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ABSTRACT

RHEOLOGICAL PROPERTIES AND STRUCTURE OF A
SEMI-SOLID TIN-LEAD ALLOY

by

PASCAL ADRIEN JOLY

Submitted to the Department of Metallurgy and Materials Science on
May 3, 1974 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

The effect of various thermomechanical treatments on the struc-
ture and rheological behavior of Sn-15%Pb alloy in its solidification
range was investigated using a concentric cylinder viscometer. The
apparatus was designed to permit wide ranges of cooling rates up to 250C/
minute and shear rates up to 750 sec- . Initially, the alloy was contin-
uously sheared as it cooled from above the liquidus to a desired fraction
solid. In one series of experiments, shear was stopped and the alloy
quenched. In a second series, the alloy was held isothermally and
subjected to various mechanical treatments.

The size and morphology of primary solid particles during contin-
uous cooling is influenced by both shear and cooling rates. Faster cool-
ing results in finer structures while increased rate of shear reduces the
amount of entrapped liquid in individual particles. At high cooling rate,
250 C/minute, primary solid particles size is = 50p and is independent of
shear rate. Changes in the size of primary solid particles with shear
rates (e.g. a decrease of size from 280 to 180p for an increase in shear
rate from 230 to 750 sec- ) were only observed in slow cooled, 0.330 C/
minute, specimens.

The viscosity of the slurry, at a given fraction solid, decreases
with decreasing cooling rate and increasing shear rate. Exercising the
full range of shear and cooling rates possible in the viscometer, the
apparent viscosity of a 0.55 fraction solid slurry varied from 3 to 80
poise. The apparent viscosity of continuously cooled slurries obeys a
"state equation" of the type proposed for non-metallic systems:

na = A exp Bfs

relating the apparent viscosity, na , to the fraction solid, fs, the coef-
ficients A and B are dependent on structure.
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The structure and viscosity of isothermally held slurries follow
the same trends as slowly cooled slurries, i.e. at a given fraction solid,
particle size, amount of entrapped liquid and viscosity decrease with
increasing shear rate. Furthermore, their viscosity at a given fraction
solid is consistently lower than that of continuously cooled slurries.

Isothermally held slurries are pseudoplastic, i.e. variations up
or down of shear rate result in a corresponding decrease or increase in
measured viscosity. Over wide ranges of shear rate, the apparent viscosity
of the slurries obeys a power law equation:

"na = ky

relating the apparent viscosity, T , to shear rate, j. The coefficients
k and n depend on the initial structure of the slurries.

The slurries are thixotropic and show a hysteresis loop phenome-
non similar to other well known thixotropic systems. Measured areas of
hysteresis loops increase with increasing fraction solid, initial viscosity
(structure) and time at rest. For instance, the area for a slurry held at
0.45 fraction solid with an initial viscosity of 15 poise, varies between
2.0 and 8.0 X 10s dyne.cm-2sec-' for rest times between 30 seconds and 30
minutes, respectively. These areas are comparable to measured areas for
honey and epoxy mixed with silica flakes which are 1.5 and 3.0 X 105 dyne.
cm 2 sec - 1, respectively. Isothermally held slurries follow "equations of
state" relating the area of hysteresis loop. A, to the process variables
(e.g. up time, tu, and maximum shear rate, 9m). For instance, the slurries
obey the equation:

A = Ao - Ntu

where the coefficients Ao and N depend on fraction solid and structure.

A model is proposed to explain the thixotropic behavior. It is
based on the formation and fracture of bonds between primary solid parti-
cles. The driving force for the formation of these bonds is the lowering
of the interfacial energy of the liquid-solid interface whereas fracture
results from the action of fluid flow forces on the particles. The model
shows that at low shear rates (below a critical shear rate) agglomerates
can form resulting in large particles with entrapped liquid, hence high
slurry viscosity.

Finally a mechanism is proposed for the formation of particulate
non-dendritic structure generated under vigorous agitation. It is one
where, above a certain fraction solid of!0.15, a multiplication mechanism
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breaks up initially formed dendrites into degenerate dendritic primary
particles. Subsequently, coalescence and/or ripening occurs, driven by
the lowering on the interfacial energy of the primary solid particles.

Thesis Supervisors: Robert Mehrabian
Assistant Professor of Metallurgy

Merton C. Flemings
Abex Professor of Metallurgy



-5-

TABLE OF CONTENTS

Chapter Page
Number Number

ABSTRACT 2

TABLE OF CONTENTS 5

LIST OF ILLUSTRATIONS AND FIGURES 9

LIST OF TABLES 15

ACKNOWLEDGEMENTS 17

I INTRODUCTION 18

II LITERATURE SURVEY 20

A. Rheology 20
1. Definitions 20
2. Newtonian Materials 21
3. Non-Newtonian Materials 21
4. Flow Curves 23

B. Rheology of Dispersions 26
1. Definitions 26
2. Viscosity of Suspension: Theory 26
3. Viscosity of Suspension: Experimental Data 28
4. Mechanism of Non-Linear Behavior 35
5. Rheology of Bodies in their Melting Range 38

C. Thixotropy 40
1. Definition 40
2. Thixotropy Characterization 40
3. Hysteresis Loop Analysis 42
4. Thixotropy and Its Possible Mechanism 44

D. Role of Convection in the Grain Refinement 46

III EXPERIMENTAL APPARATUS AND PROCEDURE 49

A. Viscometer 49
1. General Description 49
2. Modifications 50



-6-

Page
Number

Chapter
Number

B. Materials
1. Metal
2. Experimental Set-up
3. Variables

C. Experimental Procedure
1. "Continuously Cooled"
2. "Isothermally Held"

D. Measurements
1. Flow
2. Corrections
3. Stability of Flow
4. Hysteresis Loop
5. Hysteresis Loop for Concentrated Non-

Stable Suspensions

E. Calibration

F. Metallography

RESULTS

A. "Continuously Cooled" Slurries
1. Effect of Shear Rate, Cooling Rate

Fraction Solid on the Viscosity
2. Effect of Shear Rate, Cooling Rate

Fraction Solid on the Structure of
Sn-15%Pb Slurries

and

and

B. Isothermally Held Slurries
1. Constant Shear Rate Experiment
2. Pseudoplasticity Experiment
3. Structure of Isothermally Held Slurries

C. Experiment on Non-Metallic Systems
1. Honey
2. Epoxy
3. Paint

D. Thixotropy
1. Effect
2. Effect
3. Effect
4. Effect
5. Effect
6. Effect

Experiment
of Fraction Solid
of Initial Shear Rate
of Time at Rest
of Down Time
of Up Time
of Maximum Shear Rate



-7-

Chapter Page
Number Number

V DISCUSSION 78

A. Rheological Properties of Sn-15%Pb Slurries 78
1. Effect of Fraction Solid on Viscosity 78
2. Effect of Structure on Viscosity 80
3. Equations of State 82
4. Pseudoplasticity 83
5. Thixotropy 85

B. Mechanism for Formation and Fracture of a Weld 89
Between Two Primary Solid Particles
1. Weld Formation 90
2. Fracture 91

C. Formation of"Rheocast' Structure 94

VI CONCLUSION 97

A. General 97

B. Continuously Cooled Slurries 97

C. Isothermally Held Slurries 98

D. Formation of Rheocast Structure 100

VII SUGGESTIONS FOR FUTURE WORK 101

FIGURES 103

TABLES 160

APPENDIX A-Solidification of Tin-Lead Alloys 173

APPENDIX B-Composition Analysis 181

APPENDIX C-Measurement of Number and Average Size 182
in Volume

APPENDIX D-Flow Equation of an Unknown Fluid 185

APPENDIX E-Turbulence and Temperature Effects 192

APPENDIX F-Settling or Floating of Solid in a 196
(119)Fluid of Different Density



-8-

Chapter Page
Number Number

APPENDIX G-Effect of Shear on the Structure of 202
Suspensions

APPENDIX H-Viscosity of a Suspension of Interacting 206
Particles

APPENDIX I-Weld Formation Between Two Primary 209
Solid Particles of Sn-15%Pb Slurries

APPENDIX J-Mechanism for Fracture of a Weld 212
Between Two Primary Solid Particles

APPENDIX K-Experimental Data 216

BIBLIOGRAPHY 220

BIOGRAPHICAL NOTE 227



-9-

LIST OF FIGURES AND ILLUSTRATIONS

Figure Page
Number Number

1 Flow behavior of materials. 103

2 Flow curves (a) of a material showing structural 104
viscosity (Ostwald Curve); the four regions are I,
Newtonian; II, Pseudoplastic; III, dilatant and IV,
Newtonian; (b) of three different materials (all
shear-thinning): pseudoplastic, thixotropic and

(20)false bodies, after J. Pryce-Jones(20)

3 Relative viscosity of suspensions of polystyrene, 105
rubber latex, glass and methylmethacrylate in the

(34)
size range from 0.1 to 435 microns, after Thomas

4 Relative viscosity of bidispersed suspensions of 106
(45)glass spheres in polyisobutylene, after Farris

Each bimodal suspension has 25% by volume as small
spheres. Each curve corresponds to a constant size
ratio, RI, ratio of the small sphere size (33,74,
112 micrns) by the large sphere size, 236 microns.

5 Effect of particle density on the relative viscosity, 107
(47)of coarse suspensions, after Ward 47

6a Apparent viscosity of low molecular weight polyeth- 108
ylene at different temperatures below the melting

point and different shear rates after Porter(52)

6b Viscosity ofaliquid crystal, after Hermann(53). 108

7 Characterization of a thixotropic material after 109

Alfrey (56): (a) at constant stress by the measure of

; (b) as a function of the stress, T, and the time
at rest, t.

8 Hysteresis loops (a) of three different materials 110
showing i) no, ii) little, iii) high thixotropy,
(b) of a printing ink when the up time is increased,
(c) of a printing ink when the maximum shear rate is

(57)
increased, after Weltman



-10-

Figure Page
Number Number

9 Dendrite coarsening model, after Kattamis, et al(71). 111

10 Photograph of main apparatus showing (a) from top 112
to bottom, torque dynamometer, furnace, shaft and
belt drive, thermocouple junction box and (b)
enlarged view of furnace and water spray jacket.

lla Photograph of the cup and bob arrangement. 113

11b Photograph of the torque dynamometer. 113

12 Schematic diagram of apparatus. 114

13 Procedure employed for continuously cooled Sn-15%Pb 115
slurries, showing (a) temperature versus time, (b)
rotation speed versus time and (c) the corresponding
torque.

14 Procedure employed for isothermally held Sn-15%Pb 116
slurries, showing (a) temperature versus time, (b)
rotation speed cycles for a hysteresis loop and
(c) the corresponding torque.

15 Effect of fraction solid on the apparent viscosity 117
of a Sn-15%Pb slurry. Effect of two different shear
rates, 230 and 750 sec-1, at a high cooling rate
250C/minute.

16 Effect of fraction solid on the apparent viscosity 118
of a Sn-15%Pb slurry. Effect of three different
cooling rates 25, 1.0 and 0.33 0C/minute at a high
shear rate of 750 sec - .

17 Effect of fraction solid on the apparent viscosity 119
of a Sn-15%Pb slurry. Effect of four different
shear rates; 115, 230, 350 and 750 sec-1 at a slow
cooling rate of 0.330C/minute.

18. Effect of fraction solid on the apparent viscosity 120
of a Sn-15%Pb slurry. Effect of three different
cooling rates; 25, 1.0 and 0.33C/minute at a slow
shear rate of 230 sec- .

19 Effect of shear rate used during cooling of a 121
Sn-15%Pb slurry on the apparent viscosity at two
different fractions solid, 0.35 and 0.45 and for
two different cooling rates of 25 and 0.330C/minute.



-11-

Figure Page
Number Number

20 Effect of shear rate on the size of primary solid 122
particles of Sn-15%Pb slurries at two different
cooling rates of 25 and 0.330 C/minute.

21 Distribution of size of primary solid particles of 123
continuously cooled slurries of Sn-15%Pb. Effect of
cooling rate, shear rate and fraction solid.

22 Microstructures of Sn-15%Pb slurries for a cooling 124
rate of 250C/minute and a fraction solid of 0.55;
(a) and (b) at a sh ar rate of 230 sec-1, at 50X and
100X, respectively; (c) and (d) at a shear rate of
750 sec - 1, at 50X and 10OX, respectively.

23 Microstructures of Sn-15%Pb slurries for a cooling 125
rate of 0.330C/minute and a fraction solid of 0.55;
(a) and (b) at a shear rate of 230 sec-1, at 50X and
10OX, respectively; (c) and (d) at a shear rate of
750 sec-1, at 50X and 100X, respectively.

24 Microstructures of Sn-15%Pb slurries; (a) at a cooling 126
rate of 0.33 0C/minute and shear rate of 750 sec-1 and
fraction solid of 0.30; (b) and (c) at a cooling rate
of 250C/minute, shear rate of 230 sec - and fraction
solid of 0.25, away from and near the crucible wall,
respectively; 50X.

25 Comparison of the effect of fraction solid on the 127
apparent viscosity of Sn-15%Pb slurries continuously
cooled at 0.330C/minute and isothermally held at
different fractions solid; shear rate of 115 sec - .

26 Comparison of the effect of fraction solid on the 128
apparent viscosity of Sn-15%Pb slurries continuously
cooled at 0.330C/minute and isothermally held at
different fractions solid; shear rate of 230 sec -I

27 Effect of shear rate on the apparent viscosity of 129
Sn-15%Pb slurries held isothermally at a fraction
solid of 0.45; total time spent in the liquid-solid
range of 90 minutes.

28 Effect of change of shear rate on the apparent vis- 130
cosity of Sn-15%Pb slurries held isothermally at
fractions solid of 0.50 and 0.45 after a total
time of 90 minutes in the liquid-solid range.



-12-

Figure Page
Number Number

29 Effect of total time in the liquid-solid range on the 131
microstructures of Sn-15%Pb slurries at a shear rate
of 230 sec -' and fraction solid of 0.45; total time
of (a) 13 minutes, (b) 40 minutes and (c) 90 minutes,
50X.

30 Effect of initial shear rate on the microstructures of 132
Sn-15%Pb slurries after 90 minutes in the liquid-
solid range at a fraction solid of 0.45; initial
shear rate of (a) 115 sec -', (b) 230 sec-1 and
(c) 750 sec-1; 50X.

31 Effect of total time spent in the liquid-solid range 133
on the size, distribution of size and volume fraction
of entrapped liquid in primary solid particles of
Sn-15%Pb slurries at 230 sec and fraction solid of
0.45. (a) size and entrapped liquid, (b) and (c)
distributions of size for total times of 40 minutes
and 90 minutes, respectively.

32 Effect of shear rate on the size and the distribution 134
of size of primary solid particles of Sn-15%Pb
slurries held isothermally at a fraction solid of
0.45 after 90 minutes in the solid-liquid range:
(a) size, (bl and (c) distributions of size at 230
and 750 sec , respectively.

33 Measured hysteresis loop of New England honey at 24.10C.
135

34 Effect of rest time on the initial viscosity of honey 136
at 300C.

35 Measured hysteresis loop of a mixture of epoxy and 137
2.95% Si0 2 at 250 C.

36 Measured hysteresis loop of a paint at 240 C. 138

37 Effect of fraction solid on hysteresis loops of 139
isothermally held slurries of Sn-15%Pb alloy, sheared
at 115 sec 1 , at 0.40 and 0.45 fraction solid; (a) and
(b) loops for 30 seconds and 2 minutes at rest,
respectively; (c) thixotropy as a function of fraction
solid and time at rest.

38 Effect of initial shear rate, o0, 115 and 350 sec-', 140
on hysteresis loops of Sn-15%Pb slurries held at a
fraction solid of 0.45; rest time of 30 seconds.



-13-

Figure Page
Number Number

39 Effect of rest time on hysteresis loops of Sn-15%Pb 141
slurries held at 0.45 fraction solid initially sheared
at 115 sec-'; (a) hysteresis loops, (b) areas of
hysteresis loops versus rest time.

39(cont'd) Effect of rest time on hysteresis loops of Sn-15%Pb 142
slurries (c) initial shear rate of 115 sec'- and frac-
tion solid of 0.40, (d) initial shear rate of 350
sec and fraction solid of 0.45.

40 Effect of down-time on hysteresis loops of Sn-15%Pb 143
slurries (a) loops, (b) area versus down-time for an
initial shear rate of 115 sec -1 and rest time of 30
seconds.

41 Effect of up-time on hysteresis loops of Sn-15%Pb 144
slurries, initial shear rate of 115 sec -', fractions
solid of 0.45 and 0.40, rest time of 30 seconds
(a) loops, (b) loop areas versus up-time.

42 Effect of maximum shear rate on hysteresis loops of 145
Sn-15%Pb slurries, held at a fraction solid of 0.45
after rest time of 30 seconds (a) loops, (b) area
versus maximum shear rate.

43 Comparison of the relative viscosity of Sn-15%Pb 146
slurries to that of other suspensions of inter-

acting (68) and non-interacting (34) particles.

44 Semi-log plot of the apparent viscosity versus frac- 147
tion solid for the continuously cooled Sn-15%Pb
slurries.

45 Log-log plot of apparent viscosity versus shear rate 148
for isothermally held slurries of Sn-15%Pb alloy.

46 Model for buildup and breakdown of interacting parti- 149

cles, after Michaels(68)

47 Structures of isothermally held slurries of Sn-15%Pb 150
alloy at a fraction solid of 0.45, sheared at 230
sec 1 after a total time in the liquid-solid range of
90 minutes; (a) and (b) no change in shear rate (c)
and (d) increase of shear rate to 350 sec -1 for 5
minutes and back to 230 sec-1; (a) and (c) same as
(b) and (d) under polarized light; 50X.



-14-

Figure Page
Number Number

48 Comparison of the hysteresis loop of Sn-15%Pb slurries 151
and non-metallic systems, generated in this viscometer.

49 Model for the coalescence of two primary solid parti- 152
cles of isothermally held slurries of Sn-15%Pb alloy.

50 Log-log plot of weld radius versus time of growth, t, 153
(time of true contact between the two primary solid
particles of Sn-15%Pb alloy).

51 Formation and fracture of a weld between two primary 154
solid particles. Model for pseudoplasticity.

52 Creep behavior (stress versus strain rate) of 155
Sn-38%Pb alloy at the solidus temperature, T = 1830C,

calculated from its equivalent at T = 200C(1)

using Larson-Miller relation with C = 20(109) and a
time t corresponding to a strain of 0.10.

53 Comparison of the fracture time, tf, (time necessary 156
for fracture to occur) and life time of a doublet, t,
as a function of shear rate.

54 Dendrite multiplication mechanism. 157

55 Coarsening models. 158

56 Structures of continuously cooled slurries of Sn-15%Pb 159
alloy, quenched at a fraction solid of 0.55; (a) and
(b) sheared at 750 sec-' and cooled at 250C/minute;
(c) and (d) sheared at 230 sec -I and cooled at
0.33 0 C/minute; (a) and (c) same as (b) and (d) under
polarized light; 50X.



-15-

LIST OF TABLES

Table Page
Number Number

I Effect of Shear Rate on the Viscosity of Coarse 160
Suspensions

II Effect of Particle Size and Shape on the Viscosity 161
of Coarse Suspensions

III Effect of Cooling Rate, Shear Rate and Fraction 162
Solid on the Apparent Viscosity of Sn-15%Pb Slurries

IV Thixotropy Data of Sn-15%Pb Slurries and Non-Metallic 163
Systems

V Relative Viscosity Data for Sn-15%Pb Slurries 164
(Figure 50) and Non-Metallic Systems

VI Rheological Properties and Structure of Sn-15%Pb 165
Slurries

VII Experimentally Determined Coefficients of Equation 166
(27) log na = a + Bfs and Equation (28) a =

A exp (Bfs) where, A = exp (2.3a) and B = 2.3B.
Apparent viscosity is in poise. The data is for the
continuously cooled slurries of Sn-15%Pb alloy.

VIII Experimentally Determined Coefficients of Equation 167

(29), na = k n , relating the apparent viscosity na
(poise) to the shear rate, ' (sec-').

IX Thixotropy Data for Non-Metallic Systems 168

X Experimentally Determined Coefficients to Equation 169
(13) A = No - Nt , Relating the Area of Hysteresis

Loops A to the Up Time tu , of Equation (14) A = Qn

Relating the Area to the Maximum Shear Rate ym'

of Equation (30) A = Aotr m Relating the Area A to the
Rest Time tr

IX Effect of Structural Parameters and Thermo-Mechanical 170
History on the Degree of Thixotropy (Area of Hysteresis
Loop) of Isothermally Held Slurries of Sn-15%Pb Alloy



-16-

Table Page
Number Number

XII Selected Values for Sn-15%Pb Alloy 171

XIII Effect of Shear Rate on Doublet Life, t, and 172
Fracture Time, tf, (time necessary for fracture of a
bond between two primary solid particles to occur).
Assumptions include: particles are spheres of radius
R 100 p, slurry viscosity is 5 poise, and fracture
olcurs at a strain of 0.10.



-17-

ACKNOWLEDGEMENTS

At the end of this long work,I would like to thank

many people.

My advisors, Professor R.Mehrabian for his guidance

and unfailing encouragement throughout the course of this

thesis,Professor M.C.Flemings for his enthusiasm and his

understanding during my graduate career at M.I.T.

My colleagues of the solidification group;my friends

E.S.Palmer and J.P.Ibar for their constructive remarks;

Ed Backan and Barbara Rich for their assistance ;Karen

Seriff for the typing of this thesis;all my friends for

their help.

The Army Research Office in Durham,North Carolina

and the Army Research Project Agency in Washington,D.C.,

for their financial support.

Finally,my wife Nancy for her understanding and

patience ,the value of which is beyond estimate.



-18-

CHAPTER I: INTRODUCTION

Rheology (1 ) , the science of deformation,comprises the study of the flow

behavior of liquids, the deformation and flow of semi-liquids or hetero-

geneous systems, and the deformation of solids under shear stress. So

defined, rheology encompasses theoretically the study of the viscosity of

liquid metals, the creep and fatigue of metals, and includes any aspect of

deformation or flow of metal in its solidifying range.

One important contribution of rheology has been in the study of disper-

sions(2), and heterogeneous systems. Examples of such studies are:

suspensions of pigments in oil (i.e. paint (3 ) and ink(4)), latex(5), and

polymers (6). In comparison the rheology of metals in their solidification

range has received little attention. Exceptions would be the study of hot

tearing(7) and fluid flow( 8 ) during solidification (i.e. flow induced by

mechanical or electromagnetic stirring, vibration, ultra-sonics and gas

bubbling). It also includes the work on aluminum alloys by Galkin and

Lomazov(9) who measured,at different fractions solid, the viscosity and

its dependence upon the shear rate.

More recently, work at MIT(10,11 12'13) has shown that when alloys are

subjected to vigorous agitation in their solidification range, they behave

as low viscosity slurries. The fluid nature of the semi-solid alloys

permits them to be cast at fractions solid as high as .50.

This process has been called "Rheocasting". In another related

process, "Thixocasting", the thixotropic (shear-thinning) nature of metal

slurries is utilized. The solid-liquid mixture, when left at rest, thickens
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and behaves like a solid until it is sheared, as in die casting. It then

behaves like a slurry and flows to fill the die cavity.

