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Abstract

In this thesis I construct, in all odd complex dimensions, pairs of Liouville domains
W0 and W1 which are diffeomorphic to the cotangent bundle of the sphere with one
extra subcritical handle, but are not symplectomorphic. While W0 is symplectically
very similar to the cotangent bundle itself, W1 is more unusual. I use Seidel’s exact
triangles for Floer cohomology to show that the wrapped Fukaya category of W1 is
trivial. As a corollary we obtain that W1 contains no compact exact Lagrangian
submanifolds.
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Chapter 1

Introduction.

This thesis is concerned with the topology of an important class of symplectic man-

ifolds known as Liouville domains or, from the perspective of complex geometry,

Stein domains. A key problem in this area is to understand the complexity of such

manifolds; this requires new methods to construct examples, and new invariants to

distinguish them. The main tools used for these purposes are Lefschetz fibrations and

Floer cohomology.

Donaldson introduced symplectic Lefschetz pencils in [5] and demonstrated that

every symplectic manifold admits such a structure. Shortly afterwards Lefschetz

theory emerged as a significant tool in symplectic topology, as manifest in the work of

Auroux, Akbulut-Ozbagci, Gompf, Smith, Seidel and others. An important feature of

Lefschetz fibrations is in encoding the topology of the total space in terms of the fiber

and a collection of submanifolds in it, the so called vanishing cycles. This dimensional

reduction is particularly striking in dimension four, where the fibers are surfaces. In

what may be called an opposite direction, it allows one to construct examples of

symplectic manifolds from collections of vanishing cycles in the fiber. In particular,

modifying a given collection one gets various families of total spaces. This thesis

is concerned with understanding symplectic invariants of the resulting manifolds, in

particular their wrapped Floer cohomology and wrapped Fukaya category. We prove

the following theorem.
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Theorem 1.0.1. There exist Liouville domains W0 and W1 where Wi is obtained by

attaching an n-handle to T ∗Sn+1 (n even, n ≥ 2), with the following properties:

• W0 and W1 are diffeomorphic

• W0 and W1 carry Lefschetz fibrations over the disc, such that the wrapped Floer

cohomologies of the Lefschetz thimbles are non-zero for W0 and zro for W1.

This has the following

Corollary 1.0.2. W1 does not contain any compact exact Lagrangian submanifolds

(whereas W0 contains a Lagrangian Sn+1).

In particular W0 and W1 are not exact deformation equivalent; W1 is the “exotic”

version ofW0. We conjecture that such doppelgängers with vanishing wrapped Fukaya

categories exist for wide classes of Liouville domains.

The rest of this thesis is structured as follows. In section 2 we introduce Liouville

domains and summarize their basic properties. Section 3 is concerned with exact

Lefschetz fibrations for Liouville domains. We discuss thimbles, vanishing cycles, and

matching cycles. In section 4 we proceed to construct our main objects of study -

the Liouville domains W0 and W1 as total spaces of bifibrations. Section 5 reviews

the basics of wrapped Floer cohomology and wrapped Fukaya categories as relevant

to Lefschetz fibrations. Section 6 recalls Seidel’s exact triangles in Floer cohomology

and applies them to W0 and W1, proving the main non-symplectomorphism result.

In the final section we put this thesis into a general framework of computations of

Floer-theoretic invariants of Liouville domains and discuss extensions of the present

work to a more general setting.
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Chapter 2

Liouville domains and exact

symplectic manifolds with corners.

We study the symplectic topology of Liouville domains. The introduction below

closely follows [15].

Definition 2.0.3. A Liouville domain is a compact manifold with boundary M2n,

together with a one-form θ which has the following two properties. Firstly, ω = dθ

should be symplectic. Secondly, the vector field Z defined by iZω = θ should point

strictly outwards along ∂M .

Example 2.0.4. A Stein manifold U with complex structure J admits an exhausting

function h : U → R which is strictly plurisubharmonic, meaning that −ddch =

−d(dh · J) is a Kähler form. Then, if C is a regular value of h, the sublevel set

M = h−1((−∞;C]) is a Liouville domain with θ = dch and the Liouville vector field

Z is the gradient of h with respect to the Kähler metric.

Note that α = θ|∂M is a contact form on ∂M , and the negative time flow of Z

defines a canonical collar neighborhood κ : (−∞, 0] × ∂M → M , with κ∗θ = erα,

κ∗Z = ∂r. This collar is modeled on the negative part of symplectization of (∂M, α)

and allows us to complete M by attaching an infinite cone corresponding to the

positive half

M̂ = M ∪ (∂M × [0,∞)); θ̂|([0,∞) ×M) = erα; Ẑ|([0,∞) ×M) = ∂r

11



A Liouville isomorphism between domains M0 and M1 is a diffeomorphism φ :

M̂0 → M̂1 satisfying φ∗θ1 = θ0 + d(some compactly supported function).

Note that any such φ is a symplectomorphism and is compatible with the Liouville

flow at infinity. This means that on a piece of the cone [ρ,∞)× ∂M0 ⊂ M̂0 for some

ρ > 0, it has the form φ(r, y) = (r − f(y), ψ(y)), where ψ : ∂M0 → ∂M1 is a contact

isomorphism, satisfying ψ∗α1 = efα0 for some function f . While the contact structure

at the boundary is preserved under Liouville isomorphism, the contact one form is

not, and in fact can be changed arbitrarily.

Example 2.0.5. Let N be a manifold and T ∗N its cotangent bundle with the stan-

dard symplectic form ω = dλ = Σdp ∧ dq. Then the vector field Z = Σp ∂
∂p

generates

the Liouville flow of “radial rescaling”. Any choice of metric on N makes the cor-

responding unit disc bundle into a Liouville domain. All such domains are Liouville

isomorphic with corresponding completions symplectomorphic to T ∗N itself.

A version of Moser’s Lemma, which says that deformation equivalence implies

Liouville isomorphism, holds in this context.

Lemma 2.0.6. Let (θt)0≤t≤1 be a family of Liouville structures on M. Then all the

(M, θt) are mutually Liouville isomorphic.

