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Abstract

A study has been made of unsteady forces and moments on transonic axial compressor blades
subjected to jet actuation. Jet velocities of 1.5 and 2.0 times the free-stream velocity and jet
angles of ±45, ±30, ±15, and 0 degrees were examined. Computations were carried out using a
two-dimensional unsteady Navier-Stokes solver (UNSFLO) and using a quasi-steady momen-
tum analysis. For the cases examined, it is found that the unsteady axial and tangential forces
were largest at ajet angle of +45 degrees and least at ajet angle of zero degrees. This was also
true for the unsteady moments. A quasi-steady momentum analysis can be used if the
unsteady exit flow angle is accurately known; in this problem this means within 1 degree.

Thesis Supervisor: Edward M. Greitzer
H. Nelson Slater Professor of Aeronautics and Astronautics





Acknowledgment

I am indebted to many here at MIT for their support, instruction, and guidance which has

helped me to complete this research project. I had the opportunity to work together with so

many skilled, intelligent, and dedicated people who were always willing to help others.

Therefore, I would like to thank all of those who made this thesis possible.

My advisor, Professor Edward M. Greitzer, has helped me with my completion of this

project, and I thank him very much for his encouragement, guidance, instructions, and advice

which navigated me through this first research experiment. Simply the opportunity to work

with him was more then I could have imagined.

In the GTL lab, I had many valuable assistant, supporting conversation, and laughs. A

special thanks goes to John N. Chi, who helped me during the first stage of learning the

computer program. Also I want to thank him for having always a time for me when computer

problems occur.

Also, I would like to thank Karsten Fels, Yuri Guinart, Jason Hardin, Carol Hermann,

Manfredd Maier, Stefan Machaczek, Erika Podest, Andres Ramirez, Steve Routon, Terence

Tay, and Nathalie Wolf who kept a wonderful relationship over the two years that I am here at

MIT. I love you all my friends.

A very special and cordial thanks goes to a professor at Embry-Riddle Aeronautical

University, Paul Hermann. He made the few "rainy days" here at MIT also a valuable



experience with his continues interest and encouragement. Thank you very much for all the

calls and the letters which I received when I needed them most!

Finally, I would like to acknowledge the part my family played in this work. My parents,

Elfriede and Johann Novacek, and grandparents, Leopoldine and Egon Zehrau, have

supported me in whatever endeavors I looked on. Also, my brother, Andreas, and his wife,

Petra, have understood why I needed to do this education. I thank them with all my heart for

believing in me and giving me the love, encouragement, and financial support for the stay here

at MIT. Most of all, I am indebted to my wife, Liliany. She has been her with me through this

whole project, the good times and the bad times, remembering me of what is really important

in Life. I could not have done it without her, and for her love, kindness, emotions, patience,

and support I thank her with all my heart. Now it is time to go back home, Brazil or Austria

wherever our destiny brings us.

AbschlieBend michte ich mich bei dem Sigfried Ludwig-Fonds herzlich bedanken ffir die

Zuerkennung des Stipendium wihrend meines Auslandstudiums.



Table of Contents

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

NOMENCLATURE

1 INTRODUCTION

1.1 Information of Jet Actuator ..........................................

1.2 Background of Unsteady Computation .................................

1.3 Objective of Research ...........................................

1.4 Scope of Research ..................................... ............

1.5 C ontribution .......... ............................................

1.6 Thesis Overview ..................................................

2 NUMERICAL PROCEDURE

2.1 Computational Program: UNSFLO..............................



2.2 Rotor Inlet Boundary Condition ........

2.2.1 Wake Models from UNSFLO ....

2.2.2 Jet-Actuation Wake Model ......

2.3 Airfoil Geometry and Computational Grid

2.3.1 Airfoil Geometry ..............

2.3.2 Computational Grid ...........

. ... ................... 31

................ ............. 31

.......... .................... 32

............................... 34

...............................3 4

...............................3 5

3 QUASI-STEADY MOMENTUM ANALYSIS 43

3.1 Inflow and Outflow Parameters with Velocity Triangles .................... 43

3.1.1 Inflow Parameters for Rotor ................................... 43

3.1.2 Outflow Parameters for Rotor .................................. 45

3.2 Equation and Solution Procedure for Quasi-Steady Momentum Analysis ....... 46

3.2.1 Equations and Assumptions .................................... 46

3.2.2 Relative Exit Angle and Solution Process ......................... 48

4 RESULTS AND DISCUSSION

4.1 Unsteady Forces and Unsteady Moments ...............................

4.2 Comparison of Unsteady Forces Computed with UNSFLO and Quasi-Steady

Momentum Analysis ..............................................

4.3 First, Second, and Third Harmonic Amplitudes of Unsteady Forces and

Unsteady moments ...............................................

4.4 Pressure Difference Computed with UNSFLO .........................

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusion ...........................................

BIBLIOGRAPHY

55

.56

.59

.60

.61

93

.93

APPENDIX A: THE GOVERNING EQUATIONS

A. 1 Conservation Laws .................................

A.2.1 Conservation of Mass .....................

97

... 97

... 98



A.3.2 Conservation of Momentum ....................... 99

A.4.3 Conservation of Energy ......................... 101

Equation of State ...................................... 102

The Navier-Stokes Equations ........................... 103

The Euler Equations ................................... 105

The Solution of Fluid Dynamic Equations .................. 106

APPENDIX B:

APPENDIX C:

COMPUTATION WITH UNSFLO

B. 1 Non-Dimensional Analysis of the Equations ..

B.2 Flow of Data between Programs and Data Files

DETAILED DERIVATION OF QUASI-STEADY

MOMENTUM EQUATIONS

APPENDIX D: COMPUTED RESULTS FROM UNSFLO

A.5

A.6

A.7

A.8

107

107

108

111

117





List of Figures

Figure 1.1: Schematic of the jet actuation in an axial compressor ................... 26

Figure 1.2: Performance improvement of the compression system through active
compressor stabilization .......................................... 26

Figure 2.1: Definition of saw-tooth function N(h) .............................. 37

Figure 2.2: Steady momentum-flux distribution of the sheet injector ................ 37

Figure 2.3: Steady momentum-flux distribution of the three-hole injector ............ 38

Figure 2.4: Inflow boundary velocity profiles at various locations for sheet
injector at maximum injection (Circumferential direction is in percent
of wake pitch.) .................................................. 39

Figure 2.5: Gaussian wake profiles used in UNSFLO with an comparison to the
wind-tunnel experiment (Circumferential direction is in percent of
wake pitch.) ................................................... 40

Figure 2.6: Airfoil shape at for radial position of 88% span and 100% span ........... 41

Figure 2.7: Computational grid for radial position of 88% span and 100% span ........ 42

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 4.1:

Relative inflow angle versus jet angle for different jet velocities at a
radial position of 88% span ....................................... 51

Relative inflow angle versus jet angle for different jet velocities at a
radial position of 100% span ...................................... 52

Relative inflow velocity versus jet angle for different jet velocities at
a radial position of 88% span ...................................... 53

Relative inflow velocity versus jet angle for different jet velocities at
a radial position of 100% span ..................................... 54

Axial force at 88% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus jet angle ..................................... ..... 63



Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Figure 4.16:

Figure 4.17:

Figure 4.18:

Figure 4.19:

Figure 4.20:

Axial force at 100% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus jet angle ........................................... 64

Tangential force at 88% span for non-dimensional jet velocity equal to
1.5 and 2.0 versusjet angle ........................................ 65

Tangential force at 100% span for non-dimensional jet velocity equal to
1.5 and 2.0 versus jet angle ........................................ 66

Moment at 88% span for non-dimensional jet velocity equal to 1.5 and
2.0versusjetangle .............................................. 67

Moment at 100% span for non-dimensional jet velocity equal to 1.5 and
2.0versusjet angle .............................................. 68

Axial force at 88% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus jet angle ........................................... 69

Axial force at 100% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus jet angle ........................................... 70

Tangential force at 88% span for non-dimensional jet velocity equal to
1.5 and 2.0 versus jet angle ........................................ 71

Tangential force at 100% span for non-dimensional jet velocity equal
to 1.5 and 2.0 versusjet angle ...................................... 72

Moment at 88% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle .............................................. 73

Moment at 100% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle .............................................. 74

Axial force at 88% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus reduced frequency for different jet angles ................ 75

Axial force at 100% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus reduced frequency for different jet angles ................ 76

Axial force at 88% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus jet angle .......................................... 77

Axial force at 100% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus jet angle ........................................... 78

Tangential force at 88% span for non-dimensional jet velocity equal to
1.5 and 2.0 versus jet angle ....................................... 79

Tangential force at 100% span for non-dimensional jet velocity equal to
1.5 and 2.0versusjetangle ....................................... 80

Axial force at 88% span for non-dimensional jet velocity equal to 1.5
and 2.0 versus jet angle ........................................... 81

Axial force at 100% span for non-dimensional jet velocity equal to 1.5



Figure 4.21:

Figure 4.22:

Figure 4.23:

Figure 4.24:

Figure 4.25:

Figure 4.26:

Figure 4.27:

Figure 4.28:

Figure 4.29:

Figure 4.30:

Figure B. 1:

Figure D.1:

Figure D.2:

Figure D.3:

Figure D.4:

Figure D.5:

Figure D.6:

Figure D.7:

and 2.0 versus jet angle ................ .........................

Tangential force at 88% span for non-dimensional jet velocity equal to
1.5 and 2.0 versus jet angle .......................................

Tangential force at 100% span for non-dimensional jet velocity equal to
1.5 and 2.0 versus jet angle .......................................

Amplitudes of Harmonics and Phase for the axial force at 88% span
with a non-dimensional jet velocity equal to 1.5 versus frequency mode ...

Amplitudes of Harmonics and Phase for the axial force at 100% span
with a non-dimensional jet velocity equal to 1.5 versus frequency mode ...

Amplitudes of Harmonics and Phase for the tangential force at 88% span
with a non-dimensional jet velocity equal to 1.5 versus frequency mode ...

Amplitudes of Harmonics and Phase for the tangential force at 100% span
with a non-dimensional jet velocity equal to 1.5 versus frequency mode ...

Amplitudes of Harmonics and Phase for the moment at 88% span with a
non-dimensional jet velocity equal to 1.5 versus frequency mode .........

Amplitudes of Harmonics and Phase for the moment at 100% span with
a non-dimensional jet velocity equal to 1.5 versus frequency mode .......

Pressure difference between exit and inlet at 88% span for
non-dimensional jet velocity equal to 1.5 and 2.0 versus jet angle ........

Pressure difference between exit and inlet at 100% span for
non-dimensional jet velocity equal to 1.5 and 2.0 versus jet angle ........

Computational procedure and programs for the computer program
U N SFLO ....................................................

Axial force at a radial position of 88% span and a jet velocity equal to
1.5 times the free-stream velocity ..................................

Axial force at a radial position of 100% span and a jet velocity equal to
1.5 times the free-stream velocity ..................................

Tangential force at a radial position of 88% span and a jet velocity equal
to 1.5 times the free-stream velocity ................................

Tangential force a radial position of 100% span and a jet velocity equal
to 1.5 times the free-stream velocity ................................

Moment at a radial position of 88% span and a jet velocity equal to 1.5
times the free-stream velocity .......... ; ..........................

Moment at a radial position of 100% span and a jet velocity equal to 1.5
times the free-stream velocity .....................................

