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Abstract

A quasi-thermodynamic theory of liquid helium is developed based on four very

general postulates. The results are in excellent agreement with experiment, in

particular with the measurements of the temperature waves (second sound), the

existence of which was predicted by the theory. The Bose-Einstein liquid intro-

duced earlier is a possible molecular model for the theory. Landauls hydrodynamic

theory has certain features which are in conflict with the present results and also

are contradicted by experiment. A modified hydrodynamic theory, however, might

provide a satisfactory molecular model. A decision between the two molecular models

requires further experimental and theoretical study.
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THEORY 0o LIQUID ELIUM

1. Introduction

Several years ago F. London gave some evidence to support the idea that

the peculiar phase transition of liquid helium at 2.19"° ("h-point") might be re-

garded as due to the condensation mechanism characteristic of the ideal Bose-Einstein

gas, distorted, of course, by the presence of molecular forces which cannot be ig-

nored in the case of a liquid. He observed that the various earlier attempts to ex-

plain the -transition by the familiar mechanisms of phase transitions of the second

kind (order-disorder transition in ordinary space) are incompatible with the weak

Van der Waals forces of helium and with the requirements of quantum mechanics. In

this situation the example of an order in momentum space, as presented by the Bose-

Einstein condensation, seemed to offer a very welcome and suggestive new possibility.

Moreover, the Bose-linstein condensation demonstrated a very peculiar feature. It

led to a kind of phase equilibrium of two phases interpenetrating in ordinary space

but separated in momentum space. There were good reasons to suspect that the 'con-

densed" fraction of the atoms was the seat of a superfluid mass transfer.

Actually the author was able to show2 that the kinetic effects to be ex-

pected in an ideal Bose-Einstein gas revealed a close similarity to the well-known

effects in helium II. In spite of this fact, the theory did not seem very convinc-

ing since it was difficult to understand how the properties of a liquid could be

interpreted even qualitatively in terms of a gas theory. The rigorous treatment of

this problem would require the solution of the quantum mechanical many-body problem.

The mathematical difficulties involved have proved so far to be so tremendous, that

up to the present it has been impossible to substantiate these ideas by the develop-

ment of a rigorous molecular theory.

In view of this situation, the author has tried to avoid these difficulties

by developing a somewhat more macroscopic theory of the various thermo-hydrodynamic

effects in helium I1.3 ' 4 (See also H. London 4 a . For an account of these experiments

we refer to Keesom's monograph on helium5). The main point of the theory was the def-

inition of the Bose-Einstein liquid', uniting some properties of a liquid and some of

a Bose-Einstein gas in a self-consistent scheme. Whereas the discussion of such a

"hybrid" system could not be carried out with quantum mechanical methods, it proved to

be easily manageable from the much more schematic quasi-thermodynamic point of view.

In particular the notion of "condensation in momentum space" was extended to the

Bose-Einstein liquid. Hence, below the condensation temperature, this system was

supposed to have a heterogeneous character implying the existence of two velocity

fields. The existence of two fields rather than one resulted in an 'internal con-

vection" carrying energy and entropy, but not associated with any net transfer of

matter. Hence the macroscopic hydrodynamics of helium II proved to be of greater
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complexity than that valid for other substances and allowed the correlation of phe-

nomena which appeared paradoxical from the point of view of ordinary hydrodynamics.

The theory led also to various predictions which have been subsequently verified by

experiment. The most important of these was the conclusion that inhomogeneities of

the temperature would propagate according to a wave eauation rather than the usual

parabolic euation of heat conduction. The velocity of propagation of these "Aja-

nerature waves" was computed as a function of the temperature. It was also indicated

that an experimental verification could be obtained by exciting the temperature

waves through periodical heating of helium II. A short report of these results appeared

in 1938 in the form of preliminary notes3, but the detailed account4 (quoted henceforth

as l.c.) was, because of wartime conditions, not generally available until recently.

Landau - apparently unaware of these results - criticised the Bose-Einstein

theory on the basis of the earlier note 2 and advanced instead a theory in which he

maintained the assumption of the heterogeneous nature of helium II, but tried to jus-

tify it from a different molecular point of view based on quantum hydrodynamics .

As soon as the possibility of the two velocity fields was granted, the development

of the macroscopic hydrodynamic equations had to proceed on the same lines as those

based on the Bose-Einstein theory. In particular Landau concluded that there should

be two different modes of sound propagation in helium II, with different velocities

for the first" and "second" sound. Landau did not discuss the physical meaning of

this second sound wave. According to the recent account of Peshkov 7, it was only

after an attempt to excite the second sound by mechanical means had failed, that the
8

question was reconsidered by Lifshitz8 , who concluded that the excitation of second

sound could best be obtained by periodical heating of the liquid. Thus the second

sound proved to be identical to the temperature waves predicted earlier on the basis

of the Bose-Einstein theory. The existence of these temperature waves has been ex-

perimentally demonstrated by Peshkov7 who measured also their velocity of propagation

as a function of temperature. These results have been recently confirmed by an inter-

esting indirect method suggested by Onsager9. The comparison of the experimental

and theoretical results will be found in Section 4. It may be noted that the theo-

retical curves do not contain any adjustable constants, but are evaluated with the

empirical values of the entropy measured previously by Kapitza1 0.

The aim of the present paper is to clarify the relation between the theories

and experiment. It seemed advantageous to proceed as much along phenomenalogical

lines as possible. The theory of the Bose-Minstein liquid was already more phenomeno-

logical than the original Bose-Einstein gas theory. The present paper is a further

step in this direction. This procedure - although rather abstract - seems necessary

in view of the existence of Landau's theory. It will help to avoid the pitfall of

Justifying any special molecular model by experimental results, which in reality can

be also understood under broader assumptions.

There are good reasons to expect that a quasi-thermodynamic method should be

adequate to handle the problem of helium II. The peculiar properties of helium II are
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usually described by the statement that this substance is superfluid and superheat-

conducting. Actually it is important to realize that the behavior of helium II cannot

be characterized by assuming extremely small or large values of kinetic coefficient

such as viscosity and heat conductivity. It is rather that the usual differential

eauations governing capillary flow and the transfer of heat have to be replaced by

equations adapted to the particular mechanisms effective in helium II. This change

in differential equation rather than the assumption of an extreme value of the con-

ductivity is characteristic also of superconductivity, as is apparent from the well-

known theory of F. and H. London. While kinetic coefficients depend very sensitively

on the nature of the molecular forces, this is usually not the case for the differen-

tial equations themselves.

Our procedure will then be to advance certain general assumptions regarding

the energy spectrum of liquid helium, expressing the fact that this system unites in

a peculiar way some characteristics of a liquid and of a gas (Section 2 ). The low-

est state of the system has liquid characteristics. The excited states can be classi-

fied into compressional modes which are also liquid-like (Debye phonons) and sied

modea corresponding to the rearrangements at constant volume of the molecules, which

are supposed to have a gas-like character. The technique of drawing conclusions from

these assumptions will be essentially thermodynamical (Sections 3 and 4). Such an

extension of classical thermodynamics seems to be the adequate method of dealing with

second-order transitions. We hope to come back to this question in a later publication.

A discussion from the molecular point of view is of course of the greatest interest and

will be outlined in Section 5 as far as it seems possible at present. Landau's theory

will be discussed in Section 6.

2. The Iundamental Assumptions

Let us consider a macroscopic system of helium atoms enclosed in a box of

volume V. The characteristic values of the Schroedinger equation of the system, in

particular the lowest energy Eo, are determined by the properties of the helium atoms

and in addition depend on the volume V as a parameter. Two assumptions will now be

made regarding the properties of this lowest state of the system. After a short dis-

cussion of the meaning of these assurmtions two others will follow regarding the

excited states.

(i) The function Eo(V) has a minimum for some value V = V0

of the volume:

dB( o (1)

(ii) ahe state E (V) is c.aracterized by a vanishirip micro-

seco tc ritidity.
Assumption (i) expresses the fact that at a temperature of absolute zero and with a
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vanishing external pressure P = d = 0, the system is in a condensed and not in a

gaseous state. Assumption (ii) specifies further that this state is liquid rather than

solid.

The postulate that a system should have a vanishing coefficient of rigidity at

absolute zero is very far reaching. Indeed, according to classical statistics one would

expect every system which is in thermodynamic equilibrium at absolute zero, to be in a

crystalline state. Hence it is reasonable to define a system satisfying postulates

(i) and (ii) as a quantum liauid. Among liquids in the conventional sense of the word

only helium fulfills this condition. There is also the possibility of considering heavy

atomic nuclei as quantum liquids.

