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Abstract

A Particle-In-Cell (PIC) method is developed and applied to simulate the electron
current collection by a positively charged tether in a quiescent unmagnetized plasma
under the Maxwellian collisionless condition. We compare our result with the exact
solution to validate our code. This simulation is performed with the help of a non-
rectangular grid and a new treatment of the outside boundary condition. The error
induced by a non-rectangular grid is calculated and the effect of it is considered.
The outside boundary treatment improves the accuracy of the amount of current
collected by the tether. A very small ion mass is used and it is verified to speed up
the computation considerably without loss of quality in the result. The comparison
with the exact solution shows that our code provides good qualitative and quantitative
approximations.
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Chapter 1

Introduction

In tethered satellite technology, it is important to estimate how many electrons a

spacecraft can collect from its surrounding plasma by its positively charged tether.

The analysis is, however, very difficult because of the small but significant Geomag-

netic field and the spacecraft's relative motion to both ions and electrons [5]. One

of the approaches for the solution to this problem is the numerical method. In the

numerical analysis of space plasma, one of the most reliable methods has been the

Particle-In-Cell (PIC) method. In this thesis, we develop a PIC code for a two di-

mensional collisionless plasma without magnetic field.

The original Particle-In-Cell code was established by Birdsall at U.C.Berkeley. [1]

Using a rectangular grid and finite-size particles, he has studied the effects of grid size

and timestep on the simulation and relevant numerical instabilities. As the "bible"

to PIC users, his publications give us excellent criteria for its numerical stability and

reliability. The concept of PIC in our code is mostly from this "bible".

The usage of a rectangular grid and a finite-size particle, however, poses some

problems. In the usual numerical application, very complicated configurations require

non-rectangular body fitted grids. Being defined by the grid size, the finite-size

particle can not maintain its constant size any more. In this thesis, we estimate the

error induced by the use of a non-rectangular grid and consider the effect on our

simulation.

In order to validate our code, we apply it to the current collection by a cylindrical



tether in a collisionless unmagnetized plasma, near the boundary of Orbital Motion

Limited (OML) regime, for which an exact solution exists [4]. The OML theory,

which will be further discussed in the next chapter, applies in the limit of large ratios

of Debye length to radius.

In the vicinity of the tether, there is a region called "sheath", where quasi-

neutrality does not apply. That is to say, the densities of ions and electrons differ

from each other considerably. In order to reproduce this region, we follow the mo-

tion of both ion and electron particles. Since the mass ratio of an ion to an electron

is very large, we would need a great number of iterations till both species come to

have converged distributions, without having electrons travel a large distance in one

iteration, which would induce a large error in the energy conservation. However, the

fact that, at tether potentials much greater than the ion temperature, we can assume

that no ion is absorbed by the tether, solves this problem of the computational cost.

In theory, the ion density at an arbitrary point does not depend on its mass when its

distribution is Maxwellian.

Since some electrons are absorbed on the surface of the tether, there is also a

region called "pre-sheath" outside the sheath, where quasi-neutrality prevails but the

electric potential is not the same as that of the ambient plasma at infinity.

In a computation, we have to use a finite region to calculate field quantities. And,

because of the limited memory on a computer, we can not use an infinitely large grid

to include the pre-sheath region. Therefore we have to clip a computational region

out of this infinitely large space, and determine the outer boundary conditions by

considering only the quasi-neutrality and the collisionless nature of the plasma. The

limitation of the number of particles available in a computer gives fluctuating local

boundary conditions. To avoid this, we use a spatially averaged boundary condition.

The goal of this thesis is to establish a code to simulate a collisionless unmagne-

tized plasma in and near the sheath region. Based on this code, we plan to include

later all the phenomena encountered by a tethered satellite, such as Geomagnetic

field and plasma cross-flow.



Chapter 2

Orbital Motion Limit (OML)

Current

Current collection by spherical and cylindrical probes (tethers) was first analyzed

by Lagmuir and Mott-Smith [6] , who named the thin cylinder limit, 'Orbital Mo-

tion Limit (OML)'. When OML theory applies, namely, when the ratio of the probe

(tether) radius to the Debye length of the plasma is so small that the shielding be-

comes unimportant, the number of electrons absorbed by the probe is determined

from energy and angular momentum considerations alone.

