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Abstract

Given an exact symplectic manifold, can we find topological constraints to the exis-
tence of exact Lagrangian submanifolds?

I developed an approach using symplectic cohomology which provides such con-
ditions for exact Lagrangians inside cotangent bundles and inside ALE hyperkähler
spaces. For example, the only exact Lagrangians inside ALE hyperkähler spaces must
be spheres.

The vanishing of symplectic cohomology is an obstruction to the existence of
exact Lagrangians. In the above applications even though the ordinary symplectic
cohomology does not vanish, one can prove that a Novikov homology analogue for
symplectic cohomology does vanish.
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Chapter 1

Introduction

1.1 Exact Lagrangian submanifolds

Let (M2n, dθ) be an exact symplectic manifold. A submanifold Ln ⊂ M is called

Lagrangian if dθ|L = 0 and exact Lagrangian if θ|L is exact.

Example: Let L = graph(α) ⊂ T ∗N be the graph of a 1−form on N inside the

*T N

N

L=graph(A)

cotangent bundle of N . Then L is Lagrangian if

and only if α is closed, and L is exact Lagrangian if

and only if α is exact. For instance, the zero section

is an exact Lagrangian.

1.1.1 Exact Lagrangians inside cotangent bundles

Conjecture (Arnol’d ’86) All exact Lagrangians L ⊂ T ∗N are isotopic to the zero

section. (Stronger version: Hamiltonian isotopic)

Remark The Conjecture does not hold in general if L were just Lagrangian: for

example, consider a Clifford torus (S1)n ⊂ Cn inside a small Darboux chart.

Example: L ⊂ T ∗S2. For homological reasons, L is either S2, T 2, or unori-

entable. For L = S2, it is known that L is isotopic to the zero section (Eliashberg-

Polterovich ’93), indeed it is Hamiltonian isotopic (R. Hind ’03). It is known that L

cannot be a torus (Viterbo ’97) and a consequence of our thesis is that L cannot be
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unorientable. Thus the conjecture holds for T ∗S2.

Known results (for L,N closed orientable, L ⊂ T ∗N)

1. π1L → π1N has finite cokernel (Lalonde-Sikorav ’91)

2. π1N = 1 ⇒ L 6= K(π, 1) (Viterbo ’97)

3. If π1N = 1, (Maslov class of L) = 0 ∈ H1(L) and L,N are spin, then H∗(N ;R) ∼=
H∗(L;R) (Nadler, Fukaya-Seidel-Smith ’08)

Theorem 1. Let L ⊂ T ∗N be an exact Lagrangian submanifold (L,N closed).

1. If π1N = 1 then π2L → π2N has finite cokernel, and H2(N) ↪→ H2(L) is

injective.

2. If π1N 6= 1 and πmN is finitely generated for each m ≥ 2, then π2L → π2N has

finite cokernel, and H2(Ñ) ↪→ H2(L̃) is injective.

We emphasize that there is no condition on the Maslov class of L and no assump-

tion about the orientability of L or N .

Example: Suppose L ⊂ T ∗S2 is unorientable. Then H2(S2) ↪→ H2(L) means

Z ↪→ Z/2Z, which is absurd. So L cannot exist.

1.1.2 Exact Lagrangians inside ALE spaces

Very little is known about exact Lagrangians inside spaces which are not cotangent

bundles, and there are no known conjectures of what they ought to be. Our thesis

answers this question for ALE spaces.

An ALE space is a hyperkähler four manifold which at infinity is asymptotic to

C2/Γ where Γ ⊂ SL2(C) is a finite subgroup.

Example: Take two copies of T ∗S2 and over a small patch plumb them together by

12



identifying the fibre directions of one with the base direc-

tions of the other. This yields an ALE space for Γ = Z/3Z

with Dynkin diagram •−−• (A2). In general plumbings of

copies of T ∗S2 according to a Dynkin diagram of type An,

Dn or En are ALE spaces.

Theorem 2. The only exact Lagrangians in an ALE space are spheres.

1.2 Symplectic cohomology

For an exact symplectic manifold (M,dθ) with a sufficiently nice boundary one can

associate certain invariants called symplectic cohomology SH∗(M). Formally it is

the Morse homology of the free loopspace LM = C∞(S1,M) for the action function

AH(γ) =
∫

(−θ(γ̇)+H(γ)) dt, where H is a Hamiltonian with sufficiently fast growth

near the boundary of M .

Example: M = T ∗N . The symplectic chain complex is generated by the 1−periodic

orbits of H (the critical points of AH), and the chain differential is a count of cylin-

ders connecting two generators and satisfying a PDE called Floer’s equation (neg-

ative gradient trajectories of AH for a suitable metric). For the cotangent bundle

M = T ∗N ∼= TN , the Hamiltonian H(v) = 1
2
|v|2 generates the geodesic flow and the

1−periodic orbits of H are either the constants in N or certain closed geodesics away

from N . Via a reparametrization, these closed geodesics correspond bijectively to the

closed geodesics on a sphere bundle STN : the further we go away from N the longer

the corresponding geodesic on STN . If we consider only the critical points of H on

N (after perturbing H) then we get the Morse cohomology of N , or equivalently the

cohomology of T ∗N . This gives rise to a map H∗(T ∗N) → SH∗(T ∗N). Such a map

from ordinary cohomology to the symplectic cohomology can be constructed also for

more general M .

13



1.2.1 Viterbo functoriality

Foundational work of Viterbo (Viterbo ’96) showed that an exact L ⊂ (M, dθ) yields

a commutative diagram

Hn−∗(LL) ∼= SH∗(T ∗L, dθ)
OO
c∗

?Â

oo SH∗(M, dθ)
OO
c∗

Hn−∗(L) ∼= H∗(L) oo j∗
H∗(M)

where the left vertical map is the inclusion of constants. Since j∗1 = 1, we obtain a

non-zero element c∗j∗1 in H∗(LL). Therefore SH∗(M) cannot vanish if L exists.

Problem. In the above applications, SH∗(M) does not vanish. The key to our

applications will be to tweak the setup:

Theorem 3. The diagram holds when we use twisted coefficients in a Novikov bundle

associated to a closed 1−form [α] ∈ H1(LM).

1.3 Twisted Symplectic Cohomology

Warm-up example: Novikov Homology

We will explain the twisting argument for X = S1 with α = dθ̃, where θ̃ is a multi-

valued function on S1 = R/Z with two critical points α(q) = 0 = α(p):

p

q

1

1

u
2

u1

q

p

We now pretend to do Morse homology: instead of df for

a Morse function f , we have a 1−form α, and given a nice

metric the form α defines a vector field for which we study

the trajectories connecting the zeros of α.

The Morse homology differential of p counts the number of

trajectories flowing into p. There are two opposite trajec-

tories u1, u2 from q to p. Thus in ordinary Morse homology

there are two generators q, p, generating the usual homology

of S1.

14



The twisted chain complex is Z((t))q ⊕ Z((t))p, where Z((t)) is the ring of formal

Laurent series in t. The differential in the Morse homology picture would be ∂p =

q− q = 0 so we would obtain the homology of S1 over the ring Z((t)). In the Novikov

homology picture we insert weights:

∂p = t
∫

u1
α
q − t

∫
u2

α
q 6= 0

since
∫

S1 α 6= 0. Therefore, q is the boundary of a multiple of p, so NH∗(S1)α = 0.

If α had been exact, then
∫

S1 α = 0, and so we would just get back our ordinary

homology: NH∗(S1)exact = H∗(S1)⊗ Z((t)).

Definition: The twisted symplectic cohomology NSH∗(M)α, for [α] ∈ H1(LM), is

formally the Novikov homology of LM with respect to the action function, using

weights t
∫

u α.

Just as in the warm-up example, if α is exact then we just recover the ordinary

symplectic cohomology (over the ring Z((t))). When studying unorientable L, we

assume that Z is replaced by Z/2, otherwise nothing changes.

1.3.1 Transgressed forms

We now explain what choice of one-form [α] ∈ H1(LM) is appropriate. The trans-

gression is defined by

τ = π ◦ ev∗ : H2(M ;R)
ev∗ // H2(LM × S1;R)

π // H1(LM ;R) ,

where ev is the evaluation map and π is the projection to the Künneth summand.

Explicitly, τβ evaluated on a smooth path u in LM is given by integrating β over the

corresponding cylinder in M . We will need some basic facts:

1. τ is an isomorphism if π1M = 1.

2. τβ|M = 0 vanishes when restricted to constant loops.

3. τβ can be identified with the induced map π2M → R (identify π2M ⊂ π1(LM)).

15



1.3.2 Proofs of Theorem 1 and 2

Theorem 3 for this α states that there is a commutative diagram:

NHn−∗(LL)τ(β|L)
∼= NSH∗(T ∗L, dθ)τ(β|L)OO

c∗

oo NSH∗(M)τβOO
c∗

Hn−∗(L)⊗ Z((t)) ∼= H∗(L)⊗ Z((t)) oo j∗⊗1
H∗(M)⊗ Z((t))

Suppose that NSH∗(M)τβ = 0 and τ(β|L) = 0, then this simplifies to

Hn−∗(LL)⊗ Z((t))
OO
c∗

?Â

oo 0 OO

c∗

Hn−∗(L)⊗ Z((t)) ∼= H∗(L)⊗ Z((t)) oo j
∗⊗1

H∗(M)⊗ Z((t))

But c∗j∗1 is non-zero, so the commutativity of the digram is contradicted.

Conclusion: If NSH∗(M)τβ = 0 ⇒ τ(β|L) 6= 0.

Proving Theorems 1 and 2 using this Conclusion.

Case 1. M = T ∗N .

Theorem 4. Suppose π1N = 1, β 6= 0. Then NSH∗(T ∗N)τβ
∼= NHn−∗(LN)τβ = 0.

The proof of the vanishing of NH∗(LN)τβ (for closed simply connected N) only

uses classical methods in algebraic topology. By the Conclusion, we deduce:

⇒ τβ → τ(β|L) is injective

⇒ Hom(π2N,R) ↪→ Hom(π2L,R)

⇒ π2L → π2N has finite cokernel

⇒ Theorem 1.

Case 2. M = ALE space.

If L is not a sphere then:

• if L is orientable, then π2L = 0 so τ(β|L) = 0

16



• if L is unorientable, then H2(L) = Z/2Z so τ(β|L) = 0.

⇒ by the Conclusion, if NSH∗(M)τβ = 0 then L must be a sphere.

Thus Theorem 2 follows by

Theorem 5. NSH∗(M)τω = 0 for generic symplectic forms ω on M .

Steps of proof:

1. There is a hyperkähler structure on M such that ω = g(I·, ·) (Kronheimer ’89).

2. For (M,ω) it is possible to prove SH∗(M,ω) = 0 by exploiting an S1−action

on (M, ω) (which doesn’t exist for (M, dθ)).

3. By the following theorem, SH∗(M, ω) ∼= NSH∗(M, dθ)τω.

Theorem 6 (Deformation theorem). Let (M, dθ) be an exact symplectic manifold

with nice boundary. Let β be a small closed 2-form with support ⊂ int(M). Then

SH∗(M,dθ + β) ∼= NSH∗(M, dθ)τβ.

The deformation theorem is a non-trivial statement because there is no a priori

control of the energy of Floer trajectories for non-exact symplectic forms. The the-

orem is proved by considering how the moduli space of trajectories varies as dθ is

appropriately deformed into dθ + β. Given an admissible Hamiltonian, it is possi-

ble to arrange that the generators of the two chain complexes are identical and we

prove that for very small β the above isomorphism is induced by the identity map

on the level of chains. This is because the moduli spaces of rigid Floer trajectories,

as the symplectic form varies, form a 1−parameter family. The proof of this fact

relies not only on a transversality result (which proves that the family is a smooth

one-dimensional manifold) but also on a compactness result. It is necessary to prove

that there aren’t trajectories for dθ + εβ of arbitrarily large energy as ε → 0 which

cannot be detected at ε = 0.

The compactness result relies on a Lyapunov property of the (dθ)−action Adθ(γ) =
∫

(−θ(γ̇) + H(γ)) dt with respect to (dθ + β)−Floer trajectories. In particular, there
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is an a priori energy estimate for the (dθ + β)−trajectories u connecting x to y,

Edθ+β(u) ≤ 2(Adθ(x)− Adθ(y)).

We recall that for (dθ)−Floer trajectories u there is an a priori energy estimate

Edθ(u) = Adθ(x) − Adθ(y), but such an estimate does not exist in general in the

non-exact setup since the action functional is usually multi-valued.

1.4 Outline of the Thesis

Chapter 2 reproduces verbatim my first paper [18].

Theoretical part: we construct the twisted symplectic cohomology, which we

called Novikov-symplectic cohomology in the paper and we denoted it SH∗(M ; Λα)

instead of NSH∗(M)α. We prove the twisted functoriality property, which is Theorem

3 above. In this chapter, we always assume that the symplectic manifold is exact

(Liouville domains).

Application: we apply these results to the study of exact Lagrangians inside

cotangent bundles. We prove Theorem 1 and the vanishing Theorem 4 above.

Chapter 3 reproduces almost verbatim my second paper [19].

Theoretical part: we construct symplectic cohomology for non-exact symplectic

forms and we prove the deformation theorem (Theorem 6 above).

Application: we apply these results to the study of exact Lagrangians inside

ALE spaces. We prove Theorem 2 and the vanishing Theorem 5 above.
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Chapter 2

Novikov-symplectic cohomology

and exact Lagrangian embeddings

2.1 Summary

Let N be a closed manifold satisfying a mild homotopy assumption, then for any

exact Lagrangian L ⊂ T ∗N the map π2(L) → π2(N) has finite index. The homotopy

assumption is either that N is simply connected, or more generally that πm(N) is

finitely generated for each m ≥ 2. The manifolds need not be orientable, and we

make no assumption on the Maslov class of L.

We construct the Novikov homology theory for symplectic cohomology, denoted

SH∗(M ; Λα), and we show that Viterbo functoriality holds. We prove that SH∗(T ∗N ; Λα)

is isomorphic to the Novikov homology of the free loopspace. Given the homotopy

assumption on N , we show that this Novikov homology vanishes when α ∈ H1(L0N)

is the transgression of a non-zero class in H2(Ñ). Combining these results yields the

above obstructions to the existence of L.

2.2 Introduction

Consider a disc cotangent bundle (DT ∗N, dθ) of a closed manifold Nn together with

its canonical symplectic form. We want to find obstructions to the existence of
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embeddings j : Ln ↪→ DT ∗N for which j∗θ is exact. These are called exact La-

grangian embeddings. For now assume that all manifolds are orientable and that we

use Z−coefficients in (co)homology.

Denote by p : L → N the composite of j with the projection to the base. Recall

that the ordinary transfer map p! : H∗(N) → H∗(L) is obtained by Poincaré duality

and the pull-back p∗, by composing

p! : H∗(N) → Hn−∗(N) → Hn−∗(L) → H∗(L).

For the space L0N of smooth contractible loops in N such transfer maps need not

exist, as Poincaré duality no longer holds. However, using techniques from symplectic

topology, Viterbo [25, 27] showed that there is a transfer homomorphism

Lp! : H∗(L0N) → H∗(L0L)

which commutes with the ordinary transfer map for p,

H∗(L0L)
OO
c∗

?Â

oo Lp!
H∗(L0N)

OO
c∗

?Â

H∗(L) oo p!
H∗(N)

where c : N → L0N denotes the inclusion of constant loops.

For any α ∈ H1(L0N), we can define the associated Novikov homology theory,

which is in fact homology with twisted coefficients in the bundle of Novikov rings

Λ = Z((t)) associated to a singular cocycle representing α. We denote the bundle by

Λα and the Novikov homology by H∗(L0N ; Λα).

Main Theorem. For all exact L ⊂ T ∗N and all α ∈ H1(L0N), there exists a
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commutative diagram

H∗(L0L; Λ(Lp)∗α)
OO
c∗

oo Lp!
H∗(L0N ; Λα)

OO

c∗

H∗(L; c∗Λ(Lp)∗α) oo p!
H∗(N ; c∗Λα)

If c∗α = 0 then the bottom map becomes p! ⊗ 1: H∗(L)⊗ Λ ← H∗(N)⊗ Λ.

Suppose now that N is simply connected. Then a nonzero class β ∈ H2(N) defines

a nonzero transgression τ(β) ∈ H1(L0N). The associated bundles Λτ(β) on L0N and

Λτ(p∗β) on L0L restrict to trivial bundles on N and L.

Suppose τ(p∗β) = 0 ∈ H1(L0L). Then the above twisted diagram becomes

H∗(L0L)⊗ Λ
OO

c∗
?Â

oo Lp! H∗(L0N ; Λτ(β))OO
c∗

H∗(L)⊗ Λ
²²²²
q∗

oo p!
H∗(N)⊗ Λ

where q : L0N → N is the evaluation at 0 map. If N is simply connected and β 6= 0,

then we will show that H∗(L0N ; Λτ(β)) = 0, so the fundamental class [N ] ∈ Hn(N)

maps to c∗[N ] = 0. But Lp!(c∗[N ]) = c∗p![N ] = c∗[L] 6= 0 since c∗ is injective on

H∗(L). Therefore τ(p∗β) = 0 cannot be true. This shows that τ ◦ p∗ : H2(N) →
H1(L0L) is injective. Now, from the commutative diagram

H2(N)

p∗

²²

τ
∼ // Hom(π2(N),Z) ∼= H1(L0N)

(Lp)∗

²²
H2(L)

τ // Hom(π2(L),Z) ⊂ H1(L0L)

we deduce that p∗ : H2(N) → H2(L) and Hom(π2(N),Z) → Hom(π2(L),Z) must be

injective. Thus we deduce:

Main Corollary. If L ⊂ T ∗N is exact and N is simply connected, then the image

of p∗ : π2(L) → π2(N) has finite index and p∗ : H2(N) → H2(L) is injective.

We emphasize that there is no assumption on the Maslov class of L in the state-

21



ment – this is in contrast to the results of [17] and [6]: the vanishing of the Maslov

class is crucial for their argument. Also observe that if H2(N) 6= 0 then the corol-

lary overlaps with Viterbo’s result [27] that there is no exact Lagrangian K(π, 1)

embedded in a simply connected cotangent bundle.

We will prove that the corollary holds even when N and L are not assumed to

be orientable. A concrete application of the Corollary is that there are no exact tori

and no exact Klein bottles in T ∗S2. We will also generalize the Corollary to obtain a

result in the non-simply connected setup:

Corollary. Let N be a closed manifold with finitely generated πm(N) for each m ≥ 2.

If L ⊂ T ∗N is exact then the image of p∗ : π2(L) → π2(N) has finite index.

This is innovative since in [6], [17], and [27] it is crucial that N is simply connected.

The outline of the proof of the corollary required showing that the Novikov ho-

mology H∗(L0N ; Λτ(β)) vanishes for nonzero β ∈ H2(Ñ). The idea is as follows.

A class τ(β) ∈ H1(LÑ) = H1(L0N) gives rise to a cyclic covering L0N of L0N .

Let t be a generator for the group of deck transformations. The Novikov ring

Λ = Z((t)) = Z[[t]][t−1] is the completion in t of the group ring Z[t, t−1] of the

cover. The Novikov homology is isomorphic to H∗(C∗(L0N)⊗Z[t,t−1] Λ).

Using the homotopy assumptions on N it is possible to prove that H∗(L0N) is

finitely generated in each degree. It then easily follows from the flatness of Λ over

Z[t, t−1] and from Nakayama’s lemma that

H∗(C∗(L0N)⊗Z[t,t−1] Λ) ∼= H∗(L0N)⊗Z[t,t−1] Λ = 0.

The outline of the Chapter is as follows. In section 2.3 we recall the construc-

tion of symplectic cohomology and we explain how the construction works when we

use twisted coefficients in the Novikov bundle of some α ∈ H1(LN), which we call

Novikov-symplectic cohomology. In section 2.4 we recall Abbondandolo and Schwarz’s

construction [1] of the isomorphism between the symplectic cohomology of T ∗N and

the singular homology of the free loopspace LN , and we adapt the isomorphism

to Novikov-symplectic cohomology. In section 2.5 we review the construction of
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Viterbo’s commutative diagram, and we show how this carries over to the case of

twisted coefficients. In section 2.6 we prove the main theorem and in section 2.7 we

prove the main corollary. In section 2.8 we generalize the corollary to the case of

non-simply connected cotangent bundles, and in section 2.9 we extend the results to

the case when N and L are not assumed to be orientable.

2.3 Symplectic cohomology

We review the construction of symplectic cohomology, and refer to [25] for details and

to [22] for a survey and for more references. We assume the reader is familiar with

Floer homology for closed manifolds, for instance see [21].

2.3.1 Liouville domain setup

Let (M2n, θ) be a Liouville domain, that is (M, ω = dθ) is a compact symplectic

manifold with boundary and the Liouville vector field Z, defined by iZω = θ, points

strictly outwards along ∂M . The second condition is equivalent to requiring that

α = θ|∂M is a contact form on ∂M , that is dα = ω|∂M and α ∧ (dα)n−1 > 0 with

respect to the boundary orientation on ∂M .

The Liouville flow of Z is defined for all negative time r, and it parametrizes a

collar (−∞, 0] × ∂M of ∂M inside M . So we may glue an infinite symplectic cone

([0,∞) × ∂M, d(erα)) onto M along ∂M , so that Z extends to Z = ∂r on the cone.

This defines the completion M̂ of M ,

M̂ = M ∪∂M [0,∞)× ∂M.

We call (−∞,∞)× ∂M the collar of M̂ . We extend θ to the entire collar by θ = erα,

and ω by ω = dθ. Later on, it will be convenient to change coordinates from r to x =

er. The collar will then be parametrized as the tubular neighbourhood (0,∞)× ∂M

of ∂M in M̂ , where ∂M corresponds to {x = 1}.
Let J be an ω−compatible almost complex structure on M̂ which is of contact
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type on the collar, that is J∗θ = erdr or equivalently J∂r = R where R is the Reeb

vector field (we only need this to hold for er À 0 so that a certain maximum principle

applies there). Denote by g = ω(·, J ·) the J−invariant metric.

2.3.2 Reeb and Hamiltonian dynamics

The Reeb vector field R ∈ C∞(T∂M) on ∂M is defined by iRdα = 0 and α(R) = 1.

The periods of the Reeb vector field form a countable closed subset of [0,∞).

For H ∈ C∞(M̂,R) we define the Hamiltonian vector field XH by

ω(XH , ·) = −dH.

If inside M the Hamiltonian H is a C2-small generic perturbation of a constant, then

the 1-periodic orbits of XH inside M are constants corresponding precisely to the

critical points of H.

Suppose H = h(er) depends only on er on the collar. Then XH = h′(er)R.

It follows that every non-constant 1-periodic orbit x(t) of XH which intersects the

collar must lie in {er}× ∂M for some er and must correspond to a Reeb orbit z(t) =

x(t/T ) : [0, T ] → ∂M with period T = h′(er). Since the Reeb periods are countable,

if we choose h to have a generic constant slope h′(er) for er À 0 then there will be

no 1-periodic orbits of XH outside of a compact set of M̂ .

2.3.3 Action functional

We define the action functional for x ∈ C∞(S1,M) by

AH(x) = −
∫

x∗θ +

∫ 1

0

H(x(t)) dt.

If H = h(er) on the collar and x is a 1-periodic orbit of XH in {er} × ∂M , then

AH(x) = −erh′(er) + h(er).
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Let LM̂ = C∞(S1, M̂) be the space of free loops in M̂ . The differential of AH at

x ∈ LM̂ in the direction ξ ∈ TxLM̂ = C∞(S1, x∗TM̂) is

dAH · ξ = −
∫ 1

0

ω(ξ, ẋ−XH) dt.

Thus the critical points x ∈ Crit(AH) of AH are precisely the 1-periodic Hamiltonian

orbits ẋ(t) = XH(x(t)). Moreover, we deduce that with respect to the L2−metric
∫ 1

0
g(·, ·) dt the gradient of AH is ∇AH = J(ẋ−XH).

2.3.4 Floer’s equation

For u : R×S1 → M , the negative L2−gradient flow equation ∂su = −∇AH(u) in the

coordinates (s, t) ∈ R× S1 is Floer’s equation

∂su + J(∂tu−XH) = 0.