At first it might seem that the discussion of the implications of (ii) will

be hampered by the difficulties inherent in the theoretical understanding of the liquid

state. Actually the reverse is true, since the properties of helium (we think here

chiefly of helium I) are in some respects simpler than those of ordinary, or classical

liquids. The comparison of ordinary liquids with helium I can throw new light on some

elusive features of the theory of the former.

The terminology of microsconic riiditv as a counterpart to mairoaseo J ri-

gidity has apparently been first introduced by Brillouinl, although essentially the

same ideas form the basis of the theories of liquids by Frenkel, Andrade, and Byring,

(cf. particularly the recent detailed account of Frenkel12).

If a solid is deformed (shearing strain), it reacts with a proportional

shearing stress, the proportionality constant being the shear modulus, or macroscopic

rigidity. It may be said also that the free energy of the solid is a function of the

shearing strain. This is, of course, not so in case of a liquid. In contrast to the

free energy, the potential energy of configuration depends on the strain also in a

liquid; in other words, in the course of a shearing deformation the molecules have to

surmount barriers of potential energy, but these barriers constantly collapse under

the impact of thermal agitation. The observable consequences of this situation are

the so-called visco-elastic effects. Suppose the average life time of a potential

barrier is t . If a shearing stress is applied at a high frequency w>)t - 1 , the

system will react as a solid and propagate transverse elastic waves. For liquids

of low viscosity the frequency required for such a behavior shifts to the very high val-

ues of the thermal vibrations (hypersonic in contrast to ultrasonic waves). The spe-

cific heats of monatomic liquids near the freezing point show good evidence for the

presence of transverse hypersonic wavesl.

At low frequencies w <<r-l for which the rate of change of the shearing

strain will be proportional to the stress, the microscopic rigidity gives rise to

viscosity. This liauid te viscosity should be distinguished from the es tve or

transort viscosity well known from the kinetic theory of gases. In order to avoid
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confusion we will call them dynamic and kinetic viscosity, respectively. The two vis-

cosities give rise to the same type of macroscopic effects, but they can be clearly

identified from their temperature dependence.

For the kinetic viscosity one has

7 kin p cZ (2)

wherepis the density, the mean thermal velocity, and Z the mean free path i )kin

increases slowly with temperature.

For the dynamic viscosity one has a strongly negative temperature coeffi-

cient, since

ldyna e (3)

where A is an activation energy clearly indicating the presence of potential barriers.

The situation is illustrated in Figure 1 where the dynamic viscosity of liquid hydro-

gen is compared with the kinetic viscosity of hydrogen gas. The case of hydrogen is

typical of any classical liquid.

The most spectacular effect of the microsconic rigidity is freezing. As

the thermal agitation decreases with temperature, the potential berriers organize

into a crystalline pattern and give rise to the macroscoic rigidity of the solid.

The important point for the present urpose is that the three phenomena

discussed above (propagation of transverse hypersonic waves, dynamic viscosity, and

freezing) are all due to the same factor: the microscopic rigidity. As helium does

not solidify at vanishing pressure, one must conclude that the microscopic rigidity

vanishes, as it was postulated in (ii). According to the above discussion this im-

plies also the vanishing of the dynamic viscosity and the absence of transverse hy-

personic waves. The first conclusion finds a striking verification in the measurement

of viscosity (Figure 2 to be compared with Figure 1). Attention is drawn here to the

viscosity of helium gas and liquid helium I, since in the case of helium II additional

complications arise, which will be discussed in the next section. The kinetic charac-

ter of the viscosity of helium is obvious. It should be pointed out that in our ter-

minology it is helium, not ust helium II, that is a quantum liouid. This terminol-

ogy based on (i) and (ii) is well ustified, e. g., on the basis of the viscosity

measurements. None the less it is at variance with the rather generally adopted

view that helium I is "classical" or a "normal" liquid. Actually the spectacular

properties of helium II have overshadowed the fact that helium I is distinctly dif-

ferent from classical liquids.

A qualitative discussion of postulate (ii) from the point of view of quantum

mechanics will be found in Section 5. At present we turn to the discussion of the ex-

cited states of the system.

The excited states of a continuum or quasi-continuum can be classified into

conmpressional and shear modes of motion. The density fluctuations connected with the
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first type can be analyzed into longitudinal waves. The infinite spectrum of longi-
tudinal modes of the continuum has to be cuts in the usual fashion to obtain the

correct number of degrees of freedom, The elastic quanta (briefly, phonons) ob-
tained by quantization of these waves are the "elementary excitations of the co-

pressional modes of motiono

Figure 1. iscosity of liquid and gaseous hydrogen, from
W. . eesom, G. . MacWood, Physica 5, 745 (1938).
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Regarding the shear modes postulate (ii) leads only to the negative state-

ment that they cannot have the character of waves. This gap will be filled by the

next assumption:

(iii) he shear modes of motion of liquid helium have a gaa-

eoua character. The elementary excitations" corre-

roond. to translations of atoms (or roups of atoms) with

definite.values of mass. momentum, and emer.

I

S

I
i

Figure 2. Viscosity of liquid and gaseous helium, from pp. 106
and 267-8 of Reference 5.
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In accordance with the program formulated in the Introduction the postulate

(iii) is kept in very general terms, since the macroscopic equations to be derived in

the next two sections do not depend on the molecular interpretation of the "gas" in-

troduced in (iii). This molecular interpretation is of course important for the in-

tuitive understanding of the meaning of the theory, and will be discussed in Sections

5 and 6. At present only a few results of that discussion should be anticipated.

The first molecular model compatible with (iii) is the Bose-Einstein liquid.

In this case the elementary excitations" correspond to helium atoms in translational

Bloch-type states1'4. Between these states there is a strong correlation, inasmuch

as they occur at constant density (shear modes of motion). This model has been con-

sidered in great detail in l.c.

The second model will be referred to as the vortex model. It was obtained

through modification of Landau's hydrodynamic theory which in its original form is

contradicted by experiment. In this model the elementary excitations of (iii) are

groups of atoms possessing in addition to their translational momentum also an internal

angular momentum. Although the theory of these "vortex molecules" has not been worked

out so far, progress in this direction is conceivable. Actually the two models are very

closely related to each other. In the Bose-Einstein case the "molecules" of the gas of

postulate (iii) are monatomic, while in the vortex model they are polyatomic. There are

many hydrodynamic phenomena (such as those considered in this paper) for which the dif-

ference between a polyatomic and a monatomic gas is irrelevant.

The most important property of the Bose-Einstein liquid is its "condensation

in momentum space " 1'4. The essential features of this condensation phenomenon will now

be postulated for our more general case.

While the elementary excitations introduced in (iii) have the main attributes

of molecules in the kinetic theory of gases (constant mass, momentum,and energy), this

is true only if a definite quantum state is considered. At absolute zero no "molecules"

are present, but can be created by means of thermal excitation. (While at absolute

zero, there is no translational motion, the atoms still possess a zero point kinetic

energy, cf. Section 5.) In every quantum state one can distinguish the total mass of

the system. Upon averaging over a canonical ensemble, the same kind of subdivision is

obtained as a function of temperature. Hence the density of the system will be sub-

divided into two parts.

P= n + os (4)

where Pn is the density connected with the "molecules" of the gas and ps refers to the
"background" in which the molecules are moving. The subscripts refer to "normal"

and "superfluid", a terminology which will be explained below. The ratio Pn/p is a

very important property of the system. The last assumption of the theory will be con-

cerned with it:
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(iv). There exists a temperature TU such that

= 0 for T = 0 He II
< 1 OcT T He II

/P~T T Te I

with ne/P monotonically increasing between T = 0 and T.
n 0

To is to be identified with the -point of helium.

Let us consider now a volume element in helium II which is small compared

to macroscopic dimensions, but big enough to contain not only a large number of he-

lium atoms, but also a large number of "molecules". Averaging over the translational

motion of the "molecules", one obtains a drift velocity In which will not in general

coincide with the velocity of the "background"n s In contrast to ordinary liquids

and also to helium I, one has two densities and correspondingly two velocity fields.

