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Abstragt

A quasi-thermodynamic theory of ligquid helium is developed based on four very
general postulates. The results are in excellent agreement with experiment, in
particular with the measurements of the temperature waves (second sound), the
existence of which was predicted by the theory. The Bose-Einstein 1liquid intro-
duced earlier is a possible molecular model for the theory. La.ndaﬁ's hydrodynamic
theory has certain features which are in conflict with the present results and also
are contradicted by experiment. A modified hydrodynamic theory, however, might
provide a satisfactory molecular model, A decision between the two molecular models
requires further experimental and theoretical study.






RY OF LIQUID

1, JIntroduction

Several years ago F. London]' gove some evidence to support the idea that
the peculiar phase transition of liquid helium at 2.19°! ("\-point") might be re--
garded as due to the condensation mechanism characteristic of the ideal Bose-Binstein
ges, distorted, of course, by the presence of molecular forces which cannot be ig-
nored in the case of a liquid, He observed that the various earlier attempts to ex-
plain the A-transition by the familiar mechanisms of phase transitions of the second
kind (order-disorder transition in ordinary space) are incompatible with the weak
Van der Waals forces of helium and with the requirements of quentum mechanics. In
this situation the example of an order in momentum space, as presented by the Bose-
Binstein condensation, seemed to offer a very welcome and suggestive new possidility.
Moreover, the Bose-Binstein condensation demonstrated a very peculiar feature. It
led to a kind of phase squilibriumof two pheses interpenetrating in ordinary space
but separated in momentum space. There were good reasons to suspect tbat the fcon-
densed® fraction of the atoms was the seat of a superfluld mass transfer,

Actually the author was able to xshcm2 that the kinetic effects to be ex-
pected in an ideal Bose-Einstein gas revealed a close similarity to the well-known
effects in helium II, In spite of this fact, the theory did not seem very convinc-
ing eince it was difficult to understand how the properties of a liquid could be
interpreted even qualitatively in terms of a gas theory, The rigorous treatment of
this problem would require the solution of the quantum mechanical many-body problem.
The mathematical difficulties involved have proved so far to be so tremendous, that
up to the present it has been impossible to substantiate these ideas by the develop-
ment of a rigorous molecular theory.

In view of this situation, the author has tried to avoid these difficulties
by developing a sorewhat more macroscopic theory of the various thermo-hydrodynamic
effects in helium 11.3’4 (See also H. Londonh. Por an account of these experiments
we refer to Keesom's monograph on hel:l.ums). The main point of the theory was the def-
inition of the "Bose-Einstein liquid®, uniting some properties of a liquid and some of
a Bose-Einstein gas in a self-consistent scheme. Whereas the discussion of such a
"hybrid" system could not be carried out with quantum mechanical methods, it proved to
be easily menageable from the much more schematic quasi-thermodynamic point of view.
In perticular the notion of "condensation in momentum space” was extended to the
Bose-Binstein liquid. Hence, below the condensation temperature, this system was
supposed to have a heterogeneous charscter implying the existence of two veloeclty
fields. The existence of two fields rather than one resulted in an "internal con-
vection" carrying energy and entropy, but not assoclated with any net transfer of
matter. Hence the macroscopic hydrodynamics of helium II proved to be of greater
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complexity than that valid for other substances and allowed the correlation of phe-
nomena which sppeared paradoxical from the point of view of ordinary hydrodynamics.

The theory led also to various predictions which have been subsequently verifled by
experiment. The most important of these was the conclusion that inhomogeneities of
the temperature would propagate according to a waye equation rather than the usual
parabolic egustion of heat conduction. The velocity of propagation of these "tem-
perature waves" was computed as a functiocn of the temperature. It was also indicated
that an experimental verification could be obtained by exciting the temperature

waves through periodical heating of helimm II, A short report of these results appeared
in 1938 in the form of preliminary noteas, but the detailed account4 {quoted henceforth
as l.c.) was, because of wartime conditions, not generally available until recently.

Landau ~ apperently unaware of these results - criticised the Bose-Einstein
theory on the basis of the earlier notez end advanced instead a theory in which he
maintained the assumption of the heterogeneous nature of helium II, but tried to jus-
tify it from a different molecular point of view based on quantum hydrodynamicss.

Ag soon as the possibility of the two velocity fields was granted, the development

of the macroscopic hydrodynamic equations had to proceed on the same lines as those
based on the Bose-Einstein theory. In particular Lendau concluded that there should
be two different modes of sound propagation in helium II, with different velocities
for the "first" and "second” sound., Landan did not discuss the physical meaning of
this second sound wave. Acocording to the recent account of Peshkov7, it was only
after an attempt to excite the second sound by mechenical means had failed, that the
question was reconsidered by Lifshitza, who concluded that the excitation of second
sound could best be obtained by periodicel heating of the liquid. Thus the second
sound proved to be identical to the temperature weves predicted earlier on the basis
of the Bose~Einstein theory. The existence of these temperature waves has been ex-
perimentally demonstrated by Peshkov7 who measured alsc their velocity of propagation
as s function of temperature. These results have been recently confirmed by an inter-
osting indirect method suggested by Onsagerg. The comparison of the experimental
and theoretical results will be found in Section 4. It may be noted that the theo-
retical curves do not contain any adjustable constants, but are evaluated with the

empirical values of the entrepy measured previously by Kapitzaloo

The aim of the present paper 1s to clarify the relation between the theories
and experiment. It seemed advantageous to proceed as much along phenomenalogical
lines as possible. The theory of the Bose-Einstein liquid was already more phenomeno-
logical than the original Bose~Einstein gas theory. The present paper is a further
step in this direction. This procedure — although rather abstract — seems necessary
in view of the existence of Landau's theory. It will help to avoid the pitfall of
Justifying any special molecular model by experimental results, which in reallty cen
be also understood under broader assumptions.

There are good reasons to expect thot a quasi-thermodynamic method should be
adequate to handle the problem of helium II, The peculiar properties of helium II are
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usually described by the statement that this substance is superfluid and superheat-
conducting, Actually it is important to realize that the behavior of helium II cannot
be characterized by assuming extremely small or large values of kinetic coefficients
such as viscosity and heat conductivity. It is rather that the usual differential
squations governing capillary flow and the transfer of heet have to be replaced by
equations adapted to the particular mechanisms effective in helium II, This change
in differential equation rather than the assumption of an extreme value of the con-
ductivity is characteristic also of superconductivity, as is apparent from the well-
known theory of F. and H. London, While kinetic coefficients depend very sensitively
on the nature of the molecular forces, this is usually not the case for the differen~
tial equations themselves.

Our procedure will then be to edvance certain genersl assumptions regarding
the energy spectrum of liquid helium, expressing the fact that this system unites in
a peculiar way some characteristics of a liquid and of a gas (Section 2 ). The low-
est state of the system has ligquid characteristics, The excited states can be classi-
fied 1into compressional modes which are also liquid-like (Debye phonons) and ghear
modeg corresponding to the rearrangements at constent volume of the molecules, which
are supposed to have & gas-like character. The technique of drawing conclusions from
these assumptions will be essentially thermodynamical (Sections 3 and 4). Such an
extenslon of classical thermodynamics seems to be the adequate method of dealing with
second-order transitlons. We hope to come back to this question in a later publication.
A discussion from the molecular point of view is of course of the greatest interest and
will be outlined in Section 5 as far as it seems possible at present. Landau's theory
will be discussed in Section 6.

2, T tal A 1]

Let us consider a macroscopic system of helium atoms enclosed in a box of
volume V. The characteristic values of the Schroedinger equation of the system, in
particular the lowest energy Eo, are determined by the properties of the helium atoms
and in addition depend on the volume V as a parameter, Two assumptions will now be
made regarding the properties of this lowest state of the system. After a short dis-
cussion of the meaning of these zssumtions two others will follow regarding the

excited states.

(1) The function mo(v) has g minimum for some valug V = VO

of the volumg:
(dEo) (d2E° o
] = 0 —0 0 1
oy ar 7
-] V=Y
[+]
(i1) The state E (V) ig characterized by a venishins micro-
Scople rigidity.

Assumption (1) expresses the fact that at a temperature of absolute zero and with a
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vanlshing external pressure P = —E\Tg = 0, the system is in a condensed and not in a
gaseous state. Assumption (ii) specifies further that this state is liquid rather than

solid.

The postulate that a system should have a vanishing coefficient of rigidity at
absolute zero is very far reaching. Indeed, according to classical statistics one would
expect every system which is in thermodynamic equilibrium at absolute zero, to be in a
crystalline state. Hence it is reagonable to define a system satisfylng postulates
(1) end (i1) as a guantum ligquid. Among liquids in the conventional sense of the word
only helium fulfills this condition. There is also the possibility of considering heavy
atomic nuclel as quantum liquids.