In order to apply these phenomena successfully, however, a better

fundamental understanding of the rheological behavior of partially solidi-

fied, vigorously agitated metal slurries is necessary. It is to this end

that the present study was undertaken. The first goal of the work is to

relate the structure of a "Rheocast" ingot (i.e. particle size, shape,

distribution of size,and degree of agglomeration of primary solid parti-

cles) to solidification parameters (i.e. cooling rate, shear rate, and

fraction solid at which shear is stopped). The second goal is to describe

the nature of the pseudoplasticity and thixotropy of metal slurries as they

are maintained at a constant fraction solid.
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CHAPTER II: LITERATURE SURVEY

A. Rheology

1. Definitions

Rheology is defined as the science which studies the flow charac-

teristics of materials; its purpose is to find for every system a rheolog-

ical equation (14) of the type = ,(y,y,..., y,,...,t) = 0. Different

materials show different rheological properties corresponding to their

ability to deform under shear. One might say that the action of a force

causes an elastic material to be strained, a plastic material to be

deformed, and a liquid to flow. This difference in rheological behavior

is due to the shear components of the stress, T, since the isotropic pres-

sure, a, causes all of these materials to behave in the same way, i.e.

elastically.

Most materials exhibit both elastic and viscous properties. Theo-

retically it is possible to represent any material (homogeneous or hetero-

geneous, solid or liquid) by an arrangement of viscous and elastic elements

which, put together either in parallel and/or in series, would describe its

flow behavior. This is the field of "body representation" or phenomenolog-

ical rheology(15) , and is mainly used for viscoelastic bodies (polymeric

materials).

The drawbacks of this approach are the increasing difficulty of

analyses as the number of elements is increased, and mostly the lack of

physical interpretation for each new element. It is simpler to define

classes of material according to the way their viscosity depends on shear
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rate, or according to the shape of their flow curves (obtained by

plotting the shear rate versus the stress necessary to generate this shear

rate).

2. Newtonian Material

The first class of materials is madeupof liquids where the shear

rate, y, is proportional to the shear stress, T. They are referred to as

Newtonian, since they satisfy Newton's law, T = n , where, n, the viscosity

is a constant (not dependent on the shear rate). It is the viscosity that

is resisting flow, and dissipating the mechanical energy necessary to set

the liquid in motion. On a graph of shear stress versus shear rate,

Figure 1, the "flow curve" is a straight line starting from zero, whose

slope is equal to the viscosity. Examples of Newtonian materials are

water, (n = .01 poise at T = 250C), and some oils (motor oil, n = 5-15

poise).

3. Non-Newtonian

In general the viscosity, n, is not a constant and depends on the

rate of shear; the problem is to know what function of y, is the viscosity.

i) Power Law

A power formulation -n = kn has been proposed(16); it

usually does not describe the system over the whole range of shear rates

and the coefficient, n, has never been given a physical interpretation. It

is best suited for pseudoplastic systems (with a negative coefficient) and

dilatant systems (with a positive coefficient).

ii) Power Series

Power series have been suggested (16 )
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02n (1)
n = no +  Z a2n y2n ()

n=l

where no is the value of viscosity at zero shear, and a2n is the coeffi-

cient of the series. This formulation has two advantages: firstly,it can be

applied on a wider range of shear, and,secondly, it relates the change of

viscosity to the square of the shear rate, j 2, which is the dissipated

strain power per unit viscosity. The drawbacks of this approach are:

(a) computation of the coefficients is a lengthy task, especially for

pseudoplastic materials where positive and negative coefficients must

alternate, and (b) it does not ascribe a physical meaning to the coeffi-

cients.

iii) Closed Forms

Reiner(16) introduced a coefficient of structural stability,

X, defined as:

x = (o, - f)/(dy/dT2) (2)

where p is the fluidity (i.e. the inverse of viscosity), pm and o are the

fluidities at infinite stress and at zero stress, respectively. Integrat-

ing equation (2) gives:

(O - f)/( - o) = exp(-T 2 /X) (3)

and now X can be determined from a semi-log plot of c - q versus the

square of the shear stress, T2 . This equation is best suited for pseudo-

plastic materials.

There is no unique equation that can represent non-Newtonian systems.

Even pseudoplastic materials, which are one class of non-Newtonian
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materials, are represented by many different equations and only over a

small range of shear rates.

4. Flow Curves

As mentioned above, the viscosity of most materials is not con-

stant (their flow curves are not straight lines). Some, however, have

time-independent rheological properties as do Newtonian materials. These

materials are divided into four main classes(17,18) and will be described

herein. There are two additional classes of materials whose rheological

properties are time-dependent; these two groups of materials will be

described last.

i) Bingham Bodies or Ideal Plastics

Some fluids exhibit a yield stress, Ty, below which they

behave elastically, but above which the shear rate is directly proportional

to the difference between the applied stress and the yield stress, Figure 1.

These fluids are termed Bingham bodies or ideal plastics. Their rheolog-

ical equation is T - Ty = 'npl ¥ . Substances which exhibit this type of

behavior include oil-well drilling muds, sewage sludge, tooth paste,

greases and fats.

ii) Pseudoplastic or quasi-plastic Bodies

Materials which show behavior intermediate between Newtonian

and Bingham fluids are called Pseudoplastics. In these materials, the

viscosity is a function of the shear rate and decreases as the shear rate

increases. Their flow curve is represented in Figure 1.

Materials in which pseudoplasticity is readily observed include paints,

printing inks, polymer melts and some dispersed systems. In these systems
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the shear stress is supposed to break down progressively the random ground

state "structure" to an extent determined by the shear rate. There is a

progressive build-up of a shear orientated "structure" and therefore easier

flow.

iii) Dilatant Bodies

Dilatancy, often called shear thickening, is the opposite of

pseudoplasticity, Figure 1. The viscosity increases as the shear rate in-

creases. Examples of dilatant materials are some polymer melts and some

very concentrated dispersed systems. No theory has yet been offered to

explain dilatant behavior. However, this behavior is always described as

the result of a structural build-up.

iv) Some materials can be described by a combination of the

classes outlined above, each class operating on a small range of shear

rates. Their flow curve has the shape shown on Figure 2a. It can be

divided into four regions; I, Newtonian, II, Pseudoplastic, III, Dilatant,

and IV, Newtonian. This phenomenon of variable viscosity is called struc-

tural viscosity(19) and the curve referred to as an Ostwald curve. Many

materials exhibit this phenomenon but practical difficulties sometimes

prevent their study at either very low or very high shear rates.

v) In another group of materials, called thixotropic materials,

the shear stress does not reach a steady state value immediately after the

application of shear. Instead, the shear stress decreases over a period of

time due to structure breakdown until it eventually reaches a steady state

value: an equilibrium is then established between the rate of breakdown

and the rate of structure redevelopment. The time interval required for



-25-

equilibrium to be established decreases as the shear rate increases. If

the shear rate is brought back to zero, the structure redevelops over a

period of time. Many dispersed systems are thixotropic.

vi) Another, rather rare, class of fluids also exhibit a time

dependent type of behavior which is the reverse of thixotropy and is called

rheopexy. The shear stress increases with time until it becomes measurably

independent of it.

The flow curve of thixotropic or rheopectic fluids cannot be repre-

sented on a conventional T versus y curve. The specific conditions under

which a curve is obtained must be specified. For instance, in an experi-

ment described by John-Pryce Jones(20), three different fluids are brought

to rest after having been sheared, and are then sheared again after a time,

t, at rest. Jones measured the deflection angle, 0, of the torque measure-

ment device, as a function of the time at rest, Figure 2b, for each fluid.

As shown in Figure 2b, Jones had to introduce another class of materials

whose viscosities are also time dependent, false bodies, which are

equivalent to thixotropic materials with a very short recovery time.

Since thixotropic materials are of primary interest to this study they

are treated in detail in a subsequent section, II.C.

In summary, dispersed systems are not expected to be Newtonian; as

will be seen in the next chapter some are pseudoplastic, and some are

dilatant. Should rearrangement of structure be possible in metal suspen-

sions, both an Ostwald curve and a time-dependency of the thixotropic type

can be expected.
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B. Rheology of Dispersions

1. Definitions

The feature common to all dispersed systems is their hetero-

geneity(21) (i.e. there is a discontinuity in their physico-chemical

properties - at least two phases are present). Examples of dispersed

systems include the following: coarse suspensions, and coarse emulsions,

where the size of second phase particles is greater than 10 microns; col-

loidal systems where the particle size varies between 10 A and .1 micron

and finally molecular and supermolecular dispersions where the size of the

second phase element is below 10 A. The term 'bmulsiod' refers to a mixture

of a liquid in a liquid and the term'tuspensiod'to a mixture of a solid in

a liquid(21 ). Therefore, slurries of solid metal particles in equilibrium

with liquid metal are suspensions and more precisely very coarse suspen-

sions; solid particles vary in size from 30 to 500 microns
(10'13 )

2. Viscosity of Suspensions: Theory

The theoretical calculation of the viscosity of suspensions of

solid particles can be approached in several ways(22,23). Firstly, the

viscosity may be determined from the velocity gradient

au au k
TiN = - ( + k) (4)
ik _ x axk +(k 1

and, secondly, from the energy dissipation in the bulk of the liquid

E = -n f x (a + -k ) d v  (5)v v ax kh x axk k 1

where Tik is the shear stress on the plane i in the direction k. The u's
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are the velocities at the locations x, and Ev is the energy dissipated in

the bulk of the fluid by the viscous forces.

For the case of dilute suspensions, less than .01 in concentration,

there is good agreement(24,25) among the different theoretical studies

that the viscosity, na , is a simple linear function of the volume concen-

tration, gs'

nr = na/no = 1 + kI gs (6)

where n0 is the viscosity of the pure fluid without particles. For solid

spheres the commonly accepted value of k1 is 2.5(26). Other calculations

carried out for ellipsoidal particles(27) result in k1 values lower than

2.5; similar calculations are reported for rod shaped particles(28).

With more concentrated suspensions, it is necessary to account for the

hydrodynamic interaction of particles, particle rotations, collisions

between particles, mutual exclusion, doublet and higher order agglomerate

formation, and ultimately mechanical interference between particles as

packed bed concentrations are approached. Perhaps the greatest difficulty

in arriving at a theory for these concentrated suspensions is the fact that

the random structure of the suspension cannot in general be represented by

a simple model(34)

Many of the existing theories can be expressed as power series

r  na /o = 1 + klg s + k2gs + ... (7)

in which nr is the relative viscosity and the k's are constants to be

determined; k1 is generally assumed to be 2.5 and k2 has been calculated

to be 14.1(29), 12.6(30), 7.35(3 1 ) , and 10.0(32)
,2. ' 7. , •n 1.
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Several expressions have been proposed which give the relative viscos-

ity of a suspension as a function of concentration in a closed form.

Mooney (33 ) arrived at a functional equation for the relative viscosity by

considering two successive additions of uniform spheres to a pure fluid.

In this way he accounted for the possible interactions and the mutual

crowding effect of the two fractions of spheres on each other. Solution

of the functional equation resulted in

nr = exp[2.5 gs/(l - k3 gs)] (8)

where the value of k3 is determined experimentally. From a model based on

the geometry of the cubic and face centered lattices, and the fact that for

spheres in contact the relative viscosity must be infinite, Mooney sug-

gested a value of k3 between 1.35 and 1.91.

In summary, several quantitative descriptions of viscosities of

concentrated suspensions have been attempted. However, the physical

significance of the various terms used in the proposed equations is rarely

verified.

For example, investigators have rarely addressed themselves to the

problem of determining the effects of particle size, shape, or distribution

of size on viscosity. Many researchers have found that it is better to use

experimental data and develop empirical equations to interpret their

findings.

3. Viscosity of Suspensions: Experimental Data

Many experiments have been done on suspensions of coarse parti-

cles in liquids of different viscosity. The best way to compare these data
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is to plot the relative viscosity, r', versus the volume fraction solid of

second phase. This was done by Thomas(34) and is shown in Figure 3. The

particle materials include polystyrene, rubber latex, glass and methyl-

methacrylate. In this work the density of the suspending medium was

chosen to match the density of the suspended material. These data were

obtained with both rotational and capillary viscometers and represent a

range of spherical particle diameters from .1 to 435 microns.

The two main features of the curve in Figure 3 are: first, the slow

rise at low fraction solid, and the fast rise as fraction solid exceeds

0.40; second, the small scatter of the data (13% at gs = .50 and 6% at g =

.40). Thomas (34 ), however, only reports data for closely sized systems and

uses limiting values of the viscosity whenever it is affected by their

size. For particles less than 1 micron in diameter, the limiting value of

the relative viscosity is obtained as the intercept of a linear plot of l/D

versus nr (where D denotes the particle diameter); for particles larger

than 10 microns, the limiting value of the relative viscosity was obtained

as the intercept of a linear plot of D versus nr .

Thomas (34 ) was able to find an empirical equation to fit these data

points

nr  1 + 2.5 gs + 10.05 g2 + A exp B gs (9)

The first three terms in equation (9) take into account the hydrodynamic

interaction; the last term is only to be added at concentrations higher

than gs = .25 and takes care of the rearrangement of particles in the

suspension. This last term is proportional to the probability of a particle
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transferring from one shear plane to another and its use was first sug-

gested by Eyring(35) . Thomas calculated the values of A = .0027 and

B = 16.6 from his data.

The large number of data points, the different nature of particle

materials, and the good fit of the curve justify the use of his curve and

equation as a standard for comparison with measurements carried out on

metal slurries. Yet many other problems arise as the viscosity of some

suspensions, including metal slurries, are found to be dependent on shear

rate, and on particle size, shape and distribution. These effects are

reviewed in the next paragraphs.

i) Effect of Shear Rate

Suspensions of particles in the size range .10 to 230 microns

exhibit both pseudoplastic and dilatant types of behavior, depending on

the viscosity of the suspending medium and the shear rate, Table I. Suspen-

sions of glass spheres in the size range 50-230 microns in polyisobutylene

were found (37 ) to be pseudoplastic at shear rates up to 1 sec-1. Suspen-

sions of glass beads in the size range 25-150 microns in a sucrose solution

were found(36) to be Newtonian up to a volume fraction gs .65, at shear

rates up to 1300 sec-1. Suspensions of quartz grains, 50-200 microns, in

water are found (38 ) to be dilatant between 0.10 and 0.30 fraction solid at

350 sec-.

ii) Effect of particle Size and Shape

The effects of particle size and shape on the viscosities of

suspensions are listed in Table II.

Clarke(38) studied suspensions of quartz grains in water and found the
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viscosity increased from .14 to .38 poise at gs = .30 as the size increased

from 10 to 200 microns. He explained this behavior as a result of the in-

creased dissipation of energy in collisions. When there is a difference of

density between the suspending medium and the suspended medium, inertial

forces are not balanced during collisions and some energy is dissipated.

Other authors (40'41) have observed the reverse phenomenon with suspen-

sions of irregularly shaped particles. One ( 4 0 ) has studied suspensions of

coal (150 microns and under) in oil and reports that the viscosity is

multiplied by 2.5 times as the size is decreased from 150 to 50 microns

at .35 fraction solid. Other workers (41) report data on methyl-

methacrylate particles in a modified glycerol covering the size range 40

to 280 microns. At 0.15 fraction solid they observed an increase in

viscosity (by a factor of 2.5) as particle size decreased from 280 to 40

microns. In this study, the authors explain the observed behavior as a

result of a layer of stagnant liquid, participating in the movement of each

particle and thus increasing the effective fraction solid.

The data do not permit an isolated conclusion of the effect of parti-

cle size to be drawn but indicate that, whenever particles are not spheri-

cal, the relative viscosity is higher than that of a suspension of spheres

and increases with increasing size (41) . In one study (42) (suspension of

clay particles in water, .4 to .8 microns in size), the relative viscosity

increased 39% at gs = .20 from .018 to .025 as the axial ratio went from 1

to 10. This increase is due to the greater flow resistance of the parti-

cles themselves and to the larger probability of interference between the

particles. As the axial ratio becomes very large = 104 (long rod-like
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particles), it is found (43) that viscosity increases tremendously. For

instance, suspensions of Si0 2-SiC whiskers have viscosities 20 times

larger at gs = .10 than those of spherical particles; this increase is due

(43)to the entanglement of the whiskers

iii) Effect of Particle Size Distribution

In general, as the size of particles becomes non-uniform,

the viscosity of a suspension decreases. The distribution does not have to

be multimodal (discontinuous) but can be monomodal (continuous) and cover a

certain range from the smallest to the largest particle.

For monomodal distribution of particle size, the viscosity of the cor-

responding suspension is at a minimum whenever the size ratio, R, (ratio of

the smallest to the largest particle) is lower than 1/1.4 ( 4 4 ) . This is

true for dilute (gs < .20) as well as very dilute suspensions.

For bimodal distribution (distribution made of two different sizes,

each of which has a size ratio of 1/1.4 or less), the blend ratio (ratio of

the concentration of smaller particle to the concentration of larger parti-

cle, gsl/gs 2 ) and the size ratio, R12, (ratio of the smallest to the

largest size) have each an effect of their own on the viscosity of the

suspension (45). Results of this study are shown in Figure 4, for particles

of glass ranging in size from 25 to 250p suspended in polyisobutylene (37 )

The volume fraction of the smaller particles, 25 to 40p in size, was kept

constant at gsl = .25. Thus, at each given total volume fraction solid,

the blend ratio is constant and the different curves show the effect of the

size ratio, R12 . Whereas, for each size ratio, the variation of viscosity

with the blend ratio and fraction solid is indicated by the curve denoting
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this specific size ratio.

In general at a given blend ratio, viscosity increases with increasing

size ratio. When the size ratio is less than 1/10, the optimum blend ratio

is 1 (50%-50% in volume of solid phase of each size).

For trimodal and multimodal distributions, the optimum blend corre-

sponds to optima for the corresponding bimodal systems (45). So for a tri-

modal distribution, one would have a blend ratio of 1 (i.e. 33% in volume

of each size). The finer particles in a bimodal suspension are believed (45)

to behave essentially as a fluid toward the coarser particles, seeming to

play a "ball bearing" role for the larger particles and decrease the energy

dissipated in collisions.

iv) Effect of Aggregation

Aggregation of particles always results in higher viscos-

ity(46). Differences in viscosity of up to two orders of magnitude are

found for aggregates containing up to 300 particles. This is primarily due

to the increase of effective volume fraction solid as more and more liquid

is entrapped in the aggregates.

v) Settling and Non-Settling Suspensions

The major problem in studying the rheology of settling suspen-

sions is to avoid sedimentation and plug flow. Clarke(38) studied suspen-

sions of quartz and glass spheres in water. He used a concentric cylinder

viscometer, which he placed in a stirred vessel to keep all the solids

uniformly dispersed. He observed that slippage occurred at high shear rate

( > 250 sec-1) for large particles (D > 150 microns). To prevent slippage

he used vertical grooves on the wall of the cup and bob, .0625 inch wide,
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.04 inch deep, and .1 inch apart and showed that the Reynolds Number was

still compatible with laminar flow. But he added that it has not yet been

established whether local turbulence takes place owing to the movement of

particles (see Appendix E on turbulence).

His major contribution was that he demonstrated the difference between

settling and non-settling suspensions. When the density of the solid

particles is greater than that of the suspending medium, the viscosity

increases with increasing particle density; it increased from .06 to .24

poise at gs = .40 as the difference in density increased from .172 to 1.96

g/cm3 .

Ward (47 ) modified equation (6) and added another term, K, to account

for density differences between the particles and the suspending medium.

He found an empirical relationship between K and the difference in density,

Ap,

K = 1.6 X 10-3 Ap/l o
(10)

His modification of equation (6), relating relative viscosity to fraction

solid, becomes

r = (1 - k1 gs - K)- 1
(11)

where no is the viscosity of the suspending medium. His data were obtained

from suspensions of solid particles in the size range 60-100 microns in

solutions of glycerol in water. Figure 5 shows a plot of equation (10)

with data from Ward(47), Clarke(38) and DeBruijn (48) . If equation (10) is

rewritten as
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K = (2.3 + 1.4) X 10-3 Ap/ o  (12)

it will cover the whole range of particle sizes from 50 to 700 microns.

In general, the viscosity of a suspension increases with increasing

density difference between the particles and the suspending medium.

Clarke (38 ) attributed this phenomenon to the decreased viscous drag forces

experienced by colliding particles when their density exceeds that of the

suspending medium. Consequently the particles easily move around and

rebound from one another increasing the number of interactions, the total

energy dissipated, therefore the viscosity. This competition of viscous

and inertial forces is reflected in equation (10) where the important

parameter is the ratio of the difference of density to the viscosity of

the suspending medium.

In summary it is apparent that many factors have an effect on the

viscosity of suspensions. It is very difficult to isolate the observed

effect of a single parameter and to predict its sole effect on the viscos-

ity of a new system. The problem becomes more complicated when predictions

are to be made using the combined effect of two or more parameters. Yet it

is possible to describe the general mechanisms operating when a suspension

is sheared. This is done in the following section. An understanding of

the mechanisms involved and their contribution to the viscosities of sus-

pensions will permit certain predictions about the rheological behavior of

a given system.

4. Mechanisms of Non-Linear Behavior

The behavior of a dispersed system can be explained (4 9 ) by the

fact that suspended particles interfere with the mobility of part of the
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suspending medium. There are two sorts of interference: 1. Disturbance

and 2. Immobilization.

Disturbance is a hydrodynamic problem which can be defined as an

interference experienced by the suspending medium as it moves by the parti-

cles of the suspension. For dilute suspensions of rigid spheres the problem

was solved by A. Einstein(26). Non-spherical particles have been treated by

Jeffery(27) and others ( 5 0 ) who observed that particle rotation should also

be considered. If anisotropic particles rotate, the volume of fluid dis-

placed in their rotation is much larger than their own volume. The parti-

cle motion is then equivalent to the motion of a sphere of higher diameter

and the effective volume fraction is much higher than the actual one.

One can thus explain now why suspensions of elongated particles are

more viscous. Furthermore, at higher shear rates, the particles can orient

themselves in a direction such that they do not rotate, their motion

becomes limited, and the lesser disturbance results in lower viscosities.

This, for instance, explains why suspensions of ellipsoids are pseudo-

plastic.

As the volume fraction of particles in the suspension increases, there

is a further contribution to disturbance due to the interaction between

particles. To ascertain this contribution to the viscosity of a suspension,

it is necessary to differentiate between attracting and non-attracting

particles.

The interaction of non-attracting particles is usually limited if

particles and liquid have the same density; the particles are then con-

strained by the viscous drag of the fluid and exchange no inertial forces.
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Should their density not be the same, each collision absorbs some energy

and as the number of collisions increase with shear rate, dilatant behavior

will be observed.

Attracting particles, per se, are not different from non-attracting

particles in suspension. However their potential to create aggregates

whenever they enter the domain of attraction of another particle, results

in a change in the structural configuration of the suspension that can lead

to higher interference (65) (i.e. disturbance). Attracting particles can

also cause the dissipation of energy through the breaking or forming of

bonds. Michaels and Bolger ( 68 ) explain that it takes energy to pull two

particles apart, yet when they recombine by collision, the separation

energy is not recovered but rather dissipated in local disturbances around

the contact point. This would explain why some suspensions made of at-

tracting particles are more viscous than those of non-attracting particles

at equivalent fraction solid(68). It is extremely difficult to predict how

this contribution (dissipated energy) varies with shear rate.