The total mass current density is

J = fnn * Psis (5)

According to (iii) every "molecule" has a momentum. Averaging over this

momentum current one gets, through the procedure well known from the kinetic theory

of gases, a stress tensor. The diagonal elements will be equal to a pressure Pn

(which is to be distinguished from the liquid pressure P) while the non-diagonal

elements represent a viscous momentum flow. This is, of course, of the kinetic type

and is uniquely associated with the flowv . No kinetic viscosity is associated with

the flow of the background v . Since the dynamic viscosity was found to be totally

absent in helium, none of the mechanisms of viscosity is effective, and this flow

may be called uaperfluid. In particular at absolute zero where fn = , ' = ps,

helium II as a whole is superfluid.

The characters of the two currents will be essentially different; this is

reflected most clearly in the boundary conditions for the components of the velocities

at a solid wall at rest:

Vn = 0,

vna = 0' whereas only v = 0 . (6)

The kinetic viscosity of the gaseous component entails the "normal" boundary

condition for the velocity v ,while no condition is obtained for the tangential com-

ponent of the superfluid flow. The terminology "normal" and "superfluid" is thus

explained.

The superfluid component can "slip" along a solid surface, which is its most

essential characteristic, more so than the absence of dissipation. Actually, according

A Actually n /p will be also a function of the pressure P and this would have to be
taken into account in a refinement of the present theory.
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to experimental evidence to be discussed below, the superfluid flow may be associ-

ated with a dissipation of the turbulent type as soon as a critical velocity is

exceeded.

The slip of the superfluid component of helium II is most effectively

demonstrated in the well-known creeping of the Rollin film 5. This is, however, a

complex phenomenon for quantitative discussion, corresponding to the fact that the

general hydrodynamic equations of helium II are most unwieldy. It is very satis-

factory that the form (6) of the boundary conditions is sufficient to obtain con-

clusions which can be quantitatively checked by experiment. This will be seen in

the next section.

Finally we have to consider the specific entropy s of the system. (Spe-

cific energy and specific heat follow of course at once from s.) According to our

classification of the excited states, s consists of two terms

= n+ phon (7)

corresponding to the shear and compressional modes of motion. As indicated by the

subscript, sn is associated with the normal component Pn of the liquid while the

contribution s phon of the Debye phonons is associated with the liquid as a whole.

We returnto this question in Section 6. It will be seen in the next ection that in

the temperature range from the -point to almost 1, sphon < n. Under this condi-

tion, i. e., if sphon can be neglected, it may be said that the superfluid component

of the liquid has zero entropy. This result is of great importance for the theory,

but its approxinmate character should be kept in mind.

3. Helium II as a Mixture

The proper understanding of the heterogeneous nature of helium II is made

somewhat difficult by the fact that it does not conform to the terminology of the

classical phase rule with its clean-cut distinction between "phase" and "independent

component". In one connection it is best to consider helium II as a two-phase system

and in another rather as a two-component system. Both analogies have to be handled

with certain qualifications.

The t,o-phase oint of view has been emphasized by London1 in connection

with the ideal ose-Einstein gas. Below the condensation temperature this system can

be considered as a gas in euilibrium with a condensed phase, the phase separation

ta-king place in momentum space rther than in ordinary space. The saturation gas

pressure P = P (T) is a function of the temperature alone. In the liquid the

situation is complicated by the fact that in addition to the gas pressure Pn one has a

liquid pressure P. The relation between P nd P can be better understood in terms of

the second analogy: the pressure P apnears then as an "osmotic pressure" of the nor-

mal component dissolved in the su-,erfluid. Because of the existence of semipermeable

meMbranes, P is subject to direct observation and thi analogy will serve us as a
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useful guide throughout this section. Two qualifying remarks have to be observed,

however. In the theory of solutions the total amount of each component is constant.

In helium II this is true only if adiabatic conditions are maintained. In case of

heat transfer there is a transition of one component into the other which has no

analogue in the case of ordinary solutions. This requirement of maintaining adia-

batic conditions is of importance also from the practical point of view; we will

come back to it in connection with the discussion of experiments.

There is a second point in which P differs from the conventional osmotic

pressure. A gradient of the osmotic pressure in -- say a salt solution -- gives rise

to a diffusion (second-order effect). In virtue of postulate (iii), however, a gra-

dient in Pn gives rise to a current, (first-order effect);i. e., in this connection

Pn has the character of a gas pressure. This idea will be developed in the next section.

The simplest and most direct experimental method for the verification of the

heterogeneous nature of helium II and of the boundary conditions (6) consists in the

measurement of the moment of inertia of a rotating vessel containing helium II. As

the superfluid component will not take part in the rotation, the apparent moment of

inertia of the liquid will be

I = Io PnP

where I is the moment of inertia above the -point. This effect was first predicted
06

by Landau and the decrease of the moment of inertia was experimentally demonstrated

by Andronikashvilli14. This experiment constitutes the most direct, although not the

most accurate determination of the important quantity n/p. The experimental results

can be approximately represented in the form

P -= ( T/To)r (8)

where r is a constant around 6. More precise measurements discussed below give

r = 5.5. It should be emphasized that this is a urely empirical relation which cannot

be derived within the framework of the quasi-thermodynamic theory.

A related, though somewhat more involved case is the measurement of the vis-
cosity by means of the oscillating disk method. Although the discussion goes somewhat

beyond the scope of the quasi-thermodynamic method, it should be given here because

of the special interest of the problem.

As in the previous case, the presence of the superfluid component can be

ignored. The results can be understood in terms of the elementary formula (2) valid

for the kinetic viscosity, provided the density p is replaced by pn. In order to obtain

the temperature dependence of j , one has to realize that In = const. This is equiv-

alent to the statement that the "molecules" of the normal liquid collide only with each

other. The Justification and meaning of this assumption can be discussed only from

the molecular point of view. The question will be taken up again in Section 5. It

should be mentioned also that in l.c. the author has used at this point the ad hoc
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assumption pZ = const., which is in conflict with the fundamental assumptions of

the theory. This was pointed ot to the author by Prof. Onsager to whom he is in-

debted also for the correct interpretation of the experiments. The earlier discussion

of the viscosity measurements has been also rightly criticized by Keesom5. The present

assumption leads to the same temperature dependence of for both helium 1 and II

given bypfc T2 . This result seems to conflict with the measurements of Keesom and

Macrood15 reproduced in Figure 2, according to which the temperature dependence of the

viscosity of helium II is essentially given by ?APn/P - (T/To)r. An analysis of the

experiment reveals, however, (c.f. formula (1) in Reference 15) that the quantity actu-

ally measured is the viscosity multiplied by the density which is in the case of helium II

lPn. eesom and MacWood have evaluated their measurement under the assumption of having

obtained ap. Hence the curve in Figure 2 has to be corrected by multiplication with the

factor /pn, which is in agreement with the above result of the theory. Landau's inter-

pretation of the viscosity measurement
16 is in line with the present discussion.

The next special case to be considered is that of a very thin capillary in which

the flow velocity of the normal component is negligibly small. Such a capillary acts as

a semipermeable membrane, being permeable to the superfluid component alone. Making use

of the analogy discussed above, a semipermeable membrane can be used for the measure-

ment of Pn in much the same way as the osmotic cell leads to a qualitative understanding

of the well-known fountain phenomenon in helium II. In this experiment an open res-

ervoir is connected to a helium bath by a semipermeable capillary. If the liquid in the

reservoir is heated, Pn and P increase over the corresponding values in the bath and the

superfluid component is sucked into the reservoir -- like the solvent into an osmotic cell.

We proceed now to investigate the "osmotic cell" with thermodynamic methods. In

order to avoid complications connected with the liquid-vapor interface (evaporation and

consequently nonadiabatic transition of the normal component to the superfluid state),

an osmotic cell shall be constructed as follows: A small part of alongcylinder filled

with helium II is compressed adiabatically by means of a semipermeable piston. This

can actually be realized using a porous material, the pores playing the role of the thin

capillaries. During the compression the superfluid component flows across the piston,

thus keeping the total densityp constant, while the values of/ n, Pn and consequently

also of the temperature T are increased over their values in the helium bath? In order

to distinguish an adiabatic compression with a semipermeable piston from an ordinary com-

pression with an impermeable piston, the former process will be called an isoycnic

compression (since is kept constant).

The basis for the application of thermodynamics to the isochoric compression

is the assumption that the flow across the piston darries along no entrop and is

reversible.

