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Abstract

The goal at this thesis is to estimate the pressure exerted by Navy I and Navy VI type
piezoelectric rings under electrical excitation when embedded orthogonally in PVC and
steel cylindrical shells. A general mathematical model to estimate the pressure exerted by
an elastically bonded piezoelectric ring is developed using electro-mechanical elasticity of
piezoelectric materials in cylindrical coordinates. The model shows that this pressure
depends not only on the geometry and the material properties of the piezoelectric ring but
also on the radial expansion of the piezoelectric ring which is related to the driving point
impedance of the surrounding material.

The radial velocity response at any radial position of a circular plate driven by a
piezoelectric ring in the center is modeled by solving the wave equation in polar
coordinates using Bessel functions. The modeled velocity is validated by experimental
measurement. The pressure per unit volt exerted by the piezoelectric ring is estimated as

55 dB re. 1N / m2 / V in a 9 cm radius PVC circular plate and 68 dB re. 1N / m2 / V in a
15 cm radius aluminum circular plate.

Based on the study of circular plates and the assumption that the driving point impedance
of the piezoelectric ring embedded in the cylindrical shell is the same as that for an infinite
circular plate, the pressure per unit volt exerted by piezoelectric ring in the cylindrical shell
can be estimated in the same way as that in the circular plate. The pressure per unit volt

exerted by the piezoelectric ring is estimated as 68 dB re. 1 N / m 2 / V in a 5 m long, 0.15

m radius steel shell and 55dB re. 1 N / m2 / V in a 6 m long, 0.2 m radius PVC shell. The
near field and far field longitudinal velocity responses on the cylindrical shells are also
validated by experimental measurement.
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Chapter 1

Introduction

1.1 Motivation

The stealth capability of a submarine which corresponds to its acoustic

characteristics is one at the main requirements of submarine design and operation. Thus,

the structural acoustic properties of ship and submarine hulls are of high interest to

structural acoustics researchers.

Recent structural acoustics research on finite-length submerged shells has

quantified the importance of membrane waves in radiation and scattering[l]. Such waves

can be compressional, transverse-shear, or flexural, but the first two are of direct

importance in the intermediate frequencies where the acoustic wavelength is of the same

order as the shell radius. At these intermediate frequencies, compressional and transverse-

shear membrane waves are the principal determinants of the shell's radiation and scattering

properties, while flexural waves, because they are poorly coupled to the acoustic medium,

serve mainly as modifiers of the principal waves.

In order to provide the submarine design community guidance for improved

acoustic performance, MIT's Structural Acoustics Group in Ocean Engineering has

conducted experimental and theoretical research to explore various modifications to the

shell structure, including its frames and bulkheads. The main approach is to study the

propagation of compressional and transverse-shear waves in modified cylindrical shells by

measuring the response due to different circumferential modal forces.



In the experiment, as illustrated in Figure 1.1, single modes are excited by 12

evenly spaced excitation sources along the circumference of a cylindrical shell. Different

modal forces can be simulated by changing the phases of the driving sources. For instance,

the zero mode can be simulated by driving 12 sources in the same phase and the first mode

can be simulated by driving two neighboring source groups in the opposite phase. The

number 12 is determined by Nyquist criteria along the circumference for the frequency

range 0 < f < 25KHz [2].

Experiments on submerged cylindrical shells in water are costly because due to the

large tank facilities required to surround the shell. As a result, before conducting

expensive experiments in water, experiments in air are helpful to understand basic wave

propagation in the modified cylindrical shell.

Several candidates for in-air excitation devices, proposed by the previous

researchers[2], include shakers and piezoelectric rings. Compared to piezoelectric rings,

shakers are 2 orders of magnitude more expensive. In addition, heavy mass and large

volume make shakers difficult to mount. It is also difficult to drive pure in-plane forces in

cylindrical shells with shakers. Two possible ways to mount shakers are illustrated in

Figure 1.2. The first method is not suitable because the offset force also induces a

moment. In the second method, it is difficult to mount the shaker in the interior cylindrical

shell. This also doubles the number of shakers. Subsequently, piezoelectric rings were

selected as the driving devices in the cylindrical shell. As illustrated in Figure 1.3, these

piezoelectric rings are planted vertically into the cylindrical surface, so they can drive pure

in-plane forces in the cylindrical shell. The only drawback of using piezoelectric ring is that

the force they exert is not calibrated or known. Therefore, the main motivation in this



thesis is to calibrate or estimate the forces exerted by the piezoelectric rings embedded in

the cylindrical shell.

+

(b)

Figure 1.1 Modal Forces: (a) 12 Evenly Spaced Excitation Forces (b) Zero Mode (c)
First Mode

Figure 1.2 Method to Mount the Shaker: (a) Single Shaker (b) Double Shakers

(a) (c)



Piezoelectric
Ring

Figure 1.3 Twelve Piezoelectric Ring Sources Planted Vertically in a Cylindrical
Shell



1.2 Previous Work

The wave analysis of forced vibration in a cylindrical shell of finite length has been

studied by Borgiotii and Rosen using the state vector approach[3]. Propagation of

compressional, flexural and shear waves, excited by an array of piezoelectric ring sources,

has been successfully measured and compared to this shell theory by Bondaryk[4]. The

measurement is presented as velocity per unit voltage; however, the theory is presented as

velocity per unit force. Therefore, it is the goal of this thesis to correlate the measurement

and the theory by calibrating or estimating the force per unit voltage excited by each

piezoelectric ring.

Characteristics of typical piezoelectric materials have been studied for decades. A

standard can be found in an IEEE Document.[5] The mechanical vibration and electrical

admittance of free piezoelectric cylindrical shells has been studied by Haskin and

Walsh[6]; however, piezoelectric rings bonded by elastic material have not been discussed

in the literature. Therefore, a general model for elastically bonded piezoelectric rings is

developed in this thesis by a modification to the boundary condition.

1.3 Overview of Thesis

Chapter 1 introduces the motivation, previous work and the outline of the thesis.

The main approach of this thesis, discussed in Chapter 2, is to develop a general

mathematical model to estimate the pressure exerted by elastically bonded piezoelectric

rings using the electro-mechanical elasticity of piezoelectric materials in cylindrical

coordinates. The model shows that this pressure depends not only on the geometry and



the material properties of the piezoelectric ring but also on the radial expansion of the

piezoelectric ring which is related to the driving point impedance of the surrounding

material. The stiffer the surrounding material is, the higher the impedance of the

surrounding material, so the less the ring expands.

In Chapter 3, the dynamic radial expansion at any radial position of the circular

plate, in which a piezoelectric ring is embedded, is modeled by solving the wave equation

in cylindrical coordinates using Bessel functions. To illustrate how this circular plate

model works, two plates with different materials and radii are studied and taken as

examples. The radial velocity response at any radial position of the plate is validated by

experimental measurement. Therefore, the pressure per unit voltage exerted by the

piezoelectric ring in the circular plate can be calculated using the results from Chapter 2.

The calculated pressure per unit voltage exerted by the piezoelectric ring embedded in a 9

cm radius PVC circular plate is about 55 dB re. 1 N / m2 / V in the frequency below 20

KHz and almost independent of the frequency except at the two resonant peaks at 5.5 and

14.5 KHz. Similarly, The estimated pressure per unit voltage exerted by the piezoelectric

ring embedded in 15 cm radius aluminum circular plate is about 68 dB re. 1 N / m 2 /V in

the frequency range below 20 KHz and almost independent of the frequency except the

resonant peak at 12 KHz. These resonant peaks, due to the finite radius of the plate, are

also discussed in this chapter.

Based on this fundamental study of piezoelectric rings in circular plates, in the first

section of Chapter 4, the pressure per unit voltage exerted by the piezoelectric ring in the

cylindrical shell can be estimated in the same way by assuming that the driving point

impedance of the ring in a cylindrical shell is the same as that in an infinite circular plate.



Based on this assumption, the calculated longitudinal velocity near the outer surface of the

ring in the shell is validated by experimental measurement. A steel and a PVC cylindrical

shell are studied and taken as examples in this chapter. The pressure per unit voltage

exerted by the single ring is estimated 68 dB re. 1 N / m2 /I V in the steel shell and 55

dB re. 1 N / m2 / V in the PVC shell, and these values are apparently independent of the

frequency. In the second section, the far field response is also predicted by integrating the

pressure along the ring surface into the unidirectional force and using the state space

analysis for the wave propagation in the cylindrical shell developed by Borgiotti and Rosen

[3]. The prediction is also validated by experimental measurement. Finally, the conclusion

and suggestion for the future work is summarized in Chapter 5.



Chapter 2.