Immobilization is due to the fact that suspended particles generally

bind part of the suspending medium so that an effective larger particle is

formed which is suspended as a whole in the suspending medium.

Immobilization can be an important contributing factor to the viscos-

ity of a suspension (47 ). Many particles absorb a certain layer of liquid

which participates in their motion and increases the effective fraction

solid. Should this layer be sheared off as shear rate increases, pseudo-

plasticity will be observed(49)

Liquid can also be immobilized if it permeates or is entrapped in the
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loose structure of a giant molecule or of an aggregate. This is why sus-

pensions of aggregates give higher viscosities(46)

The effect of shear rate on immobilization is generally time dependent.

As shear forces are increased, aggregates break up and release entrapped

liquid. Yet, the number of collisions increases with increasing shear,

thus increasing the probability of aggregate formation. Very often a

dynamic equilibrium is reached between the rate of break-up and the rate of

build-up(64) . More details are given in Appendix G, specially on how to

compute the kinetic constants. It is possible to conclude that it will

take a finite amount of time for this equilibrium to be attained, resulting

in time dependent rheological properties. This phenomenon is further dis-

cussed in the section under: Thixotropy.

The brief discussion above deals with suspensions of attracting or

non-attracting particles but it always assumes that there is no reaction

taking place between the liquid and the solid. Should the latter be true,

other phenomena, such as the requirement of a thermodynamic equilib-

rium at the solid-liquid interface, come into play and an analysis of the

rheological behavior of such a suspension is more difficult.

In the next section, a survey of the known cases where such reactions

occur, between the liquid and the solid, is presented.

5. Rheology of Bodies in Their Melting Range

A few studies have dealt with the rheological systems where

changes of phase, such as solidification, precipitation, and dissolution

take place ( 10 , 5 1 ,5 2 )

Basalt (51) was investigated at different temperatures; at .25 fraction
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solid, the measured viscosity is 2000 poise (2 orders of magnitude higher

than that of the liquid). The system was found to be highly pseudoplastic,

over the range of shear rates 0-10 sec- .

The rheological behavior of a partially crystalline polyethylene has

been studied in a Couette viscometer(52) . It was found that viscosity

increases sharply as the crystallinity increases and that it is shear rate

dependent. Measured viscosities decreased as shear rate was increased from

30 to 10,000 sec-1, Figure 6a. This pseudoplastic behavior was attributed

to the formation of crystallites or aggregates at low shear rate. Some

liquid crystals (53 ), just below their melting point, exhibit an equivalent

flow behavior, Figure 6b.

Partially solidified, vigorously agitated, slurries of tin-lead alloys

were first studied at M.I.T. in 1971(10). A Couette viscometer was used to

measure induced torque, hence viscosity, at given shear rates and fractions

solid. A major finding of that work was that the partially solidified

slurries exhibited a "shear thinning phenomenon". This was explained in

terms of the size and shape of the primary solid particles in the slurry.

It was found that with increasing shear rates these particles became el-

lipsoidal in shape and were oriented in the flow direction. While it was

recognized that this "shear thinning phenomena" could be ascribed to the

thixotropy of the system, few controlled dynamic experiments were carried

out to verify this fact.

The study reported here was undertaken to verify, expand and explain

these previous observations. To this end, the apparatus was modified to

permit controlled large variations in shear rate. Experimental
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measurements were coupled with detailed metallographic studies. Finally,

the rheological behavior of the partially solidified tin-lead

alloys was compared with other well known thixotropic systems.

C. Thixotropy

1. Definition

In his introduction to thixotropy, H. Freundlich (54) describes

thixotropy as an isothermal, reversible sol-gel transformation, i.e. "if it

is possible to liquify a certain gel into a sol, simply by shaking or

stirring, and if the sol sets into a gel again when left at rest" then this

system (sol or gel) is a thixotropic material. So defined it would narrow

the range of thixotropy to sol and gel (i.e. suspensions of ultra-micro-

scopic particles); but he adds that the same phenomenon, time-dependent

shear-thinning, has been observed on suspensions made up of much larger

particles such as clay or pastes (55) . In present day terminology, a

thixotropic system is one which features a time dependent, shear thinning,

reversible viscosity.

2. Thixotropy Characterization

Even though Freundlich (54) defined thixotropy as a reversible

isothermal shear-thinning mechanism, he proposed very crude tests to

observe and measure it. Some of the more advanced experimental techniques

used to characterize thixotropic systems are as follows:

i) "Equivalent Flow Curve"

Alfrey (56) devised an experiment whereby one applies a

constant stress, T, to a material and measures the variations of shear, y,

as a function of time, Figure 7a. For each new shear stress, a new curve,
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y versus time, is obtained. On each of these curves the initial rate of

increase of the shear is measured (i.e. the shear rate at time zero),

Figure 7a. The experiment is repeated after leaving the system at rest for

different times,t, and a surface in the three-dimensional space, y, T, t is

generated, Figure 7b. The disadvantages of this method are: first, the

requirement of having a constant stress viscometer, second, the long times

necessary to generate sufficient data, and finally the difficulty involved

in measuring y0. Furthermore this procedure does not give any information

about the nature of the structural breakdown or about its kinetics.

ii) Hysteresis Loop

An excellent method used to characterize thixotropy is that

developed by Green and Weltmann (57 ), and consists of measuring a hysteresis

loop. They used a rotational viscometer in which the angular velocity

could be varied continuously. The procedure commences with an up-curve,

starting at zero speed. The speed is then increased continuously and

rapidly while measuring the change in induced torque. At some specified

upper rotational limit, the speed is either maintained constant and then

reversed or simply reversed to zero and a down-curve is measured. If the

material is thixotropic, the up- and down-curves (i.e. torque versus shear

rate) when plotted together will not coincide, thus forming a loop. This

condition is ascribed to a thixotropic breakdown. A large loop means con-

siderable breakdown, while a small loop signifies small breakdown or little

thixotropy, Figure 8a. This quantitative description of thixotropy

(i.e. area of the hysteresis loop) is also affected by the time it takes to

attain the desired maximum shear rate itself.
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The hysteresis phenomenon is the result of the time element involved

in the breakdown of the structures of the thixotropic systems. It was

already mentioned that pseudoplasticity is the result of a structural break-

down due to shear - the main difference is the relaxation time: it is

infinitesimally small for pseudoplastic systems and finite for thixotropic

ones.

Having indicated that thixotropy is a problem of kinetics (the

kinetics of structural breakdown) it will now be shown how, from the loop

measurements, one can derive useful information as to the exact conditions

of the process. This is done in the next section.

3. Hysteresis Loop Analysis

There are two methods for breaking down thixotropic structures:

by increasing the shear rate and by prolonging the time duration of the

applied torque. It is thus important to follow how the area of the hyster-

esis loop is affected by the time it takes to attain a desired maximum

shear rate as well as by the value of this maximum itself.

i) Effect of Time

Figure 8b shows how the time it takes on the up-curve to reach

the maximum shear rate, 'max, affects the corresponding maximum torque

value. For short times, t = to , the path followed is denoted as T2BO.

With increasing times the torque necessary to sustain a given shear rate

decreases (e.g. for t = tl), the path followed is T2B1. After reaching

the maximum shear rate the corresponding torque decreases to a steady state

value with time, at Bn, Figure 8b. The down-curve, BnT 2, is then obtained

by decreasing shear rate back to zero. For printing ink suspensions(57
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the experimentally measured areas of hysteresis loops (e.g. the area

enclosed by T2B1BnT 2) are found to be a linear function of the time spent

in the up-curve

A = A - Nt (13)

where A = the measured area of the hysteresis loop

t = the time spent in the up-curve,

A and N are constants.

No theory has been proposed to explain this linear relationship and it

probably depends on the system investigated. (Other systems may not give

a linear relationship.)

ii) Effect of Shear Rate

If the rate of increase of the shear rate is kept constant,

while the magnitude of the maximum shear rate is increased, the area of the

loop increases. For example, thixotropic material sheared along the path

T2B1 reaches a maximum shear rate of Y1, and has a corresponding hysteresis

loop area enclosed by T2 B1B2T2, Figure 8b. With increasing maximum shear

rates, Y2 and Y3' the area enclosed by the hysteresis loop increases. An

empirical relationship is found to exist for the same system as before
(57)

A = Q( max)2 (14)

where Q is a proportionality constant.

Equation (14) can be derived theoretically if it is assumed that the

loss in torque resulting from thixotropic breakdown is directly proportional

to the shear rate. But no one as yet has proposed a theory to verify this

latter assumption.
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4. Thixotropy and Its Possible Mechanism

Even though Green and Weltmann(57) devised a method to character-

ize thixotropy, they did not give any equation to relate the rheological

properties to the structure. Other workers have proposed equations for

systems such as polymers(5895 9), oils(6 0961), and aqueous solutions(62-64)

In most of theses models, the rheological behavior is described in

terms of "scalar constitutive equations" (65), consisting of an equation of

state and a rate equation. The general form of the equation of state is:

T = n(x,)Y (15)

in which the viscosity, n, is a function of the shear rate, y, as well as a

structural parameter, X. The rate equation is expressed as

d = f(X,y) (16)

which states that the rate at which the structure changes is a function of

both the shear rate and the structural parameter.

The physical significance of X depends upon the structure ascribed to

the system. If the system is considered to contain "cells" having solid

properties moving in a Newtonian fluid, and growing in number or volume

when left undisturbed, X may be the total volume of the cells contained in

one cubic centimeter. Alternatively, if links are formed between the

particles, X may be considered as the concentration of the links. It is

therefore a measure of the internal structure present under a specific set

of conditions.

One of the proposed forms of the equation of state, equation (15),

is(66,67,69):
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S= ( n + Ty//) (17)

In equation (17) the term in the parenthesis is equivalent to the viscosity

term in equation (15). At high shear rates, the second term in the paren-

thesis becomes zero, therefore, nco is the viscosity of the system at very

high shear rates; Ty is the thixotropic contribution to shear stress and is

structure dependent. Goodeve(66) and Gillespie(67) derived the following

expression for Ty:

Ty nv aM (18)

where aM is the value of the rupture stress of the link (i.e. ultimate

tensile strength of the particle), v is the volume of a link and n is the

number of links per unit volume. The equivalent rate equation to equation

(16), by the same authors, is:

dX An (1 - X)2 - BX (19)

where A and B are kinetic constants for the formation and rupture of links,

respectively, and are dependent on the shear rate; X is the structural

parameter equal to n/no. As can be seen in Appendix G, this model fails

when the kinetic constants need to be exactly evaluated. These constants

depend on geometrical factors (specially at high fraction solid) and on the

nature of the forces involved in the bonding of the particles.

Other investigators(68,69) have also tried to compute the thixotropic

contribution, Ty, by relating it to the energy of the links between parti-

cles. The proposed models again fail to develop exact analytical solutions

for the kinetic constants in their equations.
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In summary, the successful quantitative descriptions of thixotropy are

limited to empirical equations obtained from hysteresis loop measurements.

Most of the existing theories approach the description of thixotropy in the

same way (i.e. computation of the thixotropic contribution, Ty, in equation

(17)). However, the specific nature of the models and the impossible task

to develop quantitative means of expressing the kinetic constants, make the

proposed equations of little use except when verified by experiments.

D. Role of Convection in the Grain Refinement of Solidification Structures

Convection has been known to affect the presence and extent of the

equiaxed zone of a casting. It also affects the size of the equiaxed

(8) Convec-
grains and thus provides an excellent means for grain refining . Convec

tion takes place in the fluid either as a result of thermal and composition

gradients (natural convection) or as a result of momentum transfer to the

liquid such as in pouring a liquid into a mold or as in mechanical and

electro-magnetic stirring (forced convection).

It is generally believed that convection promotes crystal multiplica-

tion and provides an excellent means for the transport of new crystals

into the bulk of the fluid. However there is no agreement on the exact

mechanism by which grain multiplication takes place.

One mechanism for grain multiplication is that of dendrite remelting

whereby an arm is remelted at its base and then carried away, Figure 9.

During dendritic growth of a binary alloy, a side branch (arm) is attached

to the main stalk by a neck of lower melting point material which, in addi-

tion to the local curvature, favors remelting in the presence of thermal

fluctuations (70). Convection is then responsible for bringing about these
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thermal fluctuations. This mechanism has been shown to operate in the

coarsening of dendrites (71) and experimental proof has been given by

Jackson, et.al. by direct observation of a freezing NH4C1(72) water melt.

Another theory has been advanced whereby segmentation is produced

either directly by the shearing of a branch from the main stalk due to the

fluid body forces (73), or indirectly by local heating due to local deforma-

tion (74 ). This theory has been supported by the results of Garlick,

et.al.(75) and those of Balandin, et.al.(76). They showed that the degree

of grain refinement is proportional to the difference of density between

the liquid and the solid, and inversely proportional to the strength of the

solid near the solidus temperature.

In practice, convection can be generated in many ways, either from a

device exterior to the metal (vibration, rotation or the mold) or from a

device inside the metal (induction, electromagnetic stirring or mechanical

stirring). Experiments on aluminum and steel have shown that vibration or

rotation of the mold during solidification was not enough to produce a fine

equiaxed structure (77). It was found that turbulence or acceleration of

the liquid (78) and shear forces (79) in the solidifying metal were the sig-

nificant factors to achieve grain refinement (i.e. if a uniform rotational

motion was produced, only a columnar structure would develop(77)).

This suggests the importance of shear flow and the use of intermittent

rotation or electromagnetic stirring during solidification to achieve

equiaxed structures. Agitation of the solidifying metal, created by the

insertion of blades in the liquid, is another technique which was used suc-

cessfully to grain refine Al and Mg base alloys(80,81,82)
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Recent work at M.I.T.(10,11,12,13) has shown the tremendous effect of

high rates of shear on solidification structures and has shown the possi-

bility of casting metals in the semi-solid state. Alloys studied were

Sn-15%Pb alloy(10), aluminum base A-380 alloy(12) , copper base Cu-10%Sn and

Cu-5%Zn-5%Sn-5%Pb alloys and an iron base Fe-3%C-4%Si alloy(13)

The major finding of this work is that when metals are vigorously

agitated during solidification, the usual dendritic structure is absent,

and in its place are small rounded grains varying in size from 50 to 700

microns. In the case of the cast iron of approximately eutectic composi-

tion, the primary solid particles were two-phase, austenite and graphite
(13)

Even though vigorous agitation was found to always produce the same

type of structures on different alloys, only few and qualitative studies of

the effects of shear rate and cooling rate on the "Rheocast" structures

were done (11 ). It is to this end that the study reported here was under-

taken; (1) to characterize the structures in terms of the size of the

primary solid particles, their shape, their distribution of size and the

volume of liquid entrapped by these particles, (2) to relate these struc-

tures to the rheological properties, (3) to learn about the possible

mechanisms by which shear affects solidification structures.
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CHAPTER III: EXPERIMENTAL APPARATUS AND PROCEDURE

A. Viscometer

The viscometer used to study the rheological properties of metal

slurries and the effect of shear on solidification, has been previously

described(l 0), Figure 10. It is a rotating cylinder viscometer and the

metal system is held in the annular gap between the two cylinders. The

crucible is placed inside a furnace. Two holes in the furnace, one at the

bottom and one at the top, make passage for the shaft used to rotate the

crucible and for the torque bar connected to the fixed bob.

1. General Description

The rotation mechanism consists of a constant torque 5 horsepower

D.C. motor, connected to the shaft (stainless steel) by a belt drive system.

Attached to the shaft is a crucible (304 stainless steel, 4-3/16 inches in

diameter and 6-3/16 inches long) inside which sits the cup locked into

place by means of keyways.

Inside the cup hangs the bob that is screwed onto the torque bar (4140

steel, 3/4 inch diameter) used in combination with a torque dynamometer

designed by the Instrumentation Laboratories at M.I.T., Figure llb.

Torques of up to 10' dyne-centimeter are measured in this way.

The furnace was constructed from four electric heating elements which

were 34 inches high and formed a cylinder 12 inches in diameter. The

elements were insulated by several layers of Fiberfrax insulation. The

entire furnace was surrounded by a reflective shield. Top and bottom

pieces were insulated with Fiberfrax, Fiberchrome and Transite. The
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furnace was constructed in two sections which clamped together.

Temperature was recorded by calibrated Chromel-Alumel

thermocouples, shielded with grounded 1/8 inch stainless steel tubing.

Holes were drilled in the walls of the cup and the bob (1/8 inch diameter)

to make place for the thermocouples at different locations around the melt,

Figure 14. The thermocouples run through the shaft down to a Graphalloy

slip ring and brush assembly; there, the rotating leads were connected

through silver brushes to stationary leads, in turn connected to a Moseley

two-pen recorder. When isothermally held, the thermal gradients were im-

measurable both from top to bottom and across the radius (i.e. less than

0.250C).

2. Modifications

The equipment was modified to achieve greater shear rates, up to

1000 sec-1, as opposed to 450 sec- . A new spray cooling device was added

to permit cooling rates up to 250C/min.

The larger shear rates were obtained by building a new bob and cup

arrangement with a smaller gap (3 mm as opposed to 9 mm), Figure lla. This

new geometry also improved the distribution of the particles (reduced

flotation or settling) and reduced turbulence. The smaller gap size also

assures better thermal uniformity and permits faster cooling rates.

Grooves were again machined on the bob and cup walls.

Faster cooling rates were also obtained by incorporating a water spray

jacket around the crucible, Figure 10b. The jacket is made of a double

wall cylinder, sealed at the top and the bottom, with small holes on the

inside wall. The water is injected under pressure through a pipe connected
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to the jacket and is sprayed onto the crucible; the crucible can be

stationary or rotating since the jacket surrounds it without touching it.

The water runs down the crucible and is collected at the bottom.

Finally, control over the crucible rotation speed was improved via a

D.C. generator whose output was exactly proportional to the rotational

speed.

In summary, this special viscometer permits

1. rheological measurements on any metallic system whose melting point is

lower than 300°C,

2. rapid quenching of the rheological structures that are then accessible

to examinations,

3. testing of non-metallic systems such as honey, paint, epoxy and oils,

4. study of the effect of temperature on the rheology of these systems.

B. Materials

1. Metal

Most of the experiments were done on Sn-15 wt % Pb alloy. This

alloy was chosen because some of its rheological properties have been

previously studied (l0), the low melting point of the alloy does not raise

any equipment problems, and a good deal of thermodynamic, diffusion, vis-

cosity, and surface tension data for the alloy areavailable. Finally, the

density of the first solid forming is not too different from that of the

liquid (see Appendix A).

2. Experimental Set-Up

Tin and lead, 99.9% pure (see Appendix B), were first melted in a

clay graphite crucible inside an electric furnace. To insure melt
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homogeneity the molten alloy was stirred with a carbon rod for two minutes.

The bob was screwed onto the torque bar and centered in the crucible by

means of both a centering pin in the bottom of the bob, and a split ring

centering device which fits into the cylinder. After the bob was secured

in place, the alloy was poured into the annular space through a coated

funnel and allowed to freeze. Both the cup and the bob were previously

coated with zirconia-base mold wash, dried up for one half hour at 200
0F.

The lid was then bolted on the cylinder with silicone rubber gaskets in

place, Figure 12. Insulation was placed between the crucible and the metal

catch, which trapped any metal centrifuged out of the cylinder, Figure 12.

The torque bar was held in place through a high tolerance stainless

steel bearing. The bearing assembly was bolted to horizontal rails which

stretched across the furnace. The strain measuring device was placed atop

the torque bar and bolted to horizontal rails.

3. Variables

The independent variables included the following:

a. Alloy composition,

b. Geometry of viscometer,

c. Initial cooling rate, c

d. Initial rotation speed (or initial shear rate, j),

e. Final fraction solid (or temperature at quench), fsf 9

f. Isothermal holding time,

g. Thermomechanical treatment

The dependent variables were:
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a. Torque (viscosity) measurements,

b. Metallography: macro- and micro-structures were examined and the

size, shape, and distribution of size of primary solid particles were

determined by quantitative metallographic techniques.

C. Experimental Procedure

Basically two series of experiments were carried out, one in which

the metal was brought up to a liquid state and then cooled at a given rate

and sheared continuously at a constant rate. When the desired fraction

solid was reached, the rotation of the cup was stopped and the specimen

quenched.

In the second series of experiments, the metal would receive the above

treatment first but would then gradually be brought to a specified tempera-

ture in the liquid-solid range. After the torque attained a constant

"steady state" value, hysteresis loops were generated to study the

thixotropy of the system. At the end of these isothermal experiments,

rotation was stopped and the specimen quenched.

1. In the first series of experiments, aimed at studying the effect

of shear on solidification structures, the three independent variables

were: cooling rate, c, shear rate, j, and the final fraction folid, fsf

(fraction solid at which rotation was stopped and the sample quenched).

The procedure employed and the measurements made are graphically

illustrated in Figure 13.

Figure 13a shows an illustration of the thermal history of the alloy

at two different cooling rates. The range of cooling rates employed was

0.330C/minute to 250C/minute. The lower rates were achieved by furnace
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cooling the specimen. The high cooling rates were achieved by direct water

cooling of the crucible utilizing the spray jacket shown in Figure 10b.

Intermediate cooling rates were obtained by air cooling the crucible.

Regardless of prior thermal history, at the desired final fraction solid,

fsf, rotation was stopped and specimens were quenched at 250C/minute.

Resulting from the difference in cooling rates, the slurries spent a dif-

ferent time in the liquid-solid range,e.g. for a final fraction solid,

fsf = 0.45, slurries cooled at 6 = 250C/minute, lC/minute and 0.330C/

minute spent a total time in the liquid-solid range of 2, 13, and 40

minutes, respectively.

A corresponding graph to the thermal cycle, for the rotation speed

versus time is shown in Figure 13b. Rotation speeds were varied with the

two cup and bob arrangements (3 mm and 9 mm spacings) such that shear rates

in the range of 115 to 750 sec-1 were achieved.

2. In the second series of experiments, rheological measurements were

made at a specified temperature in the liquid-solid range in order to

determine the thixotropic nature of the slurries. Initially the alloy was

sheared and cooled at 0.33 0C/minute from above the liquidus temperature.

Furnace temperature was subsequently controlled and the alloy was isother-

mally held, under shear, at the desired temperature. This thermal history

of the alloy is illustrated in Figure 14a. As a result of this procedure,

the total time spent in the liquid-solid range is the sum of two times

(1) time spent in the liquid-solid range during the cooling (2) the iso-

thermal holding time.

Initial shear rate, denoted as ¥o in Figure 14b, was maintained



-55-

constant throughout the cooling cycle and the initial isothermal holding

until a steady state value of torque was achieved. Different cycles of

rotation and rest were then applied while the temperature of the system was

maintained constant. Figure 14b shows a schematic example of variation in

rotation speed versus time. Figure 14c shows the corresponding torque

measurements.

i) Hysteresis loops

The significance of a hysteresis loop measurement has been

described (57) in Chapter II.C. Figure 14b shows the procedure employed,

rotation speed versus time, to generate a hysteresis loop; five independent

variables had to be controlled (one shear rate and four different times).

