is worth evaluating some of the formal aspects of object-

oriented programming for the purpose of furthering understanding decomposition.

Some hierarchies in Object-oriented languages are intended to support aggregation of

behavior, that is objects "inherit" abilities from one another (this can be thought of a

functional relationship as defined previously). This is referred to as the class hierarchy

and an example is shown in Figure 3-8 a. There are then a number of objects which are

brought together to perform specific functions within a program. This is achieved by

producing code that addresses increasingly specialized functionality, again representing a

hierarchy as shown in Figure 3-8 b.

Figure 3-8 Object hierarchy and inter-class call structure8. The two images above are
snapshots from object oriented code, where the rectangles represent different software
objects. (a) On the left, the decomposition shows method calls between different classes.
(b)The image on the right shows a class hierarchy, where arrows indicate inheritance of
behavior.

8 Structures obtained from analysis of a piece of source code used in DOME.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Decompositionfor integrated modeling tools

In object oriented software code, the structure used to guide the creation of objects may

provide little or no insight into the relationship between objects during the execution of

the code. In this case different views are required for different purposes although the

same software code is considered, as demonstrated in Figure 3-8. Although the object

structure provide a system for managing myriad perspectives and types of decomposition,

there is no escaping the heterarchies which result from multiple different dependencies

between elements in a given structure.

3.1.5 Summary of decomposition types

The definitions so far can be partially summarized in the following table, using the

definition from Bird and Kasper. The four types of cohesion or relationships define types

of decomposition: Sequential, Functional, Informational and Intellectual.

Type of Cohesion Description

Sequential Refers to the input/output type relationships as in the activities for

"Builder", where the output/end of one step is the input/start of

another

Functional Characteristics of both "Builder" and crane examples where

groups of functions or parts are combined to provide higher level

functionality.

Informational Third reflects the object oriented view of software, where code

can be created using a procedural or non decomposed approach

but is organized for a variety of management reasons

Intellectual Defines the requisite body of information to solve a problem9

Figure 3-9 Classification of decomposition types. The table shows the types of
decomposition as determined by the nature of information which is grouped together,
beginning with explicit connection in Sequential to esoteric connections in Intellectual.

9 This is defined as intellectual abilities required to perform a task, however in the context of the example
it is adapted to mean the perspective used when deploying the relevant skills

Massachusetts Institute of Technology - Center for Innovation in Product Development

-- ._.I--- -- ~--~-^.-~-- -----_--_.._ ~l_,~._~culrrr~l-LC~UI'I" ~"~ ~--~-XUICL I~-1L-rrr^-l~~sYC_III_1-~^I _-.-1I_ -- --X1- ~~. IF~_-YIII(-^~.-I^L--^YII~--LI I~Y---IPI

Shaun M Abrahamson Page 43

Understanding the types of decomposition allows us to define mechanisms to enable

them. The arrangement of decomposition types reflects the complexity of algorithms used

to define the respective relationships. In the case of sequential, we can match input and

outputs to synthesize structures. Synthesis based on these relationships has been achieved

in a variety of ways for example PLANNER (Sacredoti 1977) or semantic parser used in

Invention Machine Phenomenon (Invention Machine 1998). Functional relationships

might also be amenable to analysis since in many cases they can be represented as groups

of sequential transformations (Cagan 1998). The other decompositions become

increasingly difficult to analyze.

Information and intellectual decomposition result in structures that are difficult to

analyze because of the nature of the cohesion. The relationships do not lend themselves

well to representation and when they do, the representations are likely to be esoteric. This

may not present a problem for a single user, however when multiple participants are

constructing pieces of the representation it becomes critical to find a mechanism for

revealing some global structure, without requiring users to add more structure that they

would need to represent the problem individually.

The hyperlink example demonstrates that although we cannot understand the reason for

a structure, we can observe it through analysis of lower order structures such as I/O

(hyperlinks) or sequential dependencies. This can help us recover some of the structure,

which has not been formally represented. The underlying mechanisms in DOME produce

sequential relationships, which can be analyzed to facilitate visualization and analysis of

the structure of integrated models. This is the subject of the following section.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page44 Decomposition for integrated modeling tools

Shaun M Abrahamson Page 45

4 DECOMPOSITION IN THE DOME FRAMEWORK

This section describes the approach selected for supporting decomposition in the DOME

framework. The first section outlines decomposition structures available to users for

construction of models within the framework. The second describes the design and

development of a prototype tool, which facilitates navigation of the decomposition

structure through analysis of sequential dependencies.

4.1 Support for user defined decomposition in the DOME framework

The DOME framework is object-based; it provides structures, called modules, for

grouping data and computation. The following section explains the module structure as

well as the mechanisms for inter- and intra-module connections. These mechanisms allow

each user to construct their desired representation and connect it to model elements

defined by other participants.

4.1.1 Modules and mechanisms for creating dependencies

The basic construction unit in DOME is the module. For the purpose of this explanation

we will focus on three types of modules, a Real, Container and Relation. The Real

module is an example of the simplest type of module, which contains a Real number. As

the name suggests, the Container may contain other modules such as the Real and

Relation. The Relation allows modules to be related using mathematical statements.

The example in Figure 4-la shows schematic representations of Container modules A

and B. C, D, E,F and G are all Real modules and A also contains a relation module

defining E = D + C. An additional property of modules is their ability to alias other

modules. Aliasing allows a module (G) to become a clone of the aliased (E) module.

This means that G will always maintain the same properties as E(thus creating a

dependency), in this case since they are Real modules, this means a Real number.

Massachusetts Institute of Technology - Center for Innovation in Product Development

~I-__-_rX-~m~-.-l ^I--)-- ~L~------~~~.. ~- I-- x_*~^I~-C~ IW- ---s^ -~"--"~LIPL-~------r~-r_---rru~--rt-_-_-ri_-- -r_-~itr al-~-^I- II ~-3PIP-I^ -- --)-;-f-LI~Urr-.-

Shaun M Abrahamson Page 45

Page46

A (task) B (task)

S(parametparamer .- -- relation

...... ""- alias
(parameter) E G (paramecter) D C

E=D+C

(a.) (b.)

Figure 4-1 Creation of dependencies using aliases and relations.
(a) shows container modules A and B which are connected by creating G in B which is an
alias to E in A. The relation E = D + C is also added. (b) shows the directed graph
structure of all the modules as a result of the alias and relation.

4.1.2 Current views of the model structure

Currently, the DOME modeling environment has a number of visualization tools, which

facilitate partial understanding of decomposition. In much the same way as one might

create a file-structure, different containers can be used to structure models. As a result the

encapsulation structure can be viewed using a tree structure, where expansion of different

levels allows movement through the parent-child relationships. In addition to this, each

module provides a means to visualize it.

An example of such a module is the relationship module. At the lowest level, one can

read expressions, which show relationships between different elements. This can also be

viewed as a directed graph, showing dependencies that result from the creation of these

relationships. Figure 4-2 shows a DOME model for components of an throttle body

automotive sub-system. Although this provides insight into the model structure, it is not

possible view the model through an alternative dependency structures, which make up

the heterarchical structure.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Decomposition in the DOME Framework

4.1.3 The need for additional views of dependency structures

In section 3 different types of decomposition were discussed. At the one end of the
spectrum are sequential relationships, as reflected by dependencies resulting from

explicit connections such as mathematical expressions. At the other end of the spectrum

are intellectual decompositions. This includes structures, which support specialized

organization of data. In both cases, there is no decomposition that is incorrect, since at

the lowest level of consideration, the model structure remains the same, explicit

mappings and dependencies.