General Physics of Piezoelectric Rings

In this chapter, the general physics of piezoelectric materials is introduced. A

mathematical model of a piezoelectric ring bonded by elastic material is derived to

examine the pressure and response excited by the ring. The radial velocity response of a

piezoelectric ring in air is measured and compared to the model of a free piezoelectric

ring. The radial velocity response of epoxy-coated piezoelectric ring is also measured to

quantify the effect of epoxy which is used subsequently to connect the piezoelectric ring to

elastic materials.

2.1 A Review of Linear Piezoelectricity

Piezoelectric material is generally used as an electro-mechanical transducer whose

frequency can range from 0 up to 50MHz [7]. More details can be found in an IEEE

Standard[5] and other literature[8]. What follows is a review of the basic physics of

piezoelectric materials, including the electro-mechanical constitutive equation, material

properties and operating modes.

1. Constitutive Equation

A piezoelectric material has an asymmetric atomic lattice, therefore, exhibiting a

dipole moment[7]. Above a certain temperature, known as the Curie point, the dipole

directions have random orientations. The dipole may be aligned by applying a strong

electric field at a temperature near the Curie point; this process is know as poling. After

being polarized, piezoelectric material can change its mechanical dimension when an



electrical field is applied to it. Conversely, an electrical field is generated when this

material is subjected to a mechanical deformation. Figure 2.1 defines the coordinates, x,,

x 2 and x 3, of a piezoelectric material corresponding to its polarization. The deformation

of a piezoelectric material is contributed to by the strain due to the stress field, T, and the

electrical field, E. The strain field, S, can be represented in terms of the stress and the

electrical field

S = sET+dE (2.1)

where S is the strain vector denoted as:

S1 Si

S 2  S22

S3 S33

S4 2S23

S 5  2S 13

S6 2S 12

T is the stress vector denoted as:

T, T

2 T22

T=

T6- -

E is the electric field vector denoted as:

E = E2 ,

E3

d is the piezoelectric constant matrix denoted as:



0 0 d 31

0 0 d 3 1

d = 0 0 d 3 3

0 d15  0

ds5  0 0

sE is the compliance matrix and the superscript, E, means that the compliance is

measured at a constant field (short circuit) and is denoted as:

SE SE SE 0 0 0

11  12 s13 0 0

SE SE SE 0 0 0
s 12  s s 0 0 0

E S SE 0 0 0
E 13 13  33

0 0 0 s4E 0 0

o 0 0 0 sE 0

0 0 0 0 0 6E

Inversely, the electrical displacement is also contributed by the stress field and the

electrical field, so that:

D= dT+ ET E, (2.2)

where D is the electric displacement vector denoted as:

D,
D= D2 ,

D
3

d, is the transpose of the d matrix, EC is the free dielectric constant matrix and the

superscript T means that the dielectric constant is measured at a constant stress field and

is denoted as:

T 0 0

E = 0 E 0

0 0 3
833



Therefore, Equations 2.1 and 2.2 can be written in a matrix form:

[S orS 
d T

D d E' E

or

S, sE sE sE 0 0 0 0 0

S 2  S1E S E S 0 0 0 0 0

S3 sE sE s3E 0 0 0 0 0

S4  0 0 0 sE 0 0 0 d 5

S 5  0 0 0 0 Es4 4  0 d 15  0
S 0 0 0 0 0 s

E  0 0

D 0 0 0 0 d15  0 E7 0

D2  0 0 0 d15  0 0 0 el1

D3A d31 d31 d33  0 0 0 0 0

well-know constitutive equations of piezoelectric

the constitutive equations couple the electrical and

d 31  T,

d31  T2

d33 T3

0 T4
0 0 T5 (2.4)

0 T6
0 El

0 E 2

E33 L E3

materials. As shown in

mechanical fields using

the property constants of piezoelectric material, such as the compliance, s E , the

piezoelectric constant, d , and the dielectric constant, E.

Figure 2.1 Poling Direction of Piezoelectric Material

(2.3)

which are the

Equation 2.4,



2. Mode of Operation[9]

With different polarization, load stress and applied voltage, three operation modes

of piezoelectric materials are available for different applications. The first one is the

longitudinal mode, also called the 3-3 mode, because an electrical field, E3, is applied

along the poling axis and a normal load, T3 , is applied along the poling axis, as illustrated

in Figure 2.2(a). If all other stresses are zero, the constitutive equations are simply:

D3 d33  e3 E3

The second one is the transverse mode, also called the 3-1 mode, because the electrical

field, E3 , is applied along the poling axis and a normal load, T,, is applied perpendicular to

the poling axis, as illustrated in Figure 2.2(b). If all other stresses are zero, the constitutive

equations are simply:

i S, s E  d31 T (2.6)
D3  d31 E3 E3

The third one is the shear mode, also called the 1-5 mode, because the electrical field, E 3,

is applied along the poling axis and a shear load, T,, is applied perpendicular to the poling

axis, as illustrated in Figure 2.2(c). If all other stresses are zero, the constitutive equations

become:

iS5  [s4 d15  T (2.7)

D1J d5 eL~ EJ



T
3

....°.°... ....°.

(a) Longitudinal Mode

(b) Transverse Mode

(c) Shear Mode

Figure 2.2 Operating Modes of Piezoelectric Materials: (a) Longitudinal Mode (b)
Transverse Mode (c) Shear Mode.



3. Material Properties of Typical Piezoelectric Material

Table 2.1 lists the properties of three typical piezoelectric materials. [10] The value

of these properties may vary with different manufacturers.

Table 2.1 Material Properties of Typical Piezoelectric Material

Type Navy I Navy II Navy VI
PZT-4 PZT-5A PZT-5H

T /e 1300 1700 3400

E~/o 1475 1730 3130

d3 1  (10 - 12 meters / volts) -123 -171 -274

d33 289 374 593

d15  496 584 741

s (10-12 meter 2 / newton) 12.3 16.4 16.5

E 15.5 18.8 20.7
33

where E0 is dielectric constant of free space, which is 8.85 x 10- 12 (farads / meter)

4. Examples

Example 1: Static Problem

As shown in Figure 2.3, a NAVY VI type piezoelectric material, size 5 cm long (L), 1 cm wide

(W) and 1 mm thick(t), is polarized along the thickness direction. The material is subject to a 10 N

pulling force (F) along the length direction and a 100 volts voltage (v) applied across the thickness.

Therefore, the piezoelectric material operates in transverse mode. The displacement due to the applied

voltage is of interest in this example.

Case 1: Force Only

If only Force but no voltage is applied on the piezoelectric material, the stress is

T, = F/A = 1 106 (N / 2 ),

where A is the cross section area, and the electrical field is

E 3 = 0,

Using Equation 2.6 and Table 2.1, the strain is simply

S, = s T, = 1.65 - 10- '

According to the definition,

AL
S- L'



the displacement along the length direction AL is

AL = S1L = 8.25 - 10-7 (m),

so the piezoelectric elongates.

Case 2: Both Force and Voltage

If a 10 N force and a 100 volts voltage are applied on the piezoelectric, the stress is

T = F/A = 1.10 6 (N m 2 )

and the electrical field are

Using Equation 2.6 and Table 2.1,

E 3 = -V/t = -100/0.001= -10 5 (V / m),

the strain is

S1 = s z 1 +d31E3

S, = 165- 10-7 + 274- 10-7 = 4.39 -10- 5

and the displacement is

AL = S 1L = 2.2 .10-6(m)

Therefore, the piezoelectric material elongates due to the applied force and voltage. However, if

the voltage is inverted, it can be shown that the piezoelectric material shrinks instead of

elongating.

Figure 2.3 One Dimensional Example for Static Piezoelectric Material

Example 2: Radially Polarized Piezoelectric Ring

Figure 2.4 shows a radially polarized piezoelectric ring. The radial (r) and tangential

(0) directions can be set as x 3 and x 1 respectively. The electrical voltage is applied across the wall

thickness so that the electric field is applied along the poling direction. If the ring is free and the wall

F E F



thickness is small compared to its radius, no radial stress( -r or T3 ) or other stress exists, but only

tangential stress( cT or T ) exists when the ring expands due to the piezoelectricity. Therefore, the ring

operates in the transverse mode, as illustrates in Figures 2.4 and 2.2(b). The details of radially polarized

materials are discussed later in this chapter.

Figure 2.4 Radially Polarized Piezoelectric Ring Operating in the Transverse Mode

The above is a review of general physics of piezoelectric materials. If the

constitutive equations, material properties and operating modes are known, most

characteristics of the piezoelectric material can be determined. In the following section, a

mathematical model for elastically bonded piezoelectric rings is developed using these

basic physics.



