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Abstract

The supershot regime of plasma confinement, discovered on the Tokamak Fusion Test Reactor
(TFTR), is characterized by very high core ion temperatures; strong sensitivity to edge conditions;
peaked density profiles; favorable scaling of core ion thermal conductivity with both temperature
and density peakedness; strong improvements of heat and particle transport with isotopic mass in
deuterium-tritium plasmas; and a preference for neutral beam injection with a small torque parallel
to the plasma current. Energy confinement times exceed twice those of comparable plasmas having
increased edge fueling. The favorable trends are mutually reinforcing, suggesting a common origin.
In this thesis, a model which explains the ion thermal confinement trends of supershot plasmas
is presented. The ion temperature profiles of over fifty TFTR supershot experiments are well-
reproduced, encompassing large variations with density peakedness, lithium conditioning, heating
power, isotopic mass, toroidal rotation, and perturbation experiments. The stabilizing effect of
radial electric field shear is shown to underly the observed trends. While unimportant at the lowest
heating powers, this effect doubles the core ion temperature at moderately high heating powers.
The confinement trends are described by adopting the expedient criterion that the radial electric
field shearing rate and maximum linear growth rate of the toroidal ion temperature gradient (ITG)
instability are approximately equal in the core. The latter is evaluated for the relevant scenario
where the ion temperature is much greater the electron temperature and its gradient is relatively
strong. This criterion is integrated inward from the half-radius to reproduce the ion temperature
profile without relying on estimates of the nonlinear saturation of turbulence. Nonlinear simulations
that simultaneously evaluate the radial electric field, ion temperature, and turbulent saturation of
toroidal ITG modes are also carried out (the saturation is evaluated using existing nonlinear codes
that neglect the effects of trapped electrons and radial electric field shear). Large non-monotonic
features in the measured toroidal velocity profiles of impurity ions are consistently explained by a
neoclassical calculation which provides the radial electric field. Perturbation experiments separate the
relative influences of the temperature gradient and density gradient through their differing recovery
timescales.
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Chapter 1

Introduction

1.1 Confinement Trends of TFTR Supershot Plasmas

The supershot plasma confinement regime [1], discovered on the Tokamak Fusion Test

Reactor (TFTR) [2, 3], has been the subject of nearly a decade of intense experimental

study. The regime is characterized by very high core ion temperatures, of order three times

the electron temperature; highly peaked density profiles; strong sensitivity to edge conditions

determined by the influx of particles from the plasma facing surfaces; favorable inverse scaling

of core ion thermal conductivity with temperature; energy confinement times several times

those of comparable L-Mode plasmas [4] characterized by increased edge fueling (in which

confinement degrades with heating power and improves with plasma current) TE/T ITE R 8 9 P "

ne(O)/(ne) > 2, where rE is the global energy confinement time, TTER89P is that for L-Mode

plasmas, and ne is the electron density; strong isotopic scaling in deuterium-tritium plasmas

TE oc (A)0.8 0-0.8 9 , where A is the thermal atomic mass; and a preference for near-balanced

neutral beam injection directed slightly parallel to the plasma current. Empirically, these

trends appear to be mutually reinforcing, suggesting a common origin.

Other enhanced confinement regimes, such as the H-Mode (High Mode) [5], VH-Mode

(Very High Mode) [6], ERS Mode (Enhanced Reverse magnetic Shear) [7, 8] and High-

/p Mode [9], are generally attained through relatively sudden transitions from regimes of

poorer confinement. These transitions are spatially and temporally localized in general. No

sharp transition is apparent in the evolution of supershot plasmas, while their core con-

finement trends are quite different from those of L-Mode plasmas. Theoretical models of

enhanced confinement regimes have focused on explanations of sharp transitions to enhanced

confinement, or the differences between enhanced confinement regimes and their degraded

counterparts, rather than explanations of the confinement trends within these regimes. In
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this thesis, a model is presented to explain the confinement trends within the supershot en-

hanced confinement regime as well as the fundamental differences between supershot and

L-Mode plasmas. This is made possible in part by an abundance of high quality data from

reproducible supershot plasmas.