Maximum shear rate, imax in Figure 14b, could be varied as desired; it was

usually 115 sec-1 . The time variables were: (1) Down-time, the time it

took to bring the shear rate to zero, to in Figure 14b (minimum time at-

tainable was 4 seconds from 250 R.P.M. to zero); (2) Time at rest, time

duration at which no shear was applied, t1 in Figure 14b; (3) Up-time, the

time it took to go to the desired ymax at a constant rate of increase, t2

in Figure 14b; (4) The time during which imax was maintained, t3 in

Figure 14b.

The number of loops was varied; as many as 75 loops were performed

during one experiment; all loop measurements of shear rate versus torque

were recorded on an X-Y recorder.

ii) Other experiments were carried out to study the pseudo-

plasticity of the metal slurries. To this end, once a steady state was

reached, the shear rate was changed up or down and the new steady state
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value of torque was measured. In this way a flow curve of the slurry, at a

given fraction solid, was obtained.

D. Measurements

1. Flow

Torque values are always proportional to the dynamometer cell out-

put. The proportionality constant, 2.54 X 106 dyne cm/volt, was measured

using calibrated weights acting at measured distance and verified using an

Instron Machine. On the other hand, only for Newtonian materials is the

shear rate proportional to the rotation speed of the cup. For materials of

unknown behavior, trial and error methods have to be used to derive the

value of the shear rate at a given location in the viscometer(83) (see

Appendix D); that is, the shear rate varies across the gap of the

viscometer.

Whenever giving values of rheological properties, the aim is to use

variables independent of the geometry of the apparatus and relative to the

same location. Such variables are called consistency variables (84 ). In

the concentric cylinder viscometer, the maximum shear stress is encountered

on the wall of the bob, hence it is relevant to choose that location as the

reference point (rather than an average location). So the torque, T, is

expressed as

- = T/2rh K2 R2  (20a)

T = CT (20b)

where h, the bob height, is equal to 8.9 cm, R, the cup radius, is equal to

either 3.01 or 3.17 cm and K, the ratio of the bob to cup radius, is equal

to .74 or .90 and C, the instrument constant, is equal to 3.65 X 10- 3 or
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2.40 X 10- 3 cm- 3 according to the bob and cup arrangement used,

respectively.

The rotation speed of the cup, Q, is replaced by the shear rate

= 2~/(l - K2 ) (21)

which is the shear rate at the bob wall only for Newtonian materials and is

such that y = .46Q for K = .74 and ¥ = 1.01Q for K = .90 where Q is in

r.p.m. These expressions for the shear rate are used throughout this work.

The relative error committed using equation (21) is calculated in

Appendix D.

The apparent viscosity is given by

na = / (22)

This is the viscosity a Newtonian fluid would have if, placed in the

viscometer and sheared at the same rate, it gave rise to the same torque T.

This expression is used throughout this work whether or not the word

apparent is mentioned. The relative viscosity could also be used and is

defined as

nr = na/no (23)

where no is viscosity of the segregated liquid at that temperature. For

instance, it is no = 0.025 poise(85) at fs = 0.50 for Sn-15%Pb alloy.

2. Corrections for End Effect and Wall Effects

In an actual rotating viscometer, there is always a viscous drag

due to the stress on the bottom surface of the bob. Its effect has been

shown(86) to be equivalent to an increase in the height of the bob, Ah.

This correction is minimum by making cup radius large, the gap small and
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the bob tall. For instance(87) , it is about 1.5% for a bob height of 5.10

cm, a ratio K = .90 and a cup radius of 1.30 cm. Since the height of the

bob used in these experiments was 8.9 cm, no correction was made.

In a rotating viscometer, it is found that wall slippage is very

unlikely to occur. No slippage was observed (44) with a suspension of

particles 38 to 380 microns in size, in a viscometer where R = 7.10 cm and

the gap was equal to 0.21 cm. In another study (38 ), slippage occurred when

particles were larger than 150 microns at shear rates greater than 250

sec-1. It was shown that slippage could be avoided by the use of vertical

grooves on both walls(38,88). Vertical grooves were thus incorporated in

this viscometer.

3. Stability of Flow

Couette(89) pointed out that even though exact solutions of the

Navier-Stokes equations were known in the case of a fluid, held between two

indefinitely long coaxial cylinders, he proved that there were two dif-

ferent behaviors in the actual apparatus where the cylinders are finite in

length. He also showed that the behavior at low speed of rotation conforms

to the solution of Navier-Stokes equation while the behavior at high speed

was different.

From the different studies of the turbulence of flow in a concentric

viscometer (Appendix E) the following conclusions were reached:

(1) Theoretically there is no limit to the laminar flow when the outer

cylinder is rotating (90)

(2) It is only when the outer cylinder is set impulsively into motion that

there are chances for turbulence to develop and only when the Reynolds
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Number reaches a critical value of Re = 66 X 10'.

(3) From experience, it is found that this critical value depends on the

size of the gap and mostly on the eccentricity of the bob with respect to

the cup(91)

Using these data, it is found that slurries of the Sn-15%Pb alloy with

viscosities above 0.1 poise will have laminar flow at shear rate up to

1000 sec-.

4. Hysteresis Loop

In thehysteresis loop measurement, the cup is set impulsively into

motion, and the corresponding plot of torque versus shear rate is measured.

Before attributing the loop to thixotropy, one must be sure that the

hysteresis phenomenon is not due to some experimental artifact.

For instance, it has been shown (94) that, for a Newtonian fluid, an

artificial hysteresis could be observed if the maximum shear rate was

reached in a time, t, less than R(1-K)/2rv. For a metal slurry with a

viscosity of 10 poise, this time is .03 second and rules out this

possibility.

Two other studies(95,96) showed that the inertia of the bob could only

result in anti-thixotropy and that a gradual increase of the rotation speed

of the cup could not lead to any observable transient period of flow.

5. Hysteresis Loop of Concentrated Non-Stable Suspensions

Very little is known about the thixotropy of systems where the

solid and liquid have different densities. No hydrodynamic studies have

been done of their settling or floating, and no one can predict what would

be the result of a non-stable suspension as rotation is started. Since
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laminar flow is prevalent, no mixing is possible.

The question is to know whether the increase in viscosity,

observed after the metal slurry has been left at rest, results from an ap-

parent increase in fraction solid (due to flotation) or from a real struc-

tural rearrangement such as bonding of particles.

When the laws of hindered settling are applied to metal slurries

(Appendix F), it is found that it takes 5 minutes for the slurry to rise

1 cm (i.e. there is 1 cm of liquid at the bottom and the solid is concen-

trated in the rest of the space); the fraction solid has increased (for

instance from .45 to .50); the corresponding increase in viscosity (as seen

from Chapter IV.B) is always smaller than that observed actually when the

shear is resumed (a factor of 2 compared to a factor of 5 or 10). This

rules out the possibility that the hysteresis phenomenon observed is due to

the flotation of primary solid particles in the slurry.

In addition, experiments were done on alloys of different composition,

especially Pb-richalloys where the difference in density is about

twice that of Sn-rich alloys (ps = 10.65g/cc, Pliquid = 9.8g/cc at fs

0.45 for Pb-10%Sn alloy compared to ps = 7.0g/cc, PL = 7.4g/cc at fs = .45

for the Sn-15%Pb alloy). It was found that the areas of the hysteresis

loops in these experiments were generally smaller than those of Sn-rich

alloys.

Furthermore, experiments were also carried out on well-known

thixotropic systems to verify the accuracy of the viscometer.

E. Calibration

The viscometer was calibrated with U.S. National Bureau of Standards
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oils (standard number S-60, S-600 and S-2000, conforming to ASTM oil

standard). The data agreed within 4% and it was decided not to add any

correction for end effect (see Appendix D). In tests with oil, turbulence

was not recorded, even when motion was set impulsively (e.g. 2 seconds to

reach 250 rpm).

F. Metallography

The hollow cylindrical sample obtained in each experiment was removed

and sectioned in half longitudinally. One half section was transversely

cut at locations 1 inch from the top and 1/2 inch from the bottom. Each

longitudinal and transverse cross-section was polished, etched and metal-

lographically examined (see Appendix C for the method employed).

For each specimen, an average shape of the primary solid particle was

measured and assumed to be constant. Using this value of the axial ratio,

q, (ratio of the minor axis to the major axis), the distribution of size

(minor axis, X) was measured using the Schwartz-Saltykov(97) method as

modified by DeHoff( 08 ) for ellipsoidal shape (see Appendix D).

Once the distribution of size was obtained, the average size, X,

of the primary solid particle and the standard deviation of the distribu-

tion, ax, were easily derived as well as the number of particles per unit

volume, Nv. A minimum of 100 particles were counted on each specimen, at

at least two different locations.

The volume fractions of either primary solid particle, gs f, or

entrapped liquid, gLe, were counted using a point count on a grid. The

point count of primary solid particle (not counting the secondary solid

appearing as small dendrites at the edge of primary solid) gives a value VV.
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Experimental verifications of the equality

VV gsf (24)

were carried out at two different fractions solid and agreed within 1% (see

Appendix A). In summary, it is possible to characterize the structures of

Rheocast specimens by their fraction solid, fsf, their volume fraction of

entrapped liquid, gLe, the average size of the primary solid particles, X,

their shape. (axial ratio),q, their number per unit volume, Nv , and their

distribution of size, N(X) versus X or ax"
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CHAPTER IV: RESULTS

A. Tests in Which the Alloy was Sheared Continuously from Above the
Liquidus to the Desired Fraction Solid

1. Effect of Shear Rate, Cooling Rate and Fraction Solid on the
Apparent Viscosity

In these experiments the alloy was initially cast in the annulus

of the viscometer, then heated up above the liquidus and cooled at a

controlled rate as shear was induced and maintained constant.

The independent variables were: (1) shear rate, y, (2) cooling rate,

s, and (3) final fraction solid, fsf, at which shear was stopped and the

alloy quenched.

The following observations were made. At the liquidus temperature,

the apparent viscosity is low; as the temperature drops and liquid freezes,

the viscosity begins to rise. The rate of increase is low at first but

increases rapidly as the fraction solid increases.

Figures 15 to 18 show the effects of cooling rate and shear rate on

the viscosity of the Sn-15%Pb alloy continuously sheared from above the

liquidus. Figures 15 and 17 show that, at a given cooling rate, F, the

viscosity decreases with increasing shear rate whereas Figures 16 and 18

show that, at a given shear rate, the viscosity decreases as the cooling

rate decreases (i.e. as the total time spent in the liquid-solid range

increases).

At a high cooling rate, 6 = 250 C/minute, an increase in shear rate

from j = 230 to = 750 sec - results in a moderate decrease in the viscosity

of the slurry, Figure 15. For example, at fs = 0.45, the viscosity decreases
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from n = 37 to n = 12 poise (by a factor of - 3).

At the higher shear rate, i = 750 sec -1, the viscosity of the slurry

can be further reduced by decreasing the cooling rate, Figure 16. For

example,at fs = 0.45,as thecooling rate is decreased from E = 25 to e =

0.33 0 C/minute, the viscosity is reduced from n = 12 to n = 2 poise (by a

factor of 6).

Ata slow cooling rate,0.330 C/minute, the viscosity of the slurry at a

given fraction solid decreases markedly as the shear rate is increased,

Figure 17. At fs = 0.45,as theshear rate is increased from 230 to 750 sec-1

the corresponding measured viscosities are 15.0 and 2.0 poise (by a factor

of 7.5).

Some of the data generated in these experiments are listed in Table

III. A composite plot of some of the data presented in Figures 15-18 and

Table III is presented in Figure 19 to show the relative change in meas-

ured viscosity as a function of cooling rate, shear rate and fraction solid.

In general, viscosity increases with increasing fraction solid,

increasing cooling rate and decreasing shear rate. However, the relative

change in measured viscosity due to variation of cooling rate and shear

rate increases drastically with increasing fraction solid. Figure 19

establishes criteria for preparation of low viscosity slurries, e.g. n <

5 poise, for fractions solid as high as 0.45. At low fraction solid, up to

fs = 0.35, all different combinations of cooling and shear rates, within

the ranges specified earlier, result in viscosities less than 5 poise,

whereas slow cooling rates, E = 0.330C/minute, coupled with high shear

rates, = 750 sec-1, are necessary if the viscosity of a 0.45 fraction
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solid slurry is to be maintained at the same relatively low level.

2. Effect of Cooling Rate, Shear Rate, and Final Fraction Solid
on the Structure of Quenched Specimen

i) Effect of Cooling Rate and Shear Rate

At the highest cooling rate used, s = 25%C/minute, the average

size of primary solid particles* (average minor axis, 7) is about 50 ± 15

microns for a final fraction solid fsf = 0.55 and does not appear to be

affected by the shear rate employed, Figure 20. The corresponding micro-

structures are shown in Figure 22. The primary solid particles are of the

same average size; however, there is less entrapped liquid in the particles

that have experienced the higher shear rate, , = 750 sec-'. Measurements

of entrapped liquid carried out on high magnification pictures, Figures 22b

and 22d, show that there is more entrapped liquid at the lower shear rates

(e.g. the volume fractions of entrapped liquid are 0.13 and 0.08 at y =

230 and 750 sec-1, respectively).

The distributions of size of primary solid particles are rather broad

and do not change much over the range of shear rates used. A typical

distribution is shown in Figure 21a. The standard deviation, ax, was

calculated for each specimen and the ratio, ax/X, where X is the average

size (minor axis) of primary solid particles, varies between 0.70 and 0.90.

These large values of the ratio, o/X, are again an indication of the broad

range of particle sizes obtained.

At the lowest cooling rate used, c = 0.330 C/minute, the average size

(minor axis) of primary solid particles depends on the shear rate.

* Primary solid particles are the particles solidified during shear in the
liquid-solid range prior to quench.
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Figure 25 shows how the measured size decreases from 275 microns at y =

230 sec-1 to 175 microns at = 750 sec -1 for a final fraction solid fsf

0.55. The corresponding microstructures are shown in Figure 23. Even

though the primary solid particles sizes are different, the particle shape

remains the same.

The amount of entrapped liquid, at this slow cooling rate, is less

than that at the higher cooling rate. For example, at fsf = 0.55 and y =

230 sec -1 , the amounts of entrapped liquid are 0.13 and 0.02 for cooling

rates of 250C/minute and 0.330C/minute, respectively. With increasing

shear rate, the amount of entrapped liquid in the slow cooled samples

becomes negligible, see Figure 23.

In general then, the effect of shear rate on the amount of entrapped

liquid is the same at high or low cooling rate - as the shear

rate increases the amount of entrapped liquid decreases.

The distributions of size are represented in Figures 21b and 21c. The

ratios of standard deviation to average size of primary solid particles,

ox/I, are-equal to 0.47 and 0.21 at y = 230 and 750 sec-', respectively.

At a given shear rate, e.g. 750 sec-1, the size distribution of primary

solid particles decreases with decreasing cooling rate, Figures 21b and 21c.

ii) Effect of Fraction Solid

In specimens that were initially cooled at 0.330C/minute and

quenched at final fractions solid, fsfS less than 0.30, the primary solid

particles were distinguishable from the surrounding matrix, Figure 24a.

This was not true for specimens that had experienced the higher cooling

rate of 250C/minute, Figure 24b.
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Comparison of the low fraction solid structure, Figure 24a,with that

of a slurry sheared and cooled at the same rates but quenched at fsf = 0.55

Figure 23, reveals that the average size (minor axis) of primary solid

particles increases from 115 to 175 microns. The number of primary solid

particles per unit volume increases from 0.25 X 106 to 0.36 X 106 cm
- 3 as

the final fraction solid increases from fsf = 0.30 to 0.55.

The size distribution of the primary solid particles for specimens

quenched at fsf = 0.30 is shown in Figure 21d; 67% of the primary solid

particles are smaller than 120 microns as opposed to 11% at fsf = 0.55,

Figure 21c.

Thus,as the fraction solid in the liquid-solid range increases, the

existing primary solid particles coarsen and the total number of primary

solid particles increases.

Figure 24c shows the structure of a fast cooled specimen, for E =

250C/minute, at fsf = 0.25,near the outside wall of the crucible. In ad-

dition to the equiaxed dendrites, there are some columnar dendrites grow-

ing from the wall which were not observed at higher fraction solid.

B. Experiments in Which the Alloys was Sheared Continuously from Above
the Liquidus and Held Isothermally at a Given Fraction Solid

The procedure was the same as that described in section A, but the

cooling rate was gradually brought to zero to achieve a constant tempera-

ture within the liquid-solid range while rotation was maintained constant.

Next, two different types of isothermal (constant fraction solid) experi-

ments were performed: (1) Constant shear rate experiment-in which rotation

was maintained constant and the corresponding "steady state" value of

torque was recorded; (2) Pseudoplasticity experiments-in which the rotation



-68-

speed was changed up or down and the new "steady state" value of torque was

measured.

All viscosity measurements reported here are "steady state" viscosi-

ties. That is, each slurry, regardless of previous thermomechanical

history was held at a given fraction solid and shear rate, until no further

observable changes in measured torque occurred with time.

In these experiments the total time spent in the liquid-solid range

signifies time spent during cooling to reach a certain fraction solid plus

isothermal holding time at that fraction solid. In the previous continu-

ously cooled experiments, the total time spent in the liquid-solid range

signified time spent during cooling to reach the desired final fraction

solid at which rotation was stopped and the specimen quenched.

1. Constant Shear Rate Experiments

Figures 25 and 26 show that at low shear rates (e.g. 115 and 230

sec - 1 ) the viscosity of a slurry at a given fraction solid above about

fs = 0.35 is lower when the slurry is held isothermally and reaches a

"steady state" than when the slurry is continuously cooled.

For example, data on Figure 26 show that,at 0.45 fraction solid,the vis-

cosity of a slurry continuously cooled at 0.330C/minute and sheared at

230 sec-' was 15 poise compared to 9 poise when the slurry was isothermally

held; the total times spent in the liquid-solid range were 40 and 90

minutes, respectively.

No change in viscosity of a slurry was observed at a given fraction

solid with increasing isothermal holding time after the slurry had spent

about sixty minutes in the liquid-solid range.
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Similar experiments carried out at higher shear rates showed that dif-

ferences in viscosity of a continuously cooled slurry and an iso-

thermally held slurry ("steady state" viscosity) decreased with increasing

shear rates. For example, the viscosities of continuously cooled and iso-

thermally held slurries,at 0.45 fraction solid sheared at 350 sec- 1,were 6

and 4 poise, respectively. The corresponding viscosities at 750 sec- 1 were

2.0 and 1.0 poise, respectively. These data points are shown in Figures 16

and 27. Figure 27 also shows how the "steady state" viscosity of an iso-

thermally held slurry, fs = 0.45, decreases with increasing shear rate.

Each data point on the curve was obtained in a separate experiment.

In summary then, results of these experiments show that the viscosity

of a slurry, for fractions solid above = 0.35, decreases, with increasing

total time spent in the liquid-solid range. Furthermore, there is a

"steady state" lower limit of viscosity which is recorded when total time

spent in the liquid-solid range reaches 60 minutes. Finally, variations in

viscosity with time spent in the liquid-solid range and with

shear rates decrease with increasing shear rates.

2. Pseudoplasticity Experiments (changing shear rate experiment)

These experiments were identical to those reported in the preced-

ing section, except shear rates were changed during isothermal holding in

the liquid-solid range, once a "steady state" had been reached.

Figure 23 shows how changes in shear rate affect the viscosity of a

slurry. Again, measured viscosities are "steady state" viscosities as

previously defined. For a given fraction solid, the "steady state" vis-

cosity of the slurry increases with decreasing shear rate. For example,
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the viscosity of a slurry, initially sheared at 115 sec -I and isothermally

held at fs = 0.50 increases from 16 to 75 poise as the shear rate is

changed over the range of 250 to 30 sec- .

The effect of prior mechanical treatment, i.e. initial shear rate, on

the viscosity at a certain shear rate is also shown in Figure 28. For

example, at fs = 0.45, viscosities of a slurry initially sheared at 350

sec - are consistently lower than those of a slurry at the same fraction

solid but initially sheared at 115 sec -1. These observations are in line

with those previously reported in Figure 27. Finally, as before, changes

in viscosity are more significant when a slurry is subjected to the lower

shear rate. The changes in viscosity reported in Figure 28 were reversible

but time dependent. For instance, the time to reach a new "steady state"

value of viscosity from 150 to 400 sec-1 was 5 minutes for a slurry

initially sheared at 350 sec -1 and held at fs = 0.45. The dependence of

this reversibility will be further described in a following section on

thixotropy.

3. Structures of Isothermally Held Slurries

i) Comparison Between Structures of Continuously Cooled and
Isothermally Held Slurries

Figure 29 shows the structures of three slurries that have

been sheared at the same constant shear rate of j = 230 sec-1 but have

spent different times in the liquid-solid range. Two slurries in Figures

29a and 29b were continuously cooled at 1oC/minute and 0.33°C/minute and

quenched at a final fraction solid fsf = 0.45; they spent total times in

the liquid-solid range of 13 and 40 minutes, respectively. The slurry in

Figure 29c was isothermally held at fs = 0.45 and spent a total time in the
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liquid-solid range of 90 minutes prior to quench.

As seen from Figure 29, the major difference between the structures of

these three slurries is the amount of entrapped liquid within the primary

solid particles. Figure 31a shows the decrease in measured volume fraction

of entrapped liquid versus time spent in the liquid-solid range. Thus, the

effective volume fraction of primary solid particle decreases with time

spent in the liquid-solid range. This could explain the lower measured

viscosities of isothermally held slurries reported in Figures 25 and 26.

The other two variables affecting viscosity at a given fraction solid

are the size distribution and the size of the primary solid particles.

Measured average particle size (minor axis, T) for all three slurries and

size distribution for two of the slurries of Figure 29 are shown in Figures

31a, 31b and 31c. There is no significant variation in particle size with

total time spent in the liquid-solid range. However, Figures 31b and 31c

show that the size distribution becomes narrower with this total time. The

ratios, ox/X, of standard deviation of the distribution of size to the

average size are 0.70 and 0.45 for the two slurries with total times spent

in the liquid-solid range of 40 and 90 minutes, respectively.

ii) Effect of Initial Shear Rate on the Structures of Iso-
thermally Held Slurries

Figure 30 shows the microstructures of three slurries sheared

over the range of 115 to 750 sec - 1, that were held isothermally at fs =

0.45 and spent the same total time in the liquid-solid range. The size of

primary solid particles decreases with increasing shear rate: the size

decreases from 200 to 85 microns over the range of applied shear rates,

Figure 32a. The measured size distribution of two of the specimens are
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shown in Figures 32b and 32c. The calculated ratio of standard deviation

to average size, Ox/, does not vary much with shear rate - it is = 0.45

in both cases.

The important trend established here is that the amount of entrapped

liquid within the primary solid particles decreases with increasing total

time spent in the liquid-solid range. This phenomenon was previously

reported for the continuously cooled slurries (Chapter IV.A, Figures 20,

22 and 23). The other observation is that the particle size of slurries

isothermally held at a constant fraction solid decreases with increasing

shear rate; this was also observed with the continuously cooled slurries

that spent at least 40 minutes in the liquid-solid range, Figure 23.