........

Figure 4-2 DOME graph dependency visualization for contained modules. Although
the graph structure allows dependencies to easily followed, it works only within a given
modules and only for a limited sized set of nodes and interconnections.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Shaun M. Abrahamson Page 47

Although different intellectual decompositions are possible, the model structure or

sequential relationships remain consistent. This phenomenon is discussed in

"Discovering Complexity" (Bechtel 1992) who discuss decomposition in the context of

approaches to research problems. Examples are cited where different decompositions

were used to arrive at the same underlying model. This is important since the DOME

environment is intended to support the collaborative construction of models. It is

therefore necessary to identify structures that will be common between different

participants, regardless of their individual choice of representation. This work attempts to

use the sequential structure to support model visualization, as will be demonstrated in the

following sections.

Viewing the structure of the integrated models is critical to understanding the

relationships between elements. As demonstrated in Figure 4-1, the Object-based

representation allows very flexible structuring of model elements. Current visualization

in the DOME environment supports local views of the containment or hierarchical

structure and the relation structures with input/output or serial connections. Because

aliases are used to map between representations, the containment hierarchy does not

completely reflect model structures, that result from interconnection of modules The

result of aliasing are heterarchies, for which we need an alternative visualization

method.

4.2 Visualization of decomposition structures

There are a number of ways to represent the interaction of elements in a network, the

most conventional are the many flavors of graphs, such as trees, directed or hypergraphs.

Although useful, graphs can quickly become unmanageable, particularly as the number of

nodes N and the number of edges E increase as evidenced by earlier images such as

Figure 3-8.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page48 Decomposition in the DOME Framework

There are a variety of matrix-representations, which address this problem by allowing

dense representations of dependencies. Although there are numerous variations in a

variety of domains, the Design Structure Matrix is an example used in product

development and will be used to illustrate how integrated model structures can be

visualized. The limitations of current matrix visualizations are discussed and a

visualization tool which addresses some of the shortcomings, will be introduced.

4.2.1 The Design Structure Matrix for Visualization

Alexander (Alexander 1964) proposed a method for creating diagrams representing the

interaction of different elements of a design. This was in response to a recognition that

the scope of modem systems are beyond the scope of the individual. These diagrams are

intended to reflect the various components of design (and associated activities) and their

interactions, as shown in Figure 4-3. Although Alexander discussed the method for

obtaining the diagrams, after years of use, he commented that the power lay not in the

methodology for creating the interactions, but in the study of the resulting network.

Subsequently a number of visualization techniques have been proposed.

manufacturing
cost market

size

engine
size

seating
capacity

+

fuel emissions
economy

Figure 4-3 Alexander's model representation for an example automotive problem.
The nodes represent elements under consideration, while the "-" and "+" signs indicate
the types of interaction.

Massachusetts Institute of Technology - Center for Innovation in Product Development

--I-u^^--xrx~r~~ rx*~ CIIYIII-YCII^PP "--r

Shaun M. Abrahamson Page 49

Following on Alexander's work, Steward introduced the Design Structure Matrix for

information flow analysis. In its simplest form, the matrix can be compared to a directed

graph, which is a traditional flow representation. The directed-graph, shows nodes and

arrows representing flow or interaction between them. Similarly, the design structure

matrix makes use of rows and columns, where (by convention) the columns represent

source nodes and the rows, sinks. A comparison of the matrix representation and a

directed graph is shown in Figure 4-4.

1

123456
1 2 3

2. *

3
4 4 5
4

5 0

6 1

6

(a.) (b.)

Figure 4-4 Comparison of a directed graph and a design structure matrix. The DSM
allows compact representation. The symmetry allows feedback loops to be detected easily
as in the case of nodes 5 and 2. Further, the ordering of rows can be used to illustrate
possible node sequencing.

The DSM shown is the simplest matrix, known as binary matrix (Eppinger 1993-98)

since dependencies are binary. The representation can be extended to support additional

information for both the nodes and edges, allowing different interaction types to be

considered. The design structure matrix approach has been used for task level

descriptions as well as parametric descriptions. There are however a number of areas

where current DSM visualization is limited, particularly for large models (100+ nodes),

with a number of levels and large numbers of interconnections between modules.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page50 Decomposition in the DOME Framework

4.2.2 Addressing Visualization Limitations of Design Structure Matrix

In an integrated model, the highest level view (abstraction) may consist of 10-100

containers and the lowest level (all detail) might be as many as 10000 or more. We would

therefore like the ability to move seamlessly between these different levels of abstraction

to understand emergent heterarchical structures. The problem can be framed in the

context of the dynamic range, that is the level of detail, which can be adjusted by the

viewer. We can estimate that we might wish to change the level of detail by 100-1000

times or more (change in order from top level to lowest level 10000/(10 or 100)).

In current representation schemes, the selected containment structure determines how the

model is viewed. Although, this may appear irrelevant, it becomes important if one

considers how the containment structures are determined. As mentioned in a previous

example, the grouping of data or parts may be determined by historic manufacturing

processes, that it everything is arranged by part structure. How important is this? That

depends of the level of interaction between containers.

If we consider a component such as a throttle-body, it has been divided into 6 main parts.

If we consider just basic geometric interactions, there are more than 20 interactions

between these components. If we add other physical interactions such as thermal, the

number rises again. This demonstrates the potential volume of information which moves

between the defined structures and therefore the importance of making this information

accessible.

An example is used to demonstrate how these types of interaction are handled in current

Design Structure Matrix representations. Considering the alias, relation and containment

mechanisms, we can examine how current DSM representations visualize interactions in

models or processes. Figure 4-5 (a.) shows the hierarchical structure used previously in

section 4.1. (b.) shows a "flattened" graph structure illustrating the types of dependencies

between each of the module types. In this simple example, the multi-tiered DSM

representation shown in (c.) and (d.), 50% of the relationship information does not

appear explicitly.

Massachusetts Institute of Technology - Center for Innovation in Product Development

~LCI--*L.I.-lm~ -1~-rm~ ^~sls/l~ ~--------

Shaun M Abrahamson Page 51

Page52 Decomposition in the DOME Framework

A (task) B (task)

(parameter)
(prametr) par eter) -- relation

(prae---e alias
(paramnetcr) E G (parameter)

Relationshp:! (alias to E)

E=D+C

(a.) (b.)

A B Matrix C D E high level
for A dependency

SD 0 relation

E**

Matrix
for B

(c.) (d.)

Figure 4-5 A design structure matrix view of the containers is presented in c and d.
Although there are 6 types of direct and indirect relationships, a total of 3 are shown in
the entire DSM representation. For example, there is no explicit connection between E
and G indicated anywhere in the representation although we are made aware of some
connection between A and B.

The same example shows how complete information can be represented, showing all

types of relationships between modules. Figure 4-6 (c.) shows the most abstract view,

demonstrating that there is an abstract dependency between A and B. This can then be

expanded to view the source of these dependencies in A as shown in Figure 4-6(d.).