The action AH(u(s, ·)) decreases in s along Floer solutions, since

∂s(AH(u(s, ·))) = dAH · ∂su = −
∫ 1

0

ω(∂su, ∂tu−XH) dt = −
∫ 1

0

|∂su|2g dt.

Let M′(x−, x+) denote the moduli space of solutions u to Floer’s equation, which at

the ends converge uniformly in t to the 1-periodic orbits x±:

lim
s→±∞

u(s, t) = x±(t).

These solutions u occur in R−families because we may reparametrize the R coordi-

nate by adding a constant. We denote by M(x−, x+) = M′(x−, x+)/R the space of

unparametrized solutions.

25



x

y’’y’

u’’

u’ u’’

u’

un

1 1

22

y

Figure 2-1: The x, y′, y′′, y are 1-periodic orbits of XH , the lines are Floer solutions in
M̂ . The un ∈M1(x, y) are converging to the broken trajectory (u′1, u

′
2) ∈M0(x, y′)×

M0(y
′, y).

2.3.5 Energy

For a Floer solution u the energy is defined as

E(u) =

∫
|∂su|2 ds dt =

∫
ω(∂su, ∂tu−XH) ds dt = −

∫
∂s(AH(u)) ds.

Thus for u ∈M′(x−, x+) there is an a priori energy estimate,

E(u) = AH(x−)− AH(x+).

2.3.6 Compactness and the maximum principle

The only danger in this setup, compared to Floer theory for closed manifolds, is that

there may be Floer trajectories u ∈M(x−, x+) which leave any given compact set in

M̂ . However, for any Floer trajectory u, a maximum principle applies to the function

er ◦u on the collar, namely: on any compact subset Ω ⊂ R×S1 the maximum of er ◦u

is attained on the boundary ∂Ω. Therefore, if the x± lie inside M ∪ ([0, R] × ∂M)

then also all the Floer trajectories in M′(x−, x+) lie in there.
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2.3.7 Transversality and compactness

Thanks to the maximum principle and the a priori energy estimates, the same analysis

as for Floer theory for closed manifolds can be applied to show that for a generic time-

dependent perturbation (Ht, Jt) of (H, J) the corresponding moduli spacesM(x−, x+)

are smooth manifolds and have compactifications M(x−, x+) whose boundaries are

defined in terms of broken Floer trajectories (Figure 2-1). We write Mk(x−, x+) =

M′
k+1(x−, x+)/R for the k-dimensional part of M(x−, x+).

The perturbation of (H, J) ensures that the differential Dφ1
XH

of the time 1 return

map does not have eigenvalue 1, where φt
XH

is the flow of XH . This non-degeneracy

condition ensures that the 1-periodic orbits of XH are isolated and it is used to prove

the transversality results. In the proofs of compactness, the exactness of ω is used to

exclude the possibility of bubbling-off of J−holomorphic spheres.

To keep the notation under control, we will continue to write (H, J) even though

we are using the perturbed (Ht, Jt) throughout.

2.3.8 Floer chain complex

The Floer chain complex for a Hamiltonian H ∈ C∞(M̂,R) is the abelian group freely

generated by 1-periodic orbits of XH ,

CF ∗(H) =
⊕ {

Zx : x ∈ LM̂, ẋ(t) = XH(x(t))
}

,

and the differential ∂ on a generator y ∈ Crit(AH) is defined as

∂y =
∑

u∈M0(x,y)

ε(u) x,

where M0(x, y) is the 0−dimensional part of M(x, y) and the sign ε(u) ∈ {±1} is

determined by the choices of compatible orientations.

We may also filter the Floer complexes by action values A,B ∈ R ∪ {±∞}:

CF ∗(H; A,B) =
⊕ {

Zx : x ∈ LM̂, ẋ(t) = XH(x(t)), A < AH(x) < B
}

.
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This is a quotient complex of CF ∗(H) if B 6= ∞. Observe that increasing A gives

a subcomplex, CF ∗(H; A′, B) ⊂ CF ∗(H; A,B) for A < A′ < B. Moreover there are

natural action-restriction maps CF ∗(H; A,B) → CF ∗(H; A,B′) for A < B′ < B,

because the action decreases along Floer trajectories.

Standard methods show that ∂2 = 0, and we denote by HF ∗(H) and HF ∗(H; A,B)

the cohomologies of these complexes.

2.3.9 Continuation maps

One might hope that the continuation method of Floer homology can be used to define

a homomorphism between the Floer complexes CF ∗(H−) and CF ∗(H+) obtained

for two Hamiltonians H±. This involves solving the parametrized version of Floer’s

equation

∂su + Js(∂tu−XHs) = 0,

where Js are ω−compatible almost complex structures of contact type and Hs is a

homotopy from H− to H+ (i.e. an s−dependent Hamiltonian with (Hs, Js) = (H−, J−)

for s ¿ 0 and (Hs, Js) = (H+, J+) for s À 0). If x and y are respectively 1-periodic

orbits of XH− and XH+ , then we can define a moduli spaceM(x, y) of such solutions u

which converge to x and y at the ends. This time there is no freedom to reparametrize

u in the s−variable.

The action AHs(u(s, ·)) along such a solution u will vary as follows

∂s(AHs(u(s, ·))) = −
∫ 1

0

|∂su|2 dt +

∫ 1

0

(∂sHs)(u) dt,

so the action decreases if Hs is monotone decreasing, ∂sHs ≤ 0. The energy is

E(u) =

∫
|∂su|2gs

ds ∧ dt = AH−(x−)− AH+(x+) +

∫
(∂sHs)(u) ds ∧ dt,

so an a priori bound will hold if ∂sHs ≤ 0 outside of a compact set in M̂ .

If Hs = hs(e
r) on the collar and ∂sh

′
s ≤ 0, then a maximum principle for er ◦ u as

before will hold on the collar (we refer to [22] for a very clear proof) and therefore it
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automatically guarantees a bound on (∂sHs)(u) and thus an a priori energy bound.

Thus, if outside of a compact in M̂ we have Hs = hs(e
r) and ∂sh

′
s ≤ 0, then (after a

generic C2-small time-dependent perturbation of (Hs, Js)) the moduli space M(x, y)

will be a smooth manifold with a compactification M(x, y) by broken trajectories

and a continuation map φ : CF ∗(H+) → CF ∗(H−) can be defined: on a generator

y ∈ Crit(AH+),

φ(y) =
∑

v∈M0(x,y)

ε(v) x,

where M0(x, y) is the 0−dimensional part of M(x, y) and ε(v) ∈ {±1} depends on

orientations. Standard methods show that φ is a chain map and that these maps

compose well: given homotopies from H− to K and from K to H+, each satisfying

the condition ∂sh
′
s ≤ 0 outside of a compact in M̂ , then the composite CF ∗(H+) →

CF ∗(K) → CF ∗(H−) is chain homotopic to φ. So on cohomology, φ : HF ∗(H+) →
HF ∗(H−) equals the composite HF ∗(H+) → HF ∗(K) → HF ∗(H−).

For example, a “compactly supported homotopy” is one where Hs is independent

of s outside of a compact (∂sHs = 0 for s À 0). Continuation maps for Hs and H−s

can then be defined and they will be inverse to each other up to chain homotopy.

2.3.10 Symplectic cohomology using only one Hamiltonian

We change coordinates from r to x = er, so the collar is now (0,∞)× ∂M ⊂ M̂ and

∂M = {x = 1}.

Take a Hamiltonian H∞ with H∞ = h(x) for x À 0, such that h′(x) →∞ as x →
∞. The symplectic cohomology is defined as the cohomology of the corresponding

Floer complex (after a C2-small time-dependent perturbation of (H∞, J)),

SH∗(M ; H∞) = HF ∗(H∞).

The technical difficulty lies in showing that it is independent of the choices (H∞, J).
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2.3.11 Symplectic cohomology with action bounds

Similarly one defines the groups SH∗(M ; H∞; A,B) = HF ∗(M ; H∞; A,B), but these

now depend on the choice of H∞. However, for B = ∞, taking the direct limit as

A → −∞ yields

lim
−→

SH∗(M ; H∞; A,∞) = SH∗(M ; H∞),

since CF ∗(H∞; A,∞) are subcomplexes exhausting CF ∗(H∞;−∞,∞) as A → −∞.

If we use action bounds, then it is sometimes possible to vary the Hamiltonian

without using continuation maps. Let H1 = h1(x) for x ≥ x0, and suppose Ah1(x) =

−xh′1(x)+h1(x) < A for x ≥ x0. Let H2 = H1 on M ∪{x ≤ x0} and H2 = h2(x) with

Ah2(x) < A for x ≥ x0 (e.g. if h′′2 ≥ 0). Then

CF ∗(H1; A,B) = CF ∗(H2; A,B)

are equal as complexes: the orbits in {x ≥ x0} get discarded by the action bounds;

the orbits agree in M ∪ {x ≤ x0} since H1 = H2 there; and the differential on

these common orbits is the same because the maximum principle forces the Floer

trajectories to lie in M ∪ {x ≤ x0}, where H1 = H2, so the Floer equations agree.

For example, let H1 = h1(x) = 1
2
x2 on x > 0, so Ah1(x) = −1

2
x2. Take H2 = H1

on M ∪ {x ≤ x0} and extend H2 linearly on {x ≥ x0}. Then CF ∗(H1;−1
2
x2

0;∞) =

CF ∗(H2;−1
2
x2

0;∞). By this trick, SH∗(M ; H∞; A,∞) can be computed by a Hamil-

tonian which is linear at infinity, and so SH∗(M ; H∞) can be computed as a direct

limit using Hamiltonians which are linear at infinity and whose slopes at infinity

become steeper and steeper. We now make this precise.

2.3.12 Hamiltonians linear at infinity

Consider Hamiltonians H which equal

hm
c,C(x) = m(x− c) + C
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for x À 0. We assume that the slope m > 0 does not occur as the value of the period

of any Reeb orbit. If Hs is a homotopy from H− to H+ among such Hamiltonians,

i.e. Hs = hms
cs,Cs

(x) for x À 0, then the maximum principle (and hence a priori energy

bounds for continuation maps) will hold if

∂s∂xh
ms
cs,Cs

= ∂sms ≤ 0.

Suppose that ∂sms ≤ 0, satisfying ms = m− for s ¿ 0 and ms = m+ for s À 0, and

suppose that the action values AHs(x) of 1-periodic orbits x of XHs never cross the

action bounds A,B. Then a continuation map can be defined,

φ : CF ∗(H+; A,B) → CF ∗(H−; A,B).

These maps compose well: φ′ ◦ φ′′ is chain homotopic to φ (where to define φ′, φ′′ we

use m′
s varying from m− to some m, m′′

s varying from m to m+, and the analogous

assumptions as above hold). For example if we vary only c, C, and not m, then

∂sms = 0 outside of a compact and the continuation map φ for Hs can be inverted (up

to chain homotopy) by using the continuation map for H−s. Thus, up to isomorphism,

HF ∗(H) is independent of the choice of the constants c, C in hm
c,C .

2.3.13 Symplectic cohomology as a direct limit

Suppose H∞ = h(x) for x À 0 and h′(x) → ∞ as x → ∞. Suppose also that

xh′′(x) > δ > 0 for x À 0. This implies that ∂xAh = −xh′′(x) < −δ so Ah decreases

to −∞ as x →∞.

Given A ∈ R, suppose Ah(x) = −xh′(x) + h(x) < A for x ≥ x0. Define H = H∞

on M ∪ {x ≤ x0} and extend H linearly in x for x ≥ x0. Then CF ∗(H; A,B) =

CF ∗(H∞; A,B), and CF ∗(H; A,B) is a subcomplex of CF ∗(H∞;−∞, B).

Decreasing A to A′ < A defines some Hamiltonian H ′ which is steeper at infinity,

and it induces a continuation map CF ∗(H; A,B) → CF ∗(H ′; A′, B). The direct limit
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over these continuation maps yields a chain isomorphism

lim
−→

CF ∗(H; A,B) → CF ∗(H∞;−∞, B),

which by the exactness of direct limits induces an isomorphism on cohomology

lim
−→

HF ∗(H; A,B) → SH∗(M ; H∞;−∞, B).

So an alternative definition is

SH∗(M) = lim
−→

HF ∗(H),

where the direct limit is over the continuation maps for all the Hamiltonians which are

linear at infinity, ordered by increasing slopes m > 0. In the above argument, we chose

particular H which approximated H∞ on larger and larger compacts. However, the

direct limit can be taken over any family of H with slopes at infinity m →∞ because,

up to an isomorphism induced by a continuation map, HF ∗(H) is independent of the

choice of H for fixed m, so any two cofinal families (m →∞) will give the same limit

up isomorphism.

2.3.14 Novikov bundles of coefficients

We recommend [28] as a reference on local systems. Let LN = C∞(S1, N) denote

the free loopspace of a manifold N , and let L0N be the component of contractible

loops. The Novikov ring

Λ = Z((t)) = Z[[t]][t−1]

is the ring of formal Laurent series. Let α be a singular cocycle representing a ∈
H1(LN). The Novikov bundle Λα is the local system of coefficients on LN defined

by a copy Λγ of Λ over each loop γ ∈ LN and by the multiplication isomorphism

tα[u] : Λγ → Λγ′ for each path u in LN connecting γ to γ′, where α[·] : C1(LN) → Z

is evaluation on singular one-chains. A different choice of representative α for a gives
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an isomorphic local system, so by abuse of notation we write Λa instead of Λα and

a[u] instead of α[u].

We will be using the Novikov bundle Λτ(β) on L0N corresponding to the trans-

gression τ(β) ∈ H1(L0N) of some β ∈ H2(N) (see 3.5.1). This bundle pulls back

to a trivial bundle under the inclusion of constant loops c : N → L0N , since the

transgression τ(β) vanishes on π1(N) ⊂ π1(L0N). Therefore we just get ordinary

cohomology with coefficients in the ring Λ,

H∗(N ; c∗Λτ(β))
∼= H∗(N ; Λ).

Moreover, for any map j : L → T ∗N the projection p : L → T ∗N → N induces a

map Lp : L0L → L0N , and the pull-back of the Novikov bundle is

(Lp)∗Λτ(β)
∼= Λ(Lp)∗(τ(β))

∼= Λτ(p∗β).

If τ(p∗β) = 0 ∈ H1(L0L), then this is a trivial bundle and

H∗(L0L; (Lp)∗Λτ(β))
∼= H∗(L0L)⊗ Λ.

2.3.15 Novikov-Floer cohomology

Let (M2n, θ) be a Liouville domain (2.3.1). Let α be a singular cocyle representing

a class in H1(LM) ∼= H1(LM̂). We define the Novikov-Floer chain complex for

H ∈ C∞(M̂,R) with twisted coefficients in Λα to be the Λ−module freely generated

by the 1-periodic orbits of XH ,

CF ∗(H; Λα) =
⊕ {

Λx : x ∈ LM̂, ẋ(t) = XH(x(t))
}

,

and the differential δ on a generator y ∈ Crit(AH) is defined as

δy =
∑

u∈M0(x,y)

ε(u) tα[u] x,
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where M0(x, y) and ε(u) ∈ {±1} are the same as in (2.3.8). The new factor tα[u]

which appears in the differential is precisely the multiplication isomorphism Λx → Λy

of the local system Λα which identifies the Λ−fibres over x and y.

As in the untwisted case, we assume that a generic C2-small time-dependent

perturbation of (H, J) has been made so that the transversality and compactness

results of (2.3.7) for the moduli spaces M(x, y) are achieved.

Proposition 7. (CF ∗(H; Λα); δ) is a chain complex, i.e. δ ◦ δ = 0.

Proof. We mimick the proof that ∂2 = 0 in Floer homology (see [21]). Observe

Figure 2-1. A sequence un ∈ M′
2(x, y) converges to a broken trajectory (u′1, u

′
2) ∈

M′
1(x, y′)×M′

1(y
′, y), in the sense that there are sn → −∞ and Sn →∞ with

un(sn + ·, ·) → u′1 and un(Sn + ·, ·) → u′2 both in C∞
loc;

Conversely given such (u′1, u
′
2) there is a curve u : [0, 1) → M′

2(x, y), unique up to

reparametrization and up to the choice of u(0) ∈M′
2(x, y), which approaches (u′1, u

′
2)

as r → 1, and the curve is orientation preserving iff ε(u′1)ε(u
′
2) = 1.

So the boundary of M1(x, y) is parametrized by M0(x, y′)×M0(y
′, y). The value

of dα = 0 on the connected component of M1(x, y) shown in Figure 2-1 is equal to

the sum of the values of α over the broken trajectories,

α[u′1] + α[u′2] = α[u′′1] + α[u′′2],

and since ε(u′1)ε(u
′
2) = −ε(u′′1)ε(u

′′
2), we conclude that

ε(u′1) tα[u′1] ε(u′2) tα[u′2] = −ε(u′′1) tα[u′′1 ] ε(u′′2) tα[u′′2 ].

Thus the broken trajectories contribute opposite Λ−multiples of x to δ(δy) for each

connected component of M1(x, y). Hence, summing over x, y′,

δ(δy) =
∑

(u′1,u′2)∈M0(x,y′)×M0(y′,y)

ε(u′1) tα[u′1] ε(u′2) tα[u′2] x = 0.
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Denote by HF ∗(H; Λα) the Λ−modules corresponding to the cohomology groups

of the complex (CF ∗(H; Λα); δ). We call these the Novikov-Floer cohomology groups.

By filtering the chain complex by action as in (2.3.8), we can define

HF ∗(H; Λα; A,B) = H∗(CF ∗(H; Λα; A,B); δ).

2.3.16 Twisted continuation maps

We now show that the continuation method described in (2.3.9) can be used in the

twisted case under the same assumptions that we made in the untwisted case. Recall

that this involves solving

∂sv + Js(∂tv −XHs) = 0,

and that under suitable assumptions on (Hs, Js) the moduli spaces M(x, y) of so-

lutions v joining 1-periodic orbits x, y of XH− and XH+ are smooth manifolds with

compactifications M(x, y) whose boundaries are given by broken trajectories.

So far, using a twisted differential does not change the setup. However, to make

the continuation map φ : CF ∗(H+; Λα) → CF ∗(H−; Λα) into a chain map we need to

define it on a generator y ∈ Crit(AH+) by

φ(y) =
∑

v∈M0(x,y)

ε(v) tα[v] x,

where M0(x, y) and ε(v) ∈ {±1} are as in (2.3.9).

Proposition 8. φ : CF ∗(H+; Λα) → CF ∗(H−; Λα) is a chain map.

Proof. We mimick the proof that φ is a chain map in the untwisted case [21]. Denote

by MH±(·, ·) the moduli spaces of Floer trajectories for H±. Observe Figure 2-2.

A compactness result in Floer homology shows that a sequence of solutions vn ∈
M1(x, y) will converge to a broken trajectory

(u′−, v′) ∈MH−
0 (x, x′)×M0(x

′, y) or (v′, u′+) ∈M0(x, y′)×MH+

0 (y′, y).

35



x

x’’x’

v’’

u’ u’’

v’

vn

y

−−

x

y’’x’

u’’

u’ v’’

v’

vn

y

−

+

x

y’’y’

u’’

v’ v’’

u’

vn

y

+
+

Figure 2-2: The dashed lines u± are Floer solutions converging to 1-periodic orbits of
XH± , the solid lines are continuation map solutions, the vn ∈M1(x, y) are converging
to broken trajectories.

Conversely, given such (u′−, v′) or (v′, u′+) there is a smooth curve v : [0, 1) →M1(x, y),

unique up to reparametrization and up to the choice of v(0), which approaches the

given broken trajectory as r → 1, and the curve is orientation preserving iff respec-

tively ε(u′−)ε(v′) = −1 and ε(v′)ε(u′+) = 1.

Thus the boundary of M1(x, y) is parametrized by −MH−
0 (x, x′)×M0(x

′, y) and

by M0(x, y′) × MH+

0 (y′, y). The value of dα = 0 on a connected component of

M1(x, y) as in Figure 2-2 is equal to the sum of the values of α over the broken

trajectories. For instance, in the second figure

α[u′−] + α[v′] = α[v′′] + α[u′′+],

and since ε(u′−)ε(v′) = ε(v′′)ε(u′′+),

ε(u′−) tα[u′−] ε(v′) tα[v′] = ε(v′′) tα[v′′] ε(u′′+) tα[u′′+].

Thus the broken trajectories contribute equal Λ−multiples of x to δ(φ(y)) and φ(δy)

for that component of M1(x, y). A similar computation shows that in the first or

third figures, the two broken trajectories contribute opposite Λ−multiples of x and
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so in total give no contribution to δ(φ(y)) or φ(δy). We deduce that

δ(φ(y)) =
∑

(u′−,v′)∈MH−
0 (x,x′)×M0(x′,y)

ε(u′−) tα[u′−] ε(v′) tα[v′] x =

=
∑

(v′,u′+)∈M0(x,y′)×MH+
0 (y′,y)

ε(v′) tα[v′] ε(u′+) tα[u′+] x = φ(δy),

where we sum respectively over x, x′ and x, y′. Hence φ is a chain map.

A similar argument, by mimicking the proof of the untwisted case, shows that

the twisted continuation maps compose well: given homotopies from H− to K and

from K to H+ satisfying the conditions required in the untwisted case, the composite

CF ∗(H+; Λα) → CF ∗(K; Λα) → CF ∗(H−; Λα) is chain homotopic to φ.

2.3.17 Novikov-symplectic cohomology

If we use the groups HF ∗(H; Λα) from (3.5.3) in place of HF ∗(H) in our discussion

(2.3.10-2.3.13) of the symplectic cohomology groups of a Liouville domain, and we use

the twisted continuation maps constructed in (2.3.16), then we obtain the Λ−modules

SH∗(M ; H∞; Λα) and SH∗(M ; H∞; Λα; A,B),

which we call Novikov-symplectic cohomology groups.

So for H∞ such that H∞ = h(x) for x À 0 and h′(x) →∞ as x →∞, we define

SH∗(M ; Λα) = HF ∗(H∞; Λα).

Alternatively, we may use the Hamiltonians H which equal hm
c,C(x) = m(x − c) + C

for x À 0, and we take the direct limit over the twisted continuation maps between

the corresponding twisted Floer cohomologies as the slopes m > 0 increase,

SH∗(M ; Λα) = lim
−→

HF ∗(H; Λα).
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2.4 Abbondandolo-Schwarz isomorphism

For a closed (oriented) manifold Nn, the symplectic cohomology of the cotangent disc

bundle M2n = DT ∗N is isomorphic to the homology of the free loopspace,

SH∗(DT ∗N) ∼= Hn−∗(LN).

This was first proved by Viterbo [26], and there are now two alternative approaches by

Abbondandolo-Schwarz [1] and Salamon-Weber [20]. We will use the Abbondandolo-

Schwarz isomorphism and show that it carries over to twisted coefficients, but similar

arguments could be carried out using either of the other approaches. We will recall

the construction [1] of the chain isomorphism

(CM∗(E), ∂E) → (CF n−∗(H), ∂H),

between the Morse complex of the Hilbert manifold L1N = W 1,2(S1, N) with respect

to a certain Lagrangian action functional E and the Floer complex of T ∗N with

respect to an appropriate Hamiltonian H ∈ C∞(S1 × T ∗N,R).

Let π : T ∗N → N denote the projection. We use the standard symplectic struc-

ture ω = dθ and Liouville field Z on T ∗N , which in local coordinates (q, p) are

θ = p dq ω = dp ∧ dq Z = p ∂p.

A metric on N induces metrics and Levi-Civita connections on TN and T ∗N , and it

defines a splitting T(q,p)T
∗N ∼= TqN ⊕T ∗

q N ∼= TqN ⊕TqN into horizontal and vertical

vectors and a connection ∇ = ∇q ⊕∇p, and similarly for T(q,v)TN . For this splitting

our preferred ω−compatible almost complex structure is J∂q = −∂p.

Remark. Our action AH is opposite to the action A used in [1], so our Floer tra-

jectory u(s, t) corresponds to u(−s, t) in [1]. Our grading is µ(x) = n− µCZ(x) (see

[21], where the sign of H is opposite to ours), the one used in [1] is µCZ(x) and that

in [22] is −µCZ(x). In our convention the index µ(x) agrees with the Morse index
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indH(x) for x ∈ Crit(H) when H is a C2-small Morse Hamiltonian.

