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22.106 Neutron Interactions and Applications (Spring 2006) 
Lecture 5 (2/23/06) 

Particle Simulation Methods I:  Monte Carlo in 
Statistical Physics and Radiation Transport 

References cited appear at the end of the lecture notes. 

"The year was 1945.  Two earth-shaking events took place: the successful test at 

Alamogordo and the building of the first electronic computer.  Their combined impact 

was to modify qualitatively the nature of global interactions between Russia and the 

West. No less perturbative were the changes wrought in all of academic research and in 

applied science. On a less grand scale these events brought about a renascence of a 

mathematical technique known to the old guard as statistical sampling; in its new 

surroundings and owing to its nature, there was no denying its new name of the Monte 

Carlo method."  -- from "The Beginning of the Monte Carlo Method", N. Metropolis, in 

Los Alamos Science, Special Issue 1987, p. 125. 

Monte Carlo Sampling 

Monte Carlo (MC) is a very general computational technique that can be used to 

do numerical integration or carry out sampling of distributions.  In all cases one makes 

use of random numbers.  Thus one way to define Monte Carlo is any calculation that 

involves random numbers.  Historical accounts place the naming of this method in March 

1947, when N. Metropolis suggested it in a jestful spirit in reference to an uncle of his 

colleague Stanislaw Ulam who would borrow money from relatives because he "just had 

to go to Monte Carlo".  For our discussion here we will use Monte Carlo to sample the 

atomic configurations of the system at a given temperature. 

There are three areas of statistical computation where MC is used.  First is the 

numerical evaluation of multi-dimensional integrals.  Second is the simulation of random 

walk processes (Markov chains) in statistical mechanics and condensed matter physics.  

The third area is that of particle and radiation transport.  The essence of MC, as used in 
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statistical physics, is the Metropolis method of sampling which we will describe below.  

Tracking particles and radiation (neutrons, photons, charged particles) in transport 

problems is another significant area, which we will mention rather briefly at the end of 

the lecture. There is considerable literature on this subject [1-4] 

Sampling Distributions 

Let x be a random variable, that is, a variable whose value is prescribed by a certain 

probability distribution function. For example, the velocity of a particle is a random 

variable the distribution of which is given by the Maxwell-Boltzmann distribution.  We 

denote the probability distribution of x by p(x), 

p(x)dx = probability that the random variable will have a value lying between x 

and x + ∆x

∞ 

( )with normalization  ∫ p x dx = 1 (5.1) 
0 

Let the corresponding cumulative distribution P(x) be 

x 

P x  ( )( )  = ∫ P t dt  (5.2) 
0 

The relationship between these two quantities is shown in Fig. 1.  Since the probability 
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Fig. 1.  A probability distribution p(x) and its cumulative distribution P(x).  Using a 

random number ξ  one samples the random variable xi .i

distribution is normalized to unity, the cumulative distribution is bounded in the range 

(0,1). Notice also that P(x) rises most sharply when x is in the region where p(x) has its 

peak. The is the behavior that makes it simple to understand the sampling, given in 

Eq.(5.3) below. 

A special case is where p(x) is a uniform distribution in the range (0,1), then the 

corresponding random variable is called the random number ξ . In other words, 

random numbers are uniformly distributed in the interval (0,1); the sketch for p(x) is then 

just a constant over this interval and zero everywhere else, and P(x) is a straight line at 

45o angle. 

When we say we want to sample a given distribution p(x), what we mean is that 

we will choose Nc values of a random variable x such that the resulting values, when 

plotted as a histogram, will give an outline resembling the shape of the distribution p(x).  

How closely they agree will depend on how many values one samples and how efficient 

is the sampling.  To carry out the sampling, we take Nc random numbers, ξ , i=1,2,…,Nc,i

and set 

( ) = ξ (5.3)P xi i 

to obtain the Nc values of xi, one after another. That (5.3) does give the desired sampled 

values can be seen from Fig. 1 and noting that there is a one-to-one correspondence 

between ξ  and xi . Intuitively, one expects that the region where P(x) is changing the i

most should be the region where xi  is most likely to occur, or in other words the region 

where p(x) has the largest value will be favored in the sampling. 

