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ABSTRACT

The defense aerospace industry is currently in a phase of shrinking procurement budgets
brought on by the end of the Cold War and pressures to reduce the national deficit and
balance the Federal budget. Consequently, the Department of Defense has shifted its
product development emphasis from system performance to system affordability.
Simultaneously, software has become increasingly important for implementing
functionality in new systems and sometimes dominates total product development costs.
The challenge for industry is to implement new processes and technologies that will allow
the reliable, repeatable development of high quality software at reduced cost. One emerging
practice capable of meeting this challenge is the software factory.

A software factory is an industrialized approach to software development which exploits
technologies such as automatic code generation tools to secure cycle time reductions and
quality improvements. Software factories also generate longer term savings by producing
reusable assets suitable for future applications, allowing an organization to achieve
economies of scope.

This thesis presents an overview of numerous technology development efforts in the
aerospace industry which facilitate software factory development. A detailed case study of
United Technologies is also presented. Productivity and quality metrics were collected to
support a comparative analysis of the development of electronic engine control system
software for the PW4000 Current and PW4000 Growth aircraft engines, which employed
traditional and factory development methods respectively. Data reported by additional
companies experimenting with software factory development has been compiled indicating
that an immediate productivity improvement of 45% is consistent for the industry.

Despite clear successes, software factory processes are not in widespread use across the
industry and experiences have been focused on a rather narrow range of applications for
guidance, navigation, and control systems. Software factory processes have also been
primarily applied in demonstration projects. Yet there are no insurmountable reasons why
the software factory could not be applied to other software domains and production
programs. This thesis closes with a discussion of challenges facing the widespread use of
the software factory and the role policy plays in promoting its adoption.
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Chapter 1: Introduction

The United States military has become dependent on all types of computer systems

to accomplish its mission as shown in Table 1.1. In 1995 alone, the Department of Defense

spent nearly 43 billion dollars to purchase computer systems (STSC, 1994). Only 7 billion

of this expenditure purchased hardware, with the remaining 35 billion dollars going

towards the development and maintenance of software. Software has become the major

factor affecting the cost of computer systems and the cost growth in software has also

outpaced the cost growth in hardware. Figure 1.1 shows the costs for all Department of

Defense computer systems for a period from 1985 to 1995 (STSC, 1994). Hardware costs

increased by a factor of 2 while software costs increased by a factor of 3.

One of the many types of DoD software contributing to this cost growth is the real-

time software embedded in weapon systems such as aircraft. Real-time embedded software

has become increasingly important for implementing avionic systems functionality in all

types of aircraft. Avionic systems in modem defense aircraft are highly sophisticated and

complex. They are composed of multiple subsystems (navigation, radar, flight control,

engine control, warfare systems, etc.) distributed over multiple processors throughout the

aircraft. Software is embedded into each subsystem and is used to provide for overall

system integration, making it critical to both the mission and safety of the aircraft. The

increasing dependence of aircraft systems on embedded software is evident in Figure 1.2

(Babel) which illustrates an exponential growth of on-board memory size.

The growth in development costs and the amount of software to be developed have

combined to form a major challenge for the aerospace industry: to develop high quality

software in a reliable, repeatable manner while improving productivity. New processes and

technologies are constantly being implemented to meet this challenge. One emerging



Table 1.1 Types of DoD Computer Systems

Embedded Systems

Command and Control Systems

Intelligence and Cryptological Systems

All other weapon

Information System Resources

Automated Information Systems

Information Resource Management

All other non-weapon

Figure 1.1 Annual Costs of DoD Computer Systems (all types)
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Figure 1.2 Growth of Aircraft Software

practice, attempting to change the nature of software development from a craft to mass

production, is the software factory.

Many organizations within the aerospace industry have begun to build software

factories. A software factory is an industrialized approach to software development with the

goal of using systematic reuse of design specifications to achieve economies of scope. This

thesis takes an in depth look at the software factory and the technologies which support

software factory development in an attempt to determine the impact they are having on the

industry.

Outline of Thesis

Chapter 2 provides the context for the thesis by presenting an overview of the

development of software for Department of Defense weapon systems. The chapter also

introduces the concept of a software factory in greater detail. Added emphasis is given to
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supporting practices such as the integration of computer-aided software engineering

(CASE) technologies into a software factory environment and the use of automatic code

generation.

Chapter 3 presents an overview of numerous technology development efforts in the

aerospace industry. A description of integrated environments and CASE technologies

developed by aerospace corporations, commercial tool vendors, and government agencies

is included. Common characteristics of the technologies resulting from these parallel efforts

are compiled.

Chapter 4 discusses experiences within the aerospace industry with using these

technologies and other software factory practices. A case study of software factory

development at United Technologies forms the bulk of this chapter. Software developed for

similar products and created by different development practices (traditional and factory)

forms the basis of a comparative analysis. This analysis quantifies the impacts of factory

practices on the productivity and quality of the development process. Data from additional

companies has also been compiled in an effort to determine if the experiences of United

Technologies are consistent with others in industry and to identify the expected benefits of

implementing a software factory.

Chapter 5 begins with a summary of observations and findings. A diffusion model

illustrating the widespread industry adoption of the software factory for production

programs is presented and followed by a discussion of issues requiring resolution. The

thesis concludes with policy recommendations and the identification of areas for further

research.
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Chapter 2: Defense Software Development and the Software Factory

A major challenge for the defense aerospace industry is to develop high quality

software in a reliable, repeatable manner while improving productivity. New processes and

technologies are constantly being developed to meet this challenge. These developments

have led to the emergence of the software factory. This chapter establishes the context for

the thesis by presenting an overview of the development of software for Department of

Defense weapon systems and providing a detailed introduction to the software factory and

its supporting practices.

Software Development in the Aerospace Industry

Software development in the aerospace industry has been greatly influenced by the

acquisition management practices of the Department of Defense. These practices include the

creation of standards for software development and documentation; such as DOD-STD-

2167a, DOD -STD-7935a, DOD -STD-1703, and MIL-STD-498; and the evaluation of the

software development capabilities of government contractors. Standards are used to guide

the activities of defense contractors by defining processes, methods, and engineering

practices. Although recently superseded for new system acquisitions by MIL-STD-498, the

long-standing DOD-STD-2167a had been the primary standard and has had a significant

impact on software development. It specified the process for developing mission critical

software for all military systems and defined standards for requirements specifications,

traceability and documentation.

Figure 2.1 illustrates the life cycle and structured approach specified in DOD-STD-

2167a. The process starts with users and systems analysts defining system level

requirements for a hardware/software system, after which separate parallel hardware



Hardware (HWCI) Development

Software (SWCI) Development



and software development efforts begin. Hardware and software requirements analyses are

conducted to determine partitioning, with traceability back to all system requirements.

Requirements analysis is followed by the design phase, broken into preliminary and

detailed design. The preliminary design phase defines the software architecture and

allocates software functional requirements to program modules. The detailed design phase

defines the internal specifics of each module and intermodular interfaces. The designs

require implementation and testing. Implementation includes coding, debugging and re-

coding (if necessary) while testing involves increasing levels of integration. First individual

software modules are tested, followed by the testing of a complete software build. Finally

the hardware and software are integrated and tested as a system. The maintenance phase

occurs after the system is deployed. This phase primarily involves defining improvements

and new system requirements, but may also find errors not detected during testing.

The DOD-STD-2167a process reflects a classic waterfall life cycle which implies

that each phase is completed only once and in sequence. In reality, developing software is a

very iterative process with many phases occurring simultaneously. Correct and complete

requirements are rarely fixed when system development begins. Iteration allows re-

evaluation of requirements until operational needs are fully met. Many other life cycle

models have evolved from the waterfall model to capture the iterative nature of the software

development process. These include the iterative waterfall, the spiral and the prototyping

models. Additionally, new software development processes have been developed such as

object-oriented programming, which advocates a bottom-up methodology.

The Department of Defense has recently issued MIL-STD-498 to accommodate

these new life cycle models and development methods. This new standard specifies

requirements for 19 activities, Table 2.1 (Defense Acquisition University, 1996). It

emphasizes flexibility by stating that these activities may overlap, can be applied iteratively,

can be applied differently to different types of software, and need not be performed in the



Table 2.1 MIL-STD-498 Software Development Activities

1. Project Planning and Oversight

2. Establishing a Software Development Environment

3. System Requirements Analysis

4. System Design

5. Software Requirements Analysis

6. Software Design

7. Software Implementation and Unit Testing

8. Unit Integration and Testing

9. CSCI Qualification Testing

10. CSCI/HWCI Integration and Testing

11. System Qualification Testing

12. Preparing for Software Use

13. Preparing for Software Transition

14. Software Configuration Management

15. Software Product Evaluation

16. Software Quality Assurance

17. Corrective Action

18. Joint Technical and Management Reviews

19. Other Activities

listed order. MIL-STD-498 is consistent with the acquisition reform initiatives of Defense

Secretary William Perry who stated standards should be viewed as tools for guidance

instead of strict requirements.

Regardless of which software development process an organization selects, the

organization must have an effective management capability in order to repeatedly adhere to

the process. The Software Engineering Institute has created a framework for describing an

organization's process capability called the Capability Maturity Model for Software (Paulk,



1993). The Capability Maturity Model (CMM) includes five maturity levels which describe

a path from ad hoc, chaotic processes to mature, disciplined software processes.

The five maturity levels of the CMM are:

1) Initial: The software process is characterized as ad hoc, and

occasionally even chaotic. Few processes are defined, and success depends

on individual effort.

2) Repeatable: Basic project management processes are established to

track cost, schedule, and functionality. The necessary process discipline is

in place to repeat earlier successes on projects with similar applications.

3) Defined: The software process for both management and engineering

activities is documented, standardized, and integrated into a standard

software process for the organization. All projects use an approved, tailored

version of the organization's standard software process for developing and

maintaining software.

4) Managed: Detailed measures of the software process and product

quality are collected. Both the software process and products are

quantitatively understood and controlled.

5) Optimizing: Continuous process improvement is enabled by

quantitative feedback from the process and from piloting innovative ideas

and technologies.'

The CMM is used as a map for either a software process assessment or a software

capability evaluation to appraise the maturity of an organization's execution of the software

process. Software process assessments are used to determine the state of an organization's

current software process, to determine the high-priority issues related to the organization's

software development process, and to obtain the organizational support for software

process improvement. Software capability evaluations are used by the Department of

Defense to identify contractors who are qualified to perform the software work or to

'Paulk, Mark C.; et al: The Capability Maturity Model For Software, Version 1.1, Software Engineering
Institute Report No. CMU/SEI-93-TR-24, Carnegie Mellon University, 1993, Chapter 2.



monitor the state of the software process used on an existing software effort. Software

capability evaluations are typically conducted by independent evaluation teams.

Problems Affecting Software Development

Difficulties persist with weapon systems software development despite Department

of Defense efforts to positively influence software development management by defense

contractors. Traditional software development is characterized by a hand-crafted approach

with different specialists responsible for separate phases (i.e. requirements analysis,

design, implementation, test and maintenance). The numerous problems with this

approach, Table 2.2 (Hopkins, 1993), result in the introduction of errors, Figure 2.2

(Babel). The labor intensive nature of the craft approach also affects quality, which is

difficult to maintain and control when large development teams are required, and often

results in diseconomies of scale. It is common for average productivity to decrease as the

number of developers on a project increases. Frequently, the end result is cost and schedule

overruns as all detected errors must be removed before high quality software can be

fielded.

People, process, and technology are the major determinants of software quality and

productivity, Figure 2.3 (Over, 1992). Together these three form the leverage points which

must be addressed in order to attack the problems of traditional software development and

reduce costs. One such holistic approach to software development is the software factory.



Table 2.2 Major Problems of Traditional Software Development
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Logic Design
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Figure 2.2 Software Error Types During Weapon System Development

Figure 2.3 The Three Leverage Points of Software Development
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The Software Factory

A software factory is an industrialized approach to software development with the

goal of using systematic reuse to achieve economies of scope, Table 2.3. Economies of

scope can be achieved within a software organization by reusing software assets across

multiple projects. Software factories are characterized by the extensive use of highly

integrated computer-aided software engineering (CASE) technologies to form environments

supporting process automation, with electronic repositories to store and retrieve software

assets. By using standardized automation based development processes, software factories

are able to leverage the efforts of personnel toward the early phases of development and

implement product teams. Additionally, commitments to continuous improvement and

strategic management insures that the factory incorporates the latest development techniques

and technologies. Strategic management also involves establishing productivity goals for

the software factory and actively addressing any organizational resistance to factory

implementation.