Finally, a complete expansion allows us to view all the dependency types, providing

access to the heterarchical structure.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page52 Decomposition in the DOME Framework

Shau M ArahmsonPa.~e 5

A (task) B (task)

(pa meter)

C(parameter) (paamee)

(parameter) (param eter)

Relationship:
E= D+ C

A ----------------------------- B

-- relation

:O .--- p alias
G.--

AIB C @ lE
A

Be

CD~

AB C D E F G

S0o

Figure 4-6 Matrix representation of containment, relations and aliases. The allows
viewing of all types of dependencies, allowing movement between higher and lower
levels of details. (a.) one representation of containment, relations and aliasing. (b.)
"flattened" directed graph. (c.) a compact view of the relationship between A and B. (d.) a
partially expanded view, with only A expanded and (e.) a fully expanded view, showing
all direct and indirect or high level dependencies.

To summarize, a matrix-based tool to visualize heterarchical structures, should have a

high dynamic range, allowing movement through multiple levels of abstraction as well as

mixing of levels of abstraction. Further, distinctions should be made between different

dependency types.

Massachusetts Institute of Technology - Center for Innovation in Product Development

A BI

A
B 0E

* high level
dependency

* relation

0 alias

Shaun M. Abrahamson Page 53

4.2.3 Description of the Visualization Tool

To address the requirements outlined in the previous section, a matrix viewer was

developed. The objective of the viewer is to provide model views, which reveal all

dependency types. To this end, there are currently two main views, an encapsulated and

ordered view. The encapsulated view maintains the specified hierarchical structure,

allowing navigation through the conventional tree interface. The ordered view "flattens"

the hierarchical structure, interpreting containers as hyper-nodes as in Figure 4-6 (b.).

The viewer is divided into three main parts. An overview provides a complete view of

the entire matrix using a 200x200 pixel display. The main view is closest to the

conventional matrix views other than that it allows inline viewing of sub-matrices (i.e.

matrices at different levels in the containment structure). The third and final view, is a list

of all dependents for the currently selected element, providing the highest level of

resolution.

The overview is intended to identify areas of interest within the scope of the highest level

module. This allows identification of model features such as feedback connections or

nodes, which provide or use high number of services. The main view allows exploration

of features identified in the overview. In the encapsulated view, users can collapse or

expand a tree-like view of the containment hierarchy, allowing movement between views

such as (c) and (e) in Figure 4-6.

The main view is also the main navigation area, where particular types of dependency

are identified by using different icons (presently abstract or alias). Users can then browse

the areas by moving the currently viewed area to different positions in the overview

matrix. The overview matrix provides an indication of what part of the overview is

presently viewed in the main view. Users can find out more about elements of interest, by

launching them from the containment structure.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page54 Decomposition in the DOME Framework

The list view, maintains a list of all relevant nodes based on the current selected node.

This is intended to provide fine-grained access to information about dependencies

specific to the selected module. It will also indicate if there are elements which are

beyond the scope of the matrix or unavailable because of limited access privileges. The

following sequences demonstrate different capabilities, showing how the viewer is used

in conjunction with other views and structures for creating DOME models.

'I / ! h r o t t l e- "yd

Figure 4-7 Image of visualization tool. On the left, jar icons are used to identify
elements that contain other elements (which result in sub-matrices). The upper right view
is the overview, which maintains the n square matrix and identifies possible areas of
interest. Finally, the lower left shows an area used to display the names of dependencies
for the current selected node.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 55Shaun M. Abrahamson

Page56 Decomposition in the DOME Framework

Figure 4-8 Expanded tree-view from Figure 4-7. Note the overall size of the model.
The gray area represents the size of the current view in the main view.

Figure 4-9 Ordered view of data from Figure 4-7 and Figure 4-8. The ordered view
again shows the total model size in the overview areas as well as the lower triangular sort

resulting from a graph analysis. The analysis will be discussed further in section 4.3.

The visualization capability is closely related to the analysis of DOME models. Although

it is useful to view across multiple levels of abstraction, it is also a useful way to present

results of analysis of the models. This analysis will be explained in the following section.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page56 Decomposition in the DOME Framework

.. ..F tiM

o dy/thr o t debodyl. md I/T B M odule/ HIM

4.3 Decomposition through analysis of DOME models

Visualization is useful for understanding the dependency structures created in DOME,

however analysis of the structure can provide additional feedback. Feedback may take the

form of determining groups of highly interconnected nodes or finding optimal sequences

to traverse a network. In the following sections, a brief overview of current approaches is

presented. A graph theoretic approach is then introduced for the analysis of network

structures, which have been created through dependency instantiations in the modeling

environment.

4.3.1 Current approaches to decomposition

The objective of decomposition algorithms is to evaluate an existing graph structure in an

effort to cluster or order the graph elements. In early product design work by Alexander,

clustering was used to group nodes, which have high interdependence, while minimizing

interactions between the clusters. The intention is to allow the resulting clusters to be

optimized or completed somewhat independently. Thus the breaking of whole into parts

ignores any existing structures such as informational or intellectual and only uses the

structure to determine how best to organize the sub- units.

Examples of this type of analysis, which have been applied in product/process design

include genetic algorithm or rule based systems such as those used in DEMAID 1' and

DSM approaches (Eppinger 1993-1998) Tasks are represented as nodes with stated

durations and edges reflect dependencies between tasks. A combination of rules and a

genetic algorithm are used to search the space of possible sequences to determine shortest

possible overall completion times. The model can be extended to include costs of various

resources at nodes, adding yet another dimension to the selection of an appropriate

ordering of node executions in the network.

'0 Information about DEMAID is available online at:
http://www.hq.nasa.gov/hpcc/reports/annrpt97/accomps/cas_larc/WW96.html

Massachusetts Institute of Technology - Center for Innovation in Product Development

..I- - --------~-- -~-- -r~- ---u---

Shaun M. Abrahamson Page 57

The DEMAID tool was used as during the construction of the Polaroid model discussed

in section 2.3. The image in Figure 4-10 shows a structure resulting from the analysis of

the interfaces of various participants in the design process. The source file for the

analysis is presented in Appendix A. The analysis revealed a high dependence on

geometric data which was not yet being produced. The result was a shifting of resources

to facilitate the creation of a geometric information to support the information needs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Label

SPECS1

LE

VIDPCB

MIAINPCB

VIDPCBPDN

SPEAKER

PWRSUP

PWRSUPPDN

SPEAKERPDN

MAINPCBPDN

EXFAN

CABLES

MASSPRP

CABLESPDN

EXFANPDN

LEPDN

ENVSCR

STYLE

FORM

ENVSPEC

Figure 4-10 DEMAID Design Structure Matrix for the Polaroid project. The matrix
above resulted form the analysis of the interdependence of interfaces published by the
participants in the Polaroid project. The analysis revealed a need for geometric
information which was not evident at the time.

4.3.2 Analysis algorithms for structural decomposition

As shown previously, DOME models can be viewed as directed graphs. These graphs are

constructed by interpreting the DOME model. For example, relations determine

dependencies through mathematical statements and aliases result in dependencies

through explicitly mapping or referencing between modules. An important aspect of the

analysis is "flattening", first introduced in the visualization discussion.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page58 Decomposition in the DOME Framework

Shaun M Abrahamson Page 59

Flattening occurs when the imposed hierarchy is reinterpreted as another type of

dependency. Referring to the examples in Figure 4-6 (a.) and (b.), we can see that A and

B contain other nodes. We can abstract A by giving it all the properties of it children, that

is since one of it's children depends on another module, G in module B, A will assume

this properties. Generally then, flattening refers to the process whereby container

modules take on the union of all properties of their children.