Importance Sampling 

In statistical physics one is often interested in finding the average of a 

property A({r }) in a system that is in thermodynamic equilibrium, 
N 
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({3 N ({ })e−βU r N })d rA NA< >≡ ∫ (5.4)
∫ ({3N −βU r N })d re  

The calculation involves averaging the dynamical variable of interest, A, which depends 

on the positions of all the particles in the system, over an appropriate thermodynamic 

ensemble.  Usually the ensemble chosen is the canonical ensemble which is represented 

/by the Boltzmann factor exp( −U k T ) , where U is the potential energy of the system, kBB 

the Boltzmann's constant, and T is the temperature.  Integration is over the positions of all 

the particles (N particles, 3N coordinates).  The denominator in (4) appears because of 

normalization; it is an important quantity in itself in thermodynamics, being known as the 

partition function. 

We imagine there are two ways to perform the indicated integral.  One approach 

is to sample Nc configurations randomly and then obtain <A> by carrying out Eq.(8.4) as 

a sum over a set of particle positions sampled according to the canonical distribution 

N N 

A ({ −βU r N } j ) / ∑
c

e −βU r N } j )
c 

< >=∑ A r } j )e ({ ({ (5.5)N 
j=1 j=1 

In practice this procedure is inefficient because it is quite easy to get a high-energy 

configuration (U>> k T ) in which case the exponential makes the contribution negligible.  B

The net result is then only a few configurations determine the value of <A> which is 

clearly undesirable. 

To get around this difficulty, one has the second approach where the sampled 

configurations are not obtained randomly, but from the distribution exp( −βU ) . Then <A> 

is determined by weighing the contributions from each configuration equally, 

c1 N 

A ({ ' 

N 
< >= ∑ A N } j ) (5.6) 

j=1c 
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' ({ }−βU r N j  )where { }' 
j  are configurations sampled from the distribution e . How does oner N 

do this?  One way is to adopt a procedure developed by N. Metropolis and colleagues in 

1953 [5]. This procedure is an example of the concept of importance sampling in Monte 

Carlo methods.  

Metropolis Sampling [5] 

This is quite a famous procedure; it is best explained by considering a particle making a 

displacement in 2D.  Let the initial position of the particle be (x,y) and the system 

potential energy U which depends on the particle position.  Imagine now displacing the 
' 'particle from its initial position to a trial position ( x +αξ , y +αξ ) , where α  is a constant to 
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' 'be adjusted, and ξ = 2ξ − 1 , i = 1 or 2. Notice that ξ  is a random number in the interval 
i i i

' '(-1,1). With this move the system goes from configuration { } j → {r } j +1 . Ther N N 

Metropolis procedure now consists of 4 steps. 

1. Move system in the way just described. 

U ( j2. Calculate ∆ =  U ( final ) − U initial ) = U j +1 − U . Note ∆U  is the energy gain from the 

move. 

3. If ∆U <0, accept the move. This means leaving the particle in its new position. 

U − ∆Uβ4. If ∆ >  0 , still accept the move provided e > ξ , where ξ  is a third random number 

in the present sequence (1 - 4). 

The novel feature of the method is step 4.  It is simply a way to make the system go 

uphill from time to time.  If not for step 4, step 3 would always let the system go 

downhill, which would mean that if the particle (system) were ever trapped in some local 

energy minimum, it has no way of getting out. 
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Proof of Metropolis Sampling [5] 


By this we mean that one can show that the Metropolis procedure allows one to sample 


the distribution exp(−βU ) . Consider 2 states (configurations) of the system, r and s, and 


let Ur > Us. According to the Metropolis procedure, the probability of an (r →  s) 

transition is ν P , where ν is the probability that the system is in state r, and Prs is ther rs  r 

transition probability that given the system is in state r it will go to state s.  Similarly, the 
− srprobability of s →  r transition is ν P e−β (U U  ) . At equilibrium the two transitions must s sr

be equal (otherwise the probability of population in one state versus the other will be 

piling and the system will not be in equilibrium).  Thus, 

−β (U −Us ) (5.7)rν P =ν e P r rs s sr 

Now Prs = Psr by virtue of microscopic reversibility, then (5.7) gives 

−βUrν r 

ν s 
= 

e 
−βUs 

, or ν r ∝ e−βUr (5.8)
e 

This completes the proof of the Metropolis sampling method.  Stated again, the 

Metropolis method is an efficient way to sample the Boltzmann factor which has the 

same form as the canonical distribution in thermodynamics.  It is worthwhile to note that 

this method can be used in any optimization problem where one is interested in finding 

the global minimum of a multidimensional energy space.  The method is better than the 

standard energy minimization methods such as conjugate gradient because it allows the 

system to go uphill every now and then in the search for the global minimum.  This is the 

basis of an algorithm in optimization called 'simulated annealing' [6]. 