The small thermal expansion is being neglected throughout this section.
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The assunption that the superfluid component has the entropy zero has been

first advanced by the author2, who pointed out also the approximate nature of this

assumption (1.c). In fact, as indicated above, the phonon contribution to the entropy

6phon is associated with the whole liquid and is carried along in particular also with
the superfluid component. Hence the above assumption means that phon < n and
s sn. The following considerations depend essentially on this assumption, the limits

of validity of which will be considered below. It will prove to be correct for not too

low temperatures.

The assumption of reversibility of the superfluid flow iplies that the flow

across the capillary should be slow. This is of course a special case of the general

requirement that thermodynamics should be pplied only to quasistatic processes.

Actually in the present case the situation is more favorable than usual, since experience

shows that the dissipation connected with the flow sets in only above a finite critical

velocity. We assume that the flow velocities always stay below this limit.

Let us now compress the cell adiabatically by applying the pressure dP on the

semipermeable piston. The volume of the cell will decrease until the osmotic pressure

difference balances the external pressure dP = dP. The condition of equilibrium withn ~.
respect to the superfluid mass transfer is the equality of the chemical potentials:

t (T,P) = (T + dt, P + dP) ;

expanding the right-hand side and noting that

( )p = - - ()T = v

(v'is the specific volume), one has

dPn s

dT v nP

This relation was first derived by H. London4a . The fact that a temperature

difference is associated with an osmotic pressure difference is referred to as the

thermomechanical effect.

e This follows at once from the principle of virtual work. It is somewhat unusual that
the equality of chemical potentials is obtained for states at different temperatures.
This difficulty is resolved by comparison with the case of the true osmotic cell.
The virtual process in this case is the mass transfer of the solvent which is of
course associated with transfer of energy (entropy). Hence the equality of temper-
atures follows simultaneously with the equality of the chemical potentials. In
the present case the superfluid flow carries no entropy or energy in excess over
the zero point value, thus the equality of the chemical potential does not imply
the equality of temperatures.

~ It may be noted that the zero of the entropy is fixed by the assumption that the
entropy of the superfluid component vanishes.

-13-
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It is instructive to compare (9) with the thermodynamic relation

dP) = a (10)

where a is the coefficient of thermal expansion and X the isothermal compressibility.

The quantity (10) can be observed if the liquid is heated at constant volume. Since

a is very small, it is seen that P is not very much dependent on temperature. It is,

of course, mainly a function of the density p. The opposite is true for Pn. While

the derivation of (9) was worded in -the terminology of the two-component system, an

interpretation from the two-phase point of view is equally possible. Equation (9) is

obviously the Clausius-Clapeyron relation expressing the fact that the same condensed

(superfluid) phase is in equilibrium with the gas or normal phase both at the values

P,T and P + dP, T + dT of pressure and temperature.

Regarding the experimental verification of (9), its limits of validity should

be kept in mind: the capillary must be thin enough so as to keep the normal component

from transporting entropy and the flow velocity must be below the critical value, and

adiabatic conditions should be maintained. Apparently only Kapitzas experiments

have been carried out under satisfactory conditions. apitza measured all quantities

occurring in (9) and found satisfactory agreement within the experimental error. He

claims that the best value for the entropy is obtained from the measurement of the

left-hand side of Equation (9). These entropy values are in only rough agreement with

those obtained by Keesom and collaborators from the measurement of the specific heat
5

An analytical expression for the entropy will prove very useful. Actually,

apitza's result can be expressed with good accuracy by the expression (Figure 3).

n = (T/To)r (11)

with so = 0.405 cal/gm-deg. and r = 5.5. Of course it should be kept in mind that

(11) has no theoretical foundation and can be considered at best as an approximation.

One more important relation can be derived in connection with the osmotic

cell. In the course of the isopycnic compression the normal component and the entropy

associated with it are "trapped" in the cell. If the volume of the cell is V, these

statements lead to the following relations:

d(nV) = PndV + Vd Pn = 0;

hence

rn- dV (12)

It is also clear that (9) should contain the entropy difference of the two phases,
i.e., s rather than s.

-14-



Similarly

d( pV) = ?P(sndV + Vdsn) - 0

and

n dV
n V
n
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Figure 3. Approximation of Kapitza's entropy measurements1 0

(circles) with formula (11) (curve).
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From (12) and (13) one has

dPn =dn (14)
Pn sn

Or integrating,

Pn 'n
Pn = -- (14a)

since at the -point p(To) = P and sn(To ) = s This relation has also been obtained

by F. London . Hence the empirical formula for the entropy (11) implies

=/On (T/To )r (15)

with
r = 5.5.

The result is compatible with the direct determination 14 of this function discussed

earlier in this section, but the accuracy of the direct determination is much less than

that obtained by using the relations (9) and (12).

We are now in a position to discuss the limits of validity of our assumption

Sphon <s n. The phonon entropy can be tentatively represented by a Debye formula

._ (Te)3 (16)8phon = 15 m

which is a factor 3 times smaller than the Debye formula for solids, since in the

latter case one has two transverse waves for every longitudinal one. Computing in the

usual way from the sound velocity (240 m/sec), one gets 180 and

s phon 2 x 10-3 T3 cal/gm-deg. (17)phon

Picard and Simon 18 have actually found an approximate T3 law for the specific heat in

the temperature rge 0.20 - 1.0°, but their values seem to be about 4 times larger than

one would expect according to (17). Their measurements correspond to the Debye tempera-

ture z 11° . Picard and Simon claim that their measurements should be described by the

Debye temperature 15.5° which is () 1/3 times too high, since they evaluated their

measurements according to the Debye formula valid for solids. Although the Debye theory

is not rigorous enough to expect an exact coincidence of the Debye temperatures computed

from elastic and caloric data, the specific heat computed from G6110 seems definitely

too high. Also Keesom and WestmiJze (p. 220 of Ref.5) report lower values in a pre-

liminary report. While new measurements of the specific heat around and below 10 would

be desirable, it is possible to draw the following conclusions: In the neighborhood of

the -point it is certainlysphon << n. Assuming that (11) can be extrapolated to low

temperatures, the ctrves (11) and (17) must intersect, nd near absolute zero the oppo-

site relation phon > Sn must hold. In this extreme low-temperature region the above

conclusions lose their validity. The effect of the normal component can be neglected

-16-



and the liquid becomes essentially homogeneous. The main characteristic of this region

is its superfluidity, no more complicated by the viscosity of the normal component and

the thermomechanical effect. The transition region cannot be precisely located because

of the above-mentioned uncertainties in the specific heat measurements, but it is

probably between 0.60 and 10°K. Caloric measurements at extreme low temperatures would be

desirable.

4. Macrosconic H Idrovnagmics in Heliu II

It was seen in the preceding section that from the -point down to about 1°E
helium II has to be considered as a mixture of two components with two distinct velocity

fields; the entropy being associated only with the normal component. We will now de-
rive the general macroscopic (coarse grained) hydrodynamic equations of this system,

whereby only the so-called first approximation will be considered and dissipation

effects will be neglected. In ordinary hydrodynamics the dissipation is due to viscosi-

ty and heat conductivity. In the present case there are also other effects which will

be listed below. The restriction to the first approximation means in particular that

non-adiabatic transitions between the two components are excluded. The hydrodynamics

of our mixture is related to ordinary hydrodynamics, as a two-body to a one-body prob-

lem, and can be best handled by the so-called Lagrangian method. Since the method does

not seem to be in general use in texts of hydrodynamics, a brief presentation of ordi-

nary hydrodynamics in this form seems to be in order.

The liquid will be described by a density p and a vector field denoting the

displacement of every elementary mass of the liquid from a standard state of constant

density po. The equation of continuity in these variables is

+ = 0 (18)P

where Ap= p- o0 is assumed to be small compared to p . In fact, differentiating (18)

with respect to time, and noting that the velocity is v = one gets the

continuity equation in its more conventional form.

The density of the kinetic energy is 1 2. The system possesses also a

potential energy in connection with fluctuation of the specific volume v at constant

entropy. The potential energy is the minimum work required to bring forth this fluctua-

tion. Although for the present case As = 0, for later reference we give the general

expression for the minimum work as a function of v and As. According to the well-known
principles of thermodynamics this is

2 ( u) ( v) s (v)(s) + (a) (19)

v

-17-
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where u is the energy per unit mass. The first term in (19) can be written as

_ (-y = l (p).qp ) (20)

By using (18), the Lagrangian of the system is obtained through integration over the

volume

= ldV = J ) - P/2 (& _ (i ) 2] dV. (21)

The corresponding equation of motion is

d )L aL JL
t Jr dHi) d ;

by making use of (21)

dt2 ' (dps v = 0 (22)

Using d = t + v .V and (18), one sees that (22) is identical to the Euler

equation:

a + V v = - (P) 1 p p (23)

For small velocities quadratic terms in v may be neglected and (22) reduces to the

wave euation for the propagation of sound

2 dp) =- o (24)

with the well-known expression for the sound velocity

c = (/2 (25)

These results will now be generalized for the case of helium II. The state

of the liuid will be described by two vector fields n is The density of the

kinetic ener ins P 8. The potential energy per unit mass will

now be given by the full expression (19), since the specific entropy can change in

a first-order process by an internal convection of the normal component.