2.4.1 The Lagrangian Morse functional

The Morse function one considers on L1N = W 1,2(S1, N) is the Lagrangian action

functional

E(q) =

∫ 1

0

L(t, q(t), q̇(t)) dt,

where the Lagrangian L ∈ C∞(S1 × TN,R) is generic and satisfies certain growth

conditions and a strong convexity assumption that ensure that: E is bounded below;

the critical points of E are non-degenerate with finite Morse index; and E satisfies the

Palais-Smale condition (any sequence of qn ∈ L1N with bounded actions E(qn) and

with energies ‖∇E(qn)‖W 1,2 → 0 has a convergent subsequence). By an appropriate

generic perturbation it is possible to obtain a metric G which is uniformly equivalent

to the W 1,2 metric on L1N and for which (E , G) is a Morse-Smale pair. Denote by

ME(q−, q+) = M′
E(q−, q+)/R the unparametrized trajectories, where

M′
E(q−, q+) = {v : R→ L1N : ∂sv(s) = −∇E(v(s)), lim

s→±∞
v(s) = q±}.

Under these assumptions, infinite dimensional Morse theory can be applied to (L1N, E , G)

and the Morse homology is isomorphic to the singular homology of L1N (which

is isomorphic to the singular homology of LN , since L1N and LN are homotopy

equivalent). This isomorphism respects the filtration by action: the homology of

the Morse complex generated by the x ∈ Crit(E) with E(x) < a is isomorphic to

H∗({q ∈ L1N : E(q) < a}). The isomorphism also respects the splitting of the Morse

complex and the singular complex into subcomplexes corresponding to the compo-

nents of L1N (which are indexed by the conjugacy classes of π1(N)).
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2.4.2 Legendre transform

L defines a Hamiltonian H ∈ C∞(S1 × T ∗N,R) by

H(t, q, p) = max
v∈TqN

(p · v − L(t, q, v)).

The strong convexity assumption on L ensures that there is a unique maximum pre-

cisely where p = dvL(t, q, v) is the differential of L restricted to the vertical subspace

T vert
(q,v)TN ∼= TqN , and it ensures that the Legendre transform

L : S1 × TN → S1 × T ∗N, (t, q, v) 7→ (t, q, dvL(t, q, v))

is a fiber-preserving diffeomorphism.

Pull back (ω, H,XH) via L to obtain (L∗ω,H ◦L, YL), so L∗ω(YL, ·) = −d(H ◦L).

The critical points of E are precisely the 1-periodic orbits (q, q̇) of YL in TN , and

these bijectively correspond to 1-periodic orbits x of XH in T ∗N via

(t, x) = L(t, q, q̇).

Under this correspondence the Morse index of q is m(q) = n−µ(x) (in the conventions

of [1], m(q) = µCZ(x)). Moreover, for any W 1,2−path x : [0, 1] → T ∗N ,

E(πx) ≥ −AH(x),

which becomes an equality iff (t, x) = L(t, πx, ∂t(πx)) for all t.

2.4.3 The moduli spaces M+(q,x)

For 1-periodic orbits q of YL and x of XH , define M+(q, x) to be the collection of all

maps u ∈ C∞((−∞, 0)×S1, T ∗N) which are of class W 1,3 on (−1, 0)×S1 and which

solve Floer’s equation

∂su + J(t, u)(∂tu−XH(t, u)) = 0,
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with the following boundary conditions:

i) as s → −∞, u(s, ·) → x uniformly in t;

ii) as s → 0, u will converge to some loop u(0, ·) of class W 2/3,3, and we require

that the projection q(t) = π ◦ u(0, t) in N flows backward to q ∈ Crit(E) along the

negative gradient flow φs
−∇E of E : φs

−∇E(q) → q as s → −∞.

Loosely speaking, M+(q, x) consists of pairs of trajectories (w, u+) where w is a

−∇E trajectory in N flowing out of q, and u+ is a Floer solution in T ∗N flowing out

of x, such that w and πu+ intersect in a loop q(t) = πu+(0, t) in N .

2.4.4 Transversality and compactness

The assumption on H and L is that there are constants ci > 0 such that for all

(t, q, p) ∈ S1 × T ∗N , (t, q, v) ∈ S1 × TN ,

dH(p∂p)−H ≥ c0|p|2 − c1, |∇pH| ≤ c2(1 + |p|), |∇qH| ≤ c2(1 + |p|2);
∇vvL ≥ c3 Id, |∇vvL| ≤ c4, |∇qvL| ≤ c4(1 + |v|), |∇qqL| ≤ c4(1 + |v|2).

We also assume that a small generic perturbation of L (and hence H) are made so

that the nondegeneracy condition (see 2.3.7) holds for 1-periodic orbits of YL and

XH . We call such H,L regular. For regular H, there are only finitely many 1-

periodic orbits x of XH with action AH(x) ≥ a, for a ∈ R. After a small generic

perturbation of J , the compactness and transversality results of (2.3.7) hold for the

spaces MH(x, y) = M′(x, y)/R of unparametrized Floer solutions in T ∗N converging

to x, y ∈ Crit(AH) at the ends, and similar results hold for M+(q, x) by using the

W 1,3 condition in the definition to generalize the proofs used for M′(x, y).

When all of the above assumptions are satisfied, we call (L,G, H, J) regular. In

this case, ME(p, q), MH(x, y) and M+(q, x) are smooth manifolds with compactifi-

cations by broken trajectories, and their dimensions are:

dim ME(p, q) = m(p)−m(q)− 1

dim MH(x, y) = µ(x)− µ(y)− 1

dim M+(q, x) = m(q) + µ(x)− n
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and we denote by ME
k(p, q), MH

k (x, y) and M+
k (q, x) the k-dimensional ones.

Theorem (Abbondandolo-Schwarz [1]). If (L,G, H, J) is regular then there is a

chain-complex isomorphism ϕ : (CM∗(E), ∂E) → (CF n−∗(H), ∂H), which on a gener-

ator q ∈ Crit(E) is defined as

ϕ(q) =
∑

u+∈M+
0 (q,x)

ε(u+) x,

where ε(u+) ∈ {±1} are orientation signs. The isomorphism is compatible with the

splitting into subcomplexes corresponding to different conjugacy classes of π1(N), and

it is compatible with the action filtrations: for any a ∈ R it induces an isomorphism

on the subcomplexes generated by the q, x with E(q) < a and −AH(x) < a.

2.4.5 Proof that ϕ is an isomorphism.

Since actions decrease along orbits and E(πx) ≥ −AH(x) with equality iff (t, x) =

L(t, π ◦ x, ∂tπx), we deduce that

E(q) ≥ E(q) ≥ −AH(u+(0, ·)) ≥ −AH(x),

so E(q) ≥ −AH(x) with equality iff q ≡ q, u+ ≡ x, q = πx and (t, x) = L(t, q, q̇).

Therefore if E(q) < −AH(x) thenM+(q, x) = ∅, and if E(q) = −AH(x) thenM+(q, x)

is either empty or, when (t, x) = L(t, q, q̇), it consists of u+ ≡ x. Now order the

generators of CM∗(E) according to increasing action and those of CF ∗(H) according

to decreasing action, and so that the order is compatible with the correspondence

(t, x) = L(t, q, q̇). Then ϕ is a (possibly infinite) upper triangular matrix with ±1

along the diagonal, so ϕ is an isomorphism.
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Figure 2-3: Solid lines are −∇E trajectories in N , dotted lines are the projections
under π : T ∗N → N of Floer solutions.

2.4.6 Proof that ϕ is a chain map

The differentials for the complexes (CM∗(E), ∂E) and (CF ∗(H), ∂H) are defined on

generators q ∈ Crit(E), y ∈ Crit(AH) by

∂E(q) =
∑

v∈ME
0 (q,p)

ε(v) p ∂H(y) =
∑

u∈MH
0 (x,y)

ε(u) x

where ε(v), ε(u) ∈ {±1} depend on orientations. Observe Figure 2-3. A compactness

argument shows that the broken trajectories that compactify M+
1 (q, x) are of two

types: either (i) the −∇E trajectory breaks, or (ii) the Floer trajectory breaks.

More precisely, if un ∈M+
1 (q, x) and qn(t) = π(un(0, t)), then either

(i) there are [v] ∈ME
0 (q, p); u′+ ∈M+

0 (p, x); and reals tn → −∞ with

φtn
−∇E(qn) → v(0) in W 1,2, and un → u′+ in C∞

loc;

(ii) or there are [u′] ∈MH
0 (x, x′); u′+ ∈M+

0 (q, x′); and reals sn → −∞ with

un(sn + ·, ·) → u′ and un → u′+ both in C∞
loc.
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Conversely, given (v, u′+) or (u′, u′+) as above, there is a smooth curve u : [0, 1) →
M+

1 (q, x), unique up to reparametrization and up to the choice of u(0), which ap-

proaches the given broken trajectory as r → 1, and the curve is orientation preserving

iff respectively ε(v)ε(u′+) = 1 and ε(u′)ε(u′+) = −1.

Thus the boundary of M+
1 (q, x) is parametrized by ME

0 (q, p)×M+
0 (p, x) and by

−MH
0 (x, x′) ×M+

0 (q, x′). Figure 2-3 shows the possible components of M+
1 (q, x):

in the first and third figures, the broken trajectories contribute zero respectively to

ϕ(∂E(q)) and ∂H(ϕ(q)); in the second figure we see that ε(u′)ε(u′+) = ε(v′′)ε(u′′+),

so the broken trajectories contribute ±x to both ∂H(ϕ(q)) and ϕ(∂E(q)). Therefore

∂H(ϕ(q)) = ϕ(∂E(q)), so ϕ is a chain map.

2.4.7 The twisted version of the Abbondandolo-Schwarz iso-

morphism

Let α be a singular cocyle representing a class in H1(L1N) ∼= H1(LN). We will use

the bundles Λα on L1N and Λ(Lπ)∗α on L1T ∗N (see 3.5.2), where Lπ : L1T ∗N →
L1N is induced by π : T ∗N → N . The twisted complexes (CM∗(E ; Λα), δE) and

(CF ∗(H; Λ(Lπ)∗α), δH) are freely generated over Λ respectively by the q ∈ Crit(E) and

the y ∈ Crit(AH), and the twisted differentials are defined by

δE(q) =
∑

v∈ME
0 (q,p)

ε(v) t−α[v] p δH(y) =
∑

u∈MH
0 (x,y)

ε(u) tα[Lπ(u)] x

since α[Lπ(u)] = (Lπ)∗α[u]. The sign difference in the powers of t arises because δE

is a differential and δH is a codifferential. For simplicity, we write πu = Lπ(u).

Theorem 9. If (L,G, H, J) is regular then for all α ∈ H1(LN) there is a chain-

complex isomorphism ϕ : (CM∗(E ; Λα), δE) → (CF n−∗(H; Λ(Lπ)∗α), δH), which on a

generator q is defined as

ϕ(q) =
∑

u+∈M+
0 (q,x)

ε(u+) t−α[w]+α[πu+] x,
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where w : (−∞, 0] → L1N is the negative gradient trajectory w(s) = φs
−∇E(q) con-

necting q to q(·) = πu+(0, ·). The isomorphism is compatible with the splitting into

subcomplexes corresponding to different conjugacy classes of π1(N), and it is com-

patible with the action filtrations: for any a ∈ R it induces an isomorphism on the

subcomplexes generated by the q, x with E(q) < a and −AH(x) < a.

After identifying Morse cohomology with singular cohomology, the map ϕ induces

an isomorphism

SH∗(DT ∗N ; Λα) ∼= Hn−∗(LN ; Λα).

Proof. Figure 2-3 shows the possible connected components of M+
1 (q, x). Evaluating

dα = 0 on a component equals the sum of the values of α on the broken trajectories.

For instance, in the second figure

−α[w′] + α[πu′+] + α[πu′] = −α[v′′]− α[w′′] + α[πu′′+],

and therefore, since ε(u′)ε(u′+) = ε(v′′)ε(u′′+),

ε(u′)ε(u′+) t−α[w′]+α[πu′+] tα[πu′] = ε(v′′)ε(u′′+) t−α[v′′] t−α[w′′]+α[πu′′+].

Thus the broken trajectories contribute equally to δH(ϕ(q)) and ϕ(δE(q)). A similar

computation shows that in the first and third figures the broken trajectories contribute

zero respectively to ϕ(δE(q)) and δH(ϕ(q)). Hence

δH(ϕ(q)) =
∑

(u′,u′+)∈MH
0 (x,x′)×M+

0 (q,x′)

ε(u′) tα[πu′] · ε(u′+) t−α[w′]+ α[πu′+] x =

=
∑

(v′′,u′′+)∈ME
0 (q,p)×M+

0 (p,x)

ε(v′′) t−α[v′′] · ε(u′′+) t−α[w′′]+α[πu′′+] x = ϕ(δE(q)),

where we sum respectively over x, x′ and over x, p, and where w′, w′′ are the −∇E
trajectories ending in πu′+(0, ·), πu′′+(0, ·). Hence ϕ is a chain map.

That ϕ is an isomorphism follows just as in the untwisted case, because for E(q) ≤
−AH(x) the only nonempty M+

0 (q, x) occurs when (t, x) = L(t, q, q̇), and in this case

M+
0 (q, x) = {u+} where u+ ≡ x and w ≡ q are independent of s ∈ R and so the
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coefficient of x in ϕ(q) is

ε(u+) t−α[w]+α[πu+] = ε(u+) = ±1.

The last statement in the claim is a consequence of the identification of the Morse

cohomology of (L1N, E , G) with the singular cohomology of L1N just as in [1], after

introducing the system Λα of local coefficients.

2.5 Viterbo Functoriality

Let (M2n, θ) be a Liouville domain (2.3.1), and suppose

i : (W 2n, θ′) ↪→ (M2n, θ)

is a Liouville embedded subdomain, that is we require that i∗θ−eρθ′ is exact for some

ρ ∈ R. For example the embedding DT ∗L ↪→ DT ∗N , obtained by extending an exact

Lagrangian embedding L ↪→ DT ∗N to a neighbourhood of L, is of this type. We fix

δ > 0 with

0 < δ < min {periods of the nonconstant Reeb orbits on ∂M and ∂W}.

We will now recall the construction of Viterbo’s commutative diagram ([25]):

SH∗(W )
OO
c∗

ooSH∗(i)
SH∗(M)

OO
c∗

H∗(W ) oo i∗
H∗(M)

2.5.1 Hamiltonians with small slopes

We now consider Hamiltonians H0 as in (2.3.12), which are C2-close to a constant

on M̂ \ (0,∞) × ∂M ; H0 = h(x) with slopes h′(x) ≤ δ for x ≥ 0; and which have

constant slope h′(x) = m > 0 for x ≥ x0.
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A standard result in Floer homology is that (after a generic C2-small time-

independent perturbation of (H0, J)) the 1-periodic orbits of XH0 and the Floer

trajectories connecting them inside M̂ \ {x ≥ x0} are both independent of t ∈ S1,

and so these orbits correspond to critical points of H0 and these Floer trajectories

correspond to negative gradient trajectories of H0. By the maximum principle, the

Floer trajectories connecting these orbits do not enter the region {x ≥ x0}, and by

the choice of δ there are no 1-periodic orbits in {x ≥ x0} since there 0 < h′(x) ≤ δ.

The Floer complex CF ∗(H0) is therefore canonically identified with the Morse

complex CM∗(H0), which is generated by Crit(H0) and whose differential counts the

−∇H0 trajectories. The Morse cohomology HM∗(H0) is isomorphic to the singular

cohomology of M̂ (which is homotopy equivalent to M), so

HF ∗(H0) ∼= HM∗(H0) ∼= H∗(M).

Moreover, by Morse cohomology, a different choice H0′ of H0 yields an isomorphism

HM∗(H0′) ∼= H∗(M) which commutes with HM∗(H0) ∼= H∗(M) via the continuation

isomorphism HM∗(H0) → HM∗(H0′).

2.5.2 Construction of c∗

Recall from (2.3.13) that

SH∗(M) = lim
−→

HF ∗(H),

where the direct limit is over the continuation maps for Hamiltonians H which equal

hm
c,C(x) = m(x− c) + C for x À 0, ordered by increasing slopes m > 0.

Since H0 is such a Hamiltonian, there is a natural map HF ∗(H0) → lim HF ∗(H)

arising as a direct limit of continuation maps. By 2.5.1, this defines a map

c∗ : H∗(M) → SH∗(M).

A different choice H0′ yields a map HF ∗(H0′) → SH∗(M) which commutes with

the map HF ∗(H0) → SH∗(M) via the continuation isomorphism HF ∗(H0) →
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Figure 2-4: The solid line is a diagonal-step shaped Hamiltonian h = ha,b
c with slopes

a À b. The dashed line is the action function Ah(x) = −xh′(x) + h(x).

HF ∗(H0′). Together with 2.5.1, this shows that c∗ is independent of the choice

of H0.

2.5.3 Diagonal-step shaped Hamiltonians

We now consider the Liouville subdomain i : W ↪→ M . The ∂r−Liouville flow for

θ′ defines a tubular neighbourhood (0, 1 + ε) × ∂W of ∂W inside M̂ , where ∂W

corresponds to x = er = 1. This coordinate x may not extend to M̂ \W , and it should

not be confused with the x we previously used to parametrize (0,∞)× ∂M ⊂ M̂ .

We consider diagonal-step shaped Hamiltonians H as in Figure 3-2, which are zero

on W \{x ≥ c} and which equal ha,b
c (x) on {x ≥ c}, where ha,b

c is piecewise linear with

slope b at infinity; with slope a À b on (c, 1 + ε); and which is constant elsewhere.

We assume that 0 ≤ c ≤ 1 and that a, b are chosen generically so that they are not

periods of Reeb orbits (see 2.3.2).

As usual, before we take Floer complexes we replace H by a generic C2-small time-

dependent perturbation of it, and the orbits and action values that we will mention

take this into account. Let M ′ ⊂ M̂ be the compact subset where h does not have

slope b. Observe Figure 3-2: the 1-periodic orbits of XH that can arise are:

1. critical points of H inside W \ {x ≥ c} of action very close to 0;
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2. nonconstant orbits near x = c of action in (−ac,−δc);

3. nonconstant orbits near x = 1 + ε of action in (−ac, a(1 + ε− c));

4. critical points of H in M ′ \ (W ∪ {x ≤ 1 + ε}) of action close to a(1 + ε− c);

5. nonconstant orbits near ∂M ′ of action À 0 provided a À b.

Since the complement of the Reeb periods is open, there are no Reeb periods in

(a− νa, a + νa) for some small νa > 0. Thus the actions in case (3) will be at least

−(a− νa)(1 + ε) + a(1 + ε− c) = νa(1 + ε)− ac,

and for sufficiently small c, depending on a, we can ensure that this is at least νa.

Hence (after a suitable perturbation of H) we can ensure that if a À b and c ¿ a−1

then the actions of (1), (2) are negative and those of (3), (4), (5) are positive.

2.5.4 Construction of SH∗(i)

Suppose H is a (perturbed) diagonal-step shaped Hamiltonian, with a À b and c ¿
a−1 so that the orbits in W have negative actions and those outside W have positive

actions. We write CF ∗(M, H) to emphasize that the Floer complex is computed for

M . Consider the action-restriction map (2.3.8)

CF ∗(M, H;−∞, 0) ← CF ∗(M,H).

Given two diagonal-step shaped Hamiltonians H, H ′ with H ≤ H ′ everywhere, pick

a homotopy Hs from H ′ to H which is monotone (∂sHs ≤ 0). The induced contin-

uation map φ : CF ∗(M,H) → CF ∗(M,H ′) restricts to a map on the quotient com-

plexes φ : CF ∗(M, H;−∞, 0) → CF ∗(M, H ′;−∞, 0) because the action decreases

along Floer trajectories when Hs is monotone (see 2.3.9).

Consider the Hamiltonian HW on the completion Ŵ = W ∪∂W [0,∞)×∂W which

equals H inside W and which is linear with slope a outside W . Then the quotient

complex CF ∗(M,H;−∞, 0) can be identified with CF ∗(W,HW ) by showing that
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there are no Floer trajectories connecting 1-periodic orbits of XH in M̂ which exit

W ∪ {x ≤ 1 + ε}. Therefore we obtain the commutative diagram

CF ∗(W,H ′
W ) oo

OO
CF ∗(M,H ′)

OO

CF ∗(W,HW ) oo CF ∗(M,H)

where the vertical maps are continuation maps and where the horizontal maps arose

from action-restriction maps. Taking cohomology, and then taking the direct limit as

a À b →∞ (so c ¿ a−1 → 0) defines the map SH∗(i),

SH∗(i) : SH∗(W ) ← SH∗(M).

2.5.5 Viterbo functoriality

Consider a (perturbed) diagonal-step shaped Hamiltonian H = H0 with c = 1 and

slopes 0 < b ¿ a < δ so that the orbits inside W have negative actions and those

outside W have positive actions. Then H0 and the corresponding H0
W are of the

type described in (2.5.1) for M and W respectively. The action-restriction map

CF ∗(W,H0
W ) ← CF ∗(M, H0) is then identified with the map on Morse complexes

CM∗(W,H0|W ) ← CM∗(M,H0) which restricts to the generators x ∈ Crit(H0) with

H0(x) < 0. In cohomology this map corresponds to the pullback on singular coho-

mology i∗ : H∗(W ) ← H∗(M).

This identifies CM∗(W,H0|W ) ← CM∗(M, H0) with the bottom map of the dia-

gram in (2.5.4) when we take H = H0, and so taking the direct limit over the H ′ we

obtain Viterbo’s commutative diagram in cohomology:

SH∗(W )
OO
c∗

ooSH∗(i)
SH∗(M)

OO
c∗

H∗(W ) oo i∗ H∗(M)
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2.5.6 Twisted Viterbo functoriality

We now introduce the twisted coefficients Λα for some α ∈ H1(LM̂) ∼= H1(LM), as

explained in (3.5.3) and (3.5.4). Recall that we have constructed twisted continuation

maps (2.3.16) which compose well, so the discussion of (2.5.2) and (2.5.4) will hold

in the twisted case provided that we understand how the local systems restrict.

Suppose H0 is a Hamiltonian with small slope as in (2.5.1). In the twisted case

the canonical identification of CF ∗(H0) with the Morse complex CM∗(H0) becomes

CF ∗(H0; Λα) = CM∗(H0; c∗Λα),

where c∗Λα is the restriction of Λα to the local system on M̂ ⊂ L0M̂ which consists

of a copy Λm of Λ over each m ∈ M̂ and of the multiplication isomorphism tα[c◦v] =

tc
∗α[v] : Λm → Λm′ for every path v(s) in M̂ joining m to m′, and where the twisted

Morse differential is defined on q+ ∈ Crit(H0) analogously to the Floer case:

δq+ =
∑

{ε(v) tc
∗α[v] q− : q− ∈ Crit(H0), ∂sv = −∇H0(v), lim

s→±∞
v(s) = q±}.

By mimicking the proof that HM∗(H0) ∼= H∗(M), for twisted coefficients we have

HM∗(H0; c∗Λα) ∼= H∗(M ; c∗Λα) (singular cohomology with coefficients in the local

system c∗Λα, as defined in [28]).

As in (2.5.2), we get twisted continuation maps CF ∗(H0; Λα) → CF ∗(H; Λα)

for Hamiltonians H linear at infinity. In cohomology these maps yield a morphism

HF ∗(H0; Λα) → lim HF ∗(H; Λα), where the direct limit is taken over twisted contin-

uation maps as the slopes at infinity of the H increase. This defines

c∗ : H∗(M ; c∗Λα) → SH∗(M ; Λα).

In (2.5.4) we get action-restriction maps CF ∗(M,H; Λα;−∞, 0) ← CF ∗(M,H; Λα),

and two choices of diagonal-step shaped Hamiltonians H,H ′ with H ≤ H ′ induce

a continuation map φ : CF ∗(M, H; Λα) → CF ∗(M,H ′; Λα) which restricts to the

quotient complexes φ : CF ∗(M, H; Λα;−∞, 0) → CF ∗(M, H ′; Λα;−∞, 0).
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Let Li : LW → LM be the map induced by i. As in (2.5.4), the quotient complex

CF ∗(M, H; Λα;−∞, 0) can be identified with CF ∗(W,HW ; Λ(Li)∗α) because there are

no Floer trajectories connecting 1-periodic orbits of XH which exit W ∪ {x ≤ 1 + ε}
in M̂ and so the twisted differentials of the two complexes agree since (Li)∗α and α

agree on the common Floer trajectories inside W ∪ {x ≤ 1 + ε}.