C. Experiments on Non-Metallic Systems

To verify the ability of the viscometer used in this study to detect

and measure thixotropy, experiments were done on well known thixotropic

materials; epoxy mixed with silica flakes, unprocessed honey and paint were

used.

Thixotropy was studied using the hysteresis loop technique of Green

and Weltmann ( 5 7 ) described earlier. The critical variables used in obtain-

ing the loops,e.g. the maximum shear rate, and the time to reach that

maximum, are listed in Table IV. The results are as follows:

1. Rheological Properties of Honey

The honey used was natural unprocessed honey (New England blend).

The experiments were carried out at room temperature. An example of the

hysteresis loop obtained is shown in Figure 33, where the shear rate was

changed from zero to 55 sec-1 in 1 second. The loop area is 1.5 X 10s dyne
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cm-2 sec-1. Similar experiments were carried out after leaving the system

at rest for different times at a higher temperature, 300C. The initial

viscosity increased from 85 to 130 poise as the time at rest was increased

from 0 to 48 hours, Figure 44.

The results obtained here are in qualitative agreement to those reported

in the literature(10 0). However, no relative viscosity values were

available to permit a quantitative comparison.

2. Rheological Properties of Epoxy Mixed with Silica Flakes

Both pure epoxy (Shell EPON 828) and epoxy containing 2.95 wt%

(1.30% in volume) of Si0 2 flakes (Cab-O-Sil) were used in these experiments.

The mixture was made by stirring the flakes into the epoxy for 10 minutes

at 600C.

Tests with pure epoxy were run at different temperatures. It was

found out that pure epoxy behaves as a Newtonian fluid in the temperature

range of 24 to 320C when subjected to shear rates of up to 150 sec-1

The viscosity and the thixotropy of the mixture were measured, i.e.

hysteresis loops were generated, after the mixture had been left at rest

for 12 hours. A typical loop is shown in Figure 35; the time it took to

reach the maximum shear rate, 115 sec- 1, was 1.5 seconds, Table IV; the

corresponding loop area is 3.00 X 105 dyne cm- 2sec-.

3. Rheological Properties of Paint

The thixotropic data obtained (hysteresis loop) of the paint

(Sherwin-Williams, white, flat tone-alkyd base) is shown in Figure 36. It

took 10 seconds to reach the maximum shear rate of 270 sec-1 , Table IV.

The area of the loop is 0.15 X 105 dyne cm-2sec - .
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The small relative decrease in viscosity is the result of the limited

shear rates available in the viscometer. Shear rates of up to 20,000 sec-I

are reported in brushing conditions(101) which, if attained, would permit

a larger loop to be generated. The results obtained (values of viscosity

and yield stress) are in good agreement with those of Doherty and Hurd (1 02)

D. Thixotropic Experiments on Sn-15%Pb Slurries

Results here reported were obtained from slurries held isothermally at

a given fraction solid in the liquid-solid range. The initial procedure to

reach the desired temperature (fraction solid) was that described earlier

in section B. Hysteresis loops were then generated using the Green and

Weltmann(57) method described earlier.

The effect of the following parameters on the area of the hysteresis

loops is presented herein:

(1) the fraction solid at which the loops are generated, fs'

(2) the previous mechanical history (initial shear rate), o,

(3) the time during which the slurry was left at rest, rest time, tr

(4) the time needed to bring the slurry to rest, down time, td,

(5) the time needed to increase the shear rate to its maximum, up time, tu,

(6) the maximum shear rate, max

1. Effect of Fraction Solid

All the slurries reported here were sheared at an initial shear

rate of yo = 115 sec-1 and spent a total time of 90 minutes in the liquid-

solid range prior to thixotropic measurements. The curves in Figure 37

show the effect of fraction solid on the hysteresis loop obtained with an

up time of 2 seconds to reach a maximum shear rate, imax' of 115 sec-1
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Figures 37a and 37b show the effect of two different times at rest, 30 and

120 seconds, respectively.

For a given rest time the area of the hysteresis loop increases with

increasing fraction solid. For example, at tr = 30 seconds, the measured

areas for fractions solid fs = 0.40 and fs = 0.45 are 1.15 X 10s and 2.05 X

10s dyne cm-2sec-1, respectively.

For fraction solid lower than ts = 0.35 the appearance of thixotropy,

i.e. hysteresis loop, depends on the time the slurry is left at rest.

Figure 37c shows the domains where thixotropy and no thixotropy are

observed. For example, at fs = 0.25, slurries initially sheared at 115

sec - 1 did not exhibit thixotropy (i.e. the difference in stress is lower

than the accuracy of the stress recorder, = 102dyne/cm 2) for rest times of

up to about 2 minutes. Evidence of thixotropy, hysteresis loops, was

observed after a rest time of 5 minutes. The data presented are for an up

time of 2 seconds to reach a maximum shear rate of 115 sec-1

2. Effect of Initial Shear Rate

The effect of initial shear rate, y0, on thixotropy is shown in

Figure 38. Two slurries, fs = 0.45, were left at rest for 30 seconds. Up

time to reach a maximum shear rate of 250 sec-1 was 3 seconds. The area of

the hysteresis loops decreases with increasing initial shear rate. It is

6 X 10s and 1.55 X 10s dyne cm-2sec-1, for corresponding initial shear

rates of 115 and 350 sec-.

3. Effect of Time at Rest

The curves in Figures 37a and 37b, and 39a show the effect of rest

time on the hysteresis loops obtained with an up time of 2 seconds to reach
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_I
a maximum shear rate of 115 sec . The recorded area of the loop increases

with increasing time at rest. Figure 39b shows measured areas of the loops

from Figure 39a.

The same phenomenon was observed when the fraction solid and the

initial shear rate were varied, Figures 39c and 39d.

4. Effect of Down Time

The down time referred to here is time spent in decreasing the

shear rate of the slurry from its initial value to zero prior to hysteresis

loop measurements. In the loops reported above this down time was kept to

a minimum of 4 seconds. Figure 40 shows that the areas of the loop in-

creases with increasing down time. For example, in slurries initially

sheared at o = 115 sec 1 , held at fs = 0.45, the area increases from

2.00 X 10s to 3.50 X 105 dyne cm-2sec- 1 as the down time increases from 4

to 60seconds,Figure 40L The rest time in these experiments was 45 seconds.

5. Effect of Up Time

The uptime is the time spent in increasing the shear rate from

zero to its maximum, .max Figure 41 shows that the area of the hysteresis

loop decreases with increasing up time. For instance, for slurries

initially sheared at o = 115 sec- 1 and held isothermally at fs = 0.45, the

are of the loop goes from 1.50 X 105 to 0.50 X 10s dyne cm-2sec-1 as the up

time goes from 2 to 10 seconds, y was 115 sec 1 and rest time prior to

shear was 45 seconds. The areas of the loops become zero for up times

greater than 15 seconds. The same effect was observed on a 0.40 fraction

solid slurry, Figure 41b.
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6. Effect of Maximum Shear Rate

The effect of maximum shear rate on the area of the hysteresis

loop is shown in Figure 42. The area of the loop increases with increasing

maximum shear rate, max. For instance, at tr = 30 seconds for slurries

held at fs = 0.45 and initially sheared at yo = 350 sec- 1, the measured

areas are 0.80, 1.50 and 2.20 X 10s dyne cm-2sec-1 for maximum shear rates

of 115, 250 and 300 sec -', respectively.

In summary, it has been shown that metal slurries are thixotropic,

regardless of rest time, for fractions solid higher than fs = 0.35 and

that the area of hysteresis loop is dependent on the thermomechanical

history and on the conditions under which the measurements are carried out.

For fractions solid less than 0.35 the occurrence of thixotropy is a func-

tion of the time spent at rest.

The general trends established here are:

(1) The area of the hysteresis loop increases with increasing fraction

solid, rest time, down time and maximum shear rate.

(2) The area of the hysteresis loop decreases with increasing initial

shear rate and up time.
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CHAPTER V: DISCUSSION

The results of viscosity measurements presented in the previous

section are compared to other well-known rheological systems. The feasi-

bility of applying equations of state, proposed for non-metallic systems,

to Sn-15%Pb slurries is tested. Coarsening and coalescence mechansims are

proposed for the aggregation of primary solid particles in the Sn-15%Pb

slurries. Finally, the effect of shear flow on the formation of primary

solid particles is discussed.

A. Rheological Properties

In this section, some general correlations are drawn between the

rheological properties of Sn-15%Pb slurries and other well-known systems.

Attempts are made to test the applicability of different equations of

state, developed for non-metallic systems, to this metallic system. For the

Sn-15%Pb alloy, weight fraction solid and volume fraction solid are used

interchangeably since there is a difference of only = 1% between the two

values as shown in Appendix A.

1. Effect of Fraction Solid on Viscosity

When compared to suspensions of non-interacting spheres of poly-

styrene, rubber latex, glass and methylmethacrylate (34 ), the relative vis-

cosity of the metal slurries, at a given fraction solid are larger by 1 to

2 orders of magnitude, Figure 43. The data points plotted for the Sn-15%Pb

slurries cover all ranges of thermomechanical treatments reported earlier

in the results section. The data points for non-interacting spherical

particles are for a range of sizes from 0.1 to 435 microns.



-79-

When compared to suspensions of kaolin (clay) particles ( 68 ) , 0.2 to 2

microns in size, in water, the relative viscosity of the metal slurries at

a given fraction solid is of the same order of magnitude, Figure 43. The

data points for kaolin suspensions cover the range of shear rates from 0.5

to 42 sec -1. The high viscosity of these suspensions has been explained on

the basis of an aggregation mechanism (68 ). Network bonds are formed

between kaolin particles to lower their surface energy. At a given shear

rate, it takes a certain amount of energy to pull two particles apart

(i.e. the energy necessary to break the network bonds). Yet when parti-

cles recombine by collision, the separation energy is not recovered but

rather dissipated in local disturbances around the contact point.

This model can be applied to metal slurries of Sn-15%Pb alloy. Welds

are formed between primary solid particles to lower their interfacial

energy; upon rupture of the welds, some energy is dissipated (i.e. the

change of surface energy incurred upon rupture of a weld) and becomes part

of the viscosity of the slurry. The following equation is derived in

Appendix H for the added viscosity

R2
3 2 2 1
2 * gs B (25)

where a is the interfacial energy between the solid and the liquid metal,

gs is the volume fraction solid, y is the shear rate, R1 and R2 are the

radii of the primary solid particle and of the weld, respectively. At gs

0.50, for R1 =50 and R2 = 5 microns, at a shear rate of 100 sec
-1, the

added viscosity is = 2 poise.

Table V compares relative viscosity data of a partially crystalline
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polymer (52) (low molecular weight polyethylene) to that of the Sn-15%Pb

slurries. The relative viscosities of the two systems are of the same

order of magnitude. The high viscosity of partially crystalline poly-

ethylene is due to the formation of crystallites. However, in contrast to

metallic systems, the degree of crystallinity at a given temperature is a

function of shear rate. Therefore, instead of using the degree of crystal-

linity as a parameter, one may use the degree of molecular association (52)

(the molecular weight of the same but amorphous polymer resulting in the

same viscosity as that of the partially crystalline polymer). For instance,

it is found that the equivalent molecular weight of this polymer increases

seven times between the melting point and 800 C at a shear rate of 30 sec-1

and 3.5 times at a shear rate of 1000 sec - 1

2. Effect of Structure on Viscosity

In general, the viscosity of a suspension is an indication of the

energy consumed in shear flow. It is made up of the resistance of the

fluid to shear flow, the change in streamlines due to the existence of

solid particles and to the rotation of the particles, and the energy of

collisions with or without interactions.

The general trends established in this study relating viscosity of

Sn-15%Pb slurries to their structure are summarized in Table VI. The

dependence of the internal structure upon the conditions of the thermo-

mechanical processing (i.e. cooling rate and shear rate) will be left aside

for the moment and the dependence of particle size and the amount of

entrapped liquid upon the thermomechanical processing will be examined.

In all the continuously cooled and isothermally held slurries, the
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viscosity at a given fraction solid increases with increasing primary

solid particle size. The same trend has been previously established for

suspensions of quartz particles, ranging in size from 25 to 175 microns,

in water (38 ). In that work, the increase of viscosity was attributed to

the increasing magnitude of the inertial forces involved in the collisions

of the larger particles. It was further demonstrated that the observed

effect of change in particle size on viscosity becomes more pronounced as

the density difference between the solid particle and the suspending

medium increases.

Table VI also shows that a decrease in the amount of entrapped liquid

results in a corresponding decrease in viscosity. The same effect has

been reported for suspensions of aggregates of glass beads, 35 microns in

size, in Aroclor (chlorinated biphenyl, no = 80 poise) by Lewis and

Nielsen(46) . Each suspension contained only aggregates of a given size

(i.e. made up of a fixed number of glass beads) and therefore with a

constant amount of entrapped liquid. It was shown that by increasing the

amount of entrapped liquid (i.e. increasing the size of aggregates) the

viscosity of the suspensions increased. Furthermore, it was shown that the

viscosities of these aggregate suspensions obey Mooney's equation

r = exp [klgs/(l - k2 gs)] (26)

where nrr is the relative viscosity (apparent viscosity/viscosity of the

suspending medium). The coefficients kI and k2 are functions of the ag-

gregate size; k1 increases and k2 decreases with increasing size of ag-

gregate, i.e. increasing amount of entrapped liquid. Similar attempts to

apply Mooney's equation to the Sn-15%Pb slurries were unsuccessful.
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3. Equations of State

The apparent viscosity of continuously cooled Sn-15%Pb slurries,

plotted versus fraction solid on semi-log paper shows a linear dependence

over certain ranges of fraction solid (Figure 44). These portions can be

described by an equation of the type:

log na = a + Bfs (27)

where na is the apparent viscosity, and fs is the fraction solid. The

coefficients a and B are given in Table VII as a function of cooling rate

and shear rate. Also listed in Table VII are the ranges of fraction solid

over which equation (27) is applicable. The coefficient B is constant at

a given cooling rate and does not change with increasing shear rate,

whereas, a always decreases with increasing shear rate. Equation (27) can

be rewritten as

na = A exp Bfs  (28)

where A = exp(2.3a) and B = 2.3B. Equation (28) is identical to the last

term of equation (9) of the literature survey from Thomas's work (34 )

= 1 + 2.5 gs + 10.05 gs + A exp B gs (29)

Thomas proposed that, at fractions solid greater than 0.25, this term

becomes the major contributor to the viscosity of a suspension and is due

to the rearrangement of particles under shear. Eyring(35) developed the

same kind of relationship assuming that particle rearrangement is propor-

tional to the probability of transfer of particles from one plane of shear

to the next.
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Experimental values of A and B in equation (28) reported by Thomas (34)

for suspensions of spheres ranging in size from 0.1 to 435 microns, are

16, 6 and 0.0016, respectively. These correspond to a = -0.25 and =

7.21, which are close to those obtained in rapidly cooled (250C/minute)

slurries of Sn-15%Pb alloy, Table VII.

4. Pseudoplasticity

The apparent viscosity of isothermally held slurries of Sn-15%Pb

alloy, plotted versus shear rate on a log-log scale shows a linear

dependence over certain ranges of shear rates (Figure 45). The viscosity

obeys the following equation:

na = k in (29)

where na is the apparent viscosity, and i is the shear rate. The values of

the coefficients k and n, calculated from Figure 45, are given in

Table VIII. Equation (29) is the classical power law equation used to

describe the flow behavior of shear rate dependent materials with a nega-

tive coefficient, n, for pseudoplastic materials and a positive coef-

ficient, n, for dilatant materials.

The values of n calculated for the Sn-15%Pb slurries are of the same

order of magnitude as those reported for suspensions of Ti02 (39) and of

kaolin(68) particles in water, Table VIII. Kaolin particles were shown to

form aggregates whose size decreases with increasing shear rates. Reducing

the size of the aggregates results in lowering of the effective fraction

solid (reduced entrapped liquid) and a corresponding decrease in viscosity.

It was also postulated(68) that the decrease in viscosity with increasing

shear rate corresponds to the decreasing contribution of the energy of
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destruction of the network bond (See equation (25) and Appendix H).

The partially crystalline polymer (low molecular weight polyethylene)

follows equation (29) over certain ranges of shear rates(52) . The calcu-

lated values of the coefficient n are given in Table VIII and are of the

same order of magnitude as those for Sn-15%Pb slurries. Two mechanisms

were proposed to explain this observation: (a) it was postulated that the

high shear rates may "melt" or destroy the crystallites (it was found that

the equivalent molecular weight decreases with increasing shear rate) and

(b) it was proposed that high shear rates orient assymetric aggregates in

the direction of flow. This mechanism was also found to occur for liquid

(53)crystals that exhibit the same behavior

Some of the proposed mechanisms outlined above are for agglomerates of

micron size and needle shaped particles (kaolin, Ti0 2) and some are for

macromolecular aggregates (polyethylene). These mechanisms cannot be

directly applied to metal slurries. However, the basic explanation of

pseudoplasticity is based on models where there is an equilibrium between

the rate of buildup and breakdown of aggregated structure; the buildup is

due to the aggregation of particles or molecules to lower their surface

energy and the breakdown is caused by the stresses due to the fluid flow

forces acting on the aggregates (Figure 46).

Figure 47 shows the structures of isothermally held slurries of

Sn-15%Pb alloy sheared at 230 sec-1 from the beginning of solidification

till a steady state was reached at fs = 0.45, then it was brought to zero

and the specimen was quenched.

The initial shear rate of the specimen shown in Figure 47c and 47d
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was 230 sec -1 . After steady state was reached, the shear rate was

increased to 350 sec-' for 5 minutes and decreased back to 230 sec-1 for 10

minutes. Finally it was brought back to zero and the specimen was quenched.

When an isolated particle of Figure 47b is viewed under polarized

light, only one shade per particle is observed, Figure 47a. On the other

hand, when an isolated particle of Figure 47d is viewed under polarized

light, there is more than one shade per particle, Figure 47c.

One may thus conclude that each primary solid particle of the specimen

in Figure 47a was originally one equiaxed dendrite that degenerated into

the spheroidal shape under shear. If agglomeration occurred in this speci-

men, then the particles in the agglomerate had the same orientation.

Whereas, in Figure 47c it is clear that several of the primary solid parti-

cles are agglomerates of particles with different orientations.

In these pseudoplasticity experiments, agglomerates of particles with

different orientations were only observed when shear rates were changed

after reaching a steady state under a certain constant shear rate. The

change in measured viscosity corresponding to a change in shear rate

results from changes in the structure of the initial slurry. One of these

structural changes is the formation of agglomerates, lending credence to

the proposed pseudoplasticity mechanism proposed for non-metallic suspen-

sions as discussed above.

5. Thixotropy

The thixotropy of suspensions, for which solid and liquid are of

different density, is complicated since there is a risk of floating or

settling of the solid phase. Should this be the case, the increase of
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torque after a certain period at rest could result from inhomogeneities in

fraction solid, e.g. the local increase of the effective fraction solid.

This possibility was ruled out for the metal slurries investigated here

because the calculated settling velocity is too slow to give a significant

amount of settling. For instance, at a fraction solid of 0.45, the calcu-

lated rate of hindered settling of 200 micron size particles is 1 cm in 5

minutes. The density difference between the liquid and the solid decreases

as the fraction solid decreases, see Appendix F.

When compared to other thixotropic systems, metal slurries of Sn-15%Pb

alloy exhibit a degree of thixotropy (area of hysteresis loop) of the same

order of magnitude as that of the non-metallic systems used for comparison

in this study, (Figure 48 and Table IV). As an example, the measured areas

of hysteresis loops for the Sn-15%Pb slurries at a fraction solid of 0.45,

honey, and epoxy with 2.95 wt % Si0 2 are 2-8, 1.5, and 3.0 X 10s dyne.cm-2

sec-1, Table IV. Hysteresis loop areas of non-metallic systems reported by

other investigators are listed in Table IX and are of the same order of

magnitude as above.

The structure of a thixotropic material is both shear rate and time

dependent, as is its measured viscosity. At low shear rates it is made up

of aggregates with an effective volume fraction solid larger than the

actual volume fraction solid present, due to entrapped liquid. With

increasing shear rates, fluid flow forces break down the aggregates into

smaller particles with less entrapped liquid, thus reducing the viscosity

of the material. The observation of the hysteresis loop is a consequence

of the time dependence of the dissociation of the aggregates.
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In the case of chemically non-interacting particles, the aggregation

(particle flocculation) at low shear rates is due to the attractive forces

between the particles, e.g. long range electrical forces which permit the

individual particles of, for example, clay to interact over distances of

the order of 1000 A(54). This aggregation can also be due to the formation

of welds between chemically interacting particles such as the primary solid

particles of Sn-15%Pb slurries. To differentiate between interacting and

non-interacting particles, aggregation of the former is referred to as

flocculation and the latter as agglomeration in this study.

For thixotropy to be observed, the concentration of the solid phase

must be large enough to permit a significant number of particles to aggre-

gate. In the case of chemically interacting particles, agglomerates form

when two particles collide and stay in contact long enough for a weld to

form. The probability of successful collisions (collisions followed by

weld formation) depends on size, shape, number and distribution of size of

primary solid particles as well as on shear rate.

The general trends established in this study relating the degree of

thixotropy (area of hysteresis loop) to the structure and thermomechanical

history of isothermally held slurries of Sn-15%Pb alloy are shown in

Table XI.

i) For a given time at rest, there is a minimum fraction solid

below which no thixotropy is observed (Figure 37). As the fraction solid

is decreased the probability of successful collisions between particles

decreases. For example, below fractions solid of 0.30, after times at rest

up to 2 minutes, the areas of the hysteresis loops of Sn-15%Pb slurries,
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initially sheared at 115 sec- , are below the measurable minimum of 0.1 X

10s dyne.cm-2sec-1. The maximum shear rate used to generate the hysteresis

loops in Figure 37 was the same as the initial shear rate, 115 sec-1 .

ii) The effect of initial shear rate on structure and viscosity

of the Sn-15%Pb slurries are shown in Figures 30 and 31. Both the average

primary particle size and viscosity increase with decreasing initial shear

rate. The effect of initial shear rate on the area of the hysteresis loop

follows the same trend; the area increases with decreasing initial shear

rate (Figure 38). For instance, the areas of the hysteresis loops of two

slurries held at 0.45 fraction solid and sheared at 350 and 115 sec - ,

after 30 seconds at rest, are 1.5 X 10 and 6.0 X 10s dyne.cm-2sec-1

respectively, an increase by a factor of 4.

iii) Increasing the rest time, t r , or the down time, td , results

in a corresponding increase in the area of the hysteresis loop (Figures 39

and 40 and Table XI). As the time at rest is increased, the time available

for weld formation between particles increases. Alternatively, as the down

time increases, longer times are spent at low shear rates. Thus the time

available for weld formation increases and the fluid flow forces respon-

sible for the dissociation of the agglomerates decrease. Consequently,

more agglomerates or agglomerates of larger size are present at the

beginning of the up curve, hence the higher the difference in torque. For

example, the area of the hysteresis loop increases by a factor of 1.75 as

the down time is increased from 4 to 60 seconds, Figure 40b.