The OML limit can be described in terms of the effective potential. [3] Let J and

E be the angular momentum and the energy of a particle, respectively. From the

energy conservation and the angular momentum conservation of an electron in two

dimensions, although the velocity vil along the cylinder axis can be nonzero, we have

E Mme +2  v ) + q0 (2.1)

J = mervo (2.2)

where r is the distance from the probe center, me the electron mass, q the electron

charge of an electron, q the local potential, Vr the radial velocity component, and v0

the azimuthal velocity component. Substituting equation (2.2) into equation (2.1),



we have

v2= 2(E - qO j2 2 (2.3)r me 2mer2

In order for a particle to reach the surface of the probe, the right-hand side of equation

(2.3) must be positive not only at the surface of the probe, but also all along the path

from infinity to the surface. To consider the particle motion from the one dimensional

viewpoint, the effective potential defined by

j 2

U = q + 2P (2.4)
2mner

should be considered. Substituting the effective potential (2.4) into (2.3), we have

v = 2(E - U) (2.5)
me

By taking the effective potential as a normal potential, we can treat the 2-dimensional

particle motion as the 1-dimensional case. Fig(2-1) illustrates two limits regarding the

effective potential. Assume that the probe is on the left of the figure. When the sheath

is thin (Langmuir Limit), the second term of equation (2.4) becomes dominant near

the probe and v(r) has an intermediate minimum value. For some attracted particles,

this bump in the effective potential prevents them from reaching the surface even if

they have enough energy. When the sheath is thick (OML limit), the first term in

equation (2.4) becomes dominant throughout the region, and the electric potential is

large enough to overwhelm the bump in the effective potential. Therefore the effective

potential becomes monotonous, and the only requirement for a particle to reach the

surface is to have a positive value of the right-hand side of equation (2.3) at the probe

surface.

Electrons absorbed by the probe should be accelerated by the field force up to a

certain total velocity toward the probe. Therefore, in terms of energy, it is equivalent

to say,

2 r
where is the probe potential. (2.6)

where qp is the probe potential.
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Figure 2-1: The effective potential for the thick and thin sheath

In the absence of collisions, the solution to Vlasov's equation must have the

Maxwell-Boltzman form for any velocity that does occur:

m 3/2 2 +v2

fe(V) = n(2oo 7m) exp q-p + + ( I ) (2.7)

where n, is the density at infinity, k the Boltzmann constant, To the temperature

at infinity and vl a velocity component parallel to the cylindrical probe.

At the surface of the probe, only electrons which satisfy the equation (2.6) can

exist and be counted for the current collection. The current density into the probe is

given as

j = q f mevi+qwo fedv (2.8)

oo oo r/2
= q dv] 2f q / , v fevjcoseddv± (2.9)

-oo k2 + r/2

, , , I 

(r
T + aekTe erf c T (2.10)2 2Too 2 kToo



qc (2.11)
2#F V kT,,,

since, in the limiting form, x -+ oo, we have

erfc(x) = 1 - erf(x) = e-t 2dt (2.12)

2 e-2
-2 (2.13)

where c is the random thermal velocity given as

c = /8kT (2.14)
V me

Therefore, when I >> 1, the current density (2.13) becomes

I = qe 2 p (2.15)
7 me

which is independent of electron temperature, T,. Note that equation (2.10), and

hence equation (2.15) are independent of the shape of the cylinder's cross section (as

long as OML conditions prevails).

This limiting value of current density is used in this thesis as one of the criteria in

the validation of our code. To see whether our code simulates plasma behavior well

in the vicinity of the OML regime, we examine several Debye ratios, rp/dDebye, for

the case that the ratio of the probe potential to the electron temperature, Xp -- Ik ,

is 25, which case Laframboise has exactly computed. The solutions are available as

analytical fits, which we quote in this thesis. [4, 2]



Chapter 3

Numerical Method

(Particle-In-Cell)

In this chapter, the Particle-In-Cell (PIC) method used here is explained in detail.