As in (2.5.4), the direct limit over the twisted continuation maps for diagonal-step

shaped H of the action-restriction maps

CF ∗(W,HW ; Λ(Li)∗α) ← CF ∗(M, H; Λα)

as a À b →∞ will define a twisted map SH∗(i) in cohomology,

SH∗(i) : SH∗(W ; Λ(Li)∗α) ← SH∗(M ; Λα).

As in (2.5.5), the action-restriction maps fit into a commutative diagram

CF ∗(W,H ′
W ; Λ(Li)∗α) oo
OO

CF ∗(M, H ′; Λα)
OO

CM∗(W,H0
W ; c∗Λ(Li)∗α) oo CM∗(M, H0; c∗Λα)

and taking the direct limit over the H ′ yields the following result in cohomology.

Theorem 10. Let (M2n, θ) be a Liouville domain. Then for all α ∈ H1(LM) there

exists a map c∗ : H∗(M ; c∗Λα) → SH∗(M ; Λα), where c : M → LM is the inclusion

of constant loops. Moreover, for any Liouville embedding i : (W 2n, θ′) → (M2n, θ)

there exists a map SH∗(i) : SH∗(W ; Λ(Li)∗α) ← SH∗(M ; Λα) which fits into the com-

mutative diagram

SH∗(W ; Λ(Li)∗α) ooSH∗(i)

OO
c∗

SH∗(M ; Λα)
OO

c∗

H∗(W ; c∗Λ(Li)∗α) oo i∗
H∗(M ; c∗Λα)
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2.6 Proof of the Main Theorem

Lemma 11. Let Nn be a closed manifold and let L → DT ∗N be an exact Lagrangian

embedding. Then for all α ∈ H1(LN), the composite

H∗(N ; c∗Λα)
∼−→ Hn−∗(N ; c∗Λα)

c∗−→ SHn−∗(DT ∗N ; Λ(Lπ)∗α)
ϕ−1−→ H∗(LN ; Λα)

of Poincaré duality, the map c∗ from (2.5.6) and the inverse of ϕ (Theorem 9), is

equal to the ordinary map c∗ : H∗(N ; c∗Λα) → H∗(LN ; Λα) induced by the inclusion

of constants c : N → LN .

In the untwisted case, the lemma was proved by Viterbo [27] using his construction

of the isomorphism ϕ, and it can be proved in the Abbondandolo-Schwarz setup by

using small perturbations of L(q, v) = 1
2
|v|2 and H(q, p) = 1

2
|p|2 and by considering

the restriction of the isomorphism ϕ to the orbits of action close to zero. The twisted

version is proved analogously.

Theorem 12. Let Nn be a closed manifold and let L → DT ∗N be an exact Lagrangian

embedding. Then for all α ∈ H1(LN) there exists a commutative diagram

H∗(LL; Λ(Lp)∗α)
OO
c∗

oo Lp!
H∗(LN ; Λα)

OO

c∗

H∗(L; c∗Λ(Lp)∗α) oo p!
H∗(N ; c∗Λα)

where c : N → LN is the inclusion of constant loops, p : L → T ∗N → N is the

projection and p! is the ordinary transfer map. Moreover, the diagram can be restricted

to the components L0L and L0N of contractible loops.

If c∗α = 0 then the bottom map becomes p! ⊗ 1: H∗(L)⊗ Λ ← H∗(N)⊗ Λ.

Proof. Let θN be the canonical 1-form which makes (DT ∗N, dθN) symplectic. By We-

instein’s theorem a neighbourhood of L is symplectomorphic to a small disc cotangent

bundle DT ∗L. Therefore the exact Lagrangian embedding j : Ln ↪→ DT ∗N yields a

Liouville embedding i : (DT ∗L, θL) ↪→ (DT ∗N, θN).
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By Theorem 9 there are twisted isomorphisms

ϕN : H∗(LN ; Λα) → SHn−∗(DT ∗N ; Λ(Lπ)∗α)

ϕL : H∗(LL; Λ(Lp)∗α) → SHn−∗(DT ∗L; Λ(Li)∗(Lπ)∗α)

We define Lp! = ϕ−1
L ◦ SH∗(i) ◦ ϕN so that the following diagram commutes

H∗(LL; Λ(Lp)∗α)
OO

ϕ−1
L

o

oo Lp!
H∗(LN ; Λα)

ϕN o
²²

SHn−∗(DT ∗L; Λ(Li)∗(Lπ)∗α) ooSH∗(i)
SHn−∗(DT ∗N ; Λ(Lπ)∗α)

Recall that the ordinary transfer map p! is defined using Poincaré duality and the

pullback p∗ so that the following diagram commutes,

Hn−∗(L; c∗Λ(Lp)∗α)
OO

o

oo p∗
Hn−∗(N ; c∗Λα)

o
²²

H∗(L; c∗Λ(Lp)∗α) oo p!
H∗(N ; c∗Λα)

Finally, Theorem 35 for the map i yields another commutative diagram whose hori-

zontal maps are the bottom and top rows respectively of the above two diagrams (in

the second diagram we use that L, N are homotopy equivalent to DT ∗L, DT ∗N). By

combining these diagrams we obtain a commutative diagram

H∗(LL; Λ(Lp)∗α)
OO

oo Lp!
H∗(LN ; Λα)

OO

H∗(L; c∗Λ(Lp)∗α) oo p!
H∗(N ; c∗Λα)

Lemma 11 shows that the vertical maps are indeed the maps c∗ in ordinary homology.

Since c : N → LN maps into the component of contractible loops L0N , the diagram

restricts to L0L and L0N by restricting Lp! and projecting to H∗(LL; Λ(Lp)∗α) (not

all loops in T ∗L that are contractible in T ∗N need be contractible in T ∗L).
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2.7 Proof of the Corollary

2.7.1 Transgressions

Given β ∈ H2(N), let f : N → CP∞ be a classifying map for β. Let ev : L0N×S1 →
N be the evaluation map. Define

τ = π ◦ ev∗ : H2(N)
ev∗ // H2(L0N × S1)

π // H1(L0N) ,

where π is the projection to the Künneth summand. If N is simply connected,

then τ is an isomorphism. Let u be a generator of H2(CP∞), then v = τ(u)

generates H1(LCP∞) ∼= H1(ΩCP∞) and τ(β) = (Lf)∗v. Identify H1(L0N) ∼=
Hom(π1(L0N),Z) and π1(L0N) ∼= π2(N) o π1(N), then the class τ(β) vanishes on

π1(N) and corresponds to

f∗ : π2(N) → π2(CP∞) ∼= Z.

Similarly, define τb : H2(N) → H1(Ω0N) for the space Ω0N of contractible based

loops. Then Ωf : Ω0N → ΩCP∞ is a classifying map for τb(β). The inclusion Ω0N →
L0N induces a bijection τ(β) 7→ τb(β) between transgressed forms.

We will assume throughout that the transgression α = τ(β) ∈ H1(L0N) is

nonzero, or equivalently that f∗ : π2(N) → Z is not the zero map.

2.7.2 Novikov homology of the free loopspace

Denote by L0N the infinite cyclic cover of L0N corresponding to α : π1(L0N) → Z,

and let t denote a generator of the group of deck transformations of L0N . The group

ring of the cover is R = Z[t, t−1], and Λ = Z((t)) = Z[[t]][t−1] is the Novikov ring of

α (see 3.5.2).

The Novikov homology of L0N with respect to α is defined as the homology of
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L0N with local coefficients in the bundle Λα, which by [28] can be calculated as

H∗(L0N ; Λα) ∼= H∗(C∗(L0N)⊗R Λ).

Say that a space X is of finite type if Hk(X) is finitely generated for each k.

Theorem 13. For a compact manifold N , if τ(β) 6= 0 and πm(N) is finitely generated

for each m ≥ 2 then L0N is of finite type.

Proof. Claim 1. If Ω0N is of finite type then so is L0N .

Proof. Consider the fibration Ω0N → L0N → N , and take cyclic covers correspond-

ing to τb(β) and τ(β) to obtain the fibration Ω0N → L0N → N . By compactness, N

is homotopy equivalent to a finite CW complex and Claim 1 follows by a Leray-Serre

spectral sequence argument.

After replacing N by a homotopy equivalent space, we may assume that we have a

fibration f : N → CP∞ with fibre F = f−1(∗), and taking the spaces of contractible

based loops gives a fibration Ωf : Ω0N → ΩCP∞.

Claim 2. The fibre of Ωf is a union (ΩF )K of finitely many components of ΩF ,

indexed by the finite set K = Coker(f∗ : π2N → π2CP∞).

Proof. Consider the homotopy LES for the fibration f ,

π2N
f∗ // π2CP∞ // π1F // π1N

then (Ωf)−1(∗) = ΩF ∩Ω0N consists of loops γ ∈ ΩF whose path component lies in

the kernel of π1F → π1N , which is isomorphic to the cokernel of f∗. Since τ(β) 6= 0,

also f∗ is nonzero and so K is finite.

Claim 3. Ωj : (ΩF )K → Ω0N is a homotopy equivalence.

Proof. Observe that Ω0N is the pull-back under Ωf of the cyclic cover of ΩCP∞ cor-

responding to the transgression v = τb(u) ∈ H1(ΩCP∞) of a generator u ∈ H2(CP∞)
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(see 3.5.1). We obtain the commutative diagram

(ΩF )K

²²

Ωj // Ω0N

²²

Ωf // ΩCP∞

²²

ϕ

'
// R

²²
(ΩF )K

Ωj // Ω0N
Ωf // ΩCP∞

ϕ

'
// S1

where the homotopy equivalence ϕ corresponds to τb(u) ∈ H1(ΩCP∞) ∼= [ΩCP∞, S1].

The claim follows since R is contractible.

Claim 4. Ω0N is of finite type iff Ω0F = ΩF̃ is of finite type.

Proof. Each component of ΩF is homotopy equivalent to Ω0F via composition with

an appropriate fixed loop. The claim follows from Claims 3 and 2 since K is finite.

Note that we may identify Ω0F = ΩF̃ since the loops of F that lift to closed loops of

the universal cover F̃ are precisely the contractible ones.

Claim 5. ΩF̃ is of finite type iff πmN is finitely generated for each m ≥ 2.

Proof. Since F̃ is simply connected, ΩF̃ is of finite type iff F̃ is of finite type, by

a Leray-Serre spectral sequence argument applied to the path-space fibration ΩF̃ →
PF̃ → F̃ (see [24, 9.6.13]). Moreover F̃ is of finite type iff πm(F̃ ) = πm(F ) is finitely

generated for all m ≥ 2 (see [24, 9.6.16]). The claim follows from the homotopy LES

for F → N → CP∞.

Corollary 14. For a compact manifold N , if τ(β) 6= 0 and πm(N) is finitely generated

for each m ≥ 2, then H∗(L0N ; Λτ(β)) = 0.

Proof. We need to show that each HNk = Hk(L0N ; Λτ(β)) vanishes. Since Z[t] is

Noetherian, its (t)−adic completion Z[[t]] is flat over Z[t] (see [14, Theorem 8.8]).

Therefore, localizing at the multiplicative set S generated by t, Λ = S−1Z[[t]] is

flat over R = S−1Z[t]. Thus HNk
∼= Hk(L0N) ⊗R Λ, which is the localization of

Hk = Hk(L0N) ⊗Z[t] Z[[t]]. Observe that t · Hk = Hk since t acts invertibly on

Hk(L0N). So if Hk were finitely generated over Z[t], then Hk = 0 by Nakayama’s

lemma [14, Theorem 2.2] since t lies in the radical of Z[[t]]. By Theorem 13, Hk is in
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fact finitely generated over Z, so this concludes the proof.

Remark 15. The idea behind the proof of Corollary 14 is not original. I later realized

that it is a classical result that if H∗(X;Z) is finitely generated in each degree then

the Novikov homology H∗(C∗(X) ⊗R Λα) vanishes for 0 6= α ∈ H1(X). The basic

idea dates back to [16] and a very general version of this result is proved in [5, Prop.

1.35].

Corollary 16. If N is a compact simply connected manifold, then H∗(L0N ; Λα) = 0

for any nonzero α ∈ H1(L0N).

Proof. N is simply connected so its homotopy groups are finitely generated in each

dimension because its homology groups are finitely generated by compactness (see

[24, 9.6.16]). Since N is simply connected, any α in H1(L0N) is the transgression of

some β ∈ H2(N). The result now follows from Corollary 14.

2.7.3 Proof of the Main Corollary

Corollary 17. Let Nn be a closed simply connected manifold. Let L → DT ∗N be an

exact Lagrangian embedding. Then the image of p∗ : π2(L) → π2(N) has finite index

and p∗ : H2(N) → H2(L) is injective.

Proof. A non-zero class β ∈ H2(N) yields a non-zero transgression τ(β) ∈ H1(L0N)

(see 3.5.1). Suppose by contradiction that τ(p∗β) = 0. Then the local system

(Lp)∗Λτ(β) is trivial (see 3.5.2). Moreover c∗τ(β) = 0 since τ(β) vanishes on π1(N).

Therefore the diagram of Theorem 12, restricted to contractible loops, becomes

H∗(L0L)⊗ Λ
OO

c∗
?Â

oo Lp! H∗(L0N ; Λτ(β))OO
c∗

H∗(L)⊗ Λ
²²²²
q∗

oo p!
H∗(N)⊗ Λ

where q : L0L → L is the evaluation at 0. By Corollary 16, H∗(L0N ; Λτ(β)) = 0, so

the fundamental class [N ] ∈ Hn(N) maps to c∗[N ] = 0. But Lp!(c∗[N ]) = c∗p![N ] =

c∗[L] 6= 0 since c∗ is injective on H∗(L).
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Therefore τ(p∗β) cannot vanish, and so τb ◦ p∗ : H2N → H1(ΩL) is injective.

Consider the commutative diagram

H2(N)

p∗

²²

τb

∼ // Hom(π2(N),Z) ∼= H1(ΩN)

(Ωp)∗

²²
H2(L)

τb // Hom(π2(L),Z) ∼= H1(ΩL)

where the top map τb is an isomorphism since N is simply connected. We deduce from

the injectivity of τb ◦p∗ = (Ωp)∗ ◦τb that p∗ : H2(N) → H2(L) and Hom(π2(N),Z) →
Hom(π2(L),Z) are both injective, so in particular the image of p∗ : π2(L) → π2(N)

has finite index.

2.8 Non-simply connected cotangent bundles

We will prove that for non-simply connected N the map π2(L) → π2(N) still has

finite index provided that the homotopy groups πm(N) are finitely generated for each

m ≥ 2.

This time we consider transgressions induced from the universal cover Ñ of N ,

τ : H2(Ñ) → H1(LÑ) = H1(L0N) ∼= Hom(π2N,Z).

The homomorphism f̃∗ : π2(Ñ) = π2(N) → Z corresponding to such a transgres-

sion τ(β̃) is induced by a classifying map f̃ : Ñ → CP∞ for β̃ ∈ H2(Ñ). Since

ΩÑ = Ω0N and LÑ = L0N , the transgressions τb(β̃) and τ(β̃) define cyclic covers

Ω0N and L0N . We will use these in the construction of the Novikov homology.

Theorem 18. Let N be a compact manifold with finitely generated πm(N) for each

m ≥ 2. If τ(β̃) 6= 0 then L0N is of finite type and H∗(L0N ; Λτ(β̃)) = 0.

Proof. Revisit the proof of Theorem 13. It suffices to prove that Ω0N has finite type.
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This time we have the commutative diagram

ΩF

²²

Ωj // Ω0N

²²

Ωf̃ // ΩCP∞ ' R

²²
ΩF

²²

Ωj // ΩÑ = Ω0N

²²

Ωf̃ // ΩCP∞ ' S1

²²
F

j // Ñ
f̃ // CP∞

Since ΩF ' Ω0N , it suffices to show that ΩF has finite type. Observe that

ΩF ∼= ⊕KΩ0F

where K = Coker(f̃∗ : π2N → π2CP∞) is a finite set since f̃∗ 6= 0. So we just need to

show that Ω0F = ΩF̃ is of finite type. The same argument as in Theorem 13 proves

that ΩF̃ is of finite type iff πmN = πmÑ is finitely generated for each m ≥ 2. The

same proof as for Corollary 14 yields the vanishing of the Novikov homology.

Corollary 19. Let N be a closed manifold with finitely generated πm(N) for each

m ≥ 2. Let L → DT ∗N be an exact Lagrangian embedding. Then the image of

p∗ : π2(L) → π2(N) has finite index and p̃∗ : H2(Ñ) → H2(L̃) is injective.

Proof. The proof is analogous to that of Corollary 17: (Lp)∗ in the diagram

H2(Ñ)

p̃∗
²²

τ
∼ // Hom(π2(N),Z) ∼= H1(L0N)

(Lp)∗

²²

H2(L̃)
τ
∼ // Hom(π2(L),Z) ∼= H1(L0L)

is injective because if, by contradiction, τ(p̃∗β̃) ∈ H1(L0L) vanished then the functo-

riality diagram of Theorem 12 would not commute.
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2.9 Unoriented theory

So far we assumed that all manifolds were oriented. By using Z2 = Z/2Z coefficients

instead of Z coefficients one no longer needs the Floer and Morse moduli spaces to be

oriented in order to define the differentials and continuation maps. For the twisted

setup, we change the Novikov ring to

Λ = Z2((t)) = Z2[[t]][t
−1],

the ring of formal Laurent series with Z2 coefficients. The bundle Λα is now a bundle

of Z2((t)) rings, however the singular cocycle α is still integral: [α] ∈ H1(L0N ;Z).

Using these coefficients, all our theorems hold true without the orientability as-

sumption on N and L. The following is an interesting application of Corollary 17 in

this setup.

Corollary 20. There are no unorientable exact Lagrangians in T ∗S2.

Proof. For unorientable L, H2(L;Z) = Z2. Therefore the transgression τ vanishes on

H2(L;Z) since its range Hom(π2(L),Z) is torsion-free. But for S2 there is a non-zero

transgression. This contradicts the proof of Corollary 17.
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Chapter 3

Deformations of symplectic

cohomology and ADE singularities

3.1 Summary

Let X be the plumbing of copies of the cotangent bundle of a 2−sphere as prescribed

by an ADE Dynkin diagram. We prove that the only exact Lagrangian submanifolds

in X are spheres. Our approach involves studying X as an ALE hyperkähler manifold

and observing that the symplectic cohomology of X will vanish if we deform the

exact symplectic form to a generic non-exact one. We will construct the symplectic

cohomology for non-exact symplectic manifolds with contact type boundary, and

we will prove a general deformation theorem: if the non-exact symplectic form is

sufficiently close to an exact one then the non-exact symplectic cohomology coincides

with the natural Novikov symplectic cohomology for the exact form.

3.2 Introduction

An ALE hyperkähler manifold M is a non-compact simply-connected hyperkähler

4−manifold which asymptotically looks like the standard Euclidean quotient C2/Γ by

a finite subgroup Γ ⊂ SU(2). These spaces can be explicitly described and classified

by a hyperkähler quotient construction due to Kronheimer [11].
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ALE spaces have been studied in a variety of contexts. In theoretical physics they

arise as gravitational instantons in the work of Gibbons and Hawking. In singularity

theory they arise as the minimal resolution of the simple singularity C2/Γ. In sym-

plectic geometry they arise as plumbings of cotangent bundles T ∗CP 1 according to

ADE Dynkin diagrams:

(n=6)

(n=7)
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Recall that the finite subgroups Γ ⊂ SU(2) are the preimages under the double

cover SU(2) → SO(3) of the cyclic group Zn, the dihedral group D2n, or one of the

groups T12, O24, I60 of rigid motions of the Platonic solids. These choices of Γ will

make C2/Γ respectively a singularity of type An−1, Dn+2, E6, E7, E8. The singularity

is described as follows. The Γ−invariant complex polynomials in two variables are

generated by three polynomials x, y, z which satisfy precisely one polynomial relation

f(x, y, z) = 0. The hypersurface {f = 0} ⊂ C3 has precisely one singularity at

the origin. The minimal resolution of this singularity over the singular point 0 is a

connected union of copies of CP 1 with self-intersection −2, which intersect each other

transversely according to the corresponding ADE Dynkin diagram. Each vertex of the

diagram corresponds to a CP 1 and an edge between Ci and Cj means that Ci ·Cj = 1.

We suggest Slodowy [23] or Arnol’d [2] for a survey of this construction.

In the symplectic world these spaces can be described as the plumbing of copies

of T ∗CP 1 according to ADE Dynkin diagrams. Each vertex of the Dynkin diagram

corresponds to a disc cotangent bundle DT ∗CP 1 and each edge of the Dynkin diagram

corresponds to identifying the fibre directions of one bundle with the base directions of

the other bundle over a small patch, and vice-versa. The boundary can be arranged to
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be a standard contact S3/Γ, and along this boundary we attach an infinite symplectic

cone S3/Γ× [1,∞) to form M as an exact symplectic manifold.

We are interested in the question: what are the exact Lagrangian submanifolds

inside the manifold M obtained by an ADE plumbing of copies of T ∗CP 1?

Recall that a submanifold j : Ln ↪→ M2n inside an exact symplectic manifold

(M, dθ) is called exact Lagrangian if j∗θ is exact. For example, the A1−plumbing is

just M = T ∗S2 and the graph of any exact 1−form on S2 is an exact Lagrangian

sphere inside T ∗S2. Viterbo [27] proved that there are no exact tori in T ∗S2 and so, for

homological reasons, the only orientable exact Lagrangians in T ∗S2 are spheres. For

exact spheres L ⊂ T ∗S2, it is known that L is isotopic to the zero section (Eliashberg-

Polterovich [3]), indeed it is Hamiltonian isotopic (Hind [7]).

Theorem. Let M be an ADE plumbing of copies of T ∗CP 1. Then the only exact

Lagrangians inside M are spheres. In particular, there are no unorientable exact

Lagrangians in M .

We approach this problem via symplectic cohomology, which is an invariant of

symplectic manifolds with contact type boundary. It is constructed as a direct limit

of Floer cohomology groups for Hamiltonians which become steep near the boundary.

Symplectic cohomology can be thought of as an obstruction to the existence of exact

Lagrangians in the following sense.

Viterbo [25] proved that an exact j : L ↪→ (M,dθ) yields a commutative diagram

Hn−∗(LL) ∼= SH∗(T ∗L, dθ)
OO
c∗

?Â

ooSH∗(j)
SH∗(M, dθ)

OO
c∗

Hn−∗(L) ∼= H∗(L) oo j∗
H∗(M)

where LL = C∞(S1, L) is the space of free loops in L and the left vertical map is

induced by the inclusion of constants c : L → LL. The element c∗(j∗1) cannot vanish,

and thus the vanishing of SH∗(M, dθ) would contradict the existence of L.

For an ADE plumbing M the symplectic cohomology SH∗(M,dθ) is never zero,

indeed it contains a copy of the ordinary cohomology H∗(M) ↪→ SH∗(M, dθ). How-
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ever, we will show that if we make a generic infinitesimal perturbation of the closed

form dθ, then the symplectic cohomology will vanish. From this it will be easy to

deduce that the only exact Lagrangians L ⊂ M must be spheres.

We constructed the infinitesimally perturbed symplectic cohomology in Chapter

2 as follows. For any α ∈ H1(L0N), we constructed the associated Novikov homology

theory for SH∗(M,dθ), which involves introducing twisted coefficients in the bundle

of Novikov rings of formal Laurent series Λ = Z((t)) associated to a singular cocycle

representing α. Let’s denote the bundle by Λα and the twisted symplectic cohomology

by SH∗(M, dθ; Λα).

We proved that the above functoriality diagram holds in this context – with the

understanding that for unorientable L we use Z2 = Z/2Z coefficients and the Novikov

ring Z2((t)) instead.

Consider a transgressed form α = τβ, where τ : H2(M) → H1(LM) is the

transgression. The functoriality diagram simplifies to

Hn−∗(LL; Λτj∗β)
OO
c∗

oo SH∗(j)
SH∗(M, dθ; Λτβ)

OO
c∗

Hn−∗(L)⊗ Λ ∼= H∗(L)⊗ Λ oo j∗
H∗(M)⊗ Λ

For surfaces L which aren’t spheres the transgression vanishes, so H∗(LL; Λτj∗β)

simplifies to H∗(LL)⊗Λ and the left vertical arrow c∗ becomes injective. Thus c∗(j∗1)

cannot vanish, which contradicts the commutativity of the diagram if we can show

that SH∗(M, dθ; Λτβ) = 0.