At first it might seem that the discussion of the implications of (11) will
be hampered by the difficultiea inherent in the theoretical understanding of the liquid
state. Actuslly the reverse is true, since the properties of helium (we think here
chiefly of helium I) are 4in some respects simpler than those of ordinary, or classical
liquids. The comparison of ordinary liquids with helium I can throw new light on some
elusive features of the theory of the former,

The terminology of microacopic risidity as a counterpart to macroggopig ri-
gidity has apparently been first introduced by Br:lllouinn. although essentially the
same ideas form the basis of the theories of liquids by Frenkel, Andrade, and Eyring,
(cf. particularly the recent detalled sccount of Frenkell®),

If a solid is deformed (shearing strain), it reacts with a proportional
shearing stress, the proportionality constant being the shear modulus, or macroscopic
rigidity. It may be said also that the free energy of the solid is a function of the
shearing strain. This is, of course, not so in case of a liquid. In contrast to the
free energy, the potential energy of configuration depends on the strain also in a
liquid; in other words, in the course of a shearing deformation the molecules have to
surmount barriers of potential energy, but these barriers constantly collapse under
the impact of thermal agitation. The observable consequences of this situation are
the so-called visco-elastic effects. Suppose the average life time of a potential
barrier 18 T . 1If a shearing stress is applied at a high frequency w>)1'."'1, the
system will react as a solid and propagate transverse elastic waves. For liquids
of low viscosity the frequency required for such a behavior shifts to the very high val-
ues of the thermal vibrations (hypersonic in contrast to ultrasonic waves). The spe-
cific heats of monatomic liquids near the freezing point show good evidence for the

presence of transverse hypersonic wavesls.

At low frequencies w <<t for which the rate of change of the shearing
strain will be proportional to the stress, the microscopic rigidity gives rise to
viscosity, This liquid type viscosity should be distinguished from the gas type or
transport viscosity well known from the kinetic theory of gases. In order to avoid



confusion we will call them dvmamie and kinetic viscosity respectively. The two vias-
cosities give rise to the same type of macroscopic effects, but they can be clearly
identified from their temperature dependence.

For the kinetic viscosity one has

Nen ~ P (2)
wherepis the density, G the mean thermal velocity, and I the meen free path; ')k:in
increases slowly with temperature.

For the dynamic viscosity one has a strongly negative temperature coeffi-

clent, since

rtdyn ~ eA‘/ﬂ (3)

where A is an activation energy clearly indicating the presence of potential barriers.
The situation 1s i1llustrated in Figure 1 where the dynamic viscosity of liquid hydro-
gen 1s compared with the kinetic viscosity of hydrogen gas. The case of hydrogen is
typical of any classical liquid.

The most spectacular effect of the gicroscopic rigidity is fraszing. As
the thermal agitation decreases with temperature, the potential barriers organize
into a crystalline pattern and give rise to the macroscopic rigidity of the solid.

The important point for the present nurpose is that the three phenomena
discussed above (propagation of transverse hypersonic waves, dynamic viscosity, and
freezing) are all due to the same factor: the microscopic rigidity. As helium does
not solidify at vanishing pressure, one must conclude that the mieroscopic rigidity
vanishes, as it was postulated in (ii), According to the above discussion this im-
plies also the vanishing of the dynamic viscosity and the absence of transverse hy-
personic waves. The first conclusion finds a striking verification in the measurement
of viscosity (Figure 2 to be compared with Figure 1), Attention is drawn here to the
viscosity of helium gas and liquid helium I, since in the case of helium II additional
complications arise, which will be discussed in the next section. The kinetic charac-
ter of the viscosity of helium is obvious. It should be pointed out that in our ter-
minology it is helium, not just helium II, that is a quantum liouid, This terminol-
ogy based on (1) and (1i) is well justified, e. g., on the basis of the viscosity
measurements. None the less it is at Variance with the rather generally adopted
view that helium I 1s "classical" or a "normal® liquide Actually the spectacular
oroperties of helium II have overshadowed the fact that helium I is distinctly dif-
ferent fron classical liquids.

4 qualitative discussion of postulate (1i) from the point of view of quantum
mechanics will be found in Section 5. At present we turn to the discussion of the ex-
cited states of the system, .

The excited states of a continuum or quasi-continuum can be classified into
compressional and shear modes of motion. The density fluctuations connected with the
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first type can be analyzed into longitudinal waves, The infinite spectrum of langi-
tudinal modes of the continuum has to be "cut® in the usual fashion to obtain the
correct number of degrees of freedom, The elastic quanta ('brieﬂy, phonons) ob-

tained by quantization of thegse waves are the "elementary excitationg" of the com-
pressional modes of motion,
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Figure 1, Viscosity of liquid and gaseous hydrogen, from
¥, H, Keesom, G. B, MacWood, Physica 5, 745 (1938),



Regarding the shear modes postulate (1i) leads only to the negative state-
ment that they cenmnot have the character of wavese This gap will be filled by the

next assumptions
(111)
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Figure 2, Viscosity of liquid and gaseous helium, from pp. 106
and 267-8 of Reference 5,
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In accordance with the program formulated in the Introduction the postulate
(111) s kept in very genmeral terms, since the macroscopic equations to be derived in
the next two sections do not depend on the molecular interpretation of the "gas" in-
troduced in (i11). This moleculer interpretation is of course important for the in-
tultive understending of the meaning of the theory, and will be discussed in Sectiocns
5 and 6, At present only a few results of that discussion should be anticipated.

The first molecular model compatible with (1ii) is the Bose-Einstein liquid.
In this case the "elementary excitations" correspond to helium atoms in translaticnal
Bloch~type statesl’4. Between these states there is = strong correlation, inasmuch
as they occur at constant density (shear modes of motion). This model has been con-
sidered in great detaill in l.c.

The second model will be referred to as the yortex model. It was obtained
through modification of landau's hydrodynamic theory which in its original form is
contradicted by experiment. In this model the elementary exc¢itations of (iii) are
groups of atoms possessing in addition to their translational momentum also an internal
anguler momentum, Although the thecry of these "vortex molecules" hes not been worked
out so far, progress in this directlon is conceiveble. Actually the two models are very
closely related to each other., In the Bose-Einstein case the "molecules" of the gas of
postulate (iil) are monatomic, while in the vortex model they are polyatomic, There are
many hydrodynemic phenomena {such as those considered in this peper) for which the dif-

ference between a polyatomic and a monatomic gas is irrelevant.

The most important property of the Bose-Einstein liquid is its "condensation
1,4
in momentum space"l’ “+ The essential features of this condensation phenomenon will now
be postulated for our more general case,

While the elementary excitations introduced in (i1i1i) have the main attributes
of molecules in the kinetic theory of geses (constant mass, momentum,and energy), this
is true only if a definite quantum state is considered. At absolute zero no "molecules"
are present, but can be created by means of thermal exeitetion. (While at absolute
zero, there is no translational motion, the atoms still possess a zero point kinetic
energy, ¢f. Section 5.) In every quantum state one cen distinguish the total mass of
the system., Upon averaging over a canonicel ensemble, the seme kind of subdivision is
obtained as a function of temperature. Hence the density of the system will be sub-
divided into two parts.

P=f)n +Ps (4)

where Pn 1s the density connected with the "molecules® of the gas and /os refers to the
"background" in which the molecules are moving, The subscripts refer to "normal'

and "superfluid", a terminology which will be explained below. The ratio Pn/P is &
very important property of the system. The last assumption of the theory will be con-
cerned with 1it:
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(iv)e There exists a temperature T, _such that

Pﬂ = 0 for T =0 He 1II
o < 1 0<T < T He 1II
r = 1 T>2T° He 1I

with £ /o monotonically increasing between T = 0 and T .
¥
To is to be identified with the A-point of helium.

Let us consider now a volume element in helium II which ie small compared
to macroscopic dimensions, but big enough to contain not only a lerge number of he-
lium atoms, but also a large number of "molecules™. Averaging over the translational
motion of the "molecules”, one obtains a drift velocity ¥, which will not in general
coincide with the velocity of the "background" Y, In contrast to ordinary liquids
and also to helium I, one has two densities and correspondingly two veloclty fields.
The total mass current demsity is
I Pl ¥ R (8)

A

According to (1ii) every "molecule™ has & momentum, Averaging over this
momentum current one gets, through the procedure well kmown from the kinetic theory
of gases, a stress tensor. The diagonal elements will be equal to a pressure Pn
(which ie to be distinguished from the liquid pressure P) while the non-disgonal
elements represent a viscous momentum flow. This is, of course, of the kinetic type
and is uniquely associated with the flow‘xn. No kinetic viscosity 1s assocliated with
the fiow of the backgroundxs. Since the dynamic viscosity was found to be totally
absent in helium, none of the mechanisms of viscosity is effective, and this flow
may be called guperfluid. In psrticulsr at absolute zero where fo = 0, = Py
helium II as a whole is superfluid.