2.2 Mathematical Model of Elastically Bonded Piezoelectric
Rings

In this section, a mathematical model of elastically bonded piezoelectric rings is

derived without loss of generality. The piezoelectric ring discussed in this thesis is radially

polarized. Figure 2.5 shows the piezoelectric ring embedded in elastic material with a thin

layer of epoxy. Although the free ring case has been studied by Haskin et al[6], more

emphasis is placed in this section on the boundary condition at the ring's outer surface

where the ring is embedded. The derivation starts by defining the coordinates, strain-

displacement relationship and constitutive equations, and ends by applying boundary

conditions.

Figure 2.5 Geometry Description of an Elastically Bonded Piezoelectric Ring



1. Defining the Coordinates

The piezoelectric ring used in this thesis is radially polarized, so it expands radially

when voltage is applied across the ring wall. The axial deformation of the piezoelectric

ring can be assumed small and negligible. Thus, instead of cylindrical coordinates in three

dimensions, polar coordinates (r, ) in two dimensions are used to describe the geometry

of the problem, as illustrated in Figure 2.6. Using this polar coordinate system, it is

convenient to denote the radial and tangential displacement by u and v, respectively.

Figure 2.6 Definition of Coordinates

2. Strain-Displacement Relationship

The strain-displacement relationships in polar coordinates are available in general

elasticity text [ 11] and have the form:

du

dr
(2.8)

r(x3)



1 dv
-- +

Sr dr

1 u dv v
Y r o0 + rr d6 dr r

where ,,Er o andy,o9 are radial, tangential and shear strain, respectively. Because of

d
circular symmetry, tangential displacement v and tangential derivatives - are zero, so

the tangential strain is simply given by:

u

r
(2.11)

and the shear strain y,, is zero. Equation 2.9 shows that the radial strain is the partial

derivative of the radial displacement with respect to the radial direction; however, the

tangential strain is only the ratio of radial displacement to radial position, as shown in

Equation 2.11.

3. Constitutive Equation

According to the Hook's law and considering the lateral deformation, the

constitutive equations of a general material in polar coordinates are simply:

1
E, - (or - VR O),

ER

1
Eg =

-
(-VR+

r 
+0o),

ER

and

1
o = fro,

and

(2.9)

(2.10)

(2.12)

(2.13)

(2.14)



where o -, o, and r,, are radial, tangential and shear stress respectively and G, ER and

vR are shear modulus, Young's modulus and Poisson's ratio, respectively. Since the shear

strain 7r, is zero, the shear stress rO must be zero, too. Considering the deformation due

to the radially polarized piezoelectric, the constitutive equations of piezoelectric materials

in polar coordinates can be written as:

1
r ( , - VRo) + d33E3, (2.15)

ER

and

1
Eg - (R 0) + d 3 1E 3 , (2.16)

ER

where d3 3E3 and d31E 3 are the additional radial and tangential piezoelectric strain

components respectively due to the applied electrical fieldE 3 across the ring wall.

4. Applying Boundary Conditions

b

Figure 2.7 Boundary Condition of an Elastically Bonded Ring

The radially polarized piezoelectric ring expands radially when excited by a

voltage. Since the piezoelectric ring is bonded, as shown in Figure 2.5, it will be subjected



to a pressure on its outer surface when it expands. Denoting this pressure as P, on the

outer surface, as illustrated in Figure 2.7, the radial and tangential stresses can be written

as [11]:

b 2 P a2

-b2 a 
2

b2P a2

o = _ b a 2( 2 +1).
b -a r

(2.17)

(2.18)

where a and b are the inner and the outer radius respectively. Replacing the inner radius

,a, by the outer radius, b, and the wall thickness,s:

a=b-s, (2.19)

and assuming the thickness is much smaller than the outer radius

s << b, (2.20)

the radial stress component becomes:

b 2 P a 2 _ 2

2bs - s 2 r

b 2 P a 2 -r 2

2bs r

Thus, at r= a, r = 0; and at r = b, the radial stress component is simply r =- Po if

s << b. Therefore, the radial stress changes from 0 to P throughout the wall thickness.

Similarly, replacing a by b - s and using the relation

2

2 1,r
a ! r b, (2.23)

the tangential stress component becomes:

(2.21)

(2.22)



or simply

b 2 P a 2

o7 - ( 2 +1),
2bs r

b
o79 -P -

S

(2.24)

(2.25)

This is the familiar tangential stress-pressure relation for a thin cylinder. If the inertia load

is considered, substituting with Po + psii gives the dynamic tangential

component

7, -(Po + psii)- .
UOn

(2.26)

Compared to o", r is negligible for a thin ring, if s << b, so that only the tangential

stress, (7, exists. Furthermore, as illustrated in Figure 2.4, since the piezoelectric ring is

radially polarized and the voltage is applied across the ring wall, the piezoelectric ring

operates in the transverse mode, i.e. 3-1 mode. Neglecting r in the constitutive Equation

2.16 yields

E = o + d31E 3
ER

(2.27)

It can be easily shown that Equation 2.27 is the same as the first equation of the transverse

mode constitutive equations (2.6) by setting r to T3 , c 0 to T, and E, to 1/sE.

Substituting Equations 2.11 and 2.26 into Equation 2.27 and rearranging it give

the equation of motion in the radial direction:

Es
0 2 (ua

a

a2p ERs
+ ii)+ d31E 3

ER a
(2.28)

stress



Replacing the electrical field, E3 , by the dynamic electrical voltage,

E3 = E 3 
e t = -Ve'"/s, the pressure, P, by the dynamic pressure, Po = e'",and the

radial displacement, u, by the dynamic response, u = 7e' , the equation of motion for the

piezoelectric ring can finally obtained:

-ERs pR 2 ER= -(- (1 2)i- R d31V (2.29)
a ER a

where i is V-17, t is time (second), and w is circular frequency ( rad / second) which

is equal to 2r times frequency f (Hz).

It is shown in Equation 2.29 that the radial displacement and pressure interact with

each other and depend on the material and the geometry. In addition, the pressure is also

dependent upon the ring expansion which is related to the impedance of the surrounding

material. If the surrounding material is very compliant, the impedance is small, so the ring

expands easily and the pressure exerted by the ring decreases. More details of the

piezoelectric ring embedded in a circular plate is discussed in the third chapter. In the next

section, a free piezoelectric ring is studied by setting the pressure, Po, to zero and

comparing the result to measurement.

2.3 Free and Epoxy-coated Piezoelectric Ring

Before discussing the influence of the surrounding material, it is interesting to

examine the velocity response of a free, i.e. unbounded, piezoelectric ring. An epoxy-

coated piezoelectric ring is also studied to quantify the effect of epoxy which is used to

connect the piezoelectric ring to the elastic material.



2.3.1 Experimental Setup

Figure 2.8 shows the experimental setup used to measure the transfer function

between the radial velocity of the outer surface and the applied voltage across the

piezoelectric ring wall. To let the ring vibrate more freely, it is clamped and suspended at

its wire 2 cm away from the ring. The piezoelectric ring used in this experiment is a

Channel 5700 type, 0.7 mm in wall thickness, 8.0 mm in length and in diameter. Table 2.2

lists the material properties of Channel 5700 type piezoelectric ceramics[12].

As illustrated in Figure 2.8, the whole experiment is controlled by a personal

computer software, the Virtual Instruments(VI) by DSP Technology Inc.(DSPT)[13].

This VI software provides the personal computer with control of the SigLab spectrum

analyzer and function generator. The connection is by means of Small Computer System

Interface(SCSI). The two output channels, named Outl and Out2, of the SigLab unit can

generate various functions such as sine, random or impulse signals, etc. The two input

channels, named Inl and In2, of the SigLab unit provide spectral analysis of the input

signals.

The radial velocity of the ring is measured in this experiment by a laser Doppler

interferometer (LDI) system, manufactured by Polytech. Inc.[14] Using the Doppler

effect, the LDI system measures the velocity of the object by calculating the frequency

shift between the emitting laser beam and its reflection and then converting this frequency

shift into a voltage signal proportional to the measured velocity with 1 mm/s/V sensitivity.

Unlike the accelerometer, the LDI system provides a non-contact measurement. No added

mass correction is required. Another advantage is that the LDI system can measure the

velocity component along the beam direction; thereafter, the radial velocity of the ring



can be easily measured by pointing and focusing the laser beam along the radial direction.

The only requirement for this measurement is reflective tape at the measurement point, so

that the tape can reflect the laser beam back to the receiver embedded in the LDI system.