Table 2.3 Elements and Objectives of the Software Factory

ELEMENTS OBJECTIVES

* Product-Line Application Development

* Domain Engineering

* Integrated Environments and
Electronic Repositories

* Systematic Reuse
* Integrated Product Teams *Economies of Scope

and Training

* Continuous Improvement

* Strategic Management with
Productivity Goals



Product-Line Application Development and Domain Engineering

Software factories achieve reuse across projects by focusing on a single product

line aided by domain engineering. A product-line is a family of systems that possess similar

functionalities and share a common architecture. A software-intensive product-line can be

either narrowly defined, such as radar systems or GPS-based navigation systems, or more

broadly defined, such as fighter aircraft or airlifter. Product-line application development

creates new software systems by incrementally building or extending from a common

architecture through the assembly of reusable assets.

To support product-line application development, software assets (specifications,

code, etc.) must be designed with reuse in mind, which is made possible by domain

engineering. A domain is a distinct functional area within an underlying set of common

requirements and capabilities. Control systems is an example of a software domain. There

may be more than one domain within a given product-line and a given domain may support

multiple product-lines.

Domain engineering involves those engineering activities necessary

to implement a planned, systematic, product-line based reuse strategy. This

strategy often includes: economic analysis, domain scoping and domain
analysis, domain specific architecture design, reusable component

development, domain-specific software tool development, and reuse
process definition and documentation. ... Domain engineering defines

which processes, methods, tools, and procedures to use to engineer the
software product.2

2 Software Technology Support Center (STSC): Guidlines for Successful Acquisition and Management of
Software Intensive Systems, Version 1.1, U.S. Air Force, February, 1994, p. 4-6.



Computer-Aided Software Engineering Technology

Computer-Aided Software Engineering (CASE) is the use of support tools to

automate much of the software development process. Automation of the implementation

and testing phases can be used to reduce the overall labor requirement, significantly reduce

errors introduced during coding, and provide leverage toward the front-end stages of the

process. Additionally, providing automated support for analysis and design can eliminate

many of the errors that occur during the requirements stage of development while

improving the reuse of software components. Jones and Turkovich provide further

emphasis on the benefits of automation technology:

In order to achieve significant reductions in software costs it is

necessary to treat the software problem not merely as a managerial problem

but as a technological problem. By doing so, the software development

process becomes automation based, as opposed to automation assisted. This

automation based system is supported with knowledge acquired by experts

as they interact with the system in operation. In this way, software

development leverages accumulated knowledge that can be used from

application to application. Instead of people acting as bottlenecks in a flow

to analyze functionality, they serve to fine-tune accumulated knowledge as

appropriate on new projects.3

There are many uses for CASE technology. CASE technology can be used to

enforce process control, ensuring that the process is disciplined and repeatable, and to

automate source code generation, eliminating manual errors and reducing the need for

debugging. Other labor-intensive tasks can also be automated, allowing software

development by small teams while leading to a reduction in cycle time and a shift of focus

to requirements analysis rather than implementation. CASE technology can also be used to

3 Jones, Denise; and Turkovich, John; et al: "Automated Real-Time Software Development," Proceedings of
the 3rd National Technology Transfer Conference & Exposition, NASA Conference Publication 3189,
Volume 2, 1993, p. 184.



collect metric data, facilitating process improvement and schedule and cost estimation.

However, before CASE technology can be introduced to improve both the quality and

productivity of a software development process, the process must be clearly defined and

should reflect the fundamentals of engineering practice. Furthermore, to fully benefit from

all the capabilities of CASE technology, extensive integration into a cohesive software

factory environment is required.

Integrating CASE Technology into a Factory Support Environment

CASE technology includes both individual CASE tools and integrated CASE

environments. There are two nonexclusive approaches to improving software quality and

productivity, a micro-management approach and a macro-management approach (Sage and

Palmer, 1990). A micro-management approach attempts to achieve incremental

improvements in the various phases of a software development process but leaves the

overall process unchanged. A macro-management approach is systemic and holistic,

attempting to achieve improvements by addressing the software development process in its

entirety. Implementing individual CASE tools is a micro-management approach that

frequently fails to achieve the desired results. A software factory requires an integrated

environment to support and facilitate its practices.

Keith Bennett compiled a collection of research papers in his book on software

engineering environments (Bennett, 1989). In the first part of Bennett's book, dedicated to

Software Factories, Christer Fernstrom's chapter reemphasizes the need for a holistic

approach to integration while discussing the evolution of CASE technology integration

towards a Software Factory Support Environment:

Many development activities have, of course, long been supported

by tools, and recent years have seen improvements in increased coverage
and in tool quality. But it is still mainly the responsibility of the individual to

effectively coordinate the use of tools. As the word 'tool' implies it is an
approach to craftsmanship.



The need for a more industrial approach has long been recognized. It

has been one of the major driving forces behind the increasingly ambitious

efforts to tool integration. An early example of this is the integration of a

compiler, and editor and a debugger into a Programming Support

Environment. The next step was the inclusion of design tools, version

management capabilities, document support, etc. into what is known as

Software Development Environments. Now emerging IPSEs (Integrated

Project Support Environments), providing total coverage for a whole

project, including for example project management support, represent the

next step.

A Software Factory represents yet another step. As the word

'factory' implies it aims at a more industrialized approach to software

production. In particular, the Software Factory differs from the previous

steps in that it represents a 'people centered view', because it is not only a

support environment; it also explicitly includes the integration of people and

their 'corporate knowledge'; their organization, their rules and policies, their

methods etc.

The inclusion of people into the system under consideration puts a

very important interface in focus: the interface between the people part of the

factory and the non-people part - the Factory Support Environment (FSE).

The effectiveness of the entire factory is crucially dependent on the quality

of this interface, because it determines whether the FSE is a true support to

the organization.4

Implementing integrated CASE environments, such as a Factory Support

Environment, is a macro-management approach. Integration is key to achieving significant

improvements in quality and productivity. Figure 2.4 shows the four important forms of

integration required to create a fully integrated CASE environment - process, team,

management, and tool (Bell and Sharon, 1995).

4 Bennett, Keith (ed.): Software Engineering Environments: Research and Practice, Ellis Horwood Ltd.,
1989, p. 18.



Figure 2.4 Forms of CASE Integration

Process integration refers to using CASE tools that collaborate specifically to

support the process and span the process life cycle. The process should not only identify

the phases and tasks of software development but it should also identify the tools for each

task and the sequence of their use. The tools should also provide for configuration control.

Team integration, or organizational integration, refers to integrating the Factory

Support Environment and the organization. For example, tools can be used to electronically

network software development teams. The tools should provide for communication and

shared access to data while maintaining data integrity. Team integration provides for the

"people centered view" of a software factory.

Management integration refers to using CASE tools to control and monitor software

development. The tools should collect cost, productivity and quality metrics to allow

management of schedules and budgets and facilitate improvement initiatives.



Tool integration refers to using CASE tools that share user-interfaces, data and

functionality. A detailed discussion of tool integration is presented in the next section of

this thesis.

The four forms of integration capture the essential capabilities of an integrated

CASE environment: process management, project management, requirements management,

configuration management, document management, a repository, and project verification

and validation. In addition, the environment should be flexible, extendible and capable of

supporting an organization working on multiple projects.

CASE Tool Integration

Of the four forms of integration, tool integration has been the subject of greatest

focus. Tool integration addresses the mechanisms of linking individual CASE tools

together. There are three dimensions of tool integration - user-interface or presentation

integration, data integration and control integration. User-interface integration refers to

using a common look and feel among various CASE tools to facilitate ease of use and quick

learning. Data integration refers to the representation, conversion and exchange of data in a

common standard. It determines to what degree data generated by one tool can be accessed

and understood by another. Control integration refers to tool invocation, shared

functionality, and the ease of communications between tools. Data and control integration

are closely related because tools share functionality by exchanging control messages that

contain data and data references. Tools are called interoperable when full data and control

integration exists between them.

Figure 2.5 shows three levels of tool integration (Bell and Sharon, 1995), which

are dependent upon how the tools are developed. Level 1 encompasses tools developed

individually. Such tools are likely to have common user interfaces and data import/export

formats but are unable to share a single repository. Level 2 encompasses tools developed as

a suite. They are tightly integrated and optimized amongst themselves but their integration
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Figure 2.6 NIST/ECMA Reference Model

with other tools remain at a Level 1 capability. Level 3 encompasses tools developed to

meet formal interoperability standards such as accredited ANSI standards. These tools may

have been developed individually but together they are capable of forming a highly

integrated environment.

The "toaster" model, Figure 2.6, represents another form of Level 3 tool

integration. The "toaster model" is a reference model for an integrated environment

developed by the National Institute of Standards and Technology in conjunction with the

Europe Computer Manufacturers Association. The model is not an implementation but

rather a conceptual framework that includes a catalog of services an environment could

provide (NIST/ECMA, 1993). One goal of the model is to be able to define points at which

interoperability standards may be useful.



Automatic Code Generation

Software factories involve systematic reuse and the use of automation technologies

to leverage efforts toward the early phases of software development. Figure 2.7 shows the

evolution of CASE technology leading to automatic code generation (Fisher, 1988).

Automatic code generation is an emerging CASE technology that aids software factories in

both systematic reuse and leverage by allowing a change in focus from the reuse of code to

the reuse of design specifications, which is potentially more cost-effective.

CASE technologies fall into two general groups, Front-End CASE and Back-End

CASE (Schefstrom, 1993). Front-End CASE, or Upper CASE, includes graphical

notations, editing tools, and other technology developed to support the early requirements

and design phases of the software development life cycle. Back-End CASE, or Lower

CASE, includes compilers, debuggers, and other technology developed to support the later

phases of the life cycle. Figure 2.8 illustrates how automatic code generation bridges the

gap between these two groupings of CASE technology by automating the implementation

phase while taking advantage of existing technologies like compilers and graphical editors.

Automatic code generators must be integrated into any environment if that environment is to

support the full life cycle of software development.

Automatic code generation improves both quality and productivity. Producing

defect free source code eliminates implementation errors which are one-third of the errors

affecting weapon system development, as shown in Figure 2.2. Automating the coding

process, a labor intensive task, is necessary to increase productivity. In fact employing

CASE technology that delivers a design only, requiring manual implementation of code,

can potentially reduce productivity. Employing CASE technology, with full automatic code

generation, can create an environment that will increase productivity and reduce errors.
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Figure 2.8 Automatic Code Generation bridges the gap in CASE Technology

Automatic code generation is the ultimate goal of most CASE tool

vendors and certainly of all CASE tool users. Code generation is the ability

to automatically generate working or compilable software directly from a
design specification. Ultimately, the software designer's time is much better

invested in fleshing out application specifications and architectures rather

than in coding and debugging. Unfortunately truly generalized code

generation is not available but code generation is available in a variety of
focused tools. Code generation is a bottleneck in CASE technology.5

Fisher's assessment still holds today. There is no extensive use of generalized code

generation in the defense aircraft industry. However there are several examples of the

successful use of automatic code generation to create software for aircraft subsystems,

discussed in detail in Chapters 3 and 4. Capable automatic code generators for guidance,

navigation and control subsystems exist. Engineers have historically used block type

diagrams to specify the detailed design of these subsystems. These code generators employ

graphical editors used to create detailed design diagrams and multi-lingual translators used

5 Fisher, Alan S.: CASE: Using Software Development Tools, Wiley, 1988, pp. 30-31.



to convert the diagrams into source code. Details of the programming language are hidden

from the system designer. Automatic code generation also improves productivity by

facilitating component reuse.

Component reuse, of course, does not just mean the reuse of code. It is

possible to reuse specifications and designs. The potential gains from

reusing abstract products of the development process, such as

specifications, may be greater than those from reusing code components.

Code contains low-level detail which may specialize it to such an extent that

it cannot be reused. Designs or specifications are more abstract and hence

more widely acceptable.6

Software factories support component reuse by storing reusable design

specifications in a electronic repository. These specifications can be retrieved from within a

graphical editor to be incorporated into new applications and then automatically translated

into code. If modifications to the specification are necessary, they can be readily created

within the graphical editor. Reuse of design specifications with multi-lingual automatic

code generators does not confine the application to a predetermined programming language.