First, we introduce the structure and mechanism of the PIC method. Secondly, we

describe the model for our simulation and the governing equations in a nondimen-

sionalized form. Thirdly, we discuss the problems with the PIC method, which have

occured in our application. Finally, we show the results from this simulation and

compare them with the exact solutions.

3.1 Particle-In-Cell (PIC)

The Particle-In-Cell (PIC) method has been very successful in the simulation of col-

lisionless plasmas. In PIC, many particles are distributed in phase space. That is, a

particle's motion is described by its position and velocity. In kinetic theory, this par-

ticle distribution is defined as a distribution function and governed by the Boltzmann

equation. The Boltzmann equation with no collisional term on its right-hand side is

given as follows. (Vlasov's equation)

Of Of Of+ v + F = 0 (3.1)
O Ox Ov



In an actual computation, the number of particles available is much less than

that in reality. This fact requires us to introduce the concept of a "superparticle",

corresponding to a group of real particles. One superparticle contains many real

particles, and as many particles as another.

To describe the motion of the superparticle, we need to know velocity and the

force acting on it. The force acting on a superparticle can be calculated by consid-

ering all Lorentz forces caused by the other superparticles. However, this calculation

is computationally too expensive. Instead of doing so, PIC uses a grid on which

Maxwell's equations are solved to give the electric field, which is then interpolated

to the position of each superparticle. As the name "Particle-In-Cell" implies, in a

computational domain, a superparticle moves through a grid or a cell, regardless the

position of grid nodes. A PIC code method consists of four processes as described

below.

At each time step, the electric charge density on each node is estimated from

the positions of all superparticles. This first process is called "charge assignment".

Then on a grid, the electric potential and electric field are computed. We use a

finite difference method in this second process; especially to solve Poisson's equation,

we use Successive Line OverRelaxation (SLOR). Poisson's equation to relate electric

potential to charge density is

v2o= P (3.2)

where p = Il(ni - ne) is the electric charge density , and the electric field is

E = -Vo. (3.3)

if can be neglected.

After computing E on a grid, the electric field is interpolated onto each super-

particle's position, and the corresponding force and acceleration of a superparticle

is calculated. This third process is called "interpolation". The first and third pro-

cess involve the same weighting method to avoid the so-called "self force". Once we

know the acceleration, a leapfrog method, the final process, updates the velocity and



Figure 3-1: A typical cycle of PIC

position of each superparticle as follows;

-(n) (n-1) qE(n- 1/2)
new = Vold at (3.4)

X(n+1/2) X(n-1/2) neu t. (3.5)

new old new

This completes one iteration in a PIC calculation. One cycle of a PIC is shown

skematically in fig 3-1.

3.2 Simulation Model

This section explains the simulation model. We wish to calculate the electron cur-

rent collection by a positively charged cylindrical tether in a quiescent unmagnetized

plasma in a Maxwellian collisionless condition. For simplicity, we first nondimension-

alize the governing equations.

Non-dimensionalization

Before we consider the non-dimensionalization, we should know what equations are

involved in our simulation. As we showed before, the leapfrog method uses equations



(3.4) and (3.5). To solve for electric field from electric charge density, we use Poisson's

equation (3.2) and Maxwell's equation (3.3). Essentially, these four equations are the

governing equations. Since we are not directly solving Boltzmann's equation (3.1), it

is not considered as a governing equation. The distribution function, however, should

be considered. A Maxwellian distribution function is used to calculate the number of

particles replenished into the computational domain at each timestep and the density

at the outside boundary.

In non-dimensionalizing the governing equations, we use reference values as fol-

lows;

Length : Iref = dDebye q2nkT

Time :tref = 10/w, (p = q )
V W me

Potential : ref = T

Density : ref = n/100

Velocity vref = ref/tref = VT/10 = T/10

Distribution function : fref= nref /ref

As is discussed later, somehow strange reference values seen here is totally due to the

computational limitations.