Example 2.0.7. If in the Example 2.0.4 the critical point set of h : U → R is com-

pact, then taking C to be bigger than the largest critical value, we get a Liouville

domain which is independent of the particular choice of C up to Liouville isomor-

phism. If we assume in addition that h is complete, then (U,−ddch) itself will be

symplectically isomorphic to M̂ . In this context completeness of the gradient vector

field can always be achieved by a reparametrization h→ β(h) ([3], Lemma 3.1).

The notion of Liouville domain is closely related to that of exact symplectic man-

ifold with corners, as defined in [16]. An exact symplectic manifold with corners

(M,ωM , θM , IM) is a compact smooth manifold with corners M , equipped with a

symplectic form ωM , a one-form θM satisfying dθM = ωM , and an ωM -compatible

almost complex structure IM . These should satisfy two convexity conditions: the

12



Liouville vector field must point strictly outwards along all boundary faces of M ; and

the boundary must be weakly IM -convex, which means that IM -holomorphic curves

cannot touch ∂M unless they are completely contained in it.

Exact symplectic manifolds are technically more convenient when working with

fibrations. Note that a Liouville domain M with a choice of compatible almost com-

plex structure becomes an exact symplectic manifold (without corners) - all conditions

except weak boundary convexity are automatic, and the maximum principle for holo-

morphic curves ensures that last condition as well. In the opposite direction, the

only thing that will be important to us is that exact symplectic manifolds obtained

in the course of our constructions will have at most codimension one corners and that

such corners can be smoothed to make the resulting manifolds into honest Liouville

domains (this is Lemma 7.6 in [16]; a similar smoothing occurs in the process of

Weinstein handle attachment, [20]). All the invariants that we will consider will be

insensitive to the details of these smoothings.

13
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Chapter 3

Lefschetz fibrations.

Simply put, a Lefschetz fibration is a map with isolated singularities modeled on

the complex singularity of the simplest type. The discussion below formalizes this

description for the category of Liouville domains.

Most of the technical setup follows [16]. The sections most relevant for us are 15

and 16. We summarize what will be needed below.

3.1 Lefschetz fibrations.

We make the unit disc D2 into a Liouville domain by choosing the one-form η = 1
2
r2dθ,

so that η∂D2 > 0 and ωst = dη. We give D2 the standard complex structure. This

is the structure D
2 inherits as a subdomain of C. We will occasionally use Lefschetz

fibrations over other subsets of C, which also inherit Liouville structure from C in the

same way.

An (exact) Lefschetz fibration over D2 is a map from an exact symplectic manifold

with corners π : E → D2 which is IE-holomorphic, with additional assumptions on

behavior near boundary and the structure of critical points, as follows:

• Transversality to ∂D2.

At every point x ∈ E such that y = π(x) ∈ ∂D2, we have TD2 = T∂D2 +

Dπ(TEx)

15



This implies that π−1(∂D
2) is a boundary stratum of E of codimension 1, and

we call it the vertical boundary of E, denoted by ∂vE. The union of boundary

faces of E not contained in ∂vE is the horizontal boundary of E, denoted ∂hE.

• Regularity along ∂hE.

If F is a boundary face of E not contained in ∂vE, then π|F : F → D2 is a

smooth fibration.

This implies that any fiber is smooth near its boundary.

• Horizontality of ∂hE with respect to the symplectic connection.

At any point x of E, we have TEv
x = ker(Dπx). Away from critical points, the

fact that π is IE holomorphic implies that the symplectic complement TEh
x of

TEv
x is transverse to it (and so defines a connection). We require that for all x

in any boundary face F in ∂hE the horizontal TEh
x is contained in TFx.

• Lefschetz singularities.

We require that the critical points of π are generic (also called nondegenerate)

and locally integrable. This means that IE is integrable in a neighborhood of

Crit(E), and that Dπ (seen as a section of the bundle HomC(TE; π∗TD2) of

complex linear maps) is transverse to the zero- section. The second condition

is equivalent to saying that the complex Hessian D2π at every critical point is

nondegenerate. In addition, we will assume that there is at most one critical

point in each fiber, so that the projection Crit(π) → Critv(π) is bijective; this

last assumption is for convenience only, and could easily be removed.

Nondegeneracy of critical points implies that they are isolated, so Crit(π) is a

finite subset of int(E), and similarly Critv(π) a finite subset of int(S). Locally near

each critical point and its value, one has holomorphic coordinates in which π becomes

the standard quadratic map Q(x) = x2
0 + . . .+x2

n. Generally ωE will not be standard

in these coordinates. However, one can find a deformation of the fibration which is

well-behaved along ∂hE (and which in fact is local near the critical point), such that
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at the other end of the deformation the Kähler form becomes the standard form in a

given holomorphic Morse chart. This increases the importance of the following basic

model (see also Figure 3-1):

Example 3.1.1. Let Q : Cn+1 → C be the quadratic Q(x0, . . . , xn) = x2
0 + . . .+ x2

n,

and k : C
n+1 → R≥0 the function k(x) = (|x|4−|Q(x)|2)

4
. For some fixed r, s > 0 define

E = {x ∈ Cn+1 : |Q(x)| ≤ r; k(x) ≤ s}, and equip it with the restriction of the

standard symplectic form on Cn+1, its standard primitive i
4
(zdz − zdz), the given

complex structure IE = i, and the map π : E → rD2 obtained by restricting Q.

The boundary faces are ∂vE = {x ∈ E : |π(x)| = r}, ∂hE = {x ∈ E : k(x) = s}.
The cutoff function k is chosen so as to make TEh parallel to ∂hE. To see that, one

notes that TEh
x is generated over C by (∇Q)x = 2x, and checks that dkx(x) = 0,

dkx(ix) = 0. Each nonsingular fiber Ez, z 6= 0, is symplectically isomorphic to the

subset B∗S ⊂ T ∗Sn consisting of cotangent vectors of length (in the standard metric)

at most
√
s. Explicitly, B∗

SS
n = {(u; v) ∈ Rn+1 × Sn : 〈u; v〉 = 0, |u|2 ≤ s}, with

the symplectic form du ∧ dv, and an isomorphism Ez → BsS
n for z > 0 is given by

φz(x) = (− Im(x)|Re(x)|; Re(x)|Re(x)|−1). This is discussed in more detail in the

beginning of chapter 4. Unfortunately, while the negative Liouville (negative radial)

vector field does point inwards along ∂E, it is not true that E is weakly IE-convex

(the fibers are, but not the total space). Hence, this is not quite an example of

an exact Lefschetz fibration as defined here, even though from a purely symplectic

viewpoint, it has all the desired features. Of course, one could change IE to improve

the situation, but there is no real point in doing that, since ultimately E will serve

only as a local model.