For the convenience of illustration, Figure 2.9 shows the corresponding block

diagram of the experimental setup in Figure 2.8. A swept sine analysis is used in this

experiment to obtain the transfer function between the radial velocity and the applied

voltage. Figure 2.10 shows the configuration of swept sine analysis in the SigLab

system[13]. SigLab generates a sinusoidal voltage signal V, from its first output

channel(Out l) in a frequency range from 50 Hz to 20 KHz with a linear increment of 50

Hz, so the ring is excited with 399 discrete frequencies step by step. The voltage control

level in this experiment is specified in the first output channel so that every swept sine

signal is 4 volts in amplitude . This voltage signal is divided into two channels in parallel.

One is fed back to the first input channel(Inl) as a reference; the other is magnified to

excite the ring by an amplifier with a constant gain K1, which is 13 or 22.5 dB. This

voltage magnified by the amplifier is denoted by V2 in the block diagram. The radial

velocity response, v, of the excited ring is then measured by the LDI system whose

output, V3 , is a calibrated voltage signal representing the measured radial velocity with a 1

V / (mm / s) sensitivity, K2 , is fed back to the second input channel(In2) of the SigLab

spectrum analyzer. SigLab analyzes this feedback signal using a 20 Hz narrow-band

tracking filter whose pass band is centered at the excitation frequency of each step.

It is noted that the input gain settings of two input channels are specified as

"Auto", so that the SigLab unit sets the input gains automatically. The only disadvantage

of using "Auto" is that the acquisition may take longer because additional amplitude data



must be collected and repeated acquisitions must be processed due to input overloads. To

complete a 399 step swept sine analysis in this experiment takes about 100 seconds.

The transfer function between the two input channels can be obtained from VI

software by computing the ratio of the cross-spectrum between two input channels and the

auto-spectrum of the reference input channel (Inl). This transfer function is denoted as

G, which is the ratio between V3 and V, and can also be written as

G = KXK2. (2.30)

where

V V V V3G=- 3 K, = X=-and K 2
V, V V2 V

The transfer function, X , between radial velocity of the ring, v, and the driving voltage on

the ring, V2 , is of most interest and thus can be determined by:

G
X - K- (2.31)

KIK2

The gain transfer function of the amplifier and the noise floor of the unexcited

system were also measured in the frequency domain. Figure 2.11 shows the gain of

amplifier obtained by the same configuration of the free ring experiment except that the

output of amplifier was fed back to the second input channel of the SigLab unit and the

control voltage level was 0.1 volt. It is shown in Figure 2.11 that the gain of the amplifier

was almost independent of frequency in the range of 50 Hz to 20 KHz and was a constant

gain of 22.5 dB. Figure 2.12 plots both the transfer function G and the noise floor

obtained by the same configuration of the free ring experiment, except that the output

channel was disconnected so that the noise floor of the amplifier, the piezoelectric ring and



the LDI system were all included. It is shown in Figure 2.12 that the noise floor is lower

than the response by 60dB between 1 and 20KHz and therefore may be ignored.

Table 2.2 Properties and Dimension of the Piezoelectric Rings Used in the
Experiment [12]

Type Channel 5700
(or Navy VI)

Operation Mode 3-1 mode
Piezoelectric Constant (10 -12 m/V) d3 1  -250

Elastic Constant (1010 N/m2) 1/sE 6.2

Density (10 Kg/m3) 7.4

Diameter (mm) 8.0
Wall Thickness (mm) 0.7
Length (mm) 8.0

Figure 2.8 Experimental Setup for Unbonded Piezoelectric Ring

** is the abbreviation of "Laser Doppler Interferometer".

Clamped

Piezoelectnc Ring
(Channel 5700)

(not scaled)



Figure 2.9 Block Diagram of the Experimental Setup

Figure 2.10 Configuration of Swept Sine Analysis in the SigLab System

K X K2

V2 v VL
Amplifier Piezoelectric Laser

U s . .. . . . ... )cMI
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Comparison of Noise Floor and Measured Transfer Function G

Noise Floor

SMeasured Transfer Function G

i

-r
. .. .. . -. . . .

0 2 4 6 8 10 12 14 16 18 20
KHz

Figure 2.12 Comparison of the Noise Floor and the Measured Transfer Function G

2.3.2 Comparison of Model and Data in Free Case

For the free piezoelectric ring, the pressure in Equation 2.29 can be neglected and

the equation of motion becomes:

ERs
0 = - 2(1

a

pRa 2 ER
E ) ad 31V

ER a

Defining the ring frequency:

_ER

VPRa
(2.33)

rearranging and multiplying Equation 2.32 by complex circular frequency jw, the transfer

function between radial velocity and applied voltage is simply

jai1 - jox31 als

V 1- l2/ 2

-100

-120

-140

(2.32)

(2.34)

-20

-40

-60

-80



It can be easily shown in Equation 2.34 that the ring resonance occurs when the excitation

frequency coincides with the ring frequency. Substituting the material properties listed in

Table 2.2, the piezoelectric ring used in this experiment had a ring frequency at about 115

KHz, which is far beyond the frequency range of interest in this project. Therefore, in the

frequency range below 20 KHz , the radial displacement response of the free ring is simply

a constant and the radial velocity response of the ring is proportional to frequency.

Figures 2.13(a) and 2.14(a) show the comparison between Equation 2.34 and the

experimental measurement. As shown in Figure 2.14(a), the dependence of the measured

radial velocity response of the ring is the first order in frequency, as discussed earlier. To

evaluate the difference between the model and the data, an error analysis is made by

subtracting the logarithmic magnitude of the model from the logarithmic magnitude of the

data and multiplying by 20. The error analysis between the model and the data, plotted in

Figures 2.13(b) and 2.14(b), shows that the model over-estimated the response by 2 dB

from 1 to 19 KHz. This 2 dB error is probably due to the difference between the actual

value and the nominal value of the piezoelectric constant d 31 . The nominal piezoelectric

constant provided by the manufacturer is - 250. 10-12 (m / V); however, the real value

may be lower because of aging and other defects. It is reasonable to tune this constant

from - 250 -10- 12 (m / V) to - 200- 10- 1
2 (m / V) . The piezoelectric constants used in the

following discussions were reduced by 20% if not specified otherwise. The tuned model

response is also plotted in Figure 2.13 and 2.14.
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2.3.3 Comparison of Free and Epoxy-coated Piezoelectric Ring

Because the piezoelectric ring is bonded to an elastic structure with epoxy for the

later experiments, it is important to quantify the influence of this layer. For this reason, a

piezoelectric ring was coated with a layer of epoxy, which was as thin as the normal usage

in the later experiments (less than approximately 1 mm). Figures 2.15(a) and 2.16(a) show

the comparison between the measured response of the free and the epoxy-bounded

piezoelectric rings. Figures 2.15(b) and 2.16(b) show the error analysis of the measured

response of the free and the epoxy-bounded piezoelectric rings. As shown in the figure,

the average difference is about 1dB from 1KHz to 20 KHz so that the effect of the epoxy

is negligible. This is because the Young's modulus of epoxy (3-4Gpa ) is much smaller

than that of piezoelectric material (62Gpa).
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Chapter 3.

Piezoelectric Rings in Circular Plates

In this chapter, a circular plate, excited by a piezoelectric ring in the center, is

studied to examine the radial velocity response at any arbitrary radial location on the plate.

An equation of motion is developed by examining its elasticity in polar coordinates. The

solution has the form of a Bessel function. To evaluate this solution, the calculated radial

velocity at any radial position is compared to experimental measurements. The comparison

shows that the model can predict the response very well if the properties of the plate

material, such as aluminum, are accurately defined. Since the model is validated by

measurement, the pressure exerted by the piezoelectric ring in the circular plate can be

estimated.

3.1 Mathematical Model of a Piezoelectric Ring in a Circular Plate

Piezoelectric Ring

I h

Figure 3.1 Geometry of Circular Plate



I

Figure 3.2 Geometry of Piezoelectric Ring Embedded in the Circular Plate

Figure 3.3 Boundary Condition of the Circular Plate



As illustrated in Figure 3.1 and 3.2, a piezoelectric ring was embedded vertically in

the center of a circular plate with a thin layer of epoxy, which was less than 0.5 mm in

thickness. According to the conclusion of Section 2.3.3, the thickness of the epoxy layer is

so thin that can be neglected in the following discussions. The circular plate vibrated

primarily in the radial direction when the piezoelectric ring was subjected to an applied

voltage and expanded radially. Because of the circular symmetry and the primary

expansion in the radial direction, this problem can be reduced to a symmetrical case in one

dimension(r), as illustrated in Figure 3.3. Furthermore, assuming the piezoelectric ring

excites the circular plate with a dynamic pressure, Po, at the surrounding surface, as

discussed in the previous chapter, the problem simply becomes a circular plate subject to a

dynamic pressure at its inner radius, as shown in Figure 3.3. Therefore, by examining

elasticity in polar coordinates, the radial velocity response at any radial position due to the

dynamic pressure can be calculated. The solution has a form of the first mode Bessel

function because of circular symmetry. Finally, by transforming the dynamic pressure in

terms of the ring's radial expansion and the applied voltage using Equation 2.29, the

transfer function between the radial velocity and the applied voltage can be easily

determined. What follows are the details of the derivation for this transfer function. It

begins by evaluating the force equilibrium of the circular plate and defining the strain-

displacement and the stress-strain relationships in polar coordinates. It ends by applying

the boundary conditions and the dynamic pressure of the piezoelectric ring as developed in

the previous chapter.