The characters of the two currents will be essentially different; this is
reflected most clearly in the boundary conditions for the components of the velocities
at a solid wall at rest:

Y 0%
Vo T 0, whereas only Ver - 0. (8)

The kinetic viscosity of the gaseous component entails the "normal®" boundary
conditlion for the velocity T while no condition is obtained for the tangential com~
ponent of the superfluid flow., The terminology "normal® and "superfluid" is thus
explained.

The superfluid component can "slip" along a solid surface, which 1s ite most
essentlal characteristic, more so than the absence of dissipation, Actually, according

» Actually p /P will be also a function of the pressure P and this would have to be
taken into account in a refinement of the present theory.
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to experimental evidence to be discussed below, the superfluid flow may be associ-
ated with a dissipation of the turbulent type as soon as a critical veloclty is
exceeded.

The slip of the superfluid component of helium II is most effectively
demonstrated in the well-known creevping of the Rollin films. This is, however, a
complex phenomenon for quantitative discussion, corresponding to the fact that the
general hydrodynamic equations of helium II are most unwieldy. It is very satis-
factory that the form (6) of the boundary conditions is sufficient to obtain con-
clusions which can be quantitatively checked by experiment. This will be seen in

the next section.

Finslly we have to consider the specific entropy s of the system. (Spe-
cific energy and specific heat follow of course at once from 8.) According to our
clegsification of the excited states, s consists of two terms

(7

s = ®n M 8phon

corresponding to the shear and compressional modes of motion, As indicated by the
subseript, 8, is associated with the normal componsnt Fh of the liquid while the
contribution sphon of the Debye phonons is assoclated with the liquid as a whole.
We returnto this question in Secticn 6., It will be seen in the next section that in
the temperature range from the A-point to almost 1°K. sphon
tion, i. e., if sphon cen be neglected, it may be said that the superfluid component

of the liquid has zero entropy. This result is of great importance for the theory,

<< L Under this condi-

but 1ts appreximate character should be keprt in mind,

3, Helium Il as a Mixture

The proper understanding of the heterogeneous nzature of helium II is made
somevhat difficult by the fzct that it does not conform to the terminology of the
classical phase rule with its clean-cut distinction between "phase" and "independent
component”, In ore connection it is best to consider hellum II as a two-phase system
and in another rather as a two-component system. Both analogies have to be handled

with certain qualifications.

The tvo-phase point of view has been ervhasized by Londonl in connection
with the ideal 3ose-Einsteir gas. Below the condensatlen temperature this system can
be considered as a gas in ecuilibrium with a ccndensed phase, the phase sepsration
teking place in momentum space rzther than in ordinary space. The saturation gas
pressure Pn = Pn(T) is & function of the temperature alone. In the liquld the
situation is ccamplicated by the fact that in sdditien to tre gas pressure Pn one has a
liquid pressure P, The relaticn between P and Pn can be better understood in terms of
the seccnd anelogy: the pressure P appears then as an Yosmotic pressure” of the nor-
mel component dissolved in the swierfluid. Because of the existence of semipermeable

menbranes, Pn is subject to direct observation and thi:c analogy will serve us as a
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useful gulde throughout this section. Two qualifying remaerks heve to be observed,
however. In the théory of solutions the total amount of each component is constent.
In helium II this is true only if adiabatic conditions are mesintained. In case of
heat transfer there is a transition of one component into the other which has no
analogue in the case of ordinary solutions, This requirement of meintaining adia-
batic conditions is of importance also from the practical point of view; we will
come back to it in connection with the discussion of experiments.

There is a second point in which Pn differs from the conventional osmotic
pressure, A gradlent of the osmotic pressure in -- say a salt solution -- gives rise
to a diffusion (second-order effect). In virtue of postulate (1ii), however, a gra~
dient in Pn gives rise to a current, (first-order effect);i. e., in this connection
Pn has the character of a gas pressure. This idea will be developed in the next section.

The simplest and most direct experimental method for the verification of the
heterogeneous nature of helium II and of the boundary conditions (6) consists in the
measurenent of the moment of inertia of a rotating vessel containing helium II. As
the superfluid component will not take part in the rotation, the apparent moment of
inertia of the liquid will be

Y
where Io is the moment of inertia above the A-point, This effect was first predicted

by Landau6 and the decrease of the moment of inertia was experimentally demonstrated
by Andronikashvilli“. This experiment constitutes the most direct, although not the
most accurate determination of the important quantity ,on/f’. The experimental results

can be approximately represented in the form
T
Pn/P (/1) (8)

where r is a constant around 6, More precise measurements discussed below give

r = 5.5, It should be emphasized that tiis ig a purely empirical relation which cannot

QA0 OO
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A related, though somevhat more involved case is the measurement of the vis-~
cosity by means of the oscillating disk method. Although the discussion goes somewhat
beyond the scope of the quasi-thermodynamic method, it should be given here because
of the special interest of the problem.

As in the previous case, the presence of the superfluid component can be
ignored. The results can be understood in terms of the elementery formula (2) valid
for the kinetic viscosity, provided the density P is replaced by Pn' In order to obtain
the temperature dependence of N, one has to realize that f-’nz = const. This is equiv-
alent to the statement that the "molecules" of the normel liquid colilide only with each
other, The Justification and meaning of this assumption can be discussed only from
the molecular point of view. The guestion will be taken up again in Section 5. It
should be mentioned also that in l.c. the author has used at this point the ad hoec

wll=



assumption pl = const., which is in conflict with the fundamental assumptions of

the theory, This was pointed out to the author by Prof, Onsager to whom he is in-
debted also for the correct interpretation of the experiments. The earlier discussion
of the viscosity measurements has been also rightly criticized by Keesom5. The present
assumption leads to the same temperature dependence of ? for both helium 1 and II .
given bY7~c~‘1‘"’ This result seems to conflict with the measurements of EKeesom and
MacWood15 reproduced in Figure 2, according to which the temperature depandence of the
viscosity of helium II is essentially given by '?'vpn/f i (T/'l‘o)r. An analysis of the
experiment reveals, however, (c.f. formula (1) in Reference 15) that the quantity actu-
ally measured is the ylscogity multiplied by the density which is in the case of helium Il
an. Keeson and MacWood have evaluated their measurement under the assumption of having
obtained NP, Hence the curve in Figure 2 has to be corrected by multiplication with the
factor ,D/fn, which is in agreement with the above result of the theory. Landau's inter~

16

pretation of the viscosity measurement™ is in line with the present discussion.

The next special case to be considered is that of a very thin capillary in which
the flow veloeity of the normal component is negligibly small, BSuch a capillery acts as
a semipermeable membrane, being permeable to the superfluid component alone., Making use
of the analogy dlscussed above, a semipermeable membrane can be used for the measure-
ment of Pn in much the same way as the osmotic cell leads to a qualitative understanding
of the well-lmown fountain phenomenon in helium II. In this experiment an open res-
ervoir is comnected to a helium bath by a semipermeable capillary., If the liquid in the
reservoir is heated, p and P increase over the corresponding values in the bath and the
superfluid component is sucked into the reservoir -- like the solvent into an osmotic cell.

We proceed mow to investigate the "osmotic cell" with thermodynamic methods. In
order to avoid complications connected with the liquid-vapor interface (evaporation and
consequently nonadisbatic transition of the normal component to the superfluid state),
an osmotic cell shall be constructed as follows: A smell part of alongeylinder filled
with helium II is compressed adiabatically by means of a semipermesble piston. This
can actually be realized using a porous materisl, the pores playing the role of the thin
capillaries. During the compression the superfluid component flows across the piston,
thus keeping the total density p constant, while the values of Pt P and consequently
also of the temperature T are increased over their values in the helium bath. In order
to distinguish an adisbatic compression with a semipermeable piston from er ordinary com-
pression with an impermeable viston, the former process will be called an isopycnic
sompregaion (since O is kept constant).

The basis for the application of thermodynamics to the isochoric compression
is the assumption that the flow across the piston 8arries along no entropy and is
rgversible.

* The small thermel expansion is beingz neglected throughout this section.
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The assurption that the superfluid component has the entropy zero has been
first advanced by the authorz, who pointed out also the approximate nature of this
agsumption (l.¢). 1In fact, as indicated above, the phonon contribution to the entropy
8phon 1s associzted with the whole liquid and is carried along in particular also with
the superfluld component. Hence the above assumption means that ephon‘<<’sn7 and
8~ 8. The following considerations depend essentially on this aesumption, the limits
of validity of which will be considered below. It will prove to be correct for not too
low temperatures.

The assumption of reversibility of the superfluid flow implies that the flow
across the capillary should be slow, This is of course a special case of the general
requirement that thermodynamics should be spplied only to quasistatic processes.
Actually in the present case the situation is more favorasble than usual, since experience
shows that the dissipation connected with the flow sets in only above a finite eritical
velocity, We assume that the flow velocities always stay below this limit.