Axial Force at a radial position of 88% span and a jet velocity equal to 2
times the free-stream velocity ..................................

.82

.83

.84

.85

.86

.87

.88

.89

.90

.91

.92

110

118

119

120

121

122

123

124



Figure D.8: Axial Force at a radial position of 100% span and a jet velocity equal
to 2 times the free-stream velocity ................................. 125

Figure D.9: Tangential Force at a radial position of 88% span and a jet velocity
equal to 2 times the free-stream velocity ............................ 126

Figure D.10: Tangential Force at a radial position of 100% span and a jet velocity
equal to 2 times the free-stream velocity ............................ 127

Figure D.11: Moment at a radial position of 88% span and a jet velocity equal to 2
times the free-stream velocity ..................................... 128

Figure D.12: Moment at a radial position of 100% span and a jet velocity equal to 2
times the free-stream velocity ................................... 129



Parameters for the Gaussian wake profile used in UNSFLO .........

Comparison of overall performance between design and lowest flow
coefficient ...... .......................................

Blade-Element parameters at 88% span and 100% span ............

Magnitudes of steady flow forces and moments at two radial positions

Reference quantities needed to non-dimension the dependent variables

Programs in UNSFLO and the data files corresponding to the programs

List of Tables

Table 2.1:

Table 2.2:

Table 2.3:

Table 4.1:

Table B.1:

Table B.2:

..... 33

..... 34

..... 35

... .56

.... 107

... 108





Nomenclature

A area of rotor cascade (m2)

C axial chord of the rotor blade (m)

V velocity of the fluid (m/sec)

Cp coefficient of pressure

cp specific heat capacity under constant pressure (J/kgK)

cv  specific heat capacity under constant volume (J/kgK)

D amplitude of fractional velocity defect

dl,2,3  shape function describing the form of the velocity defect

e internal energy per unit mass

F vector of the forces exerted by the body on the fluid (N)

Fviscou vector of the total viscous forces exerted on the control surface (N)

f vector of the net body forces per unit mass exerted by the fluid (N)

F scalar force (N)

function of ()

IGI harmonic amplitude

hst stream-tube thickness (m)

h enthalpy per unit mass (m2/sec 2)

N(r) periodic saw-tooth function

p pressure (N/m2)

Pr constant Prandtl number

R gas constant (J/kgK)

S pitch (m)



t time (sec)

u velocity component in x direction (m/sec)

v velocity component in y direction (m/sec)

V control volume (m3)

V,ei  relative velocity (m/sec)

Vx  difference of maximum to minimum relative inflow velocity (m/sec)

WS rotor wheel-speed (m/sec)

Wwav wake width (m)

x distance in x direction (m)

y distance iny direction (m)

Greek Symbols

a absolute jet angle (degrees)

13 relative angle (degrees)

y ratio of specific heat

" constant number for exit angle prediction (degrees)

IPs  viscosity given by Sutherland's law

P dynamic viscosity coefficient (kg/msec2)

p density (kg/m3)

T .  stress components (N/m2)

o passing frequency of the rotor blade row through a disturbed segment (rad/sec)

CO reduced frequency

subscript

1 inlet flow

2 exit flow

Fst flux averaged and steady flow

n n = 0 fundamental harmonic, n = 1 first harmonic,...

ndim non-dimensioned



r rotor

rel relative

wake wake value at inlet boundary

s stator

x axial

y tangential





Chapter 1

Introduction

To control rotating stall in a high-speed axial compressor, Berndt developed a jet actuator at

the MIT Gas Turbine Laboratory [1]. A schematic of the jet actuator is shown in Figure 1.1.

When this actuation system is implemented in a high-speed compressor, a problem of concern

is the mechanical and aerodynamical forces and moments of the rotor blades. This thesis

addresses the unsteady effects of a jet actuation on high-speed axial compressor blades in two

dimensions by studying the axial forces, tangential forces, and moments of the rotor blades.

The following two sections give a background of the jet actuator and the unsteady flow

calculation. After the background information, the objective, scope, and contribution of the

research is presented followed by the outline of this thesis.

1.1 Information of Jet Actuator

Since compressor stages are being designed to operate closer to the upper limit of pressure

rise, Epstein, Ffowcs-Williams, and Greitzer proposed in 1989 the idea of a dynamic-feed-

back controlling system applied to turbomachine compressors which is documented in [3].

The objective is to sense small amplitude of perturbation in the compression system, apply a

suitable control law with an actuation scheme, and extend the stable operating range of the

machine, point B in Figure 1.4. As Figure 1.2 also indicates, the compressor surge line would

21



be moved to a lower mass flow by the implementation of this dynamic-feedback controlling

system. Therefore, the stable operating range of the compression system would be extended

to a higher pressure rise with an performance improvement. This new concept of controlling

the compression system stability with its various application in turbomachine compressor

evolved into the "Smart Engines: Concept and Application" at the MIT Gas Turbine Labora-

tory, documented in [4].

Many different actuation schemes have been developed to allow the pressure rise charac-

teristic of an axial compressor to be altered. The scheme that is presented in this study is the

jet injection upstream of the compressor. In general, ajet injection adds momentum and mass

to the flow field that is upstream of the compressor blades. Also depending on the jet angle,

the jet injection can result in a swirl upstream of the compressor blade. The three primary

possibilities that allow the pressure rise characteristic of the compressor to alter are the

change in mass flow, in upstream total pressure, and in upstream swirl. The first mechanism

which changes the pressure rise is done by addition of mass flow through the jet injection.

The second mechanism, which changes the pressure rise by changing the total pressure, is

caused by the addition of axial momentum through the jet actuator. The third mechanism,

which changes the pressure rise through changing the upstream swirl, is caused by the addi-

tion of tangential moment through the jet actuator.

1.2 Background of Unsteady Computation

There have been many attempts to understand and to compute the unsteady flow problem in

the compression system. However, the 46th Propulsion and Energetics Panel Meeting of

AGARD in 1975, and given in [4], marks a historical landmark for the computation and

research of unsteady flow in compression systems. The first paper that was presented in [4]

was a paper by Mikolajczak [5] who discussed the quasi-steady approximation to predict the

stability margins of a compressor. It was concluded that for low reduced frequencies the com-

pressors were expected to respond as the quasi-steady approximation, and for high values of

reduced frequency it was concluded that the stability margin would be under predicted with

the quasi-steady approximation.



The reduced frequency, as mentioned in the previous paragraph, is a parameter used to

compare the time a fluid particle travels through the rotor passage to the time a rotor passes

through a distorted segment of the flow. Therefore, the reduced-frequency parameter is

defined by:

=(C- (1.1)

where co is the passing frequency of the rotor blade row in units of rad/sec, C is the axial

chord of the rotor-blade row, and V,x is the axial velocity of the fluid.

Two of the conclusions presented in [4] are directly relevant to the study presented in this

thesis. These conclusions are the following:

* Unsteady flow has a strong impact on efficiency, aerodynamic stability, aero-elastic
stability, and noise generation.

* Important contribution from unsteady flow occurs when the time scale for particle
transport is comparable to the time scale of pressure fluctuations, which means a
reduced frequency of order one.

1.3 Objective of Research

The objective of this research is to study the unsteady effects of a jet actuation on high-speed

axial compressor blades. The results of this research are axial forces, tangential forces, and

moments for different jet angles and jet velocities. A simple quasi-steady momentum analysis

is also compared to the computed axial and tangential forces.

1.4 Scope of Research

The calculations carried out are for jet velocities of 1.5 and 2.0 times the free-stream velocity

and jet angles of ±45, ±30, ±15, and 0 degrees at two radial positions, 88% span and 100%

span. The jet velocities were chosen at these values since the jet actuation system of Berndt

[1] injects a maximum jet-stream that is twice the free-stream velocity.



1.5 Contribution

Some of the contributions presented in this research are as following:

* Aerodynamic forces and moments on a rotor blade of a high-speed compressor sub-
jected to ajet actuator with varying jet velocity and jet angle.

* Observation of axial pressure difference on a high-speed rotor blade as a function of jet
velocity and jet angle.

* Development of a quasi-steady momentum analysis to predict the unsteady forces on a
high-speed compressor blade.

1.6 Thesis Overview

The thesis is organized in the following manner:

Chapter 1: Introduction

Background, information, and concept of active feedback control with jet actuation is intro-

duced. After this information, a short historical background of the computation of unsteady

flow is given. This chapter ends with the presentation of the objective, scope, and contribu-

tion of this research.

Chapter 2: Numerical Procedure

The Computational Fluid Dynamic (CFD) program used for the numerical calculations is

UNSFLO. This section describes the program. The rotor blade used was NASA Rotor Stage

35, documented in [6]. This section also gives the overall airfoil geometry, design parameters,

and a comparison of the design performance with the lowest flow coefficient performance. At

the inlet boundary of the compressor blade, the unsteady effects are caused by a jet actuation.

Therefore, this section presents the velocity profile of an injector obtained in wind-tunnel

testing for 100% span and 88% span and a comparison of the wind-tunnel result to the veloc-

ity profile used in the calculations.



Chapter 3: Quasi-Steady Momentum Analysis

This section describes a quasi-steady momentum analysis for forces and moments. A short

discussion on the inlet flow parameters and exit flow parameters, and which parameters are

prescribed for the quasi-steady momentum analysis, is also given. The section summarizes

the assumptions needed to obtain the equations for computing the axial and tangential forces.

Chapter 4: Results and Discussion

The results of computed forces and moments are presented versus jet angle and reduced fre-

quency. Comparisons are made with the quasi-steady model.

Chapter 5: Conclusions and Recommendations

A summary of the unsteady results is presented and recommendations for further work on

unsteady loadings are given.



Figure 1.1:

R = Rotor
S = Stator

Schematic of the jet actuation in an axial compressor
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Figure 1.2: Performance improvement of the compression system through active

compressor stabilization



Chapter 2

Numerical Procedure

The Computational Fluid Dynamic (CFD) program used to analyze the unsteady forces and

moments on a rotor blade subjected to a jet actuation is UNSFLO, developed by Giles and

documented in [7]. UNSFLO can treat steady and unsteady, inviscid or viscous, flows in two-

dimensions or quasi three-dimensions. The general form of these governing equations of fluid

motion are summarized in Appendix A. UNSFLO handles the following sources of unsteadi-

ness:

* wake/rotor and potential/rotor interactions,

* stator/rotor interactions, and

* blade vibrations.

Several papers have been published on the algorithms in UNSFLO, and a user manual

explaining the different parts of the program and the required inputs is found in [8]. There is

also a comprehensive validation paper with a number of unsteady test cases collected in [9].

The non-dimensional analysis used in UNSFLO, the input variable needed for the computa-

tions, the file structure used by UNSFLO, and the programs needed to obtain the final plots of

forces and moments used for this research are summarized in Appendix B.

A distinct feature of the code is the ability to treat arbitrary wake/rotor and stator/rotor

ratios which can be computed on a multiple rotor passage. Another important feature is the

non-reflecting boundary conditions, documented in [11], which minimizes non-physical



reflections at the inflow and outflow boundaries, and therefore, reduces the computational

grid and time of computation.

The next two sections outline the salient features of the program to calculate and plot the

unsteady forces and moments. After this description of the airfoil used for this analysis, the

computational grid is given.