1. Equation of Motion for Circular Plate:

Figure 3.4 Force Equilibrium of in the Circular Plate

As illustrated in Figure 3.4, by examining a circular symmetric infinitesimal element

of the circular plate and applying Newton's law, the force equilibrium can be obtained:

- crdO + (a + dr)(r + dr)dO- codrdO + frdrdO = O
dr

(3.1)

where the radial body force per unit volume,fr, is simply the inertia force per unit volume

due to the disk density,pD, and its acceleration, ii:

(3.2)fr = PDii

Ignoring second order terms, therefore, Equation 3.1 can be further reduced to:

da - o
__ r PDUO = (3.3)

Due to the circular symmetry, the strain-displacement relationship of circular plate

is the same as that of piezoelectric ring discussed in Equations 2.8 and 2.11:

du
er dr

Or +o odr

Or

(2.8)



o - r (2.11)
r

Similarly, the strain-stress relationship is also the same as that of piezoelectric ring,

discussed in Equations 2.12 and 2.13:

1
- (r - VDO), (2.12)

ED

1
Co  -(-VDrr + O), (2.13)

ED

except that ED and vD denote the Young's modulus and Poisson's ratio of the circular

disk, respectively. It is helpful to invert the strain-stress relationship into the forms:

ED

ED ( E + VDE), (3.4)

ED
gEo (= E - + Vo r) -(3.5)

1- VD

so that the stress-displacement relationship can be obtained in terms of the displacement:

ED ( + V U), (3.6)O r  V I 2 D_ (3.6
1-D dr r

ED u du
O (VD + v ) .  (3.7)

1- D

Replacing the last stress-displacement relationship with the force equilibrium, Equation

3.3, yields the general equation of radial motion for a circular plate:

d2u d1 u PD (1 VD2 )
+ -iu=0. (3.8)

dr2  r r 2 ED

It is usual to define the sound speed, c, in the plate as [15]:



E,
c = (3.9)

PD ( 1 VD2)

Letting displacement, u , be the dynamic term u = uie' gives ii = -( ue', so that

d2  d

dr r dr

1
(k2 - 2) = 0,

r
(3.10)

where

(3.11)

2 d 2u di
dr 2 +r +
dr dr

(r 2k 2 -_ 1) = 0,

The last equation is the well-known Bessel equation with the first mode and has a general

solution of the form:

u = C1Jl(kr) + C2Y(kr), (3.13)

where Jl is the first mode of the Bessel function of the first kind, Y, is the first mode of

the Bessel function of the second kind, and C, and C2 are their corresponding

coefficients, respectively. The coefficients C, and C2 may be found by imposing the

boundary conditions at the inner and outer radii of the circular plate.

2. Boundary Conditions and Solutions:

It is easily shown in Figure 3.3 that the radial stress at the inner radius, r = b, is:

r = -P,, (3.14

and the radial stress at the outer radius, r = R , is:

o =0 . (3.15

(3.12)

2

k2 2
c

)

5)



Therefore, using the stress-displacement relationship derived in Equation 3.7 and

evaluating at the inner radius, r = b, gives:

_ du
r =- D 2 j

1 - vD or

The pressure applied on the plate,

u
+ VD -) = -P .b

(3.16)

Pi, must be equal to the pressure applied on the

piezoelectric ring, P,:

P, = P (3.17)

Since the dynamic pressure exerted by the piezoelectric ring has been developed in the

previous chapter, substituting Po from Equation 2.29 into Equation 3.16 and retaining the

magnitude yields:

EDb

(1- VD2 )ERs

du-
dr

u

b

Su 0 2

-d 31E 3 +-(1- 2)b c0
R

(3.18)

Furthermore, introducing a non-dimensional parameter:

- ERSE-
SEDb'

and setting the displacement magnitude at the inner radius, r = b, to be u, yields:

1 du
- ( b

(1-v 2 )E dr
b

+v-bb

ub

S(1
O

2

2 ) = -d31E3

(3.19)

(3.20)

(3.21)

Similarly, using the stress-displacement relationship derived in Equation 3.7 and

evaluating at the outer radius, r = R, gives:

d V -( 2 u
db + v- E(1- V2)(1 -=-E(1- 2)d31E3

dr - --) mR b E 1 2d13



ED (du +d
1 -v 2 D

U
VD ) = 0DR

(3.22)

or

R + = 0,
dr DR

where U, is the displacement magnitude at the outer radius r = R.

(3.23)

Equations 3.21 and 3.23 describe the boundary condition in terms of the radial

displacement of the plate. Using these two equations, the coefficients of the general

solution thus can be determined by inserting,

U = C1J (kr) + C2Y (kr) (3.13)

and its derivative,

di

dr

kJokr) kr)C 2[kkr) kr)
(3.24)

into Equation 3.21, i.e. at the inner radius, r = b, so that:

1 1
+ C2 iC,[IkJo(kb) -b J (kb)

+C vD - E(l- vD 2)(1

=-(1- vD 2 )E d 3 1E 3 .

a2) J,(kb) +
11R

D- E(I - D2)(1 -

C,{ bkJo(kb) - J (kb)

i i2 1

(3.25)

CO
2))

COR

1kY (kb) - - Y (kb)
b

1- vD + E(1- D2)(



+ C2 bkY(kb) - Y(kb)[ 1- VD + E(1

=-b(l- vD2)E d 3 1E 3 .

2 
2

-VD (1 (02)

(3.26)

Similarly, inserting Equation 3.13 and 3.24 into Equation 3.23, i.e. at the outer radius

r = R, yields:

C, kJo (kR) -
1

- J1R
(kR) + C2 kYo(kR) - Y(kR) + C1 -, J1 (kR)

C,[kRJo(kR) -(1 - VD)J(kR) ]+ C2[kRYo(kR) - (1- vD) Y(kR)]= 0

Solving the linear system of Equations 3.28 and 3.26:

[Al A12 {C{A21 A22 C 2 -b(1-
VD2 )E d31E 3

the coefficients C, and C2 are given by:

A
C 2 = b(l - vD)E d31E3,

A
C2 =1 b(1- vD)E d 3,E 3 ,

+ C2 _ (kR) = 0

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

where

AI - [kRJo(kR) - (1- v,) J(kR)]

A, 2 -[kRYo(kR) - (1- D)Y (kR)],

+E(1 2VD2)( 1- 2) J,(kb) ,A21 -kbJo(kb)- 1- vD



A22 kbYo(kb) -[1- v, + E(1- vD2 )(1

and

A = AiA2 - A12A21.

Since the coefficients C1 and C2 have been determined, the radial displacement,

i, for any arbitrary radial position, r, on the circular plate is simply:

= C1J, (kr) + C2Y 1(kr).