Also, reuse of design specifications aids portability, allowing the reuse of software across

different operating systems and processors.

Strategic Management

Strategic management is an important aspect in any successful attempt to build a

software factory. The problems plaguing software development are interrelated, difficult to

separate and inherently systemic. Strategic management involves pursuing integrated

solutions by combining organization, process, design, CASE technology and training to

complement and reinforce each other.

6 Somerville, Ian: Software Engineering, Addison-Wesley Publishing Co., 1996, p.396.



This review of problems and solutions in software engineering
suggests several observations. Individual engineers and managers know
what difficulties they are likely to face, and they have a variety of tools,
techniques and concepts to help them. Phases of the development process
are interrelated, however, and large projects require many individuals and
groups to complete and maintain. Meanwhile, companies continue to face
shortages of experienced software personnel and engineers while
programming tasks continue to grow in size, complexity, and costs. The
result is that discrete solutions, such as in the form of stand-alone tools and
techniques, are inadequate to address all the problems organizations face in
managing software development.

Boehm and a colleague reinforced this argument in a 1983 article.
Their studies of software cost and productivity at TRW, as well as of
project performance at other firms, all pointed to the need for
comprehensive, strategic efforts on the part of management. They noted
that, "Significant productivity gains require an integrated program of
initiatives in several areas, including tools, methods, work environments,
education, management, personal incentives, and reusability." As for the
benefits of such an approach, their studies indicated that, "An integrated
software productivity program can produce productivity gains of factors of
two in five years and factors of four in tens years, with proper planning and
investment." Yet they did not suggest firms could achieve such gains easily,
and warned that, "Improving software productivity involves a long,
sustained effort and commitment." 7

When implementing a software factory, management must assume a long-term view

and link process improvements, research and development, training, and organizational

changes to form an integrated approach. Also, clear quality and productivity goals should

be established prior to embarking on any strategic initiatives. Initiatives include the

definition of the product-line, the analysis and standardization of the software development

7 Cusumano, Michael A.: Japan's Software Factory, Oxford University Press, 1991, p. 87.



process, investment in integrated CASE technologies, the active promotion of reuse, and

the mitigation of resistance.

Process analysis and standardization must be completed prior to committing to

specific CASE technologies. The process drives tool selection. Case studies have shown

that building an integrated CASE environment can take years of effort. In addition to

procuring commercially available CASE tools, building an environment may also require

in-house development of CASE tools, which themselves may be specific to a particular

domain of application or product-line. And these tools must be flexible enough to support a

common process and integrated environment for use across multiple projects.

Training is an additional factor which must be implemented as an integral part of

software factory development. Training must include teaching the common process and

tool usage to make the development of quality software repeatable and predictable. An

important focus of training is to improve employee skill-sets by also teaching the principles

of high-level systems design, requirements analysis, team management and

communication. CASE technology can be met with resistance due to the tendency of

automation to reduce skills. But it also breaks barriers of the distinct functional roles

between systems and software engineering. Expanding the focus of training beyond tool

usage is a strategy for leveraging the front-end of the development process. This allows the

linking of CASE technology with organizational changes such as developing software with

small integrated product teams in a product-line approach.

Strategic management also involves attention to reuse. Reuse can also be met with

resistance and must be actively planned for and encouraged before it is likely to become

systematic. Systematic reuse is the highest level of a scale also including ad hoc and

opportunistic reuse.

Ad hoc reuse is a programmer's or workgroup's sporadic use of previously

developed code. There is no defined reuse process for identifying and

exploiting reuse opportunities, and success relies on the individual's

initiative. Opportunistic reuse is characterized by identifying reusable assets



and applying them in a development effort where the software developer
identifies and locates the applicable reuse components. This type of reuse is
generally project-specific where a general reuse requirement is most likely
defined in the project plan. Systematic reuse is reuse planned over a family
of product developments with a robust, flexible architecture, where families
of reusable assets are developed and maintained to provide large-scale
reuse. With this type of reuse, new opportunities for reuse, based on
anticipated customer needs and technology innovation, are created.8

8 Department of Defense: DoD Software Reuse Initiative: Strategic Plan, Document No. PD436.6,
December 14, 1995, Section 2.1.



Chapter 3: CASE Technology Development in the Aerospace Industry

Numerous development efforts have been underway in the aerospace industry to

develop computer-aided software engineering (CASE) technologies that support the

creation of software factory support environments. These development efforts involve the

creation of integrated environments themselves or enabling technologies like automatic code

generation. This chapter provides an overview of some of the development programs and a

description of the resulting environments and enabling CASE technologies.

Technology development has been underway at various places including aerospace

corporations, commercial tool vendors, and government agencies, Table 3.1. Table 3.1

also outlines the order of this chapter. The information presented for United Technologies

is based on numerous visits to Pratt & Whitney Commercial Engines and Hamilton

Standard. The information presented for the remaining companies is compiled from

published reports and articles obtained through library research. This chapter closes by

summarizing the common characteristics shared by the developed technologies.

Table 3.1 Environments and CASE Technology in the Aerospace Industry

Company Environment / Technology

United Technologies Pictures-to-Code

General Electric BEACON

Integrated Systems, Inc. MATRIXx Product Family

McDonnell Douglas RAPIDS

NASA - JSC Rapid Development Lab

Lockheed LEAP

Honeywell DSSA Toolset

Draper Labs CSDL CASE System

Verilog SAO + SAGA



United Technologies / Pictures-to-Code

United Technologies Corporation (UTC) applied an integrated approach to

improving software development through Pictures-to-Code. Pictures-to-Code is a

standardized development process and integrated toolset used to create real-time embedded

software for control systems. With Pictures-to-Code, UTC has been able to decrease cycle

time by approximately 40% while reducing errors by more than 60%. UTC is now using

the Pictures-to-Code process and toolset on 33 programs at Pratt and Whitney, Hamilton

Standard and Sikorsky.

The Pictures-to-Code Process

In 1990, a controls software process improvement team was formed as a strategic

decision to reduce software development cost by 50% and reduce software development

time by 50%. The team included representatives from Hamilton Standard, Pratt and

Whitney Government Engineering, Pratt and Whitney Commercial Engineering and Pratt

and Whitney Canada. The primary software products of these divisions are embedded real-

time programs for aircraft engine controls, environmental controls and fuel controls. Later

their efforts were expanded to include flight controls at Sikorsky.

At each division, software development was driven by the standards of that

division's various customers including the Department of Defense (DOD-STD-2167A), the

Federal Aviation Administration (RTCA/DO-178), Boeing (D6-35071) and the Canadian

Department of Transportation. Recognizing that their existing software development

practices were all basically similar, but tailored slightly to satisfy the standards of their

various customers, the team recommended the implementation of a common software

development process for both military and commercial programs. This common process

would capture economies of scope, facilitate workload balancing, and be used across all

projects and divisions.



The common process follows the familiar waterfall life cycle. The process steps are

iterative with many activities occurring simultaneously. Figure 3.1 illustrates the application

of the process to the development of software for an electronic engine control (EEC)

system. Constrained by customer standards, the common process does not represent a

breakthrough in software development. What is unique, and imposes greater structure to

the process, is the extensive use of a CASE toolset created by UTC to automate and

optimize the process.

The Pictures-to-Code Toolset

In 1990 the UTC Pictures-to-Code Working Group was formed to define a

common integrated CASE toolset to automate the common software development process.

The toolset is common because it is to be used across product lines and divisions.

Requirements for the toolset were derived from the common software development process

and were:

* database management to archive all objects ( software modules,

documentation, etc.)

* configuration management to control and document changes to all

objects

* automated creation of documentation (requirements specifications,

design documents, etc.)

* utilities to create and edit diagrams and text files

* automatic code generator to create source code from diagrams

* compilers, assemblers and linkers

* automated generation of module test cases and command files to

execute them

* automated execution of the module test cases and generation of test

reports

The working group comparatively evaluated the CASE tools used in each division

as well as tools available on the commercial market. This approach made the toolset a

synthesis of the best available tools. A preference was given to commercial tools which are
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Figure 3.2 Functional View of the Pictures-to-Code Toolset

continually evaluated for inclusion in the toolset. Figure 3.2 provides a functional view of

the Pictures-to-Code toolset.

Automated Code Generation with PtC

The core of the toolset is the automated code generator developed by Hamilton

Standard. Hamilton Standard has been involved in controls systems since the 1960's and

develops software for engine, flight and environmental controls. The automated code

generator is based on a picture language. The picture language consists of block diagram

representations used to create software specifications and detailed designs. The automated



code generator translates the picture language into a target source code (Ada, C,

FORTRAN or Assembly).

An important element of the automated code generator is the Graphical Processing

Utility (GPU). The GPU is a graphics editor used to create or alter design diagrams. Each

design diagram is a pictorial representation of a separately compilable software module or

unit. The GPU automatically creates source code from the design diagram and a data

dictionary. The data dictionary defines the data type, ranges, and initialized value for all the

variables of the software program and can be accessed from within the GPU. The GPU

uses the data dictionary to create comment headers and declarative statements and uses the

design diagram to create the executable statements.

There are three types of diagrams: Control Flow Diagrams, Data Flow Diagrams

and Package Diagrams. Control Flow Diagrams illustrate the execution of several possible

sequences of operations (statements including IF, CASE, Loops, etc.). These diagrams

require specific entry and exit points. A sample Control Flow Diagram is presented in

Figure 3.3. Data Flow Diagrams illustrate the execution of a specific sequence of

operations (statements including mathematical expressions, function calls, etc.) and

therefore do not require entry and exit points. Data Flow Diagrams are similar to control

system block diagrams. A sample Data Flow Diagram is presented in Figure 3.4. Package

Diagrams simply illustrate a collection of related Control Flow and/or Data Flow Diagrams.

The design diagrams are a collection of "primitives" (a shape/figure representing a

function) wired together by lines. Each design diagram contains "pins" in the corner which

illustrate the interface of the diagram with the Data Dictionary. The picture language is

based on a standard library of fifty six data flow primitives and six control flow primitives.

There are three important aspects of the automated code generator: the inclusion of

standard parts in the picture language, the inclusion of a compilation/diagnostic capability

within GPU, and the final compilation capability of the GPU. Within the picture language a
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subset of the data flow primitives are called standard parts. These standard parts are

functions which are used frequently in the domain of application. The standard parts

include proven designs for a counter, timer, integrator, filter, switch and other basic

functions which no longer have to be recreated by users. The availability of useful standard

parts increases productivity and ensures standardization across software programs. Figures

3.3 and 3.4 represent standard parts.

The GPU has a compilation/diagnostic capability. While in the GPU, a user may

request that the diagram created be compiled. This function creates source code from the

design diagram. The engineer is notified if the compilation is successful or provided

diagnostics if the compilation fails. If there is a failure, the areas of the diagram which

caused the problem are automatically highlighted. This capability allows the engineer to

stay in the design-check cycle, testing the correctness of the software design before

submitting it for review or returning it to the software development library.

The GPU is a true compiler. This means that the diagrams are not simply translated

into source code but that multiple primitives on a given diagram can be combined to form a

single line of source code for efficiency. Code efficiency is an important software

characteristic for real-time embedded systems. While less efficient than the best software

engineers, the GPU is at least as proficient in its use of time and memory as a highly

experienced software engineer. Occasionally tight tolerances in timing or size limitations

require the use of hand-coded software but this only accounts for 5-10% of total code.

General Electric / BEACON

General Electric (GE) Aircraft Controls applies an integrated approach to improving

software productivity through BEACON. BEACON is a computer-aided engineering

environment used to design, model, and generate code for a complete real-time controller.

BEACON stemmed from an Independent Research and Development (IRAD) project



started within the GE Aircraft Controls Systems Department in 1984. The goal was to

develop an automatic code generation capability and the IRAD project gained the attention

of GE Corporate Research and Development. Full scale development of BEACON began in

1989 and was first used to create production code in 1992. GE reports that the use of

BEACON has reduced the overall cost and cycle-time for developing aircraft engine

controllers.

The BEACON Integrated Environment

BEACON is an integrated environment with the ability to automatically generate

code, Figure 3.5 (Rimvall, 1993). The environment supports system design, system

analysis and simulation, auto-code generation, system integration and test, and auto-

documentation. The major tools of BEACON are a graphical editor and an automatic code

generator.

The graphical editor is used to design control systems. The editor has a menu bar,

palettes and drawing screen used to create block-diagrams from symbols. The symbols

represent some numerical or logical operator. Figure 3.6 presents some sample symbols.