Let us now compress the cell adiabatically by applying the pressure dP on the
semipermeable piston. The volume of the cell will decrease until the osmotic pressure
difference balances the external pressure dPn = dP, The condition of equilibrium :&th
respect to the superfluld mass trensfer is the equality of the chemicel potentials:

p.(T,P) = u(T"‘dt,P+dP);
expanding the right-hand side and noting that

Bt = - ov-u (), - -

(v'is the specific volume), one has

ar s
n - —
T S 5T NP (®)

This relation was first derived by H. London4a. The fact that a temperature

difference is assocliated with an osmotic pressure difference is referred to as the

thermomechanical effect." o

¥  This follows at once from the principle of virtual work, It is somewhat unusual that
the equality of chemical potentials is obtained for states at different temperatures.
This difficulty is resolved by comparison with the case of the true osmotic cell,
The virtual process in this case is the mass transfer of the solvent which is of
course associated with transfer of energy (entropy). Hence the equality of temper-
atures follows simultaneously with the equality of the chemical votentials. In
the present case the superfluid flow carries no entropy or energy in excess over
the zero point value, thus the equality of the chemical potential does not imply
the equality of temperatures.

»* ¥ 14 may be noted that the zero of the entropy is fixed by the assumption that the
entropy of the superfluld component vanishes.
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It is instructive to compare (9) with the thermodynamic relation
dp -1
Fv = K | (10)

where a is the coefficient of thermal expansion and X the isothermal compressibility.
The quantity (10) can be observed if the liquid is heated at constant volume. Since
& is very small, it is seen that P is not very much dependent on temperature. It is,
of course, mainly a function of the density p. The opposite is true for Pn. While
the derivation of (9) was worded in -the terminology of the two-component system, an
interpretation from the two-phase point of view is equally possible. Equation (9) 1is
obviously the Clausius-Clapeyron relation expressing the fact that the same condensed
(superfiuid) phage 1s in equilibrium with the gas or normel phase both at the values
P,T and P + dP, T + 4T of pressure and temperature'f

Regarding the experimental verification of (9), its limits of validity should
be kept in mind: the capillary must be thin enough so es to keep the normal component
from transporting entropy and the flow velocity must be below the critlical velue, and
adiabatic conditions should be maintained. Apparently only Kapitza'slo experirents
have been carried out under satisfactory conditions. Kapitza measured all quentities
occurring in (9) and found satisfactory agreement within the experimentsl error. He
claims that the best value for the entropy is obtained from the measurement of the
left-hand side of Equation (9). These entropy values are in only rough agreement with
those obtained by Keesom and collaborators from the measurement of the specific heat5.

An anslytical expression for the entropy will prove very useful, Actually,
Kapitza's result can be expressed with good accuracy by the expression (Figure 3),

8, = 8, (T/To)r (11)

with 8, = 0,405 cal/gm-deg. and r = 5.5, Of course it should be kept in mind that
(11) has no theorstical foundation and can be considered at best as en approximation.

One more important relation can be derived in comnection with the osmotic
cell, In the course of the isopycnic corpression the normal component and the entropy
associated with 1t are "trapped® in the cell, If the volume of the cell is ¥V, these
stetements lead to the following relationms:

apv) = pav + Vip = O;

hence

dfh av

2= - & (12)
>

It is also clear that (9) should contain the entropy difference of the two phases,
i.e., 8, rather than s.
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Similarly
a(e p¥) = pP(s dV + Vds ) = 0

and (13)

S(CAL./g-DEG.)
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Figure 3. Approximation of Kapitza's entropy measurements
(circles) with formula (11) (curve).
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From (12) and (13) one has

——-——dpn = f—B& . (14)
Pn $n
Or integrating,
s
P _ (14e)
P 8,

since at the A-point p (T ) = P and s (T ) = s . This relation has also been obtained
by Fe Londonl’, Hence the empiricel formula for the entropy (1l) implies

PP = @/ )F (18)

with
r = 5.,E.

14 of this function discussed

The result is compatible with the direct determinaticn
esrlier in this section, but the accuracy of the direct determination is much less than

that obtained by using the relations (9) and (12),

¥e are now in a position to discuss the limits of validity of our assumption
<<8_. The phonon entropy can be tentatively represented by a Debye formula

sphon n
_ 4ﬂfk 3
sphon T 15 m (z/8) (16)

which is a factor 3 times smaller than the Debye formula for sclide, since in the
latter case one has two transverse waves for every longltudinal one., Computing 6 in the
usual way from the sound veloeity (240 m/sec), one gets 6~18° and

x 2 x 1070 03 cal/gm-deg. (17)

8phon
Picard and SimonlB have actually found an apvroximate T3 law for the specific heat in
the tempersture range 0.2o - 1.00, but their values seem to be about 4 times larger than
one would expect according to (17)., Their mezsurements correspond to the Debye tempera-
ture 2=11°. Picard and Simon claim that their measurements should be described by the
Debye temperature 6 2= 15,5° which is (’5)1/3 times too high, since they evaluated their
measurements according to the Debye formula valid for solids. Although the Debye theory
is not rigorous enough to expect an exact coincidence of the Debye temperatures computed
from elastic and caloric data, the specifiec heat computed from 8=11° seems definitely
too high. Also Keesom and Westmijze (p. 220 of Ref.5) report lower values in a pre-
liminary report. While new messurements of the specific hest around and below 1° wowld
be desirable, it is possible to drew the following conclusions: In the neighborhood of

the A-point it is certainlys <<8_. Assuming thet (11) cen be extrapolated to low

hon n
temperatures, the curves (11€ and (17) must intersect, snd near absolute zero the oppo-

site relation g >> 8, must hold., In this extreme low-temperature region the above

phon
conclusions lose their validity. The effect of tke normal component cen be neglected
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and the liquld becomes essentially homogeneouéf The main characteristic of this region
is its superfluidity, no more complicated by the viscosity of the normel component and
the thermomechanical effect. The'transition region cannot be precisely located because
of the above-mentioned uncertainties in the specific heat mezsurements, but it is
probably between 0.6° and 1°K. Caloric measurements at extreme low temperatures would be
desirable,

4. Macroscopic Hydrodynemics in Helium II

It was seen in the preceding section that from the A-point down to about 1%
helium II has to be considered as a mixture of two components with two distinct velocity
flelds; the entropy belng associated only with the normal component. We will now de-
rive the general macroscopic (coarse grained) hydrodynamlic equations of this system,
vhereby only the so-called first approximation will be considered =nd dissipation
effects will be neglected. In ordinary hydrodynamics the dissipation is due to viscosi-
ty and heat conductivity. In the present case there are also other effects which will
be listed below. The restriction to the first approximation means in particular that
non-adiabstic trensitions between the two components are excluded. The hydrodynamics
of our mixture is related to ordinary hydrodynamics, as a two-body to a one-body prob-
lem, and can be best handled by the so-called Lagrangian method. Since the method does
not seem to be in general use in texts of hydrodynamics, a brief presentation of ordi-
nary hydrodynamics in this form seems to be in order.

The 1iquid will be descrived by a density p and a vector field i denoting the
displacement of every elementary mass of the liquid from a standard state of constant
density f%' The equation of continuity in these variables is

-""f+s7~§ = 0 (18)
P 2
where AP = pPa Po is assumed to be small compared to f%. In fact, differentiating (18)
with respect to time, and noting that the velocity is v = %%’ = ,5 » one gets the

continuity equation in its more conventional form.

The density of the kinetic energy is % f‘§2. The system vossesses also a
votentlal energy in connection with fluetuation of the specific vclume v at constant
entrory. The potential energy is the minimum work required to dring forth this fluctua-
tion. Although for the rresent case s = 0, for later reference we give the general
expression for the minimum work as a function of Av and As. According to the well-known
principles of thermodynamics this is

1[92 2 32 1 /92 2
5 (ﬁz)s (av)* + 3;%3 (av)(as) + g(ﬁz\)v (as) (19)

In particular the cooling method suggested by Kapitzalo caenrot be expected to lead
to temperztures much below 1°K,
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where u is the energy per unit mass. The first term in (19) can be written as

1), @ - 3028 (20)

By using (18), the Lagrengian of the system is obtained through integration over the
volume

_ 2 JP) 2
L= [ - f[(f/z)g - P2 (5%, (v-g)]dv. (21)
The corresponding equation of motion is
a dL JL L
L4 °b v - 22 = 03
it 9f T @) 33 03
by making use of (21)
2
4 AP) 2
- - V = 00 (22)
dtz IPls é
Using zd; = ﬁ + v +V  and (18) one sees that (22) is identicel to the Euler
equation:
‘1& = (JP 1 lygP 2
¥ txove=-(3, F9P- -3 (23)

For small velocities quadratic terms in v mey be neglected and (22) reduces to the
wave equation for the propagation of sound

323 Ip 2
S;T‘(SF)BV£=O (24)

with the well-known expression for the sound velocity

1 < I:(%%)s] v (25)

These results will now be generalized for the case of helium II. The state
of the liquid will be descr&bed by two vectlor fields }n, Els. The density of the
1 s 1l 2 -
= + = will
kinetic emergy is 3 f’n Ag.n 5 Ps }_s. The potential energy per unit mass
now be given by the full expression (19), since the specific entropy can change in

a first-order process by an internal convection of the normal component,

It should be recalled that the entropy thus transferred is only the entropy
Sn and for the validity of our conclusions it is essential that s T8 i. e., the phonon
entrony should be negligible.