A relationship between the rest time, tr in minutes, and the area of

hysteresis loops, A in dyne.cm-2sec- 1, is given by
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A = 3.0 X 10 t 25  (30)

for the areas reported in Figure 39b and Table X.

iv) Finally the effect of the conditions of measurement on the

degree of thixotropy follows the same trends as those reported for non-

metallic systems(57) (Table X). The relationships are of the type

A = A0 - Ntu (31)

relating the area of the hysteresis loop, A, and the up-time, tu , and of

the type

A Q= Q n (32)

relating the area, A, and the maximum shear rate, ym. A , N, Q, and n are

constant for a given system.

Even though no theoretical derivations have been reported for these

equations they are always explained on the basis of the effect of shear

rate on the number of fractured welds. For instance, as the up time

decreases, so does the time during which the shear forces are operating;

hence the number of fractured welds decrease and the viscosity increases.

B. Mechanism for Formation and Fracture of a Weld Between Two Primary
Solid Particles

In the previous section the rheological properties of Sn-15%Pb slur-

ries were compared with other well-known thixotropic systems. It was shown

that (a) the Sn-15%Pb slurries behave like suspensions of interacting

particles and (b) that their viscosity and hence their structure is shear

rate and time dependent. Finally, some general relationships and trends

were developed to describe the thixotropic behavior of the Sn-15%Pb
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slurries. In the following sections, first a model is presented to

quantitatively describe the formation of a weld between two primary solid

particles of a Sn-15%Pb slurry after the particles have collided (Figure

49). Next, a model is presented to describe the magnitude of the shear

forces necessary to break this weld.

1. Weld Formation

In this model the assumptions are:

(a) The two particles are in true contact - Whenever two particles

collide, some liquid is left between them; if under the pressure exerted by

the particles and caused by the fluid this liquid drains out then the

particles establish a true contact. The time required by the liquid to

drain will decrease with increasing shear rate, since the fluid flow forces

increase with increasing shear rate.

(b) The dihedral angle between the two particles is 1800. This

assumes that the interfacial energy between the solid particles is

zero(125) (that is, there is no lattice mismatch between the two particles).

The equilibrium temperature of the liquid-solid interface, at the

point of contact between the particles, depends on the local curvature, and

for this surface of negative curvature, K, the liquidus temperature is

raised by

AT =- H (33)

1where K = 1
where K = 7 (R R3), see Figure 56,

a = solid-liquid interfacial energy,

TL = equilibrium liquidus temperature for a planar interface,
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H is the volumetric heat of fusion.

Assuming equilibrium at the two liquid-solid interfaces (large primary

solid particle of radius R1 and area of contact with negative radius of

curvature R3 (Figure 56)) a diffusion couple is established in the liquid

between these two interfaces. As shown in Appendix I, solvent (Sn) dif-

fuses from the primary solid particle to the area of contact. Integration

of the rate equation derived in Appendix I yields the following equation

relating the radius of the weld, R2, and the time of contact, t:

R2 = lOTR2 DoTL t/CL(1 - k)mH (34)

where D is the diffusion coefficient, CL is the weight percent of solute in

the liquid, k is the partition ratio between solid and liquid, m is the

liquidus slope, and the other terms are defined above.

Using selected values for the Sn-15%Pb alloy, listed in Table XII,

equation (34) becomes

R5 = 1.29 X 10- 9 R2 t (35)

Equation (35) is plotted in Figure 50. For a primary particle of radius

R1 = 100p, the radius of the weld is R2 = 6.5p after a time t = 10-

seconds.

2. Mechanism for Fracture of a Weld Between Two Particles

A model is presented to describe the effect of shear rate on frac-

ture of the weld formed between two primary solid particles. The fluid

flow forces result in stresses that cause the metallic weld between the

primary solid particles to deform (creep) and eventually fracture. As-

sumptions made are that this fracture occurs when the strain reaches a
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critical limit of 0.10(126). Whether this limiting value of strain is

reached depends on the magnitude and duration of the stress generated by

the motion of the fluid.

Assuming two primary solid particles in contact perpendicular to the

flow direction, the force associated with the kinetic contribution of the

fluid movement is calculated from Stokes's Law in Appendix J:

F = 12r R1 nr (36)

All terms in equation (36) have previously been defined. The shear stress

due to the force operating on the total area of the weld, 7rR2, is

T = 12(R 1/R 2 )2 ny (37)

For a Sn-15%Pb slurry with a 5 poise viscosity (fs = 0.45) containing 200j

primary solid particles (R1 = 100P) and a weld radius of R2 = 6.5-p, calcu-

lated shear stress values from equation (37) are 20 and 100 psi for cor-

responding shear rates of 100 and 500 sec -'. These values are of the same

order of magnitude as those reported for strengths of semi-solid Sn-15%Pb

alloy(10)

The duration over which this stress should be operative to induce a

strain of 0.10 is calculated in Appendix J using the Larson-Miller param-.

eter in extending previously reported creep data for a Sn-38%Pb alloy(
111)

Figure 52. These data yield the following equation:

tf = c/c = 4 X 1010 - 2  (38)

Calculated times for the example used above are 2.3 X 10-2 and 9 X 10- 3

second for shear rates of 100 and 500 sec -1, respectively, Table XIII.



-93-

Mason and Bartok (124 ) have developed an expression relating the rate

of shear to duration over which two rigid (glass) spheres, of 50 to 300-P in

size, stay in contact in a Couette viscometer. The average doublet life

calculated and experimentally determined for fairly dilute solutions,

fs = 0.10, is given by

t = T/y (39)

For a shear rate of 100 and 500 sec -1, expression (39) yields average

doublet lives of 5 X 10-2 and 6 X 10- 3 seconds, respectively.

The mechanism proposed for agglomeration of primary solid particles

predicts that very short times (= 10- 3 second) are sufficient for a weld

between two primary solid particles in true contact to grow to a size of

6.51p. On the other hand, calculated times for fracture of these welds are

rate dependent - the following equation is obtained combining equations (37)

and (38)

tf = 230 -2 (40)

Calculations of doublet lives and fracture times from equation (39) and

(40) are shown in Table XIII and are plotted in Figure 53. Figure 53

shows, for this highly simplified model, shear rate conditions under which

a given size weld formed between two primary solid particles will have

time to fracture.

In summary then, the shear rate dependence of weld formation and frac-

ture presented herein is in qualitative agreement with pseudoplasticity

results reported in Figure 28. In general, low rates of shear favor forma-

tion of permanent welds, resulting in large particles or agglomerates with
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entrapped liquid, hence high measured viscosities.

C. Formation of Rheocast Structures

The structures of Sn-15%Pb slurries consist of small primary solid

particles well distributed in the remaining quenched liquid (Figures 22,

23, 29, 30). Similar Rheocast structures have been obtained in several

alloy systems that have been subjected to vigorous agitation during solid-

ification(l 0- 13 ) . The general trends relating the structural parameters

(average size of primary solid particles and amount of entrapped liquid) to

the solidification parameters (cooling rate and shear rate) are summarized

in Table VI.

In the following section, some mechanisms are proposed to explain the

formation of these particulate non-dendritic structures generated under

vigorous agitation.

At very low fractions solid, columnar or equiaxed dendrites form in

the melt. These have well developed secondary and some tertiary arms

(Figure 54a). As the fraction solid increases, these well developed

dendrites experience grain multiplication by one of the following

mechanisms.

(i) Grain multiplication is caused by dendrite remelting. Remelting

comes about because some of the arms which form initially become unstable

later in solidification and melt while others continue to grow. It is

assumed that the roots of dendrite arms have a slightly higher solute

content and have a greater curvature than the outer portions of the arms.

Thus, their melting point is lower and thermal fluctuations induced by the

vigorous agitation cause melting in this location.
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(ii) It has also been suggested that mechanical fracture, resulting

from the stress caused by fluid flow, might be enough to lead to grain

multiplication. Should this mechanism be responsible for grain multiplica-

tion, the resulting structure will be shear dependent. That is, the size

of the primary solid particles will decrease with increasing shear rate.

This actually is the case for slowly cooled and isothermally held specimens,

Figure 23, 30.

As fraction solid increases, these primary solid particles grow and

coarsen. Coarsening can take place in the following ways:

(i) Each individual particle coarsens by one of the several mechanisms

proposed for coarsening of dendritic structures (129). Alternatively,

spheroidization of the primary solid particles can take place by one of the

two modes shown in Figures 55a and 55b.

(ii) Particles collide and coalesce (Figure 55c).

(iii) Larger particles coarsen at the expense of smaller ones, by an

Ostwald ripening mechanism.

Whichever of the above mechanisms operates, coarsening is time

dependent, which explains why slow cooled specimens under identical shear

conditions have coarser structures with larger primary solid particles

(Figures 22 and 23).

The driving force for coarsening is the lowering of the interfacial

energy between solid and liquid. Any area of negative curvature will have

a tendency to disappear and the equilibrium shape of a given primary parti-

cle will be a sphere with the largest possible radius. This explains why

slow cooled slurries have less entrapped liquid than fast cooled slurries
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and why isothermally held slurries have no entrapped liquid and are some-

what spheroidal in shape.

The coarsening mechanism is diffusion controlled so that any decrease

in the boundary layer through which solute and solvent diffuse will result

in an increase in the coarsening rate. Thus convection not only aids dif-

fusion by simply increasing the diffusion flux (adding a term to Fick's

first law) but also increases the solute gradient in front of a growing

interface. This explains why, at any cooling rate, an increase in shear

rate results in a decrease in entrapped liquid, lower effective volume

fraction solid and hence lower viscosity.



-97-

CHAPTER VI: CONCLUSIONS

A. General

1. The apparent viscosity of Sn-15%Pb slurries increases with

increasing fraction solid and is structure dependent. The structure and

apparent viscosity are strongly influenced by the thermomechanical history

of the alloy during solidification. The rheological behavior of vigorously

agitated slurries of the alloy exhibit thixotropy.

B. Continuously Cooled Slurries

2. The viscosity of the slurry, at a given fraction solid, decreases

with decreasing cooling rate and increasing shear rate. Exercising the

full range of shear and cooling rates possible in the viscometer the ap-

parent viscosity of a 0.55 fraction solid slurry was varied from 3 to 80

poise.

3. At a given shear rate and fraction solid, increasing the cooling

rate results in finer primary solid particles with more entrapped liquid.

4. In both the fast and slow cooled slurries, the amount of entrapped

liquid at a given fraction solid decreases with increasing shear rate. For

instance, at 25OC/minute and a fraction solid of 0.55 the volume fraction

of entrapped liquid are 0.13 and 0.08 for corresponding shear rates of 230

and 750 sec- .

5. At a given fraction solid, the average size of primary solid

particles of fast cooled slurries, 25C/minute, remains constant with

changes in shear rate, while in the slowly cooled slurries, 0.330C/minute,

the average size of primary solid particles decreases with increasing shear
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rate. At 0.55 fraction solid and a cooling rate of 0.330C/minute, the size

decreases from 280 to 180p as shear rate increases from 230 to 750 sec-1;

at the same fraction solid but a cooling rate of 250C/minute the size

remains constant at 501p.

6. Over wide ranges of fraction solid, the apparent viscosity of the

continuously cooled slurries follow a state equation, relating the apparent

viscosity, na , to the fraction solid, fs:

na = A exp B fs

where A and B are constants for a given condition of shear and cooling

rates. The coefficient B is of the same order of magnitude as that found

for non-metallic systems such as suspensions of glass spheres ranging in

size from 0.1 to .435p.

7. Comparison of Sn-15%Pb slurries to suspensions of interacting and

non-interacting particles, at the same fraction solid, shows that the vis-

cosity of metal slurries is of the same order of magnitude as that of the

former and consistently higher than that of the latter.

C. Isothermally Held Slurries

8. The structures and viscosity of isothermally held slurries follow

the same trends as those of slowly cooled slurries, i.e. at a given frac-

tion solid, particle size, amount of entrapped liquid and viscosity

decrease with increasing shear rate. Furthermore, at a given fraction

solid and shear rate, the viscosity of an isothermally held slurry is lower

than that of a continuously cooled slurry.

9. Variations up or down of shear rate, at a given fraction solid,

result in a corresponding decrease or increase in the measured viscosity.
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For example, at 0.50 fraction solid, when shear rate is increased from 115

to 250 sec-1 viscosity decreases from 30 to 16 poise.

10. Over wide ranges of shear rates, the apparent viscosity of

isothermally held slurries follows a state equation of the form:

a = kyn

relating viscosity, na , to shear rate, y. The coefficients k and n depend

on the initial structure of the slurries. The coefficient n varies between

-0.3 and -0.82 for a wide range of conditions. A typical value for n in a

non-metallic pseudoplastic system (clay in water) is between -0.65 and

-0.86.

11. Slurries of Sn-15%Pb alloy are thixotropic and show a hysteresis

loop phenomenon similar to other well-known non-metallic thixotropic

systems. Measured areas of hysteresis loop increase with increasing frac-

tion solid, initial viscosity (structure) and time at rest. For instance,

the areas for a slurry held at 0.45 fraction solid and of initial viscosity

15 poise, varies between 2.0 and 8.0 X 105 dyne.cm-2sec-' for rest times

between 30 seconds and 30 minutes, respectively. These are comparable to

measured areas for honey and epoxy mixed with 2.95 wt % Si0 2 which are 1.5

and 3.0 X 10 s dyne.cm-2sec - 1, respectively.

12. The occurrence of thixotropy (defined herein as a measurable

minimum hysteresis loop area of 0.1 X 10s dyne.cm-2sec- 1) is a function of

fraction solid and time atrest. For fractions solid below 0.30 and rest

times of up to 2 minutes, the areas of the hysteresis loops are below the

measurable minimum.

13. Equations of state relating the area of hysteresis loop to the
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process variables are similar to those of well-known non-metallic

thixotropic systems. For instance, isothermally held slurries of Sn-15%Pb

alloy obey an equation of the form:

A = A - Nt

relating area of hysteresis loop, A, and up time, tu; the coefficients A0

and N depend on fraction solid and structure.

14. The proposed mechanism for thixotropic behavior of the isother-

mally held slurries is based on the formation and fracture of welds between

primary solid particles. The driving force for the formation of these

welds is the lowering of the interfacial energy of the liquid-solid inter-

face, whereas fracture results from the action of the fluid flow forces on

the particles. The model shows that, at low shear rates (below a critical

shear rate) agglomerates form resulting in large particles with entrapped

liquid, hence high slurry viscosity.

D. Formation of the Structures of Sn-15%Pb Slurries

15. The mechanism proposed for the formation of particulate non-

dendritic structure generated under vigorous agitation is one where, above

fractions solid of = 0.15, a multiplication mechanism breaks up initially

formed dendrites, into degenerate dendritic primary solid particles.

Subsequently, coalescence and/or ripening occurs, driven by the lowering

of the interfacial energy of the primary solid particles.
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CHAPTER VII: SUGGESTIONS FOR FUTURE WORK

1. The rheological behavior of isothermally held slurries should be

studied over wider ranges of shear rates (gap size) and cooling rates.

2. Work should continue to relate structures to thermomechanical

conditions during solidification. Effect of variations of the thermo-

mechanical history on structures should be further studied. As example,

the phenomenon of agglomeration of primary solid particles as affected by

rate of shear should be investigated.

3. Application of the findings of this work to machine casting of

semi-solid metals must include development of continuous apparatuses for

production of the slurries. Therefore, the trends established here should

be utilized in design of the continuous apparatuses.

4. The rheological properties of other metallic alloys (binary,

ternary, two phase and multiphase. . .) should be studied.

5. In general, a much deeper understanding of this new field of

rheology of metallic slurries is needed.
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0
(b)TIME ,and the time at rest, t.
(a)

w

SHEAR STRESS, "
(b)

Figure 7. Characterization of a thixotropic material after Alfrey(56):
(a) at constant stress by the measure of jo; (b) as a function of the stress,
-, and the time at rest, t.
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Figure 8.I1ysteresis loops (a) of three different materials showing

i)no,ii)little,iii)high thixotropy,(b) of a printing ink
when the uu time is increased, (c)of a rinting ink when

the maximum shear rate is increased,after Weltman (57 )
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(71)
Dendrite Coarsening Model, after Kattamis, et al.Figure 9.



U

(a)

Fiqure 10

(b)

Photograph of main apparatus showing (a) from top to bottom,torque
dynamometer,furnace,shaft and belt drive,thermocouple junction box
and (b) enlarged view of furnace and water spray jacket.
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(a)

(b)

Figure lla.Photograph of the cup and bob arrangement

Figure llb.Photograph of the torque dynamometer.
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Figure 12.Schematic diagram of apparatus
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LLJ
a

TIME,) (c)
Figure 13.Procedure empoyed for continuously cooled Sn-15%Pb

slurries,showing (a) temperature versus time, (b)

rotation speed versus time and (c) the corresponding torque.
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Figure 14.Procedure employed for isothermally held Sn-15%Pb

slurries,showing (a) temperature versus time, (b)

rotation speed cycles for a hysteresis loop and (c)

the corresponding torque.
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Figure 15. Effect of fraction solid on the apparent viscosity of aF-1
Sn-15%Pb slurry. Effect of two different shear rates, 230 and 750 sec
at a high cooling rate 25%C/minute.
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Figure 16. Effect of fraction solid on the apparent viscosity of a
Sn-15%Pb slurry. Effect of three different cooling rates 25, 1.0 and
0.330C/minute at a high shear rate of 750 sec " .
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Figure 17. Effect of fraction solid on the apparent viscosity of a
Sn-15%Pb slurry. Effect of four different shear rates; 115, 230, 350 and

750 sec-1 at a slow cooling rate of 0.33
0C/minute.
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Figure 18. Effect of fraction solid on the apparent viscosity of a
Sn-15%Pb slurry. Effect of three different cooling rates; 25, 1.0 and

0.330C/minute at a slow shear rate of 230 sec I.
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Sn - 15*Pb
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Figure 19. Effect of shear rate used during cooling of a Sn-15%Pb slurry
on the apparent viscosity at two different fractions solid, 0.35 and 0.45
and for two different cooling rates of 25 and 0.330C/minute.
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Figure 20. Effect of shear rate on the size of primary solid particles
of Sn-15%Pb slurries at two different cooling rates of 25 and 0.33

0C/minute.
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Figure 21.Distribution of size of primary solid particles

of continuously cooled slurries of Sn-15%Pb.Effect

of cooling rate,shear rate and fraction solid.
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(a) (b)

(c) (d)

Figure 22.Microstructures of Sn-15%Pb slurries for a cooling rate of25 0C/min
and fraction solid of 0.55;(a) and (b) at a shear rate of 230
sec ,at 50X and 100X respectively;(c) and (d) at a shear rate of
750sec-1,at 50X and 100X respectively.
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(a) (b)

(c) (d)

Figure 23.Microstructures of Sn-15%Pb slurries for a cooling rate of 0.330 C/min
and a fraction solid of 0.55;(a) and (b) at a shear rate of 230sec',
at 50X and 100X respectively;(c) and (d) at a shear rate of 750sec - 1,

at 50X and 100X respectively.



(a) (b) (c)

Figure 24.Microstructures of Sn-15%Pb slurries;(a) at a cooling rate of 0.330 C/min and
shear rate of 750sec- 1 and fraction solid of 0.30;(b) and (c) at a cooling
rate of 250C/min,shear rate of 230sec-1 and fraction solid of 0.25,away and
near the crucible wall,respectively;50X.
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Figure 25. Comparison of the effect of fraction solid on the apparent vis-
cosity of Sn-15%Pb slurries continuously cooled at 0.330C/minute and
isothermally held at different fractions solid; shear rate of 115 sec- .
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Figure 26. Comparison of the effect of fraction solid on the apparent

viscosity of Sn-15%Pb slurries continuously cooled at 0.33
0C/minute and

isothermally held at different fractions solid; shear rate of 230 sec 1
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Figure 27. Effect of shear rate on the apparent viscosity of Sn-15%Pb slurries held isothermally at a
fraction solid of 0.45; total time spent in the liquid-solid range of 90 minutes.
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Figure 28. Effect of change of shear rate on the apparent viscosity of
Sn-15%Pb slurries held isothermally at fractions solid of 0.50 and 0.45
after a total time of 90 minutes in the liquid-solid range.
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(a) (b) (c)

Figure 29.Effect of total time in the liquid-solid range on the microstructures 
of

Sn-15%Pb slurries at a shear rate of 230sec-1 and fraction solid of 0.45;

total time of (a) 13min,(b) 40min and (c) 90min;50X.



(a) (b) (c)

Figure 30.Effect of initial shear rate on the microstructures of Sn-15%Pb slurries

after 90 minutes in the liquid-solid range at a fraction solid of 0.45;

initial shear rate of (a)ll5sec- 1 ,(b) 230sec -1 and (c) 750sec-1;50X.
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Figure 31. Effect of total time spent in the liquid-solid range on the
size, distribution of size and volume fraction of entrapped liquid in
primary solid particles of Sn-15%Pb slurries at 230 sec and fraction
solid of 0.45. (a) size and entrapped liquid, (b) and (c) distributions
of size for total times of 40 minutes and 90 minutes, respectively.
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Figure 32. Effect of shear rate on the size and the distribution of

size of primary solid particles of Sn-15%Pb slurries held isothermally at
a fraction solid of 0.45 after 90 minutes in the solid-liquid range:
(a) size, (b) and (c) distributions of size at 230 and 750 sec 1,
respectively.
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Figure 33. Measured hysteresis loop of New England honey at 24.1*C.
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Figure 37.Effect of fraction solid on hysteresis loops

of isothermally held slurries of Sn-15%Pb alloy,

sheared at 115 sec - I,at 0.40 and 0.45 fraction

solid; (a) and (b) loops for 30 sec and 2 min at

rest,respectively; (c) thixotropy as a function
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Figure 38. Effect of initial shear rate, o , 115 and 350 sec- 1, on

hysteresis loops of Sn-15%Pb slurries held at a fraction solid of.45;
rest time of 30 seconds.
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Figure 39.Effect of rest time on hysteresis loops of Sn-15%Pb

slurries held at 0.45 fraction solid initially

sheared at 115 sec-l; (a) hysteresis loops, (b) areas

of hysteresis loop versus rest time.
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Figure 39 (cont'd). Effect of rest time on hysteresis loops of Sn-15%Pb
slurries (c) initial shear rate of 115 sec-1 and fraction solid of 0.40,
(d) initial shear rate of 350 sec-1 and fraction solid of 0.45.
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Figure 40. Effect of down-time on hysteresis loops of Sn-15%Pb slurries

(a) loops, (b) area versus down-time for an initial shear rate of 115 sec

and rest time of 30 seconds.
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Figure 41. Effect of up-time on hysteresis loops of Sn-15%Pb slurries,
initial shear rate of 115 sec 1' , fractions solid of 0.45 and 0.40, rest
time of 30 seconds (a) loops, (b) loop areas versus up-time.
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Figure 42. Effect of maximum shear rate on hysteresis loops of Sn-15%Pb
slurries, held at a fraction solid of .45 after rest time of 30 seconds
(a) loops, (b) area versus maximum shear rate.
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Figure 45 .Log-log plot of apparent viscosity versus shear rate for isothermally

held slurries of Sn-15%Pb alloy.
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(c) (d)
Figure 47 Structures of isothermally held slurries of Sn-15%Pb alloy at a

fraction solid of 0.45,sheared at 230 sec-l1 ,after a total time in
the liquid-solid range of 90 minutes;(a) and (b) no change in shear
rate,(c) and (d) increase of shear rate to 350 sec- 1 for 5 minutes
and back to 230 sec-1;(a) and (c) same as (b) and (d) under pola-
rized light;50 X.
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Figure 48.Canrarison of the hysteresis loop of Sn-15%Pb slurries and non-metal-

lic systems ,generated in this visccaeter.
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Figure 49.Model for the coalescence of two primary solid

particles of isothermally held slurries of Sn-15%Pb

alloy.
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Figure 51.Formation and Fracture of a weld between two primary

solid particles.Model of pseudoplasticity.
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Figure 53.Cmparison of the fracture time,tf, (time

necessary for fracture to occur) and life

time of a doublet,t,as a function of shear rate.
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(a)

0

(b)

Figure 54 .Dendrite multiplication mechanism
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Figure 55 . Coarsening Models

(b)



-159-

(a)

(c) (d)
Figure 56.Structures of continuously cooled slurries of Sn-15%Pb allo ,quenched

at a fraction solid of 0.55;(a) and (b) sheared at 750 sec- ,cooled
at 250 C/min;(c) and (d) sheared at 230 sec- 1,cooled at 0.3 30 C/min;
(a) and (c) same as (b) and (d) under polarized light;50 X.