There are about 60 symbols allocated to nine palettes. The symbols can be interconnected to

form either signal-flow diagrams or control-flow diagrams. These are equivalent in

function to the data-flow and control-flow diagrams of United Technologies Pictures-to-

Code environment. Diagrams are grouped hierarchically to define the system. The

BEACON system also comes with a symbol editor which allows users to develop new

symbols.

Each symbol, or block, has a corresponding definition described in the BEACON

Block-Definition Language (BDL). The definition describes the functionality of the

symbol, input/output interfaces, and data declarations. The BDL is a special-purpose

structured language which allows the automatic code generation to be independent of the

target language. When a diagram is ready to be translated into a target language, the BDL

descriptions for each symbol are combined into a netlist file. Prior to creating the netlist, the



Figure 3.5 The BEACON Environment

Figure 3.6 Sample Symbols from BEACON

user selects the check diagram option from the graphical editor menu bar. Warnings are

provided if errors are made such as incomplete connections or the failure to define

subdiagrams for a hierarchy block.

The netlist file is the input file to the automatic code generator. The automatic code

generator translates the system design into source code. The automatic code generator is

multi-lingual, able to create FORTRAN, Ada and 68020 Assembly code. The same netlist

can be used to generate code in any of these languages. The choice of target languages is

being expanded to include C, ACSL, MATLAB and SIMULINK. The generator includes

optimization capabilities to create efficient code. The choice of target languages allows the

control system designer to either simulate the system or execute it real-time on the final

processor.
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Integrated Systems, Inc. / MATRIXx

Integrated Systems Incorporated (ISI), of Santa Clara, California, was founded in

1980 to develop design tool and operating system software for embedded systems. ISI

focuses on six embedded systems markets: aerospace, automotive, communications,

multimedia/entertainment, office/retail automation and industrial process control. ISI

products include MATRIXx, which was first released in 1983. The MATRIXx product

family offers a complete graphical solution for rapidly designing, simulating and testing

microprocessor based control systems. MATRIXx was incorporated into the McDonnell

Douglas RAPIDS environment and the NASA Rapid Develop Lab, both discussed later in

this chapter.

The MATRIXx Product Family

The MATRIXx product family provides control system engineers with design,

graphical simulation, automated code and document generation, and real-time hardware test

capabilities. With the MATRIXx products, an entire control system can be graphically

created and then modeled in actual operation. Control software can be automatically

generated and downloaded to processing hardware for real-time execution. Complete

documentation is also automatically generated to preserve the design and its data. The

MATRIXx product family includes SystemBuild, Xmath, AutoCode, DocumentIt, and

RealSim Series.

MATRIXx/SystemBuild is a graphical software tool that enables
users to develop data flow block diagrams of the desired system using
elementary building blocks. These elementary blocks can be organized into
"SuperBlocks" which become procedures or subtasks. This construction
process yields highly modular software designs which can facilitate the
development of generic software libraries and the reuse of software. After
construction is completed, the software data flow diagrams can be



interactively tested in a non-real-time environment. Time and frequency

domain analyses can also be performed interactively. 9

Xmath is an analysis tool used to evaluate and display the simulation results from

SystemBuild.

The AutoCode tool can automatically translate the block diagram

representations into FORTRAN, C, or Ada source code. The source code

can then be integrated with other interfacing software - software necessary

for the code to run on the target processor such as a real-time operating

system device driver, compiled and run on the AC-100 real-time computer

to verify real-time and PIL performance.10

The DocumentIt tool automatically generates documentation from user customizable

templates. It is also compatible with word processing programs like Microsoft Word and

Adobe FrameMaker. The RealSim Series (AC-100 Model C40 and AC-100 Model 3)

supports processor-in-the-loop testing. The MATRIXx product family can be hosted on a

variety of computer platforms.

McDonnell Douglas / RAPIDS

McDonnell Douglas Aerospace West (MDA-West) of Huntington Beach, California

applies an integrated approach to improving software productivity through the Rapid

Prototyping and Integrated Design System (RAPIDS). RAPIDS is an integrated design and

development environment used to create real-time embedded software for guidance,

navigation and control (GN&C) systems. With RAPIDS, MDA-West claims to have been

able to decrease the software design cycle by up to a factor of 10 (Riel, 1993). MDA-West

9 Hou, Alex C.: Toward Lean Hardware/Software System Development: Evaluation of Selected Complex

System Development Methodologies, MIT Lean Aircraft Initiative Report LEAN 95-01, Feb, 1995, p. 21.
10 Ibid, p. 21.



has applied RAPIDS on more than 15 missile and rocket projects to develop GN&C

software.

The RAPIDS Software Development Process

The RAPIDS development process features rapid prototyping of a GN&C system

from system requirements definition through detailed design and test on a target processor,

Figure 3.7 (Riel, 1993). The process is based on the spiral life cycle model and is highly

iterative. The total number of cycles for a RAPIDS program is often very high, typically

greater than 20, with duration decreasing each time and each cycle delivering a complete

GN&C system. The duration decreases from months at the start of a program to days at the

end when the design is mature.

Rapid development cycles are achieved through the use of graphical design,

automatic code generation, reuse of software and simulations, and processor-in-loop (PIL)

testing. PIL testing involves running the complete software on a prototype flight processor

(R3000, 80960, 1750A, etc.) to get accurate measurements of software memory and timing

versus estimations. The highly iterative approach, combined with prototyping, aids in

speeding the development cycle by allowing design, implementation and hardware selection

problems to be discovered sooner.

The RAPIDS Integrated Environment

RAPIDS features an integrated CASE environment based on a core of commercially

available products from Integrated Systems Inc. (MATRIXx/SystemBuild/AutoCode/AC-

100) and Cadre (Teamwork), Figure 3.8 (Riel, 1992). The environment allows automated

software development from design through test with its capabilities for graphical system

design and simulation, automated code generation and processor-in-loop (PIL) prototype

testing. The environment also includes electronic configuration control, automatically

generates documentation and electronically connects integrated product teams over an

ethernet network.
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NASA-JSC / Rapid Development Lab

The Rapid Development Lab (RDL) is a NASA Johnson Space Center laboratory

created to explore and evaluate new technologies and processes for flight software and

simulation development. Recognizing that the integration of CASE tools and rapid

prototyping techniques can increase productivity and decrease both cost and schedule, and

encouraged by the successful application of these practices on such programs as the DC-X

and MSTI spacecraft, the Aeroscience and Flight Mechanics Division created the RDL to

investigate the uses of these practices on NASA programs. Potential programs for the

application of these practices and technologies include the Space Shuttle, Space Station and

the Soyuz Assured Crew Return Vehicle. The RDL is a teaming effort between NASA-

JSC, Lockheed Engineering Services Corporation, and McDonnell Douglas Aerospace

Houston.

The RDL includes the Development Environment and the Real-Time Testing

Environment. The Development Environment is based on the MATRIXx product family.

The Development Environment is connected to a JSC wide area network allowing remote

users to tie-in over the network. Once the system designs are performing satisfactorily,

developers proceed to the Real-Time Testing Environment. This environment includes

high-speed real-time computers, flight-equivalent processors, sensors and effectors,

ground support emulation, cockpit modeling, and mission visualization.

NASA used MATRIXx to facilitate software reuse through the construction of

libraries (Uhde, 1995). The pilot project of the RDL was a real-time six degree-of-freedom

simulation of the crew transfer vehicle for the planned international space station. One of

the goals of the project was to create libraries of reusable parts. NASA used MATRIXx

"SuperBlocks" to create utility routines. A "SuperBlock" is a collection of elementary

blocks interconnected into a data flow diagram. Seven utility libraries were constructed and

used to create the simulation. The libraries are comprised of both stand alone utilities and



utilities that require some modification by the developer. The libraries are the Vector Matrix

Utility Library, the Quaternion Utility Library, the Orbital Element Utility Library, the Plant

Utility Library, the Flight Software Utility Library, the Sensors/Effectors Utility Library,

and the Miscellaneous Utilities Library.

Lockheed / LEAP

The Software Technology Center of the Lockheed Palo Alto Research Lab created

The Lockheed Environment for Automatic Programming (LEAP). LEAP is a synthesis

system for automatic code generation linked to a simulation capability. LEAP allows

software development from stored components. Lockheed has validated the technology of

LEAP on internal projects over several years, such as programming an autonomous

underwater vehicle, but experience remains limited in comparison to the environments

previously discussed in this chapter.

The LEAP Integrated Environment

The LEAP environment is centered around a growing library of component

templates, Figure 3.9 (Ogata, 1991). The templates are detailed implementations of system

components in CIDL. CIDL is the Common Intermediate Design Language developed by

Lockheed. The LEAP environment includes a graphical and textual editor, a library, a

synthesizer and a translator. The synthesizer creates CIDL code from graphical diagrams

and vice-versa. The translator creates source code from the CIDL code.

An engineer interactively develops a system description by hierarchically arranging

components within the editor. Reusable CIDL components taken from the library are

converted to their graphical form by the synthesizer for display. The engineer can modify

these components if necessary or create new ones. Once the system is fully described



Figure 3.9 Lockheed Environment for Automatic Programming

graphically the synthesizer creates a CIDL implementation of the system. Synthesis

involves both reusing existing CIDL code and created new CIDL code. If desired, this

implementation can be stored into the library. CIDL is an executable language. Testing of

the CIDL code is supported by a Run-Time Interface (RTI). The RTI takes data created by

the executing code and displays it in both plot and table forms.

Once the system design is finalized, the translator is invoked. The CIDL code is

translated into the desired programming language (Ada, C or LISP). Documentation can be

automatically generated from the graphical descriptions, implementation, or test results.

Lockheed implemented LEAP CIDL to simplify the synthesis process. CIDL

incorporates object-oriented features, higher order functions, polymorphism, and

concurrent constructions. The features of CIDL extend beyond those of programming



languages like Ada to include higher order constructs and formal specifications. These

additional features facilitate the synthesis of CIDL code from the graphical representation of

the system. The translator analyzes the CIDL code and eliminates the higher order

constructs when creating source code.

Honeywell and the Domain Specific Software Architecture Program

The Domain Specific Software Architecture (DSSA) Program is sponsored by the

Defense Advanced Research Projects Agency. The DSSA Program aims to improve the

engineering activities comprising system design by transforming the relationship between

system and software engineers. The DSSA program consists of six independent projects

which cover a wide range of software development activities. One project includes the

development of a toolset by the Honeywell Technology Center to support automatic code

generation for guidance, navigation and control (GN&C) systems. These tools have been

distributed to industry under research licenses for evaluation and will become commercially

available.

The DSSA Toolset

Honeywell developed an integrated toolset to support software development which

includes DoME, ControlH, MetaH and EdgH. The toolset is centered around the ControlH

code generation tool. ControlH consists of a specification language and a translator.

The ControlH specification language is both textual and graphical and is tailored to

the domain of GN&C systems. The specification language is similar to a programming

language but more concise. It supports four types of units: operators (primitive and

hierarchical), processes, global constants blocks, and global variable blocks. Primitive

operators are the building blocks of the specification. AND and ADD are examples of a

primitive logical operator and a primitive arithmetic operator, respectively. A hierarchical

operator is a collection of interconnected primitive operators or other hierarchical operators.



A process is a component of the specification to be run at a fixed processing rate. A process

is created by merely declaring its name and computational period. ControlH also supports

traditional flow control statements, such as loops and conditionals.

The translator is multi-lingual, creating source code in either C or Ada from a

ControlH text file. When translating the ControlH specification, the user may specify

whether the source code will be used by the MetaH tool or if it will be referenced by the

executive of an external application. MetaH is a companion tool used to build a complete

application by combining source code modules and a run-time kernel (closely resembling

an executive) into an executable image. MetaH includes a specification language for

describing software architectures as well as tools to support schedulability and reliability

analyses through the simulation of the MetaH specification. Like the ControlH language,

the MetaH language is both textual and graphical.

DoME and EdgH complete the toolset. DoME is a graphical editing tool that allows

the user to manipulate the ControlH and MetaH specification languages in their graphical

form. DoME allows the user to develop GN&C software in an object oriented

environment. When linked with ControlH and MetaH, the user can create ControlH

specifications, source code modules, MetaH specifications, or complete executable images

from within DoME. EdgH supports real-time hardware-in-the-loop testing. It is a tool that

creates simulated input and output devices that can be included in a MetaH specified

software architecture.