The first term of (19) has been transformed thermodynamically (cf. (20) ). 4

similar transformation yields for the other terms:

3211 2 oT 2 a7 (Asn 2
;—;3 (Asn) = 3;11 (Asn) =-mn) s, (26)
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and

2
;:—ngv T (‘%n)v ) -(3%2 g-‘:E-r.\)v n-Pa’(g%)T %v =

where o is the coefficient of thermal expansion, and o the specific heat at constent
volume? Equation (26) can be further transformed by noting that from (9) and (14)

ar pn By (28)
atey TP Tt
n
hence
32 (88 )% = aF AST (262)
P ) Pagf (—1; :

The following transformation of the coordinates }n’ Es should now be introduced:
(Fafn* Ps ds ) (29)

3a-i= & a8

The "center of mass" coordinate ¥ corresponds to the net flow of matter

vy
"
-

>
n

and has identical properties to the coordinate of ordinary hydrodynamicse In par-
ticular, it satisfies the equation of continuity (18)s The "relative coordinate"
satisfies the equation of continuity

e + =0 (30)
sn

This relation expresses the fact that the entropy changes uniquely by means of the
flow of the normal component with respect to the "center of mass",

Bquation (30) is of course an approximate relation valid only so long
as the "two-component" ccncept can be maintained. M"Sources" of entropy and of the
normal component arise whenever heat is absorbed or rejected by the system and also
as a consequeno® of dissipation effects neglected here,

If the heating occurs across a solid wall, the scurces of the two com-
ponents cen be conveniently accounted for by the boundary conditions for the perpen-

dicular components of§ and 73
. Wy

£ =0, o= ¥ (a)

¥ Strictly speaking, the specific heat diminished by the Debye contributione

o =



where W is the amount of heat absorbed by the liquid across a unit area per unit time.
Making use of the equations of continuity (18) and (30), one gets the
Lagrangian in the new coordinatess

[[arf 3o 1 -308) 527 - Saslg o2

ap 2
%anﬁ: (v J av (32)

The equations of motion corresponding to (32) are

- (.75 - (3f) Ta e
and
da.'z apP 2
- o el Fa (), "25 (o)

On account of the smallness of a, the right-hand sides of (33) and (34) arevery
small, and will be temporarily neglected, Hence in this approximation the equation
mg end ] appear seperatede Equation (33) 1s now identical with the ordinary hydro-
dynamic equation (22). Bquations (23) - (25) follow as befores The Buler equations
for the internal convection are
an

= i B Smaep o fave, (e

Wi FPa

In case the quadratic terms in the velocity /] can be neglected, (34) reduces
to the wave equation:

-1'c3

2 2
30 & Zaviy, o, (36)
32 P Y !
The corresponding velocity of propagation is
. - ( &y &)% . (32)
2 Tlapg p

By using (28) again, an alternate form is obtained:

(37a)
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The physical meaning of the ; and 1 waves 1s apparent from the continuity
relations (18), (30) and from (9) and (14). It is seen that the § waves are accom-
panied by large fluctuations of the density P =nd pressure P, while the 0 waves. are
associated with fluctuations in 8 Fh, Pn end T. Accordingly they have been called
by the author pressure and temperature waves, respectively, while Landau called them
first and second sound, The designation of temperature waves is suggestive of the
simplest way of generating these waves by periodical heating. This has been act-
ually carried out by Peshkov7, whose results have been verified by Lane and
collaboratorsg using a different method suggested by Onsager. In this method a
temperature wave (second sound) generated thermally in the liquid reaches the
liquid~vapor interface, where the temmerature fluctuations cause periodical vapor-
izations and condensations. Thus ordinary sound is generated in the vapor and ob-
served with a microphone. The boundary condition at the liquid-vapor interface is

ay, - m, 2
where Q is the heat of vaporization per unit mass,.

The very existence of the temperature waves bears out the fundamental
assumptions of the theory:* A more quantitative check of the theories 1is obtained
by comparison of the theoretical expressions of cz(T) with the observed values.
Equation (37a) together with (14) or (14a) enables us to determine this function

uniquely from the kmowledge of the function sn(T). Using the approximate relation
* %
(11) one obtsins

Recently E. G. Richardsoneoexpressed the view that the temperature waves
might be explained within the ordinary theory of heat conduction simply by =
large value of the coefficient of heat conductivity , and without assuming any
wave equation for the temperature. He pointed out that also the parabolic
equation of heat conductivity possesses wave solutions, Actually these wave
solutions are strongly damped (independently of the value of X) and show 1
a strong dispersion, their velocity of propagation being proportional to w?

(w is the frequency). This criterion for distinguishing between the wave
solutions of a parabolic and a hyperbolic differential equation has been poin-
ted out previously, (l.c.). The above-mentioned experiments decide the ques-
tion without ambiguity in favor of the hyperbolic equation., In particuler
Peshkov failed to observe any dispersion in the range from 30 to 10000 ¢.p.s.

It may be also mentioned that the true heat conductivity in helium II is pro-
portional to the viecosity and is of the same order of magnitude in helium II

as in helium I. Its presence is completely masked by the presence of the inter-

nal convection.

It may be noted that formula (37) was first given by the authorz. The ex-
plicit temperature dependence was given then in the form (39) except that a con-
stant of the order of unity remasined undetermined. A formula similar to (37a)
was derlved by Landau~ who obtained s = sy + Bphon in nlace of S, . The identity

of (37) and (37a) was first noticed by F. London, (paper to be vublished in Proc.
Phys, Soc.) who also obtained (39), The rigorous proof of the identity of (37) and
(37a) seems to have been first given in this paper. The author is indebted to Dr.
London for communicating his paper before publication.
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6, = 26[";'; (1 - (1/10)5.5)]* m/sec . (39)

The plot of (36) is compared in Fig., 4 with Peshkov's observed values,
and with those of Lane and his coworkers? The agreement is seen to be very
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e Formula 839) w—eme== Calculated by Lifchitz from
Landau's theory®.
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satisfactory., It should be noted that the theoretical expression (39) contains
no adjustablé constants and is based only on the empirical entropy function sn(T)
vhich had been measured prior to the discovery of the temperature waves.

The figure also shows the function cz(T) computed by Lifshitz8 on the
basis of Landau's theory. Landau's expression for cz(T) is a mo%otonically de-
creasing function of temperatwure which reaches a maximum 02(0) = 7%53130 n/ sec
at absolute zero. This result is in conflict with experiment, The discrepancy
stems from the role of phonons in Landau's theory. We shall return to this question
in section 6.

While the agreement between (39) and exveriment bears out the funda-
mental assumptions of the theory, there is a noticeable discrepancy which is of
interest.

Equation (38) has been derived only in first approximationr-but it
wonld be premature to conclude thot the discrenancles evident in Fig, 4 are due
to higher order effectss It seems likely that these discrepancies stem fron
the use of expression (11) for the entropy. It was nointed out thsat this ex-
vression has no theoretical foundation and is merely a convenlent analytic form
renresenting the experiments to a fair degree of apvroximation (Fig. 3). In
particular (11) represents an extrapolotion of the measurements to the A-point
(Kapitza's measurements go only up to 2,10°K), The extrapolated value 8, = 0,405
cal/gm-deg enters through (14a) in the velue of cz(T). It may be remarked that
this value of the entropy at the A-point is in only fair agreement with
s, = 0439 cal/gm-deg obtained from the svecific heat measurements (p.234 of Refe5)e
The agreement becomes somewhat worse if the latter value is corrected by deducting
the phonon contribution to the.entropy, Of course this value of Sy is also based
on an extravolation (to absolute zero) and is not too reliable,