It is well-known that the rates of transport of particles, energy, and momentum across the

magnetic field, in axisymmetrically confined fusion plasmas, in general exceed the estimates

of the collisional neoclassical theory [10] by an order of magnitude or more. Recent experi-

ments [7] in the enhanced reverse shear regime were noted for core heat diffusion below the

estimates of the standard neoclassical theory [11], resulting in steep density and temperature

gradients with scale lengths comparable to the radial width of trapped-ion banana orbits.

This prompted a refinement of the neoclassical theory to include the effect of finite ion ba-

nana widths [12, 13] relative to the equilibrium gradient scale lengths. Supershot plasmas

have shown similar behavior for several years [14, 15], with core ion thermal diffusivities com-

parable to or less than neoclassical theory, although ERS plasmas have significantly lower

core particle transport as well. In most situations, however, an understanding of transport

in high temperature plasmas requires an understanding of the collective modes that, without

relying exclusively on collisions, carry particles, momentum, and energy across the magnetic

field relatively rapidly.

Existing work relevant to supershot plasmas consists of a comparison of simulated ion

temperature profiles in a single pair of TFTR discharges, addressing in a rough qualitative

sense the difference between the L-Mode and supershot regimes [16], on the basis of increased

edge ion temperature and large T/Te [17] relative to L-Mode plasmas. The toroidal Ion

Temperature Gradient (ITG) mode, discovered in Ref. [18], is thought to be the the dominant

instability responsible for the outward transport of ion thermal energy and parallel momentum

in beam-heated, degraded confinement regimes. This notion is supported by a detailed

comparison of the IFS-PPPL model [16] with 60 TFTR L-Mode discharges, in which the

dominant global confinement trends were reproduced for plasmas that were not strongly

rotating. The IFS-PPPL model consists of a parameterization of the critical ion temperature

gradient corresponding to marginal stability of the toroidal ITG mode, in the near-flat density

gradient limit, derived from parameter scans using the linear gyrokinetic initial-value code of

Ref. [19], and a parameterization of the nonlinear ion thermal diffusivity obtained from the

6-moment gyrofluid model [20] assuming adiabatic electrons. An initial comparison between

L-Mode and supershot plasmas having similar machine parameters is shown in Ref. [16].

To maintain consistency with our results we must point out that this initial comparision

gives the impression of better agreement than more recent data suggests. Nevertheless, the

comparison is important in the sense of showing that the stability properties of the toroidal
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ITG mode can be a significant influence on the ion temperature, and should be accounted

for in a model for supershot confinement. As we show, this description of the influence of

the toroidal ITG instability must be augmented with separate effects, which result in factor

of two increases in the ion temperature, to achieve agreement with measured temperatures.

In the remainder of the thesis, when the toroidal ITG mode is mentioned, it is understood

that the existing parameterization [16] we use to describe the linear stability of this mode

was obtained near the flat density gradient limit, including trapped electrons, with both even

and odd mode parities, and that no macroscopic flows are included in the linear stability

analysis. Because this parameterization was obtained from runs of the linear gyrokinetic

code [21, 19] for which the density gradient was taken to be relatively flat (see, e.g., Refs.

[22, 23, 24, 25] for a discussion of the flat density gradient limit) the influence of trapped

electrons is not accurately described when this approximation is not well-satisfied. This is

similar to considering, in the linear theory, only modes that have odd parity with respect to

the outer midplane. Modes whose poloidal structure has such odd parity, and whose growth

rate and frequency are less than the electron bounce frequency, are not significantly affected

by trapped electrons. This can be viewed as a consequence of the fact that trapped electrons

complete their trapped orbits before the mode evolves significantly, which orbit-averages the

electrostatic potential they experience to zero for odd parity modes. The even mode, on the

other hand, remains unstable even in the absence of an ion temperature gradient, as a results

of the influence of trapped electrons [18]. However, this trapped electron contribution is not

well-described in the parameterization we have used for the linear growth rate and critical ion

temperature gradient (or by the parameterization for the nonlinear ion thermal diffusivity,
for which adiabatic electrons were assumed). Nevertheless, in the experiments we consider,
the ion temperature is well above that of the electrons and the ion temperature gradients are

relatively strong, diminishing the relative importance of the trapped electron contribution.