Charles Stark Draper Laboratory / CSDL CASE System

The Charles Stark Draper Laboratory (CSDL) developed the computer-aided

software engineering (CASE) system as an independent research and development program

with the support of the NASA Langley Research Center. NASA support was provided as

part of the Advance Launch System (ALS) Development Program from 1988 to 1989 and



the system was originally known as ALS CASE. After the termination of the ALS program

the system was renamed CSDL CASE and development continued under the Draper

Laboratory Corporate Research program as well as the support of NASA. The goal of this

development program was to significantly reduce the cost of developing and maintaining

real-time scientific and engineering software. The CSDL CASE system provides for the

automated generation of compilable source code and accompanying documentation from

functional specifications. NASA sponsorship was eventually withdrawn for budget reasons

and development of the CSDL CASE system has been temporarily discontinued.

The CSDL CASE System

The CSDL CASE System consists of a graphical user interface, an automatic

software designer, automatic code generators, and an automatic document generator,

Figure 3.10 (Jones, 1993). An engineer uses the graphical user interface to create

functional specifications in the form of engineering block diagrams.

The computational aspects of the diagram are referred to as
'transforms' since they explicitly transform inputs into outputs with no
hidden side effects. The data aspects of a diagram are 'signals' that carry

information from one transform to other transforms. Hierarchies of both

transforms and signal types can be built either bottom-up or top-down. For
bottom-up design, predefined sets of building blocks for both transforms
and signal types are supplied. In the case of transforms, these are called
primitive transforms and are comprised of such things as add, subtract,
multiply, divide, absolute value, switch, etc. For signal types, these are
called predefined types and include integer, float, character, string and
boolean. The user also can create his own signal types such as arrays and

records. For top-down design, the engineer needs only to specify the input

and output characteristics of a transform before using it in a block diagram.
The details of the transform's data flow and processing can be deferred until
a later time, or a body of existing code can be referenced rather than
automatically generating code."

" Jones, Denise; and Turkovich, John; et al: op cit, p. 186.



Figure 3.10 CSDL CASE System

The automatic software designer converts the graphical specification into a generic

procedural form. The generic procedural form is a text file and is independent of the final

target language. The diagrams are converted into procedures, functions, or in-line code

with each transform equating to a statement or a block of statements. The automatic

software designer also studies the connectivity of the diagrams in order to insert additional

variables if needed and determine which statements should be executed in sequence, in

parallel, or conditionally.

The generic procedural form is the input to the automatic code generator. The CSDL

CASE system can generate both C and Ada code. The graphical specification is also an

input to the Automatic Document Generator. The generator creates both text and graphics

for the document. The Automatic Document Generator works in conjunction with a

commercial publishing software package to format and print the document.
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Verilog / SAO+SAGA

Efforts to develop integrated environments and automatic code generation

technology have not been limited to the US aerospace industry. Verilog, a commercial tool

developer, created an integrated environment for designing critical real time systems, the

SAO+SAGA Environment. This environment was used by Schneider Electric to create a

control and instrumentation system for nuclear power plants and by Aerospatiale to create

flight software for the Airbus jetliners. Automatically generated code accounts for 70% of

the total on-board software for the A340 jetliner.

The SAO+SAGA Integrated Environment

The main tools of the SAO+SAGA environment are a multiview graphics editor and

an automatic code generator. Symbolic design specifications are created in Lustre. Lustre is

a synchronous data flow programming language using both block type diagrams and text.

The graphics editor is used to create block diagrams describing the system and allows for

text editing. Each page of the specification includes a diagram and the inputs and outputs to

the diagram. The SAO tool performs automatic checks of consistency between the pages of

the specification to ensure that all inputs are available, that all outputs are used and that all

data types are consistent. SAO also includes a configuration management tool, a connection

to a library service used to store reusable components, and a documentor used to

automatically produce structured documents.

The automatic code generator translates the design specifications into C. The tool

allows for optimization of memory size and processing speed. Verilog claims the expansion

rate compared to manual coding is only 0.31%. The automatic code generator is connected

to additional Verilog tools supporting formal verification of the source code.



Summary

Numerous parallel technology development efforts have been underway for the past

six to ten years. These efforts have been aimed at creating automatic code generation as part

of an integrated environment for the development of software embedded in real-time

systems. This chapter has included brief descriptions of the resulting technologies which

display many common characteristics, Table 3.2.

All of the systems employ a graphical user interface. With this interface an engineer

creates system specifications from symbols in a mouse driven-menu environment. These

specifications are in the form of block diagrams and hierarchical modeling lets them vary

from general top-level specifications to detailed functional implementations. Libraries of

standard parts or templates facilitate reuse at the design level. The user can interactively

check the diagram for correctness before implementing the system in code.

System implementation is handled by automatic code generation, eliminating the

need for manual coding. Source code can be generated from within the graphical editors

with multiple target languages as options. Many systems also employ an intermediate text

language. CIDL and ControlH are a few examples. Having the option of multiple target

languages lets the engineer either create the final implementation in Ada or simulate the

requirements in a more convenient language, all from the same specification. Finally, the

environments support the automatic creation of documentation which eliminates a time

consuming task while enhancing traceability.



Table 3.2 Common Characteristics



Chapter 4: Industry Experiences with Software Factory Development

This chapter discusses industry experiences using software factory development

and summarizes productivity improvements. Software factory development is characterized

by the extensive use of highly integrated CASE technologies forming an environment

supporting process automation, project management, and reuse through electronic

repositories of proven design specifications. This chapter builds on the previous one which

provided an overview of software factory technologies such as automatic code generation.

United Technologies is a major focus of this chapter. The information presented for United

Technologies is based on a case study conducted at Pratt & Whitney and Hamilton

Standard. The information presented for the remaining companies is compiled from

published reports and articles obtained through library research and interviews.

United Technologies / Pictures-to-Code

The United Technologies Pictures-to-Code Process is a standardized development

process and integrated toolset used to create real-time embedded software for control

systems. A series of visits to Pratt & Whitney Commercial engines and Hamilton Standard

in Hartford, Connecticut formed the basis for an evaluation of automated software

development with Pictures-to-Code.

Groundrules and Methodology for Pictures-to-Code Evaluation

Pratt and Whitney (PW) manufactures engines for a variety of civilian and military

aircraft. With the introduction of embedded software for electronic engine control (EEC),

modem aircraft engines have become integrated hardware/software systems. A case study

was conducted to quantify the benefits of Pictures-to-Code by comparing the development



of EEC software by hand-crafted means (Traditional method) and by Pictures-to-Code (PtC

method).

The two Pratt and Whitney product families chosen for the comparison are the

PW4000 Current family and the PW4000 Growth family. The EEC software for these

products are developed by Pratt and Whitney (the engine manufacturer) in conjunction with

Hamilton Standard (the EEC hardware manufacturer). The PW4000 Current family

includes engines flown on the B747, B767, A300, A310 and MD11 aircraft with the EEC

software developed in the Traditional method. The PW4000 Growth family includes

engines derived from the PW4000 Current family and flown on the B777 and A330 with

nearly 95% of the EEC software developed using the PtC method and toolset.

Metric data collected by Hamilton Standard forms the basis for the comparison. The

response variable for cycle time is engineering hours per software module. A surrogate

measure was chosen for the quality. This response variable is total errors detected during

development per software module. A direct measure of quality, such as total errors detected

after product release, was unavailable because the PW4000 Growth engine has only

recently entered active revenue service after this case study was conducted.

The Pictures-to-Code Process

The previous chapter includes an overview of the development of the Pictures-to-

Code (PtC) process and toolset as well as a detailed description of the automatic code

generation tool. This section revisits the PtC process with added details. Figure 4.1

illustrates the application of the process to the development of software for an electronic

engine control (EEC) system. The boxes highlighted in gray signify the steps of the

process that employ the PtC toolset. The following summarizes the basic process activities:



*Software Requirements Analysis

The system-level engine requirements are allocated to the EEC and

published in a software requirements specification. Verification is provided

by a requirements review. Checklists are completed and a summary report is

published.

*Software Design

In preliminary design, the requirements are functionally divided into

modules (units) and published in a software design document. In detailed

design the internal operation of each module is defined pictorially and added

to the software design document. Verification is provided by a design

review. Checklists are completed and a summary report is published.

*Software Code

Modules are coded in the desired language. Verification is provided by a

code read. Checklists are completed and a summary report is published.

*Module Test

The functional operation is verified. All paths are tested for coverage. Test

results are published.

*Integration Tests

The interfaces between the software modules are verified.

Hardware/software interfaces are verified. Test results are published.

*Systems Test

The operation of the EEC system in a stand alone environment is verified.

Test results are published.

*Closed-Loop Testing

The operation of the EEC system on a closed-loop bench using an actual

engine or a sophisticated engine simulation is validated. Test results are

published.

Those conducting the verification/validation activities may report any problems with the

software by opening a Discrepancy Report. Discrepancy Reports document the type of

error and during which activity it was found. These errors are process errors detected

during verification of the software design and are corrected prior to formal release.
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Traditional versus Pictures-to-Code

Pratt and Whitney and Hamilton Standard share the development responsibilities for

the EEC software. Pratt and Whitney (PW) defines the EEC software requirements based

on the Engine Specification from the airframe customer. PW creates the software design for

the engine control laws and associated logic and typically delegates the software design of

the executive, input/output and maintenance logic to Hamilton Standard (HS). HS

programs and compiles all the software designs and links them into a single EEC software

program. HS and PW share responsibility for verification of the EEC software while PW is

responsible for validation by closed-loop systems testing. Both Pratt and Whitney and

Hamilton Standard use the PtC toolset.

The PtC toolset has streamlined the software development process by allowing an

engineer to function almost exclusively in an automated environment. The engineer has

electronic access to design documents, software change request forms, and review

checklists. These electronic forms can be completed and edited on the computer, reducing

the need for paperwork. All formal documentation can be automatically generated by the

toolset. Software modules are designed using the Graphical Processing Utility (GPU) and

they can be electronically shared between PW and HS. The toolset has also eliminated the

need to modify existing source code. To incorporate modifications to existing modules, an

engineer alters the module's design diagram and the source code is automatically recreated

in its entirety. Source code is not altered by programmers.

The PtC toolset has resulted in significant savings at the software design level. The

software design is still based on structured specifications, where the requirements are

functionally allocated for implementation, but concerns such as the number of source lines

of code per module are removed. Programmers typically attempt to avoid a large number of

source lines per module in order to maintain intellectual control. With PtC, the division of

requirements into modules becomes purely functional with no consideration given to the

resulting module size. The detailed design requirements for the internal operation of each



module is defined pictorially using the GPU. The design diagrams are created by controls

engineers with a single diagram becoming a single software module. Engineers focus on

the underlying control system design and not the resulting software code.

Since the automated code generator creates source code directly from an engineer's

requirements diagram, design interpretations by programmers, who may be less familiar

with the requirements than the engineers, are avoided. This is reflected in the software

design documents. In the Traditional method, PW supplies HS the detailed software design

through the Purchase Performance Specification. This document contains data information,

design diagrams and detailed processing requirements. The detailed processing

requirements communicate the intent of an engineer's design to the programmer. With PtC,

the standardized software design document contains only the data information and a single

diagram for each module. The detailed processing requirements are not included, nor are

they needed.

The following figures illustrate the improvements to cycle time and quality realized

at Hamilton Standard on large commercial aircraft programs. Figure 4.2 shows a 41%

decrease in module cycle time from the 4000 Current (Traditional) to the 4000 Growth

(PtC) programs. Cycle time is the time to complete the various activities of software

development process and represents the time from receiving a specification change notice

(SCN) to delivering a software build to Pratt and Whitney. The values are the total actual

engineering hours divided by the total modules altered for all the SCNs received between

1988 and 1994. Figure 4.3 shows an 80% decrease in total detected process errors from

the 4000 Current to the 4000 Growth programs. Detected process errors are the number of

discrepancy reports opened during the software development process and represent errors

discovered and corrected prior to delivering a software build. Total detected process errors

include errors of all types (requirement, design, code, data, documentation). The values

presented are the total discrepancy reports divided by the total modules altered for all the

SCNs received between 1988 and 1994.