2.1 Computational Program: UNSFLO

UNSFLO uses an explicit Lax-Wendroff scheme to solve the two-dimensional unsteady and

compressible Euler equations on an unstructured grid composed of triangles or quadrilateral

cells. The Euler equations, presented .in Appendix A as Equation (A.15) and (A.16), are

reduced to their quasi three-dimensional form by including a varying streamtube thickness in

the third dimension. The equations are

aU a (hstF) a (hstG )

hst + + S = 0, (2.1)
St Dx ay

where U, F, G, and S are four component vectors given by

0

p pu pv ahst

pu pu +p pvu Pax
U = F = G = 2 S = , (2.2)

pv puv pv +p ahs

pet (pet + p) u (pe t + p) Pay

0

and hst is the streamtube thickness. The pressure p is related to the total energy per unit mass

et, density p, and velocity components u and v by

P = (y-1) p -et - (u +v2) , (2.3).

where a perfect gas with a constant specific heat ratio y is assumed.



For the numerical solution of the unsteady Euler equations the Lax-Wendroff scheme is

used. This Lax-Wendroff scheme is similar to that one used by Ni, documented in [12], but

with the difference that UNSFLO can use a non-uniform grid. For a detailed derivation of the

quadrilateral and triangular quasi three-dimensional Lax-Wendroff algorithm refer to [7].

The boundary condition at a solid wall allows no flow normal to the wall. The periodic

boundary condition for steady and unsteady flow with the same stator and rotor pitch, S, is

U(x, y, t) = U(x, y + S, t), which states that the flow properties on one periodic boundary

point is the same as the flow at the corresponding point on the other periodic boundary at the

same time. When now the stator pitch is different from the rotor pitch or when a wake inter-

acts with a rotor, then the inlet boundary condition satisfies a lagged periodic condition which

is expressed by U(x, y, t) = U(x, y + Sr, t + AT). Sr is the rotor pitch, and the time lag, AT,

is equal to the difference in pitches divided by the rotor wheel speed.

The interest here is in wake/rotor or jet/rotor interaction. The lagged periodic boundary

condition is implemented in UNSFLO using a computational "time level" sloped in time.

Mathematically this corresponds to coordinate transformation:

x =x

y' = y (2.4)

with the corresponding unsteady Euler equations resulting in

_ 8 (h,,F) a (hstG)
hst (U - G) + Ox' + y' -S = 0, (2.5)

where X = AT/SSr

The non-reflecting far-field boundary conditions used are presented in [11]. These bound-

ary conditions allow a far-field boundary location to be set closer to the rotor blades without

affecting the flow in the neighborhood of the rotor blades. The approach is based upon the

characteristics of the linearized Euler equations. For the algorithm implemented in UNSFLO



refer to [7], and for a formal derivation refer to [11]. The boundary condition for the unsteady

incoming wake disturbance is presented in Section 2.2: Rotor Inlet Boundary Condition.

For many CFD programs the standard approach to viscous calculations is to use every-

where throughout the computational domain one numerical viscous algorithm. However,

UNSFLO uses an alternative approach in which two numerical algorithms are used. The

inviscid Lax-Wendroff algorithm as described earlier, and in a thin region around the blade

the thin shear-layer approximation of the Navier-Stokes equations. (The size of thin region

around the blade will be explained in Section 2.3.2: Computational Grid.) In this viscous

region, UNSFLO uses an ADI algorithm, developed by Beam and Warming [13], but uses the

upwind flux-difference splitting developed by Roe [14] to solve the Navier-Stokes equations

to model the viscous effects within the boundary layers. The inviscid Lax-Wendroff algo-

rithm, summarized in the previous paragraphs, is used for the rest of the fluid domain. The

Navier-Stokes equations, presented in Appendix A as Equation (A.13) and (A.14), are

reduced to their quasi three-dimensional form by including a varying streamtube thickness in

the third dimension. The unsteady thin shear-layer approximation of the Navier-Stokes equa-

tions are

h U a (hst F )  a (hstG) a (hsVn)
hh +  + ( - S = 0, (2.6)stat x ay an

where U, F, G, and S are the same as in the Euler equations, Equation (2.2), and V, is the vis-

cous flux vector given by

0

au

Vn =  v . (2.7)

s 2 + 2 1+
Pr is the constant Prandtl number, an 2 2 ( is the viscosity given b1) Prthe Sutherland law

Pr is the constant Prandtl number, and ps is the viscosity given by the Sutherland law.



2.2 Rotor Inlet Boundary Condition

This research has a jet actuation as the unsteady disturbance, and the following subsections

describe the wake models for the inflow velocity that can be specified in UNSFLO. A

detailed description of the other unsteady boundary conditions can be found in [7]. The wake

model chosen for this research is based on a review of experimental data taken by Berndt [1].

2.2.1 Wake Models from UNSFLO

The wake model that describes the shape of an incoming flow disturbance at the inflow

boundary assumes that in the wake frame of reference the flow is parallel, the static pressure

and total enthalpy are constant across the wake, and the prescribed velocity defect is a sinuso-

idal, Gaussian, or Hodson disturbance. These three flow disturbances can be modelled as

Pwake = PFst

Uwake = (1-D. dl, 2, 3 ) UFst

(2.8)

Vwake = (1- D dl,2, 3) (VFst + V)

7 PFst
Pwake = y- 1 1 2 2

h- 2 w a ke + Vwake)

where the subscript wake denotes the values of the wake at the inlet boundary and the subscript

Fst gives the flux-averaged fluid flow values from steady calculation. D is the amplitude of

the fractional velocity defect. The quantity dl,2,3 is the shape function describing the form of

the velocity defect. It is a function of d(l) where T! is defined as

Vwake
S y -Uwakex /Swake (2.9)



where Swake is the wake pitch. In general, two numbers identify the velocity disturbance: the

maximum amplitude of the velocity defect, D, expressed as a fraction of the undisturbed

velocity, and the width of the velocity defect, Wwake is the characteristic wake width

expressed as a fraction of the pitch that generated the wake. For the width of the velocity

defect there are three shape functions:

d1 (1) = cos (2 - t.- )

d 2 (T1) = exp 2W2( - (2.10)

wake
3- 

2

d3 (T) = max , 1 -( W ) kewake

where N(TI) denotes the periodic saw-tooth function, shown in Figure 2.1.

2.2.2 Jet-Actuation Wake Model

As described in the previous section, three models have been proposed to simulate the

unsteady effects of the incoming wake. These unsteady effects were obtained from wind-tun-

nel experiments, documented by Berndt [1], which measure the steady momentum-flux

63mm downstream of the injection center line, which corresponds to the compressor face

location. The steady momentum-flux distribution for a sheet injector at maximum injection is

shown in Figure 2.2 and the steady momentum-flux distribution for a three-hole injector at

maximum injection is shown in Figure 2.3.

In Figures 2.2 and 2.3 the spatial axes correspond to the radial direction, from 0 to 80mm,

and the circumferential direction, from -60 to 60mm, of the wind-tunnel which represent 1/12

of the annulus of area spanned by the jet actuator. In the circumferential direction, the jet

extends about 70% of the annulus for both the sheet and the three-hole injection. In the radial

direction, the jet extents about 15% of the annulus for the sheet injection and 40% of the

annulus for the three hole injection. The maximum momentum flux ratio of the sheet injector

is 4, indicating that the maximum jet velocity is about twice the free-stream velocity since the



momentum is proportional to the square of velocity. The maximum momentum flux ratio of

the three-hole injection, however, is 2.2 which correspond to a velocity ratio of 1.5.

Since the sheet injection produces a higher velocity ratio than the three-hole injection, the

velocity profiles generated by the sheet injection are used in the analysis of the aerodynamic

forces and moments in this research. The velocity profiles at various radial locations for the

sheet injector at maximum steady injection is given in Figure 2.4.

From Figure 2.4, it can be seen that a Gaussian wake model fits the wind-tunnel test

results. As mentioned in Section 2.2.1: Wake Models from UNSFLO, two numbers identify

the velocity disturbance which will be modeled by the Gaussian distribution: the maximum

amplitude of the velocity defect, D, expressed as a fraction of the undisturbed velocity, and

the characteristic wake width, Wwake, expressed as a fraction of the pitch that generated the

wake. The Gaussian parameters required by UNSFLO for the two radial positions of 100%

span and 88% span are given in Table 2.1 with the corresponding wake profile shown in Fig-

ure 2.5.

Radial Amplitude of Velocity Defect, D Characteristic Width, Wwake

Position for fractional wake for fractional wake for fractional wake for fractional wake
velocity of 2.0 velocity of 1.5 velocity of 2.0 velocity of 1.5

100% span -1.25 -0.75 0.19 0.19

88% Span -1.05 -0.55 0.11 0.11

Table 2.1: Parameters for the Gaussian wake profile used in UNSFLO

The dashed lines in Figure 2.5 are the Gaussian distribution, and the solid lines are the

wind-tunnel test results. The top two graphs in Figure 2.5 represent the inflow wake profiles

at 100% span. The top-left graph shows the Gaussian distribution for a fractional wake veloc-

ity equal to twice the free-stream velocity, and the top-right graph shows the Gaussian distri-

bution for a fractional wake equal to 1.5 times the free-stream velocity. From the top-left

graph it can be seen that the Gaussian wake model from UNSFLO matches the experimen-

tally determined wake model of the jet actuation.



The bottom two graphs in Figure 2.5 represent the inflow wake profiles at 88% span. Also

here the Gaussian wake model from UNSFLO matches the experimentally determined wake

model of the jet actuation.

2.3 Airfoil Geometry and Computational Grid

2.3.1 Airfoil Geometry

The compressor blade used for this research is the rotor blade of NASA Rotor Stage 35, docu-

mented in NASA Technical Paper 1338, [6]. The rotor has 36 rotor blades and a hub-to-tip

radius ratio of 0.776 at the inlet and 0.801 at the exit. The aspect ratio is 1.19, the design pres-

sure ratio is 1.82, and the tip speed is 454.5 m/sec. This rotor was chosen because Berndt's jet

actuation [1] has been implemented in Rotor 35. The computations are carried out at the

smallest flow coefficient for which test data are available for NASA Rotor 35. The smallest

flow coefficient correspond to Reading 3976 in [6]. Table 2.2 compares the overall perfor-

mance parameters for design with the lowest flow coefficient parameters.

Compressor Parameters Design Overall Reading 3976

Rotor Total Pressure Ratio 1.865 2.036

Stage Total Pressure Ratio 1.820 1.923

Rotor Adiabatic Efficiency 0.865 0.8.12

Stage Adiabatic Efficiency 0.828 0.737

Rotor Head Rise Coefficient 0.273 0.402

Flow Coefficient 0.451 0.340

Airflow at Orifice (kg/sec) 20.19 18.20

Rotative Speed (RPM) 17190 17220

Table 2.2: Comparison of overall performance between design and lowest flow coefficient



Table 2.3 summarizes the blade-element parameters of NASA Rotor 35 of the lowest flow

coefficient for the two radial positions examined. The shape of the airfoil for 88% span and

100% span is shown in Figure 2.6.