The existence of this local normal form is a consequence of the holomorphic Morse

Lemma (more precisely, the statement is that for any choice of holomorphic coordi-

nates on the base, one can find coordinates on the total space in which π = Q).

The deformation which allows one to make the symplectic structure standard in such

coordinates is constructed in [11], Lemma 1.6.
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3.2 Vanishing paths and cycles, Lefschetz thim-

bles.

Figure 3-1: Model Lefschetz singularity.

For an (exact) Lefschetz fibra-

tion, we call an embedded curve

γ : [0, 1] → D2 a vanishing path

if it avoids critical points except

at the end, i.e. γ−1(Critvπ) =

1. To each such path we can

associate its Lefschetz thimble

which is the unique embedded

Lagrangian (n+1)-ball in E sat-

isfying π(∆γ) = γ([0, 1]). The

boundary Vγ = ∂∆γ , which is

a Lagrangian sphere in Eγ(0), is

called the vanishing cycle of γ.

Since it bounds a Lagrangian

disc in E, any vanishing cycle is automatically exact. We refer to section 16 of

[16] for the proof that such a thimble exists and is unique.

What is relevant for us is the Remark 16.4, which states that the vanishing cycle

of any piece γ|[t0; 1] is related to that of the whole by parallel transport:

Vγ = h−1
γ|[0,t0]

(Vγ|[t0,1]).

Moreover, the vanishing cycle comes with an isotopy class of framings - diffeo-

morphism v : S → V of the standard sphere S (near the critical point this comes

from the diffeomorphism with the sphere in tangent space at the critical point, and

is then promoted by the parallel transport). This isotopy class is part of the data of

the vanishing cycle.

We further have

Example 3.2.1. Take the model π : E → D2 as defined in Example 3.1.1. This is not

quite a Lefschetz fibration, but the missing condition (lack of holomorphic convexity)

18



is irrelevant for the present purpose. The only critical value is 0, and for any vanishing

path γ, the Lefschetz thimble can be explicitly determined: ∆γ =
⋃

0≥t≥1

√

γ(t)Sn.

Here
√
zSn = {x ∈ Cn+1 : x = ±√

zy for some y ∈ Sn ⊂ Rn+1}. To see that this

is the case, one uses the function k from Example 3.1.1, which is unchanged under

parallel transport, and observes that k−1(0) is precisely the union of the subsets
√
zSn

for all z ∈ D2. In the identifications of the fibers of the model fibration in Example

3.1.1 with sphere cotangent bundles, these are the zero sections. These spheres are

what we will refer to as the “belt” spheres in what follows.

3.3 Matching cycles.

For (exact) Lefschetz fibration π consider an embedded path µ : [−1; 1] → int(D2)

such that µ−1(Critv(π)) = {−1; 1}. We can split this into a pair of vanishing paths

with the same starting point, γ±(t) = µ(±t) for t ∈ [0; 1], hence get a pair of vanishing

cycles Vγ± ⊂ M = Eµ(0). When these two are equal (which is not going to be true

on the nose in general, but suffices for the present applications) Σµ = ∆γ+ ∪∆γ− is a

smooth Lagrangian submanifold of the total space E (by definition of the Lefschetz

thimble, parallel transport along µ maps the intersections Σµ ∩ µ−1(t) to each other

for all −1 < t < 1, which gives a local chart (−1; 1) × Vγ± around the overlap

∆γ+ ∩∆γ− = Vγ±). Being the result of gluing two balls along their boundaries, Σµ is

necessarily a homotopy sphere. In the case when the framings of the Vγ± are isotopic,

it is a standard sphere differentiably. In fact, given a choice of isotopy between the

two framings, one can obtain a framing Σµ. We will refer to Σµ as the matching cycle

(see also Figure 4-1).

We will apply this construction in the following context - given a Lefschetz fi-

bration ρ : F → D
2, we can choose some matching paths µi, and, under fortunate

circumstances, get framed Lagrangian spheres Li in F . We then use the Li’s to

construct another Lefschetz fibration π : E → D2 with vanishing cycles Li.

We note that in this caseE is an instance of a bifibration. Bifibrations are discussed

in some detail in section 15 of [16], but we will not use their theory in any systematic

19



way.

Finally we should note that the present discussion is somewhat simplified. Among

other things, one can define Lefschetz fibration over any Riemann surface with bound-

ary, and give a more robust definition of matching cycles. Both of these and more

can be found in the main reference for section 3 - Seidel’s book [16].
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Chapter 4

The construction.

We will work with cotangent bundles of spheres T ∗Sn+1. These have the standard

embedding into R2(n+2) = T ∗Rn+2, via T ∗Sn+1 = {(q, p)||q| = 1, q · p = 0}, the

derivative of the standard embedding of Sn+1 into Rn+2. In this model the standard

symplectic form on T ∗Sn+1 is the restriction of the symplectic form ω = dp ∧ dq by

naturality. However, for us a different model is going to be more convenient.

Namely, consider the conic E = {Σz2
j = 1} in Cn+2. This is the fiber over 1 in

the basic model of Lefschetz fibration (Example 3.1.1, see also [16], Example 15.9,

or Lemma 1.10 in [11]). In terms of x = Re z and y = Im z in R
n+2 it is given by

|x|2 − |y|2 = 1, x · y = 0, and hence (x, y) 7→ (− x
|x|
, y|x|) is a diffeomorphism to the

sphere cotangent bundle.