The data presented in Figures 4.2 and 4.3 reflect a small number of SCNs and

changed software modules for the 4000 Current program relative to the number of SCNs

and changed software modules for the 4000 Growth program. For a further comparison,

the expanded information in Figures 4.4 through 4.6 incorporates data from the other large

commercial aircraft engine families which used the Traditional method to create EEC

software (PW2000 and V2500). Over a period of seven years, Figure 4.4 shows how the

data used to create Figures 4.5 and 4.6 reflects an increase in output while the development

method transitioned from Traditional to PtC. Figure 4.5 shows that this transition created a

trend of decreasing module cycle time. There is a 38% decrease in module cycle time

between the first and last years of the period shown. Figure 4.6 shows how this transition

results a trend of decreasing detected process errors. There is a 61% decrease in total

detected process errors from 0.31 errors/module for the first year to 0.12 errors/module for

the last year of the period shown. These improvement trends are attributed to the use of the

common software development process and CASE toolset of Pictures-to-Code.

Quality improvement has been shown by examining errors detected during software

development because aircraft using 4000 Growth engines have only recently entered active

revenue service, however, a corresponding decrease to the errors found in released

software can be expected.
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Continuous Process and Toolset Improvement

The development and use of Pictures-to-Code by United Technologies was initiated

to reduce the cost of software development. The common software development process

drives the toolset with continuous process improvement initiatives updating both. Centered

around the automated code generator, the toolset has automated the software development

process from top level design through module testing. UTC envisions extending the toolset

to encompass the earlier and later activities of the software development process such as

requirements analysis, integration testing and systems testing.

The toolset is continually evolving with the addition of functionality and

enhancements. Any engineer may request modifications or expansions to the toolset. At

UTC the Software Engineering Process Group is responsible for process improvement and

continually reviews both modification requests and commercially available CASE tools. If

superior tools are found they are brought into the toolset. Also, a customer may dictate the

use of certain tools other than or in addition to PtC.



The toolset has also identified new areas for improvement in the software

development process. Figure 4.7 shows the percentages of errors detected at various stages

in the process and includes Hamilton Standard data from the 4000 Current and 4000

Growth programs to compare the Traditional and PtC methods. The errors are process

errors detected and corrected prior to delivering a software build. The data comes from

discrepancy reports as well as checklists completed during the software development

process. The figure shows that the majority of errors are detected during code read for the

Traditional method and that the introduction of automated code generation virtually

eliminates code errors, thus drastically reducing the errors found during code read and

module test. This is expected since code reads and module tests verify the source code

rather than the software design.

The Pareto diagrams of Figures 4.8 and 4.9 illustrate that the largest number of

errors are now system requirements errors detected during systems testing. Hence with

Pictures-to-Code, higher level functional testing is focusing attention on true system related

problems indicating that software factory methods can aid hardware/software integration.

The next step would be to improve system review and simulation to address these system

related problems. Also, an improved process would have module testing as the final testing

prior to software delivery. Placing integration and systems testing before module testing

facilitates early attention on requirements.



Figure 4.7 % Errors by Program vs. Verification Activity
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The Japanese Software Factories

The experience of United Technologies Corporation in establishing a common

software development process and an integrated CASE toolset closely resembles the

experiences of several Japanese software companies in establishing "software factories"

during the 1980s (Cusumano, 1991). While each company had many reasons for starting

their "software factories", they all shared the United Technologies' motivations to reduce

the cost of software development and increase quality. These motivations are increasingly

important as software becomes more complex and a larger number of system's functions

are being implemented in software instead of hardware. Each company made a strategic

decision to capture economies of scope by pursuing a standardized software development

process. They invested heavily in integrated CASE tools which were gradually introduced

over a number of years to automate the process, capture expertise, and reinforce good

practices. All toolsets included automatic code generators. These management strategies



allowed the companies to capture significant economies of scope in software development.

Long term commitments to process improvement and flexibility were pursued to

continually improve productivity and quality and to allow the companies to adapt to

continuously changing customer needs.

The results for these Japanese companies and United Technologies are comparable

in terms of software productivity and quality. Tables 4.1 through 4.3 compare metric data

for Hamilton Standard against available data for the Japanese "software factories". They all

achieved high levels of productivity exceeding one thousand source lines of code (SLOC)

per month*. Hamilton Standard also achieved a comparably small level of detected errors

during software development. Although Hamilton Standard has yet to measure the errors

for delivered software, numbers similar to those achieved by the Japanese "software

factories" can be expected. Also, each company reported a shift of effort from tedious

implementation activities, such as coding and documentation, to the more important design

activities. Table 4.3 shows a breakdown of the software development activities for the

various companies.

Table 4.1 Software Productivity

Company SLOC/Man-Month Language

Hamilton Standard 1,378 Ada

Toshiba 1,000 FORTRAN

Fujitsu 1,864 Cobol

* Note: Comparisons must be normalized according to the language used.



Table 4.2 Software Quality

Company Detected Detected Language
Process Errors Product Errors
(Errors/1000 SLOC) (Errors/1000 SLOC)

Hamilton Standard 1.2 not available Ada

Toshiba not available 0.05-0.2 FORTRAN

Fujitsu 1.5 0.01 Cobol

Table 4.3 % Effort by Software Development Activity

Company Activity:
Design Implementation Testing

Hamilton Standard 42% 32% 26%

Hitachi 38% 36% 26%

NEC 47% 37% 15%

Fujitsu 33% 30% 37%

NOTE: Data in Tables 4.1 through 4.3 compiled from Japan's Software Factories. 12

12 Cusumano, Michael A.; Japan's Software Factories: A Challenge to U.S. Management, Oxford
University Press, 1991, pp. 213, 240-1, 320, 352, 381.



Improving the Productivity and Quality of Software Development

Like United Technologies, all users of automatic code generation report an increase

to productivity. General Electric, McDonnell Douglas, and Aerospatiale report productivity

improvements of 35%, 25%, and 55% respectively:

A productivity improvement of over 35% has been demonstrated. 13

Metrics tracked during the DC-X1 software development indicated
productivity improvements greater than 25% can be achieved. 14

Aerospatiale has achieved a productivity gain of 55% in Airbus A320 design
tasks.

United Technologies was able to increase productivity by 66%. This measurement is a

comparison of data from the PW4000 Current and Growth engine programs based on the

productivity metric of modules/hour. Together these yield an average productivity increase

of 45%, Figure 4.10.

45% is a significant productivity improvement and even greater improvements may

be possible. The amount of productivity improvement is dependent on the initial capability

of the organization and the extent to which software factory practices are implemented. One

of NASA's initial demonstrations of the Rapid Development Lab involved creating

simulation software for the Soyuz Assured Crew Return Vehicle, and a dramatic 185%

increase to productivity was achieved.

13 Spang, H. A.; et al: "The BEACON Block-Diagram Environment," Proceedings of the IFAC 12th
Triennial World Congress, Vol. 2, 1993, p. 754.
14 Maras, M. G.; and Riel, E. J.; et al: "A Rapid Prototyping and Integrated Design System for Software
Development of GN&C Systems," Advances in the Astronautical Sciences, Vol. 86, 1994, p.91.
15 Aichoun, Jean-Marc: "Synchronous Data Flow Languages for Onboard Software," News from Prospace,
No. 37, May, 1995, p. 38.
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Figure 4.10 Comparison of Productivity Increases

The COnstructive COst MOdel (COCOMO) produced an estimate of

3400 staff-hours to complete the same project with traditional software

development approaches. The actual 1830 staff-hours represents a 185%

increase in productivity.' 6

As discussed in chapters 1 and 2, the automation based software factory also

includes the integration of people and their corporate knowledge. The people access and

fine-tune accumulated knowledge as appropriate on new projects. One way to store

knowledge is in a central repository of previously created design specifications which can

be reused. Lockheed's LEAP environment employs such a scheme with a library of stored

templates. LEAP was used to create Sensor Resource Management (SRM) software for a

satellite. The SRM code was 70K lines of Ada.

16 Bordano, Aldo; and Uhde, Jo; et al: Cooperative GN&C Development in a Rapid Prototyping
Environment, American Institute of Aeronautics and Astronautics Report No. AIAA-93-4622-CP, 1993,
p.889.



The SRM system was developed in about three months with a two-
person level of effort. Our estimate based on this application is that LEAP
yielded a productivity gain of 50:1 over the traditional design and coding
process. This experiment demonstrated that LEAP effectively produced
software for a major application effort with significant productivity gains. 17

In addition to improving productivity, software factory processes also improve

software quality. The United Technologies case study documented an error reduction of

80%, Figure 4.11. Aerospatiale also experienced similar reductions. Table 4.4 shows the

growth of on-board software for the Airbus jetliners. Software for the A3 10 was hand

coded and Aerospatiale has been able to reduce coding error by 88% or greater through the

use of automatic code generation on the A320 and A340 programs. Automatic code

generation accounted for 70% of the Airbus A340 code.

Table 4.4 Encoding Errors in Airbus Software 18

Aircraft A310 A320 A340

Flight Software (Megabytes) 4 10 20

Errors per 100 Kilobytes 100 12 10

17 Baker, James; and Graves, Henson: "Simulation Based Software Development," Proceedings of the 8th
Annual International Computer & Applications Conference, November, 1994, p. 123.
18 Aichoun, Jean-Marc: op cit, p. 37.
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The Benefits and Implementation of the Software Factory

There now exists a base of experience in the aerospace industry demonstrating that

software factory development and software factory CASE technologies can be used to

create safety and mission critical software for aircraft. An approximate productivity increase

of 45% can be expected and significantly greater gains are achievable, all while increasing

product quality. Additional benefits which can also be realized with software factory

development are listed in Table 4.5.

Table 4.5 Shared Benefits of Software Factory Development



The following excerpts from published papers and articles testify to these benefits.

By allowing the systems designers to capture the information in a

graphical form, and automating the generation of code from reusable

templates, faster development times are experienced. Project documentation

is enhanced and becomes a by-product of the design process. The code

generated from the reusable templates is more reliable than hand generated

code, because the templates have been thoroughly tested, and have been

used on many applications. Because the reliability of the generated code,
unit or modules testing can be minimized, or possibly eliminated in favor of

immediate integration testing. 19

The automatic generation of code not only eliminates the time-

consuming manual coding, but also avoids the manual introduction of bugs

into the code.20

The key to bringing down total development times is the ability to

rapidly prototype the system. The engineers on the MSTI (Miniature Sensor

Technology Integration) project achieve this by developing and using

reliable models of multiple complex custom-built devices at an early stage of

the design by using the MATRIXx product family supplied by ISI. If

changes are made to the specifications, simulations can run the modified

models often within minutes, and with a high degree of confidence.

Another benefit of these tools is the ability of project engineers with

very different backgrounds to communicate using a common interface. This

allows software engineers and control engineers to discuss system models

represented as blocks in MATRIXx graphical programming environment

(SystemBuild) on equally familiar terms and devote more time to refining

the system as a whole.21

19 Dellen, Chester; and Liebner, Greg: "Automated Code Generation from Graphical, Reusable Templates,"
Proceedings of the 10th Digital Avionics Systems Conference, October, 1991, p. 299.
2" Rimvall, C.M.; et al: "An Open Architecture for Automatic Code Generation using the BEACON CACE
Environment," Proceeedings of the IEEE/IFAC Joint Symposium of Computer-Aided Control System
Design, March, 1994, p. 315.
21 Mirab, Hamid: "MATRIXx in MSTI," Space, Jan/Feb, 1995, pp. 3-4.



A unique feature of RAPIDS is that the designer is involved in the
process for the whole design, software development, and validation
process. This is consistent with concurrent engineering approaches which
have historical track records of substantial efficiency improvement. Since
the design teams are smaller and more integrated - human errors are fewer,
requirements are more traceable, simulations are more usable, and major
errors or design flaws are uncovered earlier in the program mitigating costly
changes to designs during system integration and test phases. An integrated
design team means that the distinctions between systems engineering,
GN&C engineering, and software engineering overlap - a single team
member may be called upon to fulfill these functions over the course of a
program. However there is one product (i.e. a system level design,
implemented in software that meets the system level requirements). The
design team takes ownership of the entire process and end product. This

differs from a traditional process in which each technology discipline owns
only a portion of the final design and for only a certain phase of the
program. End-to-end responsibility and ownership tends to be more

efficient and promotes a more productive work environment for the

designers.22

Also, lessons learned from industry experiences were compiled from the research.

These lessons form the keys to implementing a software factory, Table 4.6.