Parameters (NASA Rotor 35) 88% Span 100% Span

Chord (mm) 56.0 56.1

Solidity 1.33 1.29

Rotor Stagger Angel (degrees) 54.5 65.7

Rotor Pitch (mm) 42.1 43.4

Total Pressure Ratio 2.035 2.092

Total Temperature Ratio 1.313 1.332

Inlet Relative Mach Number 1.415 1.412

Inlet Relative Inlet Angle (degrees) 69.4 73.6

Absolute Inlet Mach Number 0.498 0.399

Table 2.3: Blade-Element parameters at 88% span and 100% span

2.3.2 Computational Grid

UNSFLO uses an unstructured grid, with an advanced front-grid generator developed by

Lindquist and Giles [16]. With this unstructured grid, each grid and its corresponding flow

variables are associated with a particular index in a one-dimensional array. The program

sweeps through the list of cells, gathers information from their corner nodes, performs the

necessary calculations, and then distributes the appropriate changes of the flow variables back

to the corner nodes.

The numerical grids for 100% span and 88% span are shown in Figure 2.7. For 100%

span the grid for the inviscid Euler solver has 165 cells in the through-flow directions, 50

cells in the inflow and outflow boundary, and 48 cells between the cascade. For the viscous

Navier-Stokes solver, the approximated thin viscous layer around the blade is about one to

two cells of the inviscid grid. Furthermore, the viscous layer around the blades is divided in

an inner region and outer region. The inner region close to the airfoil has 6 points and for the



inner and outer region 12 points are used. The inflow boundary is one-half of the airfoil chord

upstream of leading edge and one-half of the airfoil chord downstream of trailing edge. For

88% span the inviscid and viscous grid points are the same as for 100% span.
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Figure 2.7: Computational grid for radial position of 88% span and 100% span
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Chapter 3

Quasi-Steady Momentum Analysis

This chapter presents a quasi-steady analysis of unsteady blade forces. The inflow and out-

flow parameters, assumptions, and equations for the solution process are also given.

3.1 Inflow and Outflow Parameters with Velocity
Triangles

3.1.1 Inflow Parameters for Rotor

To describe the flow that enters the rotor cascade, five parameters are needed: A , the inlet

area (for the two-dimensional analysis equal to the rotor pitch at the inlet); pl, the static pres-

sure at the inlet; Pl, the density at the inlet; Ve, 1, the relative velocity at the inlet; and fi1, the

relative angle at the inlet. The inlet rotor pitch is given by the geometry of the NASA Rotor

35. The pressure and density at the inlet are from given from the standard atmosphere. The

relative velocity and relative angle at the inlet are a vector combination of the jet actuation

attitude and free-stream velocity and rotor speed.

As described in Section 2.2.2: Jet-Actuation Wake Model, the wake model, which is used

in the computer program UNSFLO to numerically analyze the rotor sections, is the Gaussian



model. The same equations that are used for the inlet boundary conditions of the numerical

computer program in UNSFLO are also used for the quasi-steady momentum analysis.

As mentioned in Section 2.2.1, the three parameters that define the inflow wake model are

the maximum amplitude of the wake angle, awake, the fractional velocity defect, D, and the

shape function, d2 . This shape function is also a function of the characteristic wake width,

Wwake, and the periodic saw-tooth function, N. However, for the quasi-steady momentum

analysis, the periodic saw-tooth function is equal to zero, N = 0, to assure that the maximum

value of the shape function is obtained. This means that the peak value of the unsteady distur-

bance is used and Equation (2.10) is now

d 2 (1) = exp 1. (3.1)

When the undisturbed velocity, entering the rotor cascade, is non-dimensioned with the

free-stream inlet velocity, then one minus the fractional velocity defect, (1-D), represent the

non-dimensioned combination of the inlet velocity and the jet velocity. The minus between

the inlet velocity and the jet velocity comes from the definition of the jet velocity which rep-

resents the fractional velocity defect.

The axial and tangential components (vector combination of free-stream velocity, rotor

speed, and jet velocity) are obtained by

(1 - D) aial = (1 - D) - cos (awake), (3.2)

(1 - D) tangential = (1 - D) • sin (awake) + WSndim, (3.3)

where awake is the jet angle with respect to the absolute free-stream velocity, and WSndim is

the rotor wheel-speed which is non-dimensioned with the free-stream inflow velocity.

The relative inflow velocity for the combination of free-stream inlet velocity, rotor wheel-

speed, and jet velocity is

Vrel I = (1 -D) . 1+ (1 -D) 2ngenti(3.4)-axia tangential"



The relative inflow angle is

( 1 - D) tangential
1 ( 1 - D) axial "

The relative inflow angles at radial positions of 88% span and 100% span are presented in

Figure 3.1 and 3.2, respectively, for different jet angles and different jet velocities. The jet

angles range from -45 degrees to 45 degrees, and the jet velocities range from 1.0 times the

free-stream velocity to 2.0 times the free-stream velocity. (A jet velocity equal to 1.0 means

that the jet-stream has the same velocity as the free-stream.) Starting from a jet angle of +45

degrees, the relative inflow angle decreases until a point, which is around -30 degrees of the

jet angle, and increase at -45 degrees. This is because the cosine term in Equation (3.2) has

the same result for positive and negative jet angles, which means that starting from a jet angle

of +45 degrees, the cosine term increases until 0 degrees and then decreases for negative jet

angles. On the other hand, the sine term in Equation (3.3) has a positive result for positive jet

angles and a negative result for negative jet angles.

The relative inflow angles at the radial positions of 88% span and 100% span are plotted

in Figure 3.3 and 3.4, respectively, for different jet angles and jet velocities. Both figures also

include diagrams of velocity triangles for jet angles of -30 degrees and +30 degrees, and for

three different jet velocities, namely, 1.0 times the free-stream velocity, 1.5 times the free-

stream velocity, and 2.0 times the free-stream velocity.

3.1.2 Outflow Parameters for Rotor

To describe the flow that leaves the rotor cascade, five parameters are needed: A2, the exit

area (for the two-dimensional analysis equal to one times the rotor pitch at the exit); P2, the

static pressure at the exit; P2, the density at the exit; Vel,2, the relative velocity at the exit; and

P2, the relative angle at the exit. The rotor pitch for the exit is a parameter that is given by the

geometry of the NASA Rotor 35 and was presented in Section 2.3.1: Airfoil Geometry.

There are five equations that describe the flow, continuity equation, momentum in x and y

direction, energy equation, and isentropic equation. Together with the geometric parameters



from the NASA Rotor 35, this leaves six unknowns within the five equations. This six

unknowns are the variables from the exit flow of the rotor cascade, except the exit area, and

the two forces from the momentum equations in x and y direction. Therefore, one more vari-

able needs to be prescribed. This variable is the exit angle, fP2. For a description of how this

exit angle can be chosen, refer to Section 3.2: Equation and Solution Procedure for Quasi-

Steady Momentum Analysis.

3.2 Equation and Solution Procedure for Quasi-Steady
Momentum Analysis

3.2.1 Equations and Assumptions

This section gives the equations and assumptions to compute the axial force and the tangen-

tial force using the quasi-steady analysis. A detailed derivation with the assumptions applied

to each step during the derivation is presented in Appendix C: Detailed Derivation of Quasi-

Steady Momentum Analysis. The list of assumptions that were needed to derive the final

equations for the quasi-steady momentum analysis are summarized in this section:

* the fluid flow is steady,

* no work is delivered through a shaft into the control volume,

* the fluid flow is adiabatic, a process in which no heat is added or taken away,

* the flow is reversible, a process in which no frictional or dissipative effects occur,

* the density, velocity, and pressure are uniform across the inlet area and exit area,

* the gas is calorically perfect, and

* the flow is 2-dimensional.

The combination of an adiabatic and reversible process result in an isentropic fluid flow.

This assumption, specially the assumption of an reversible process, is justified by using the

isentropic relationship and the results computed from UNSFLO. It is found that the computed

isentropic results differ 3% from the results of UNSFLO. This calculation is carried out by



using the density for inlet and exit and the inlet pressure computed from UNSFLO and calcu-

late with the isentropic relationship the exit pressure. This exit pressure is the compared to the

results from UNSFLO.

With these assumptions the equations for the control volume (see Appendix C: Detailed

Derivation of Quasi-Steady Momentum Analysis) are

continuity

A 2P2 VreI,2COS 2 -AlP l V rel,l cospl = 0, (3.6)

momentum in x direction,

Fx = A2 [p 2 + P2 (Vrel,2COS02) 2] -Al [PI + P1 (Vrel, lCosl) 2] , (3.7)

momentum in y direction,

Fy = A2 P2 Vr2C ,2 COS32 sin 2 -Alp Vrel,l cos3 1 sinl 1, (3.8)

the energy equation, which also includes the equation of state,

2 el,2 2 7 rel, 1 (3.9)
P2Vrel 2cosP2 P lY reJ ,2 PlVreI cos, 1 + '

27-1 2 2py-

and the isentropic relationship,

P 2  P2
Pl P1 . (3.10)

Solving Equation (3.6), the continuity equation, for p2 and substituting this equation

together with Equation (3.10), the isentropic relationship, into Equation (3.7) to (3.9), the

axial force is

Fx = A2 1 Vrel,l CO 1 + P Vrel, cos l Vrel,2 COS0 2
(3.11)

-Al [pl + Pl (Vre,lCOSp) 2]

The tangential force is



F = A 2 PlVreli, COSI Vrel,2 sin 2 -AIp , Vrel,, COSI sin I 1 . (3.12)

The energy equation is

2 1- Pl 2y cos|32 1 Pl 27 2
Vr2 ' + VI -2 + V 2 (3.13)Vrel,2 +Vrel,2 pI- 1 Vrel,ICOSl = P - 1 Vi e (3.13)

The axial force and tangential force in Equation (3.11) and (3.12) can be solved with the

use of Equation (3.13) since the only other unknown is the relative exit velocity, Vrel,2. The

iterative scheme for the solution and the choice of the relative exit angle is given in the next

section.

3.2.2 Relative Exit Angle and Solution Process

Since the resulting equations, presented in Section 3.2.1: Equations and Assumptions, are

non-linear, an iterative scheme is needed to calculate the forces. The choice of relative exit

angle for the calculation of the forces is discussed in this section. The iterative scheme used to

solve Equation (3.13) is the Newton-Raphson method because of its simplicity and fast con-

vergence to the solution. This method is explained in detail in [21] and summarized here.

The Newton-Raphson scheme is an iterative method for solving the non-linear equation

f(Vrel,2) = 0, where f is assumed to have a continuous derivative f'. The idea of this

method is to approximate the graph of f by tangential lines; therefore, with the tangent

defined by

S I i rel,2
f rel,2 )= i- 1 (3.14)

V -Vrel,2 rel,2

a new relative exit velocity is obtained by

i- V  f (i-Vrel,2
Vr = re,2 (3.15)

frel,2 el,2 i- Vrel,2)



The left superscript denote the steps of iteration, where oVrel,2 is the initial guess and i

goes from 1, 2, 3,... to convergence. From Equation (3.13) two solutions are possible, namely,

a subsonic relative exit velocity and a supersonic relative exit velocity. Therefore, the choice

of the initial guess is important and the converged solution from the Newton-Raphson scheme

needs to be checked if the desired relative exit velocity is obtained.