S[A2 J1 (kr)
S=(I- vD)Eb

Replacing

(3.13)

(3.32)
- A Y,(kr)]

the electrical field in terms of the applied voltage and ring's wall

V
thickness, E3 = -- , the transfer function between the radial velocity at any position and

s

the applied voltage is:

a -jo(1
V

2 [A 12 J (kr)- A, Y (kr)]
- v)E A (3.33)

which meets the goal of this section which is the radial response of the circular plate. In

order to consider the loss factor 7, the Young's modulus E can be replaced by

E(1+ i7) .[15]

3. Quasi Static Displacement:

It is helpful to examine the quasi-static displacement. For the quasi static problem, the

dynamic term in Equation 2.29 is ignored. The pressure applied on the piezoelectric ring is

simply:

2
OJ



S ERs ERs
P= - + R- d31E 3  (3.34)
a a

As shown in Figure 3.3, the radial stress and tangential stress can be represented as the

pressure applied on the inner radius of the plate[ 11]:

pb 2  R 2
or, 2 2  ) (3.35)

R -b2 r

pb 2  R 2

0  2 (1+ ) (3.36)
R -b r

Using Equation 2.11 and 2.13, the radial displacement at any radial position on the plate

can be represented:

u P b2  R2
- = e R 2  2 1- (D2 . (3.37)
r EDR -b2

or

u r b2 R3.38)
b ED b R2 -b2 D v+(l+ VD) 

2

Because the pressure applied on the plate must be equal to that on the piezoelectric ring

and the inner radius of the plate is much smaller the outer radius, the radial displacement,

ua , at inner radius can be obtained by substituting Equation 3.34 into Equation 3.38:

Ua (1+ vD)E
b - +( d31E3 (3.39)
b 1+(I+ vD)E

where E is defined the same as in Equation 3.18. Since the radial displacement at the

inner radius is obtained, the pressure can be also calculated using Equation 3.34

O 1 I -1 d 3 1E 3  (3.40)
b 1+(1+ vD)E



Furthermore, the radial displacement at any arbitrary radial position becomes:

b E r bR2  R2

b 1+(1+ vD)E b R2 rI
(3.41)

Therefore, the displacement at outer radius of the plate can also be computed:

Sb E -
=2- d31E

b R1+(1+vD)E 3
(3.42)

The radial displacement at any arbitrary radial position was derived above from the

static assumption; however, it can be shown that this result is also consistent with the

dynamic Equation 3.32 when the excitation frequency, co, is very low. Introducing a non-

dimensional parameter

CO = kr , (3.43)

for low frequency, - _ 0, and ignoring the high order terms, the Bessel functions can be

expanded in a series at = 0 as

Jo 0 1,

J1 - 0.5 - ,

Y 0.637 In-,
2

0.637

S[1+ D ]All 2 '

0.637(1- vD)
12 (

Thus,

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



A 2  [1+ o + E(1- v2)],
21=R2

A 22 0.637

0.637
2
2

R1
R I 1- Db 0

R
(1- v) 1+E(l+ v,) .b

Substituting Equations 3.48-3.52 into Equation 3.32, the radial displacement at the outer

radius of the plate,

(3.53)UR A12J ( AY() 1- v)E d3 1 E3 ,
L A 31 3

can be reduced to

UR

b

b E
2- - d31E

R 1+(1+vD)E 3
(3.54)

which is consistent with Equation 3.42. Similarly, the radial displacement at the inner

radius of the plate

b
A12 J, (C-) -R

b
A,I ( -)R (1- vD)E d31E3

(3.55)

can also be reduced to

ua (1+ VD)E
- )E -d31E3

b 1+(1+ vD)E 3
(3.56)

which is also consistent with Equation (3.39).

4. Interference Pattern and Radial Mode Shape:

Equation 3.33 shows that the resonance occurs when the characteristic equation is

equal to zero

and

(3.50)

(3.51)

(3.52)



A =0. (3.57)

The characteristic equation is composed of Bessel functions which have roots on the real

axis. This implies that resonant peaks occur in the frequency domain. As examples, the

radial responses of several plates with different sizes and material are computed using

equation 3.33. Figure 3.5 plots the calculated radial velocity response of two PVC circular

plates at the outer radius r = R; one is 15 cm in radius, and the other is 9 cm in radius.

Figure 3.6 also plots the calculated velocity response of two circular plates r = R. Both

plates are 15 cm in radii; one is aluminum and the other is PVC. The material properties of

PVC and aluminum are listed in Table 3.1. The material properties of PVC vary with

material, the value listed in Table 3.1 is estimated by experiment[16]; however, the

material properties of aluminum are well defined and can be obtained from general

texts[17].

As show in Figure 3.5 and 3.6, infinitely many resonant peaks occur and are

equally spaced in frequency domain. It is interesting to discuss these interference pattern

with several parameters, such as material properties and size of the plate.

First, the sharpness of the resonant peak is related to the loss factor and the

excitation frequency. The aluminum plate has much sharper resonant peaks than the PVC

plate does because the loss factor of PVC is much higher. In addition, the PVC plate has

wider resonant peaks at high frequencies than at low frequencies.

Second, the distance between the two resonant peaks is related to the radius of the

plate and the sound speed in the material. The piezoelectric ring radiates waves in the

circular plate and these wave are reflected back at the plate edge, so that the resonance

occurs when the radiated and reflected waves interfere. The sound wave travels faster in



aluminum than in PVC; therefore, the aluminum plate has wider peak spans for the same

radius plate, as illustrated in Figure 3.5. For the same reason, the smaller circular plate has

wider peak spans for the same material plate, as illustrated in Figure 3.6.

Third, the magnitude is related to the plate radius and Young's modulus. The

stiffer and the larger the plate is, the lower the magnitude.

Finally, as discussed earlier, the resonant peaks correspond to the roots of the

characteristic equation. Defining the n th non-dimensional root as kR, and plotting the

displacement magnitude with respect to radius ratio r/R for every root knR, the n th

radial mode shape can then be obtained, as illustrated in Figure 3.7. Therefore, the

resonant peak in the frequency domain corresponds to every radial mode shape discussed

here.

In this section, the transfer function between the radial velocity of the circular plate

and the applied voltage on the piezoelectric ring has been derived; see Equation 3.33. The

interference pattern and radial mode shapes implied in Equation 3.33 have also been

discussed in detail. In the next section, experimental measurements are compared with

Equation 3.33, and the pressure exerted by the piezoelectric ring is estimated.

Table 3.1 Material Properties of the Circular Plate

PVC Aluminum
Young's Modulus, E (109 N/m2) 3.0 70
Poisson's Ratio, v 0.26 0.33
Density, p (103 Kg/m3) 1.39 2.7

Loss Factor, rl 0.04 0.005

Wave Speed, c (m/s) 1521 5394
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3.2 Pressure Estimation of Piezoelectric Rings in an
Aluminum and a PVC Circular Plate

In this section, the radial responses of a PVC and an aluminum circular plate

driven by piezoelectric rings embedded in the plate centers are measured and compared to

the model of the preceding section. The PVC and the aluminum circular plates are of size

9 and 15 cm in radius, respectively. Their material parameters are summarized in Table

3.1. By comparing to the experimental measurement, Equation 3.33 in previous section

can be validated. The pressure exerted by piezoelectric ring can be estimated using

Equation 2.29.

Figure 3.8 shows the experimental setup for measuring the radial velocity

response. The experiment setup is the same as that in Figure (2.8), except that the

piezoelectric ring is now bonded into a circular plate. As illustrated in Figure 3.9, the plate

is simply supported by three small plastic balls of size 4 mm in diameter, so that the plate

can deform freely in radial direction. The circular plate is excited by the piezoelectric ring

with a swept sine voltage signal supplied by the SigLab function generator via the

amplifier with a constant gain 13 (22.5 dB). The velocity is then measured by LDI system

and fed back to SigLab spectrum analyzer, so that the transfer function between velocity

and applied voltage can be obtained by computing the ratio of cross-spectrum and the

auto-spectrum. The details of experiment setup and swept sine configuration have been

discussed in Chapter II.

The radial velocity response at the outer radius, r = R, can be measured directly

by pointing the laser beam along the radial direction at the plate edge, as illustrated in

Figure 3.8. However, an alternative technique must be used to measure the radial velocity



at any other position for r < R. Figure 3.10 illustrates this modified measurement

technique. Two velocity response measurements along different directions are required.

One is an axial velocity(v a ), which is vertical to the plate surface; the other is a 450

velocity( v4 5, ), which intersects the radial direction, r, at 450 and is also in the same plane

with the radial direction. The measured 450 velocity, v 450 , is contributed to by the

projections of the axial velocity, va , and the radial velocity, v, , along the 450 direction, so

that:

1
v450 v- a +Vr), (3.58)

and the radial velocity for r < R can be determined by

vr = v4 50 - a . (3.59)

In order to determine if Equation 3.33 is valid for all positions on the plate, in

addition to measuring the radial response at plate edge, the radial response near the

piezoelectric ring is also measured. Figures 3.11(a) and 3.12(a) show the model and the

data of the radial response of aluminum plate at r = 0.15mand r = 7mm, respectively.

Figures 3.11(b) and 3.12(b) show the error analysis between model and data. For the

radial response at plate's edge(r = 0.15m) in Figure 3.11, the error between model and

data averages about IdB in the range from 1 to 20 KHz regardless of the resonant peaks.

For the radial response at aluminum plate's interior( r = 7mm) in Figure 3.12, the error

between model and data also averages about IdB in the range from 1 - 20 KHz

regardless of the resonant peaks.