Theorem. Let M be an ADE plumbing of copies of T ∗CP 1. Then for generic β,

SH∗(M, dθ; Λτβ) = 0.

It turns out that it is quite easy to prove that the non-exact symplectic cohomology

SH∗(M,ω) vanishes for a generic form ω. So to prove the above vanishing result,

we will need to relate the twisted symplectic cohomology to the non-exact symplectic

cohomology. We will prove the following general result.
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Theorem. Let (M,dθ) be an exact symplectic manifold with contact type boundary

and let β be a closed two-form compactly supported in the interior of M . Then, at

least for ‖β‖ < 1, there is an isomorphism

SH∗(M, dθ + β) → SH∗(M,dθ; Λτβ).

For our ADE plumbing M , we actually show that this result applies to a large

non-compact deformation from dθ to a non-exact symplectic form ω which has a lot

of symmetry. This symmetry will be the key to proving the vanishing of SH∗(M, ω)

and therefore the vanishing of SH∗(M, dθ; Λτβ) = 0, which concludes the proof of the

non-existence of exact Lagrangians which aren’t spheres.

The deformation from dθ to ω is best described by viewing M as a hyperkähler

manifold via Kronheimer’s construction. This has the advantage that on M we have

an explicit S2−worth of symplectic forms. We will start with an exact symplectic

form lying on the equator of this S2, and we deform it into the non-exact form

ω lying at the North Pole. This deformation is not trivial, for instance the exact

Lagrangian CP 1 zero sections will turn into symplectic submanifolds. We will show

that (M,ω) has a global Hamiltonian S1−action, which at infinity looks like the

action (a, b) 7→ (e2πita, e2πitb) on C2/Γ.

We will show that the grading of the 1−periodic orbits grows to negative in-

finity when we accelerate this Hamiltonian S1−action, and this will imply that

SH∗(M,ω) = 0 because a generator would have to have arbitrarily negative grading.

This concludes the argument.

The hyperkähler construction of M depends on certain parameters, and the co-

homology class of ω varies linearly with these parameters. Thus, the form ω can be

chosen to represent a generic class in H2(M ;R) and so we conclude the following.

Theorem. Let M be an ALE hyperkähler manifold. Then for generic ω,

SH∗(M, ω) = 0.
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The outline of the Chapter is as follows. In section 3.3 we recall the basic termi-

nology of symplectic manifolds with contact type boundary and we define the moduli

spaces used to define symplectic cohomology. In section 3.4 we construct the symplec-

tic cohomology SH∗(M, ω) for a (possibly non-exact) symplectic form ω, in particular

in 3.4.1 we define the underlying Novikov ring Λ that we use throughout. In section

3.5 we define the twisted symplectic cohomology SH∗(M, dθ; Λα), in particular the

Novikov bundle Λα is defined in 3.5.2 and the functoriality property is described in

3.5.7. In section 3.6 we define the grading on symplectic cohomology, which is a

Z−grading if c1(M) = 0. In section 3.7 we prove the deformation theorem which re-

lates the twisted symplectic cohomology to the non-exact symplectic cohomology. In

section 3.8 we recall Kronheimer’s hyperkähler quotient construction of ALE spaces,

and we describe the details of the proof outlined above.

3.3 Symplectic manifolds with contact boundary

3.3.1 Symplectic manifolds with contact type boundary

Let (M2n, ω) be a compact symplectic manifold with boundary. The contact type

boundary condition requires that there is a Liouville vector field Z defined near the

boundary ∂M which is strictly outwards pointing along ∂M . The Liouville condition

is that near the boundary ω = dθ, where θ = iZω. This definition is equivalent to

requiring that α = θ|∂M is a contact form on ∂M , that is dα = ω|∂M and α∧(dα)n−1 >

0 with respect to the boundary orientation on ∂M .

The Liouville flow of Z is defined for small negative times r, and it parametrizes

a collar (−ε, 0] × ∂M of ∂M inside M . So we may glue an infinite symplectic cone

([0,∞) × ∂M, d(erα)) onto M along ∂M , so that Z extends to Z = ∂r on the cone.

This defines the completion M̂ of M ,

M̂ = M ∪∂M [0,∞)× ∂M.

We call (−ε,∞) × ∂M the collar of M̂ . We extend θ and ω to the entire collar by
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θ = erα and ω = dθ.

Let J be an ω−compatible almost complex structure on M̂ and denote by g =

ω(·, J ·) the J−invariant metric. We always assume that J is of contact type on the

collar, that is J∗θ = erdr or equivalently J∂r = R where R is the Reeb vector

field. This implies that J restricts to an almost complex structure on the contact

distribution ker α. We will only need the contact type condition for J to hold for

er À 0 so that a certain maximum principle applies there.

From now on, we make the change of coordinates R = er on the collar so that,

redefining ε, the collar will be parametrized as the tubular neighbourhood (ε,∞)×∂M

of ∂M in M̂ , so that the contact hypersurface ∂M corresponds to {R = 1}.
In the exact setup, that is when ω = dθ on all of M , we call (M, dθ) a Liouville

domain. In this case Z is defined on all of M̂ by iZω = θ, and M̂ is the union of the

infinite symplectic collar ((−∞,∞)× ∂M, d(Rα)) and the zero set of Z.

3.3.2 Reeb and Hamiltonian dynamics

The Reeb vector field R ∈ C∞(T∂M) on ∂M is defined by iRdα = 0 and α(R) = 1.

The periods of the Reeb vector field form a countable closed subset of [0,∞).

For H ∈ C∞(M̂,R) we define the Hamiltonian vector field XH by

ω(·, XH) = dH.

If inside M the Hamiltonian H is a C2-small generic perturbation of a constant, then

the 1-periodic orbits of XH inside M are constants corresponding precisely to the

critical points of H.

Suppose H = h(R) depends only on R = er on the collar. Then XH = h′(R)R.

It follows that every non-constant 1-periodic orbit x(t) of XH which intersects the

collar must lie in {R} × ∂M for some R and must correspond to a Reeb orbit z(t) =

x(t/T ) : [0, T ] → ∂M with period T = h′(R). Since the Reeb periods are countable,

if we choose h to have a generic constant slope h′(R) for R À 0 then there will be no

1-periodic orbits of XH outside of a compact set of M̂ .
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3.3.3 Action 1-form

Let LM̂ = C∞(S1, M̂) be the space of free loops in M̂ . Suppose for a moment

that ω = dθ were exact on all of M̂ , then one could define the H−perturbed action

functional for x ∈ LM̂ by

AH(x) = −
∫

x∗θ +

∫ 1

0

H(x(t)) dt.

If H = h(R) on the collar then this reduces to AH(x) = −Rh′(R) + h(R) where x

is a 1-periodic orbit of XH in {R} × ∂M . The differential of AH at x ∈ LM̂ in the

direction ξ ∈ TxLM̂ = C∞(S1, x∗TM̂) is

dAH · ξ = −
∫ 1

0

ω(ξ, ẋ−XH) dt.

In the case when ω is not exact on all of M̂ , AH is no longer well-defined, however

the formula for dAH still gives a well-defined 1−form on LM̂ . The zeros x of dAH

are precisely the 1-periodic Hamiltonian orbits ẋ(t) = XH(x(t)).

It also meaningful to say how AH varies along a smooth path u in LM̂ by defining

∂sAH(u) = dAH · ∂su,

but the total variation
∫

∂sAH(u) ds will depend on u, not just on the ends of u.

3.3.4 Floer’s equation

With respect to the L2−metric
∫ 1

0
g(·, ·) dt the gradient corresponding to dAH is

∇AH = J(ẋ − XH). For u : R × S1 → M , the negative L2−gradient flow equation

∂su = −∇AH(u) in the coordinates (s, t) ∈ R× S1 is

∂su + J(∂tu−XH) = 0 (Floer’s equation).
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Let M′(x−, x+) denote the moduli space of solutions u to Floer’s equation, which at

the ends converge uniformly in t to the 1-periodic orbits x±:

lim
s→±∞

u(s, t) = x±(t).

These solutions u occur in R−families because we may reparametrize the R coordinate

by adding a constant. Denote the quotient by M(x−, x+) = M′(x−, x+)/R. To

emphasize the context, we may also write MH(x−, x+) or M(x−, x+; ω).

The action AH decreases along u since

∂s(AH(u)) = dAH · ∂su = −
∫ 1

0

ω(∂su, ∂tu−XH) dt = −
∫ 1

0

|∂su|2g dt ≤ 0.

If ω is exact on M , the action decreases by AH(x−) − AH(x+) independently of the

choice of u ∈M(x−, x+).

3.3.5 Energy

For a Floer solution u the energy is defined as

E(u) =
∫ |∂su|2 ds ∧ dt =

∫
ω(∂su, ∂tu−XH) ds ∧ dt

=
∫

u∗ω +
∫

H(x−) dt− ∫
H(x+) dt.

If ω is exact on M then for u ∈ M(x−, x+) there is an a priori energy estimate,

E(u) = AH(x−)− AH(x+).

3.3.6 Transversality and compactness

Standard Floer theory methods can be applied to show that for a generic time-

dependent perturbation (Ht, Jt) of (H, J) there are only finitely many 1−periodic

Hamiltonian orbits and the moduli spaces M(x−, x+) are smooth manifolds. We

write Mk(x−, x+) = M′
k+1(x−, x+)/R for the k-dimensional part of M(x−, x+).

As explained in detail in Viterbo [25] and Seidel [22], there is a maximum principle

which prevents Floer trajectories u ∈M(x−, x+) from escaping to infinity.
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Lemma 21 (Maximum principle). If on the collar H = h(R) and J is of contact

type, then for any local Floer solution u : Ω → [1,∞) × ∂M defined on a compact

Ω ⊂ R × S1, the maxima of R ◦ u are attained on ∂Ω. If Hs = hs(R) and J = Js

depend on s, the result continues to hold provided that ∂sh
′
s ≤ 0. In particular, Floer

solutions of ∂su + J(∂tu−XH) = 0 or ∂su + Js(∂tu−XHs) = 0 converging to x± at

the ends are entirely contained in the region R ≤ max R(x±).

Proof. On the collar u(s, t) = (R(s, t),m(s, t)) ∈ [1,∞)×∂M and we can orthogonally

decompose

T ([1,∞)× ∂M) = R∂r ⊕ RR⊕ ξ

where ξ = ker α is the contact distribution. By the contact type condition, J∂r = R,

JR = −∂r and J restricts to an endomorphism of ξ. Since XH = h′(R)R, Floer’s

equation in the first two summands R∂r ⊕ RR after rescaling by R is

∂sR− θ(∂tu) + Rh′ = 0 ∂tR + θ(∂su) = 0.

Adding ∂s of the first and ∂t of the second equation, yields ∂2
sR+∂2

t R+R∂sh
′ = |∂su|2.

So LR ≥ 0 for the elliptic operator L = ∂2
s + ∂2

t + Rh′′(R)∂s, thus a standard result

in PDE theory [4, Theorem 6.4.4] ensures the maximum principle for R ◦ u.

If hs depends on s and ∂sh
′
s ≤ 0, then we get LR = |∂su|2−R(∂sh

′
s)(R) ≥ 0 which

guarantees the maximum principle for R.

If ω were exact on M , then the a priori energy estimate for M(x−, x+) described

in 3.3.5 together with the maximum principle would ensure that the moduli spaces

M(x−, x+) have compactifications M(x−, x+) whose boundaries are defined in terms

of broken Floer trajectories (Figure 3-1). In the proof of compactness, the exactness

of ω excludes the possibility of bubbling-off of J−holomorphic spheres.

In the non-exact case if we assume that no bubbling-off of J-holomorphic spheres

occurs, then the same techniques guarantee that the moduli space

M(x−, x+; K) = {u ∈M(x−, x+) : E(u) ≤ K}
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Figure 3-1: The x, y′, y′′, y are 1-periodic orbits of XH , the lines are Floer solutions in
M . The un ∈M1(x, y) are converging to the broken trajectory (u′1, u

′
2) ∈M0(x, y′)×

M0(y
′, y).

of bounded energy solutions has a compactification by broken trajectories, for any

given constant K ∈ R.

Assumptions. We assume henceforth that no bubbling occurs. This holds if

c1(M) = 0 by Hofer-Salamon [10], as in all our applications. To keep the notation

under control, we will continue to write (H, J) even though we should always use a

perturbed (Ht, Jt).

3.4 Symplectic cohomology

3.4.1 Novikov symplectic chain complex

Let Λ denote the Novikov ring,

Λ =

{ ∞∑
j=0

njt
aj : nj ∈ Z, aj ∈ R, lim

j→∞
aj = ∞

}
.

In Chapter 2 we allowed only integer values of aj because we were always using

integral forms. In that setup Λ was just the ring of formal integral Laurent series. In

the present Chapter the aj will arise from integrating real forms so we use real aj.

For an abelian group G the Novikov completion G((t)) is the Λ−module of formal

sums
∑∞

j=0 gjt
aj where gj ∈ G and the real numbers aj →∞.
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Let H ∈ C∞(M̂,R) be a Hamiltonian which on the collar is of the form H = h(R),

where h is linear at infinity. Define CF ∗ to be the abelian group freely generated by

1-periodic orbits of XH ,

CF ∗(H) =
⊕ {

Zx : x ∈ LM̂, ẋ(t) = XH(x(t))
}

.

It is always understood that we first make a generic C2−small time-perturbation Ht

of H, so that there are only finitely many 1−periodic orbits of XHt and therefore

CF ∗(H) is finitely generated.

The symplectic chain complex SC∗(H) is the Novikov completion of CF ∗(H):

SC∗ = CF ∗((t)) =
{∑∞

j=0 cjt
aj : cj ∈ CF ∗, lim aj = ∞

}

=
{∑N

0 λiyi : λi ∈ Λ, N ∈ N, yi is a 1–periodic orbit of XH

}
.

The differential δ is defined by

δ

(
N∑

i=0

λiyi

)
=

N∑
i=0

∑

u∈M0(x,yi)

ε(u) tE(u)λix

where M0(x, yi) is the 0−dimensional component of the Floer trajectories connecting

x to yi, and ε(u) are signs depending on orientations. The sum is well-defined because

there are only finitely many generators x, and below any energy bound E(u) ≤ K

the moduli space M0(x, yi) is compact and therefore finite.

Lemma 22. SC∗(H) is a chain complex, i.e. δ ◦ δ = 0. We denote the cohomology

of (SC∗(H), δ) by SH∗(H).

Proof. This involves a standard argument (see Salamon [21]). Observe Figure 3-1.

The 1−dimensional moduli space M1(x, y) has a compactification, such that the

boundary consists of pairs of Floer trajectories joined at one end. Observe that E(·)
is additive with respect to concatenation and E(u) is invariant under homotoping

u relative ends. Therefore, in Figure 3-1, E(u′1) + E(u′2) = E(u′′1) + E(u′′2). Since
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ε(u′1)ε(u
′
2) = −ε(u′′1)ε(u

′′
2), we deduce

ε(u′1) tE(u′1) ε(u′2) tE(u′2) = −ε(u′′1) tE(u′′1 ) ε(u′′2) tE(u′′2 ).

Thus the broken trajectories contribute opposite Λ−multiples of x to δ(δy) for each

connected component of M1(x, y). Hence, summing over x, y′,

δ(δy) =
∑

(u′1,u′2)∈M0(x,y′)×M0(y′,y)

ε(u′1) tE(u′1) ε(u′2) tE(u′2) x = 0.

3.4.2 Continuation Maps

Under suitable conditions on two Hamiltonians H±, it is possible to define a contin-

uation homomorphism

ϕ : SC∗(H+) → SC∗(H−).

This involves counting parametrized Floer trajectories, the solutions of

∂sv + Js(∂tv −XHs) = 0.

Here Js are ω−compatible almost complex structures of contact type and Hs is a

homotopy from H− to H+, such that (Hs, Js) = (H−, J−) for s ¿ 0 and (Hs, Js) =

(H+, J+) for s À 0. The conditions on Hs will be described in Theorem 23.

If x and y are respectively 1-periodic orbits of XH− and XH+ , then let M(x, y)

be the moduli space of such solutions v which converge to x and y at the ends. This

time there is no freedom to reparametrize v in the s−variable.

The continuation map ϕ on a generator y ∈ Zeros(dAH+) is defined by

ϕ(y) =
∑

v∈M0(x,y)

ε(v) tE0(v) x

where M0(x, y) is the 0−dimensional part of M(x, y), ε(v) ∈ {±1} are orientation
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signs and the power of t in the above sum is

E0(v) = − ∫∞
−∞ ∂sAHs(v) ds

=
∫ |∂sv|2gs

ds ∧ dt− ∫
(∂sHs)(v) ds ∧ dt

=
∫

v∗(ω − dK ∧ dt),

where K(s,m) = Hs(m). The last expression shows that E0(v) is invariant under

homotoping v relative ends.

3.4.3 Energy of parametrized Floer trajectories

Let Hs be a homotopy of Hamiltonians. For an Hs−Floer trajectory the above weight

E0(v) will be positive if Hs is monotone decreasing, ∂sHs ≤ 0. The energy is

E(v) = E0(v) +

∫
(∂sHs)(v) ds ∧ dt.

If ∂sHs ≤ 0 outside of a compact subset of M̂ , then a bound on E0(v) imposes a

bound on E(v). Note that E(v) is not invariant under homotoping v relative ends.

3.4.4 Properties of continuation maps

Theorem 23 (Monotone homotopies). Let Hs be a homotopy between H± such that

1. on the collar Hs = hs(R) for large R;

2. ∂sh
′
s ≤ 0 for R ≥ R∞, some R∞;

3. hs is linear for R ≥ R∞ (the slope may be a Reeb period, but not for h±).

Then, after a generic C2-small time-dependent perturbation of (Hs, Js),

1. all parametrized Floer trajectories lie in the compact subset

C = M ∪ {R ≤ R∞} ⊂ M̂ ;

2. M(x; y) is a smooth manifold;
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3. M(x, y; K) = {v ∈ M(x, y) : E0(v) ≤ K} has a smooth compactification by

broken trajectories, for any constant K ∈ R;

4. the continuation map ϕ : SC∗(H+) → SC∗(H−) is well-defined;

5. ϕ is a chain map.

Proof. (1) is a consequence of the maximum principle, Lemma 21, and (2) is a stan-

dard transversality result. Let

BC = max
x∈C

{∂sHs(x), 0}.

Suppose Hs varies in s precisely for s ∈ [s0, s1]. Since all v ∈M(x, y; K) lie in C,
∫

∂sHs(v) ds ∧ dt ≤ (s1 − s0)BC , so there is an a priori energy bound

E(v) ≤ K + (s1 − s0)BC .

From this the compactness of M(x, y; K) follows by standard methods.

The continuation map ϕ involves a factor of tE0(v). The lower bound E0(v) ≥
E(v) − (s1 − s0)BC guarantees that as the energy E(v) increases also the powers

tE0(v) increase, which proves (4).

Showing that ϕ is a chain map is a standard argument which involves inves-

tigating the boundaries of broken trajectories of the 1−dimensional moduli spaces

M1(x, y; K). A sequence vn in some 1−dimensional component of M1(x, y; K) will

converge (after reparametrization) to a concatenation of two trajectories u+#v or

v#u−, where u+ ∈ MH+

0 (x, x′), v ∈ M0(x
′, y), or respectively v ∈ M0(x, y′),

u− ∈MH−
0 (y′, y). Such solutions get counted with the same weight

E0(vn) = E0(u
+#v) = E0(v#u−)

because E0 is a homotopy invariant relative ends and vn, u+#v, v#u− are homotopic

since they belong to the compactification of the same 1−dimensional component of

M1(x, y). Therefore, ∂H− ◦ ϕ = ϕ ◦ ∂H+ as required.
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3.4.5 Chain homotopies

Theorem 24.

1. Given monotone homotopies Hs, Ks from H− to H+, there is a chain homotopy

Y : SC∗(H+) → SC∗(H−) between the respective continuation maps: ϕ − ψ =

∂H−Y + Y ∂H+ ;

2. the chain map ϕ defines a map on cohomology,

[ϕ] : SH∗(H+) → SH∗(H−),

which is independent of the choice of the homotopy Hs;

3. the composite of the maps induced by homotoping H− to K and K to H+,

SC∗(H+) → SC∗(K) → SC∗(H−),

is chain homotopic to ϕ and equals [ϕ] on SH∗(H+);

4. the constant homotopy Hs = H induces the identity on SC∗(H);

5. if H± have the same slope at infinity, then [ϕ] is an isomorphism.

Proof. Let (Hs,λ)0≤λ≤1 be a linear interpolation of Hs and Ks, so that Hs,λ is a mono-

tone Hamiltonian for each λ. Consider the moduli spaces M(x, y, λ) of parametrized

Floer solutions for Hs,λ. Let Y be the oriented count of the pairs (λ, v), counted

with weight tE0(v), where 0 < λ < 1 and v is in a component of M(x, y, λ) of virtual

dimension −1 (generically M−1(x, y, λ) is empty, but in the family ∪λM−1(x, y, λ)

such isolated solutions (λ, v) can arise).

Consider a sequence (λn, vn) inside some 1−dimensional component of ∪λM(x, y, λ),

such that λn → λ. If λ = 0 or 1, then the limit of the vn can break by giving rise to

an Hs or Ks Floer trajectory, and this breaking is counted by ϕ − ψ. If 0 < λ < 1,

then the vn can break by giving rise to u−#v or v#u+, where u± are H±−Floer
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trajectories and the v are as in the definition of Y . This type of breaking is therefore

counted by ∂H−Y + Y ∂H+ .

Both sides of the relation ϕ−ψ = ∂H−Y + Y ∂H+ will count a (broken) trajectory

with the same weight because E0(·) is a homotopy invariant relative ends and the

broken trajectories are all homotopic, since they arise as the boundary of the same

1−dimensional component of ∪λM(x, y, λ).

Claims (2) and (3) are standard consequences of (1) (see Salamon [21]). Claim

(4) is a consequence of the fact that any non-constant Floer trajectory for Hs = H

would come in a 1−dimensional family of solutions, due to the translational freedom

in s. Claim (5) follows from (3) and (4): we can choose Hs to have constant slope for

large R, therefore H−s is also a monotone homotopy, and the composite of the chain

maps induced by Hs and H−s is chain homotopic to the identity.

3.4.6 Hamiltonians linear at infinity

Consider Hamiltonians Hm which equal

hm(R) = mR + C

for R À 0, where the slope m > 0 is not the period of any Reeb orbit. Up to

isomorphism, SH∗(H) is independent of the choice of C by Theorem 24.

For m+ < m−, a monotone homotopy Hs defines a continuation map

φm+m− : SC∗(Hm+) → SC∗(Hm−),

for example the homotopy hs(R) = msR + Cs for R À 0, with ∂sms ≤ 0.

By Theorem 24 the continuation map [φm+m− ] : SH∗(Hm+) → SH∗(Hm−) on

cohomology does not depend on the choice of homotopy hs. Moreover, such con-

tinuation maps compose well: φm2m3 ◦ φm1m2 is chain homotopic to φm1m3 where

m1 < m2 < m3, and so [φm2m3 ] ◦ [φm1m2 ] = [φm1m3 ].
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3.4.7 Symplectic cohomology

Definition 25. The symplectic cohomology is defined to be the direct limit

SH∗(M,ω) = lim
−→

SH∗(H)

taken over the continuation maps between Hamiltonians linear at infinity.

Observe that SH∗(M, ω) can be calculated as the direct limit

lim
k→∞

SH∗(Hk)

over the continuation maps SH∗(Hk) → SH∗(Hk+1), where the slopes at infinity of

the Hamiltonians Hk increase to infinity as k →∞.

3.4.8 The maps c∗ from ordinary cohomology

The symplectic cohomology comes with a map from the ordinary cohomology of M

with coefficients in Λ,

c∗ : H∗(M ; Λ) → SH∗(M,ω).

We sketch the construction here, and refer to Chapter 2 for a detailed construction.

Fix a δ > 0 which is smaller than all periods of the nonconstant Reeb orbits on ∂M .