Once the model is in the form of a directed graph, a number of well developed methods

exist for graph analysis such as those discussed in the previous section. In the most basic

form, algorithms make use of structures illustrating nodes and the edges or dependencies.

In more complex analysis, properties will be associated with nodes and edges, allowing

more complex analysis, such as weights.

One of the objectives of this work was to limit the information required to analyze the

decomposition structure. The main reason was to allow users to create models to

represent the design object, without any additional overhead. Overhead here is defined as

the addition of information which does not relate directly to the creation of the design

object. The current implemented algorithms do not consider any properties, only nodes

and directed-edges, which result from the creation of models. Possible approaches are

discussed further in "Future Work" in section 5.4.

The depth first search algorithm is used to build a graph by traversing a selected DOME

model or model segment. The result of the depth first search is an ordered set which can

then be re-searched. The results of the second search can be used to group nodes that are

part of circular dependencies, effectively producing a hyper-graph, clustering nodes

according to higher interdependence. Pseudo code for these algorithms is provided in

Appendix B.

Massachusetts Institute of Technology - Center for Innovation in Product Development

I_.. ~.ll^- l-L^~ . .II IX1-Xils~ Y--I ~--1P~. _ I_--I1II- ~ _IP--LII II^- IPY~1111~- 1__1

Shaun M. Abrahamson Page 59

4.4 Overview of DSM tool architecture

The following section gives an overview of the architecture for the tool as implemented

in the DOME environment. Figure 4-11 shows the system architecture, including details

of the general DOME architecture and software implementation (a more comprehensive

explanation is included in Appendix C). The implementation consists of the DSM plug-in

and user interface, which make use of infrastructure made available by the DOME

Engine and DOME Java-based Distributed Computing Components.

The DOME Engine contains a model as created by the users of the DOME environment.

The DSM Module generates the desired directed graph structure by querying the selected

model or model segment. It also contains the functions for conduction the clustering

algorithms, explained in the previous section. The Distributed Computing Components

provide infrastructure for messaging between the plug-in and the user interface. The

plug-in and user interface make use this to ensure that displayed information reflects the

current state of the model. Finally, the user interface was shown in Figure 4-7.

Plugin 1 Plugin 1
Java User Interface

DSM Module DSM Module
OC++ DOME User Interface

DOME Engine Distributed
C++ Computing

Plugin 3Components Plugin 3
C++ User Interface

Plugin n Plugin n
User Interface

Figure 4-11 The DSM tool as part of the DOME architecture. The DSM tool is

designed as a plug-in to the DOME Engine. The plug-in is used to build and analyze the

directed graph structures. The DOME Distributed Computing Components provide

capability necessary to interact with the DOME engine in distributed environments. The

user interface allows visualization and interaction with the DSM Tool as well as

interaction with other DOME components.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Decomposition in the DOME FrameworkPage60

Shaun M. Abrahamson

5 DECOMPOSITION TO SUPPORT RESOURCE ALLOCATION

Ultimately, the goal of providing decomposition tools, is to allow participants to better

manage the creation of a product. The problem is one of coordination and resource

allocation. Massimo Egidi (Egidi 1992) uses theories of problem solving to explore the

relationship between coordination and resource allocation in organizations.

A conventional marketplace for buying and selling goods or services is one that

coordinates tasks, where coordination is used in the economic sense to reflect the

matching of buyers and sellers. Organizations perform this coordination, however they

also perform the division of labor or more generally resource allocation to determine

what will be done to satisfy the coordination requirements.

Resource allocation techniques are available from a number of fields from operations

management to parallel processing, however the challenge is unique in the product

development process (and therefore the creation of integrated models). The reasons for

this are related to the difficulties in obtaining accurate representations of the design

process and therefore an understanding trade-offs associated with fulfilling different

coordination requests. Analysis and visualization of integrated models provides a method

for obtaining this information.

We can treat the product development process as a marketplace. If we have a model of

the current state of the object being designed as well as the various requests for resources,

we can evaluate the model structure to determine request priority. A method is proposed

for conducting this type of analysis using the DSM tool discussed in the previous section.

Massachusetts Institute of Technology - Center for Innovation in Product Development

~ ~~__ ~l_~..... cl- - --~1L li- ̂ -- ~ --~---^-_--- II - Lx.l"--LIILIIPPIIIYYYlllslslPlLIIIIIIIII-CI-l-* c_ .-.--r--o~.-1* ~

Page 61

Page62

5.1.1 Current difficulties in constructing representations of the design process

Although there are candidate methods for evaluation of networks, two challenges have

been identified for creating representations of the design process. The first is the

sampling frequency or how well the method tracks the evolution of the network structure

over time. The second is the level of detail, which is captured or conversely how much

information is lost in the representation. Further, these methods require explicit actions

by participants in the process being considered, introducing additional overhead as in the

case of the evaluation of the Polaroid model.

Sampling frequency determines how often the current state of the network can be

represented; for example new nodes or interactions are added to the network and we wish

to consider their respective implications. The Sampling Theorem suggests a desirable

sampling frequency, the Nyquist frequency, of at least twice the highest frequency of the

signal which we wish to sample (Franklin 1994). If we consider changes to the network

structure to be the signal that we are analyzing, we require a method, capable of

measuring these changes. If, for example, we assume that the network might be modified

on the order of hourly or daily we need to sample on the order of 30min to twice per day.

Resolution refers to the degree to which the representation captures the actual network;

the level of detail which is represented. Level of detail expresses a difference between

representations such as task-based and parameter-based descriptions. The difference is

revealed in the degree to which each representation captures the richness of the process.

The difficulties associated with data collection are varied, including overhead, identifying

pertinent information, as well as defining an appropriate representation scheme.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Decomposition to support resource allocation

Interviewing participants within a designated scope of a design process, is a common

approach to data collection. The impact on sampling frequency is a function of the

number of interviews and the rate at which these interviews can be conducted.

Frequencies on the order of months or weeks are common (Dong 1998), therefore much

of the dynamics of the process is lost as shown in Figure 5-1. In addition, there is a

resolution issue, which is dependent on the level of detail of questioning. For example,

problems are addressed at the level of parameter or tasks.

I I I I I I I I I i I ,

time
(days or weeks)

Figure 5-1 Comparative sampling frequencies of the design network. The image
above and below show the information available for different sampling frequencies. The
top view shows current methods, which allow sampling well below the Nyquist
frequency. The proposed method allows sampling well above the Nyquist frequency.
This ensures that the dynamics of the network formation and therefore the design process

can be captured.

I I I I I I I I I I

time
(days or weeks)

Massachusetts Institute of Technology - Center for Innovation in Product Development

I-LXL ~-- -~ --- -l~' .- LYI~-I llllli~X~_I--~~ --- -I..-~l-I~Clt*P- IICy~___i .._~Y - _IC----~I CLn~lXII~PII~*~IIIYXI--IL_

Shaun M Abrahamson Page 63

Page64 Decomposition to support resource allocation

At the task level information might include an entity such as "collect customer

requirements", while a parameter focused version might include "mean time before

failure", "weight", "cost" etc. The diagram below reflects the idea of resolution in design

process representations. The model suffers loss of information in the process of creating a

representation of the process as practiced. Further, translation by observers often causes

further losses for example, interviewing. There are a number of dimensions to this

problem, such as overhead or identifying appropriate information to represent.

richness
of

information

design as as
as represented translated

practiced by from
practitioner practitioner

Figure 5-2 Reduction in resolution during collection of design process information.
The actual design process is filtered as it is translated into a process model. Because the
methods for creating process models rely on interviewing or translation, the resulting
process model differs greatly from that practiced.