It should be recalled that the entropy thus transferred is only the entropy

sn and for the validity of our conclusions it is essential that s Sn; i. e., the phonon

entropy should be negligible.

The first term of (19) has been transformed thermodynamically (cf. (20) ). A

similar transformation yields for the other terms:

2u ( as= 2 T (A= . 2 T (n 2 (26)

n
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2u {P ) T (27)

n v 

where a is the coefficient of thermal expansion, and c the specific heat at constant
v

volume. Equation (26) can be further transformed by noting that from (9) and (14)

dT Pn UaP (28)

d(l/s n ) dn

hence

2 (^ 2 p dP? (26a)

The following transformation of the coordinates n' s should now be introduced:

= (Pn En + s s ) (29)

= = n ( n - s )
The "center of mass" coordinate ~ corresponds to the net flow of matter

and has identical properties to the coordinate of ordinary hydrodynamics. In par-

ticular, it satisfies the equation of continuity (18). The "relative coordinate".2

satisfies the equation of continuity

s
n

This relation expresses the fact that the entropy changes uniquely by means of the

flow of the normal component with respect to the "center of mass".

Equation (30) is of course an approximate relation valid only so long

as the "two-component" concept can be maintained. "Sources" of entropy and of the

normal component arise whenever heat is absorbed or rejected by the system and also

as a consequenoe of dissipation effects neglected here.

If the heating occurs across a solid wall, the sources of the two com-

ponents cn be conveniently accounted for by the boundary conditions for the perpen-

dicular components of and i :

= O L- w (si)

-19-
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where W is the amount of heat absorbed by the liquid across a unit area per unit time.

Making use of the equations of continuity (18) and (30), one gets the

Lagrangian in the new coordinates:

r r; 2 ; P q -p10,9 W) _ _ P)

a. dn

The equations of motion corresponding to (32) are

(32)

2

Ad fa v
dt P dfn

MT as Ir
c o

= (an T V= 2
k ( J)T V

On account of the smallness of a, the right-hand sides of (33) and (34) are very

small, and will be temporarily neglected. Hence in this approximation the equation

in and appear separated. Iquation (33) is now identical with the ordinary hydro-

dynamic equation (22). Equations (23) - (25) follow as before. The Baler equations

for the internal convection are

t At = $t
= & .?. Vfn

P dfn fn

In case the quadratic terms in the velocity I

to the wave equation:

at2 pa 2, 0

The corresponding velocity of propagation is

2 (dpn P) .

can be neglected, (34) reduces

(36)

(3.)

By using (28) again, an alternate form is obtained:

(37a)
02 [Lt 8sY f
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The physical meaning of the and q waves is apparent from the continuity

relations (18), (30) and from (9) and (14). It is seen that the waves are accom-

panied by large fluctuations of the density/p and pressure P, while the 7 waves are
associated with fluctuations in sn, p , P and T. Accordingly they have been called

by the author pressure and temperature waves,respectively, while Landau called them

first and second sound. The designation of temperature waves is suggestive of the

simplest way of generating these waves by periodical heating. This has been act-

ually carried out by Peshkov7, whose results have been verified by Lane and

collaborators9 using a different method suggested by Onsager. In this method a

temperature wave (second sound) generated thermally in the liquid reaches the

liquid-vapor interface, where the temperature fluctuations cause periodical vapor-

izations and condensations. Thus ordinary sound is generated in the vapor and ob-

served with a microphone. The boundary condition at the liquid-vapor interface is

"q1 .= - T" (38)

where Q is the heat of vaporization per unit mass.

The very existence of the temperature waves bears out the fundamental

assumptions of the theory. A more quantitative check of the theories is obtained

by comparison of the theoretical expressions of c2(T) with the observed values.

Equation (37a) together with (14) or (14a) enables us to determine this function

uniquely from the knowledge of the function s (T). Using the approximate relation

(11) one obtains

Recently E. G. Richardson20expressed the view that the temperature waves
might be explained within the ordinary theory of heat conduction simply by a
large value of the coefficient of heat conductivityX , and without assuming any
wave equation for the temperature. He pointed out that also the parabolic
equation of heat conductivity possesses wave solutions. Actually these wave
solutions are strongly damped (independently of the value of X) and show x
a strong dispersion, their velocity of propagation being proportional to w2

(w is the frequency). This criterion for distinguishing between the wave
solutions of a parabolic and a hyperbolic differential equation has been poin-
ted out previously, (l.c.). The above-mentioned experiments decide the ques-
tion without ambiguity in favor of the hyperbolic equation. In particular
Peshkov failed to observe any dispersion in the range from 30 to 10000 c.p.s.
It may be also mentioned that the true heat conductivity in helium II is pro-
portional to the viscosity and is of the same order of magnitude in helium II
as in helium I. Its presence is completely masked by the presence of the inter-
nal convection.

It may be noted that formula (37) was first given by the author . The ex-
plicit temperature dependence was given then in the form (39) except that a con-
stant of the order of6unity remained undetermined. A formula similar to (37a)
was derived by Landau who obtained s = + sphon in lace of sn. The identity

of (37) and (37a) was first noticed by F. London, (paper to be ublished in Proc.
Phys. Soc.) who also obtained (39). The rigorous proof of the identity of (37) and
(37a) seems to have been first given in this paper. The author is indebted to Dr.
London for communicating his paper before publication.
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satisfactory. It should be noted that the theoretical exoression (39) contains

no adjustable constants and is based only on the empirical entropy function s (T)

which had been measured prior to the discovery of the temperature waves.

The figure also shows the function c2 (T) computed by Lifshitz on the
basis of Landau's theory. Landau's expression for c2(T) is a moiotonically de-

creasing function of temperatlre which reaches a maximum c2 (0) = 130 m/sec

at absolute zero. This result is in conflict with experiment. The discrepancy

stems from the role of phonons in Landau's theory. We shall return to this question

in Section 6.

While the agreement between (39) nd experiment bears out the funda-

mental assumptions of the theory, there is a noticeable discrepancy which is of

interest.

Equation (38) has been derived only in first approximation, but it

would be premrature to conclude that the discrepancies evident in Fig. 4 are due

to higher order effects. It seems likely that these discrepancies stem from

the use of expression (11) for the entropy. It was nointed out th-'t this ex-

pression has no theoretical foundation and is merely a convenient analytic form

representing the experiments to a fair degree of approximation (Fig. 3). In

particular (11) represents an extrapolation of the measurements to the -point

(Kapitza's measurements go only up to 2.10o0). The extrapolated value s = 0.405

cal/gm-deg enters through (14a) in the value of c2(T). It may be remarked that

this value of the entropy at the -point is in only fair agreement with

so = 0.39 cal/gm-deg obtained from the secific heat measurements (p.234 of Ref.5).

The agreement becomes somewhat worse if the latter value is corrected by deducting

the honon contribution to theentropy. Of course this value of s is also based

on an extrapolation (to absolute zero) and is not too reliable.

The effects neglected should be briefly listed. The coupling of the t
and waves can be easily taken into account. This effect is very small.
Dissipation gives rise to absorption and dispersion of both first and second
sound. In addition to dissipation due to viscosity and the true heat con-
ductivity, there are effects characteristic of helium II. The first of
these is due to non-adiabatic transitions between the two components which
lead to deviations from the continuity equation (30). A second effect is due
to the Debye honons and should give rise to an absorption and dispersion of
the relaxation type. This can be expected to be of importance for the
second sound at low temperature ( T <1°K) and should eventually (at sufficiently
low temperatures) lead to a complete attenuation of the temperature wave within
one wavelength. In case the "molecules" of assumption (iii) should have inter-
nal degrees of freedom (vortex models), another relaxation phenomenon should be
expected. The absence of dispersion of the temperature wave from 60 to 10000
cps. observed by Peshkov seems to indicate that these effects are small. A
quantitative discussion of the dissipation effects is beyond the scope of this
thermodynamic theory, but is of great interest from the molecular point of view.
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In summing up, it may be said that the small discrepancy between the theo-

retical and experimental values of c2(T) is probably due to the incomplete knowledge

of the entropy sn(T). More precise caloric measurements extended from the -point

to extremely low temperatures would be desirable. The set of thermodynamic relations,

in particular (9), (14), (38), seems to form a valuable criterion for the consistency

of different measurements and could possibly be used to establish the thermodynamic

temperature scale.