Consider Hamiltonians Hδ which are C2-close to a constant on M and such that on

the collar Hδ = h(R) with constant slope h′(R) = δ.

A standard result in Floer cohomology is that, after a generic C2-small time-

independent perturbation of (Hδ, J), the 1-periodic orbits of XHδ and the connecting

Floer trajectories are both independent of t ∈ S1. By the choice of δ there are no 1-

periodic orbits on the collar, and by the maximum principle no Floer trajectory leaves

M . The Floer complex CF ∗(Hδ) is therefore canonically identified with the Morse

complex CM∗(Hδ), which is generated by Crit(Hδ) and whose differential counts the

negative gradient trajectories of Hδ with weights tH
δ(x−)−Hδ(x+). After the change of

basis x 7→ tH
δ(x)x, the differential reduces to the ordinary Morse complex defined over
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the ring Λ which is isomorphic to the singular cochain complex of M with coefficients

in Λ. Thus

SH∗(Hδ) ∼= HM∗(Hδ; Λ) ∼= H∗(M ; Λ).

Since SH∗(Hδ) is part of the direct limit construction of SH∗(M, ω), this defines a

map c∗ : H∗(M ; Λ) → SH∗(M, ω) independently of the choice of Hδ.

3.4.9 Invariance under contactomorphisms

Definition 26. Let M,N be symplectic manifolds with contact type boundary. A

symplectomorphism ϕ : M̂ → N̂ is of contact type at infinity if on the collar

ϕ∗θN = θM + d(compactly supported function)

and at infinity

ϕ(er, y) = (er−f(y), ψ(y)),

for some smooth function f : ∂M → R where ψ : ∂M → ∂N is a contactomorphism

(that is a diffeomorphism with ψ∗αN = efαM).

Under such a map ϕ : M̂ → N̂ , the Floer equations on M̂ for (ϕ∗H, ωM) corre-

spond precisely to the Floer solutions on N̂ for (H, ωN). However, for a Hamiltonian

H on N̂ which is linear at infinity, the Hamiltonian ϕ∗H(er, y) = h(er−f(y)) is not

linear at infinity. Thus we want to show that for this new class of Hamiltonians we

obtain the same symplectic cohomology.

In order to relate the two symplectic cohomologies, we need a maximum principle

for homotopies of Hamiltonians which equal Hs = hs(Rs) on the collar, where

Rs(e
r, y) = er−fs(y),

and fs = f−, hs = h− for s ¿ 0 and fs = f+, hs = h+ for s À 0. We prove that if

h′− À h′+ then one can choose hs so that the maximum principle applies. We denote

by Xs the Hamiltonian vector field for hs and we assume that the almost complex
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structures Js satisfy the contact type condition J∗s θ = dRs for er À 0.

Lemma 27 (Maximum principle). There is a constant K > 0 depending only on fs

such that if h′− ≥ Kh′+ then it is possible to choose a homotopy hs from h− to h+ in

such a way that the maximum principle applies to the function

ρ(s, t) = Rs(u(s, t)) = er(u)−fs(y(u))

where u is any local solution of Floer’s equation ∂su + Js(∂tu−Xs) = 0 which lands

in the collar er À 0. In particular, a continuation map SH∗(h+) → SH∗(h−) can

then be defined.

Proof. We will seek an equation satisfied by ∆ρ. Using J∗s dRs = −θ we obtain

∂sρ = ∂sRs(u) + dRs · ∂su = −ρ∂sfs + dRs · ∂su

= −ρ∂sfs + dRs · (Js(Xs − ∂tu)) = −ρ∂sfs − θ(Xs) + θ(∂tu),

∂tρ = dRs · ∂tu = dRs · (Xs + Js∂su) = J∗s dRs · ∂su = −θ(∂su).

Since Xs = h′s(ρ)R and θ(R(u)) = ρ, we deduce θ(Xs) = ρh′s(ρ) so

dcρ = dρ ◦ i = −∂sρ dt + ∂tρ ds = −u∗θ + ρh′s(ρ) dt + ρ∂sfs dt.

Therefore ddcρ = −∆ρ ds ∧ dt = −u∗ω + F ds ∧ dt where

F = h′s∂sρ + ρ∂sh
′
s + ρh′′s∂sρ + ∂sρ∂sfs + ρ∂2

sfs + ρd(∂sfs) · ∂su.

We now try to relate u∗ω with |∂su|2:

|∂su|2 = ω(∂su, ∂tu−Xs) = u∗ω − dHs · ∂su = u∗ω − h′sdRs · ∂su

= u∗ω − h′s∂sρ− h′sρ∂sfs

where we used that ∂sρ = −ρ∂sfs + dRs · ∂su.
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Thus, ∆ρ = u∗ω − F equals

|∂su|2 + h′sρ∂sfs − ρ∂sh
′
s − ρh′′s∂sρ− ∂sρ∂sfs − ρ∂2

sfs − ρd(∂sfs) · ∂su.

We may assume that f is C2−bounded by a constant C > 0. Then in particular

|d(∂sfs) · ∂su| ≤ ‖d(∂sfs)‖ρ×∂M · |∂su| ≤ ρ−1‖d(∂sfs)‖1×∂M · |∂su| ≤ ρ−1C|∂su|.

We deduce an inequality for ∆ρ,

∆ρ + first order terms ≥ |∂su|2 − ρ∂sh
′
s − ρ(h′sC + C)− C|∂su|

≥ (|∂su| − 1
2
C)2 − ρ(∂sh

′
s + h′sC + C)− 1

4
C2.

Therefore a maximum principle will apply for ρ if we can ensure that ∂sh
′
s ≤ 0

everywhere and that ∂sh
′
s + h′sC + C + C2 ≤ 0 on the (finite) interval I of all s such

that ∂sfs 6= 0. Multiplying the latter condition by eCs and integrating in s, we deduce

that these conditions can be satisfied provided that

h′+eClength(I) − h′− ≤ C ′

where C ′ is a constant depending only on C and the length of I.

Theorem 28. If ϕ : M̂ → N̂ is a symplectomorphism of contact type at infinity,

then SH∗(M) ∼= SH∗(N).

Proof. By identifying the Floer solutions via ϕ, the claim reduces to showing that

the symplectic cohomology SH∗(M) = lim SH∗(h) is isomorphic to the symplectic

cohomology SH∗
f (M) = lim SH∗

f (h) which is calculated for Hamiltonians of the form

H(er, y) = h(er−f(y)), where the h are linear at infinity and f : ∂M → R is a fixed

smooth function.

Pick an interpolation fs from f to 0, constant in s for large |s|. We can inductively

construct Hamiltonians hn and kn on M̂ with h′n À k′n and k′n+1 À h′n, which by
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Lemma 27 yield continuation maps

φn : SH∗
f (kn) → SH∗(hn), ψn : SH∗(hn) → SH∗

f (kn+1).

We can arrange that the slope at infinity of the hn, kn grow to infinity as n →∞, so

that SH∗
f (M) = lim SH∗

f (kn) and SH∗(M) = lim SH∗(hn).

The composites ψn ◦φn and φn+1 ◦ψn are equal to the ordinary continuation maps

SH∗
f (kn) → SH∗

f (kn+1) and SH∗(hn) → SH∗(hn+1).

Therefore the maps φn and ψn form a compatible family of maps and so define

φ : SH∗
f (M) → SH∗(M), ψ : SH∗(M) → SH∗

f (M).

The composites ψ◦φ and φ◦ψ are induced by the families ψn◦φn and φn+1◦ψn, which

are the ordinary continuation maps defining the direct limits SH∗
f (M) and SH∗(M).

Hence φ ◦ ψ, ψ ◦ φ are identity maps, and so φ, ψ are isomorphisms.

3.4.10 Independence from choice of cohomology representa-

tive

Lemma 29. Let η be a one-form supported in the interior of M . Suppose there is

a homotopy ωλ through symplectic forms from ω to ω + dη. By Moser’s lemma this

yields an isomorphism ϕ : (M̂, ω + dη) → (M̂, ω), and therefore a chain isomorphism

ϕ : SC∗(H, ω + dη) → SC∗(ϕ∗H, ω),

which is the identity on orbits outside M and sends the orbits x in M to ϕ−1x.
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3.5 Twisted symplectic cohomology

3.5.1 Transgressions

Let ev : LM × S1 → LM be the evaluation map. Define

τ = π ◦ ev∗ : H2(M ;R)
ev∗ // H2(LM × S1;R)

π // H1(LM ;R) ,

where π is the projection to the Künneth summand. Explicitly, τβ evaluated on a

smooth path u in LM is given by

τβ(u) =

∫
β(∂su, ∂tu) ds ∧ dt.

In particular, τβ vanishes on time-independent paths in LM . If M is simply

connected, then τ is an isomorphism. After identifying

H1(LM ;R) ∼= HomR(H1(LM ;R),R) ∼= Hom(π1(LM),R)

and π1(LM) = π2(M) o π1(M), the τβ correspond precisely to homomorphisms

π2(M) → R. In particular, if β is an integral class then this homomorphism is

f∗ : π2(M) → Z where f : M → CP∞ is a classifying map for β.

3.5.2 Novikov bundles of coefficients

We suggest [28] as a reference on local systems. Let α be a singular smooth real

cocycle representing a ∈ H1(LM ;R). The Novikov bundle Λα is the local system of

coefficients on LM defined by a copy Λγ of Λ over each loop γ ∈ LM and by the

multiplication isomorphism

t−α[u] : Λγ → Λγ′
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for each path u in LM connecting γ to γ′. Here α[·] : C1(LM ;R) → R denotes

evaluation on smooth singular one-chains, which is given explicitly by

α[u] =

∫
α(∂su) ds.

Changing α to α + df yields a change of basis isomorphism x 7→ tf(x)x for the local

systems, so by abuse of notation we write Λa and a[u] instead of Λα and α[u].

Remark 30. In Chapter 2 we used the opposite sign convention tα[u]. In this Chapter

we changed it for the following reason. For a Liouville domain (M, dθ), the local

system for the action 1−form α = dAH acts on Floer solutions u ∈M(x, y; dθ) by

t−dAH [u] = tAH(x)−AH(y).

Therefore large energy Floer solutions will occur with high powers of t.

We will be considering the (co)homology of M or LM with local coefficients in

the Novikov bundles, and we now mention two recurrent examples. First consider a

transgressed form α = τβ (see 3.5.1). Since τ(β) vanishes on time-independent paths,

Λτβ pulls back to a trivial bundle via the inclusion of constant loops c : M → LM .

So for the bundle c∗Λτβ we just get ordinary cohomology with underlying ring Λ,

H∗(M ; c∗Λτ(β))
∼= H∗(M ; Λ).

Secondly, consider a map j : L → M . This induces a map Lj : LL → LM which

by the naturality of τ satisfies (Lj)∗Λτ(β)
∼= Λτ(j∗β). For example if τ(j∗β) = 0 ∈

H1(LL;R) then this is a trivial bundle, so the corresponding Novikov homology is

H∗(LL; (Lj)∗Λτ(β))
∼= H∗(LL)⊗ Λ.
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3.5.3 Twisted Floer cohomology

Let (M2n, θ) be a Liouville domain. Let α be a singular cocyle representing a class

in H1(LM ;R) ∼= H1(LM̂ ;R). The Floer chain complex for H ∈ C∞(M̂,R) with

twisted coefficients in Λα is the Λ−module freely generated by the 1-periodic orbits

of XH ,

CF ∗(H; Λα) =
⊕ {

Λx : x ∈ LM̂, ẋ(t) = XH(x(t))
}

,

and the differential δ on a generator y ∈ Crit(AH) is defined as

δy =
∑

u∈M0(x,y)

ε(u) t−α[u] x,

where ε(u) ∈ {±1} are orientation signs and M0(x, y) is the 0−dimensional compo-

nent of Floer trajectories connecting x to y. It is always understood that we perturb

(H, J) as explained in 3.3.6.

The ordinary Floer complex (with underlying ring Λ) has no weights t−α[u] in δ.

These appear in the twisted case because they are the multiplication isomorphisms

Λx → Λy of the local system Λα which identify the Λ−fibres over x and y (see 3.5.2).

Proposition/Definition 31. CF ∗(H; Λα) is a chain complex: δ ◦ δ = 0, and its

cohomology HF ∗(H; Λα) is a Λ−module called twisted Floer cohomology.

3.5.4 Twisted symplectic cohomology

Proposition 32 (Twisted continuation maps). For the twisted Floer cohomology of

(M, dθ), Theorem 23 continues to hold for the continuation maps φ : CF ∗(H+; Λα) →
CF ∗(H−; Λα) defined on generators y ∈ Crit(AH+) by

φ(y) =
∑

v∈M0(x,y)

ε(v) t−α[v] x.

Definition 33. The twisted symplectic cohomology of (M,dθ; α) is

SH∗(M,dθ; Λα) = lim
−→

HF ∗(H, dθ; Λα),
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where the direct limit is over the twisted continuation maps between Hamiltonians H

which are linear at infinity.

3.5.5 Independence from choice of cohomology representa-

tive

Lemma 34. Let fH ∈ C∞(LM̂,R) be an H−dependent function. Then the change

of basis isomorphisms x 7→ tfH(x)x of the local systems induce chain isomorphisms

SC∗(H, dθ; Λα) ∼= SC∗(H, dθ; Λα+dfH
)

which commute with the twisted continuation maps.

3.5.6 Twisted maps c∗ from ordinary cohomology

The twisted symplectic cohomology comes with a map from the induced Novikov

cohomology of M ,

c∗ : H∗(M ; c∗Λα) → SH∗(M ; dθ, Λα).

The construction is analogous to 3.4.8, and was carried out in detail in Chapter 2.

The map c∗ comes automatically with the direct limit construction of SH∗(M ; dθ, Λα),

since for the Hamiltonian Hδ described in 3.4.8 we have

HF ∗(Hδ; Λα) ∼= HM∗(Hδ; c∗Λα) ∼= H∗(M ; c∗Λα).

3.5.7 Twisted Functoriality

In Chapter 2 we proved the following variant of Viterbo functoriality [25], which holds

for Liouville subdomains (W 2n, θ′) ⊂ (M2n, θ). These are Liouville domains for which

θ − eρθ′ is exact for some ρ ∈ R. The standard example is the Weinstein embedding

DT ∗L ↪→ DT ∗N of a small disc cotangent bundle of an exact Lagrangian L ↪→ DT ∗N

(see Chapter 2).
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Figure 3-2: The solid line is a diagonal-step shaped Hamiltonian with a À b. The
dashed line is the action A(x) = −xh′(x) + h(x).

Theorem 35. Let i : (W 2n, θ′) ↪→ (M2n, θ) be a Liouville embedded subdomain. Then

there exists a map

SH∗(i) : SH∗(W,dθ′; Λ(Li)∗α) ← SH∗(M,dθ; Λα)

which fits into the commutative diagram

SH∗(W,dθ′; Λ(Li)∗α) ooSH∗(i)

OO
c∗

SH∗(M,dθ; Λα)
OO

c∗

H∗(W ; c∗Λ(Li)∗α) oo i∗
H∗(M ; c∗Λα)

The map SH∗(i) is constructed using a “step-shaped” Hamiltonian, as in Figure

3-2, which grows near ∂W and reaches a slope a, then becomes constant up to ∂M

where it grows again up to slope b. By a careful construction, with a À b, one can

arrange that all orbits in W have negative action with respect to (dθ, H), and for

orbits outside of W they have positive actions. The map SH∗(i) is then the limit, as

a À b → ∞, of the action restriction maps which quotient out by the generators of

positive action.

Theorem 36. Let (M, dθ) be a Liouville domain and let L ⊂ M be an exact orientable

Lagrangian submanifold. By Weinstein’s Theorem, this defines a Liouville embedding
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j : (DT ∗L, dθ) → (M, dθ) of a small disc cotangent bundle of L. Then for all α ∈
H1(LM ;R) there exists a commutative diagram

Hn−∗(LL; Λ(Lj)∗α) ∼= SH∗(T ∗L, dθ; Λ(Lj)∗α)
OO
c∗

oo SH∗(M,dθ; Λα)
OO

c∗

Hn−∗(L; c∗Λ(Lj)∗α) ∼= H∗(L; c∗Λ(Lj)∗α) oo H∗(M ; c∗Λα)

where the left vertical map is induced by the inclusion of constant loops c : L → LL.

If c∗α = 0 then the bottom map is the pullback H∗(L)⊗ Λ ← H∗(M)⊗ Λ.

Corollary 37. Let (M,dθ) be a Liouville domain and let L ⊂ M be an exact ori-

entable Lagrangian. Suppose β ∈ H2(M̂ ;R) is such that τ(j∗β) = 0 ∈ H1(LL;R).

Then there is a commutative diagram

Hn−∗(LL)⊗ Λ
OO

c∗
?Â

oo SH∗(M, dθ; Λτβ)
OO
c∗

Hn−∗(L)⊗ Λ ∼= H∗(L)⊗ Λ oo j∗
H∗(M)⊗ Λ

Therefore SH∗(M, dθ; Λτβ) cannot vanish since c∗j∗1 = c∗1 6= 0.

Remark 38. Unorientable exact Lagrangians. In Theorem 36 we assumed that

the Lagrangian is orientable. However, the result easily extends to the unorientable

case: instead of using Z coefficients we use Z2 coefficients. This means that the

moduli spaces do not need to be oriented and we can drop all orientation signs in the

definitions of the differentials for the Floer complexes and the Morse complexes. The

Novikov ring is now defined by

Λ = {∑∞
n=0 ant

rn : an ∈ Z2, rn ∈ R, rn →∞}.

Note that the Novikov one-form α is still chosen in H1(LM ;R).

This is particularly interesting in dimension four since H2(L;R) = 0 for un-

orientable L2 ⊂ M4, therefore the transgression vanishes. In particular the pull-

back of any transgression from M will vanish on L. This immediately contradicts
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Corollary 37 if SH∗(M, dθ; Λτβ) = 0. For example in Chapter 2 we proved that

SH∗(T ∗S2, dθ; Λτβ) = 0 for any non-zero β ∈ H2(S2;R). Therefore there can be no

unorientable exact Lagrangians in T ∗S2.

3.6 Grading of symplectic cohomology

3.6.1 Maslov index and Conley-Zehnder grading

We assume that c1(M) = 0: this condition will ensure that the symplectic cohomology

has a Z−grading defined by the Conley-Zehnder index.

Since c1(M) = 0, we can choose a trivialization of the canonical bundle K =

Λn,0T ∗M . Then over any 1−periodic Hamiltonian orbit γ, trivialize γ∗TM so that it

induces an isomorphic trivialization of K. Let φt denote the linearization Dϕt(γ(0))

of the time t Hamiltonian flow written in a trivializing frame for γ∗TM .

Let sign(t) denote the signature of the quadratic form

ω(·, ∂tφt·) : ker(φt − id) → R,

assuming we perturbed φt relative endpoints to make the quadratic form non-degenerate

and to make ker(φt − id) = 0 except at finitely many t.

The Maslov index µ(γ) of γ is

µ(γ) =
1

2
sign(0) +

∑
0<t<1

sign(t) +
1

2
sign(1).

The Maslov index is invariant under homotopy relative endpoints, and it is addi-

tive with respect to concatenations. If φt is a loop of unitary transformations, then

its Maslov index is the winding number of the determinant, det φt : K → K. For

example φt = e2πit ∈ U(1) for t ∈ [0, 1] has Maslov index 1.

In our applications, γ will often not be an isolated orbit. It will typically lie in

an S1−worth or an S3−worth of orbits. In this case it is possible to make a small

time-dependent perturbation of H so that γ breaks up into two isolated orbits whose
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Maslov indices get shifted by ±dim(S1)/2 or ±dim(S3)/2 respectively.

The grading we use on SH∗ is the Conley-Zehnder index, defined by

|γ| = dim(M)

2
− µ(γ).

This grading agrees with the Morse index when H is a generic C2−small Hamiltonian

and γ is a critical point of H.

3.7 Deformation of the Symplectic cohomology

Let β be a compactly supported two-form representing a class in H2(M ;R) such that

dθ + β is symplectic. We want to construct an isomorphism between the non-exact

symplectic cohomology and the twisted symplectic cohomology

SH∗(H, dθ + β) ∼= SH∗(H, dθ; Λτβ).

We will show that this holds if dθ + sβ is symplectic for 0 ≤ s ≤ 1. For example, it

will always hold if ‖β‖ < 1.

3.7.1 Outline of the argument

Let Hm denote a Hamiltonian which only depends on R on the collar and which

has slope m at infinity. Choosing Hm generic and C2−small inside M ensures that

the only 1−periodic Hamiltonian orbits inside M are the critical points of Hm. We

will prove that we may assume that the critical points lie outside the support of

β. Therefore SC∗(Hm, dθ + β) and SC∗(Hm, dθ; Λτβ) have the same generators: the

critical points of Hm and the 1−periodic Hamiltonian orbits lying in the collar (we

used that supp β ⊂ M).

We will build chain isomorphisms

ψm
µ : SC∗(Hm, dθ + β) → SC∗(Hm, dθ; Λτβ)
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which are defined for a sufficiently large parameter µ; which are independent of µ on

homology, say ψm = ψm
µ ; and which commute with the continuation maps

SH∗(Hm, dθ + β)
ψm

//

²²

SH∗(Hm, dθ; Λτβ)

²²

SH∗(Hm′
, dθ + β)

ψm′
// SH∗(Hm′

, dθ; Λτβ)

Therefore, by exactness of direct limits, ψ = lim ψm is the desired isomorphism

ψ : SH∗(M,dθ + β) → SH∗(M, dθ, Λτβ).

The parameter µ arises in the construction of the maps ψm
µ because for large µ

the identity map provides a natural chain isomorphism

id : SC∗(Hm, dθ + µ−1β) ∼= SC∗(Hm, dθ; Λµ−1τβ).

This is proved by showing that the moduli spacesM(x, y; dθ+λβ) form a 1−parameter

family joining M(x, y; dθ + µ−1β) to M(x, y; dθ).

To define the maps ψm
µ we therefore just need to deform dθ + β to dθ + µ−1β. On

the twisted side, there are no difficulties:

SH∗(Hm, dθ; Λτβ) ∼= SH∗(Hm, dθ; Λµ−1τβ)

is just a rescaling t 7→ t(µ
−1).

For the non-exact symplectic cohomology we first combine the Liouville flow ϕµ

for time log µ and a rescaling of the metric by µ−1. This will change dθ + β to

dθ + µ−1ϕ∗µβ. Then we want to make a Moser deformation from dθ + µ−1ϕ∗µβ to

dθ + µ−1β, so we need a deformation through symplectic forms without changing the

cohomology class. This is possible if dθ + sβ is symplectic for 0 ≤ s ≤ 1.

Lemma 39. If dθ + sβ is symplectic for 0 ≤ s ≤ 1, then it is possible to deform

dθ + µ−1β to dθ + µ−1ϕ∗µβ through symplectic forms within its cohomology class.
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Proof. Since dθ + sβ are symplectic for 0 ≤ s ≤ 1, so are

ωs = (sµ)−1ϕ∗sµ(dθ + sβ) = dθ + µ−1ϕ∗sµβ

for 1
µ
≤ s ≤ 1. It remains to show that ∂sωs is exact. By Cartan’s formula,

∂sωs = ϕ∗sµLZ/sµβ = ϕ∗sµ(iZ/sµdβ + diZ/sµβ) = dϕ∗sµ(iZ/sµβ).

The argument hides a small technical challenge. The changes in symplectic forms

will change the Hamiltonian Hm (without affecting the slope at infinity). Since the

1−parameter family argument heavily depends on Hm, it is not clear that the same

large µ works for all Hamiltonians of a given slope. Therefore we first apply a contin-

uation isomorphism to change the Hamiltonian back to the original Hm. Now it is no

longer clear that ψm
µ is independent of µ on homology, and when we take the direct

limit of continuation maps as m → ∞ it is not clear that the same choice of µ will

work for different Hamiltonians. Thus it is necessary to prove that the construction

is independent of µ.

The 1−parameter family of moduli spaces argument is presented in 3.7.7. We

will need several preliminary results: the Palais-Smale Lemma (3.7.3); the Lyapunov

property for the action functional (3.7.4); an a priori energy estimate (3.7.5) and a

transversality result (3.7.6). In section 3.7.9 we will construct the maps ψm
µ .