Figures 3.13(a) and 3.14(a) show the model and the data of the radial response of

the PVC plate at r = 0.09m and r = 7mm, respectively. Figures 3.13(b) and 3.14(b) show



the error analysis between model and data. For the radial response at plate's

edge( r = 0.15m) in Figure 3.13, the error between model and data averages about 2dB in

the range from 1 - 20 KHz regardless of the resonant peaks. For the radial response at

PVC plate's interior( r = 7mm) in Figure 3.13, the error between model and data averages

about 3dB in the range from 1 - 20 KHz regardless of the resonant peaks. The prediction

of the radial response at PVC circular plate is not as good as that in aluminum plate

because the material properties of PVC are not definitely known. The material properties

of PVC used here are estimated. Unlike PVC, the material properties of the aluminum are

more accurately known.

According to the comparison discussed above, it can be concluded that Equation

3.33 is validated for all position on the circular plate if the material properties of plate are

definitely known. Since Equation 3.33 is validated, the displacement at the outer surface

of the piezoelectric ring (or the inner surface of the circular plate) is also validated.

Therefore, the pressure exerted by the piezoelectric ring can be estimated using Equation

2.29. Figures 3.15 and 3.16 show the estimated pressures exerted by the piezoelectric

rings embedded in the aluminum and the PVC circular plate, respectively. The pressure

per unit volt exerted by the piezoelectric ring is estimated as 55 dB re. 1 N / m 2 / V in a 9

cm radius PVC circular plate and 68 dB re. 1N / m2 / V in a 15 cm radius aluminum

circular plate. As shown in the figures, the pressure is almost independent of frequency

away from resonance locations. Furthermore, PVC is more compliant than the aluminum,

so the PVC has lower impedance. Thus, the piezoelectric ring is easier to expand in a PVC

plate, and the pressure exerted by the ring in the PVC plate is less than that in the

aluminum plate.



Figure 3.8 Experimental Setup for Measuring the Radial Velocity at Circular Plate
Edge
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Figure 3.10 Modified Radial Velocity Measurement Technique for r<R
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(a) Aluminum Circular Plate Radial Velocity at r=0.7 cm
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(b) Error Analysis of Aluminum Circular Plate Radial Velocity at r=0.7 cm
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(a) Radial Velocity at PVC Circular Plate Edge(R=9 cm)
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Chapter 4.

Piezoelectric Rings Embedded in Cylindrical
Shells

In this chapter, the pressure exerted by the piezoelectric ring embedded in the

cylindrical shell is estimated using the plate model developed in Chapter 3. The basic

assumption is that the piezoelectric ring, planted in the cylindrical shell, expands as if it

were in a very large circular plate. To validate this assumption, the near field radial

response on the shell is measured and compared to the plate model. Once the near field

radial response is validated, the pressure exerted by the ring can be estimated. To evaluate

this estimation, in the second section, a state space approach developed by Borgiotti[3] is

used to predict the far field longitudinal response on the cylindrical shell and compared to

the measurement. The input of this state space approach is restricted to a unidirectional

point force or modal force, while the piezoelectric ring exerts pressure along all its radial

directions. For this reason, the pressure exerted by the ring is integrated into an

unidirectional point force, so that it can be used as an input to the model developed by

Borgiotti.

Two cylindrical shells with different geometry and materials are discussed in this

chapter. Table 4.1 lists the geometric and material parameters of the two cylindrical shells

and the piezoelectric rings used in the experiment.



Table 4.1 Parameters of Two Cylindrical Shells and Piezoelectric Rings Used in the
Experiment

Parameters of Cylindrical Shells
Material Type PVC Steel
Neck-Down Section No Yes
Length (m) 6.07 4.87

Outer Diameter (m) 0.41 0.31

Wall Thickness (m) 0.0047 0.0017

Young's Modulus (GPa) 3.6 200

Poison's Ratio 0.2 0.3
Loss Factor 0.06 le-4
Density (Kg/m3)  1.39e3 7.8e3
Quasi-longitudinal Wave Speed (m/s) 1610 5048
Parameters of Piezoelectric Rings
Material Type Navy VI Navy I

Channel 5700 Channel 5400

Location from the Edge (m) 2.32 1.07

Diameter (m) 0.008 0.0064

Wall Thickness (m) 6.86e-4 7.62e-4

Polarization Mode 3-1 Transverse Mode 3-1 Transverse Mode

Young's Modulus (GPa) 62 82
Density (Kg/m 3) 7.4e3 7.55e3
Piezoelectric Constant (10 -12 m/V) d 31 -250 -135

4.1 Near Field Response and Pressure Estimation of the

Piezoelectric Rings in Cylindrical Shells

The goal of this section is to estimate the pressure exerted by a single piezoelectric ring

planted vertically in a cylindrical shell. This is a complex problem because the longitudinal

axis of the small hole, in which the piezoelectric ring is mounted, is perpendicular to the

longitudinal axis of the cylindrical shell. Therefore, two orthogonal coordinates are

involved in this problem. However, the ring's radius is much smaller than the cylindrical



shell's radius, so the local curvature near the piezoelectric ring can be treated as small.

Therefore, the driving point impedance of the ring in the cylindrical shell can be assumed

to be the same as that in a infinite circular plate. Based on this assumption, the problem

can be solved by using the plate model developed in the previous chapter and assuming the

plate is very large. It is reasonable to assume that if the radius is large it is of the same

order as the cylindrical shell's length. To validate this assumption, in this section, the

longitudinal response near the piezoelectric ring is measured and compared to the large

plate model.

The experimental setup for measuring the near field response is similar to that for

the free piezoelectric ring, as illustrated in Figure 2.8. The only difference is that the

measurement in this experiment is the near field response of the cylindrical shell. The goal

in this experiment is to measure the longitudinal velocity near the outer surface of the

piezoelectric ring; however, it is difficult to measure the longitudinal velocity unless two

measurements are taken in different directions. The idea is the same as that for measuring

the radial response at the circular plate for r < R in the previous chapter. As illustrated in

Figure 4.1, v, is the vertical velocity response and v45' is the 450 velocity response at the

measurement location on the cylindrical shell. vv , v4 50 and the longitudinal direction are in

the same plane. The 450 velocity response is contributed to by the projection of the

vertical velocity and the longitudinal velocityv, along the 450 direction, so that

1
S(450 - v+ V) , (4.1)

and the longitudinal velocity can be determined by



Vz  -2v 450 - V (4.2)

Using this algorithm, it is therefore possible to measure the in-plane velocity response on

the cylindrical shell.

Now using Equation 3.33 with radius R = 10m, which is the same order of the

cylindrical shell's length, the near field radial velocity response on the plate, which is

equivalent to the near field in-plane velocity on the shell, can be computed. Care must be

taken that the plate model is valid for cylindrical shell just outside the piezoelectric ring ,

because shell curvature must be considered beyond this region.

Figures 4.2(a) and 4.4(a) show the longitudinal velocity responses of steel shell at

z = 5mm and z = 10mm in linear frequency domain, respectively. The response at

z = 5mm is the nearest possible measurement on the steel shell because the piezoelectric

ring is 3.2mm in radius and the laser beam focus is not exactly a point but a circle of

3mm in radius. Figures 4.2(b) and 4.4(b) also show their error analysis between the model

and data at z = 5mm and z = 10mm. To investigate the frequency dependence and the

error at low frequency, Figures 4.3 and 4.5 show the response in logarithmic frequency

domain corresponding to Figures 4.2 and 4.4.

Figures 4.6(a) and 4.8(a) show the longitudinal velocity responses of the PVC shell

at z = 7mm and z = 10mm in linear frequency domain, respectively. The response at

z = 7mm is the nearest possible measurement at steel shell because the radius of

piezoelectric ring is 4mm. Figures 4.6(b) and 4.8(b) show their error analysis between the

model and data at z = 7mm and z = 10mm. To investigate the frequency dependence and

the error at low frequency, Figures 4.7 and 4.9 show the response in logarithmic

frequency domain corresponding to Figure 4.6 and 4.8.



It is shown in Figures 4.3 and 4.5 that the large plate model predicts the near-field

longitudinal velocity on the steel cylindrical shell very well with the error averaging

2dB from 600Hz to 20KHz. However, Figures 4.7 shows the error averaging 3dB from

600Hz to 20KHz for the longitudinal response at z = 7mm on the PVC cylindrical shell

and Figure 4.9 shows the error averaging 5dB from 100Hz to 20KHz for the longitudinal

response at z = 10mm on the PVC cylindrical shell. The reason for the under prediction

for the PVC shell's response is probably because the material properties of PVC are not

definitely known. Unlike the PVC shell, the material properties of steel are well known.