During the derivation of the equations of fluid motion, derived in Appendix C and dis-

cussed in Section 3.1.2, it was assumed that the relative exit angle, f 2, is a parameter that is

known before the forces of the fluid flow can be calculated. The following paragraphs discuss

different possibilities for choosing the relative exit angle for the different jet velocities and

different jet angles. The result of the tangential forces and axial forces for the different exit

angles is presented in Section 4.2: Comparison of Unsteady Forces Computed with UNSFLO

and Quasi-Steady Momentum Analysis.

The first possibility is to use a constant value for all the jet angles from -45 degrees to +45

degrees, but a different number for different jet velocities. This means that for the radial posi-

tion of 88% span the relative exit angle for a jet velocity of twice the free-stream velocity

must be smaller than 40 degrees, measured relative to the absolute free-stream velocity, for all

the jet angles from -45 degrees to +45 degrees. This relative exit angle of less then 40 degrees

is needed since the relative inflow angle is about 41 degrees at an jet angle of -45 degrees

(Figure 3.1). Similarly, for a jet velocity of 1.5 times the free-stream velocity and a radial

position of 88% span, the relative exit angle must be smaller than 55 degrees for all the jet

angles. A constant number for all jet angles also means that the turning for a jet angle of +45

degrees will be 30 degrees but only 1 degrees for ajet angle of-45 degrees. This will result in

an over-prediction of the forces at a jet angle of +45 degrees and an under-prediction of the

forces at ajet angle of -45 degrees, and this idea is not very useful in the present context.

A second possibility is to use an angle, g that is subtracted from the relative inflow angle,

i - , where ic is different for different jet velocities. This means that the relative exit angle

would follow the same shape as the relative inflow angle, as shown in Figure 3.1, but shifted

by i. For example, at ajet angle of zero degrees and ajet velocity of 1.5 times the free-stream

velocity, the inflow angle is about 60 degrees and the exit angle is 50 degrees when C is equal

to 10. The angle ic is obtained from the difference of exit angle to inlet angle in the computa-



tion with UNSFLO at zero degrees jet angle for different jet velocities. This method is

referred to as "Method 1" later in this section and in Section 4.2.

A third possibility is to choose the relative exit angle by using the result of the exit veloc-

ity for an incompressible fluid in a rotor cascade. For incompressible flow

(cos 1)2
Cp = 1- 2, (3.16)

( cos 32)

where Cp is the pressure coefficient which can be related to the exit and inlet pressure and the

relative inflow Mach number given by

2
P2 _ TMrel, I
P2 1 + C (3.17)

Now, with the relative inlet angle, fil, the relative inlet Mach number, Mre,1, the inlet

pressure, pl, and the exit pressure, P2, the relative exit angle, P2, can be computed from the

incompressible equation above. For this method the exit pressure need to be known or calcu-

lated before it can be used in Equation (3.17). In the analysis the following process is used:

1. use the relative exit angle that was obtained from Method 1 and calculate the exit pres-
sure with the Newton-Raphson scheme,

2. use the same relative exit angle as in step 1 and calculate the incompressible exit pres-
sure with Equation (3.16) and (3.17),

3. calculate the average of the exit pressure obtained from step 1 and step 2, and

4. calculate the relative exit angle with the incompressible equations given by Equation
(3.16) and (3.17).

With the new relative exit angle, the new exit pressure can be computed with the Newton-

Raphson scheme. This method is referred as "Method 2" in Section 4.2.
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Figure 3.2: Relative inflow angle versus jet angle for different jet velocities at a radial
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Figure 3.3: Relative inflow velocity versus jet angle for different jet velocities at a radial
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Chapter 4

Results and Discussion

This chapter presents the results of the unsteady forces and unsteady moments computed

using UNSFLO. It is divided into four sections. First, the results are presented with figures of

the difference in maximum to minimum of the unsteady forces, in x and y direction, and

unsteady moments for each of the radial positions, 88% span and 100% span. Second, the

results of the difference in maximum to minimum of the unsteady forces, in x and y direction,

computed with UNSFLO are compared with the quasi-steady momentum model for the two

radial positions, 88% span and 100% span. Third, from the results from UNSFLO, the aver-

aged first, second, and third harmonic amplitudes of the unsteady forces, in x and y direction,

and unsteady moments for each of the radial positions, 88% span and 100% span, are pro-

duced. Fourth, the pressure difference between rotor inlet and exit is given for each of the

radial positions, 88% span and 100% span. The results on which the discussion in this chapter

is based are collected in Appendix D: Computed Results from UNSFLO.

Table 4.1 shows the magnitude of the steady flow results from the axial forces, tangential

forces, and moments for the two radial positions, 88% span and 100% span. The forces of

Table 4.1 are non-dimensioned with the density, the square of relative inflow velocity, and the



aerodynamic chord. The moments of Table 4.1 are non-dimensioned with the density, the

square of relative inflow velocity, and the square of aerodynamic chord.

Axial Force Tangential Force Moment
Fx, steady Fy, steady Msteady

1 2 1 2 2
p VreC 2 p Vre C p Ve C

100% Span 0.378 0.189 0.159

88% Span 0.343 0.172 0.153

Table 4.1: Magnitudes of steady flow forces and moments at two radial positions

4.1 Unsteady Forces and Unsteady Moments

This section presents and discusses the results of the unsteady forces, in x andy direction, and

unsteady moments for each of the radial positions, 88% span and 100% span. These results

are plotted versus jet angle oyw.

Figure 4.1 and 4.2 give the axial forces computed using UNSFLO for different jet veloci-

ties plotted against jet angles for radial positions of 88% span and 100% span, respectively.

Figure 4.3 and 4.4 give the tangential forces for different jet velocities plotted against jet

angles for the radial positions of 88% span and 100% span, respectively. Figure 4.5 and 4.6

give the moments for different jet velocities plotted against different jet angles for the radial

positions of 88% span and 100% span, respectively. The unsteady forces are non-dimension-
2

alized with the density, p, the square of relative inflow velocity, V~e2 , and the aerodynamic

chord, C. The unsteady moments of these figures are non-dimensioned with the density, p, the

square of relative inflow velocity, Vr2ei , and the square of aerodynamic chord, C2. The

results for the non-dimensional jet velocity of 2 are shown with the symbol -- , and the

results for the non-dimensional jet velocity of 1.5 are shown with the symbol -*-.

For both radial positions, 88% span and 100% span, and for both non-dimensional jet

velocities, the highest axial force, tangential force, and moment is at +45 degrees jet angle,

and the lowest axial force, tangential force, and moment is at 0 degrees jet angle. The axial



force, tangential force, and moment for the negative jet angles increase until an angle of -30

degrees and then decreases. This can be explained by looking at Figure 3.1 where the relative

inflow angle is plotted against the jet angle. From this figure it can be seen that the jet angle

of-15 degrees and -45 degrees have approximately the same relative inflow angle, but the rel-

ative inflow angle for a jet angle equal to -30 degrees is lower.

Another examination can be done when the axial forces, tangential forces, and moments

can be obtained when the forces and moments are non-dimensionalized with the relative

inflow velocity multiplied by the change of relative inflow velocity. This change of relative

inflow velocity, Vx , is defined as the difference of maximum to minimum relative inflow

velocity times a constant number equal to four so that the plot is between zero and one. Figure

4.7 and 4.8 give the axial forces for different jet velocities plotted against jet angles for the

radial positions of 88% span and 100% span, respectively. Figure 4.9 and 4.10 give the tan-

gential forces for different jet velocities plotted against jet angles for the radial positions of

88% span and 100% span, respectively, and Figure 4.11 and 4.12 give the moments for differ-

ent jet velocities plotted against jet angles for these radial positions. The results for the non-

dimensional jet velocity of 2 are shown with the symbol -- , and the results for the non-

dimensional jet velocity of 1.5 are shown with the symbol -*.

The results from the two non-dimensional jet velocities collapse into one line for the axial

forces, tangential forces, and moments at the radial positions of 88% span and 100% span.

The largest difference is less then 10%.

Using the collapsed resulting figures, it can be seen for a radial position of 88% span that

the unsteady force (axial and tangential) computed for +15 degrees jet angle are 1.2 times

larger, for +30 degrees jet angle are 1.6 times larger, and for +45 degrees jet angle are 2.5

times larger compared to the results at zero degrees jet angle. The unsteady moment for +15

degrees jet angle is 1.2 times larger, for +30 degrees jet angle is 1.9 times larger, and for +45

degrees jet angle is 3.6 times larger then the unsteady moment at zero degrees jet angle.

For a radial position of 100% span, the unsteady force (axial and tangential) computed for

+15 degrees jet angle are 1.4 times larger, for +30 degrees jet angle are 1.8 times larger, and

for +45 degrees jet angle are 2.7 times larger then the unsteady forces at zero degrees jet

angle. The unsteady moment for +15 degrees jet angle is 1.4 times larger, for +30 degrees jet



angle is 1.9 times larger, and for +45 degrees jet angle is 3.4 times larger than the unsteady

moment at zero degrees jet angle.

For the negative jet angles, the results are that for a radial position of 88% span the

unsteady force (axial and tangential) computed for -15 degrees and -45 degrees jet angle are

1.4 times larger and for -30 degrees jet angle are 2.0 times larger than the unsteady forces at

zero degrees. The unsteady moment for -15 degrees and -45 degrees jet angle is 1.3 times

larger and for -30 degrees jet angle is 2.2 times larger than the unsteady moment at zero

degrees. For a radial position of 100% span, the unsteady forces (axial and tangential) for -15

degrees and -45 degrees jet angle is 1.6 times larger and for -30 degrees jet angle is 2.2 times

larger than the unsteady forces at zero degrees jet angle. The unsteady moments for -15

degrees and -45 degrees jet angle is 1.3 times larger and for -30 degrees jet angle is 2.3 times

larger than the unsteady moment at zero degrees jet angle.

As mentioned in Section 1.2, the reduced frequency is a parameter which can be inter-

preted as a ratio of the time it takes for a fluid particle to travels through the rotor passage to

the time it takes the rotor to pass through a distorted segment of the flow. The unsteady

forces, in x and y direction, and unsteady moments can be plotted against reduced frequency,

&, with

- .C 2 WS C
(0 - - R (4.1)

Vx wake,r Sr 
(4.1)

The parameter o is the rotor passing frequency, C is the axial chord of the rotor, Vx is the

axial flow velocity, WS is the rotor wheel-speed, Rwake,r is the wake-to-rotor pitch ratio, and

Sr is the pitch of the rotor blade row.

Figure 4.13 and 4.14 give unsteady axial forces for different jet velocities, plotted against

reduced frequency, for 88% and 100% span, respectively. The unsteady axial forces of these
2

figures are non-dimensioned with the density, p, the square of relative inflow velocity, Vrel,

and the aerodynamic chord, C. The results for the non-dimensional jet velocity of 2 are shown

with the symbol -e--, and the results for the non-dimensional jet velocity of 1.5 are shown

with the symbol --.

The reduced frequency at 88% span is roughly between 2.2 and 3.7 for both jet velocities.

For 100% span and both non-dimensional jet velocities, the reduced frequency varies roughly



from 2.3 to 3.3. For both radial positions of 88% span and 100% span and both non-dimen-

sional jet velocities, the highest reduced frequencies correspond to a jet angle of -45 degrees,

and the lowest reduced frequency correspond to a jet angle equal to +45 degrees.