The observation of temperature waves is no doubt the most decisive quanti-

tative justification of the fundamental assumptions of the theory. The earlier exper-

iments on heat conductivity and capillary flow are too complicated to admit a quanti-

tative discussion, but they can be explained qualitatively on the basis of the theory.

A brief outline of such a qualitative explanation of the experiments will now be given.

Let us first consider the heat conductivity. Two heat-reservoirs of tem-

peratures T1, 2 are connected by a capillar completely filled with helium II preclud-

ing any net flow of the liquid. Hence = o. The temperature difference AT = T 1-T 2

gives rise to a difference of osmotic pressure Ap and thus to a circulation in the cap-

illary (*0), whereby the normal component flows towards the cold reservoir. The

current is closed by a transition of the superfluid component into the normal at the

warm reservoir while absorbing the heat snT. The reverse process takes place at the

cold reservoir. The efficiency of this heat transport is about T/AT times larger

than ordinary convection. This factor may reach very high values of the order of

1000. In the steady state the flow is limited by dissipation effects neglected in the

above discussion. If the dissipation were due to the viscosity of the normal component

alone, the heat current should be proportional to AP and hence to AT. Actually the
1/3 n

heat current increases rather like (T) /3which makes it likely that the dissipation

is partly of a turbulent character. This is supported by a series of experiments

carried out by Kapitza21 .

The situation is even more complicated in the case of capillary flow. In

the limiting case of very thin capillaries only the superfluid component can flow

under the influence of a pressure head, say due to gravity. Thus a temperature dif-

ference is set up between the two ends of the capillary, the outflowing liquid being

colder than the one staying behind. The flow should thus be stopped by the arising

osmotic pressure difference. Actually the increased temperature will lead to vapor-

ization of the liquid with a corresponding cooling and transition of the normal compo-

nentto the superfluid with a continuation of the flow. In this case, the assumption

of adiabatic conditions is no longer ustified, and in particular, the equation of con-

tinuity (30) loses its validity. In somewhat wider capillaries the normal flow

This was one of the first conclusions of the theory which as readily verified
by experiment. J. G. Daunt, K. Mendelssohn, Nature 143, 719 (1939). The
outflowing liouid is never at absolute zero as it still contains the phonon
entropy.
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velocity also becomes appreciable and both flows are complicated by turbulence.

Consequently, the thermomechanical pressure will be smaller than that expected

from q.(9) which was derived under the assumption of strictly semipermeable

capillaries. In summing up, it is clear that the complexity of the results

obtained with all but the narrowest capillaries is not surprising, and the
disentanglement of the various effects from these measurements is hardly feasi-

ble.

It would seem advisable to study the dissipative effects by measur-

ing the absorption of first and second sound whereby the complications of tur-

bulence are avoided. On the other hand, the study of turbulence could be best

carried out at low temperatures, where the concentration of the normal component

it negligible and the flow is no more complicated by the thermomechanical effect

and the viscosity of the normal component.

5. Outline of a Microscomic Theory of Liquid elium

The conclusions drawn from the postulates (i) - (iv) are in good

agreement with experiments practically all the peculiar kinetic effects finding

either a quantitative, or at least a qualitative interpretation. Thus the task

of a microscopic theory is reduced to providing a quantum-mechanical foundation

for these postulates. There is at present no question of deriving the postulates

from first principles, but we hope to show that such postulates are not in on-

flict with quantum-mechanics.

No special discussion is required for (i) since the presence of Van
der Waals attractive and repulsive forces always assures its validity. In con-

trast to the universal nature of (i), the validity of (ii) is most exceptional.

Systems satisfying both postulates have been called quantum liquids in ection II.

It would be desirable in this connection to answer the question: What

are the requirements upon the interatomic forces which guarantee that the macro-

scopic system built of these atoms will be a quantum liquid? At present it does

not seem possible to answer this question in such generality. One can, however,

point out a peculiarity of the repulsive forces in liquid helium which seem

to be at the root of this question. In order to have a finite volume at equi-

librium, as postulated in (i), one requires both attractive and repulsive forces

between the atoms. In an ordinary (classical) system both of these are of the

Van der Waals type. In helium, however, the repulsive forces have a different

origin and stem from quantum mechanical zero-point energy. The ordinary repul-

sive forces are of course also present, but it appears that the quantum mechanical

repulsion has a longer range and that the average distance of the atoms is

greater than the atomic diameter obtained from the kinetic theory.

The importance of the quantum mechanical zero-point energy in liquid

helium was first recognized by F. Simon 2, who came to this conclusion through
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essentially thermodynamic reasoning. He pointed out that in solid helium

existing under a pressure of at least 25 atmospheres,the binding energy of

10 calories per mole results as a small difference between the potential energy

due to the Van der Waals forces of -70 calories/mole diminished by a zero-

point kinetic energy of - 60 calories/mole. If the pressure is released,

helium melts with a great increase in volume, whereby both contributions to the

energy decrease to give a more favorable net binding energy of about 14 calor-

ies per mole (extrapolated to absolute zero). The zero-point energy is very

sensitive to compression and hence acts as an apparent repulsive potential. It

blows up the volume of the liouid to about three times the volume it would have

if the Van der Waals forces were acting alone.
23,1

These ideas have been further developed by F. London 1 Inter-

polating between limiting cases London established an expression for the zero-

point energy and showed that the effect to be expected from quantum mechanics is

of the right order of magnitude. For further details we refer to London's

papers.

The inference from tese considerations would be that the absence of

microscopic rigidity postulated in (ii) is due to the quantum mechanical nature

of the repulsive forces: while in an ordinary liquid the potential barriers re-

garding a shearing motion (isochoric rearrangement) of the molecules break down

under the impact of thermal agitation, in helium this happens as a result of the

zero-point motion. No satisfactory proof of this statement has been given so

far. However, the following remark may prove relevant:

Consider a particle in a cubic box of volume V. The box is slightly

deformed into a rectangular parallelepiped of volume V + V. The zero-point

energy appears here as the lowest characteristic energy value E of the particle.

It can be easily shown that, neglecting uadratic terms in the deformation, one

has

o = _ -V . (40)
TE V

Hence,for a shearing deformation (V = 0), the energy is in first

approximation unaffected. More generally, (40) holds for any energy level of

the cubic enclosure with a characteristic function invariant under the cubic

rotation x -y--z, but it does not hold if this condition is not satisfied.

Although this case is altogether too simple to be applicable to the

many-body problem of liquid helium, it is hard to suppress the feelint that this

selective behavior of the zero-point energy with respect to shear and compression

might admit generalization to that enormously more complicated case.

We turn now to the discussion of the postulates (iii) and (iv) which

is complicated by the fact that there are at present two molecular models under

consideration: the Bose-Einstein and the vortex model. The latter is closely
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connected with Landau's theory and will be discussed in the next section.

The Bose-Einstein model was first advanced by London . He sug-

gested that individual helium atoms can exist in liquid helium in excited

translational states associated with a definite energy and momentum, in much

the same way as the electrons in metals according to Bloch's theory. London

has shown also that the Bose-Einstein statistics imOlies a "condensation in

momentu;r, space"; hence postulate (iv) apears as a theorem on the basis of

this model.

The incorporation of London's hypothesis regards only the shear

modes of motion and otherwise the system has the liouid characteristics as

discussed above. Such a system can be conveniently called a Bose-Einstein

liquid.

Its 4 function in a state of weak excitation can be written as

T = ' (l . N) Y
o rhon gas

Pphon 1 Hi (ui) (41)
i

N
exc ik ,r

=gas J=le 

to(1. . . N) is essentially the characteristic function of the lowest state.

It deends on the coordinates of all the atoms. The ui are the longitudinal

normal modes of the system. Every ui involves the coordinates of all the

atoms. The i are the Hermite functions corresponding to the harmonic oscil-

lator. In contrast to this situation gas depends only on the coordinates

of the excited atoms. (The assumption of weak excitation implies Nex <c<).

represents the summation over all the permutations of the particles.