Currently, resolution issues are being addressed through the development of methods to

speed the data collection process, thereby improving the potential sampling frequency.

These methods use methods to allow participants to participate asynchronously on a

common model to create a network representation. Although this may reduce frequency

issues associated with interview method, participants are still required to explicitly update

the model as they make changes, introducing additional overhead.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page64 Decomposition to support resource allocation

Current approaches require resources from the participants in the design process. These

requirements increase in proportion to both the frequency and resolution. This means that

process management will result in a trade-off between allocating resources to the design

process versus allocating resources to provide information about the process. The focus

of the proposed method is to effectively reduce these trade-offs by extracting process data

from the activities of those participating in the design process.

5.1.2 Using decomposition for real-time resource allocation

The integrated model is created, by directing the growth of an evolving network of

service exchanges. Evolution can be described as the addition of new interconnections or

nodes using the mechanisms such as aliasing or relations described previously. This

evolution is possible because of a service marketplace, where participants in the

modeling environment can publish, connect and request services as described in the

Polaroid case study.

In the example in Figure 5-3, each node has "Provided Services", "Currently

Subscribed Services" and "Requested Services ". The "Provided Services" reflect service

sellers and the "Requested Service" are the buyers. The "Currently Subscribed Services"

illustrate the existence of connections, forming an existing network. In some cases,

coordination is possible by matching the buyers and sellers. In other cases however a

decision must be made about how to deploy resources in order to fulfill service requests.

Consider the example of the transition between the state in Figure 5-3 (a.) and (b.). The

Marketing Consultant has requested dimensions. The Geometric Modeler has a

service called Form, which contains these. The service request can therefore be satisfied

with the current resources. The Geometric Modeler has requested a Component List,

that is not currently available in this scope. The participants must therefore decide how to

get this information. This leads to a resource allocation problem as this information may

exist or need to be generated.

Massachusetts Institute of Technology - Center for Innovation in Product Development

^1.._-. i.. m ;-x~-----l-r~- --̂,- rrarrrrr*r~- -~-i-i-- -- ̂-ll-^-i ^u-IC~~-~Vlus~P~

Shaun M. Abrahamson Page 65

Page66 Decomposition to support resource allocation

T t
Audio Thermal

Analysis Analysis
Case Volume

I
t

Expected Estimated
Sales Manufacturing

Volume CostI, I
Image Poperties

Figure 5-3 Evolution of the service marketplace. (a.) Shows the initial state of the
service marketplace and (b.) shows the subsequent state after additional service
connections have been made.

T T
Audio Thermal C

Analysis Analysis

-- C-omponent
List--

ase lolume

I

-Form----

Expected Estimated
Sales Manufacturing

Volume Cost

I I

Image Properties

PCB Cost
Estimate...

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Geometric Modeler Provided
Services
- Dimensions

Footprint
Aspect ratio
Volume

Currently Subscribed Requested
to Services Services
- Thermal Analysis - Component List

Cooling apertures Power Supply
- Audio Analysis Light Engine

Speaker apertures Fan Selection

Marketing Consultant Provided
Services
- Expected Sales

Volume
- Specifications

mass
form

Currently Subscribed Requested
to Services Services
- Image Properties - Dimensions
- Estimated Manufactruing - Mass

Cost

Manufacturing Cost Provided
Estimator Services

cost estimates

Currently Subscribed Requested
to Services Services
- Material Volume - Component List

Casing Power Supply
- Expected Sales Light Engine

Volume profile Fan Selection
- PCB Cost Estimates

Geometric Modeler Provided
Services
- Dimensions

Footprint
Aspect ratio
Volume

Currently Subscribed Requested
to Services Services
- Thermal Analysis -Cepeent is

Cooling apertures Pcwcr Suppy
- Audio Analysis Light Eng ne

Speaker apertures Fan Seciition

Marketing Consultant Provided
Services

Volume
-Specifications

mass
form

Currently Subscribed Requested
to Services Services
- Image Properties i :nqsins
- Estimated Manufactruing --Mess

Cost

Manufacturing Cost Provided
Estimator Services

- Manufactunng
cost estimates

Currently Subscribed Requested
to Services Services
- Matenal Volume Gen: n nt I is

Casing PPP,
- Expected Sales Liht ~ n.e

Volume profile Gfx S0 .F
PCS COt Estrimtcc

Page66 Decomposition to support resource allocation

5.1.3 Resource allocation using solution space searches

The expansion of the network now requires the solution of a resource allocation problem.

DOME provides a number of alternatives. When the model is at a point where it can be

run, feedback will provide some insight into desirable directions. Ullman et al (Ullman

1997) explore three main questions posed by decision makers in the engineering design

process:

4. What is the best alternative?

5. Do we know enough to make a decision yet?

6. What do we need to do next to feel confident about our decision?

The purpose of a "completed" DOME model is to address these questions, using decision

theoretic tools. The completed model however is dependent on a complete structure. This

feedback is made available by algorithms, which search the solution space and make

suggestions about more attractive solution. Based on this information subsequent

decisions can be made. Methodologies are needed when the model is under construction

and cannot be evaluated.

5.1.4 Resource allocation by evaluating the network structure

The evaluation of networks, resulting from integrated model structures can assist in

resource allocation decisions for the coordination of service requests from the service

marketplace. This will provide additional mechanisms to support the evolution of the

integrated modeling network.

An evolution step is portrayed in Figure 5-4. (1.) An integrated model is in a state of

partial completeness, some service connections have been completed, while others

remain unfulfilled or unused. (2.)The service marketplace facilitates matching of service

buyers and sellers. (3.) Two requests remain outstanding from nodes E and B. We are

now forced to make a decision about where to expend resource to fulfill these requests. In

a one dimensional evaluation we can now consider the structural importance of the

respective nodes. This is determined by analyzing the graph structure and ordering nodes

according to their role in the network. (4.) The result is that B is deemed to be "more

important" based on its position in the network.

Massachusetts Institute of Technology - Center for Innovation in Product Development

_, ..- I I---r--, --- -- ----- -

Shaun M Abrahamson Page 67

Page68 Decomposition to support resource allocation

1. 4.

E B

3.C F

3.
F A

2. D B-- 5.

E B E B

D D

Figure 5-4 The process of resource allocation through network analysis. The
sequence above illustrates the union of coordination and resource allocation. The first
step shows groups of nodes requesting and providing services. The next shows partial
connection of these services, leaving two requests unfulfilled. The third step uses graph
analysis to prioritize nodes, illustrating the priority of nodes in the process. This priority
is used to allocate resources to add node G in step 4. Finally node H is added as the
requirements of E are deemed to be relatively important. Subsequent service requests will
cause further iterations of this process.