We compute dqi = −Σj(δij |x|−1 +xj(−xi)|x|−3)dxj , so that Σipidqi = −Σiyidxi −
Σi,jxjyjxi|x|−2dxi = −Σiyidxi, where we used Σjxjyj = 0 in the last equality. The

standard primitive of the symplectic form on Cn is i
4
(zdz − zdz) = 1

2
(xdy − ydx).

The difference between the pullback of pdq computed above and the restriction of

this primitive is xdy + ydx = d〈x, y〉 = 0 on the conic. Hence we have an exact

symplectomorphism of the conic and the standard cotangent bundle of the sphere.

The inverse map is given by (q, p) 7→ (aq, 1
a
p), where a2− 1

a2 |p|2 = 1, so |p|2 = a4−a2,

a ≥ 1.

We want to use the conic model from now on, but technically it does not fit with

our definitions - we want to work with a compact exact symplectic manifold with
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boundary, but the conic (as well as the cotangent bundle itself) is non-compact. This

is remedied by taking a bounded part where |p|2 < s. Note that |p|2 is precisely k(x)

in Example 3.1.1. Since we are on the fiber Q(x) = 1, via the symplectomorphism

above this corresponds to |z| < (1 + 4s)
1

4 . We denote (1 + 4s)
1

4 by r, and assume

that s is large, and hence so is r. Then the resulting manifold has an inward pointing

Liouville flow and is weakly convex with respect to the standard complex structure.

Figure 4-1: Lefschetz fibration for T ∗Sn.

We now build a Lefschetz fibra-

tion for this conic model. Consider

the projection to the last coordinate

π : E → C sending (z1, . . . zn+2) to

zn+2. Perhaps the easiest way to un-

derstand it is to note that the fiber

over λ is given by z2
1 + . . . + z2

n+1 =

1 − λ2, and so it is in fact a pull

back via λ → 1 − λ2 of the canoni-

cal Lefschetz local model fibration of

Example 3.1.1 in one dimension lower.

In particular it has critical points when z1 = . . . = zn+1 = 0 and 1 − z2
n+2 = 0 i.e.

zn+2 = 1 or zn+1 = −1; these critical points are nondegenerate; the corresponding

critical fibers are conical; and the smooth fibers are exact symplectomorphic to the

cotangent bundles of the sphere in one dimension lower, T ∗Sn. Moreover if we take

a reference fiber above λ = 0 and straight line vanishing paths (the intervals [−1, 0]

and [0,1]), these paths both come from the straight line vanishing path from 0 to 1 in

the model fibration, and so the corresponding thimbles are made up of “belt” spheres

in T ∗Sn’s and the two vanishing cycles agree and are equal to the belt sphere of the

fiber over 0. The union of the corresponding two thimbles is the zero-section Sn+1

of the total space. We note that in fact any reference fiber and any vanishing path

produce the relevant belt sphere as vanishing cycles in this setup (see Figure 4-1).

We now restrict to |z| < r. The portion of the fiber over zn+2 with |z| < r is

symplectomorphic to the disc cotangent bundle of a sphere of radius squared w =

22



1
4
((r2 − |zn+2|2)2 − |1− z2

n+2|2) = 1
2
( r4−1

2
− x2

n+2(r
2 − 1)− y2

n+2(r
2 + 1)). In particular,

the piece of T ∗Sn+1 with |z| < r projects to the inside of the ellipse w ≥ 0 with foci

at zn = 1 and zn = −1 and axes of length
√

r2+1
2

and
√

r2−1
2

. We take a smaller

ellipse w ≥ ǫ2 and restrict our fibration to it and to the subset of the total space

which corresponds to disc bundles of radius ǫ over the corresponding fibers. We think

of ǫ as being small compared to s and r but big compared to 1.

The Liouville flow of T ∗Sn+1 is everywhere outward pointing along the boundary

of this subset, and after smoothing the corner as in Lemma 7.6 in [16] and completing,

we recover the Liouville domain T ∗Sn+1.

We have therefore constructed an exact Lefschetz fibration with total space a piece

of the disc bundle of T ∗Sn+1. We now look at our reference fiber and realize it as the

total space of another, auxiliary, fibration.

In fact, the reference fiber zn+2 = 0 is an n-sphere cotangent bundle, and is simply

our model conic in dimension n. As such it admits a Lefschetz fibration by projection

to zn+1 with two critical points corresponding to zn+1 = 1 and zn+1 = −1 and exactly

the same structure as described above, only in one dimension lower.

To recap, all of this gives the following description of T ∗Sn+1 - it is the total space

of a Lefschetz fibration π over a disc with critical values +1 and −1 with a fiber T ∗Sn

and vanishing cycles equal to the zero section Sn. We call π the main fibration. The

reference fiber itself is also the total space of a Lefschetz fibration ρ with two critical

values +1 and −1 and the vanishing cycles of the main fibration π are matching

cycles for the straight matching path between the critical values of ρ. We call ρ the

auxiliary fibration.

We will construct two Liouville domains W0 and W1 by starting with this descrip-

tion of T ∗Sn+1 and modifying it in stages. See Figure 4-2. At each stage we modify

either the vanishing cycles of the main fibration or its fiber. Lemma 16.9 in [16] then

tells us that we can build the the corresponding total spaces. Both W0 and W1 will

be obtained in this manner.

The first step is to change the matching paths for the auxiliary fibration ρ. The

exact choice of paths is immaterial, for definiteness we can take the upper and lower
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U has a handle attached, vanishing cycles not Hamiltonian isotopic.

U is the sphere cotangent, both vanishing cycles are the zero section.

U is still the sphere cotangent, vanishing cycles Hamiltonian isotopic.

U has a handle attached, vanishing cycles Hamiltonian isotopic.

Figure 4-2: Building W0 and W1.

semicircular arcs of |zn+1| = 1, which we will denote by α and β. This produces

matching cycles A and B in T ∗Sn that are framed Lagrangian isotopic to the ones we

had before (the zero section), and the uniqueness counterpart of Lemma 16.9 in [16]

implies that the total space of the main fibration, obtained from the same fiber as

before and framed Lagrangian isotopic vanishing cycles, after corner smoothing and

completion, is Liouville isomorphic to T ∗Sn+1.