22 Maras, M. G.; and Riel, E. J.; et al: op cit, p.93.



Table 4.6 Software Factory Implementation

* Create a strategic plan

/ Focus on a single product line or specific software domain

/ Establish clear quality and productivity goals for any improvement initiatives

* Implement a standardized software development process

'1 Capture fundamentals of engineering practice and management

/ Explicitly define work flows and tasks

* Select CASE technologies that collaborate to support and automate the process

I Automation of process tasks, documentation and metric collection

/ Support of project management, process control and configuration control

I Leverage of requirements analysis and design

* Select CASE technologies that span the entire process life cycle and support reusable

components

I Include a capable automatic code generator

I Emphasize reuse of design specifications over reuse of source code

* Treat CASE technologies as one part of an integrated approach to improvement

'1 Provide for management integration, process integration, team integration,

and tool integration

z! Capture the learning and knowledge of the organization

zI Capture economies of scope by sharing resources and components across projects

* Invest in research and development

/ Develop CASE technologies in-house if required

4I Accommodate upgrades and evolving CASE technologies

* Provide training and an organizational framework

I1 Increase employee skill-sets

1 Avoid distinct functional roles and promote teams

I/ Expect and address resistance from all levels

Maintain a long-term view and commitment while measuring progress
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Chapter 5: Assessing the State of the Software Factory

Over the last six years there has been a growing base of experience in the aerospace

industry that demonstrates the effectiveness of software factory development and software

factory technologies. An approximate productivity increase of 45% can be expected and

significantly greater gains are achievable in some circumstances, while at the same time

increasing process and product quality. However, software factories have yet to see

widespread adoption throughout industry, Table 5.1. For software factories to become

institutionalized, industry leaders will have to keep abreast of trends in software

development methods and technologies as well as business, policy, and cultural issues

which influence the rate of change and direction of the trends.

Table 5.1 Observations and Findings on SW Factory Development and Technologies

* Applicability to safety/mission critical flight software has been demonstrated

* Improvements to productivity and quality have been realized

* Currently only used for guidance, navigation and control software domain

* Primarily used for demonstration projects, limited use on production programs

* Autocode technology is entering a commercialization phase

* Long term strategic management initiatives needed to create software factory

Diffusion of Software Factory Processes and Technologies

The 1990 National Defense Authorization Act included legislation mandating the

creation of a critical technology report. The act, which defined critical technologies as

"technologies essential for the United States to develop in order to further the long-term

national security or economic prosperity of the U.S.", initiated the development of



Table 5.2 National Critical Technologies, Software and Toolkits Area

Sub-Area Specific Technology EP NS

network and systems navigation and resource discovery tools 4
software

directories

registries

transparent embedding software

operating systems 1

run-time execution systems / /

programming languages I /

interpreters / /

compilers /

software engineering computer-aided software engineering tools
tools

user-interface tools I

software testing tools / /

IC design tools ' 1

software production rapid prototyping ' 1
modular/object-oriented programming 4

NOTE: EP = economic prosperity, NS = National Security

technology reports by various federal departments including the Department of Defense

Key Technology Plan. This plan as well as the Office of Science and Technology Policy's

National Critical Technology Report, which integrates all other reports, lists software and

toolkits as a critical technology area. Each critical technology area is divided into sub-areas

which are further divided into specific technologies. Several specific technologies within

the software and toolkits area relate to software factories, Table 5.2 (OSTP, 1995).
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Figure 5.1 Software Factory Technology Diffusion Model

The critical technology reports are used to establish priorities for the Federal

research and development (R&D) effort. However, R&D of new processes and

technologies alone is insufficient to achieve the economic benefits of technology or lead to

the widespread adoption of software factories by the aerospace industry. R&D must be

accompanied by the transfer of technologies from R&D labs to industry software

organizations and the implementation of change strategies by industry management. Figure

5.1 illustrates a technology diffusion model incorporating technology transfer and change

strategy. The technology of automatic code generation makes an excellent example for

illustrating the various paths of the model.

R&D programs sponsored by the government, the aerospace industry, and

commercial CASE tool vendors form the many sources of software factory processes and

technologies. The Domain Specific Software Architecture (DSSA) Program and the

Software Technology for Adaptable Reliable Systems (STARS) Program are two of many



Table 5.3 DoD Programs Aiding Embedded Software Development

* Domain-Specific Software Architecture (DSSA)

DARPA managed research program meant to transform the relationship between system and software
engineers into one in which software engineers create building blocks and construction tools with
which system engineers can create software subsystems.

* Software Technology for Adaptable, Reliable Systems (STARS)

DARPA managed research program meant to increase software productivity, reliability, and quality by
integrating support for modern software development processes and reuse concepts within software
engineering environment technology.

* Comprehensive Approach for Reusable Defense Software (CARDS)

Air Force sponsored program meant to develop an in-depth understanding of the paradigms, processes
and methods needed to make reuse work in practice. CARDS provides training documents,
consultation, and hands-on services including domain analysis, architecture definition, product line
identification and scoping, repository development and acquisition support.

* Software Technology Support Center (STSC)

Air Force Center meant to keep abreast of evaluated tools and tools under development which support
the development of weapon systems software.

* Software Engineering Institute (SEI)

Carnegie Mellon University operated Federal R&D center which develops models, frameworks,
diagnostics, methods, standards, techniques, and architectures to help measure improvements in
software engineering capability.

R&D Programs sponsored by the U.S. government through the Department of Defense,

Table 5.3. Several aerospace companies have also demonstrated a strategic commitment to

the software factory primarily through the investment in corporate R&D programs. For

example United Technologies, General Electric, and Lockheed all developed their own

automatic code generation technologies. The need for these corporate R&D programs was

driven by the fact that commercial CASE tool vendors primarily support developers of

business and information systems rather than developers of real-time engineering systems.



However, there are a few commercial tool vendors, such as Integrated Systems and

Verilog, that have developed their own technologies in support of real-time systems.

These many sources of software factory processes and technologies result in

multiple technology transfer paths. Technology transfer paths not only exist from the

various technology sources to corporate software organizations but also to commercial tool

vendors as the government and corporations look to third parties for maintenance of the

developed technologies. For example, the Verilog SAO+SAGA environment incorporates

technology developed by Aerospatiale. In 1995, Honeywell formed a partnership with

MGA Software of Minneapolis, MN to integrate the DSSA/Honeywell automatic code

generator with MGA simulation tools. GE is commercializing the BEACON environment

through a similar agreement with Applied Dynamics International (ADI) of Ann Arbor, MI.

ADI made BEACON available for purchase in December, 1995. These events indicate the

beginning of a technology commercialization phase. As these various products compete

with each other, capabilities will increase and costs will decrease.

Once a corporate software organization selects a new development process or

CASE technology, a change strategy must be implemented. Change must be actively

managed with a planned, predefined sequence of events. Currently the application of

software factory processes and technologies has been mostly confined to technology

demonstration programs. For example, automatic code generation has been used to develop

flight software for one-of-a-kind aerospace vehicles like the Delta Clipper-Experimental

(DC-X), the Miniature Sensor Technology Integration (MSTI) Satellite, and the Short

Take-Off and Landing/Maneuver Technology Demonstrator (STOL/MTD, a specially

modified F-15). Otherwise, use of automatic code generation on production programs has

been limited. The product-line of aircraft engines is one exception. Software factories have

been built by Pratt & Whitney and General Electric to develop electronic engine control

system (EECS) software for both commercial and military aircraft. PW 4000 Growth,

F-119, and GE-90 are all production engines with automatically generated EECS software.



Challenges to Software Factory Adoption

Implementing a software factory requires a change strategy that can successfully

face several challenges. These challenges exist in the areas of technology, business

management, and policy, Table 5.4. Although technology challenges are not confined to

automatic code generation, the following uses the autocode example as a means to examine

the general problem.

Table 5.4 Challenges to SW Factory Adoption

* Technology Maturity

* Technology Domain Coverage

* Technology Management

* Product-line Scope

* Software Ownership Rights

* Ada versus C

Technology Maturity

A computer program is a set of instructions for a computer. The most convenient

means for a human to give instructions is through the human's natural language. Hence, a

natural language, such as English, would be an ideal language for a computer program. But

computers do not understand natural languages; instead they require binary inputs.

However, machine language, assembly language, higher order languages (FORTRAN,

Ada, C++, etc.), and very high-level languages (4th generation languages) illustrate that

programming languages are evolving toward natural English. This evolution has been

accompanied by the creation of language translation tools, such as an Ada compiler, which

translates the higher order languages into machine language. Similarly, an automatic code

generator is a language translation tool that converts a very high-level language, typically



employing both diagrams and text, into a higher order language. The convenience of

programming in very high-level languages comes at a price in terms of efficiency. When

compared with code produced by hand for similar functions, code generated by language

translation tools typically results in greater memory requirements and slower execution

speeds. However, embedded software for aircraft and other real-time systems is often

dependent on the efficient use of memory and, more critically, execution speed.

Timeliness is the primary requirement for real-time systems. The

activity of real-time control systems has to be synchronized with the

dynamics of real world systems they control, which means that their

activities must be performed within specified time intervals, and the data

used for computations are valid only during a limited time after they are

produced. Therefore, the dynamic behaviour of real-time systems must be

predictable in a deterministic sense.23

The importance of execution speed and issues of code efficiency have affected the

acceptance of automatic code generation because the efficiency of automatically generated

code has not been acceptable high in many cases. However, automatic code generation

technology continues to advance and optimization capabilities are improving. Also, issues

with the maturity of autocode technologies are being offset by improvements in computer

hardware. The speed of modern processors has been increasing at a dramatic rate with

corresponding decreases in costs. Similarly, the last 15 years demonstrate that memory

density doubles in approximately three years (Newport, 1994). As a result of these trends,

a net reduction in product development costs can often be achieved with a systems

approach which invests in greater memory and/or a faster processor in order to get the

improved programming and testing productivity that comes with automatic code generation.

Further maturity in automatic code generation technology is also required to support

team development and library reuse. Some of the commercially available autocoders require

23 de la Puente, J. A.: "Real-time Software Development: A Perspective," Proceedings of the 12th Triennial
World Congress of the International Federation of Automatic Control, Vol. 2, July, 1993, p. 6 9 3 .



that all diagrams be resident in a single file prior to generating code, which can be a barrier

to the decomposition of programs. The size and complexity of software programs for

modern aerospace vehicles require the development of software by teams. Programs are

decomposed into modules which are allocated to individual team members for

development. The modules, in separate compiled files, are then linked to form the

completed program. NASA-JSC's Rapid Development Lab overcame such a deficiency

with MATRIXx by giving the role of "integrator" to one team member (Uhde, 1995). The

"integrator" has the responsibility of copying the various diagrams of the team into a single

file prior to code generation. This integrated diagram did not have a direct relationship to

the individual diagrams of the team or reuse library, leading NASA to devise a special three

tier configuration control process in order to use the MATRIXx tool with a development

team and reuse library while maintaining proper configuration control.

Table 5.5 summarizes the desirable capabilities of a mature automatic code

generator. As shown by the experiences of NASA's Rapid Development Lab, a successful

strategy is to distribute the desired capabilities over several tools within the software factory

support environment if the current autocode tool is lacking a desired capability.



Table 5.5 Desirable Capabilities for Autocoders

Technology Domain Coverage

Coverage of software domains by automatic code generation technologies is a

challenge that must also be addressed. The technology of automatic code generation has

naturally developed within the guidance, navigation and control (GN&C) domain, where

schematic block diagrams have historically been used to specify designs. Software for the

DC-X and Airbus A340 was developed using automatic code generation, but for each

vehicle this amounted to only 70% of the total operational flight program. The current use

of automatic code generation is confined primarily to the GN&C software domain.

GN&C is only one of numerous software domains comprising an operational flight

program. Table 5.6 shows the distribution of the F-22 operational flight program by

software domain (Aviation Week, 1995). The vast majority is general avionics software

and GN&C comprises only a modest portion of the total. Either the current implementation

of autocode must be shown to be applicable to these domains or new domain specific

autocode technologies must be developed. Only then will autocode be applicable across

many product-lines and productivity gains achieved across the aircraft industry.