*  The effects neglected should be briefly listed, The coupling of the
and N waves can be easily taken into account, This effect igs very small,
Dissipation gives rise to absorption and dispersion of both first and second
sound, In addition to dissipation due to viscosity and the true heat con=-
ductivity, there are effects characteristic of helium II. The first of
these is due to non-adiabatic transitions between the two components which
lead to deviations from the continuity equation (30). A second effect is due
to the Debye vhonons and should give rise to an absorption and dispersion of
the relaxation type. This can be expected to be of importance for the
second sound at low temperature ( T <1°K) and should eventually (at sufficiently
low temperatures) lead to a complete attenuation of the temperature wave within
one wavelength., In case the "molecules" of assumption (iii) should have inter-
nal degrees of freedom (vortex models), another relaxation phenomenon should be
expecteds The sbsence of dispersion of the temperature wave from 60 to 10000
cps. observed by Peshkov seems to indicate that these effects are smalls A
quantitative discussion of the dissipation effects is beyond the scope of this
thermodynamic theory, but is of great interest from the molecular point of view,
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In summing up, it may be said that the small discrepancy between the theo-
retical and experimental values of c2('1‘) is probably due to the incomplete knowledge
of the entropy sn('I'). More precise caloric measurements extended from the A-point
to extremely low temperatures would be desirable., The set of thermodynamlc relations,
in particular (9), (14), (38), seems to form a valuable criterion for the consistency
of different measurements and could possibly be used to establish the thermodynsmic
temperature scale,

The observation of temperature waves is no doubt the most declsive quanti-
tative justification of the fundamental assumptions of the theory. The earlier exper-
iments on heat conductivity and capillary flow are too complicated to admit a quanti-
tative discussion, but they can be explained qualitatively on the basis of the theory.
A brief outline of such a qualitative explanation of the experiments will now be given,

Let us first consider the heat conductivity., Two heat-reservoirs of tem-
peratures '1'1. Tz are connected by a capii.l.lavy completely filled with helium II preclud-
ing eny net flow of the liguid. Hence §= O, The temperature difference AT = Tl-i‘z

glves rise to a difference of osmotic press'ureAP and thus to a circulation in the cap-
illary (’1*-0), whereby the normal component flows towards the cold reservoir. The
current is closed by a transition of the superfluid component into the normal at the
warm reservoir while absorbing the heat snT. The reverse process takes place at the
cold reservoir. The efficiency of this heat transport is about T/AT times larger

than ordinary convection. This factor may reach very high values of the order of
1000, In the steady state the flow is limited by dissipation effects neglected in the
above discussion. If the dissipation were due to the viscosity of the normal component
alone, the heat current should be proportional to AP and hence to AT, Actually the
heat current increases rather like (AT)S 1/3 which makes it likely that the dissipation
is partly of a turbulent charactere This is supported by a series of experiments
carried out by Kapitzazl.

The sitvuation is even more complicated in the case of capillary flow. In
the limiting case of very thin cepillaries only the superfluld component can flow
under the influence of a pressure head, say due to gravity. Thus a temperature dif-
ference is set up between the two ends of the capillary, the outflowing liquid belng
colder than the one staying behindf The flow should thus be stopped by the arising
osmotic pressure difference, Actually the increased temperature will lead to vapor-
ization of the liquid with a corresponding cooling and transition of the normal cOmMpo-
nentto the superfluid with a continuation of the flow. In this case, the asswmption
of adiabatic conditions is no longer justified, and in particular, the equation of con~
tinuity (30) loses its validity. In somewhat wider capillaries the normal flow

*x This was one of the first conclusions of the theory which vas readily verified
by experiment, J. G. Daunt, X. Mendelssohn, Nature 143, 719 (1939). The
outflowing liouid is never at absolute zero as it still contains the phonon
entropy.
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velocity also becomes appreciable and both flows are complicated by turbulence.
Consequently, the thermomechanicsl pressure will be smaller than that expected
from Eq.(9) which was derived under the assumption of strictly semipermeable
capllleriess In summing up, it is clear that the complexity of the results
obtained with all but the narrowest capillaries is not surprising, and the
disentanglement of the various effects from these measurements is hardly feasi~
ble,

It would seem advisable to study the dissipative effects by measur-
ing the absorption of first and second sound whereby the complications of tur-
bulence are avoideds On the other hand, the study of turbulence could be best
carried out at low temperatures, where the Goncentration of the normal component
it negligible and the flow is no more complicated by the thermomechanical effect
and the viscosity of the normal components.

S. Qutline of e Microscopic Theory of Liquid Heliwm

The conclusions drawn from the postulates (1) ~ (iv) are in good
agreement with experiment; practically all the peculiar kinetic effects finding
either a quantitative, or at least a qualitative interpretation, Thue the task
of a microscopic theory is reduced to providing a quantum-mechanical foundation
for these postulates, There is at present no question of deriving the postulates
from first principles, but we hope to show that such postulates are not in con-
fliet with quentum mechanics,

No special discussion is required for (i) since the presence of Van
der Waals attractive and repulsive forces always assures its validity. In con-
trast to the universal nature of (i), the validity of (ii) is most exceptional.
Systems satisfying both postulates have been called quentum liquids in Section II.

It would be desirable in this connection to answer the question: What
are the requirements upon the interatomic forces which guarantee that the macro-
scopic system built of these atoms will be a quantum liquid? At present it does
not geem possible to answer this question in such generality., One can, however,
point out a peculliarity of the repulsive forces in liquid helium which seem
to be at the root of this question. In order to have a finite volume at equi-
11brium, as postulated in (1), one requires both attractive and repulsive forces
between the atoms, In an ordinary (classical) system both of these are of the
Van der Waals type. In helium, however, the repulsive forces have a different
origin and stem from quantum mechenical zero-point energy. The ordinary repul-
sive forces are of course also present, but it appears that the quantum mechanical
repulsion has a longer range and that the average distance of the atoms is
groater than the atomic diameter obtained from the kinetic theory,

The importance of the quantum mechanical zero-point energy in liquid
hellun was first recognized dy F. Simonzz, who came to thils conclusion through
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essentlially thermodynamic reasoning. He pointed out that in golid helium
existing under a pressure of at least 25 atmospheres, the binding energy of

10 calories per mole results as a small difference between the potential energy
due to the Van der Waals forces of ~ 70 calories/mols diminished by a zero-
point kinetic energy of ~ 60 calories/mole. If the pregsure is released,
helium melts with a great ingrease in volume, whereby both contributions to the
energy decrease to glve a more favorable net binding emergy of about 14 calor-
les per mole (extrapolated to absolute zero)., The zero-point energy is very
sensitive to compression and hence acts as an epparent repulsive potential, It
blows up the volume of the liquid to about three times the volume it would have
if the Van der Weals forces were acting alone, 4

These ideas have been further developed by F. London 23'1. Inter-
polating between 1limiting cases London established an expression for the zero-
point energy and showed that the effect to be expected from quentum mechanics is
of the right order of magnitude. For further details we refer to London's
papers.

The inference from these considerations would be that the absence of
microscopic rigidity postulated in (ii) is due to the quantum mechanical nature
of the revulsive forces: while in an ordinery liquid the potential barriers re-
gerding a shearing motion (isochoric rearrangement) of the molecules break down
under the impact of thermal asgitation, in helium this happens as a result of the
zero-point motion. No satisfactory proof of this statement has been given so
far, However, the following remark may vprove relevant:

Consider a particle in & cubic box of volume V, The box is slightly
deformed into a rectangular parallelepiped of volume V + AV, The zero-point
energy appears here as the lowest charactsristic energy value EO of the particle.
It can be easily shown that, neglecting ausdratic terms in the deformestion, one
has

&Bo _ _ AV, (40)

Hence,for a shearing deformation (AV = 0), the energy is in first
approximation unaffected. More generally, (40) holds for any energy level of
the cublc enclosure with a charactsristic function invariant under the cubic
rotation X —»y—»z, but it does not hold if this condition is not satisfied.

Although this case is altogether too simple to be applicable to the
many-body vroblem of liguid helium, it is hard to suppress the feeliny that this
selective behavior of the zero-point energy with respect to shear and compression
might admit generalization to that enormously more complicated case.

We turn now to the discussion of the postulstes (1ii) and (iv) which
is complicated by the fact that there are at vpresent two molecular models under
consideration: the Bose-Einstein and the vortex model. The latter is closely
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comnected with Landeu's theory and will be discussed in the next section.

The Bose-Einstein model was first advanced by Londonl . He sug-
gested that individual helium atoms can exist in liquid helium in excited
translational states associated with a definite energy snd momentum, in much
the same way as the electrons in metals according to Bloch's theory. London
has shown also that the Bose-Einstein ststistics implies a "condemsation in
momentum space®; hence postulate (iv) avpears as a theorem on the basis of
this model,

The incorporation of London's hypothesis regards only the shear
modes of motion and otherwise the system has the liouid characteristics as
discussed above., Such a system can be conveniently called a Boge-Einstedn

liguid.
Its J function in a state of weak excitation can be written as

4

\/"o(lvooN)\p "%

phon ~gas
thon = T{ ¢1 (ui) (41)
N
exc ik or
= J
Yeas ~ ZP :'jT=1 e

Wo(l. « « N) 15 essentially the characteristic function of the lowest state.
At depends on the coordinates of all the atomse, The u, are the longitudinal
normal modes of the system, Every uy involves the coordinates of all the
atoms, The‘g:are the Hermite functions corresponding to the harmonic oscil-
lator. In contrast to this situation ‘Pgas depends only on the coprdinates
of the excited atoms. (The assumption of weak excitation implies Nexc<<N).
i;represents the summation over all the permutations of the particles.