The Bose-Einstein theory has been repeatedly criticized. The ques-

tion whether the mechanism of Bose-Einstein condensation has actually anything

to do with the -point of helium, could be definitely answered when a rigorous

molecular theory has been developed which explicitly takes into account the

intermolecular forces. Until such a time it is about Just as difficult to dis-

prove as to prove the Bose-Einstein theory. The claim of the critiques was,

however, usually to the effect that the theory can be discarded because of

lack of internal consistency. Some of this criticism, such as eesom's re-

garding the interpretation in l.c. of the viscosity measurements actually concera-

ed only an erroneous application of the theory, not the theory itself. After

removal of this error (see this paper, Section III), the viscosity measurements

of eesom and MacWlood give a particularly striking support of the theory.

We believe that -- regardless of whether the Bose-Einstein hypothesis

should be proved, or disproved at some future time -- its validity cannot be

decided on the basis of the a priori arguments advanced in this connection.
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The main source of misunderstanding seems to lie in the failure to

appreciate the difference between a real Bose-Einstein as and a Bose-Einstein

liquid. Several attempts have been made to replace the ideal Bose-Einstein

by a real Bose-Einstein gas by means of introducin a self-consistent potential.

This method fails to account for the correlations between the states of the

individual particles, which are all important in the case of a liquid. They are

taken into account to a large extent by our postulates: the gaseous nature of the

system is restricted to the shear modes of motion (isopycnic rearrangements), its

compressibility is that of a liquid. This remark disposes also of the numerous

attempts which tended to prove or disprove the theory by means of the critical

opalescence" arising from the large density fluctuations in a condensed Bose-

Einstein gss.24 In a Bose-Einstein liuid the density fluctuations are determined

by the licuid-type coumressibility (observed e.g. in the first sound), which shows

no significant anomalies around the X-point.

The fact that the Bose-Einstein liquid allows one to take into account

the correlations between the excited atomic states to a satisfactory degree is

due to the artifice of formulating these correlations macroscopically rather than

in molecular, ouantum-mechanical terms. In other words, the difficulties of

the quantun-mechanical, many-body problem are not solved, but Jbvasged in the

present theory.

Another oint may be made. In the Bose-Einstein liquid one has to

distinguish collisions of the excited atoms from "interactions" of the atoms in

general.

All atoms are strongly interacting through the mechanism of the zero-

point energy precluding large fluctuations of density. In other words, the fac-

tor toin (41) is not senarable in the coordinates of the particles. In ntrast

to this interaction one speaks of a "collision" if two or more atoms in definite

translational states interact to mare a transition into different states. In

such rocesses translational energy and momentuwm are conserved. Obviously

double collisions between excited and non-excited atoms are excluded by these

conservation principles which assure an apparent independence of the two com-

ponents. In particular this is the basis for the assumption, Pn e constant,

advanced in Section III regarding the mean free path.

This apparent independence of the components is no longer true if

multiple collisions are considered. These supply the mechanism for the estab-

lisLhent of thermal equilibrium required by Bose-Einstein statistics and tend

to maintain the value P/p appropriate to the temperature.
In the absence of a satisfactory a priori ustification, it is of

importance that the Bose-Einstein theory does find an a posteriori ustifica-

tion by furnishing a molecular model for the postulates (i) - (iv), the con-

sequences of which are in excellent agreement with experiment. It is, of course

of great importance to know whether there is another molecular model with the

same properties. This will be discussed in the next section.
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6. Discussion of andauls Theory

No attempt will be made here to analyze the logical connection be-

tween Landau's microscopic quantum hydrodynamics on the one hand and his macro-

scopic relations on the other. These relations will be rather considered from

the point of view of our quasi-thermodynamic theory and the question to be answered

is: what changes and additions have to be applied to the postulates (i) - (iv) in

order to obtain Landau's results.

Postulates (i) and (ii) are made tacitly by Landau. In particular the

validity of (ii) is essential if the Hamiltonian of the system should depend on

the density alone as implied by formula (1.10) of reference 6.

According to Landau the elementary modes of excitations are phonons for

the compressional modes,and rotons" for the shear modes of motion. Due to the

general wording of postulate (iii) this is compatible with the present theory.

From the molecular point of view it means that the excited atoms of the Bose-

Einstein theory are replaced by "rotons". A discrepancy with the present theory

arises only in connection with postulate (iv). Again there is agreement inasmuch

as helium II has to be considered as the mixture of a normal and a superfluid com-

ponent, but - in contrast to the present theory - Landau defines the normal compon-

ent as a "gas of phonons and rotons", leaving the superfliud component with rigor-

ously vanishing entropy.

It is seen that the theories agree sufficiently closely to account for

the similarity of the results. The difference in the role attributed to the

phonons, however, leads to several observable differences.

The first of these concerns the low-temperature behavior of the thermo-

mechanical effect. Whereas, according to the present theory this effect should

cease somewhat below 1K°, where phon becomes of the same order of magnitude as sn,

Landau concludes that the effect should continue down to absolute zero. Consequent-

ly Kapitza 0 suggested a cooling method based on this effect. He states that

" . . this method for obtaining low temperatures as distinguished from the mag-

netic method will a priori permit us to approach infinitely near absolute zero".

Unfortunately, if the present theory is right, this method should not lead much

below 1. Although we are not aware of any report of an attempt to observe this

effect below lK, the fact that uerti and Simon 25 found a normal and small heat
conductivity in the region of 0.2°- 0.50K, seems to support the author's point of

view.

In the temperature region above 1 E, the phonon contribution to the

entropy is negligible and one might at first think that the two theories lead to

identical results. Although this is true most of the time, a definite difference

appears in the expression (39a) for the velocity of the temperature waves. It is

seen that c2 depends critically on the manner fn tends to zero with the temperature.
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Landau concludes that so far as phonons are concerned, pnSun~T 4 where Uphon is the

phonon energy per unit mass, while the entropy is t3. This is a violation of

the relation (14). It is easy to show that (14) always implies c2 4 near abso-

lute zero. Landau concludes for the same limit c - 130 m/seo. This is the

origin of the discrepancy between Landau's results nd the experiments evident in

Fig. 4. A finite value of c2 at absolute zero is also in contradiction with

Nernst's law, since the temperature waves are due to the thermomechanical effect

which according to (9) should vanish with entropy.

It is interesting to consider briefly the reasoning by which Landau

came to these conclusions. We believe the difficulty to stem from Landau's fail-

ure to notice that - - in contrast to phonons - -, vortex elements possess invari-

ant masses. Suchan invariant mass is necessary for the definition of the mass

fractionn/f. . Landau introduces this quantity by the device of the rotating

vessel. This argument is not convincing as it tends to obtain an information on a

kinetic coefficient (viscosity) from equilibrium considerations. Whether or not the

phonons contribute to the viscosity, depends on the relaxation time for the establish-

ment of equilibruim. This question was not investigated by Landau.

We believe that Landau's treatment of the phonons has to be rejected

because of experimental evidence and on the basis of internal consistency. On the

other hand the interpretation of postulate (iii) in terms of a "roton gas" is com-

patible with the thermodynamic theory and needs further consideration. The merits

of this interpretation can be evaluated only on the basis of results which go beyond

those of the thermodynamic theory. Landau's theory contains two specific results

of this kind. According to the first pn/pe-/KTwhere A is an energy gap in the

vortex spectrum. The second concerns the so-called critical velocity which marks

the beginning of dissipation in the superfluid flow. According to Landau this is

of the order of 10 cm/sec. Both results are in conflict with experiment. It is

seen from Pig. 3that pn/ T5 '5 is in good agreement with Kapitza's entropy measure-
10ments . It does not seem possible to fit the measurements with Landau's formula.

The critical velocity has also been measured by apitza2 1 He found values between

1 and 100 cm/sec depending mainly on the geometrical properties of the flow in a

manner which reminds one somewhat of the critical Reynolds number in the case of

ordinary turbulence.

These disagreements should not be considered, however, as a definite dis-

proof of Landau's theory. The two results mentioned are direct consequences of

Landau's assumption of a gap in the vortex spectrum of the liquid. This assumption

has no theoretical foundation and is obviously an oversimplification. The funda

mental idea of a quantum hydrodynamical approach may well be an important contribu-

tion to the question of helium and presents also interesting theoretical problems.