Substituting these reference values, we nondimensionalize equations (3.2), (3.3),(3.4),(3.5)

and (2.7).

2 = -(i i- le)/100 (3.6)

(3.7)E = -5 (3.7)

rnew = Vold + 100(-)Edi (3.8)

Xknew = old + "tnewdt (3.9)

1
f exp (-50i) - (3.10)

10(27r) 3 /2

where a hat 0 indicates a nondimensional quantity. In equation (3.8), the minus

sign is taken when the particle is an electron (m = me), and the plus when an ion

(m = mi).

In this simulation, we use the parameters in Table 3.1. In deciding these values,



Electron Temperature Te= 100
Ion Temperature Ti=100
Electron density he = 100

Ion density i, = 100

Table 3.1: Parameters

we first consider the number of particles available in a computer memory. In order

to include the sheath region completely, we have the radius of the computational

domain as 15dDebye. To be consistent with the governing equations and these non-

physical values, we calculate other nondimensionalized variables, starting with the

Debye length equal to unity,

EkT
dDebye 2= Ek/ref

= 1.0 (3.11)

Since the area of the computational domain is (15dDebye ) 27, we need approximately

he,z(15dDebye ) 27 particles for each species. This number is limited by the computer.

In our case, the number of particles available is about 200, 000. In order to run the

simulation with as many particles as possible but less than this, we set hie,i = 100.

From equation (3.11), we also have the temperature, Ti,e = 100. Consequently, we

have the thermal velocity,

VT = /ref

= /100 (3.12)

and the plasma frequency,

q2n
Op= CM tref

- 100. (3.13)



As we can see now, the factors seen in the reference values are determined by the

computational limitations.

We should note that we use hypothetically light ion's mass, which is the same as

an electron's mass. We discuss the validity of this hypothesis and its effect on the

computational cost later. Physically, since almost no ions are lost to the probe, all

velocities are possible everywhere, and their distribution is, in fact, a full Maxwell-

Boltzmann distribution, so that the ion density is simply n, = n, exp(- q), which

does not depend on mi at all.

Mesh

In our code, the Debye length is first determined. Therefore, for various cases of

Debye ratio, i.e. the ratio of the tether radius to the Debye length, different meshes

are used. The mesh used for the case of the Debye ratio equal to 1, (p = 1, is shown

in Figure 3-2. Each mesh size in the radial direction is kept to be a half of the Debye

length and in the azimuthal direction mesh size is kept less than the Debye length,

which should avoid numerical instabilities.

The main purpose of this simulation is to calculate how many particles, mainly

electrons, are collected by a cylindrical tether in a Maxwellian collisionless condition.

Particles are counted and absorbed when they reach the surface of the tether. From

outside of the computational domain, where plasma is assumed to be Maxwellian,

electrons and ions are replenished into the domain with velocity and position calcu-

lated from the Maxwellian distribution function using a random number generator.

3.3 Problems in PIC

As we have applied the PIC method, we have been confronted with some problems.

In this section, we discuss those problems and some solutions to them.



Figure 3-2: Mesh for the case p = 1~= 1
dDebye
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3.3.1 Deformed Grid

As we consider some practical configurations in engineering applications, it is almost

impossible to do it with only a rectangular grid. The more complicated the configura-

tion becomes, the more necessary it is to use a deformed body-fitted grid. Concerning

this problem, we can think of two factors of a deformed grid, which are likely to cause

problems, namely the area of the cell and the degree of deformity from a rectangle.

First, we describe the mechanism of the "assignment" and "interpolation" pro-

cesses. In the original PIC method based on a rectangular grid, electric charge density

is first calculated from the particle position and assigned to four nodes according to

the area-weighting function. The area-weighting function is defined as follows.

Uniform rectangular grid

A particle with electric charge q is located at (x, y) in a cell of area A, which is defined

by four nodes (x,, yi), (xi + Ax, yi), (xi, yi + Ay) and (xi + Ax, yi + Ay). That is, the

area A is given as

A = AxAy. (3.14)

First, we calculate the electric charge density, by dividing q by the area, AxAy.