An explicit comparison of the parameterization with the results of a more comprehensive

linear stability code [26, 27, 28, 17] is shown in Chapter 5.

1.2 The Velocity Profile Notch

The measured impurity velocity profile of TFTR supershot plasmas often displays a large,
non-monotonic, hollow feature in the inner half-radius, centered near the radius of strongest

ion temperature gradient. Often this feature involves regions where the toroidal velocity

changes sign. This puzzling observation should be understood if we claim to understand the

radial electric field and make use of it in models of ion thermal confinement. In Chapter 2

and Ref. [29], we develop a model to explain this feature starting from the neoclassical theory
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with impurities [10].

The non-monotonic feature, or "notch," is most pronounced in high performance super-

shot discharges when the tangential neutral beam powers are nearly equal and opposite, and

the net torque is small and in the direction of the plasma current. Accordingly, the notch is

most striking under conditions generally found to optimize supershot performance [30]. This

is illustrated in Fig. 1, which shows the measured toroidal rotation velocity of the carbon

impurity ions in the record TFTR deuterium-tritium supershot [31] of November 1994, which

produced 10.7 MW of DT fusion power (#80539, Pb = 39.4 MW, 64% in tritium, Ip = 2.65

MA, Ro/a = 252/87 cm, B, = 5.50 T). The profiles are shown at a time 500 ms after the

start of neutral beam injection. In equilibrium, toroidal momentum must be transported

radially outward in the presence of the central torque deposition by neutral beams. This

would suggest that either momentum is carried up the velocity gradient in the outer part of

this notch, or that important parallel momentum exchange terms have been neglected. In

this thesis, we resolve this question using the latter approach, providing the missing terms in

the impurity parallel momentum balance.

In this work, we propose an explanation for the velocity profile notch by first observing

that the hydrogenic ions must have a well-behaved, monotonic toroidal velocity profile if their

toroidal momentum is transported radially by anomalous, diffusive processes. We then per-

form neoclassical calculations which predict large parallel heat flows in the hydrogenic ions,
resulting from the large ion temperature and density gradients in the core. We propose that

the notch in the impurity toroidal velocity arises primarily from the parallel heat friction of

the hydrogenic ion neoclassical parallel heat flow acting on the impurity ions. Adding the

difference in toroidal velocities calculated from the neoclassical theory to the measured im-

purity toroidal velocity then results in an inferred toroidal velocity profile for the hydrogenic

ions which is monotonic.

A large and unexplained velocity profile notch was recently observed in conjunction with

the core ion thermal energy transport barrier on the JT-60U tokamak [32], in high-fp H-

mode plasmas. The figures in Ref. [32] also appear to show that the radial position of the

JT-60U velocity profile notch coincides with the radius of strongest temperature gradient as

it evolves with time. This behavior is consistent with our observations of TFTR plasmas and

with the model we propose. Velocity, density, and temperature profiles bearing a striking

resemblence to those of TFTR supershots were observed in JT-60U hot-ion mode plasmas

as well [33].

This explanation of the observed velocity profile notch is significant in the sense that it

improves our understanding of parallel momentum and heat transport in high temperature

tokamak experiments. This, in turn, supports the neoclassical calculation of the radial electric
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field profile in the absence of direct poloidal velocity measurements.

1.3 Radial Electric Field Profile

In Chapter 3, we develop neoclassical corrections to the impurity toroidal velocity term

in the radial electric field profile based on the calculations of Chapter 2. In addition to car-

rying out full numerical calculations valid for arbitrary collisionality, we develop analytical

expressions that accurately reproduce the numerical results. We find that the radial elec-

tric field profile E, is well-described by the impurity toroidal velocity term Er - V,B in

degraded-confinement, "L-mode" plasmas. The same behavior of E, prevails in the outer

half-radius of typical supershot plasmas, where the local confinement trends [34] are charac-

teristically L-mode. In the inner half-radius of supershot plasmas, strong temperature and

density gradients there significantly influence the radial electric field, and also give rise to

the notch in the impurity toroidal velocity profile. This often produces a well structure in

the radial electric field profile, localized within the inner half-radius of supershot plasmas.