The Bose-Einstein theory has been repeatedly criticized. The ques-
tion whether the mechanism of Boge~Einstein condensation has actuelly anything
to do with the A~point of helium, could be definitely answered when a rigorous
molecular theory has been developed which explicitly takes into account the
intermolecular forcess Until such a time it is about just as difficult to dis-
prove as to prove the Bose-Einstein theory. The claim of the critigues was,
however, usually to the effect that the theory can be discarded because of
lack of internal consistency. Some of this criticism, such as Keesom'95 ro-
gerding the interpretation in l.c. of the viscosity measurements actually concern-
ed only an erroneous application of the theory, not the theory itself, After
removal of this error (see this paper, Section III), the viscosity measurements
of Keesom and MacWood give a particularly striking support of the theory.

We believe that -- regardless of whether the Bose-Einstein hypothesis
should be proved, or disproved at some future time -~ its validity cannot be
decided on the basis of the a priori arguments advanced in this connectione.
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The main source of misunderstanding seems to lie in the failure to
appreclate the difference between a real Bose-Eingtein gag and a Bose-Einstein
liquid. Several attempts have been made to replace the jdeal Bose-Einstein
by a real Bose~Einstein gag by means of introducing a self-consistent potential,

This method fails to account for the correlations between the states of the
individual particles, which are all important in the ease of a ligquid, They are

taken into account to a large extent by our postulates: the gaseous nature of the
system is restricted to the shear modes of motion (isopyenic reaerrangements), its
compressibility is that of a liquid., This remark disnoses also of the numerous
attempts which tended to prove or disprove the theory by means of the "critical
opalescence" arising from the large density fluctuations in a condensed Bosg-
Einstein gs§.24 In a Boge-Einstein liquid the density fluctuations are determined
by the liquid-type cormressibility (observed e.g, in the first sound), which shows
no significant anomalies around the A-point,

The fact that the Bose-Einstein liquid allows one to take into account
the correlations between the excited atomic states to a satisfactory degree is
due to the artifice of formulating these correlations macrosconically rather than
in molecular, ouentum-mechanical terms. In other words, the difficulties of
the quantum-mechanica], many-body problem are not golved, but Dypasged in the
present theory.

Another noint may be made. In the Bose-Einstein liouid one has to
distinguish "collisions" of the excited atoms from "interactions" of the atoms in
general,

All atoms are strongly interacting through the mechanism of the jero-
point energy precluding large fluctuations of density, In other words, the fac-
tor ¥, in (41) is not semsrable in the coordinates of the prrticles. In ..nirast
to this interaction one speaks of a Ycollision" if two or more atoms in definite
translational states intersct to mare a transition into different states. In
such nrocesses translationzal energy and momentum are conserved. Obviously
double collisions between excited and non-excited atoms are excluded by these
conservation principles which agsure an apnarent independence of the two com-~
ponents, In particular this is the basis for the assumption,fL;'azconstent,
advanced in Section III regarding the mean free pathe

This apparent independence of the components is no longer true if
multivle collisions are considersds These supply the mechanism for the estab-
lishnent of thermal equilibrium required by Bose-Einstein statistics and temnd
to maintain the value PnAP anpropriate to the temperature.

In the absence of a satisfactory a priori justification, it is of
importance that the Bose-Einstein theory does find an a posteriori justifica~
tion by furnishing a molecular model for the postulates (i) - (iv), the con-
sequences of which are in excellent agreement with experiment. It is, of course
of great importance to know whether there is another moleculsr model with the’
same propertiess This will be discussed in the next section,
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6+ Digcussion of Iendeu's Theory

No attempt will be made here to analyze the logical connection be-
tween landsu's microscopic quantum hydrodynemics on the one hand and his macro-
scople relations on the other, These relations will be rather considered from
the point of view of our quasi-thermodynamic theory and the question to be answered
is: what changes and additions have to be applied to the postulates (i) ~ (iv) in
order to obtain Lendau's results.

Postulates (1) and (ii) are made tacitly by Lendau, In particular the
validity of (ii) is essential if the Hemiltonian of the system should depend on
the density alone as implied by formula (1,10) of reference 6.

According to Landau the elementary modes of excitatlions are phonons for
the compressional modes, and "rotons" for the shear modes of motion. Due to the
general wording of postulate (1ii) this is compatible with the present theory.
From the molecular point of view it means that the excited atoms of the Bose-
Einstein theory are replaced by "rotons"., A discrepancy with the present theory
arises only in connection with postulate (iv). Again there is agreement inasmuch
as helium II has to be considered as the mixture of a normal and a superfluid com-
ponent, but - in contrast to the present theory - landau defines the normal compon-
ent as a "gas of phonons and rotons", leaving the superfliud component with rigor-
ously vanishing entropy.

It is seen that the theories agree sufficiently closely to account for
the similarity of the results, The difference in the role attributed to the
phonons, however, leads to several observable differences,

The first of these concerns the low-temperature behavior of the thermo-
mechanical effect. Whereas, according to the present theory this effect should

cease gomewhat below 1°K, where g n becomes of the same order of mesgnitude as 8,0

pho!
Landan concludes that the effect should continue down to absolute zero., Consequent-
ly Kepitza 10 suggested a cooling method based on this effects He states that

" . . . this method for obtaining low temperatures as distinguished from the mag-
netic method will a priori permit us to approach infinitely near absolute zero".
Unfortunately, if the present theory is right, this method should not lead much
below 1K, Although we are not aware of any report of an attempt to observe this
effect below 1°K, the fact that Xuerti and Simon 25 found a normal and small heat
conductivity in the region of 0.2°- 0,5°K, seems to support the author's point of
view,

In the temperature region above 1°K, the phonon contribution to the
entropy is negligible and one might at first think that the two theories lead to
identical results, Although this is true most of the time, a definite difference
appears in the expression (39a) for the velocity of the temperature waves, It is
seen that e, depends critically on the manner f’n tends to zero with the temperature,
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Landau concludes that so far as phonons are concerned, f,n"ufl“; where upho n is the

phonon energy per unit mass, while the entropy is sn~’i!3. Thig is a violation of
the relation (14), It is easy to show that (14) always implies ¢~ near abso-
lute zero., Landau concludes for the same limit 02-’6 %130 m/sec. This is the
origin of the discrepancy between Landau's results and the experiments evident in
Fig. 4. A finite value of o at absolute zero is also in contradiction with
Nernst's law, since the temperature waves are due to the thermomechanical effect
which according to (9) should vanish with entropy.

It is interesting to consider briefly the reasoning by which Landau
came to these conclusions, We believe the difficulty to stem from Landaun's fail-
ure to notice that - - in contrast to phonons - -, vortex elements possess invari-
ant masses, Such an invariant mass is necessary for the definition of the mass
fractionfn/f. + landau introduces this quantity by the device of the rotating
vessel, This argument is not convincing as it tends to obtain an information on a
kinetic coefficient (viscosity) from equilibrium considerations., Whether or not the
phonons contribute to the viscosity, depends on the relaxation time for the establigh-
ment of equilibruim, This question was not investigated by Landau.

We believe that Landau's treatment of the phonons has to be rejected
because of experimental evidence and on the basis of internal consistency. On the
other hand the interpretation of postulate (1ii) in terms of a "roton gas" is com-
patible with the thermodynamic theory and needs further consideration., The merits
of this interpretation can be eveluated only on the basis of results which go beyond
those of the thermodynamic theory, Landau's theory contains two specific results
of this ldnd. According to the first Pn/f)'ve"/ KT yhere A is an energy gap in the

vortex spectrums The second concerns the so-called critical velocity which marks
the beginning of dissipation in the superfluid flow. According to Lendau this is
of the order of 104cm/sec. Both results are in conflict with experiment. It is
seen from Fig, 3ethat Fn/f~'1'5’5 is in good agreement with Kapitza's entropy measure-
ments 10. It does not seem possible to fit the measurements with Landau's formula.
The critical velocity has also been measured by Kapitza21. He found values between
1 and 100 em/sec depending mainly on the geometrical properties of the flow in a
manner which reminds one somewhat of the critical Reynolds number in the case of
ordinary turbulence.

These disagreements should not be considered, however, as a definite die-
proof of Landeu's theory, The two results mentioned are direct consequences of
Landau's assumption of a gap in the vortex spectrum of the liquid. This assumption
has no theoretical foundation and is obviously an oversimplification., The fumda~
mental idea of a quantup hydrodynemical approach may well be an important contribu-
tion to the question of helium and presents also interesting theoretical problems.