The second stage is more substantial. We change the fiber of the main fibration,

i.e. the total space of the auxiliary fibration. The auxiliary fibration has two critical

points 1 and −1, and for straight vanishing paths to a reference fiber at, say −3i

the vanishing cycles are the zero-sections of the fiber T ∗Sn−1 over −3i. We modify

this by adding a third critical value at −2i for W0 and at 0 for W1, such that the

vanishing cycle for a straight line vanishing path is equal to the belt sphere (in both

cases). Note that in the construction for W1 the new critical value lies inside the disc

encircled by the matching paths that define the Lagrangian spheres A and B, while

and in the construction for W0 it lies outside. By successive applications of Lemma

16.9 in [16], we get corresponding total spaces for the auxiliary fibrations and then for

the main fibrations. Note that the total spaces of the auxiliary fibrations U0 and U1

are exact symplectomorphic, the only difference is in the matching cycles that specify
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how the total space of the main fibration is built.

We now show that W0 and W1 are the same as smooth manifolds. In section 6,

we will show that W0 and W1 are not exact symplectomorphic.

Proposition 4.0.1. The smooth manifolds W0 and W1 are diffeomorphic.

Proof. Let’s consider the construction of Wi’s in more detail. Lemma 16.9 in [16]

describes the process of building the total space of the Lefschetz fibration as a sequence

of surgeries - one first thickens the fiber by taking its product with D
2 and then

performs a series of handle attachments along the spheres given by the vanishing

cycles (see also [10]). It is therefore sufficient to show that the matching cycles A and

B are smoothly isotopic.

The matching cycle A is the union of belt spheres of fibers over the matching path

α and the matching cycle B is the union of belt spheres of fibers over the matching

path β (plus the two critical points).

The paths α and β are isotopic in D2 (relative the endpoints). For α, β : [−1, 1] →
D

2 we have the isotopy γ : [−1, 1]× [0, 1] → D
2. We can take γ to be symmetric, that

is to satisfy Re(γ(t, ·) = −Re(γ(−t, ·)), and to stay inside the disc encircled by α and

β. Again, the exact choice of γ is immaterial, but for definiteness we can take each

γ(·, s) to be a uniformly parametrized circular arc through the two critical points and

i(1 − 2s). For each time s ∈ [0, 1] if the path γ(·, s) misses the third critical point

at the origin, it defines a matching cycle Γs. The only problem occurs when γs hits

the origin and the belt sphere over γ(0, s) shrinks to a point (for our choice of γ this

happens at s = 1
2
). To remedy this, we push the Γs off the zero section, see Figure4-3.

The details are as follows. It is well-known that for even n the sphere Sn−1 has

a smooth vector field δ with |δ| = 1 on it (in the standard metric). Take a smooth

“horizontal” cutoff function h(t) : [−1, 1] → [0, 1
2
ǫ], which is zero near the endpoints

and equal to 1
2
ǫ near 0; take also a smooth “vertical” bump function v(s) : [0, 1] →

[0, 1].

Consider B the disc enclosed by α and β with small (contractible) neighborhoods

of the critical points taken out. Before we added the third critical point at zero, the
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Figure 4-3: Pushing the isotopy.

fibration ρ was (smoothly) trivial over B, with a trivialization

Ψ : B × {(v ∈ T ∗Sn−1||v| < ǫ)} → ρ−1(B)

taking belt spheres to belt spheres. Define for all t such that γs is in B, the set

L(t, s) = {h(t)v(s)δ(p)|p ∈ Sn−1}. This is a push-off of the zero section over γ(t, s)

in the direction of δ.

We use the trivialization Ψ to define Γ̂s as the union of L(t, s) over all such t in the

fiber over γ(s, t) together with the belt spheres of ρ over the parts of γs lying outside

B (these glue smoothly because h(t) is zero near the endpoints). This is a sphere in

the total space of ρ - the push off of the whole matching cycle of γs in the direction

of δ. Now the union of Γ̂s over all s gives an isotopy of the matching cycles A and

B. Adding the third critical point at zero happens as a surgery on the belt sphere

at zero, supported in its neighborhood. The spheres Γ̂s stay away from the surgery

region and hence persist in the manifold U1, defining isotopy between the matching

cycles A and B in it.

This means that the total space W1 is the same smooth manifold as the space
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obtained by attaching handles to thickened U1 along two copies of the matching cycle

A. But that is the same as the total space W0. This completes the proof.

Remark 4.0.2. In the case of W1, if we denote by L the matching cycle of the straight

matching path from −1 to 0 and by R the matching cycle of the path from 0 to 1, we

see by Lemma 16.13 in [16] that the bottom matching cycle B is obtained by the Dehn

twist around R of L, and the top matching cycle A is obtained by the inverse Dehn

twist around R of L. So B is obtained from A by the square of the Dehn twist around

R. For spheres of dimension 2 and 6, the square of the model Dehn twist is smoothly

isotopic to identity (which of course implies that A is isotopic to B). The case n = 2

is Lemma 6.3 in [17], and the case n = 6 can be handled somewhat analogously by

using the almost-complex structure on S6. The case of other n appears to be open.
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Chapter 5

Wrapped Floer homology and

wrapped Fukaya category.

Wrapped Floer cohomology is an adaptation of the usual Lagrangian Floer homology

to the context of non-compact Lagrangians in Liouville domains. The main concern in

this situation is what to do about intersections at infinity. We restrict to Lagrangians

with exact cylindrical ends, which we will call admissible. In this setting, for L1 and

L2 admissible, we have two possible solutions. We can perturb one of them slightly

via Reeb flow near the boundary. We will denote this by HF (L1, L2). Alternatively,

we can “wrap it around” by long-time Reeb flow, observing that all resulting com-

plexes form a direct system (with respect to the time parameter), and taking the

direct limit. The resulting homology is invariant under isotopies of Li’s among ad-

missible Lagrangians, it is called the wrapped Floer cohomology and is denoted by

HW (L1, L2). In the case where the ambient manifold is a Lefschetz fibration over

the disc and Li are Lefschetz thimbles, the result of the flow is literally wrapping the

vanishing path around the disc. See Figures 5-1 and 5-2.