Table 5.6 Distribution of F-22 Software Domains

OPERATIONAL FLIGHT PROGRAM (100 %)

Vehicle Management 4.1 %

Utilities and Subsystems 7.1 %

Avionics 88.8 %

g Comm./Nav./Identification 26.6 %

S Electronic Warfare 14.4 %

S Mission Software 13.5 %

Radar 12.4 %

SControls and Displays 9.4 %

Core 8.4 %

Stores Management 2.1 %

Inertial Reference System 1.8 %

However, much of the capabilities of existing code generators are likely to be

applicable to other domains. For example, General Electric realizes over 80% coverage of a

typical control system with their automatic code generation tool (Dellen, 1991). Of this

coverage, Data-flow (or signal-flow) block diagrams comprises 35-30% and control-flow

diagrams comprises 45-50%. Control-flow diagrams are traditional flow charts that capture

a program's control structure and processing and should be applicable to all software

domains.

Technology Management

The expansion of autocode technologies into new software domains will likely

result in multiple domain-specific specification languages, which raises standardization

issues. Standardization issues exist at both a micro and macro level. At the micro level,



language standardization is the stringent definition of syntax (grammar) and semantics

(what terms mean). Language standardizations are created by authorities such as the

American National Standards Institute and the Institute for Electrical and Electronic

Engineers for the purposes of eliminating multiple dialects and making the language

portable. The graphical specification languages used by PtC, BEACON, and

DoME/ControlH can be viewed as dialects of a single 4th generation language for GN&C

systems and therefore could be standardized. This would allow a specification created in

the PtC environment to be imported into the BEACON environment and translated into Ada

without modification. But the fact that these languages are proprietary is a barrier to

standardization.

Language standardization can also be implemented at a macro level by requiring the

use of a single programming language across projects. In 1983, the Department of Defense

pursued a macro level standardization by creating the Ada programming language and

issuing DoD Instruction (DoDI) 5000.2, which included a directive to use Ada for all

weapon systems software unless a waiver was granted. At one point some 400 higher

order languages were being used in DoD systems (STSC, 1994) and the intent of DoDI

5000.2 was to reduce the cost of supporting these systems after deployment. This

standardization may be undermined as new domain-specific 4th generation languages are

developed. But since automatically generated code is easier to maintain, the ultimate goal of

reducing support costs should still be attainable.

In addition to language standardization, there is also a debate going on in the

aerospace industry about how much verification testing is required of automatically

generated source code. Some take the position that the testing requirements for

automatically generated code should not be relaxed. Others claim that unit level testing is

not necessary, just as the output of a compiler is not tested as extensively as hand written

assembly code. However compilers are validated. For example, the Ada Compiler

Validation Criteria is a series of tests used to certify that compiler output meets the



requirement of the Ada Language Standard (MIL-STD-1815). One possible solution to the

debate is relating the required level of testing to the independent validation of code

generators in a manner similar to what is done with compilers.

Product-line Scope

Issues affecting the adoption of a software factory are not just technical in nature.

The business management aspects of the software factory include the definition of the

product-line and investment in the supporting infrastructure and reusable assets. The costs

of the supporting infrastructure (the development and maintenance of CASE tools,

integrated environments, processes, libraries, domain models, etc.) are incurred at the

business area level while the costs of developing reusable assets are incurred at the program

or project level. It does take more effort to design reusable assets and time to populate a

library. But an organization can realize a return on investment by maintaining a long-term

view that cuts across multiple programs/projects to ensure that short-term expenses are

offset by the larger cost reductions to be derived from automation, standardization, and

systematic reuse.

Maintaining the long term view to realize a return on investment is easier if an

organization can be sure of a market or demand for future development projects. Yet the

market for future weapons systems is uncertain given the current environment of

decreasing procurement budgets for the Department of Defense. However, existing weapon

systems periodically undergo upgrades for insertion of new technologies. For example, the

operation flight programs of aircraft are usually updated every two years. The increasing

need to stretch the life of existing systems with retrofits should partially offset decreasing

expenditures on new weapon systems development. To justify the investment in a software

factory, an organization can also expand the scope of the product-line beyond weapon

systems.
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Expanding a product-line scope beyond weapon systems requires matching a

military computer segment with its best fit in the commercial market. Obviously, product-

lines encompassing military and commercial aircraft already exist. Software embedded in

aircraft is real-time and often fault tolerant. Other commercial products requiring software

with these characteristics include power plant control systems, medical monitoring and life

support systems, and automobiles. Automobiles are quickly employing technologies first

developed in the aerospace industry, including electronic engine control systems, GPS

navigation systems, radar, head-up displays, and even drive-by-wire systems. However,

an organization's ability to reuse software developed for a military weapon system on a

commercial product requires that the organization retain software ownership rights.

Software Ownership Rights

Sections of the Defense Federal Acquisition Regulation Supplement (DFARS)

document the criteria for determining the ownership rights to software. Ownership rights to

noncommercial software and noncommercial software documentation is primarily

determined according to who funded the development. Similarly, the Federal Courts grant

copyright ownership of "work made for hire" to the commissioning party. The end result is

that the Federal Government obtains unlimited rights to software developed exclusively

with government funds and software documentation required to be delivered under

contract. This includes the rights to embedded software for weapon systems, which can

prevent contractors from reusing software components for other products. With unlimited

rights and copyright, the Government is free to copy and distribute the software (even to

other contractors) and a contractor would have to be granted permission from the

Government before it could reuse software it developed. This is in contrast with the

purchase of commercial software or a commercial product with embedded software (e.g. an

automobile) where the developer retains the unlimited rights.
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The Department of Defense Software Reuse Initiative, a focused activity aimed at

establishing reuse as a common practice, has identified the issue of ownership rights as a

barrier:

Current acquisition policy indicates that the Government will balance
its interests and the interests of industry and acquire only the minimum
rights in computer software needed to accomplish the mission. For
computer software developed under DoD contracts, the Government usually
obtains unlimited rights. Exceptions include commercial software and
software developed at private expense (which includes software developed
with Independent Research & Development Funds). By acquiring unlimited
rights to contractor-developed assets, the Government may be indirectly
stifling the growth of a reusable software assets industry, discouraging

widespread competition for DoD contracts (since many contractors are
unwilling to sacrifice their rights to developed software products), and
inhibiting the supply of trusted, reusable software products at a time when
demand for such assets is rapidly escalating.24

The Software Reuse Initiative is currently studying the issue of ownership. Various levels

of rights (i.e. unlimited, restricted, government purpose, etc.) may be allowed to be

mutually agreed upon by the Government and contractor as "specifically negotiated license

rights".

Ada versus C

Another challenge to the reuse of software components between military and

commercial products is the choice of higher order language. Usually this challenge is

reduced to one of Ada versus C.

The most prevalent language for commercial software development

is the C language, developed in the 1970s at Bell Laboratories to support
operating system development. This language became very popular for

24 Department of Defense: DoD Software Reuse Initiative: Vision and Strategy. 9th Edition, Document No.
PD134.8, February 12, 1996, Section 3.3.
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embedded commercial control applications because: C compilers produce

compact, fast running code; C compilers are inexpensive (a few hundred

dollars); the grammar of C is natural, which makes the language easy to

learn; and nearly every software and electrical engineer fresh out of the

university is proficient in C, which provides a large, stable work force.

These factors allow commercial software vendors using C to

respond quickly and cost effectively to market changes, even on large

projects with high turnover rates of engineers. The C language is rather

clumsy for large projects, though, which prompted the development of the

next generation language C++. C++ provides primitives for object oriented

programming, a more abstract approach which allows further separation

from detailed operation of the higher order language (HOL).

The problem for military software is maintenance. Several factors

complicate maintenance, including criticality, complexity, and lifetime. ...

In answer to these problems the Department of Defense developed the Ada

Language standard, approved in 1983, to assure a standard HOL for

operational code. Ada is structurally similar to Pascal, but more robust in

the sense that compilers are required to check automatically for certain poor

coding and design features which complicate maintenance. Although these

features make Ada somewhat cryptic for most new programmers, the initial

decrease in productivity is more than offset by cost savings during software

support. Also, the increased complexity of Ada compilation systems forces

much higher costs than C compilers ($30,000 versus $300). This cost

difference, once again, is inconsequential to the operational savings for

avionics programs. However, the high entry cost and shortage of skilled

Ada code developers have slowed the acceptance of Ada in the commercial

world.

... Ada will continue to emerge as the HOL of choice for both

military and non-military large, complex developments. The basis of this

choice is primarily supportability of such software designs. However, the

policy implications of software reuse and commercial products will draw C

and C++ software into this arena. This unification will accelerate as

commercial C++ designers move to object oriented programming. For

upgrades of existing platforms, there will continue to be a mix of HOL and
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assembly language since it is much too expensive to rewrite all the

operational software for an aircraft. 25

The challenge of Ada versus C is mitigated by the use of automatic code generation.

Automatic code generators leverage the investment in compilers by translating 4th

generation languages into higher order languages. By creating reusable components at the

specification level and employing multi-lingual code generators, software developers can

instantaneously implement an application in either or both programming languages.

The Role of Policy in Promoting the Software Factory

This research has shown that implementing software factories can reduce the cost

and time required to develop software for embedded systems. However, current experience

with software factories has been rather narrow and various challenges to software factory

adoption exist. Policy can influence the rate and direction of technology development in

order to overcome these challenges. The Department of Defense has implemented several

policy initiatives addressing some of these challenges, including replacing DOD-STD-

2167a with the more flexible MIL-STD-498 and creating the DoD Software Reuse

Initiative. Support for these initiatives should be strengthened and their scope expanded.

Evidence indicates that successful implementations of software factories have

involved a significant amount of in-house development to tailor the process and

technologies to a specific domain of application. There is no commercial tool set currently

available which encompass the entire range of needs for creating a software factory. Also,

technologies developed to date have been confined to the GN&C domain. In order to

expand the scope and use of software factories, the Department of Defense should actively

support the research and development of technologies, such as new graphical specification

languages and automatic code generators, and interface standards for tool integration. Since

25 Newport, John R.: Avionic Systems Design, CRC Press, 1994, pp. 79, 80, 308.
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software factories are focused around product-lines, and therefore do not encompass all

software domains, care should be taken to avoid the development of a single all-

encompassing language. Experience has shown that such an effort could prove to be a

barrier by leading to unnecessarily complex and prohibitively expensive code generators.

Also, tailoring specification languages to unique domains should facilitate the code

optimization capabilities of code generators. The focus of DoD R&D support should be the

development of non-proprietary languages and tools which will aid the technology

diffusion process. And the R&D efforts should involve close cooperation with members of

the aerospace industry and commercial tool vendors to ensure the necessary user buy-in

and vendor support.

The objectives of a software factory are to achieve systematic reuse and capture

economies of scope. These objectives are shared with the DoD Software Reuse Initiative

and care must be taken to avoid potential conflicts between DoD software acquisition

practices and corporate management practices. For example, the DoD should encourage

contractors to maximize reuse but avoid requiring a contractor to meet a specific level of

reuse. Rather, change strategies to incorporate reuse into management and engineering

processes should be left to the contractor. Contractors can more accurately assess the

availability of assets and their ability to tailor existing software components to new

systems, which will drive the level of reuse. Time is needed for an organization to evolve a

reuse capability and populate an asset library. The Department of Defense can promote and

reward reuse by emphasizing incentives such as granting asset ownership rights.

The new MIL-STD-498 allows tailoring of the software development process from

program to program. Although this will facilitate the adoption of software factory practices

it will also increase the influence of program offices. It is important that DoD acquisition

training does not reinforce mentalities, such as "not created for my program", which can

form barriers to software factory practices. Acquisition management needs to be more
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highly educated in the latest software development processes and technologies. Better

teamwork between acquisition managers and contractors must be emphasized.

Areas for Further Research

Further research quantifying productivity gains needs to be conducted. Gains

reported by GE, McDonnell Douglass, and Aerospatiale should be independently verified.

Gains should also be mapped to the various phases of the software development life cycle.

This thesis has shown that software factories exploit technologies such as automatic code

generation tools to secure the near-term implementation cycle time reduction and quality

improvement. Software factories can also generate longer-term savings by producing

reusable assets suitable for future applications. Over time, an organization's asset library

will grow and the level of reuse will increase. Since software factory development is an

emerging practice, organizations utilizing software factory development need to be

periodically revisited in order to monitor the growth of asset libraries and to develop an

understanding of system design methods which best exploit reuse. Finally, data on the cost

of implementing a software factory must be collected to support cost-benefit analyses and

to calculate return-on-investment. Cost data should reflect capital investments in domain

engineering, asset libraries and other supporting technologies. Benefits should account for

reduced development costs due to improved productivity and decreased schedules and

reduced maintenance costs due to lower levels of error creation and reuse of high quality

components.
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