The principal advantage of this approach is that the process information can be obtained

directly by evaluating the integrated modeling. As explained earlier, currently, process

analysis is often neither timely nor of a sufficient level of detail. The example of the

Polaroid evaluation was possible only because a service marketplace was constructed and

the network could be derived from the service interfaces. Although there was overhead

associated with the evaluation of the network, however the utility of the approach was

demonstrated.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page68 Decomposition to support resource allocation

Shaun M Abrahamson Page 69

CONCLUSIONS

5.2 Summary

The thesis has introduced decomposition in the context of integrated modeling for

product design and development. General approaches to integrated modeling were

introduced and the DOME framework was explained in the context of a case study. Ideas

about representation and decomposition were introduced and classified. A distinction was

made between user defined structures (informational and intellectual) and invariant

structures (sequential) which reflected the underlying models.

Mechanisms supporting decomposition in the DOME environment were then introduced,

leading to the introduction of the need for alternative visualization schemes. A prototype

tool was described which provides support for the representation of the expected

heterarchical structures. Analysis of model structures was introduced as a further means

of obtaining feedback about integrated models through evaluation of the resulting

network structure, independent of any intellectual or informational decomposition

schemes. An example analysis from an industrial project was used to demonstrate the

potential value of a dependency network analysis.

The challenges of design process management were then discussed, revealing limitations

of current process evaluations; high overhead, low sampling frequency and low

resolution. An approach was proposed to assist in coordination and allocation of design

process resources. The approach makes use of the visualization and analysis tool to

provide information about the relative "dependence" of elements of the integrated model.

The process evaluation is possible without any additional overhead, based exclusively on

information contained in the integrated model. The information in available in real-time,

as the integrated-model evolves.

Massachusetts Institute of Technology - Center for Innovation in Product Development

~__-~--LYI FIU~YXII~*LX~ III)X- LL- _.-~I ~. --~-~I~IIIIX_~Lm~lYII_1I_-C^llillL.1-~~ .--~I~XILC~- IIYLI-

Shaun M. Abrahamson Page 69

5.3 Limitations of the approach

The strength of the approach is also likely to be its greatest limitation. The approach

depends on the creation of integrated models, which accurately reflect the design of the

product under consideration. Accuracy here may be defined as the degree to which the

model reflects the current considerations. This assumes a scope and timeliness not yet

achieved in any design representation scheme. While DOME employs a variety of

methods to facilitate "accuracy", the possible success of the approach is directly coupled

to the availability of models created from a marketplace of objects exchanging services,

as is the case for DOME.

Although the visualization and analysis tool is currently limited to a subset of

dependencies (including aliases but not master/slave), extension should not prove

difficult as the underlying mechanisms are in place. The dependency structure will be

extended shortly after the completion of this thesis, providing a more complete

representation. Although the implemented analysis algorithms provide solution to the

problem of ordering, there is currently no support for clustering. That is, organization of

model into sub-models with respect to multiple criteria. This is critical and will be

discussed further in future work.

In addition to the limitations of the current implementation, there are also a number of

additional infrastructure requirements to implement the approach. A service

marketplace will be required to coordinate users of the system. Currently, there is

support in the form of informal collaboration. However since the tool is intended for

projects, large in scale and scope, the current mechanism will not be adequate. This is

also discussed in future work.

Finally, although it is possible to evaluate the tools with respect to the stated objectives, it

remains to be seen how this approach impacts the process of design. It is difficult to

evaluate performance without data obtained from use on industrial problems. Initial use

of the tool in industrial settings should provide valuable feedback about strengths and

weaknesses.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page70 Conclusions

5.4 Future Work

The previous section outlined a number of potential areas for future work. This section

addresses these. The subsections are arranged from incremental extensions to completely

new areas.

5.4.1 Decomposition to support model navigation

Currently the model scope or size is managed by encapsulation or intellectual or

informational decomposition. While this is often effective, the selected groups become

esoteric when participants have different backgrounds. While the DSM visualization

addresses some of these issues there are a number of alternatives, which appear

promising.

Work has been undertaken in several fields, including software or data visualization.

Browsing hyper-linked documents is in many ways similar to browsing integrated models

since a number of users will construct and manage groups of pages. A number of

different visualization schemes have been explored to explicitly address issues such as

maintenance, debugging and navigation of links.

Narcissus (Mukherjea 1994) is a generic program for visualizing large volumes of

information. In this approach rules are used to analyze relationships which are then used

to group modules. In this way, information can be hidden at different levels. The system

is implemented in a three-dimensional scheme using web pages and analysis of their

hyperlink structures. This is decomposition based on inter-relationships between

objects/documents or structural decomposition as used in the DSM visualization.

Massachusetts Institute of Technology - Center for Innovation in Product Development

I .~-EYY .---~

Shaun M Abrahamson Page 71

Another visualization scheme, is galaxy, undertaken as part of the Multidimensional

Visualization and Advanced Browsing (MVAB). In the galaxy approach documents are

classified according to their "similarity" (which might be defined by any number of

algorithms). When combined with temporal information such as dates of creation or

editing, other views are possible. This is decomposition or classification is based on

content. This is also promising since DOME increasingly includes meta-data such as

users, creation dates, modification dates, types and documentation, all of which can be

analyzed.

5.4.2 Analysis to suggest alternative model decompositions

There are a number of possible useful extensions. Currently, the criteria for

decomposition are determined by the implemented algorithm; implicit in the algorithm is

that structure is the only part of the decomposition which is evaluated. The objective is to

develop a sequence of nodes, minimizing feedback. The decomposition should include

multiple criteria such as measures of complexity, measuring different attributes of the

resulting decomposition. For example, if an element is to be outsourced or a project

involves a number of different groups, algorithms could be used to divide a model in such

a way as to minimize the size of the interface in an attempt to reduce interaction.

Part of the problem remains to identify the desired criteria for evaluating decompositions,

which remain uncertain. In general though it appears that reduction in coupling promises

speed gains, while increased integration may yield possible quality improvements. Once

the criteria are defined however, the DOME genetic algorithm or another optimization

scheme such as simulated annealing might be used to evaluate alternative decomposition.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page72 Conclusions

5.4.3 Formalization of the service marketplace

Currently, the service marketplace is not represented in any way and is not connected to

the DOME environment. A complete service marketplace would provide a means to

coordinate "buyers" and "sellers" of services. Possible approaches are as varied as the

number of possible markets and associated mechanisms. Some ideas include integration

of groupware. This might be used to notify participants in a project about new services or

service requests. Mechanisms for searching for modules and services would also be

useful. There is interesting work taking place in the areas of ontologies and agent

interaction (UMBC 1999), which might prove useful for more abstract representations

such as documentation. Further ideas such as collaborative filtering might be used in

conjunction with user profiling to attempt to project what users might be interested in

based on what they are attempting to achieve.

Massachusetts Institute of Technology - Center for Innovation in Product Development

_I~l-t.- -_LI~-^-I1-l-IUllr-_I ---* ~-~II-.- ~ l^~l.i . -4.111~111

Shaun M. Abrahamson Page 73

Page 74 Appendix A

APPENDIX A

This appendix contains source files for the DEMAID evaluation of the Polaroid Project.

DEMAID is managed by Jim Rogers who can be contacted at i.l.rogers(@larc.nasa.gov.

No version number was found for the release used. The system makes use of a system of

rules to generate alternative DSM structures, which are then evaluated using a Genetic

Algorithm.

Below is a source file, which contains a list of modules from the Polaroid example

discussed in Section 2.3 with an associated list of dependencies. From left to right each

line containes the module number and name. The O and 1 represent expected task

duration and cost respectively and were not used in this evaluation. This list following

"uk" contains dependencies (i.e. other modules which depend on this module).