4.2 Comparison of Unsteady Forces Computed with
UNSFLO and Quasi-Steady Momentum Analysis

This section gives the result of the comparison between the unsteady forces computed with

UNSFLO and the forces computed with the quasi-steady momentum model. The unsteady

forces from UNSFLO are shown with the symbol -X- and the forces computed with the

quasi-steady model are shown with the symbol -e-. As discussed in Section 3.2, there are

two methods (Method 1 and Method 2) for obtaining the relative exit angle. The first is to

compute the relative exit angle, 02, using a constant angle subtracted from the relative inflow

angle, P1; 02 = 1 -K. This angle is equal to 12 for non-dimensional jet velocity of 1.5 and

equal to 6 for non-dimensional jet velocity of 2.0. These values were obtained from the com-

putation with UNSFLO of the unsteady forces at zero degrees jet angle for non-dimensional-

ized jet velocity of 1.5 and 2.0, respectively. The resulting relative exit angles are shown in

Figure 4.15 to 4.18 with the corresponding numbers on the right axis of the plot. Figure 4.15

and 4.16 give the axial forces from UNSFLO and quasi-steady analysis plotted against jet

angles at radial positions of 88% span and 100% span, respectively. Figure 4.17 and 4.18 give

the tangential forces from UNSFLO and quasi-steady analysis plotted against jet angles for

the radial positions of 88% span and 100% span, respectively. The difference between the

forces computed from UNSFLO and the quasi-steady analysis range from 8% to 40%.

The second method is to compute the relative exit angle, 02, and exit pressure, P2, by

using the incompressible equations, Equation (3.16) and (3.17), and results from UNSFLO.

The resulting relative exit angles are shown in Figure 4.19 to 4.22 with the corresponding

numbers on the right axis of the plot. Figure 4.19 and 4.20 give the axial forces from UNS-

FLO and quasi-steady analysis plotted against jet angles for 88% span and 100% span,



respectively. Figure 4.21 and 4.22 give the tangential forces from UNSFLO and quasi-steady

analysis plotted against jet angles for 88% span and 100% span, respectively.

Using Method 2, the difference between the forces computed from UNSFLO and from the

quasi-steady analysis range from 0.5% to 10%. The difference in exit angles, 32, between the

two methods range from 2%.

4.3 First, Second, and Third Harmonic Amplitudes of
Unsteady Forces and Unsteady moments

As mentioned in the introduction, when the jet actuation is implemented in the high speed

compressor, a problem of concern is the mechanical and aerodynamical forces and moments

of the rotor blades due to the jet actuator attitude. Therefore, this section will present the aver-

aged first, second, and third harmonic amplitudes of the unsteady forces, in x and y direction,

and the unsteady moments.

The procedure to compute the harmonic amplitude and phase is outlined in Meirovitch,

[23], "Elements of Vibration Analysis" and is reviewed here. The harmonic amplitude and

phase for an unsteady force or moment can be computed by

IGIn = Re (G)' + Im (G)'
n n (4.2)

n = atan Re (G) n

with

1 ( ' n t 1 1 { x n t
Re (G) = F(t)os L dt Im (G) n = F(t) sin L )dt (4.3)

-L -L

where L = PL/2 and PL is the period of the blade passing by the jet velocity wake, F(t) can be

the axial force, tangential force, or moment at a different time t, and n is equal to 1 for the

first harmonic, equal to 2 for the second harmonic, and equal to 3 for the third harmonic.



Figure 4.23 to 4.28 show the harmonic amplitude and phase for the non-dimensional jet

velocity of 1.5 and for different jet angles at radial positions of 88% span and 100% span.

Figure 4.23 and 4.24 give the amplitude and phase of the axial forces for different jet angles

versus frequency mode for 88% and 100% span, respectively. Figure 4.25 and 4.26 give the

amplitude and phase of the tangential forces for different jet angles versus frequency mode

for 88% and 100% span, respectively. Figure 4.27 and 4.28 give the amplitude and phase of

the moments for different jet angles versus jet frequency mode for the radial positions of 88%

span and 100% span, respectively. The harmonic amplitudes for the axial force are non-

dimensionalized with respect to the steady axial force, and the harmonic amplitudes for the

tangential force are non-dimensioned with respect to the steady tangential force. The har-

monic amplitudes for the moment are non-dimensioned with respect to the steady moment.

The results for the jet angle of -45 degrees is shown with the symbol -w, for the jet angle of

-30 degrees is shown with -A-, for the jet angle -15 degrees is shown with -+-, for the jet

angle 0 degrees is shown with -- , for the jet angle +15 degrees is shown with -*-, for the

jet angle +30 degrees is shown with -4-, and for the jet angle +45 degrees is shown with --.

These figures show that the higher-harmonic amplitudes of the unsteady forces and

moments are smaller than the first and second harmonic amplitudes. For axial forces at the

radial positions of 88% span and 100% span, the difference between the first harmonic ampli-

tude and the second harmonic amplitude is 86% whereas the difference between the first har-

monic amplitude and the third harmonic amplitude is 99%. The first and second harmonic

amplitudes of the unsteady forces and moments are thus sufficient for the structural dynam-

ics.

4.4 Pressure Difference Computed with UNSFLO

This section gives computed time averaged pressure differences between the inlet flow and

exit flow of the rotor cascade. The pressure difference is non-dimensionalized with the den-

sity, and the square of the relative inflow velocity. Figure 4.29 gives the pressure difference

versus jet angles for the non-dimensional jet velocity of 1.5 and 2.0 at 88% span, and Figure

4.30 gives the pressure difference for 100% span. The figures include the steady pressure dif-



ference for comparison.

From these figures it can be seen that when the jet actuation has ajet velocity equal to 1.5

times the free-stream velocity and a jet angle of 0 degrees, the pressure difference reduces by

3% from the steady solution. This reduction in pressure difference is caused by the addition of

mass flow through the jet injection and because the compressor characteristic for the lowest

flow coefficient of NASA Rotor 35 is negatively sloped. When the jet actuation has a jet

velocity of 2.0 times the free-stream velocity and a jet angle of 0 degree, the pressure differ-

ence reduces by 8% from the steady solution.
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Figure 4.1: Axial force at 88% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle
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Figure 4.2: Axial force at 100% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle
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Figure 4.3: Tangential force at 88% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle
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Figure 4.4: Tangential force at 100% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle
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Figure 4.6: Moment at 100% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle
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Figure 4.7: Axial force at 88% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle
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Figure 4.9: Tangential force at 88% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle
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Figure 4.11: Moment at 88% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle
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Figure 4.16: Axial force at 100% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle. (UNSFLO... --- , quasi-steady analysis... -e-, exit angle for
quasi-steady analysis... -A -, inlet angle for quasi-steady analysis... -A-)
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Figure 4.17: Tangential force at 88% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle. (UNSFLO... --- , quasi-steady analysis... -e-, exit angle
for quasi-steady analysis... -A -, inlet angle for quasi-steady analysis... -A-)
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Figure 4.18: Tangential force at 100% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle. (UNSFLO... -- , quasi-steady analysis... -e-, exit angle
for quasi-steady analysis... - A -, inlet angle for quasi-steady analysis... -A-)
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Figure 4.19: Axial force at 88% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle. (UNSFLO... -x-, quasi-steady analysis... -e-, exit angle for
quasi-steady analysis... - A -, inlet angle for quasi-steady analysis... -A-)
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Figure 4.20: Axial force at 100% span for non-dimensional jet velocity equal to 1.5 and 2.0
versus jet angle. (UNSFLO... -X-, quasi-steady analysis... -e-, exit angle for
quasi-steady analysis... - A -, inlet angle for quasi-steady analysis... -A-)
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Figure 4.21: Tangential force at 88% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle. (UNSFLO... -X-, quasi-steady analysis... -e-, exit angle
for quasi-steady analysis... -A -, inlet angle for quasi-steady analysis... -A-)
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Figure 4.22: Tangential force at 100% span for non-dimensional jet velocity equal to 1.5 and
2.0 versus jet angle. (UNSFLO... -- , quasi-steady analysis... -e-, exit angle
for quasi-steady analysis... -A -, inlet angle for quasi-steady analysis... -A-)
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Figure 4.23: Amplitudes of Harmonics and Phase for the axial force at 88% span with a non-
dimensional jet velocity equal to 1.5 versus frequency mode
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Figure 4.24: Amplitudes of Harmonics and Phase for the axial force at 100% span with a
non-dimensional jet velocity equal to 1.5 versus frequency mode
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Figure 4.25: Amplitudes of Harmonics and Phase for the tangential force at 88%
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Figure 4.26: Amplitudes of Harmonics and Phase for the tangential force at 100% span with
a non-dimensional jet velocity equal to 1.5 versus frequency mode
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Figure 4.27: Amplitudes of Harmonics and Phase for the moment at 88% span with a non-
dimensional jet velocity equal to 1.5 versus frequency mode
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Chapter 5

Conclusions and Recommendations

5.1 Summary and Conclusion

Axial forces, tangential forces, and moments were computed for a transonic rotor with jet

velocities of 1.5 and 2.0 times the free-stream velocity, jet angles of ±45, ±30, ±15, and 0

degrees, and two radial positions (88% span and 100% span of NASA Rotor 35). For these

cases, the reduced frequency was roughly 3. The specific findings are:

F -F.
1. It is found that the unsteady axial forces are largest ( i, Vre i n - 0.9 ) at ajet angle

of +45 degrees and minimum (- 0.2) at a jet angle of zero degrees. The same trends are

found for the unsteady tangential force, but the values of maximum and minimum are

roughly 0.4 and 0.15, respectively. The unsteady moments have a maximum
M-M .max man

1/2 p Vrel V 2 - 0.55 ) at +45 degrees jet angle and minimum (- 0.2) at zero degrees

jet angle.

2. For a quasi-steady momentum analysis, the exit angle of an unsteady fluid flow needs

to be known within a degree to calculate unsteady forces within 10%. A quasi-steady

momentum analysis, where the exit angle is computed with a mixed compressible and

incompressible iterative scheme, gives a good approximation of the unsteady forces

and steady forces.



3. The first and second harmonic amplitudes of the unsteady forces and moments are suf-

ficient for the structural dynamics. For the axial forces at radial positions of 88% span

and 100% span, the difference between the first harmonic amplitude and the second

harmonic amplitude is 86% whereas the difference between the first harmonic ampli-

tude and the third harmonic amplitude is 99%.

4. For a jet velocity equal to 1.5 times the free-stream velocity and a jet angle of zero

degrees, the time averaged pressure difference (difference between inlet pressure and

exit pressure) is decreased by 3% from the steady solution. For a jet velocity of 2.0

times the free-stream velocity and ajet angle of zero degree, the time averaged pressure

difference is decreased by 8% compared to the steady solution. The lowest pressure dif-

ference is at -45 degrees jet angle (reduction of 15% from zero degrees value) and the

highest at +45 degrees jet angle (increase of 9% from zero degrees value).
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Appendix A

The Governing Equations

The purpose of this appendix is to summarize the inviscid and viscous compressible flow

equations in the Eulerian and Lagrangian formulation and to stress the assumptions that lead

to these equations. For a formal and detailed derivation of the equations refer to Shapiro [17]

or Anderson [18], and for a detailed presentation of the numerical methods for the solution of

these equation refer to Anderson, Tannehill, and Pletcher [19] or Hirsch [20].