P q (3.15)
AxAy

Next, we split this charge density into four segments, which are proportional to

the area demarcated by lines parallel to grid edges. Thus, to point A(xi, yi), charge

density

PA = P FCG ( - - (3.16)
A DABCD Ax 2 Ay 2

is assigned. Likewise, to the other points, we assign charge density as

PPGDH (x - i)(Yi+ - Y) (3.17)
B ABCD q Ax 2 Ay2

S= PHAE (x - xi)(y- i) (3.18)
Pc PABCD q A 2Ay2



D (x i, y +Ay) G C (x±+Ax, y+Ay)

H P(x, y)

A (xi, y) E B (xi+Ax, i)

Figure 3-3: A uniform rectangular grid

PPEBF ( -x ) - yz (3.19)
D ABCD Ax 2 Ay2

This assignment process is applied to all particles in the cell ABCD.

We next estimate the order of accuracy of this assignment method. To exclude

the effects of an insufficient number of particles, we assume that there is a sufficient

number of particles in a cell. This condition is expressed by requiring the density to

be a continuous function. When we consider a small element in the cell, the condition

requires that there be still many particles in it.

Let f(x, y) be the superparticle density function at (x, y), and dxdy be the area

of the small element. The condition to have a sufficient number of particles requires

f(x, y)dxdy > 1 (3.20)

Assuming a large enough number of particles in a cell and using the Taylor series

expansion, we estimate the order of accuracy at the node A. One assignment process

is applied at once to all particles in the small element. Since the element is taken

to be very small, we can consider that there are f(x, y)dxdy particles at (x, y). The



D

Y

A(xi, y)

Figure 3-4: A small element in a cell

assigned charge density at A from those particles' point (x, y) is given by

dpA q(xi+l- x)(yi+l- y)f(x,y)dxdy.dpA(x,y) = AX2Ay 2zn2 ny2

Assigning all particles in a whole cell to the node A, we have,

Xz+l1 Y +1

PA z dpA(x,y)
P A x y

+1q(xi+l - x)(yi+l -
Ax 2 Ay2 f (x, y)dxdy

= q(1 - X)(1 - Y)g(X, Y)dXdY

where X = xx y = Y and g(X,Y) = f(xzi + AxX, y + AyY).

g(X, Y) around the point (0, 0),

Expanding

Og
= g(0, 0) + OX

S Of
= f(Zix, z)+ XOx

OgX + Y+...
) 9 (0,0)

OfAx X + Ay Y ..

dx

>1

_________________________________________________ I

(3.21)

(3.22)

(3.23)

(3.24)

g(X, Y) (3.25)

(3.26)



and substituting this into equation (3.24), we have

PA = q [f(i,yi)(1 - X)(1 - Y)

+ X( - )(1 - Y) + g Y( - X)(1 - Y)+ -.. ]XdY(3.27)
(0,0) (0,0)

f (i, i) + Ax + -- Ay + - - - (3.28)
4 12x ( 12y (,)

Performing the same calculation for all particles in the other cells which surround the

node A, we can cancel the 2nd and 3rd terms and get

PA = qf (xi, y,) + O(Ax 2, Ay 2). (3.29)

This shows that, as long as there are a sufficient number of particles, this area-

weighting assignment method provides 2nd order of accuracy.

Rectangular grid with different cell sizes

Next, following the same procedure, we consider the effect of rectangular cells of

different sizes on the assignment method (fig 3-5). When the cells are of different

sizes but still rectangular, the 2nd and 3rd terms in equation (3.28) do not cancel out

after the summation of corresponding terms from other cells. Instead of the second

order of accuracy, we get

PA = qf(xi, yi)

+ (A -A 2 ) + (Ay - Ay 2)
6 Ox (x,,yl) 6 d y (x,yz)

+O(Ax 2, Ay 2), (3.30)

which provides 1st order of accuracy only.