A B A B

Figure 5-1: HF (A,B)

2A AA1

Figure 5-2: HW (A,B) = limHFm(A,B)
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Wrapped Floer cohomology can be viewed as a Lagrangian (or open-string) version

of symplectic cohomology introduced by Viterbo ([18],[19]). It uses the same class of

Hamiltonians with linear slope at infinity and the same direct limit procedure.

Let’s discuss this construction in the context suitable for Lefschetz fibrations in

some more detail. Our setup differs in some technical details from the ones in the

literature, for example in [1] section 3, but is similar. We repeat some of the definitions

here with modifications suitable for the context of Lefschetz fibrations.

Firstly, we need to decide on a class of admissible Lagrangians. There are several

options (see [1]), but in our application the Lagrangians are going to be Lefschetz

thimbles, which would be admissible in any one of them.

For the sake of definiteness, we will call a Lagrangian L admissible if it intersects

∂M transversally and is exact, meaning θ|L is exact, θ|L = df . Moreover we require

that θ|L vanishes on a neighborhood of ∂L. Near its boundary, this makes L a cone

over the Legendrian submanifold ∂L of ∂M and allows us to attach an infinite cone,

extending L to L̂. For thimbles this corresponds simply to the vanishing path going

radially in a straight line near the boundary of D2, thus allowing to extend it by a

straight ray.

Secondly, we need to choose an appropriate family of Hamiltonians. Recall that

for a Liouville domain M , the Liouville flow κ gives the collar neighborhood κ :

(−∞, 0] × ∂M → M with κ∗θ = esα and ω = dθ, and this is extended to positive s

in the completion. Abouzaid and Seidel use the coordinate r = es on the cone and

a class of Hamiltonians H ∈ C∞(M,R) which are everywhere positive and admit a

smooth positive extension Ĥ to M̂ such that Ĥ(r, y) = r on the semi-infinite cone.

Then if X̂ is the Hamiltonian vector field of Ĥ , then on the cone X̂ = (0, R) where

R is the Reeb vector field of the contact one form θ|∂M .

This choice of coordinates for the infinite cone has the following slightly unfor-

tunate consequence. Viewing C as the completion of D2 with its standard Liouville

structure, we get ω = rpolardrpolar∧dθ = d(1
2
r2
polardθ) so that r = 1

2
r2
polar. In particular

a Hamiltonian linear in r is quadratic in rpolar. In discussing Hamiltonians on D2 and

C we will work with the completion coordinate r, writing rpolar whenever we refer to
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the standard polar radius.

We will consider the following family of Hamiltonians. Consider a Hamiltonian Hb

on the base disc of the fibration which is radial, zero in the interior of the disc and of

slope one in r near the boundary. For a Lefschetz fibration over unit disc D2, we have

Hb(re
iθ) = η(r), for η(r) : [0, 1] → [0,∞) with η(r) = 0 for r < 1 − 2ǫ, and η′(r) = 1

for r > 1 − ǫ. Further, define H to be the pull back of Hb under the fibration map.

Then Hb extends to all of C linearly in r, and H extends linearly to Ĥ on the part of

the infinite cone attached to the vertical boundary of the fibration. This Hamiltonian

is not of the right type near the horizontal boundary and the corners. This is of

no importance. All our Lagrangians and all holomorphic curves in all moduli spaces

that we consider stay away from the horizontal boundary and corners. Hence we can

modify our Hamiltonian near those boundaries to make our construction fall in line

with the general theory. We assume that this has been done, so that all Hamiltonians

that appear henceforth are linear on all of the attached infinite cone. Alternatively,

we could simply work directly with our original Hamiltonians, without any difference

in results; the only concern with that approach is psychological difficulties in relating

the resulting theory to the standard wrapped Floer cohomology constructions. After

all we want to view the thimbles as elements of the usual wrapped Fukaya category,

which requires the use of Hamiltonians linear at infinity.

The Hamiltonian Hb generates a flow which is supported near the boundary of

D2 and acts by rotations. We have H = π∗Hb, dH = π∗dHb, dH(v) = π∗dHb(v) =

dHb(π∗v), so that ω(XH , v) = ωb(XHb
, π∗(v)). This means that XH is in the symplec-

tic complement of the fiber of π (take vertical v), and π∗XH is parallel to XHb
(take

v = XH). The proportionality constant is given by the norm of the derivative of π

and can be made the same on all points of each belt sphere of any fiber. Correspond-

ingly, the flow of Ĥ is the rescaled horizontal lift of the flow of Hb (with respect to

the symplectic connection) and is given by parallel transport so that the image of a

Lefschetz thimble under the flow of Ĥ is again a Lefschetz thimble, over a path that

has been flowed under a rescaling of Hb. Up to scaling by a constant factor we can

assume that the time 1 flow of Ĥ wraps the thimbles exactly once around ∂D2 at the
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boundary.

We now consider a family of Hamiltonians Ĥm = (m+δ)Ĥ, for positive integers m

and a fixed positive small real δ, chosen in such a way that the images under the flow

of Ĥm of relevant thimbles are again thimbles but over paths that don’t intersect on

the boundary of D2. Denote the flow of Ĥm by ψm. Then all the intersections of the

thimbles lie in the fibers over the intersection points of their paths in the interior of the

disc, and are given by intersections of the corresponding vanishing cycles (for the case

of the thimble intersecting with itself, this may require an additional compactly sup-

ported isotopy of the vanishing path to make it transverse to itself, which corresponds

to a Hamiltonian isotopy of the thimble and does not affect the Floer cohomology).