A.1 Conservation Laws

Three conservation laws form the basis of the fluid dynamic equations. These three laws are

the conservation of mass, conservation of momentum, and conservation of energy. Applying

these laws to fluid in motion leads to the equation of fluid dynamics or equation of motion. In

general there are two approaches that can be used to derive the equations of motion: the phe-

nomenological approach, which is detailed in Shapiro [17], and the kinematic-theory

approach, which is detailed in Anderson [18]. These two approaches derive the same fluid

dynamic equations if equivalent assumptions are made in both approaches. The following

subsections use the assumptions of uniform and homogeneous fluid without chemical reac-

tions and give the resulting equations of motions.



A.1.1 Conservation of Mass

The physical principle of conservation of mass is: "Mass can be neither created nor

destroyed." Applying this physical principle of conservation of mass to a finite control vol-

ume fixed in space gives the conservation of mass written as

at J dV + pV. dA = 0. (A.1)
V A

Equation (A. 1) expresses the continuity equation in integral form applied on a finite space.

The advantage of this form is that aerodynamic phenomena over finite region of space can be

related without being concerned about the details of precisely what is happening at a given

distinct point in the fluid flow. This form will be used in Appendix C when a quasi-steady

momentum analysis is performed on a finite control volume.

However, when a CFD analysis of a fluid flow is required, an equation that relates flow

properties at a given point is needed. In that case, the integral form as expressed in Equation

(A. 1) is not practical and can be transformed into another form which does relate flow proper-

ties at a given point. Since the control volume that was used to obtain Equation (A. 1) is fixed

in space, the limits of integration are also fixed, and hence, the time derivative can be placed

inside the integration. Now, applying the divergence theorem to the second term on the left

hand side and rearranging the terms, Equation (A. 1) becomes

pa- + V*(pV) = 0. (A.2)

Equation (A.2) is now the continuity equation in the form of a partial differential equation

and relate the flow field variables at a point in the flow, as opposed to Equation (A. 1), which

deals with a finite space.

Note that in the derivation of the two equations above, the only assumption about the

nature of the fluid is that it is a continuum. Therefore, Equation (A. 1) and (A.2) hold in gen-

eral for the three-dimensional and unsteady flow of any type of fluid, inviscid or viscous,

compressible or incompressible.



A.1.2 Conservation of Momentum

The physical principle of conservation of mass is: "Force is equal to time rate of change of

momentum." Applying the physical principle of conservation of momentum to a finite control

volume fixed in space gives the conservation of mass, written as

pVrdV + pV V* dA = - F- pdA + f dV + Fviscous ,  (A.3)
V A A V

where f represents a vector of the net body forces per unit mass exerted on the fluid inside a

finite control volume V. F denotes a vector of the forces exerted by the body on the fluid and

Fviscous denotes a vector of the total viscous forces exerted on the control surface. The ele-

mental surface force due to pressure acting on the element of area dA is -pdA where the nega-

tive sign indicates that the force is in the direction opposite of dA.

Equation (A.3) expresses the momentum equation in integral form applied on a finite

space and is a vector equation. The advantage of this form, just as for the continuity equation,

is that aerodynamic phenomena over finite region of space can be related without being con-

cerned about the details of precisely what is happening at a given distinct point in the fluid

flow. This form will also be used in Appendix C when a quasi-steady momentum analysis is

performed on a finite control volume.

However, when we perform a CFD analysis of a fluid flow, as mentioned for the continu-

ity equation, another vector equation is needed that relate flow properties at a given point. In

that case, the integral form as expressed in Equation (A.3) is not practical and can be trans-

formed into another form which does relate fluid flow properties at a given point. Equation

(A.3) is a vector equation and can be written as three scalar equations. Also, since the control

volume that was used to obtain Equation (A.3) is fixed in space, the limits of integration are

also fixed, and hence, the time derivative can be placed inside the integration. Now, applying

the gradient theorem to the first term on the right hand side, the divergence theorem to the sec-

ond term on the left hand side, and after rearranging the terms, Equation (A.3) becomes



pu p- + V* (puV) - + pfx + (Fx)
t ax viscous

ap + V (pvV) = - p+ f + ((A.4)
at ay +Pf viscous

pw p
- + V. (pwV) - + pfz + (Fz)so

where the subscripts x, y, and z on Fvicous denote the spatial components of the viscous shear

stresses. Expressing the viscous forces explicitly in terms of the appropriate flow-field vari-

ables, Equation (A.4) becomes now

- + v. (puV) =- + pf +-+ +
at ax x ax y az
- + V* (pvV) = - + p f + - +  + "z (A.5)

apw ap ' xz T yz tzz
-+ V* (pwV) - + pf +  +  +

at z z ax ay az

Equation (A.4) gives now the x, y, and z component of the momentum equation in the

form of a partial differential equation and relates the flow field variables at a point in the flow,

as opposed to Equation (A.3), which deals with a finite space. These equations are scalar

equations and are called the Navier-Stokes equations. The stress components 7, are related to

the dynamic viscosity coefficient u and the bulk viscosity coefficient X = - (2/3) R. by the

equations:

au
xx = .(V.V) + 2i-

I, = (VV) + 2p.y

aw
tzz = X(V*V) + 2 Lz

(av u (A.6)

g(aw av)

yz zY= y = Iz +

uzx = aw)
zx x z ze 3x
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Note that in the derivation of Equation (A.3) and (A.5) the only assumption about the

nature of the fluid is that it is a continuum. Therefore, Equation (A.3) and (A.5) hold in gen-

eral for the three-dimensional and unsteady flow of any type of fluid, inviscid or viscous,

compressible or incompressible.

A.1.3 Conservation of Energy

The physical principle of conservation of energy is: "Energy can be neither created nor

destroyed; it can only be changed in form." Applying the physical principle of conservation of

energy to a finite control volume fixed in space gives the conservation of energy written as

f4pdV + Qviscous - ffpV e dA + p (f * V) dV + Wviscous

V A V (A.7)

= p ( e+ ) dV+ p (e+f) V.dA

V A

where 4 represents the volumetric rate of heat addition per unit mass, Oviscous denotes the

rate of heat addition to the control volume due to viscous effects, f is the net body forces per

unit mass exerted on the fluid inside a finite control volume V, e is the internal energy, and

Wviscous denotes the shear stresses on the control surface. To complete Equation (A.7), the

rate of work delivered by a shaft can be added to the left side, and if the change in height is

important, the potential energy per unit mass can be added to the total energy.

Equation (A.7) expresses the energy equation in integral form applied on a finite space

and is a scalar equation. This equation is essentially the first law of thermodynamics. The

advantage of this form, just as for the continuity equation and the momentum equation, is that

aerodynamic phenomena over finite region of space can be related without being concerned

about the details of precisely what is happening at a given distinct point in the fluid flow. This

form will be used in Appendix C when a quasi steady analysis is performed on a finite control

volume.

However, when we perform a CFD analysis of a fluid flow, as mentioned for the continu-

ity equation and for the momentum equation, another equation is needed that relate flow prop-



erties at a given point. In this case, the integral form as expressed in Equation (A.7) can be

transformed into another form which does relate flow properties at a given point by applying

the divergence theorem to the surface integrals, collecting all terms inside the same volume

integrals, and setting the integrand equal to zero. After rearranging the terms, Equation (A.7)

becomes

p e+ +V p e+-- V (A.8)

= p4 - V * (pV) + p (f * V) + Q'viscous + /viscous

where Q'viscous and Wviscous represent the proper forms of the viscous term.

A.2 Equation of State

Six unknowns u, v, w, p, p and e appear in a problem with unknown heat transfer and body

forces. The conservation laws provide five equations. In order to obtain the closure of these

equations, one more equation is needed. Therefore, the equation from the thermodynamic

state of the fluid is added. Also, the static enthalpy per unit mass h and the total enthalpy per

unit mass h, are defined by

h = e+ h = e+ + (A.9)
P 2 P

For a perfect gas the following thermodynamic relations can also be written

de = cvdT dh = cpdT

R
CV  - (A.10)

yR
CP

where R is the gas constant, y is the ratio of specific heat, c, is the specific heat capacity under

constant volume, and cp is the specific heat capacity under constant pressure.
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In order to derive the equation of state, it is required that the internal energy be zero when

the absolute temperature is zero which means that

e = cvT. (A.11)

Now the equation of state takes the form of

p = pRT or p = p(y-1)e. (A.12)

Thus, the six equations that solve the problem are the equations of conservation of mass,

Equation (A. 1) or Equation (A.2), the three equations of conservation of momentum, Equa-

tion (A.3) or Equation (A.4), the equation of conservation of energy, Equation (A.7) or Equa-

tion (A.8), and the equation of state, Equation (A. 12).

A.3 The Navier-Stokes Equations

The Navier-Stokes equations are the equations of conservation of momentum, given by Equa-

tion (A.5). However, in CFD it is customary to combine the conservation of mass, conserva-

tion of momentum, and conservation of energy to the equation of fluid dynamics, also referred

to as the Navier-Stokes equations and written in matrix form as

U aF aG E
T +T+ + 0, (A.13)

wheret U, F, G, and E are five-component vectors given by

where U, F, G, and E are five-component vectors given by
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pu
P 2
pu pu +p- t xx

U = pv F= puv - xy
pw puw -r ,X
pet (pe t +p) u - Urxx - V'xy - WTXZ + qx

pv

pvu - Tyz

2
G = pv + p - Ty (A.14)

pvw - 2yz

(pet +p) v - uy x - yy - Wy z + q

pw

puw - Tzx

E = pvw - zy
2

pw + p - zz

(pe t + p) w - uozz - Vzy - W'tzz + qz

Closure is obtained by the equation of state, Equation (A. 12). The two-dimensional form

of the equations in x and y can be obtained from the above three-dimensional equations be

deleting the vector E, the fourth row in the remaining vectors, and all the terms containing w,

c,, rz, and 2z

The Navier-Stokes equations are a mixed set of hyperbolic-parabolic equations in time. If

the unsteady terms are dropped, then the equations become a mixed set of hyperbolic-elliptic

equations, which are much harder to solve. Thus, in most cases the unsteady form of the equa-

tions is used even for steady flow computations, and the solution is obtained by marching the

solution in time until convergence is reached.
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A.4 The Euler Equations

The Euler equations are also derived from the conservation of mass, conservation of momen-

tum, and conservation of energy equations but with the assumption that the fluid is inviscid.

These equations are now obtained from the Navier-Stokes equations, Equation (A.13) and

(A. 14), by deleting all the viscous and also the heat transfer terms, which are of the same mag-

nitude. It is also customary to write the system of equations in matrix form:

aUE aFE aGE aEE
S+x + + - 0, (A.15)
t x ay ay

where UE, FE, GE, and EE are five-component vectors given by

p pu
2

pu pu +P
UE = pv FE = puv (A.16)

pw puw
Pet. (pet +p) u

pv pw

pvu puw

GE= V +p EEp
2

pvw pw +p

(pe t + p) v (pe t + p) w

Closure is obtained by the equation of state, Equation (A.12). The two-dimensional form

of the equations in x and y can be obtained from the above three-dimensional equations by

deleting the vector EE and the fourth row in the remaining vectors.

The Euler equations are a set of hyperbolic equations in time. If the unsteady terms are

dropped, the equations become elliptic for subsonic flow and hyperbolic for supersonic flow.
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A.5 The Solution of Fluid Dynamic Equations

The Navier-Stokes equations and the Euler equations do not have analytical solutions for most

of engineering interest. The solutions of the above equations, or other equations derived from

the above equations with various assumptions, are solved on a computational grid around the

geometry of interest with the appropriate boundary conditions.