As we can see from the 2nd and 3rd terms in equation (3.30), using almost the

same shape and size as those of adjacent cells, we can make these terms quite small,

and make this method closer to second order of accuracy.
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A BA
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Ax 1 Ax2

Figure 3-5: Cells of different sizes

Deformed grid

Next we consider the deformity of a grid. Since we use a linear interpolation [8, 7]

from a deformed grid to a square grid on which the area-weighting is performed,

we can not avoid a problem due to this deforming. In our code, we use the typical

tri-linear interpolation from the physical domain (x, y) to the computational domain

(r, s) given as

x = XO + Xr + x 2 8 + X 3 rs

Y = Yo +y 1r +y 2 + rs

(3.31)

(3.32)

where

X0 = Xij

SYz,j

- Xi+l,j - Xi,j



(0,1)

(0,0) (1,0) (xii'Yi,i)

Figure 3-6: Transformed square grid (left) and the original deformed grid (right)

Y1 = Yi+1,a - Yz,j

2 - ,+ 1 -i,

Y2 Yz,j+1 - Yi,

X3 - Xz+1,j+1 Xi,j - Xi+1, -i,+ 1

Y3 Yi+-,j+l + Yz,j - Yz+1,- Yi,j+l

The effect of the linear interpolation is understood when we look at Figure 3-6.

In a deformed cell, the grid density is sparser at the top and denser at the bottom.

But its corresponding square cell has a completely uniform density distribution. This

means that if we start for example with a particle distribution which is uniform in the

grid on the left, it will not be uniform in the one on the right, and vice versa. Although

we have no particular treatment done to solve this problem in our simulation, as seen

in the grid we use (fig. 3-2) , each cell is almost rectangular. Therefore, no serious

error can be considered to be incurred due to the deformity of the cell. Moreover, in

the grid no pair of adjacent cells has a significant difference in size and shape. This

makes the assignment method to be close to 2nd order accurate.

LL

1 iH

1.L
I I I I L 1--t TT= - 1.

I-TT -

(1,1) (XiJ+ ,yi,j+)



3.3.2 Boundary Condition

In this section, we consider the outside boundary condition in our simulation. The

importance of this boundary condition stems from the fact that some electrons are

absorbed by a tether. We assume here that no ion is absorbed by the tether, because of

its very high positive potential. Figure 3-7 illustrates the overall flow of electrons and

ions. Due to this partial absorption of electrons by the tether, the electric potential

at the computational outside boundary can not be zero with respect to the ambient

plasma. If it were zero, the electron density would be less than the ion density, and

thus it would violate the quasi-neutrality outside the sheath. To maintain the quasi-

neutrality, the electron potential at the outside boundary should be more than zero.

Positive potential attracts more electrons and fewer ions. This boundary condition is

formulated as follows.

Let 0 be the electric potential at an arbitrary point including the outside boundary.

Assuming that ions are singly charged, we have the quasi-neutrality equation as

ne - n, < nT . (3.33)

In the computation, we use this condition in the form of

ne = nh. (3.34)

However this does not allow us to transform Poisson's equation to Laplace's equation

by equating the source term to zero, because the small difference Iql(ni-ne) is divided

by the small quantity co, leaving V2q indeterminate. As the plasma approximation

claims, plasma tends to neutralize itself by imposing n, = ni. Therefore we impose

the condition (3.34) on the outside boundary, and solve Poisson's equation inside that

boundary only with non-zero source term on its right-hand side.

To determine the boundary condition, we need the potential, which is calculated

as follows. The assumption that no ions are absorbed by the tether enables us to cal-

culate the ion density at any point. Given the ion temperature, Ti and the potential,



0, and integrating the Maxwell-Boltzmann distribution function in velocity space, we

have the ion density as

n, = no, exp(- (3.35)
kT

On the other hand, we can calculate only the density of inbound electrons'. Since

some electrons are absorbed, we do not know the limits of outbound electron distri-

bution function in phase space. We denote the density of those outbound electrons

as neut. As for the inbound electron density, we can calculate it by integrating the

Maxwellian distribution, since all those electrons can be tracked back to infinity,

where the Maxwellian distribution prevails. The inbound electron density is given at

any radius by

0<0 r/ 2 00 me 3/2 Me (V2 + v2) + q0
n n Me/exp v cos OdvdOdv,

noo (3.36)
2

Substituting (3.35) and (3.36) into (3.34), Then, we have

out n± = noo exp(- ) (3.37)
e 2 kT

Given the outbound electron density at the outside boundary, equation (3.37) allows

us to calculate the potential there.