//Tina (voice of customer)

//specifications
(module 1 SPECS1 0 1 SPECS uk)

//enclosure evaluation

(module 2 DIMS1 0 1 DIMS1 uk SPECS FORM)

//audio evaluation

(module 3 AUD1 0 1 AUD1 uk SPECS SPEAKER)

//ergo evaluation

(module 4 ERGO1 0 1 ERGO1 uk SPECS MASSPRP)

//picture evaluation

(module 5 PICT1 0 1 PICT1 uk SPECS LE)

//Tom (general modelling)

//following is a list of tasks which require the generation of catalog
//and then selection of individuals from the catalogs

(module 6 LE 0 1 LE uk)
(module 7 VIDPCB 0 1 VIDPCB uk LE MAINPCB)

main PCB is assumed to include the remote sense PCB

(module 8 MAINPCB 0 1 MAINPCB uk LE VIDPCB)

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page74 Appendix A

(module 9 PWRSUP 0 1 PWRSUP uk LE MAINPCB VIDPCB SPEAKER)
(module 10 EXFAN 0 1 EXFAN uk LE)

(module 11 SPEAKER 0 1 SPEAKER uk MAINPCB)
(module 12 CABLES 0 1 CABLES uk LE VIDPCB MAINPCB PWRSUP EXFAN

SPEAKER)

//Shaun (geometric modeling)

//following is a list of characteristics resulting from the above

//selections which are fed back to evaluations in

/the first few modules

(module 13 STYLE 0 1 STYLE uk)
(module 14 FORM 0 1 FORM uk LE VIDPCB MAINPCB PWRSUP EXFAN SPEAKER

CABLES STYLE)
(module 15 MASSPRP 0 1 MASSPRP uk LE VIDPCB MAINPCB PWRSUP EXFAN

SPEAKER CABLES)

//Ines (LCA analysis)
//the following is a list of components from which various parameters

//are required such as material mass. etc
//the parameters will remain the same however the selection will

//change depending on catalog item used

(module 16 LEPDN 0 1 LEDPN uk LE)
(module 17 VIDPCBPDN 0 1 VIDPCBPDN uk VIDPCB)
(module 18 MAINPCBPDN 0 1 MAINPCBPDN uk MAINPCB)
(module 19 PWRSUPPDN 0 1 PWRSUPPDN uk PWRSUP)
(module 20 EXFANPDN 0 1 EXFANPDN uk EXFAN)
(module 21 SPEAKERPDN 0 1 SPEAKERPDN uk SPEAKER)
(module 22 CABLESPDN 0 1 CABLESPDN uk CABLES)

//these are all fed to an evalution which will use a variety of specs

//to evaluate environmental impact

environmental score

(module 23 ENVSCR 0 1 ENVSCR uk LEDPN VIDPCBPDN MAINPCBPDN PWRSUPPDN
EXFANPDN SPEAKERPDN CABLESPDN)

//enviornmental specs

(module 24 ENVSPEC 0 1 ENVSPEC uk)

//environmental evaluation

(module 25 ENV1 0 1 ENV1 uk ENVSPEC ENVSCR)

Massachusetts Institute of Technology - Center for Innovation in Product Development

C ~_l_~__ _l L /__^ ~__^_l~_~r^_~____X____ 1_L U*I__IILLI__ Yk

Shaun M Abrahamson Page 75

Page 76 Appendix B

APPENDIX B

This appendix contains information about the implementation of the various analysis

algorithms. The search algorithm is based on a traditional depth first search, which is

explained in the following pieces of Pseudo code which can be found in Chapter 23 of

ref.

DFS(G)

for each vertex of u E V[G]

do color[u] <-- WHITE

all data <- 0

counter <-- 0

for each vertex u e V[G]

do if color[u] = WHITE

Visit(u)

Visit(u)

color[u] - GRAY

counter ++

find[u] = counter

for each v e Adj [v] //look through list of dependencies for the current node

do if color[u] = WHITE

Visit(v)

color[u] <- BLACK

counter++

finish[u] = counter

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page76 Appendix B

The complete algorithm uses the Depth First Algorithm as well as a sorting algorithm to

generate a hypergraph. The pseudo code for the entire algorithm is :

i. DFS(G)

ii. Sort by finish time

iii. Compute GT

iv. DFS(GT)

v. Sort by finish time

Massachusetts Institute of Technology - Center for Innovation in Product Development

._ ---l -rr)~r~*LI rrri--ru^-- ~--- ~^-- l ^-rru~- --- r---aanr-- --rrrr ~P x~lsre._--- .~.....x.^..-

Shaun M. Abrahamson Page 77

Shaun M Abrahamson 02/02/99 * Page 79

APPENDIX C

This appendix provides an overview of the classes used to implement the DOME DSM.

Further detail is contained in documentation within the code. The code segments are

divided into 5 sections as shown below:

1. C++ plug-in to DOME library.

2. Server Side Including JNI

3. Client Side Including DOME distributed computing components

4. Client Adapters

5. Client GUI components

C++ Plugin

The plug-in contains the implementations of a variety of algorithms and associated utility

methods. The code also includes standard implementations for the creation of plug-in

modules. The following sequence outlines the execution of the code:

i. Initialize data

ii. Generate dependency structure from DOME model

iii. Apply depth first search algorithm

iv. Reapply depth first search on ordered set of modules

Files: DSMModule.cpp

Server Side C++ and Java

The server side provides a number of basic functions including mapping between Java

and C++ through JNI. A number of methods are used to send and receive events to

initiate the C++ algorithms and send data to the client.

Files: DSMModuleServer. cpp; DSMModule.java

Client Side Java

The ClientModule duplicates the functionality of the server, receiving and generating

events with the server. Instead of communcating back to C++, other interaction takes

place with a variety of adapters explained in the next section.

Massachusetts Institute of Technology - Center for Innovation in Product Development

_______1IILIII____I i~ii*i-LI~~C~_ 1~4~~~-1-ina~*_- 1111 _1I~LI_

Shaun M. Abrahamson 02/02/99 * Page 79

Files: DSMClientModule.java; BeginSortEvent.java, ReadArrayEvent.java,

WriteArrayEvent,java,

Client Adapters Java

This includes all elements required to send and receive events from the GUI components

as well as similar interaction with the DSMClientModule.java. The two main adapters are

for the ListTable and TreeTable components which are used to produce the visualization

structures. Presently, the implementation performs a variety of queries to convert

dynamically produce structures in response to requests from GUI components and

changes propagated up from the Server via the DSMClientModule. In addition to data

adapters there are also state, selection and action adapters.

Files: DSMListener.java; DSMActionEvent.java; DSMTreeAttributeAdapter.java;

DSMTreeExpansionAdapter.java; DSMTreeStructureAdapter.java;

DSMTreeTableAdapter.java; DSMListDataAdapter.java;DSMListModelAdapterjava;

DSMZoomAdapter.java;DSMDepListModel.java

Client GUI Components

The main GUI component is the PaneRenderer, which defines the GUI which is lauched

by the DOME environment. The TreeTable and ListTable are custom components created

by combining Abstract version of the JList, JTree and JTable in swing. The

CellRenderers and dynamically generated Icons provide capabilities ot customize

information displays, particularly for the table components.