The field of CFD is progressing rapidly. In the past few years considerable advances have

been made in methods for finding a solution for the Navier-Stokes equations and Euler equa-

tions. These methods employ finite-difference, finite-volume, finite-element, and spectral

methods. However, the large majority of these methods deal with a steady flow field with

time-marching to convergence. This means that although the unsteady and therefore time-

dependent equations are used, the boundary conditions that are applied are for steady flow,

and the solution converges to the steady flow solution.

Four problems appear in the implementation of numerical methods for the solution of

unsteady flows in turbomachinery. The first problem, which also appears in steady flows and

is the easiest to deal with, is the arrangement of the computational grid so that periodic condi-

tions are applied to simulate the passages between blades in one cascade. The second problem

is to find the correct boundary conditions at the inlet boundary and at the outlet boundary of

the computational flow field. The third problem appears in the modelling of time-averaged

periodically unsteady flows such as the shedding of the wakes from upstream blade rows. The

spatial and temporal periods of these sources of unsteadiness are for general geometries dif-

ferent from the periodicity imposed for successive blades in one blade row. The fourth prob-

lem is the modelling of the random and chaotic unsteadiness due to the turbulent nature of the

boundary layers. This problem is too complex for current computational. methods and com-

puter capabilities, but some attempts at modelling simple geometries have appeared.
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Appendix B

Computation with UNSFLO

This appendix presents the non-dimensional analysis used in UNSFLO, the input variable

needed for the computations, the file structure used in UNSFLO, and the programs needed to

obtain the final plot of forces and moments used in the research. Therefore, the first section

summarizes the reference quantities that are needed for the non-dimensional analysis, the

dependent variables, and the second section gives the procedure for running UNSFLO with its

file structure and program structure.

B.1 Non-Dimensional Analysis of the Equations

The reference quantities that are needed in the computer program UNSFLO for the non-

dimensional analysis to solve the equation of fluid dynamics are given in Table B. 1.

Reference Quantities Defined as

Lref reference length (left to the user)

Uref  reference velocity inlet relative stagnation speed of sound

Pref reference density inlet relative stagnation density

Pref reference pressure inlet relative stagnation pressure

Table B.1: Reference quantities needed to non-dimension the dependent variables
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Reference Quantities Defined as

RE = PrereAref Reynolds number reference quantities
Pref

tref reference viscosity temperature that is nondimensioned by
the inlet relative stagnation temperature

Uref

Period = refx dim.period period of oscillation
Lref

Table B.1: Reference quantities needed to non-dimension the dependent variables

B.2 Flow of Data between Programs and Data Files

Table B.2 shows the flow of input and output data between the programs in the UNSFLO suite

and their corresponding data files that were required for purpose of this study. Figure B.1

shows schematically the necessary input files and the sequence of the programs which must

be executed to calculate an unsteady wake/rotor interaction.

Programs Input Output Run by Typing

GRDINI blade.xxx grid.xxx grdini p p2

UNSFLO grid.xxx input.yyy flow.yyy (for steady) unsflo p2 p3

HSTPLT hist.yyy hstplt yyy

FLOPLT grid.xxx flow.yyy floplt p2 p3

FGMULT grid.xxx flow.xxx grid.www flow.zzz fgmult p2 p3 p4 p5

UNSFLO grid.www flow.zzz flou.zzz (for unsteady) unsflo p4 p5

UNSFFT grid.www flou.zzz four.zzz unsfft p4 p5

UNSIFT grid.www four.zzz flou.zzz unsift p4 p5

UNSPLT grid.www flou.zzz unsplt p4 p5

Table B.2: Programs in UNSFLO and the data files corresponding to the programs
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* GRDINI is the grid initialization program which calculates the grid coordinates from
the blade geometry.

* UNSFLO is the main program which calculates the steady or unsteady flow field for
the grid coordinates and the input data.

* HSTPLT is a plotting program that displays the iteration history.

* FLOPLT is a plotting program which displays the steady flow field.

* FGMULT creates a multi-passage grid and a multi-passage flow field from a single-
passage grid and flow field.

* UNSFFT calculates the Fourier transform of the unsteady flow field at each grid node.

* UNSIFT calculates the inverse Fourier transform which is the opposite to UNSFFT.

* UNSPLT is the plotting program which displays the unsteady flow field and the time-
integrated quantities.
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Figure B.1: Computational procedure and programs for the computer program UNSFLO

110



Appendix C

Detailed Derivation of Quasi-Steady

Momentum Analysis

The purpose of this section is to give a detailed derivation including all the assumptions used

to obtain the final equations that are used for the quasi-steady momentum analysis. The itera-

tive procedure to solve these final equations is given in Section 3.2: Equation and Solution

Procedure for Quasi-Steady Momentum Analysis.

Assuming that the conservation of mass, conservation of momentum, and conservation

of energy holds, that the nature of the fluid is a continuum, that no work is delivered

through a shaft, and the size of the control volume is small so that the height is not impor-

tant, then Equation (A. 1), Equation (A.3), and Equation (A.7) are obtained and are rewritten

here once more.

t pdV + p V*dA = 0 (C.1)
V A

ffJpV dV + pV V dA = -F- pdA + jpfdV + Fviscou s  (C.2)
V A A V
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(pdV + viscous - pV * dA + :p (f * V) dV +viscous

V A V (C.3)

= jp e+ V2)dV+ fp(e+ VV dA

V A

Assuming that the flow is steady, so that the flow variables are a function of spatial loca-

tion only, Equation (C. 1) through (C.3) reduce to

p pV*dA = 0, (C.4)

fpV VodA =-F- pdA + pfdV +Fviscou s ,  (.5)
A A V

ipdV + Qviscous - pV . dA + ff p (f * V) dV + viscous

V A V . (C.6)

= p (e+f V*dA

A

Furthermore, assuming that the body forces and surface forces except pressure forces

are zero, and that all the viscous effects, viscous, can be neglected, then Equation (C.5) and

(C.6) can be reduced to

pV VV dA = -F-# pdA, (C.7)
A A

4pdV = P(e+ V*dA. (C.8)

V A A

The energy equation (C.8) contains a rate of volumetric heating, and by assuming that

there is no heat addition, 4 = 0, Equation (C.8) can be reduced to
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- pV dA = p(e + V * dA. (C.9)

A A

When now the flow is only allowed to cross the inlet and exit of the rotor cascade and

that the density, velocity, and pressure are uniform across the inlet and exit, the remaining

of the continuity equation, Equation (C.4), the momentum equation, Equation (C.7), and the

energy equation, Equation (C.9), reduce further to

A 2 P2 . Vrel,2 *COS2 - A l, p , Vrel,i *COSPI = 0, (C.10)

Fx = A 2  [P 2 + P2 " (Vrel,2" COS 2) 2] -A 1  [P 1
+  1 - ( V rei,l cosI3) 2]

(C.11)

Fy = A2 P2 - Vel,2 COS 2 Sin 2 - A• p I V2 el, • cos 1 sin 1

2el,2
P2 * Vrel,2 COS 2 P2  e 2 ) Vrel,2 COS02 (C.12)

r rel'l
-Pl . Vrelj ' cosPl +1 e + 2 Vrel,1 - cos

where the cosine and sine of relative inlet and relative exit angles, 01 and 32, appear from the

evaluation of the dot product of two vectors. F, and Fy are the axial and tangential forces,

respectively, Vrl, and Vel,2 are the relative velocities for inlet and exit, respectively, and pi

and P2 are the static pressures at the inlet and exit, respectively. Also, in the previous equa-

tions it is assumed a 2-dimensional flow.

The continuity equation, momentum equations, and energy equation give four equations

which involve five dependent variables: p, p, Ve l, 0, and e. A fifth equation can be obtained

from a thermodynamic state relation for e. Therefore, it needs to be assumed that the tempera-

tures are moderate (for air T < 1000K), so that the specific heats are reasonable constant

which implies a calorically perfect gas; therefore,

e = cvT, (C.13)

where c, is the specific heat capacity under constant volume as stated earlier. Equation (C. 13),

however, introduces temperature as yet another dependent variable, but the system can be
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completed by using the perfect gas equation of state

p = pRT (C.14)

where R is the gas constant as stated earlier. With the above two equations, Equation (C.12)

can be simplified even more to

P2  e, PiY-1 e,

All four equations that were obtained from the above derivation, namely, the continuity

equation, Equation (C. 10), the momentum equations in x and y direction, Equation (C. 11), the

energy equation, Equation (C. 15), which also include the equation of state, Equation (C. 14),

have 12 variables, A , pl, pl, V,,1, P1, from the flow into the control volume at station 1, A2,

P2, P2, Vrel,2, P2, from the flow out of the control volume at station 2, and the axial force, F,

and tangential force, Fy When the flow into the control volume is now prescribed, the 12 vari-

ables reduce to seven unknowns which are the variables from the exit flow of the control vol-

ume and the two forces.

For the derivation of the energy equation, Equation (C.15), we assumed that the flow is

adiabatic, a process in which no heat is added or taken away. If we assume further that the

flow is also reversible, a process in which no frictional or other dissipative effects occur, then

the combination of adiabatic process and reversible process gives another equation which

combines thermodynamics and compressible aerodynamics, namely, that of an isentropic

flow. With this isentropic flow assumption the following equation can be written:

P2 12 7 (C.16)

where the pressure is directly related to density through the isentropic process. Now, to evalu-

ate the fluid flow, five equations exist but there are still seven unknowns.

The inlet area, A1, and the exit area, A2, of the rotor cascade are parameters that are given

by the geometry of the NASA Rotor 35 and which were presented in Section 2.3.1: Airfoil

Geometry. Therefore, five equations for six unknowns are left, and one more variable from

the unknowns need to be prescribed. This variable from the set of unknowns is the exit angle,
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P2, which means that the relative exit angle has to be known before the forces of the fluid flow

can be calculated. For a description in how this exit angle is chosen refer to Section 3.2: Equa-

tion and Solution Procedure for Quasi-Steady Momentum Analysis. Now, there are as many

equations as there are unknowns, and the fluid flow can be solved.
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Appendix D

Computed Results from UNSFLO

This appendix presents the results of the unsteady forces, in the x and y direction, and

unsteady moment, in the z direction, computed and exported from UNSFLO for each of the

radial positions, 88% span and 100% span. The unsteady forces of these figures are non-

dimensioned with the density, p, the square of wheel speed , (r(Q) 2, and the aerodynamic

cord, C. The unsteady moments of these figures are non-dimensioned with the density, p, the

square of relative inflow velocity, (rQ) 2, and the square of aerodynamic cord, C2 . These

results are discussed in Chapter 4: Results and Discussion.

117
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Axial Force per Unit Span at 100% Span
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Tangential Force per Unit Span at 88% Span
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Tangential Force per Unit Span at 100% Span
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Moment per Unit Span on Leading Edge at 88% Span
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Moment per Unit Span on Leading Edge at 100% Span
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Axial Force per Unit Span at 100% Span
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Tangential Force per Unit Span at 88% Span
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Tangential Force per Unit Span at 100% Span
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Moment per Unit Span on Leading Edge at 88% Span
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Moment per Unit Span on Leading Edge at 100% Span
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