The outbound electron density, nout is calculated computationally by considering

the outbound flux, F. The flux through the boundary is given by

F= e noutv out (3.38)

where v out is the flow velocity due to the outbound electrons, that is, the average

1In this thesis, we call a particle which is coming into the computational domain, an "inbound"
particle, and one going out of the domain, an "outbound" particle.



Figure 3-7: Electron and Ion Flow
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velocity normal to the boundary, given as

out _ =1 Wei - ni (3.39)e k

where k is the number of electrons counted as they cross the boundary, ni the normal

vector to the boundary and wei the particle velocity. The number of electrons which

go out of the domain, k, is

k = FdtS (3.40)

where dt is the timestep and S is the area of the outside boundary. Substituting

(3.40) and (3.39) into (3.38), we have the outbound electron density as

not (3.41)

e i= 1 weindtS

Now we are ready to calculate how many electrons and ions are to be replenished

at each timestep. The number of those particles is calculated by multiplying the flux

by the timestep and the area of the outside boundary. The number of electrons to be

replenished, ke, is given

00 7r/2 o M e  3/2 1Me(V2 + V2) +qo )

ke =/J noo 2e)T exp _ m(v2  k zv~ cos OdvdOdvzSdt
e - f/2 m 2xkT kT

= V + exp erTfc Sdt (3.42)

where e0 is the random thermal velocity given in equation (2.14). It should be noted

that this is the same as equation (2.10), except for 0 instead of Op. And the number

of ions to be replenished, ki, is given

[00 r/200 m, 3/2 1 M(V 2 + v2) + q 2

ki J n, 2 exp k2 ) v2 cos OdvdOdvzSdt
S J-J /2 o 2-kT kT

( 2no kT exp Sd (3.43)

In the simulation, a random number generator is used to locate the place to be



replenished and provide the particle with a velocity estimated from the Maxwellian

distribution function.

3.3.3 Computational Cost

In order to resolve the non-neutral domain, namely a sheath domain, both electrons

and ions should be moved. Typically, heavy, slow ions require very long computational

time till the ion distribution has converged. To speed up this computation, we use

hypothetically light ions, which have the same mass as electrons. The use of such a

light ion is justified by the fact that we are only interested in the ion density, and the

assumption that no ion is absorbed by the tether and hence that the ion's distribution

function is Maxwellian. From this assumption, we can show that the ion density does

not depend on the ion mass. That is,

0= mi 3/2 mV 2 + \
ni = n., (2kT) exp + dv

-oo 2kT

- noc exp -,o (3.44)

This fact enables us to use the very light ion, with which the computation gives the

ion density in the computational domain. We should note here that the trajectory

of light ions is different from that of real ions, but the corresponding density is the

same. Actually with these light ions (m, = me), we can get the same result as with

other ion mass, say m, = 184 0me, and that more than 5 times as fast.

3.4 Results

In this section, we show the results from our simulation. First, to check our simulation

qualitatively, we show and examine the field quantities. In Figures 3-8, 3-9, and 3-10,

instantaneous charge densities for the cases of the Debye ratio equal to 1, 2 and 5

are shown. As we would expect, in the vicinity of the tether, there is a region where

electrons are dominant and quasi-neutrality no longer prevails. This region is the



"sheath".

From this electric charge density, we solve by Successive Line OverRelaxaion

(SLOR) to obtain the electric potential distributions, which are shown in Figure

3-11, 3-12 and 3-13 for the same cases. These figures clearly illustrate the sheath

region in the vicinity of the tether. The electric potential there is positive, indicating

the non-neutrality.