4 A

TABLE I - Effect of Shear Rate on the Viscosity of Coarse Suspensions.

Particle Ref. Dispersion
Medium

Particle
Size, p

Flow Fraction
Behavior Solid,gs

Maximum
Shear Shear
stress rate

dycms
c a 

s

Viscometer

Sucrose
solution
n=. 4 2

poise

Water
n= . 01
poise

P.I.B.*
n =20poise

Sucrose
solution

n- .42poise

25-150

50-200

50-230

.2-1.0

Newtonian

Dilatant

Pseudo-
plastic

pseudo-
plastic _-
y< 4 0 0 sec
DilatantY>10-1 sec
y>1000 sec

6.5.65

.10-.30

.45-.60 140

.0-.40

1300

350

100

Rotational

Rotational

Orifice
D=.30-.45 mm

Rotational

P.I.B. = poly-isobutylene

glass
beads

quartz

glass
spheres

TiO2



TABLE II - Effect of Particle Size and Shape on the Viscosity of Coarse Suspensions.

Particle Ref.

quartz
p =2.6g/cc

glass
=2.6g/cc

PMMA

Clay
qxl A

SiO
q=164

Dispersion
Medium

Water

n =.01

Glucose
Sucrose
Oil

Aqueous
Solution
n = .06

Water

fn = .01

Oil
rn=2poise

Particle
Size, X
microns

30-180
<16

4-230

Spheres
30-200

Irregular
Shape
.4-.8

.025x250

Flow
Behavior

T- Xi

rn+ X+

rt X+

no effect
of size
nt+ X+

nT+ q+

nt q+

Fraction
Solid, g

0-.30

0-.50

.25

.10

up to
.002

Viscometer

Rotational
0-350sec-1

Rising
Sphere

MacMichael

Capillary

PMMA = polymethylmethacrylate

q = axial ratio of particle
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TABLE III

Effect of Cooling Rate, Shear Rate and Fraction Solid
on the Apparent Viscosity of Sn-15%Pb Slurries

Apparent Viscosity, nL, poise

Cooling Rate, e = 0.33 0C/min Cooling Rate, e = 250C/min

Shear Rate, ¥, sec- 1 Shear Rate, y, sec-1

350 750
I .

0.4 0.3

1.0 0.7

1.7 1.2

1.3

2.0

40±10 12.5 2.6

80+15 32 3.0

115

1.2

2.5

4.5

85±10

230

1.2

2.5

4.5

10

450 750

0.2 0.1

1.2 1.0

4.0 2.5

8 6.0

18 12

100±10 42 30

115 230

Fraction
Solid, fs

0.20

0.30

0.35

0.40

0.45

0.50

0.55

2.5

5.0

8.7

40.0

100

1.2

2.5

3.5

5.0

15

3.0

6.2



TABLE IV

Thixotropy Data of Sn-15%Pb Slurries and Non-Metallic Systems

System Temperature
T, 0C

Honey

Epoxy
+2.95%
Si0 2

Paint

Apparent
Viscosity
Trx, poise

240

160

4

Rest
Time, tr

hours

Maximum
Shear Rate

max ,sec 1Ymax

55

100

270

Up Time
t , sec

1.0

2.0

10

Hysteresis
Loop Area
10s dyne
cm 2sec 1

1. 0

3.00

0.15

Sn-1 5%Pb
f =0.45

s

0.008-0.5
(30 sec-

30 min)

Transient
Time, t
seconds

196

15

300

115 2-8 0-20
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TABLE V

Relative Viscosity Data for Sn-15%Pb Slurries (Figure 50)

And Non-Metallic Systems

Low Molecular Weight Polyet

109

1

1

1

1

96

3.98

90

87

31.3

16.6

9.1

hylene( 52 )

84

850

347

151

63

Isothermally Held Slurries of Sn-15%Pb

209.5 197.6

.42

540

240

196.3

.45

600

400

160

40

195.2

.47

940

480

ToC
sec
30

100

300

1000

80

3020

930

398

158

70

9350

3540

1520

575

ToC

(sec-

115

230

350

750

192

.53

2400

800

187

.60

2480
2480
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TABLE VI

Rheological Properties and Structure of Sn-15%Pb Slurries

At a Given Fraction Solid

Isothermal

n X gLe
n t

Slow Cooling Rate

S X gLe

+ + +

Fast Cooling Rate

n x gLe

4- + 41

At a Given Fraction Solid and
a Given Shear Rate

-n fast
rn slow

X fast < 1s
X slow

gLe (fast)

gLe (slow) >

List of Symbols

y = shear rate

na = apparent viscosity

X = average size of primary solid particle

gLe = volume fraction of entrapped liquid

+ increase, + decrease, +-+ no change
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TABLE VII

Experimentally Determined Coefficients of Equation (27)
log na = a + Sfs and equation (28) na = A exp (Bfs) where,

A = exp (2.3a) and B = 2.3. Apparent viscosity is in
poise. The data is for the continuously cooled

slurries of Sn-15%Pb alloy.

Cooling Rate

Shear Rate
y, sec-1

A = exp (2.3a)

B = 2.3B

Range of
Fractions

Solid

250C/minute

230

-2.0

8.0

0.01

18.4

0.2-
0.45

750

-2.4

8.0

0.004

18.4

0.2-
0.55

0.33 0C/minute

115

-0.4

3.5

0.4

8.05

0.1-
0.3

230

-0.62

3.5

0.24

8.05

0.1-
0.4

750

-1.37

3.5

0.043

8.05

0.2-
0.6
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TABLE VIII

Experimentally Determined Coefficients of equation (29),
= n

na = ky , relating the apparent viscosity na (poise)

to the shear rate, y (sec-1)

Data for Isothermally Held Slurries of Sn-15%Pb Alloy

Fraction Solid

Initial Shear
Rate, yo, sec 1

Constant, k
unit: cgs

Exponent, n

Range of Shear
Rates, sec -

f
s

115

830

-0.70

30-
300

= 0.50

230

100

fs = 0.45
5

115

380

-.34

100-
250

-.82

10-
40

Data for Kaolin Particles in

Fraction Solid

n

Range of Shear
Rates, y, sec-'

0.10

-.65

.5-10

0.16

- .74

1-10

115

63

-.30

40-
400

Water(68)

0.20

-.74

1-10

Data for Partially Crystalline Polymer (52)

Temperature

n(cgs)

Range of Shear
Rates, y, sec-1

100-1000 100- 1000

Data for Ti0 2 in Water (39)

n = -.75 between 0 and 400 sec -1

350

55

-.44

100-
400

0.24

- .86

1-10

900C

-.50

800C

-.81

Fraction Solid, fs = .40



TABLE IX

Thixotropy Data for Non-Metallic Systems

System

Printing Ink
(0.10-0.40 fraction solid)

Heather honey

Attalpugite/water
(20% solid phase)
(needle: 3 X10 A)

Lithium Stearate
in Oil

Ref.

(57)

(100)

(62)

(60)

Conditions

t u , sec

30-2000

1800

30

500

Ym, sec-1

200

Hysteresis Loop
Area,A,105 dyne.

cm- 2sec 1

7.8-0.10

14.5

700

500

2.95

0.78

Remarks

Depend on
previous history.

No absolute
measurement.

Isothermal
recovery in
12 hours.

No isothermal
recovery.
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TABLE X

Experimentally Determined Coefficients to Equation (13) A = No - N tu ,

Relating the Area of Hysteresis Loops A to the Up Time tu , of Equation (14)

A = Q-n Relating the Area to the Maximum Shear Rate m', of Equation (30)

A - Aotrm Relating the Area A to the Rest Time tr

Data for Isothermally Held Slurries of Sn-15%Pb Alloy

Variable Relationship
Area, A, dyne cm sec

Conditions

Rest Time tr, A = 3.0 X 0I tr 25  fs = .45 t = 2 sec
tr, minutes = 115 sec_1

td = 4 sec m 115 sec 1

Up Time A = 2.0 X 105 - .13 X 0I t u  fs = .45 o = 115 sec-1

tu, sec tr = 30 sec

A = 1.3 X 105- .13 X 10s t u  fs = .40 td 
= 4 sec

y= 115 sec 1

Maximum Shear A = .76 X 10' m fs .45 tr  30 sec

Rate, m sec o = 350 sec-ltd = 5 sec

t = min

Data for Rotary Printing Ink

IUp Time
t , sec

Maximum Shear
Rate, m' sec-1

A = .22 X 105 - 37.6 tu

A = .2 .m
2

(Yellow Ink)(57)

mI = 168 sec - 1

tu = 468 sec

for ym = 168 sec 1
..... ..................... .... .....-1 1 --- 1 1^ -m -

___1_~__

r.

,_.,,,1
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TABLE XI

Effect of Structural Parameters and Thermo-Mechanical History
on the Degree of Thixotropy (Area of Hysteresis Loop) of

Isothermally Held Slurries of Sn-15%Pb Alloy

Variable f s t o t tr + td + tu t m +

Area A + A + A + A + A + A t

A = area of hysteresis loop,

= initial shear rate,

t r = rest time,

td = down time,

tu = up time,

m = maximum shear rate,

+ increase

+ decrease
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TABLE XII

Selected Values for Sn-15%Pb Alloy

fs = 0.45

CL = 26 wt % Pb

TL = 196.20C = 469.30K

k = 0.10 APPENDIX A

m = 1.2 0C/wt %Pb

p = 7.3 g/cc

Dpb = 2.1 X 105 cm2/sec (diffusion of Pb in molten Sn-16.lat%Pb

at T = 1960C(l06)

H = 14 cal/g (107)

aS-L = aL-V = 520 erg/cm2 at T = 22000 for Sn-12%Pb (sessile drop

method) (108)



TABLE XIII

Effect of Shear Rate on Doublet Life, t, and Fracture Time, tf, (time necessary for fracture of a weld

between two primary solid particles to occur). Assumptions include: particles are spheres of radius

R = 100, slurry viscosity is 5 poise, and fracture occurs at a strain of 0.10.

Shear Rate, y, sec' 100

I. I

Doublet life time

t = 7/y, sec

Time of true contact, t, sec

Weld radius, R2, P
R2 = 1.29 X 10 - 9 R2t Eq(35)

Shear stress, T, 106 dyne.cm- 2

T = 12(R 1/R 2 ) 2'y Eq (37)

Shear stress, T, psi

Strain rate, s, sec-1
E = 2.5 X 10-2[ 2 Eq (38b)

Fracture time, tf, sec

tf = 4 X 101% - 2 Eq (38)

Criterion for fracture

tf-t k 0

0.06

0.06 0.03 0.001

15 13 6.5

.013

.19

.017

.25

.708

10.3

.0004 .0008 1.25

250 125 0.08

0.03

0.03 0.015 0.001

13 11.5 6.5

.035

.52

.046 1.41

.67

.003 .005

20.4

5

33 20 0.02

500

0.006

0.006 0.003 0.001

9.5

3.3

8.0 6.5

4.68 7.05

46.5 68 102

27.5 55 125

.003, .0018 .0008

DO NOT BREAK

I I

I

t -t < 0 BREAKtf-t > 0
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APPENDIX A

SOLIDIFICATION OF TIN-LEAD ALLOYS

There is good agreement (10C at the most)(112,113,114) between the

data points giving the liquidus of Sn-rich alloys of Sn and Pb, Figure Al.

The main feature of the liquidus line is the existence of a positive curva-

ture (liquidus lies below the straight line joining the melting point of

pure tin and that of the eutectic), Figure Al. This curvature results in a

variation of the k's (ratio of the solid composition to that of the liquid)

which added to that of the solidus makes the k's vary greatly from 0.10

to 0.07.

Fraction Solid

The fraction solid, present at a given temperature in the liquid-solid

range, depends on the conditions of the solidification.

If complete mixing of the liquid occurs and if enough time is allowed

for the diffusion in the solid to be completed, a mass balance results in

the lever rule, expressed as

fs 1 lk (1 - Co/CL) (Al)

If there is no diffusion in the solid, the same mass balance results

in the Scheil equation

df 1 dC

o 1 -- k CkC (A2)

Since the k's vary, the integration must be performed step by step.

Results of both methods are shown in Figure A2. As expected, the lever
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rule gives higher temperatures for the same fraction solid since the dif-

fusion in the solid impoverishes the liquid or raises the equilibrium

temperature. Figure A2 shows that the difference is at its maximum 0.01.

Density of Solid Solution of Pb in Sn

As solidification takes place, the densities of the solid and liquid

phases change and most likely are not equal. There are two factors that

contribute to the density of solid solution of Pb in Sn: (1) the decreasing

temperature with the increasing content of Pb, (2) the expansion of the

lattice due to the appearance of Pb atoms in the Sn network. The first

factor increases the density (volumetric contraction(105 ) ) whereas the

second factor decreases the density (Pb atoms are larger than Sn

atoms (106)).

After computation of the mass, volume of a unit cell, their variations

with temperature and composition, one gets the density of the solid phase

along the solidus line

ps = 7.222 (1 + .7926 NPb) (A3)

where NPb is the atomic fraction of Pb; results of equation A3 are given in

Figure A3 and Table Al as well as data of the density of the liquid phase

along the liquidus line.

Weight Fraction-Volume Fraction

Since the Scheil equation or the lever rule are deduced from a mass

balance they give a value of the weight fraction solid, fs. However the

important factor for the study of rheology is the volume fraction, gs. It

is easily derived as
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1 - f PS
gs = (1 + f s X L)

s S PL
(A4)

Using known values of pL(105) and the values of pS derived earlier, it is

found out that the differences are very small (due to the small difference

in density), Table A2.

Experimental Verification of f. Versus T

Two slurries of Sn-15%Pb alloy were held isothermally at T = 202.00C

and T = 197.0 0 C for two hours under a shear rate of 230 sec -I and were

further quenched. The measured volume fractions of primary solid parti-

cles, Vv , were 0.31 and 0.46 which correspond to 0.30 and 0.45 in weight

fraction solid. These results are plotted in Figure A2 and agree well with

the computed values of 0.30 and 0.44.
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TABLE Al

NPbS .00 .00741 .0095 .0118 .0145

NPbL .00 .100 .145 .200 .261

TLOC 232 207 200 192 183
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TABLE A2

fs .0 .20 .30 .40 .50 .60 .616

gs .0 .206 .31o .414 .518 .621 .639
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Figure Al.Phase diagram of Sn-Pb alloys;Sn-rich alloys.
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FIGURE A2, SOLIDIFICATION OF SN-15%PB ALLOY
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Figure A2.Solidification of Sn-15%Pb alloy;Temperature versusFigure A2.Solidification of Sn-15%Pb alloy;Temperature versus
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APPENDIX B

COMPOSITION ANALYSIS

LEAD

Antimony and tin

Arsenic

Bismuth

Copper

Iron

Nickel

Silver

TIN

Lead

Antimony

Arsenic

Bismuth

Copper

Iron

Nickel

0.00400

0.00002

0.00003

0.00010

0.00100

0. 00010

0.00010

99.925

0.020

0.003

0.025

0.006

0.010

0.010

0.001

Lead was obtained from Fisher Scientific Company,
Fair Lawn, New Jersey, in Reagent grade sticks.

Tin was obtained from Tin Plate Corporation,
Somerville, Massachusetts.
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APPENDIX C

MEASUREMENT OF NUMBER AND AVERAGE SIZE IN VOLUME

DeHoff (98) summarizes the problem and states: "The general quantita-

tive metallographic problem of relating measurements that can be made on a

random plane section to the number of particles in the three dimensional

structure has not been solved to date."

However, it is possible to derive a general equation relating the

number of particles to measurement on a plane section, but the resulting

relationship is purely formal and involves properties of the particles that

depend upon their shape and size.

Assuming the particles to have a constant shape, it is possible to

derive the exact relationship even when a size distribution exists but it

becomes necessary to measure the length of some characteristic dimension on

every particle.

For ellipsoid the relationship between the average minor axis, X, and

the average of the reciprocal of the minor axis of each particle, z, is

S= k4/z (C1)

where k4 is a shape parameter depending on the axial ratio of the ellipsoid,

q; it has been determined by de Hoff and is found to be constant for

prolate ellipsoid and equal to T/2.

As pointed out by de Hoff there are two disadvantages to this method

(1) z is the average of the reciprocal of the minor axis; it is a harmonic

mean and its accurate determination is very sensitive to errors (i.e. the
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particle sections which are below the resolution of the microscope may have

an important effect). (2) The accurate determination of Y requires roughly

the same number of measurements of section as does the determination of

particle size distribution.

So it is more informative to treat the data in such a way as to obtain

the size distribution, and obtain the total number of particles and their

average as a by product.

Provided particles have the same shape, ellipsoidal, de Hoff (117 ) has

extended the method of Schwartz-Saltykov (97) to the determination of the

size distribution from measurements on a random plane. He derived:

N1(j) = NA(i ) (j,i) (C2)
= k 1

A is the size of a class,

k(q) is the shape factor depending on the axial ratio q,

B(i,j) are the coefficients determined by Schwartz-Saltykov
(97 )

NV(j) is the number per unit volume of particles of the class j,

NA(i) is the number per unit area of particles of the class i.

So the average size (minor axis) is

k
E (j - 1/2) Nv(j)

x = A j=l (C3)
k
E Nv(j)

j=1

From those data the standard deviation of the distribution can be

determined
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aCx =I

i [(i - 1/2)A - X]2 Nv(i)

k
E NV(i)
i=l

(C4)

Etching of Sn-15%Pb Structures

First polish on grinding paper down to number 600 (using soap on the

paper), then polish with Alumina down to 0.06 microns (using clean cloth),

rinse and dry.

Immerse for 20 seconds in a solution of

80% glycerol

10% acetic acid

10% nitric acid

rinse under hot water, and repolish with a solution of Alumina 0.06 microns

very briefly to remove overetched top surface.

To reveal the different orientations of Sn grains, proceed as follows:

- polish as usual

- rub for 1 to 2 minutes the specimen with a cotton swab dipped in a

solution of 10% HC1 in distilled water

- rinse and dry

- look at specimen under polarized light.
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APPENDIX D

FLOW EQUATION OF AN UNKNOWN FLUID

The flow equation of an unknown fluid is obtained by analysis of plots

of experimental data relating rate of shear to shear stress (83 ). Shear

stress, T, and rate of shear, Y, depend on position in the fluid.

Obviously, we must compare values at the same position. The most conve-

nient position is at one of the boundaries: the stress at the wall of the

inner cylinder of a coaxial cylinder instrument is easily calculated from

the applied force or torque, T; it is

T = 2TRL (Dl)2TrhK R'

where the symbols have their usual meanings. From this relation, we note

that the distribution of stress across the gap of the instrument is not

dependent on the properties of the fluid.

The shear rate is defined as

y = r dg/dr (D2)

where 6 is the angular velocity at the distance r; even for Newtonian

materials y varies across the annulus of the viscometer and falls off with

the square of the radius, Figure D1.

The problem is how to arrive at the rate of shear at a given position

in the gap so that a valid expression for the equation y = f(T) may be

obtained from a plot of rate of shear versus shear stress.
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Derivation of Some Basic Equations

From the equations of change and assuming:

(1) an incompressible fluid,

(2) a laminar motion,

(3) circular streamlines,

(4) a steady motion,

(5) no slippage at the walls,

(6) a two-dimensional motion,

(7) an isothermal system,

it is possible to derive the basic equations. We will just outline the

basic steps of derivation:

(a) v0 is constant with respect to 0,

(b) the product Tr2 is constant and equal to T/27rh, so that Tbob/Tcup = K2

(c) the shear rate is defined as ( = r(de/dr).

We simply write that the angular velocity, 0, is the sum of the differen-

tial angular velocity going from the inner wall to the outer wall; after

transformation, it gives

1 fTcup f(T) dT (D3)
2 Tbob T

Since we have no knowledge of f(T), we need to differentiate this equation

and then develop the function f(T) at a particular location. We will use

a Euler-MacLaurin development based on logarithms. We derive,

SdnO + (n) 2 d2 nn (n d)4 d49n +

f(Tbob )  .nEC + kn dnTrb 3 d(nTb) 2 - 45 d(nTb) +

(D4)
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1
where e = -

A quick analysis of this infinite series tells us that for a Newtonian

fluid, the first derivative, dknQ/dknTbob is equal to 1 and that the terms

of second or higher order will be equal to zero. For non-Newtonian fluid,

the error involved in terminating the series at any point is dependent on K.

It is then important to follow a procedure as follows:

(1) Obtain measurements of torque and angular velocity over the desired

range.

(2) The torque is converted to shear stress at the inner cylinder wall by

Tbob = T/27hK
2R2 .

(3) A log-log plot of Q versus Tbob is constructed. Derive the slope

m = dn /dknTbo b.

(4) If mknE < .2, third and higher order terms may be dropped and obtain

Ybob = f(Tbob) = 2/kns(l + mkne) with an error less than 1%.

(5) If .2 < m9ne < 1.0, plot m versus knTbob and get dm/dknTbob. The

equation of flow is then

S [1 + mne + ( n ) 2 dm (D)
=bob = f(Tbob) = + + (n)2 (m2 + dnb (5)bob bob Zn[1 3 dkn b

with an error less than 1%.

Application to Metal Slurries

This method is applied to the data of Figure 28 for a slurry initially

sheared at 115 sec -1 and held isothermally at fs = 0.45. Figure D2 shows

a plot of log Q versus log Tbob which gives a straight line of slope

m = 1.56.

Application of equation D5 to the viscometer (see Table Dl for the
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values of the instrument constants) gives

bob = 4.800 (D6)

instead of bob = 4.40 (D7)

and the error committed is Ay/ = 8.3%. Not only is the relative error

small but it is constant in the range of shear rates used. This value is

taken as the maximum ever committed since the flow curve of the other

slurries are flatter than that described above.