After a small perturbation we can assume that the relevant vanishing cycles intersect

each other transversely. Then for a pair of thimbles A and B we have for each m the

usual Floer-theoretic finitely generated chain complex CFm(A,B) := CF (ψm(A), B),

with a differential obtained by counting pseudoholomorphic strips, which computes

the Floer cohomologyHFm(A,B) := HF (ψm(A), B) in the usual way. Again as usual,

this comes with a product structure HFm1
(A,B) ⊗HFm2

(B,C) → HFm1+m2
(A,C)

obtained by counting triangles (there is a slight problem, as the composition of the two

Hamiltonian isotopies on the left is not the Hamiltonian isotopy on the right on the

nose, but the difference is a small Hamiltonian isotopy, which induces isomorphism

on the Floer cohomology. See also the discussion in section 1.1 of [8]). Moreover, as

in the case of symplectic cohomology, positivity of H ensures the existence of contin-

uation chain maps κm
n : CFm(A,B) → CFn(A,B) for all n > m, so that CFm(A,B)

and HFm(A,B) form a direct system (see [15] for the case of symplectic cohomology).

The convexity conditions on A, B and M ensure that the relevant pseudoholomor-

phic curves stay away from the boundary and so the appropriate moduli spaces are

compact. The rest of the analysis is the same as in the case of compact Lagrangians.

We note that transversality can be achieved by perturbing the almost complex struc-

ture J on M “in the vertical direction”, that is keeping the projection map of the

Lefschetz fibration pseudoholomorphic. Since direct limits are exact, we can define

the wrapped Floer cohomology of A and B as either the cohomology of the direct
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limit of the chain complexes or simply as the direct limit of the cohomology system,

HW (A,B) = lim−→HFm(A,B).

We note that in our circumstances of contractible thimbles the Stiefel-Whitney

classes of the Lagrangians are manifestly zero, and the relative Chern class lives in

H2(W ), which is zero if dimW > 6, and so in that case Floer cohomology is defined

over Z and Z-graded, although since our proof is based only on computing the ranks

of various Floer cohomology groups, this is of marginal importance. In fact since we

use the Seidel long exact sequence from [11], we should work with Z/2 coefficients

and ungraded cohomology groups.

We should also mention that in the work of Abouzaid and Seidel [1] a slightly dif-

ferent version of wrapped Floer homology is given. There the authors are concerned

with the A∞ structure on the chain complex, and need a finer model than the direct

limit construction. We, on the other hand, are only concerned with the cohomol-

ogy and product structure, so a cruder, simpler model is sufficient. The resulting

cohomology is the same in both models (see Lemma 3.12 in [1]).
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Chapter 6

Distinguishing W0 and W1.

Recall that in section 4 we have constructed, for all even n, two Lefschetz bifibra-

tions with total spaces W0 and W1 which are both diffeomorphic to T ∗Sn+1 with

a single subcritical handle added. In this section we prove that the wrapped Floer

cohomologies of the Lefschetz thimbles are non-zero for W0 and zero for W1. This

proves Theorem 1.0.1.

We will use exact triangles to compute ranks of various Floer cohomology groups.

We use the following:

Observation 6.0.3. If

→ K
F→ L →M →

is an exact triangle with rankK = k, rankL = L and rank ImF = f , then rankM =

k + l − 2f.

Call the vanishing cycles of the main fibration A and B. These are Lagrangian

spheres in the fiber. The main tool we use is a comparison of Seidel’s exact triangles

in the fiber and in the total space. In the fiber we have for any exact Lagrangian

submanifolds L1 and L2 and any framed lagrangian sphere L ([11], Theorem 1)

→ HF (L,L2) ⊗HF (L1, L) → HF (L1, L2) → HF (L1, τLL2) →
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When L1 = L2 = B,L = A we get

→ HF (A,B) ⊗HF (B,A)
m→ HF (B,B)

a→ HF (B, τAB) →

Here, m is the pair-of-pants product. Note that in our situation HF (B,B) =

H(Sn) has rank 2 by the classical computation of Floer. In the case of W0 when A

and B are Hamiltonian isotopic, Floer product reduces to cup product on cohomology

and is onto. The map a is then zero by exactness, and the group HF (B, τA(B)) is of

rank 2.

Note that the spheres A and B intersect transversely at the two critical points of

ρ which have the same grading mod 2. Hence Floer differential vanishes, and rank

HF (A,B) is equal to 2 even for the case of W1.

On the other hand for the matching paths in W1, the vanishing cycles are not

Hamiltonian isotopic. In fact, they are not isomorphic as objects of the Donaldson-

Fukaya category of the fiber. To see this consider the Lefschetz thimble L for the

critical point over 0 of the auxiliary fibration ρ and the vanishing path going straight

down. We see that in the total space of ρ, i.e the fiber of π, A and L are disjoint and

so HF (A,L) = 0. On the other hand, since the vanishing path for L intersects the

matching path for B exactly once, HF (B,L) is the same as the Floer cohomology of

the corresponding vanishing cycles (of ρ), that is of the vanishing sphere with itself.

This is again H(Sn−1), and so is not zero.

Correspondingly, for these non-isomorphic vanishing cycles the pair of pants prod-

uct still hits the fundamental class inHF (B,B) (by Poincare duality in Floer theory).

We want to see that the product misses the identity, which in turn forces the group

HF (B, τA(B)) to be of rank 4.

To see that m misses the identity, suppose there is α ∈ HF (A,B) ⊗ HF (B,A)

such that m(α) = Id ∈ HF (B,B). Then for a non-zero element β ∈ HF (B,L),

the composition of Floer products going from HF (B,L) ⊗ HF (A,B) ⊗ HF (B,A)

to HF (B,L) on the one hand takes β ⊗ α to m(β, Id) = β, and on the other hand

factors through the group HF (A,L) = 0. As β 6= 0, this is a contradiction.
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Now in the total space, denoting the thimbles by A and B and viewing them as

objects of the derived Fukaya-Seidel category ([16]) of the Lefschetz fibration Wi →
D2, the results of [13] imply that the result of twisting B by monodromy, which we

shall denote by B1, is isomorphic to the cone of the evaluation map ev : Hom(A,B)⊗
A 7→ B. Taking the corresponding exact triangle and taking the long exact sequence

corresponding to the functor Hom(·, B) to it we get

→ HomFS(B1, B) → HomFS(B,B)
ev∗→ HomFS(A,B)∗ ⊗HomFS(A,B) →

HereHomFS(B,B) has rank one and is generated by the identity. This is a general

fact about Lefschetz thimbles - a vanishing path can be isotoped to intersect itself

only at the critical point, which changes the thimble by a Hamiltonian isotopy ([2],

Lemma 3.2), so the resulting cohomology group has rank 1.