Therefore, the conclusion can be made that the plate model can predict near-field

longitudinal velocity response on cylindrical shells as long as the material properties are

accurately known.

Since the measurements of the longitudinal velocity response on the cylindrical

shells validate the prediction using the plate model, the pressure exerted at the

piezoelectric ring's outer surface thus can be estimated using Equation 2.29. Figures 4.10

and 4.11 show the estimated pressures exerted.by the rings in the steel and the PVC shells,

respectively. The pressure levels are apparently independent of frequency and have an

average value for the steel cylindrical shell

steel= 68dBre. 1Nm 2 /V,

and an average value for the PVC cylindrical shell

vc =55dBre. 1 N / m2 /V.

These two estimated values thus meet the goal of this thesis.

Note that the pressure for the steel cylindrical shell is as expected higher than that

for the aluminum plate, because the driving point impedance of the steel cylindrical shell is



higher than that of the aluminum plate. However, both of them have the same estimated

pressure level. This is because the piezoelectric ring used in the steel cylindrical shell had a

lower piezoelectric constant than that used in the aluminum plate.

In the next section, the estimated pressures exerted by the piezoelectric rings are

integrated into unidirectional forces along the longitudinal direction, so that the state space

model developed by Borgiotti can be used to predict the far field longitudinal response on

the cylindrical shell.

Figure 4.1 Experimental Setup for Measuring the Near Field Longitudinal Velocity
on the Cylindrical Shell
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Frequency Domain (a) Comparison of Model and Data (b) Error Analysis
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Figure 4.5 Near Field Response at z=0.01m on Steel Shell in the Logarithmic
Frequency Domain (a) Comparison of Model and Data (b) Error Analysis
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Frequency Domain (a) Comparison of Model and Data (b) Error Analysis
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Figure 4.8 Near Field Response at z=0.01m on the PVC Shell in the Linear
Frequency Domain (a) Comparison of Model and Data (b) Error Analysis
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Frequency Domain (a) Comparison of Model and Data (b) Error Analysis
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4.2 Far Field Velocity Response on Cylindrical Shells

The pressure exerted by a single piezoelectric ring embedded in the steel and the

PVC cylindrical shells was estimated and validated by comparing the near field response of

the measurement to the plate model from the previous section. In this section, it is also

interesting to evaluate the far field velocity response on the cylindrical shell. The far field

response involves knowledge of wave propagation physics in the cylindrical shell.

Borgiotti has introduced "A state vector approach to the wave and power flow analysis of

the forced vibration of a cylindrical shell" [3]. This approach can solve the velocity due to

a point excitation in any direction at any location on the cylindrical shell. The response due

to this point force is a superposition of the response due to infinitely many circumferential

modal forces. The difficulty in using this approach to study the far field response excited

by the piezoelectric ring is the difference between the unidirectional point excitation in

Borgiotti's model and the "compressional" source which exerts forces in all radial

directions in the real experimental setup. Therefore, some assumptions must be made to

simplify the problem.

It is easier to evaluate the far field response of a symmetric case in which twelve

piezoelectric ring sources are excited together and all are in the same phase. Therefore, as

illustrated in Figure 4.12, the longitudinal velocity response at a measuring point such as

z = 3.5 m is contributed by the longitudinal force components exerted by the piezoelectric

rings. As illustrated in Figure 4.13, the force exerted by each piezoelectric ring can be

decomposed into two longitudinal components. One is in + z direction; the other is in - z

direction. These force components can be obtained by integrating the pressure along ± z



directions. Assuming the normal pressure on the outer surface of the piezoelectric ring is

P, which is estimated in the previous section, the pressure component in + z direction

thus becomes P co s . Integrating this stress component along ring's circumference

from - )/2 to ;/2 gives the total force F exerted by a single piezoelectric ring along z

direction

ff/2
F = P cos0 dA = 2hrP (4.3)

-;/2

where r and h are the outer radius of the piezoelectric ring and the wall thickness of

cylindrical shell, respectively. Assumed that there is no interaction between twelve

piezoelectric rings, the total force driven by them along z direction is 12F. The total

force along - z direction is thus - 12F.

For the far field, the twelve in-phase forces can be treated as two ring forces, i.e.

two zero mode circumferential modal forces of magnitude 12F, respectively. One

actuates along + z direction at z = r; the other actuates along - z direction at z = -r .

Using this assumption, the total force per unit circumferential length along ± z directions

12F
is thus +- and actuating at z = ±r , so the response at far field can be predicted by

;rD

using Borgiotti's model. Figures 4.14 and 4.15 show the longitudinal response at

z = 3.5m on the steel and the PVC shells. In Figure 4.14, using Borgiotti's model and the

estimated forces predicts well the longitudinal velocity response on steel shell from 0.5 to

3 KHz. Above 3 KHz, the magnitude level of the predicted response also agrees with

experimental measurement. In Figure 4.15, the velocity response and the interference

pattern due to the wave propagation in the PVC cylindrical shell are also predicted well



with 3 dB averaged error. Therefore, the estimated forces exerted by piezoelectric rings

are validated for the far field velocity response on the steel and the PVC shells.

Figure 4.12 Measurement for Far Field Response on the Cylindrical Shell

Figure 4.13 Integrating Pressure into a Concentrated Force

P cos0

-F F

F = J/2 P cosOdA = 2 Phr
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Chapter 5.

Conclusions

5.1 Summary and Conclusions

The goal of this thesis was to estimate the pressure exerted by a piezoelectric ring

embedded in a cylindrical shell. The general model of the bonded piezoelectric ring is

successfully developed to estimate the pressure exerted by the ring. The model shows that

this pressure depends not only on the geometry and the material properties of the

piezoelectric ring but also on the radial expansion of the piezoelectric ring which is related

to the driving point impedance of the surrounding material. The stiffer or the larger the

surrounding material is, the higher the impedance of the surrounding material is, so the

less the ring expands.

The dynamic radial expansion at any radial position of the circular plates in which

the piezoelectric rings are embedded was also successfully modeled using elasticity theory.

The calculated radial velocities at the plate edge and near the outer surface of the ring

were validated by experimental measurement. Therefore, the pressure per unit volt exerted

by the piezoelectric ring in the circular plate can be estimated using Equation 2.29. The

estimated pressure per unit volt exerted by the piezoelectric ring embedded in a 9 cm

radius PVC circular plate is about 55 dB re. 1 N / m2 / V in the frequency below 20 KHz

and almost independent of the frequency except at the two resonant peaks at 5.5 and 14.5

KHz. Similarly, The estimated pressure per unit volt exerted by the piezoelectric ring

embedded in a 15 cm radius aluminum circular plate was about 68 dB re. 1 N / m2 /V in

the frequency range below 20 KHz and almost independent of the frequency except the



resonant peak at 12 KHz. It is reasonable that the pressure exerted by the ring in the

aluminum plate is higher than that exerted by the ring in the PVC plate because the

stiffness and radius of the aluminum plate are larger than those of the PVC plate; i.e. the

impedance of aluminum plate is greater than that of the PVC plate.

Based on this fundamental study of piezoelectric rings in circular plates, the

pressure per unit volt exerted by piezoelectric rings in cylindrical shells may be estimated

in the same way by assuming that the driving point impedance of the ring in the cylindrical

shell is the same as that in a infinite circular plate. Based on this assumption, the calculated

longitudinal velocity near the outer surface of the ring in the shell was validated by

comparing the calculated velocity to the measured one. The difference between calculated

and measured velocity response is about 2dB for the known material properties, such as

those of steel . The error will grow if the material properties, such as those of PVC, are

not exactly known. Since the near field velocity was validated by the experimental

measurement, the pressure exerted by the single ring was estimated to be 68

dB re. 1 N /m 2 /V in the steel shell and 55 dB re. 1N /m 2 /V in the PVC shell, and

these values are apparently independent of frequency. Using this estimated pressure and

Borgiotti's model, the predicted far field longitudinal velocity response on the cylindrical

shell was also validated by experimental measurement. Therefore, as shown in Figure 4.10

and 4.11, the goal of this thesis to estimate the pressure exerted by piezoelectric rings

orthogonally embedded in cylindrical shells was fulfilled.



5.2 Future Work

The results of the present work provide the future research with the fundamental

actuation properties of the piezoelectric rings embedded in the cylindrical shells. The

future research can be the design of various modifications to the shell structure, including

its frame and bulkheads. A further extension of this research can be made to the study of

the modified cylindrical shell in water, which leads the research into a more practical

region. Introducing an active control system on the membrane wave control problem by

utilizing piezoelectric materials as sensors and actuators can also be an exciting and

challenging research area.
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