To conclude this discussion, we will briefly outline a sequence of ideas

which --if further developed -- might lead to a consistent quantum hydrodynamics.
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As indicated above, a standard method of dealing with the many-body

problem is the method of self-consistent fields or independent particles. A

second alternative is the continuum or field theoretical approach where the positions

and velocities of a large number of particles are replaced by a density and a veloc-

ity field. t is well known that this method is very successful in the case of

the theory of elasticity and hydrodynamics. These theories are sufficiently " coarse

grained" so that the molecular structure of matter and quantum effects can be ignored

with no serious error. With some limitation, however, the fibld theoretical method

can be used also in a "fine grained" sense. The best known example is the Debye

theory of specific heat. The atomic structure is taken into account in a crude but

efficient way by "cutting" the short wavelength end of the spectrum. Quantum

theory is introduced in the well-known fashion. The method of Bose-Einstein liquid

discussed in the preceding section presents a bland of the two methods: the quantum

field theoretical method is used for the compressional modes (phonons) and the inde-

pendent particle method for the shear modes (isocnio rearrangements). According to

a modified Landau theory (brieflyreferredto as the vortex model), the field theoretical

method is extended also to the shear modes. In view of the vanishing microscopic

rigidity, the proper approach would be the hydrodynamics of the perfect liquid, ra-

ther than the theory of elasticity; the shear modes of motion being vortices.

According to well-known theorems of Kelvin and Helmholtz, the vortex motion can be

built up from vortex tubes starting and ending on the surface of the liquid or

closing upon themselves. These classical results were obtained under the assumption

that the velocity field is everywhere continuous. In view of the vanishing rigidity

(dynamic viscosity) of a quantum liquid,this seems somewhat too special and surfaces

of discontinuity in the velocity might be admitted. Such surfaces can be considered

also as surface vorticities in contrast to the volume vorticities of the classical

theory. If such surfaces are admitted, the variety of possible vortex motions in-

creases: one may have e.g. rotating spheroids. If the assumption is made that the

results remain valid down to rotating roups consisting only of a small number of

particles, quantum theoretical methods will have to be introduced. The angular mo-

mentum willbe quantized in probably much the same way as in the case of rotating poly-

atomic molecules. Consequently such rotating groups of atoms in uantized rotational

states would play the role of the molecules of postulate (iii). It is seen that the

connection with the Bose-Einstein theory is surprisingly close. The monatomic mole-

cules of this theory have to be replaced by rotating polyatomic molecules. The con-

densation postulated in (iv) would not be the consequence of Bose-Einstein statistics,

but would rather arise from the Boltzmann factor connected with the internal rotational

energy of the molecules.

It should be emphasized that this method is a pniori no more rigorous than

that based on the Bose-Einstein liquid. While the independent particle approach

ignores the correlations between particles, the field theoretical method overestimated

them,
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(We recall that the compressional modes are treated in both theories according to

field theory and the divergence arises only for the shear modes.) In view of the

open structure of liquid helium (the blown-up atomic volume), it is not obvious

that the laws of hydrodynamics should be valid down to atomic dimensions, and the

field theoretical method certainly has its limitations. In the case of the Debye

theory one has to "cut" the spectrum in the well-known manner. The corresponding

procedure for the vortex spectrum has still to be established.

In summing up, it may be stated that neither the Bose-Einstein liquid

nor the vortex model (modified Landau theory) can be excluded as possible molecular

models compatible with the present thermodynamic theory. A satisfactory develop-

ment of both theories is hampered by formidable difficulties.

It would be, of course, of great interest if an experimental method

could be devised of distinguishing between the theories. At present this seems to

be also rather difficult. The first-order hydrodynamical effects like the propa-

gation of second sound are independent of the nature of the "molecules" of the gas

and thus cannot contribute to the decision. It seems probable that the careful

theoretical and experimental analysis of second-order effects, like the absorption

and dispersion of first and second sound,might decide this issue. For instance,

a distinguishing feature of the vortex elements compared with the excited atoms

of the Bose-Einstein theory is the existence of an internal rotational energy,

which should manifest itself in an absorption and dispersion of the relaxation

type. Peshkov's measurements up to 104 cps failed to show any such effects. The

extension of the frequency range would be of interest.

Interesting crucial experiments could be carried out if the H3 isotope

obeying Fermi statistics could be sufficiently enriched to make flow experiments

possible. Such experiments should show conclusively whether the Bose-Einstein

statistics is of any fundamental importance fCr the phenomenon of superfluidity. If

liquid He3 should not be superfluid, this fact could be actually used for the en-

rihbment of this isotope, as has been recently suggested by J. Franck.2 6

7. Conclusions

In the discussion of the properties of liquid helium, it is useful to

distinguish three ranges of temperature in which the liquid shows essentially dif-

ferent characteristics. In addition to the well-known modifications helium I and

II, a further subdivision is made within helium II. In contrast to the sharp

n-point separating the modifications I and II, the transition between the low-temp-

erature and high-temperature domain in helium II is gradual. The transition region

is somewhat below 10°, but its location needs further experimental study. I the

low-temperature region, the entropy is mainly due to the elastic phonons, whereas in

the high-temperature region, the phonon contribution is negligible compared with

that of the shear modes. This contribution is responsible for the anomaly in the

specific heat and has a gaseous nature.

The main properties of the liquid are as follows:
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Helium I - From the macroscopic point of view, this modification shows

a "normal" hydrodynamic behavior; its coefficient of viscosity is, however, rather

remarkable. In ordinary liquids, the viscosity has a negative temperature co-

efficient due to the "microscopic rigidity." This type of viscosity can be called

dxnamic viscosity, to be distinguished from the kinetic viscosity which is observed

in gases an& which has a positive temperature coefficient. The qualitative under-

standing of the properties of liquids is greatly facilitated by the concept of

microscopic rizidity. However, the difficulties of giving to this notion a quanti-

tative formulation seem to be responsible in no small degree for the lack of a

satisfactory kinetic theory of liquids. Hence, it seems to be of interest that

helium I has a kinetic and no dynamic viscosity, revealing the complete absence of

microscopic rigidity. The comparison of ordinary liquids with helium I should be

useful for the disentanglement of the gas-like and solid-like properties of liquids.

Helium . Low-Temperature ReRion- ( O0T le )

The main characteristic of the liquid in this temperature range is its

superfluidity which implies that the liquid can slip along solid walls. This is

demonstrated in spectacular creeping phenomena. Beyond a certain critical velocity,

the superfluid flow may be associated with dissipation, apparently of . turbulent

character.

Helium II. Hih-Temerature Renion ( 1T<2.19°K)

In this anomalous" region, the liquid is a mixture of a normal component

(like helium I) and a superfluid component (like the low-temperature form of helium II).

The main object of the present paper was to develop the macroscopic thermo-hydrodynamic

properties of such a conmplex system. The results are in excellent agreement with

experiment. Minor discrepancies may well be due to small inaccuracies in the cal-

oric measurements, although the theory will have to be refined to include small

effects neglected at present, like dissipation and the dependence of fn on pressure.

The formalism developed seems to furnish valuable criteria for the consistency of

measurements and might possibly be used to establish the thermodynamic temperature

scale.

The principal problems for further experimental and theoretical research

seem to be as follows:

1) The derivation of the postulates of the quasi-thermodynamic theory

from first principles in particular, establishing the correct molecular model

which would lead to these postulates. At present, the choice seems to be between

the Bose-Einstein liquid and the vortex model (modified Landau theory.) The exper-

imental approach to this problem has been briefly discussed at the end of Section 6.

2) The clarification of the nature of the ure suerfluid liouid (helium II

near absolute zero.) This problem has not been discussed in the present paper.

According to Landau, the superfluid state is characterized by the condition curl - 0
The question has been further discussed by F. London17 and Onsager27. So far,

superfluidity (capillary flow and the creeping phenomenon) has been studied

_33-



experimentally only above 10K where the effects have been greatly complicated by

the thermomechanical effect and the viscosity of the normal component. Experiments

below 10K where these effects vanish would be greatly desirable. Of particular

interest is the investigation of the dissipation arising above the critical veloc-

ity. This seems to be of turbulent character; hence, a unique opportunity is

offered to study turbulence in the absence of viscosity (no boundary layer). On

the other hand, this turbulence will be influenced by quantum effects.

The author wishes to extend his thanks to Dr. F. London for a long

series of discussions extended over a period of years. They have led to the clar-

ification of many of the questions considered in this paper. His thanks are due

also to Dr. Lars Onsager for stimulating discussions.
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