The group HomFS(A,B) has the same generators as HF (A,B). Since the Lef-

schetz fibration map π is pseudoholomorphic, any pseudoholomorphic strip in the

total space has to project to a holomorphic strip on the base D2 with boundary on

corresponding vanishing paths, and the maximum principle for D
2 implies that any

such disc is contained in the fiber. So not only generators, but also the differentials

agree, and rank of HomFS(A,B) is 2.

The map ev∗ is non-zero and maps Id 7→ Σα∈HomF S(A,B)α
⊗

α∗. This means the

rank of HomFS(B1, B) is 3.

The chain complex computing HomFS(B1, B) contains the generators of the com-

plex computing the group HF (B, τAB) and one additional generator u corresponding

to the critical point of the main fibration, where the thimbles B and B1 meet. Again,

since π is pseudoholomorphic, any pseudoholomorphic strip in the total space has to

project to a holomorphic strip on the base D2 with boundary on corresponding vanish-

ing paths. The maximum principle for D2 implies that there are no strips connecting u

to other generators (note that we are doing Floer cohomology, so for counterclockwise

wrapping the differential from less wrapped thimble to the more wrapped one goes

towards the critical point), and that any map not ending in u projects to a constant
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map, i.e. is contained in the fiber. So all the generators other than u indeed form a

quotient complex computing HF (B, τAB). The only question is whether u is in the

image of the differential.

Comparing the ranks of the homology groups we see that for standard T ∗S2n+1

and for W0 the generator u must not be in the image of the differential, and so u

survives in cohomology, whereas for the non-standard modification W1 the generator

u is in the image. Since the continuation maps commute with the differential, image of

u under continuation maps stays in the image of the differential for the more wrapped

CW (Bn, B), and so vanishes in cohomology HW (B,B).

However u represents the unit in HomFS(B,B), and as the continuation maps

are compatible with the triangle products (see Section 3.3 of [8]), the image of u

in HW (B,B) is the unit there. Hence the unit is zero, which is only possible if

HW (B,B) = 0. A similar argument implies that HW (A,A) = 0.

Since HW (A,B) is a module over HW (A,A) it also vanishes.

This proves our main Theorem 1.0.1.

We note that this behavior of wrapped Floer cohomology is in sharp contrast to

the one in standard cotangent bundles. There for Fi the cotangent fiber at the point pi

the wrapped Floer homologyHW (F1, F2) is the homology of the path space from p1 to

p2 (see Theorem 3.2 in [8]). In fact by analogy with the result of Cieliebak that states

that subcritical handle attachment does not change the symplectic cohomology ([4]),

we expect that in the case of subcritical handle attachment the functor constructed

by Abouzaid and Seidel in [1] is a full embedding, in which case the wrapped Floer

cohomologies in W0 should coincide with those in T ∗Sn+1 from which it is obtained.

Meanwhile we have the corollary 1.0.2, which states that the manifold W1 does not

contain any closed exact Lagrangian submanifold. To see this, observe that, for such a

Lagrangian L we would have on one hand, by Floer’s original result (which still holds

in the context of exact Lagrangians), HF (L,L) = H∗(L), which is nonzero. On the

other hand, HF (L,L) = HW (L,L) since wrapping does not affect closed Lagrangian

submanifolds, but by Theorem 4 of [7] there is a spectral sequence converging to

HF (L,L) with the first page Ejk
1 = (HF (∆!

j, L)
⊗

HF (L,∆j))
j+k for a basis of
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thimbles ∆ and dual thimbles ∆!. However, HF (L,∆j) = HW (L,∆j), again because

L is closed, and the later group vanishes since it is a module over HW (∆j,∆j) = 0.

Hence, the above results imply that this first page vanishes, a contradiction.

Since W0 contains the exact Lagrangian sphere inherited from the zero-section of

T ∗Sn+1, we see that W0 and W1 are not exact deformation equivalent.

We also note that were the wrapped Floer homology HW (A,A) to vanish in the

case of W0, then by symmetry so would HW (B,B), and we could repeat the above

argument. So the fact that there is an exact Lagrangian sphere in W0 implies that

these groups are non-zero.
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Chapter 7

Possible extensions.

The work in this thesis is only the beginning of an investigation of the symplectic

invariants of Lefschetz fibrations. The most immediate extension is to create “fakes”

of other manifolds. In fact, the process of stabilization allows us to embed a con-

figuration of thimbles similar to the one we worked with above into any Lefschetz

fibration. An investigation of these situations can potentially lead to a construction

of “symplectic fakes” of the total space of any 4n+2 dimensional Lefschetz fibration.

Furthermore, it should be possible to avoid adding any subcritical handles, getting

manifolds diffeomorphic to the original ones on the nose.

Conjecture. For any Liouville domain W of dimension 4n+2 there exists a Liouville

domain W ′ such that

• W and W ′ are diffeomorphic

• The symplectic homology and wrapped Fukaya category of W ′ are zero.

Another direction is to investigate related Floer-theoretic invariants of these Liou-

ville domains. In particular, a conjecture of Paul Seidel relates the wrapped Fukaya

category of a Lefschetz fibration to the category of modules over a certain curved

A∞- algebra D defined in terms of the vanishing cycles [14], and another conjecture

states that the symplectic homology of the total space is the Hochschild homology
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of D. Together these conjectures mean that vanishing of the wrapped Floer coho-

mologies for all thimbles implies vanishing of the symplectic cohomology of the total

space. While these conjectures are unproved at the moment, a long exact sequence

describing the behavior of symplectic homology under critical handle attachment has

been recently proved by Bourgeois, Ekholm and Eliashberg and should give a good

approach to proving the vanishing of SH(W1) directly.
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