Since simulated annealing has become a very powerful technique, we quote here 

the summary of ref. 6 --   

"There is a deep and useful connection between statistical mechanics (the behavior of 

systems with many degrees of freedom in thermal equilibrium at a finite temperature) 

and multivariate or combinatorial optimization (finding the minimum of a given 
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function depending on many parameters).  A detailed analogy with annealing in 

solids provides a framework for optimization of the properties of very large and 

complex systems.  This connection to statistical mechanics exposes new information 

and provides unfamiliar perspective on traditional optimization problems and 

methods." 

Kinetic Interpretation of MC [3] 

It may appear that MC is able to give only equilibrium properties averaged over a 

thermodynamic ensemble.  This interpretation is unnecessarily restrictive as MC can be 

used to study time-dependent phenomena .  Let P(x,t) be the probability that the system 

configuration is x at time t.  Then P(x,t) satisfies the equation 

( ,  
( ( , ( ) (

dP x t ) 
= −∑W x  → x ')P  x  t  ) +∑W x  ' → x  P  x  ',  t) (5.9)

dt x ' x ' 

(where W x  → x ')  is the transition probability per unit time of going from x to x' (W is 

analogous to Prs in the Metropolis method above).  Eq.(5.9) is called the Master equation.  

For the system to be able to reach equilibrium, the transition probability must satisfy the 

condition (cf. Eq.(5.7)), 

)P ( W x (x → x' ) = Peq (x' )W (x'→ x) (5.10)eq 

which is a relation known as the principle of detailed balance. At equilibrium, P(x,t) = 

Peq(x) and dP(x,t)/dt = 0.  Since 

P (x) = 1 −βU ( x)e (5.11)eq Z 

where Z is the partition function, Z = ∑e−βU ( x) , (5.10) gives 

−β [U ( x ')−U ( x)] U(x') – U(x) > 0W (x → x' ) = e 

= 1 U(x') – U(x) < 0 (5.12) 
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which corresponds to the Metropolis procedure.  Thus we see that in adopting the 

Metropolis sampling one is in effect solving the master equation at equilibrium.  

Simulation of particle and radiation transport 

MC is quite extensively used to track the individual particles as each moves 

through the medium of interest, streaming and colliding with the atomic constituents of 

the medium.  To give a simple illustration, we consider the trajectory of a neutron as it 

enters a medium, as depicted in Fig.2.  Suppose the first interaction of this neutron is a 

scattering collision at point 1.  After the scattering the neutron moves to point 2 where it 

is absorbed, causing a fission reaction which emits two neutrons and a photon.  One of 

the neutrons streams to point 3 where it suffers a capture reaction with the emission of a 

photon, which in turn leaves the medium at point 6.  The other neutron and the photon 

from the fission event both escape from the medium, to points 4 and 7 respectively, 

without undergoing any further collisions.  By sampling a trajectory we mean that 

process in which one determines the position of point 1 where the scattering occurs, the 

outgoing neutron direction and its energy, the position of point 2 where fission occurs, 

the outgoing directions and energies of the two fission neutrons and the photon, etc.  

After tracking many such trajectories one can estimate the probability of a neutron 

penetrating the medium and the amount of energy deposited in the medium as a result of 

the reactions induced along the path of each trajectory.  This is the kind of information 

that one needs in shielding calculations, where one wants to know how much material is 

needed to prevent the radiation (particles) from getting across the medium (a biological 

shield), or in dosimetry calculations where one wants to know how much energy is 

deposited in the medium (human tissue) by the radiation. 
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Fig. 2. Schematic of a typical particle trajectory simulated by Monte Carlo.  By repeating 

the simulation many times one obtains sufficient statistics to estimate the probability of 

radiation penetration in the case of shielding calculations, or the probability of energy 

deposition in the case of dosimetry problems, etc.  
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