To conclude this discussion, we will briefly outline a sequence of ideas

which --if further developed -- might lead to a consistent quantum hydrodynamics,
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Ag indicated above, a standard method of dealing with the many-body
problem is the method of self-consistent fields or independent particles. A
second alternative is the continuum or field theoretical approach where the positions
and velocities of a large number of particles are replaced by a density and a veloc-
ity field, 1Tt is well known that this method is very successful in the case of
the theory of elasticity and hydrodynamics. These theories are sufficiently " coarse
grained" eo that the molecular structure of matter and quantum effects can be ignored
with no serious error, With some limitation, however, the fiald theoretical method
can be used also in a "fine grained" sense, The best known example is the Debye
theory of specific heat., The atomic structure is taken into account in a crude dut
efficient way by "cutting” the short wavelength end of the spectrum. Quantum
theory is introduced in the well-known fashion. The method of Bose-Binstein liquid
discussed in the preceding section presents a blénd of the two methods: the quantum
field theoretical method is used for the compressional modes (phonons) and the inde~
pendent varticle method for the shear modes (isopyenie rearrangements), According to
a modified Landau theory (brieflyreferredto as the vortex model), the field theoretical
method is extended also to the shear modes. In view of the vanishing microscopic
rigidity, the proper approach would be the hydrodynamics of the perfect liquid, ra-
ther than the theory of elasticity; the shear modes of motion belng vortices.
According to well-known theorems of Kelvin and Helmholtz, the vortex motion can be
built up from vortex tubes starting and ending on the surface of the liquid or
closing won themselves, These classical results were obtained under the assumptian
that the velocity field is everywhere continuous. In view of the vanishing rigidity
(dynamic viscosity) of a quantum liquid,this seems somewhat too speclal and surfaces
of discontinuity in the velocity might be admitted. Such surfaces can be considered
also as surface vorticities in contrast to the volume vorticities of the classical
theory, If such surfaces are admitted, the variety of possible vortex motions in-
creases: one may have e,g. rotating spheroids. If the Psswnption ig made that the
results remain valid down to rotating groups consisting only of a small number of
particles, quantum theorstical methods will have to be introduceds The angular mo-
mentum willbe quantized in probably much the same way as in the case of rotating poly-
atomic molecules, Consequently such rotating groups of atoms in quantized rotational
states would play the role of the molecules of postulate (1ii). It is seen that the
connection with the Bose-Einstein theory is surprisingly close. The monatomic mole-
cules of this theory have to be replaced by rotating polyatomic moleculss. The con-
densation postulated in (iv) would not be the consequence of Bose-Einstein statistics,
but would rather arise from the Boltzmann factor connected with the internal rotational
energy of the molecules.

It should be emphasized that this method is a priori no more rigorous than
that based on the Bose-Einstein liquid, While the independent particle approach
ignores the correlations between particles, the field theoretical method overestimated
them,
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(e recall that the compressionsl modes are treated in both theories according to
field theory and the divergence arises only for the shear modes.) In view of the
open structure of liquid helium (the blown-up atomic volume), it is not obvious
that the laws of hydrodynamics should be valid down to &tomic dimensions, and the
fleld theoretical method certainly has its limitations. In the case of the Debye
theory one has to "cut" the spectrum in the well-known manner, The correéponding
procedure for the vortex spectrum has still to be established.

In summing up, it may be stated that neither the Bose-Einstein liquid
nor the vortex model (modified Landau theory) can be excluded as possible molecular
models compatible with the present thermodynamic theory. A satisfactory develop-
ment of both theories is hampered by formidable difficulties.

It would be, of course, of great interest if an experimental method
could be devised of distinguishing between the theories. At present this seems to
be also rather difficult, The first-order hydrodynamical effects like the propa-
gation of second sound are independent of the nature of the "molecules" of the gas
and thus cannot contribute to the decision, It seems probable that the careful
theoretical and experimental analysis of second-order effects, like the absorption
end dispersion of first and second sound,might decide this issue. For instance,
a distinguishing feature of the vortex elements compared with the excited atoms
of the Bose-Einstein theory is the existence of an internal rotational energy,
which should manifest 1tself in an absorption and dispersion of the relaxation
type. Peoshkov's measurements up to 104 cps failed to show any such effects. The
extension of the frequency range would be of interest.

Interesting crucial experiments could be carried out if the Hz isotope
obeying Fermi statistics could be sufficiently enriched to make flow experiments
possibles, Such experiments should show conclusively whether the Bose-Einstein
statistics is of any fundamental importance £6r the phenomenon of superfluidity. If
liquid 333 should not be superfluid, this fact could be actually used for the en-

ri¢hment of this isotope, as has been recently suggested by J. Fren.nclf:.26

7. Conclusiong

In the discussion of the properties of liquid helium, it is useful to
distingulsh three ranges of temperature in which the liquid shows essentially dif-
ferent characteristics, In addition to the well-known modifications helium I and
II, a further subdivision is made within helium II, In contrast to the sharp
A~point separating the modifications I and II, the transition between the low-temp-
erature and high-temperature domain in helium II ig gradual, The transition region
is somewhat below 1°K, but its location needs further experimental study. In the
low-temperature region, the entropy is mainly due to the elastic phonons, whereas in
the high-temperature region, the phonon contribution is negligible compared with
that of the shear modes, This contribution is responsible for the anomaly in the
specific heat and has a gaseous nature.

The main properties of the ligquid are as follows:
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Heliun I - From the macroscopic point of view, this modification shows
& "normal" hydrodynemic behavior; its coefficient of viscosity 1is, however, rather
remarkable. In ordinary liquids, the viscosity has a negative temperature co-
efficient due to the "microscopic rigidity." This type of viscosity can be called
SQynamic vigcosity, to be distinguished from the kinetic vigcosity which is observed
in gases and which has a positive temperature coefficient, The gualitative under-
standing of the properties of liquids is greatly facilitated by the concept of
microscoplec rigidity. However, the difficulties of giving to this notion a quanti-
tative formulation seem to be responsible in no small degree for the lack of a
setisfactory kinetic theory of liquids, Hence, it seems to be of interest that
helium I has a kinetic and ng dynamic viscosity, revealing the complete absence of
microscopic rigidity. The comparison of ordinary liquids with helium I should be
useful for the disentanglement of the gas-like and solid-like properties of liquids.

Helium II, Low-Temperature Region~ ( O<T < 1K )

The main characteristic of the liquid in this temperature range is its
superfluidity which implies that the liquid can slip along solid walls, This is
demonstrated in spectacular creeping phenomena, Beyond a certain critical velocity,
the superfluid flow may be associated with dissipation, apparently of a turbulent
character,

Beliwm 1I, High-Temperature Region ( 1°5T<2,19°K)

In this "anomalous" region, the liquid is a mixture of a normal component
(1ike helium I) and a superfluid component (like the low-temperature form of helium II).
The main object of the present paper was to develop the macroscopic thermo-hydrodynamic
properties of such a complex systems The results are in excellent agreement with
experiment. Minor discrepancies may well be due to small inaccuracies in the cal-
oric meesurements, although the theory will have to be refined to include small
effects neglected at present, like dissipation and the dependence off%qbon pressures

The formalism developed seems to furnish valusble criteria for the consistency of
measurements and might possibly be used to establish the thermodynamic temperature
scale,

The principal problems for further experimental and theoretical research
seem to be as follows:

1) The derivation of the vostulates of the quasi-thermodynamic theory
from first principlesy in particular, establishing the correct molecular model
which would lead to these postulates. At present, the choice seems to be between
the Bose-Einstein liouid and the vortex model (modified landau theory.) The exper-
imental approach to this problem has been briefly discussed at the end of Bection 6.

2) The clarification of the nature of the pure suverfluld liouid (helium IX
Rnear absolute zero,) This problem has not been discussed in the present paper,
According to Landau, the superfluid state is characterized by the condition eurl.v = 0
The questlon has been further discussed by ¥, Londonl” and Omsager®’. so tar,

superfluidity (capillary flow and the creeping phenomenon) has been studied
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experimentally only sbove 1°K where the effects have been greatly complicated by
the thermomechanical effect and the viscosity of the normal component., Experiments
below 19K where these effects vanish would be greatly desirable, Of particular
interest is the investigation of the dissipation arising above the critical veloc-
ity. This seems to be of turbulent character; hence, & unique opportunity is
offered to study turbulence in the absence of viscosity (no boundary layer), On
the other hand, this turbulence will be influenced by quantum effects.

The author wishes to extend his thanks to Dr. F. London for a long
gseries of discussions extended over a period of years., They have led to the clar-
ification of many of the questions considered in this paper. Hls thanks are due
also to Dr. Larsg Onsager for stimulating discussions.
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