3.7.2 Metric rescaling

Lemma 40. Let µ > 0. There is a natural identification

SC∗(H, ω) → SC∗(µH, µ ω),

induced by the change of ring isomorphism Λ → Λ, t 7→ tµ.

Proof. Under the rescaling, XH does not change, so the Floer equations don’t change.

The energy functional gets rescaled by µ, so a Floer trajectory contributes a factor
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tµE(u) = (tµ)E(u) to the differential instead of tE(u).

3.7.3 Palais-Smale Lemma

Let Xt be a time-dependent vector field. Define

F : LM →
⋃

x∈LM

x∗TM, F (x)(t) = ẋ(t)−Xt(x(t)).

The solutions of F (x) = 0 are precisely the 1−periodic orbits of Xt. The following

standard result (see Salamon [21]) ensures that F is small only near such solutions.

Lemma 41. Let M be a compact Riemannian manifold, and Xt a time-dependent

vector field on M whose 1−periodic orbits form a discrete set. Then

1. A sequence xn ∈ LM with ‖F (xn)‖L2 → 0 has a subsequence converging in C0

to a solution of F (x) = 0.

2. For any ε > 0 there is a δ > 0 such that ‖F (y)‖L2 < δ implies that there is

some solution of F (x) = 0 close to y, supt∈S1 dist (x(t), y(t)) < ε.

Corollary 42. Let (M,dθ) be a Liouville domain. Fix J on M̂ as defined in 3.3.1.

Let Ht be a time-dependent Hamiltonian on M̂ such that Ht = h(R) is linear with

generic slope for R À 0. Then for any δ > 0 there is an ε > 0 such that any smooth

loop x : S1 → M̂ with ‖F (x)‖ < δ will be within distance ε of some 1−periodic orbit

of Ht.

3.7.4 Lyapunov property of the action functional

Let (M,dθ, J) be a Liouville domain. The metric we use will be dθ(·, J ·), and denote

by | · | the norm and by ‖ · ‖ the L2−norm integrating over time. Let X be the

Hamiltonian vector field for (H, dθ), where H is linear at infinity, and recall F (x) =

∂tx−X(x).
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Let β be a closed two-form compactly supported in M such that dθ + β is sym-

plectic. Denote Xβ the Hamiltonian vector field for (H, dθ + β), and let

Fβ(x) = ∂tx−Xβ(x).

Let ‖β‖ = sup |β(Y, Z)| taken over all vectors Y, Z of norm 1. We will also use

the notation Ysupp β for a vector field Y , where

Ysupp β(m) = Y (m) if m ∈ supp β, and Ysupp β(m) = 0 otherwise.

Lemma 43. Let V be a neighbourhood containing the 1−periodic orbits of X in M ,

and let β be a closed 2-form compactly supported in M and vanishing on V .

1. If ‖β‖ < 1 then ‖Fβ(x)− F (x)‖ ≤ ‖β‖
1− ‖β‖ ‖Xsuppβ‖.

2. There is a δ > 0 depending on (M, H, dθ, J, V ), but not on β, such that

‖F (x)‖ < δ =⇒ x lies in V or outside M, so Fβ(x) = F (x).

3. If ‖β‖ is sufficiently small, then ‖Fβ − F‖ ≤ 1
3
‖F‖ and ‖Fβ‖ ≤ 2‖F‖.

Proof. Observe that Fβ − F = X −Xβ and that dθ(X −Xβ, .) = β(Xβ, .), so

|X −Xβ|2 = β(Xβ, J(X −Xβ)) ≤ ‖β‖ · |Xβ| · |X −Xβ|.

Dividing out by |X −Xβ| gives |X −Xβ| ≤ ‖β‖ · |Xβ|. From |Xβ| ≤ |X|+ |X −Xβ|
we deduce that |Xβ| ≤ 1

1−‖β‖ |X|. Therefore

|Fβ(x)− F (x)| ≤ ‖β‖
1− ‖β‖ |Xsupp β(x)|,

since Fβ − F = X −Xβ vanishes at (x, t) if the loop x lies outside the support of β

at time t. The first claim follows, and the second follows by Corollary 42.
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Let C = sup |Xsupp β|. Then, whenever ‖F‖ ≥ δ,

‖Fβ − F‖ ≤ ‖β‖
1− ‖β‖C ≤ ‖β‖

1− ‖β‖
C

δ
‖F‖ ≤ 1

3
‖F‖

for small enough ‖β‖. The last claim then follows from (2).

For ‖β‖ < 1, dθ + β is symplectic and (dθ + β)(·, J ·) is positive definite but may

not be symmetric. By symmetrizing, we obtain a metric

g̃β(V, W ) =
1

2
[(dθ + β)(V, JW ) + (dθ + β)(W,JV )].

There is a unique endomorphism B such that g̃β(BV,W ) = (dθ + β)(V, W ), and

this yields an almost complex structure Jβ = (−B2)−1/2B compatible with dθ + β,

inducing the metric

gβ(V,W ) = (dθ + β)(V, JβW ) = g̃β((−B2)1/2V,W ).

For sufficiently small ‖β‖, Jβ is C2−close to J and is equal to J outside the support

of β, so in particular gβ induces a norm | · |β which is equivalent to the norm | · |.
Moreover, on the support of β we may perturb Jβ among (dθ+β)−compatible almost

complex structures so that transversality holds for (dθ + β)−Floer trajectories. For

convenience, we use the abbreviations

δJ = Jβ − J δF = Fβ − F.

Theorem 44. Let V be a neighbourhood containing the 1−periodic orbits of X in M ,

and let β be a closed 2-form compactly supported in M and vanishing on V . Then

for sufficiently small ‖β‖,
∂sA(u) ≤ −1

2
‖F (u)‖2

for all u ∈ M(x, y; dθ + β, H), where A(x) = − ∫
x∗θ +

∫
H(x) dt is the action

functional for (H, dθ). In particular, A is a Lyapunov function for the action 1−form
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for (H, dθ + β).

Proof. The action A for (dθ, H) varies as follows on u ∈M(x, y; dθ + β,H),

−∂sA(u) =
∫ 1

0
dθ(∂su, F (u)) dt

=
∫ 1

0
dθ(F (u), JβFβ(u)) dt

=
∫ 1

0
dθ(F (u), (J + δJ)(F + δF )(u)) dt

≥ ‖F (u)‖2 − ‖δJ‖ ‖F (u)‖2 − ‖δF (u)‖ ‖F (u)‖ − ‖δF (u)‖ ‖δJ‖ ‖F (u)‖
≥ (

1− ‖δJ‖ − 1
3
− 1

3
‖δJ‖) ‖F (u)‖2,

using Lemma 43 in the last line.

3.7.5 A priori energy estimate

We now want an a priori energy estimate for all u ∈ M(x, y; dθ + β, H) when ‖β‖
is small. The key idea is to reparametrize the action A by energy and then use the

Lyapunov inequality ∂sA(u) ≤ −1
2
‖F (u)‖2 of Theorem 44. Let e(s) denote the energy

up to s calculated with respect to (dθ + β, Jβ),

e(s) =

∫ s

−∞

∫ 1

0

|∂su|2β dt ds =

∫ s

−∞
‖∂su‖2

β ds

where | · |β is the norm corresponding to the metric (dθ + β)(·, Jβ·), and ‖ · ‖β is the

L2 norm integrated over time.

Theorem 45. Let β be as in Theorem 44. Then there is a constant k > 1 such that

for all u ∈M(x, y; dθ + β, H),

E(u) ≤ k(A(x)− A(y)).

Proof. ∂se = ‖∂su‖2
β vanishes at s precisely if Fβ(u) = 0. By ignoring those s for

which ∂se = 0, we can assume that ∂se > 0. Let s(e) be the inverse of the function

e(s). Then reparametrize the trajectory u by

ũ(e, t) = u(s(e), t).
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Since ∂es =
1

‖∂su‖2
β

, we deduce ∂e(A ◦ ũ) =
∂sA(u)

‖∂su‖2
β

=
∂sA(u)

‖Fβ(u)‖2
β

.

Now apply respectively Theorem 44, Lemma 43 and the equivalence of the norms ‖ ·‖
and ‖ · ‖β,

∂e(A ◦ ũ) ≤ −‖F (u)‖2

2‖Fβ(u)‖2
β

≤ −‖Fβ(u)‖2

constant · ‖Fβ(u)‖2
=: − 1

k
.

Integrate in e over (e(−∞), e(∞)) = (0, E(u)) to get A(y)−A(x) ≤ (−1/k)E(u). By

making ‖β‖ sufficiently small, one can actually make k arbitrarily close to 1.

3.7.6 Transversality for deformations

We now prove a general result which guarantees transversality for a 1−parameter

deformation G of a map F for which transversality holds. We need a preliminary

lemma.

Lemma 46. Let L : B1 → B2 be a surjective bounded operator of Banach spaces,

and consider a perturbation L + Pε : B1 → B2 where Pε is a bounded operator which

depends on a topological parameter ε, with P0 = 0 and ‖Pε‖ → 0 as ε → 0.

1. If L is Fredholm then so is L + Pε for small ε.

2. If L is Fredholm and surjective, then so is L + Pε for small ε.

Proof. The Fredholm property is a norm-open condition, hence (1). Recall some

general results relating an operator L : B1 → B2 to its Banach dual L∗ : B∗
2 → B∗

1 :

i) L is surjective if and only if L∗ is injective and im L is closed;

ii) if L is Fredholm then L∗ is Fredholm;

iii) a Fredholm operator is injective if and only if it is bounded below.

In (2), L∗ is bounded below, say ‖L∗v‖ ≥ δL‖v‖ for all v ∈ B∗
2 , so

‖(L + Pε)
∗v‖ ≥ ‖L∗v‖ − ‖P ∗

ε v‖ ≥ (δL − ‖P ∗
ε ‖) ‖v‖.
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If ε is so small that δL > ‖P ∗
ε ‖ = ‖Pε‖, then (L+Pε)

∗ is bounded below and so L+Pε

is surjective.

Theorem 47. Let Y → X be a Banach vector bundle. Suppose that a differentiable

section F : X → Y is transverse to the zero section with Fredholm differential DuF
at all u ∈ F−1(0). Let S : R × X → Y be a differentiable parameter-valued section

with S(0, ·) = 0. Then for the deformation G = F + S : R×X → Y ,

1. G−1(0) is a smooth submanifold near 0×F−1(0);

2. G−1(0) is transverse to {λ = 0}.

3. If 0 is an index zero regular value of F and G−1(0) is compact near λ = 0, then

the deformation G−1(0) of F−1(0) is trivial near λ = 0,

G−1(0) ∩ {λ ∈ [−λ0, λ0]} ∼= [−λ0, λ0]×F−1(0).

Proof. The first claim essentially follows from the implicit function theorem and

Lemma 46 applied to the operators L = DuF and Pε = Dλ,uS with parameter

ε = (λ, u). More precisely, we reduce to the local setup by choosing an open neigh-

bourhood U of u so that TUX ∼= U ×B1, TUY ∼= U ×B2,

T[−λ0,λ0]×U(R×X) ∼= ([−λ0, λ0]× U)× R×B1,

so locally DuF : B1 → B2 and Dλ,uS : R × B1 → B2. Suppose F(u0) = 0, then

apply Lemma 46 to L = Du0F and P(λ,u) = DuF − Du0F + D(λ,u)S. Therefore

Dλ,uG = L + P(λ,u) is Fredholm and surjective, so by the implicit function theorem

G−1(0) is a smooth submanifold for u close to u0. Thus claim (1) follows.

Observe that at (η, ξ) ∈ TR⊕ TX,

D0,uG · (η, ξ) = DuF · ξ + D0,uS · ξ + ∂λ|λ=0 S · η
= DuF · ξ + ∂λ|λ=0 S · η.
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Therefore, D0,uG·(0, ξ) = DuF·ξ. We deduce that imDuF ⊂ imD0,uG and ker DuF ⊂
kerD0,uG. Since DuF is surjective whenever F(u) = 0 (= G(0, u)), also D0,uG is

surjective and therefore T0,uG−1(0) ∼= ker D0,uG must be 1 dimension larger than

ker DuF , so it contains some vector (1, ξ), which implies claim (2).

This also relates the indices at solutions of F(u) = 0:

ind D0,uG = dim ker D0,uG = dim ker DuF + 1 = ind DuF + 1.

If 0 is an index zero regular value of F , then F−1(0) is 0−dimensional and G−1(0) is

a 1−dimensional submanifold near 0×F−1(0) diffeomorphic to a product [−λ0, λ0]×
F−1(0), for some small λ0. If G−1(0) is compact near λ = 0 then for sufficiently small

λ0 all solutions of G(λ, u) = 0 with |λ| ≤ λ0 will be close to 0×F−1(0), proving claim

(3).

3.7.7 The 1−parameter family of moduli spaces

Let H be a Hamiltonian which is linear at infinity. In this section we will prove

Theorem 48. For β as in Theorem 44 the family of moduli spaces

Mλ(x, y) = M(x, y; dθ + λβ,H)

is smoothly trivial near λ = 0,

⊔

−λ0<λ<λ0

Mλ(x, y) ∼= M(x, y; dθ, H)× (−λ0, λ0).

In particular, the identity map

id : SC∗(H, dθ + λβ) → SC∗(H, dθ; ΛdA+λτβ)

is a chain isomorphism for all small λ, where A(x) = − ∫
x∗θ +

∫
H(x) dt is the

action functional for (H, dθ).
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Proof. Let Xλβ be the Hamiltonian vector field determined by (H, dθ+λβ). We want

to compare the following two maps,

F(u) = ∂su + J(∂tu−X) and G(u) = ∂su + Jλβ(∂tu−Xλβ),

since F−1(0) = M(x, y) and G−1(0) = ∪λMλ(x, y).

These maps can be extended to sections X → Y of an appropriate Banach vector

bundle and generically F is a Fredholm map (its linearizations are Fredholm opera-

tors). Indeed for k ≥ 1 and p > 2, we can take Y to be the W k−1,p completion of the

space of smooth sections of u∗TM with suitable exponential decay at the ends. The

base X is the space of W k,p maps u : R× S1 → M connecting two fixed 1−periodic

Hamiltonian orbits. We refer to Salamon [21] and McDuff-Salamon [15] for a precise

description.

For convenience, denote δJ = Jλβ − J and δX = X −Xλβ. We may assume that

δJ is C2−small, and we showed in Lemma 43 that

|δX| ≤ |λ| ‖β‖
1− |λ| ‖β‖ |Xsupp β|.

So δJ , δX are small for small λ. We can rewrite G(λ, u) = F(u) + S(λ, u), where

S(λ, u) = δJ · (F (u) + δX) + JδX,

where F (u) = ∂tu−X(u). S is supported at those (u, s, t) with u(s, t) ∈ supp β, and

S : X → Y is a differentiable parameter-valued section vanishing at λ = 0.

By the a priori energy estimate of Theorem 45, G−1(0) is compact near λ = 0.

Theorem 47 implies that if 0 is an index zero regular value of F then G−1(0) is a

trivial 1−dimensional family in the parameter λ, for small λ.

Thus, for sufficiently small λ0, there is a natural bijection between the moduli

spaces which define the differentials of SC∗(H, dθ + λ0β) and SC∗(H, dθ; ΛdA+λ0τβ).
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Indeed, if uλ0 ∈M0(x, y; H, dθ + λ0β) then there is a natural 1−parameter family

uλ ∈M0(x, y; H, dθ + λβ)

connecting uλ0 to some u0 ∈ M0(x, y; H, dθ). Since uλ0 is homotopic to u0 relative

endpoints via uλ, the local system ΛdA+λ0τβ yields the same isomorphism for uλ0 as

for u0, which is multiplication by

t−
∫

u∗dθ+
∫ 1
0 (H(x)−H(y)) dt−∫

u∗(λ0β) = t−
∫

u∗(dθ+λ0β)+
∫ 1
0 (H(x)−H(y)) dt

and which is the same weight used in the definition of ∂y for SC∗(H, dθ+λ0β). There-

fore the two complexes have exactly the same generators and the same differential,

and in particular the identity map between them is a chain isomorphism.

3.7.8 Continuation of the 1−parameter family

Theorem 49. Let β be as in Theorem 44. Let Hs be a monotone homotopy. Then

the family of moduli spaces of parametrized Floer trajectories

Mλ(x, y; Hs) = M(x, y; dθ + λβ,Hs)

is smoothly trivial near λ = 0. In particular, the following diagram commutes for all

small enough λ,

SC∗(H+, dθ + λβ) id //

continuation

²²

SC∗(H+, dθ; ΛdA+τλβ)

continuation
²²

SC∗(H−, dθ + λβ) id // SC∗(H−, dθ; ΛdA+τλβ)

Proof. Let Xs,λβ be the Hamiltonian vector field determined by (Hs, dθ + λβ), and

let Xs = Xs,0. The claim follows by mimicking the proof of Theorem 48 for

F(u) = ∂su + Js(∂tu−Xs) and G(u) = ∂su + Js,λβ(∂tu−Xs,λβ).
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Theorem 50. Let β be as in Theorem 44. Let λ be so small that Theorem 48 holds

for H. Let ϕε be a smooth parameter-valued isotopy of M̂ , with ϕ0 = id, such that

ϕ∗εH is a monotone homotopy in ε. Let Hs,ε = ϕ∗sεH for s ∈ [0, 1] be the homotopy

from H to ϕ∗εH. Then the family of moduli spaces of parametrized Floer trajectories

Mε(x, y; Hs,ε) = M(x, y; dθ + λβ,Hs,ε) is smoothly trivial near ε = 0. So there is a

commutative diagram of chain isomorphisms for all small ε,

SC∗(H, dθ + λβ) id //

continuation

²²

SC∗(H, dθ; ΛdA+τλβ)

continuation
²²

SC∗(ϕ∗εH, dθ + λβ) id // SC∗(ϕ∗εH, dθ; ΛdA+τλβ)

where the vertical maps send the generators x 7→ ϕ−1
ε (x).

Proof. Let Xs,ε be the Hamiltonian vector field determined by (Hs,ε, dθ + λβ), and

let X = Xs = Xs,0. The claim follows by mimicking the proof of Theorem 48 for

F(u) = ∂su + Js(∂tu−X) and G(u) = ∂su + Js,ε(∂tu−Xs,ε).

3.7.9 Construction of the isomorphism

We now give the proof outlined in 3.7.1.

Let β be a closed two-form compactly supported in the interior of M , and suppose

that dθ + sβ is symplectic for all 0 ≤ s ≤ 1 (so that Lemma 39 applies).

Let Hm be a Hamiltonian linear at infinity with slope m. Up to a continuation

isomorphism on symplectic cohomologies, we may assume that all critical points of

Hm in the interior of M lie in a neighbourhood V contained in M \ supp β. This

technical remark is explained in section 3.7.10.
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Define ψm
µ by the diagram of isomorphisms

SC∗(Hm, dθ + β)

(1) Liouville ϕµ

²²

ψm
µ //______ SC∗(Hm, dθ; Λτβ)

(6) rescale

²²

SC∗(ϕ∗µH
m, µdθ + ϕ∗µβ)

(2) Moser σµ

²²
SC∗(φ∗µH

m, µdθ + β)

(3) continuation

²²
SC∗(µHm, µdθ + β)

(4) rescale
²²

SC∗(Hm, dθ; Λµ−1τβ)

(7) change of basis
²²

SC∗(Hm, dθ + µ−1β)
id

(5)
// SC∗(Hm, dθ; ΛdA+µ−1τβ)

where the maps are defined as follows:

1. apply ϕµ, the Liouville flow for time log µ (see 3.3.1 for the definition of the

Liouville vector field);

2. apply the Moser symplectomorphism σµ : (M̂, µ dθ + β) → (M̂, µ dθ + ϕ∗µβ)

obtained by Lemmas 39 and 29, and denote φµ = σµ ◦ ϕµ;

3. observe that φ∗µH
m has slope µm at infinity, so the linear interpolation from

µHm to φ∗µH
m is a compactly supported homotopy and therefore induces a

continuation isomorphism;

4. metric rescaling by µ−1 (Lemma 40), which changes t to T = t(µ
−1);

5. the identity map is a chain isomorphism by Theorem 48 provided µ is sufficiently

large (depending on m);

6. rescale τβ to µ−1τβ, so change t to T = t(µ
−1);

7. adding an exact form dA to µ−1τβ, where A is the action 1−form for (Hm, dθ),

corresponds to a change of basis x 7→ TA(x)x by Lemma 34.
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Lemma 51. The map ψm
µ : SH∗(Hm, dθ+β) → SH∗(Hm, dθ; Λτβ) on homology does

not depend on the choice of large µ.

Proof. In this proof we abbreviate Hm by H and pullbacks φ∗ by φ. Consider µ′ close

to µ, and write φ = φµ′φ
−1
µ and ϕ = ϕµ′ϕ

−1
µ . Observe the following commutative

diagram, in which the top row and bottom diagonal are part of the construction of

the maps ψm
µ and ψm

µ′ , for µ′ > µ.

SH∗(H, dθ + β)
φµ //

φµ′ **TTTTTTTTTTTTTTTT
SH∗(φµH, µ dθ + β)

φ−1

²²

continu. //

continuation

**VVVVVVVVVVVVVVVVV
SH∗(µH, µ dθ + β)

continuation
²²

SH∗(φµ′H, µ′ dθ + β)

continuation **VVVVVVVVVVVVVVVVVV
SH∗(φ−1µ′H, µ dθ + β)

φ−1

²²
SH∗(µ′H, µ′ dθ + β)

The last vertical composite, after a metric rescaling, is the map

φ−1 ◦ C : SH∗(H, dθ + µ−1β) → SH∗(H, dθ + µ′−1
β)

where C is the continuation map

C : SH∗(H, dθ + µ−1β) → SH∗(µ−1φ−1µ′H, dθ + µ−1β).

For µ′ sufficiently close to µ, φ−1 is an isotopy of M̂ close to the identity, therefore

by Theorem 50, C maps the generators by φ. Thus φ−1 ◦ C = id for µ′ close to µ.

For the twisted symplectic cohomology we just apply changes of basis so we deduce

the following commutative diagram (using abbreviated notation),

SH∗(dθ + β) //

))RRRRRRRRRRRRRR
SH∗(dθ + µ−1β)

id
²²

id // SH∗(ΛdA+µ−1τβ)

id
²²

// SH∗(Λτβ)

SH∗(dθ + (µ′)−1β)
id // SH∗(ΛdA+(µ′)−1τβ)

66mmmmmmmmmmmmm

We showed that this diagram holds for all µ′ close to µ. Suppose it holds for all

µ, µ′ ∈ [µ0, µ1), for some maximal such µ1 < ∞. Apply the above result to µ = µ1,
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then the diagram holds for all µ, µ′ ∈ (µ1 − ε, µ1 + ε), for some ε > 0. Thus it holds

for all µ, µ′ ∈ [µ0, µ1 + ε). So there is no maximal such µ1 and the diagram must hold

for all large enough µ, µ′, and thus the map SH∗(H, dθ + β) → SH∗(H, dθ; Λτβ) does

not depend on the choice of (large) µ.

Lemma 52. The maps ψm : SH∗(Hm, dθ + β) → SH∗(Hm, dθ; Λτβ) commute with

the continuation maps induced by monotone homotopies.

Proof. Let Hs be a monotone homotopy from Hm′
to Hm. By theorem 49, for suffi-

ciently large µ the following diagram commutes

SC∗(H+, dθ + µ−1β)
id //

continuation
²²

SC∗(H+, dθ; ΛdA+µ−1τβ)

continuation
²²

SC∗(H−, dθ + µ−1β)
id // SC∗(H−, dθ; ΛdA+µ−1τβ)

and by Lemma 34 we deduce the required commutative diagram

SC∗(H+, dθ + β)
ψm

//

continuation

²²

SC∗(H+, dθ; Λτβ)

continuation
²²

SC∗(H−, dθ + β)
ψm′

// SC∗(H−, dθ; Λτβ)

Theorem 53. Let β be a closed two-form compactly supported in the interior of M ,

and suppose that dθ + sβ is symplectic for 0 ≤ s ≤ 1. Then there is an isomorphism

ψ : SH∗(M,dθ + β) → SH∗(M, dθ; Λτβ).

Proof. By Lemma 51 the map ψm = ψm
µ on homology is independent of µ for large µ,

and by Lemma 52 the maps ψm commute with continuation maps. The direct limit

is an exact functor, so ψ = lim ψm is an isomorphism.