Files: DSMPaneRenderer.java; DSMTreeTale.java, DSMListTable.java;

DSMZoomPanel.java; DSMCellRendere.java;DSMListCellRender.java; Playlcon.java;

Referencelcon.java

Massachusetts Institute of Technology - Computer Aided Design Laboratory

02/02/99 * Page 80 Shaun M. Abrahamson Appendix C

Shaun M Abrahamson 02/02/99 * Page 81

6 REFERENCES

Akama, ten Hagen, Tomiyama. (1994/95) "Desirable Functionalities of Intelligent CAD
Systems". Intelligent Systems in Design and Manufacturing. 119-138.

Alexander (1964) "Notes on the Synthesis of Form". Harvard University Press,
Cambridge Massachusetts and London England.

Bird. G. M, Kasper, S. D.. (1995). "Problem Formalization techniques for Collaborative
Systems." IEEE Transactions on Systems, Man abd Cybernetica 25(2): 231-242.

Bechtel, Richardson (1992) " Discovering Complexity: Decomposition and Localization
as Strategies in Scientific Research " Princeton University Press, Princeton NJ 1992.

Borland, N., (1998), "Integrating Environmental Impact Assessment into Product Design:
a Collaborative Modeling Approach," 3 rd Design for Manufacturing Conference: ASME
DETC98, September 13-16, 1998, Atlanta, GA.

Branki, C. N. (1995). "The Acts of Cooperative Design." Concurrent Engineering:
Research and Applications 3(3): 237-245.

Cukosky, Olsen, Tenenbaum, Gruber,(1994) R. "Collaborative Engineering Based on
Knowledge Sharing Agreements" Procedings of the 1994 Database Symposium.

Cutkosky, M. R., R. Engelmore, et al. (1996). "PACT: An Experiment in Integrating
Concurrent Engineering Systems." IEEE Computer (January, special issue on Computer
Support for Concurrent Engineering): 28-37.

De Pauw, Kimelman, Vlissides (1997) "Visualizing Object-Oriented Software
Execution". MIT Press, Cambridge, MA, London, England. Editor John Stakso et al.

DOME framework (1998) cadlab.mit.edu.

Dong, Q (1998) Personal communication.

Egidi, M (1992) "Organizational Learning, Problem Solving and the Division of Labour"
Economics, Bounded Rationality and the Cognitive Revolution, Edward Elgar
Publishing, Vermont USA.

Eppinger S, K. R. M. a. S. (1993). "Managing the Integration Problem in Concurrent
Engineering".

Eppinger S, T. U. P. a. S. D. (1994). "Integration Analysis of Product Decompositions."
DTM 68. Personal Communication.

Eppinger S, R. P. S. a. S. (1997). "Identifying Controlling Features of Engineering
Design Iteration." Management Science 43(3).

Massachusetts Institute of Technology - Center for Innovation in Product Development

~,,_ -~cx --- -;- rrr-a rr~-r~~i~..~er----~ ...~,~~~.~I -r~-------l~-Pll~^rrUU~I-h-~)_-r^UliI^LI_ ---rr . L~-_UIILLIY (~-~---Lli--ii~----

Shaun M. Abrahamson 02/02/99 * Page 81

Eppinger, N. S. a. S. (1998). "Product Development Process Capture and Display Using
Web-Based Technologies". Personal Communication.

Eppinger S, D. E. W., Robert P Smith and David A Gebala (1994). "A Model-Based
Method for Organizing Tasks in Product Development." Research in Engineering Design
6: 1-13.

Eppinger S, M. V. N. a. D. E. W. (1997). "Generalized Models of Design Iteration Uding
Signal Flow Graphs." Research in Engineering Design 9: 112-123.

Franklin, Powell, Emami-Naeini (1994) "Feedback Control of Dynamic Systems".
Addison-Wesley Series in Electrical and Computer Engineering.

Invention Machine Software (1998) www.invention-machine.com.

Kim, J. B. and D. R. Wallace (1997). A Goal-oriented Design Evaluation Model. ASME
Design Engineering Technical Conference, DETC97/DTM-3878, ASME.

Klir, G. J. (1985). Architecture of Systems Problem Solving. New York and London,
Plenum Press.

Kusiak, A. and N. Larson (1995). "Decomposition and representation methods in
mechanical design." ASME Journal of Mechanical Design 117(June).

Kusiak A, Wang J (1993) "Decomposition of the Design Process" Journal of Mechanical
Engineering, Vol. 115(December).

Minsky, M.(1986). "The Society of Mind". Simon and Schuster.

Michelena, Papalambros (1995) "Optimal Model-Based Decomposition of Powertrain
System Design". Transactions of the ASME Vol. 117.499-504.

Molina, A., A. H. Al-Ashaab, et al. (1995). "A review of computer aided simultaneous
engineering systems." Reseach in Engineering Design 7(1): 38-63.

Pahng, K. F., N. Senin, et al. (1997). Modeling and evaluation of product design
problems in a distributed design environment. ASME DETC'97, Sacramento, California,
ASME.

Papatheodorou Christos, M. V., Kiountouzis Vangelis (1993). 1Problem Decomposition
in Distributed Problem-Solving Systems.1 Journal of Applied Intelligence 3(4): 300-315.

Parnas, D. L. (1972). "On the Criteria to be Used in Decomposing Systems into
Modules." Communications of the ACM 15(12): 1053-1058.

Paranuk, Van Dyke (1998)."Practical and Industrial Applications of Agent-Based
Systems". Industrial Technology Institute. http://www.cs.umbc.edu/agents/.

Sacerdoti, E. D. (1977). A Structure for Behaviour and Plans, Elsevier Scientific
Publishing Company.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

02/02/99 * Page 82 Shaun M Abrahamson References

Shaun M Abrahamson 02/02/99 * Page 83

Senin, N., D. R. Wallace, et al. (1996). Mixed continuous variable and catalog search
using genetic algorithms. ASME Design Engineering Technical Conferences, Irvine, CA,
ASME.

Sougata Mukherjea, j. D. F., Scott E Hudson (1994). "Interactive Clustering for
Navigation in Hypermedia Systems." ACM.

Stevens WP, G. M. a. L. C. (1974). iStructured Design.1 IBM Systems Journal 13(2):
115-139.

Suh, N. P. The Principles of Design. Oxford University Press, Cambridge England.

Sun Java Tutorial 1999). http://java.sun.com/docs/books/tutorial/index.html.

Sussman, G. J. (1975). A Computer Model of Skill Acquisition, Elsevier Scientific
Publishing Company.

Tomiya, Yoshikawa, Kiriyama, Umeda (1994). "An Integrated Modelling Environment
Using the MetaModel". Annals of the CIRP. Vol. 43.

Ulrich, Eppinger.(1995) "Product Design and Development". New York: McGraw Hill.

Ullman, Herling, Ambrosio (1997) "What to do next: Using Problem Status to Determine
the Course of Action" Research in Engineering Design, 9:214-227.

UMBC Agent Web Site.(1999) http://www.cs.umbc.edu/agents/.

Massachusetts Institute of Technology - Center for Innovation in Product Development

LIII~--------i--l-l~- - IPYX -L~PIII __ _...,. ̂ --~XI-VIIYI*IIXI~ IPI~PLT-~l - ~ ~--Y Y~R~PI~--~.

02/02/99 e Page 83Shaun M Abrahamson