TABLE Dl

Instrument Characteristics
Instrument
Constant,

hcm KRcm Rcm K K 1/< C
10-3.cm-3

8.9 2.225 3.015 .739 .545 1.35 3.65

8.9 2.860 3.175 .900 .810 1.11 2.40

End Effect

The end effect may be considered as equivalent to an increase in the

effective depth of immersion from h to h + Ah, where Ah, the end correction

is in general a function of R, K, h and the end gap. L.S. Oka(86) has

found that

Ah _ 1 2R [1 - K2]{l + 4R X (K,R,) + 8 Y (,R,) (8)
R 8 k 7 KR

where the first term in the braces corresponds to the end correction due

to the bottom of the inner cylinder without the edge effect, the second
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term to the edge effect, and the third term to the effects of both the end

and the free surface.

Experimental values have been reported by R.N. Weltmann(87) in the

study of rheology of pastes and paints:

Instrument
Constant,
C, 10 3 cm- 3

.75

1.76

2.33

1.82

1.25

.66

.84

End effect
Ah/h

.134

.142

.021

.017

.016

.015

.012

This table shows that the higher the bob is, the smaller the correc-

tion is, everything else being equal. As the height of the bob that was

used in these experiments was 8.9 cm, no correction was added for the end

effects.

R,cm

2.4

1.75

1.50

1.45

1.40

1.35

.60

KR,cm

2.20

1.56

1.30

1.30

1.30

1.30

.55

h,cm

3.60

3.53

5.10

5.10

5.10

5.10

5.10

.91

.89

.86

.89

.93

.96

.91
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APPENDIX E

TURBULENCE AND TEMPERATURE EFFECTS

Turbulence

It is well known that as the velocity of a fluid increases, a transi-

tion from laminar to turbulent flow occurs. However, in the case of

Couette flow, external forces such as centrifugal forces stabilize the

tendency for a fluid particle to move inwards and as shown by

H. Schlichting( 9 0 ) there is no limit to the Reynolds number at which

laminar steady flow can occur. However, if the outer cylinder is set in

motion impulsively there is a theoretical upper limit

Recrit = 66 X 103  (El)

calculated for K = 1. This value is an underestimate of any of the experi-

mental results reported in Figure El, for different values of the ratio K.

Schlichting also established that, although transition does occur during

the starting process, the flow reverts to a laminar pattern when a steady

state is established. Schultz-Grunow(91) showed that the persistence of

turbulence in steady state regime was due to imperfections in the geomet-

rical shape such as eccentricity and vibrations, Figure El.

Very little is known about the effect of particles on the onset of

turbulence. H. Hatschek and R.S. Jane(92) showed one case where turbulence

occurred at two-thirds of the critical Reynolds number. In another

study (93), the reverse phenomenon was found: the critical Reynolds number

is multiplied by 2 for poly-acrylic acid in water up to 0.08 g/cm
3 in
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concentration. It is believed the presence of polymer may help to damp out

minor disturbances which could lead to premature turbulence.

Application to Metal Slurries

The Reynolds number is defined as:

Re = QR2/v (E2)

where R is the cup radius, 3 cm

0 is the rotation speed of the cup, in radians per second,

v is the kinematic viscosity of the system, cm2/sec

Applying equation E2 to Sn-15%Pb slurry of viscosity greater than

0.10 poise the flow is found to be laminar up to 1000 rpm.

Temperature Effect

The viscous flow of the liquid phase generates energy that is dis-

sipated by the conduction to the surrounding; as a result the temperature,

To , rises and reaches a maximum, T, at the center of the annulus. It has

been shown (109) that

1 Q2R2  (E3)
T = T - To =  

o  k

where no is the viscosity of the fluid, 0.025 poise

0 is the rotation speed of the cup, in radians per second,

R is the radius of the cup, 3 cm,

k is the thermal conductivity of the alloy, 0.04 cal/g.cmOK.

No one has studied the effect of particles on the dissipation of

viscous energy. However the presence of particles merely results in an

increase of the local shear rate easily derived from geometrical considera-

tions. For instance at gs = 0.45 it is found that the shear rate is
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increased by 4.

Application to Metal Slurries

Application of equation E3 to an Sn-15%Pb slurry at fs = 0.45 and for

a rotation speed of 250 rpm gives

AT = 0.45 0C (E4)

which corresponds to a decrease of 0.01 of fraction solid.
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APPENDIX F

SETTLING OR FLOATING OR SOLID PARTICLES IN

A FLUID OF DIFFERENT DENSITY(
119)

1. Stokes Law

The motion of a particle settling under gravity is governed by

Newton's second law

m du m'g - F (Fl)

where m and m' are the masses of the particle and fluid displaced by the

particle, u the velocity of the particle, g the intensity of the gravity

field at that point and F the frictional force resisting the particle's

motion. If the particle is spherical and the resistance entirely due to

frictional effects, the magnitude of F is 3rnud according to Stokes Law,

where n is the viscosity of the fluid, d the diameter of the particle.

We get

du P-Po -18 (F2a)
dt P g- pd

and in steady motion

u d= (p-p )g (F2b)

Effect of particle shape

If the particles are not spherical an equivalent diameter d2 has to

be used.

Effect of concentration

If the concentration of particles in the medium is high enough to
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create interference the process of settling does not follow Stokes Law.

The suspension as a whole settles at a constant rate with a well defined

interface between fluid and settled particles. This form of settling is

referred to as "hindered settling" or "mass subsidence". All particles

move at the same rate regardless of size and the suspension does not

change concentration until it reaches the bottom of its container.

2. Hindered Settling

Steinour (120 ) obtained the velocity of hindered settling,

on the basis of an extensive series of experiments with spheres and ir-

regular particles of different sizes and densities,

U = us 10 (F3)

where us is the velocity of a single particle in the fluid in accordance

with Stokes Law, c is the void fraction.

Using the Kozeny-Carman ( 1 2 1 ) equation which gives the pressure drop,

Ap, due to a fluid flowing with a velocity, u, through a bed of packed

particles of depth, L, and porosity, e

p=k u (l-) 2 F4)p = nT _ (3 (F4)
L g ds 3

where k is a packing constant, ds the specific surface diameter, Clyde

Orr(119) derived the formula

u0 =22 g d2 k' - (F5a)

= 36 k'E u  (F5b)
o 1-E: s
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From experimental data they found k' = .0065. It is possible to write

equation F5 in dimensionless numbers (1-s/e3 ) Fr = Re where Fr is the

Frounde Number and Re the Reynolds Number.

3. Application to Sn-15%Pb Slurries

Using equation F5 and values of n (85) and Ap (Appendix A), one can

calculate the initial settling velocity of the solid particles as a func-

tion of the fraction solid and the size of the particles, Table Fl. To

further calculate the distance settled, one needs to take into account the

decrease of settling velocity with time because of the increase of the

fraction solid.

More accurately if dz is the distance settled in the time dt

dz = uo dt (F6)

where the velocity uo is approximated in the range of fraction solid from

0.45 to 0.50 by the equation

uo = A - B gs (F7)

where A and B are constants. The dependence of gs upon the distance set-

tled is

gs = gso/( - z/z) (F8)

where gso is the fraction solid, at time zero, and z0 the height of the

slurry in the viscometer. Integrating equation F8 gives

z = z(l - gso B/A) . (1 - e-At/z o ) (F9)



-199-

Application

Given a metal slurry with gs = .45 at t = 0, d = 200 microns, A =

.013 cm/sec and B/A = 1.54 cm/sec and z = 10 cm, one gets z = 1 cm after

5 minutes at rest.
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TABLE Fl

Hindered Settling

.40

.40

.021

.45

.45

.022

Settling Velocity, u , cm/sec

.0012

.005

.001

.004

.0007 .0005 .0002

Settled Distance, z, cm for d = 200P

.45

1.85

10 - 2.99

.25 .30

.27

.019

Ap
g/cm3

o
poise

.25

.019

.50

.50

.023

.55

.57

.024

.60

.67

.025

Particle
Diameter,

100

200

.003

.012

.002

.008

Settling
Time
t, min

.003 .002 .001

.23

1.00

1.67

.17

.74

1.24
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APPENDIX G

EFFECT OF SHEAR ON THE STRUCTURE OF SUSPENSIONS

1. Introduction

It is well known that the rheological properties of a system are

affected by its structure; this effect was first observed by Ostwald
(122)

and named structural viscosity and occurs whenever particles in a suspen-

sion can form aggregates. Reciprocally it is possible to calculate the

effect of shear on the structure of a suspension.

If ni is the number per cm3 of aggregates made of i particles, type i,

the variations with time of the number of aggregates containing s particles

is given(123) by

dn 1 s- X
S E A 1 nl - - n Ai ni - Bs(s-l)nsdt 21,s 1 s

+ 2 E Bin i  (Gl)
s+l

where A1,m is the association frequency of aggregates of type 1 and m,Bq

is the dissociation frequency of an aggregate of type q, and X is the

maximum number of particles per aggregate. Al,mn nm is the number per

second and cm3 of collisions of type 1 and type m aggregates giving rise

to an aggregate of type l+m;Bqnq is the number of type q aggregates that

dissociate in a second.

If x is the average number of particles per aggregate

x = Esns/En s  (G2)
1
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and if the A's and the B's are independent of the type of aggregates, it

can be shown(
123)

X 2B (G3)

where no is the initial number of particles equal to

To predict the size of aggregates one must know

and the B's and their variations with shear rate and

2. Collision Frequency

The collision of two particles of size ai and aj

C sns.
1
the values of the A's

fraction solid.

occurs at a frequency

4 3 i
Ai, j 3 R i3

(G4)

where y is the shear rate, Rij is the radius of collision equal to

ai+a /2, and where ai and aj are the diameters of the aggregates of types

i and j, respectively.

The number of collisions per second and unit volume is

Fi j = Aij ni n
13 i 1 3 (G5)

where ni and nj are the number of aggregates of type i and j per unit

volume. For particles of same size, a, it becomes

24 gs2

F= v2a

where gs is the fraction solid.

3. Life Time of Aggregated Particles

Once particles are aggregated, they stay in that state until the fluid

flow forces are strong enough to pull them apart. In the case of

(G6)
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non-interacting particles this happens after a certain time T; this time,

T, depends on the angle made by the line joining the particle center with

the direction of flow and on the shear rate (Figure 58). On the average,

this angle is 450 and the time T is equal to 7/ (124). In the case of

interacting particles, the aggregates break when

Fcohesion = Ffluid flow (G7)

where the fluid flow force may be calculated from Stokes Law

Ff = - nyi aoa i  (G8)

where ai is the size of the aggregate to which the i particles of size ao

are aggregated. When the shear rate is greater than a critical value

Yc = F /  naoai  (G9)

where Fc is the cohesion force , the particles will be pulled out of the

aggregate as if there was no interaction; the time spent in the aggregated

state is still T (equal to r/y on the average). If the shear rate is lower

than ~ c' the aggregates do not break and the life time is infinite.

Aggregation continues until ai is large enough for c to equal y.

4. Dissociation Frequency

The dissociation frequency is equal to the inverse of the life time

of an aggregate; hence,

B = /w (GIO)

in the case of non-interacting particles.

5. Equilibrium Size of Aggregate

At any time, there are in a suspension some particles forming
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temporary aggregates (interacting or non-interacting particles); only in

the case of interacting particles are there permanent aggregates.

Most of the temporary aggregates ( 124) are doublets of size a 2 = 2ao

and their concentration is gs 2 = 4g512; there are also triplets of size

a3 = 3ao and in concentration gs3 = 15.3gslgs2.

In the case of interacting particles the permanent aggregates are of

size ai such that the fluid flow forces are just balanced by the forces of

cohesion

4 F 4F
a= 3 or x = c----- (Gll)

i 37-n a 3ni a 0 2

6. Estimates at High Fraction Solid

At high fraction solid, the collisions probably occur according to

the relationships outlined above. However, the life time T of the aggre-

gates and the fluid flow forces are likely to change because some of the

assumptions made are no longer valid:

(1) It was assumed that there was no collision during the time of aggrega-

tion, but at high fraction solid there are many collisions that either

disrupt the pair or contribute to the formation of higher aggregates.

(2) The particles were assumed to have reached their maximum velocity to

calculate the fluid flow forces.

In summary, at low fraction solid it is possible to calculate the size

of the aggregates as a function of shear rate, equation (Gll). However as

fraction solid increases, the model cannot describe the mechanisms taking

place.
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APPENDIX H

VISCOSITY OF A SUSPENSION OF INTERACTING PARTICLES

Part of the dissipated energy in shearing a suspension of interacting

particles is used to break network bonds between particles (58). At a

given shear rate, , it makes a contribution to the viscosity of the

suspension equal to

n = E/y 2  (H1)

where E is the energy dissipation rate expressed as

E = N * W (H2)

where N is the number of broken bonds per cm3 and sec and W is the energy

dissipated during the breaking ofa bond. N is the product(58) of the col-

lision probability, (2/ir)gs y, times the number of particles per cm3 ,

6gs/87R1 , where gs is the volume fraction solid and R1 is the radius of the

primary solid particles.

In the following section a model is presented to calculate the term W

for Sn-15%Pb slurries.

1. First there is the mechanical energy (energy absorbed before frac-

ture of a weld; area under a stress-strain curve) expressed as

W1 = TEV (H3)

where T is the stress acting on the weld resulting from the fluid flow

forces (see equation (J3) of Appendix J), E is the strain of the weld at

the time of rupture and v is the volume of the weld equal to 7R2/2R1(103)
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Rearranging equations (HI) to (H3), one gets

3 2 R= ) (H4)l/ho = gs E(R 1

When applied to Sn-15%Pb slurries, held at 0.45 fraction solid, taking

R1 = 50 and R2 = 5 microns and E equal to 0.10, one gets rl/no = 5X10 7 .

2. The second type of energy to be dissipated arises from the change

in chemical potential, Ap, that the solvent atoms of the weld undergo as

they melt back into the fluid at a different equilibrium temperature

W2 = n Ap (H5)

with n being the number of moles of solvent in the weld. The difference,

Au, is given by the following equation(103)

AP = 2V C(K 1 - K2 ) (H6)

where W is the partial molar volume, a is the interfacial energy between

the liquid and the solid, K 1 and K 2 are the curvatures near and away from

the weld. The curvatures KI and K 2 are given by the following expression

K1 = R1 /R and K2 = 1/R 1  (H7)

Rearranging equations (H5) to (H7) one gets for the viscosity

R2
3 2 2 1(H8)'2 :2T gs RI Y

Table Hl gives the result of equation (H8) when selected values of the

Sn-15%Pb alloy are chosen, Table XII. For instance, at a shear rate of

100 sec-', at a fraction solid of 0.45, for R1 = 50 and R2 = 5 microns,

the value of viscosity is n2 = 2 poise.
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TABLE Hi

Values of the Apparent Viscosity as Calculated

92 R2
3 s 2

From Equation (H9): na = F 0 R

Fraction Solid 0.45; Shear Rate 100 sec-1

R1, microns 10 50 100

R2, microns apparent viscosity,na,poise

1 4.85 0.039 0.005

5 121 .97 .12
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APPENDIX I

WELD FORMATION BETWEEN TWO PRIMARY SOLID
PARTICLES OF Sn-15%Pb SLURRIES

The following model describes the formation of a weld between two

primary solid particles of a Sn-15%Pb slurry after the particles have col-

lided, Figure 49. The assumptions are:

(1) The two particles are in true contact - whenever two particles collide,

some liquid is left between them; if, under the pressure exerted by the

particles and caused by the fluid this liquid drains out, then the parti-

cles establish a true contact. The time required by the liquid to drain

will decrease with increasing shear rate, since the fluid flow forces

increase with increasing shear rate (see equation (Jl)).

(2) The dihedral angle between the two particles is 1800. This assumes

that the interfacial energy between the solid particles is zero(125), i.e.

there is no lattice misorientation between the two particles(128)

The equilibrium temperature of the solid-liquid interface, at the point of

contact between the particles, depends on the local curvature, and for this

surface of negative curvature, K, the liquidus temperature is raised by

by(104)

2KoTL
AT - H (I1)

where K = (R2 R3) see Figure 49,2 3
a = solid-liquid interfacial energy,

TL = equilibrium liquidus temperature for a planar interface,

H = volumetric heat of fusion.
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Assuming equilibrium at the two liquid-solid interfaces (large primary

solid particle radius R1 and area of contact with negative radius of

curvature R3, see Figure 49) a diffusion couple is established in the

liquid between the two interfaces such that

CC - CP

j = -PLDL R3

where j is the flux in g/cm 2.sec, DL is the diffusivity, CP and CL are the

weight percents of solute in the liquid in equilibrium with the particle

and the area of contact, respectively. From Figure 49, solute is seen to

diffuse away from the area of contact. This is equivalent to solvent dif-

fusing to the area of contact, A, so that its volume grows at a rate dV/dt

j A dt = pL CL (1 - k) dV (13)

Equations (13) and (12) are now combined recognizing that concentration dif-

ferences are very small so that C = CL. Integrating from the start of

growth (t = 0, R2 = R20) to the time, t, over which the particles are in

contact gives the following expression,

DLoTLt
R5 - R5 10R2 D L (14)2 20 1 CL (1 - k)MLH (14)

When R2 is much larger than R20 equation (14) reduces to

R' = 107 R DLa TLt/CL(1 - k)mLH (15)

Using selected values of Sn-15%Pb alloy listed in Table XII, equation (I5)

gives
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R5 = 1.29 X 10-9 R t (16)
2 1

Equation (16) is plotted in Figure 50 and gives for R1 = 100P, a radius

R2 = 6.5-p after a time t = 10- 3 seconds.
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APPENDIX J

MECHANISM FOR FRACTURE OF A WELD BETWEEN
TWO PRIMARY SOLID PARTICLES

A model is presented to describe the effect of shear rate on fracture

of a weld formed between two primary solid particles. The fluid flow forces

result in stresses that cause the metallic weld between the primary solid

particles to deform (creep) and eventually fracture.

1. Fluid Flow Force

Given two spherical particles of radius, R1, whose center line is

perpendicular to the direction of flow in a liquid of viscosity, n, in

shear motion at a rate, y, there is a net force operating on the weld

between these two particles equal to the difference of the drag forces

operating on each particle by the fluid. This difference of force may be

approximated from Stokes's Law(12 7 ) by

F = 6iR 1 r Av (Jl)

where Av is the difference of fluid velocity between the centers of the

particles:

Av = 2R1Y (J2)

The shear stress due to this force operating on the total weld area of

TrR is

T = 12(R 1/R2 )
2 ny (J3)

2. Creep

As a result of this stress, the metallic weld between the two



-213-

primary solid particles creeps. The high temperature creep process is

essentially limited by the rate of climb of blocked dislocations from their

slip planes(109). Climb is controlled by the rate of diffusion of

vacancies to or from the local stress fields. The Dorn-Weertman rela-

tion( 110 ) developed from these concppts is usually written

= A oe-QD/RT n = A Tn  (J4)

where n, Ao are constants, T the temperature, R the gas content, and where

the creep rate, , during secondary creep (extension at constant strain

rate under a constant stress) is expressed as a function of the stress, T,

and the activation energy for self diffusion QD. This equation agrees

with experimental data for pure metals and dilute alloys in the practical

creep stress range.

The creep fracture of alloys occurs when the strain reaches a certain

critical value, E' after a time, to, which is found empirically to be

related to the temperature and stress by the Larson-Miller relation(109)

T(C + log t ) = f(T) (J5)

where T is the temperature in degree Rankine (OR), t is in hours and the

constant C = 20.

Creep experiments have been performed on the eutectic alloy Sn-15%Pb

under stresses up to 2.0 MN/m2 (300 psi) at T = 200 C (T/Tm = 0.65)( 111).

Extension of this curve at high temperature can be obtained using equation

(J5) and is plotted in Figure 52. Also plotted in Figure 52 is the frac-

ture time, tf, time required for the strain to reach the critical limit

set as 0.10(126)
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tf = o/ (J6)

Between 106 and 3 X 10 7 dyne.cm -2 equation (J4) can be rewritten

s = 2.5 X 10- 1 2T2  (J7)

and equation (J6)

tf = 4 X 1010 - 2  (J8)

Now combining equations (J8) and (J3) gives

tf = 230 X .- 2 (J9)

3. Fracture

Fracture of a weld will occur if the stress is applied for a time

greater than the fracture time (time required for the strain to reach

0.10). The time over which stress is applied may be approximated by the

time over which the particles are in contact.

Mason and Bartok( 124) have developed an expression relating rate of

shear to duration over which two rigid particles (glass) 50 to 300P, stay

in contact in a Couette viscometer. The average doublet life calculated and

experimentally determined for fairly dilute suspensions, fs = 0.10, is

given by

t = /y (310)

For a shear rate of 100 and 500 sec - , expression (J10) yields average

doublet life of 5 X 10-2 and 6 X 10- 3 seconds, respectively.

Calculations of doublet lives and fracture times, from equations (J9)

and (J10), are shown in Table XIII and are plotted in Figure 53. Figure

53 shows for this highly simplified model, shear rate conditions under
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which a given size weld, formed between two primary solid particles, will

have time to fracture or not.
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APPEND IX K

EXPERIMENTAL DATA



A. "Continuously Cooled" Results
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B. Viscosity of Isothermally Held Slurries of Sn-15%Pb Alloy After a Total Time in the Liquid-Solid

Range of 90 Minutes.

Run Rotation Bob Shear Temp. Fraction Torque Viscosity Figure Number
Number Speed, to Cup Rate 7  T, OC Solid, T, 106 Apparent,

i, rpm Radius sec-  fs dyne/cm Poise
Ratio, K

15 250 0.7 115 197.6 0.42 .427 13.5 25

16 250 0.7 115 197.2 0.43 .395 12.5 25

17 250 0.7 115 196.3 0.45 .475 15 25,27,30,32

18 250 0.7 115 195.2 0.47 .74 23.5 25,27,30,32

19 250 0.7 115 194.8 0.48 .955 30 25,27,30,32

20 250 0.7 115 194.2 0.49 .74 23.5 25,27,30,32

21 250 0.7 115 193.7 0.50 1.05 33.5 25,27,30,32

22 250 0.7 115 193.7 0.50 1.21 38 25,27,30,32

23 250 0.7 115 193.0 0.51 1.40 47 25,27,30,32

24 250 0.7 115 193.0 0.51 1.77 56 25,27,30,32

25 250 0.7 115 192 0.53 1.89 60 25,27,30,32

26 500 0.7 230 197.6 0.42 .378 6 26

27 500 0.7 230 196.3 0.45 .567 9 26,27,29,30,31,32

28 500 0.7 230 195.2 0.47 .755 12 26,27,29,30,31,32

29 500 0.7 230 190 0.56 1.89 30 26,27,29,30,31,32

30 500 0.7 230 187 0.60 3.90 62 26,27,29,30,31,32

31 320 0.9 350 196.3 0.45 .585 4 27,32

32 700 0.9 750 196.3 0.45 .312 1 27,30,32



C. Pseudoplasticity

Held Slurries of

Experiments.

Sn-15%Pb Alloy.

Effect of Change of Shear Rate on the Viscosity of Isothermally

(Bob to cup radius ratio of 0.7). Data plotted in Figure 28.
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