Remark 54. The theorem can sometimes be applied to deformations ωs which are

not compactly supported by using Gray’s stability theorem e.g. see Lemma 68.

Remark 55. Let β ∈ H2(M ;R) come from H2(∂M ;R) by the Thom construction.

Then SH∗(M, dθ + β) ∼= SH∗(M, dθ; Λ), the ordinary symplectic cohomology with
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underlying ring Λ. Indeed, suppose β vanishes on

Fix (ϕµ) = lim
µ→−∞

ϕµ(M).

Let H = h(R) be a convex Hamiltonian defined in a neighbourhood R < R0 of Fix (ϕµ)

where β vanishes, such that h′(R) → ∞ as R → R0. Let Hm = h if h′ ≤ m and

let Hm be linear with slope m elsewhere. Then the Floer solutions concerned in the

symplectic chain groups will all lie in the subset of M where β = 0.

3.7.10 Technical remark

We assumed in 3.7.9 that all critical points of H in the interior of M lie in a neigh-

bourhood V ⊂ M \ supp β. We can do this as follows.

Pick a small neighbourhood V around Crit(H) so that β|V = dα is exact. We may

assume that α is supported in V . To construct the isomorphism of 3.7.9 we need to

homotope dθ+µ−1β to dθ+µ−1(β−dα) for all large µ. This can be done by a Moser

isotopy compactly supported in V via the exact deformation ωs = dθ +µ−1(β− sdα).

Since ∂sωs = −µ−1dα, for large µ the Moser isotopy φs is close to the identity.

Therefore during the isotopy the critical points of φ∗sH stay within V . This guarantees

that the Palais-Smale Lemma 42 can be applied for V independently of large µ, and

the construction 3.7.9 can be carried out with minor modifications.

3.8 ADE spaces

3.8.1 Hyperkähler manifolds

We suggest [8] for a detailed account of Hyperkähler manifolds and ADE spaces.

Recall that a symplectic manifold (M, ω) is Kähler if there is an integrable ω−compatible

almost complex structure I. Equivalently, a Riemannian manifold (M, g) is Kähler

if there is an orthogonal almost complex structure I which is covariant constant

with respect to the Levi-Civita connection. (M, g) is called hyperkähler if there are
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three orthogonal covariant constant almost complex structures I, J,K satisfying the

quaternion relation IJK = −1.

The hyperkähler manifold (M, g) is therefore Kähler with respect to each of the

(integrable) complex structures I, J,K, with corresponding Kähler forms

ωI = g(I·, ·), ωJ = g(J ·, ·), ωK = g(K·, ·).

Indeed, there is an S2 worth of Kähler forms: any vector (uI , uJ , uK) ∈ S2 ⊂ R3

gives rise to a complex structure Iu = uII + uJJ + uKK and a Kähler form

ωu = uIωI + uJωJ + uKωK .

We will always think of M as a complex manifold with respect to I, and we recall

from [9] that ωJ + iωK is a holomorphic symplectic structure on M (a non-degenerate

closed holomorphic (2, 0) form). The form ωJ + iωK determines a trivialization of

the canonical bundle Λ2,0T ∗M , so c1(M) = 0 and the Conley-Zehnder indices give a

Z−grading on symplectic cohomology (see 3.6.1).

Lemma 56. Let L2 ⊂ H be an I−complex vector subspace of the space of quaternions.

Then L is a Lagrangian subspace with respect to ωJ and ωK, and a symplectic subspace

with respect to ωI . After an automorphism of H, L is identified with C⊕ 0 ⊂ H.

Proof. L is a complex 1-dimensional vector subspace with respect to the I−holomorphic

symplectic form ωc = ωJ + iωK , and therefore it is complex Lagrangian. Thus L is a

real Lagrangian vector subspace with respect to ωJ and ωK .

Moreover, given any vector e1 ∈ L, let e2 = Ie1, e3 = Je1 and e4 = Ke1. Then

L = span{e1, e2} and ωI(e1, e2) = g(e2, e2) > 0, so L is symplectic with respect to ωI

and corresponds to C⊕ 0 in the hyperkähler basis e1, . . . , e4.

3.8.2 Hyperkähler quotients

Let M be a simply connected hyperkähler manifold. Let G be a compact Lie group

G acting on M and preserving g, I, J,K. Then corresponding to the forms ωI , ωJ ,
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ωK there exist moment maps µI , µJ , µK . Recall that if ζ is in the Lie algebra g

of G, then it generates a vector field Xζ on M . A moment map µ : M → g∨ is a

G−equivariant map such that

dµm(ζ) = ω(Xζ(m), ·) at m ∈ M.

For simply connected M such a µ exists and is determined up to the addition of an

element in Z = (g∨)G, the invariant elements of the dual Lie algebra g∨.

Putting these moment maps together yields µ = (µI , µJ , µK) : M → R3⊗ g∨, and

for ζ ∈ R3 ⊗ Z we may define the hyperkähler quotient space

Xζ = µ−1(ζ)/F.

If F acts freely on µ−1(ζ) then Xζ is a smooth manifold of dimension dim M −
4 dim F and the structures g, I, J,K descend to Xζ making it hyperkähler (see [9]).

3.8.3 ALE and ADE spaces

Definition 57. An ADE space is a minimal resolution of the quotient singular-

ity C2/Γ for a finite subgroup Γ of SU(2). An ALE space (asymptotically locally

Euclidean) is a Riemannian 4−manifold with precisely one end which at infinity is

isometric to a quotient R4/Γ by a finite group Γ, where R4/Γ is endowed with a met-

ric that differs from the Euclidean metric by order O(r−4) terms and which has the

appropriate decay in the derivatives.

Theorem 58 (Kronheimer, [12]). Every ALE hyperkähler manifold is diffeomorphic

to an ADE space.

We now recall Kronheimer’s construction [11] of ADE spaces as hyperkähler quo-

tients. Let R be the left regular representation of Γ ⊂ SU(2) endowed with the

natural Euclidean metric,

R =
⊕
γ∈Γ

Ceγ
∼= C|Γ|.
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Denoting by C2 the natural left SU(2)−module, let

M = (C2 ⊗C HomC(R,R))Γ

be the pairs of endomorphisms (α, β) of R, which are invariant under the induced left

action of Γ. We make M into a hyperkähler vector space by letting I act by i and J

by J(α, β) = (−β∗, α∗).

The Lie group

F = AutC(R, R)Γ/{scalar maps}

of unitary automorphisms of R which are Γ−invariant act by conjugation on M ,

f · (α, β) = (fαf−1, fβf−1), where we quotiented by the scalar matrices since they

act trivially. The corresponding Lie algebra f corresponds to the traceless elements

of HomC(R, R), and the moment maps are:

µI(α, β) =
1

2
i([α, α∗] + [β, β∗]), (µJ + iµK)(α, β) = [α, β].

By McKay’s correspondence, this description can be made explicit. Recall that

R = ⊕niRi, where the Ri are the complex irreducible representations of Γ of complex

dimension ni. Then C2 ⊗ Ri
∼= ⊕jAijRj where A is the adjacency matrix describing

an extended Dynkin diagram of ADE type (the correspondence between Γ and the

type of diagram is described in the Introduction). It follows that

M =
⊕
i→j

Hom(Cni ,Cnj)

where each edge i → j of the extended Dynkin diagram appears twice, once for each

choice of orientation. Moreover,

F = (⊕iU(ni))/{scalar maps}

where the unitary group U(ni) acts naturally on Cni .
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The hyperkähler quotient for ζ ∈ Z = centre(f∨) is therefore

Xζ = µ−1(ζ)/F.

Definition 59. Let hR denote the real Cartan algebra associated to the Dynkin dia-

gram for Γ. Let the hyperplanes Dθ = ker θ denote the walls of the Weyl chambers,

where the θ are the roots. We identify the centre Z with hR by dualizing the map

centre(f) → h∨R, i πk 7→ nkθk,

where πk : R → Cnk ⊗Rk are the projections to the summands.

We call ζ ∈ R3⊗Z generic if it does not lie in R3⊗Dθ for any root θ, i.e. θ(ζ1),

θ(ζ2), θ(ζ3) are not all zero for any root θ.

Theorem 60 (Kronheimer, [11]). Let ζ ∈ R3 ⊗ Z be generic. Then Xζ is a smooth

hyperkähler four-manifold with the following properties.

1. Xζ is a continuous family of hyperkähler manifolds in the parameter ζ;

2. X0 is isometric to C2/Γ;

3. there is a map π : Xζ → X0 which is an I−holomorphic minimal resolution of

C2/Γ, and π varies continuously with ζ;

4. in particular, π is a biholomorphism away from π−1(0) and π−1(0) consists of

a collection of I−holomorphic spheres with self-intersection −2 which intersect

transversely according to the Dynkin diagram from Γ;

5. H2(Xζ ;R) ∼= Z such that [ωI ], [ωJ ], [ωK ] map to ζ1, ζ2, ζ3.

6. H2(Xζ ;Z) ∼= {root lattice for Γ}, such that the classes Σ with self-intersection

−2 correspond to the roots;

7. Xζ and Xζ′ are isometric hyperkähler manifolds if ζ, ζ ′ lie in the same orbit of

the Weyl group;
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8. Every hyperkähler ALE space asymptotic to C2/Γ is isomorphic to Xζ for some

generic ζ.

3.8.4 Plumbing construction of ADE spaces

Our goal is to prove that for any ADE space X, SH∗(X; ω) = 0 for a generic choice of

(non-exact) symplectic form ω. By Theorem 60.(5) the cohomology class [ωI ] ranges

linearly in ζ1 over all of H2(X;R). Therefore it suffices to consider the hyperkähler

quotient X = Xζ for all generic ζ = (ζ1, 0, 0) ∈ Z ⊗ R3.

Lemma 61. The exceptional divisors in X are exact Lagrangian spheres with respect

to ωJ and ωK and they are symplectic spheres with respect to ωI . Moreover, the areas

< ωI , Σm > of the exceptional spheres Σm range linearly in ζ1 over all possible positive

values.

Proof. The first statement is an immediate consequence of Lemma 56, using the fact

that the exceptional divisors in X are holomorphic spheres by Theorem 60.(4). Note

that if a sphere is Lagrangian then it is exact since H1(S2;R) = 0. The second

statement is immediate since [ωI ] ranges linearly in ζ1 over H2(X;R) and the Σm

generate H2(X;Z), by Theorem 60.(6).

The space X is the plumbing of copies of T ∗CP 1, plumbed according to the Dynkin

diagram for Γ. Indeed, by mimicking the proof of Weinstein’s Lagrangian neighbour-

hood theorem, one observes that a neighbourhood of the collection of exceptional

Lagrangian spheres is symplectomorphic to a plumbing of copies of small disc cotan-

gent bundles DT ∗CP 1. That neighbourhood can be chosen so that its complement

is a symplectic collar diffeomorphic to (S3/Γ) × [1,∞), since X is biholomorphic to

C2/Γ away from 0.

3.8.5 Contact hypersurfaces inside ADE spaces

Lemma 62. Recall that to any (uI , uJ , uK) ∈ S2 ⊂ R3 gives rise to a Kähler form

ωu = uIωI + uJωJ + uKωK .
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Then (X,ωu) is a symplectic manifold such that π−1(S3
r/Γ) is a contact hyper-

surface in X for all sufficiently large r, so that X can be thought of as a symplectic

manifold with contact type boundary with an infinite collar attached. Moreover, X is

exact symplectic precisely when uI = 0.

Proof. Recall π : X → C2/Γ denotes the resolution. Let ω′u denote the corresponding

combination of forms for C2/Γ = H/Γ. On C2/Γ the Liouville vector field for any ω′u

is Z = ∂r, and ω′u = dθ′u where θ′u = iZω′u. Restricted to any sphere S3
r/Γ of radius

r > 0, θ′u is the corresponding contact one-form.

By Theorem 60, X is asymptotic to C2/Γ = H/Γ at infinity, therefore on π−1(S3
r/Γ),

ωu = dθu where θu can be chosen to be asymptotic to θ′u. In particular, since

θ′u ∧ dθ′u > 0 also θu ∧ dθu > 0 on π−1(S3
r/Γ) for large r. Thus X can be thought

of as a contact type manifold with boundary π−1(S3
r/Γ) with the infinite collar

π−1(∪ρ≥rS
3
ρ/Γ) attached. The last statement follows by Lemma 61.

3.8.6 An S1−action on ADE spaces

Let X = Xζ1,0,0 for generic (ζ1, 0, 0). The resolution π : X → C2/Γ can be described

explicitly as follows (following [8]). The moment map equations are [α, β] = 0 and

[α, α∗] + [β, β∗] = −2iζ1. Since α, β commute by the first equation, they have a

common eigenvector e, say (α, β)e = (a, b)e. By Γ−invariance, eγ = R(γ) · e is also a

common eigenvector such that

(α, β)eγ = (γ · (a, b))eγ.

The map X → C2/Γ, (α, β) 7→ Γ · (a, b) is then an I−holomorphic minimal

resolution. In fact π is also compatible with J and K if we identify C2/Γ = H/Γ.

Theorem 63. The S1−action λ·(a, b) = (λa, λb) on C2/Γ lifts to a unique I−holomorphic

S1−action on (X,ωI). Moreover the S1−action preserves the contact hypersurface

π−1(S3
r/Γ) inside (X,ωI) described in Lemma 62, and the contact form θI can be

chosen to be S1−equivariant.
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Proof. Since Γ is a complex group, it commutes with the diagonal S1−action on C2,

therefore the action is well-defined on C2/Γ. The lift of the action is

ϕλ(α, β) = (λα, λβ).

In particular, the S1−action preserves ωI because it preserves the metric g and it

commutes with the action of I.

Let θI denote the contact form constructed in Lemma 62 for the hypersurface

π−1(S3
r/Γ) and the symplectic form ωI . To make θI an S1−equivariant contact form,

we simply replace it by the S1−averaged form θI =
∫ 1

0
ϕ∗e2πitθI dt. Since ϕ∗λωI = ωI ,

it satisfies dθI = ωI and the positivity condition

θI ∧ dθI =
(∫ 1

0
ϕ∗e2πitθI dt

)
∧ ωI =

∫ 1

0
ϕ∗e2πit(θI ∧ ωI) dt > 0.

Remark 64. The S1−action does not preserve ωJ and ωK. That is why the symplectic

cohomology for ωI will be very different from the one for ωJ or ωK.

3.8.7 Changing the contact hypersurface to a standard S3/Γ

Our aim is to change the contact hypersurface in (X,ωI) so that it becomes a standard

S3
r/Γ. We want to do this compatibly with the S1−actions on X and C2/Γ, so that

the S1−action on (X, ωI) will coincide with the new Reeb flow. To do this, we need

an S1−equivariant version of Gray’s stability theorem.

Lemma 65 (S1−equivariant Gray stability). For t ∈ [0, 1], let ξt = ker αt be a smooth

family of contact structures on some closed manifold N2n−1. Then there is an isotopy

ψt of N and a family of smooth functions ft such that

ψ∗t αt = eftα0.

If there is an S1−action on N preserving each αt, then ft and ψt are S1−equivariant.
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Proof. Let Xt be a vector field inducing a flow ψt. By Cartan’s formula,

∂tψ
∗
t αt = ψ∗t (α̇t + LXtαt) = ψ∗t (α̇t + diXtαt + iXtdαt).

Observe now that if ψt satisfied the claim, then ∂tψ
∗
t αt = ḟte

ftα0 = ψ∗t (ḟt(ψ
−1
t ) αt).

We can reverse the argument to obtain the required ψt if we can find a vector field

Xt in ξt (so iXtαt = 0) satisfying the equation

iXtdαt = ḟt(ψ
−1
t ) αt − α̇t.

Inserting the Reeb vector field Rt we obtain 0 = ḟt(ψ
−1
t )− α̇t(Rt). Solving the latter

equation determines ft with f0 = 0. Then the original equation determines Xt ∈ ξt

since dαt is non-degenerate on ξt.

Suppose we had an S1−action ϕλ preserving α, ϕ∗λαt = αt. Applying ϕ∗λ to the

equation which determines Xt at x we obtain the equation

iϕ∗λXtdαt = ḟt(ψ
−1
t ) αt − α̇t

at y = ϕ−1
λ (x). The solution ft does not change and so by uniqueness and ϕ∗λXt = Xt,

which proves that ft and ψt are S1−equivariant.

Lemma 66. The contact hypersurface π−1(S3
r/Γ) can be deformed inside (X, ωI) into

a copy of the standard S3
r/Γ via an S1−equivariant contactomorphism.

Proof. Consider Xt = Xtζ1,0,0 and denote by ωt its form ωI , (0 ≤ t ≤ 1), and let

πt : Xt → X0 = H/Γ denote the minimal resolution. By Lemma 62, each Xt comes

with an S1−equivariant contact form θt with dθt = ωt and such that θ0 is the stan-

dard contact form on S3
r/Γ ⊂ X0. This defines a family of S1−equivariant contact

forms αt = (πt)∗θt on S3
r/Γ. By Lemma 65 there is an S1−equivariant isomorphism

(S3
r/Γ, ef1α1) → (S3

r/Γ, α0). In particular, this proves that X arises by attaching an

infinite collar to the manifold

{(R, x) : R ≤ ef1(πx), x ∈ π−1(S3
r/Γ)} ⊂ X
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along the boundary {(ef1(πx), x)} ⊂ X which is a standard contact S3
r/Γ.

3.8.8 Non-vanishing of the exact symplectic cohomology

Theorem 67. SH∗(X, ωu) 6= 0 for u = (0, uJ , uK) ∈ S2, indeed c∗ : H∗(X) ⊗ Λ →
SH∗(X,ωu) is an injection.

Proof. The exceptional spheres in X are exact by Lemma 61. For each such S2 we

have a commuting diagram by Theorem 36, using the bundles described in 3.5.2:

H4−∗(LS2)⊗ Λ ∼= SH∗(T ∗S2, dθ) oo
OO
c∗

SH∗(X, ωu)OO
c∗

H4−∗(S2)⊗ Λ ∼= H∗(S2)⊗ Λ oo i∗
H∗(X)⊗ Λ

The left vertical map is induced by the inclusion of constant loops and it is injective

on homology because it has a left inverse by evaluation at 0. Since H∗(X) is generated

by the exceptional spheres by Theorem 60, and i∗ is the projection to the summands

of H∗(X), the claim follows.

3.8.9 Vanishing of the non-exact symplectic cohomology

Lemma 68. The non-compactly supported deformation from ωJ to ωI can be made

to satisfy Theorem 53:

SH∗(X,ωJ ; ΛτωI
) ∼= SH∗(X, ωI).

Proof. Let ωε = ωJ + εωI . By the proof of Lemma 62, we can find a family of contact

forms θε|S on S = π−1(S3
r/Γ) with dθε = ωε. By Gray’s stability theorem, there is a

family of contactomorphisms ψε : S → S such that ψ∗ε(θ0|S) = efεθε|S. As we deform

ω0 to ωε we simultaneously change the hypersurface in X by

S → X, (R, x) 7→ (e−fε(R,x)R,ψε(R, x)),
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so that on the collar determined by this hypersurface the one-form is θ0 instead of

θε. This change of hypersurface will change the symplectic cohomology by an iso-

morphism (Theorem 28). The “interior part” of X has changed by a diffeomorphism,

and we have reduced the setup to the case where we deform ω0 to a form ω′ε which is

cohomologous to ωε but which equals dθ0 on the collar.

Now it is possible to make a compactly supported deformation from ωJ to ω′ε and,

for small ε, Theorem 53 implies that

SH∗(X, ωJ ; ΛετωI
) ∼= SH∗(X,ω′ε).

Rescale by 1/ε via t 7→ t1/ε to deduce that

SH∗(X, ωJ ; ΛτωI
) ∼= SH∗(X,ω′ε/ε).

Now ω′ε/ε is cohomologous to ωI . By applying Gray’s theorem as above, we can

change ω′ε/ε within its cohomology class so that on the collar it becomes equal to ωI .

Finally we apply a compactly-supported Moser symplectomorphism as in Lemma 29

to deform the form to ωI on all of X. Hence

SH∗(X, ω′ε/ε) ∼= SH∗(X, ωI).

Theorem 69. SH∗(X, ωI) ∼= SH∗(X, ωu; ΛτωI
) = 0 for all u = (0, uJ , uK) ∈ S2.

Proof. By Theorem 28 the symplectic cohomology changes by an isomorphism if we

choose a different contact hypersurface in the collar. By Lemma 66, we changed the

hypersurface by an S1−equivariant contactomorphism so that the collar of X (after

metric rescaling) can be assumed to be the standard S3/Γ × [1,∞) with S1−action

(a, b) 7→ (λa, λb). The symplectic S1−action ϕλ on (X, ωI) defines a vector field

Xϕ(x) =
∂

∂t

∣∣∣∣
t=0

ϕe2πit(x).

By Cartan’s formula 0 = ∂λϕ
∗
λω = ϕ∗λLXϕω = diXϕω. Thus, since H1(X;R) = 0,
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we obtain a Hamiltonian via iXϕω = −dHϕ. Moreover, accelerating the flow by a

factor k, we obtain an S1−action ϕkλ with Hamiltonian Hk = kHϕ. On the collar,

Hk(a, b) = kπ(|a|2+|b|2) and since R = |a|2+|b|2, the Hamiltonian is linear at infinity:

hk(R) = kπR.

The 1−periodic orbits of Hk either lie in π−1(0) or come from lifts of nonconstant

1−periodic orbits on C2/Γ for the flow (a, b) 7→ (λka, λkb). But for generic k, there

are no 1−periodic orbits of Hk on C2/Γ except for 0. So we reduce to calculating the

Maslov indices of 1−periodic orbits in π−1(0).

Since the flow ϕλ is holomorphic, the linearization over a periodic orbit will be a

loop of unitary transformations. Its Maslov index can therefore be calculated as the

winding number of the determinant of the linearization in the trivialization C · (ωJ +

iωK) of the canonical bundle. Since

ϕ∗λωJ(V,W ) = g(Jϕλ∗V, ϕλ∗W ) = g(JλV, λW ) = λ2ωJ(V, W ),

and similarly for K, we deduce that ϕλ acts on the canonical bundle by rotation by

λ2. Therefore the Maslov index increases by 2 for each full rotation of λ.

We deduce that the Maslov indices for Hk grow to infinity as k →∞. Therefore

the generators of SH∗(Hk+N , ωI) have arbitrarily negative Conley-Zehnder indices as

N →∞, and so the image of SHm(Hk, ωI) under the continuation map

SHm(Hk, ωI) → SHm(Hk+N , ωI)

vanishes for large N . Thus the direct limit SHm(X, ωI) = 0 for all m. Since

SH∗(X,ωI) = 0 also SH∗(X, ωu; ΛτωI
) vanishes by Lemma 68.

Corollary 70. Let (X, dθ) be the plumbing of copies of T ∗S2 according to an ADE

Dynkin diagram. Then

SH∗(X, dθ; Λτω) ∼= SH∗(X,ω) = 0

for any generic symplectic form ω, where genericity refers to choosing [ω] in the
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complement of certain finitely many hyperplanes in H2(X;R).

Proof. All the Xζ1,0,0 for generic ζ1 are diffeomorphic to the plumbing (see section

3.8.4). We fix one such choice X = Xa,0,0, and we consider the family of forms ωI

induced on X by pull-back from Xζ1,0,0 via the diffeomorphism X ∼= Xζ1,0,0. By

Lemma 61, [ωI ] will range over all generic choices in H2(X;R) (genericity of ωI

corresponds to the genericity of ζ1). The result now follows from Theorem 69.

3.8.10 Exact Lagrangians in ADE spaces

Theorem 71. Let (X, dθ) be the plumbing of copies of T ∗S2 according to an ADE

Dynkin diagram. Let j : L → X be an exact Lagrangian submanifold. Then L must

be a sphere, in particular L cannot be unorientable.

Proof. By Corollary 70, SH∗(X, dθ; Λτω) = 0 for a generic symplectic form ω. There-

fore by Corollary 37 the transgression τ(j∗[ω]) cannot vanish. But for orientable

L which are not spheres all transgressions must vanish since π2(L) = 0. Therefore

the only allowable orientable exact Lagrangians are spheres. The unorientable case

follows by Remark 38.
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