Next we examine the quantitative result from the simulation. Figure 3-14 shows

the history of current collected by the tether and the corresponding value from the

results of Laframboise. After some perturbation, the observed current oscillates just

below the Laframboise's value. This oscillation is attributed to the small timestep and

the small number of particles used in this simulation. The reason why the current

collection in the case of (p = 1 has a larger amplitude than the others is that the

surface area of the tether is smaller than that of the others and thus one particle

difference becomes more significant to the current density calculation.

The consistent negative bias in the result (about 7%) is probably due to the grid

distortion, as noted before. But more work needs to be done to verify this.

Finally, the figure 3-15 shows the comparison of the current collection obtained

in the simulation with the analytical values for different cases of the Debye ratio.

From this figure, the PIC method is verified to give the same trend of the analytical

solution. In the figure 3-15, current collected is normalized by the random thermal

current given by

kTz,e
I = Sn 2T,e (3.45)

S27rmz,e



Figure 3-8: Electric charge density for the case p = 1
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Figure 3-9: Electric charge density for the case 6p = 2



Figure 3-10: Electric charge density for the case (p = 5
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Figure 3-11: Electric potential distribution for the case p = 1
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Figure 3-12: Electric potential distribution for the case (p = 2
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Figure 3-13: Electric potential distribution for the case (p = 5
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Chapter 4

Conclusion & Further Work

In this chapter, we conclude the possibility and perspective of PIC method to be

applied to the space engineering, based on what we discussed in previous chapters.

First, we re-state the result from the PIC simulation.

(1) PIC method qualitatively shows the same trend of the current collec-

tion with the analytical solution

Figure 3-14 illustrates the exact current collection as a function of the Debye ratio and

the value obtained from our simulation. As the Debye ratio decreases, the amount of

current collected by the tether gets closer to the limiting value. This limiting value

is the one shown by equation (2.13). And as the ratio increase, the current collection

decreases. This is because of the bump in the effective potential which prevents the

particles from reaching the surface of the tether even if the particle has an enough

energy to reach the surface.

(2) PIC method quantitatively shows the current collection with 7% error

from the analytical value for all cases of Debye ratio

As illustrated in Figure 3-14, the amount of current collected by the tether oscillates

just below the analytical value. The cause of the error can be attributed to the

distortion of the grid, as noted before. To avoid this problem, we plan to use different



methods for the interpolation. One possibility is to use the triangular grid with

the area-weighting function analogous to one we use in this thesis. The use of the

triangular grid does not need the linear interpolation, therefore we can expect to get

rid of the error caused by the distortion of the grid.

(3) The current collection code requires non-zero potential as an outside

boundary condition.

The partial absorption of electrons requires non-zero potential region, "pre-sheath"

outside the sheath. The pre-sheath extends very far. To run the simulation on a

relatively small grid, we need to know the local potential at the computational outside

boundary. This potential was calculated from the equation of quasi-neutrality. The

quasi-neutrality equation relates the local potential to the instantaneous outbound

electron density. We calculated the density from the outbound electron flux.

(4) The current collection code can reduce the computational time by

using a hypothetically light ion mass.

Since we are only interested in the ion density, not in the ion trajectories, we can

use a very light ion mass. The reasonable assumption that no ion is absorbed by the

tether allows us to use a very small ion mass. Since the ion density does not depend

on the ion mass, when the ions have Maxwellian distribution, the light ion becomes

a critical factor to speed up the computation considerably.

Based on this PIC method, we plan to consider (1) the case of flowing unmagne-

tized plasma, and (2) the case of magnetized plasma as seen in the space engineering

application. For either case, the tether potential is still high and, therefore, we can

still use the light ion mass. As for the symmetry of the phenomena, we have not taken

into account so far any symmetric conditions except for the outside boundary poten-

tial, which is taken as an average. This only symmetric condition can be removed by

applying local potential values. Therefore, practically this method does not need any

symmetry conditions. For future applications, where the symmetry condition is no

longer valid, we can apply our PIC method without a substantial modification.
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