The outer part of the well constitutes a bordering shear layer in the radial electric field.

Emphasized by the poloidal magnetic field profile, this shear layer produces a localized peak

in the E x B shearing rate [35], stabilizing turbulence in the plasma core.

1.4 Model for Ion Thermal Confinement in the Supershot Plasma

Core

The thesis of this dissertation can be stated in part as follows. The ion thermal transport

characteristics of the supershot core are described by the criterion that E x B shear nearly

stabilizes turbulence in the inner half-radius.

We approximate this condition by adopting an expedient criterion, taking the maximum

linear growth rate for the toroidal ion temperature gradient instability y~ax approximately

equal to the shearing rate for turbulence WExB associated with the radial electric field. This

expedient criterion for stabilization by radial electric field shear, WExB , Yln, is broadly

supported by toroidal nonlinear gyrofluid simulations [36], and by comparisons with the

threshold of the enhanced reverse magnetic shear regime (ERS), when the magnetic field is

held constant, in Ref. [37] and many others. However, it is based on an intuitive notion,
rather than rigorously derived, and has in fact received sharp criticism from members of

the theoretical community (including ourselves) for its incompleteness and lack of a serious

theoretical basis. For example, we know from the first-principles theory of the mode existence,
in the case of plane geometry, that the criterion for the existence of these modes is quite
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different [38].

In Ref. [37], surprising agreement is shown between the linear growth rate and nonlinear

shearing rate at the transition to the ERS regime. This agreement is surprising because the

rule WEx B ~ 7max is loosely based on toroidal nonlinear 4-moment gyrofluid simulations [36],

which themselves allow for discrepancies up to a factor of two in this criterion (this can be

improved by using the more complete 6-moment gyrofluid equations [20], with an improved

mode representation using continuous periodic boundary conditions [39, 40, 41]). It is widely

believed that 'ymax serves as an approximation to the turbulent nonlinear decorrelation rate

AWT so that the toroidal generalization [35] of the Biglari-Diamond-Terry rule [42] can be

applied.

In the use of this criterion, we make no pretense that it is comprehensive or that it is

a complete description, or even that it is well-founded. For example, experimental evidence

exists to suggest that this criterion does not accurately describe variation with the strength

of the magnetic field [43, 44]. We have chosen to use it, with the magnetic field held constant,

because it has demonstrated success in certain situations, including several comparisons with

the thresholds for transition to the ERS regime, and with the results of nonlinear codes.

Further, no rigorously derived criterion of similar utility, for the case of toroidal geometry, is

presently available. Whenever we mention the practical stability criterion in the remainder

of the thesis, it is with these reservations.

This practical stability criterion approximately describes the deviations from toroidal ITG

marginal stability, in the flat density gradient limit, made possible by E x B shear stabil-

ization. Here we refer to toroidal ITG marginal stability in the absence of E x B shear, as

discussed in Sec. 1.1. These significant deviations from toroidal ITG marginal stability are

necessary to reach the measured ion temperatures in the core. This results in a strongly

nonlinear relationship between Ti(r/a = 0) and Ti(r/a ~ 1/2), which strengthens the sens-

itivity to edge ion temperature and amplifies the isotope effect relative to L-Mode plasmas.

We investigate the consequences of this criterion using a new neoclassical expression for the

radial electric field, which is developed in Chapters 2 and 3, and supported by the explanation

of the velocity profile notch. This allows us to construct a first-order differential equation

for the ion temperature profile and integrate it inward from the half-radius. The ion temper-

ature calculated from this equation agrees with the experimentally measured temperature.

We show this equation unifies the major unexplained ion thermal confinement trends of su-

pershots, including the favorable power scaling, the strong isotope effect relative to L-Mode

plasmas, the preference for co-dominated neutral beam injection, and the scaling of energy

confinement with density profile peakedness. These results do not depend on estimates of

toroidal ITG mode nonlinear saturation.
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The outer half-radius, which displays local confinement properties similar to those of

L-Mode plasmas, shows deviations from odd-parity toroidal ITG marginal stability growing

progressively larger toward the edge. Accordingly, the outer region requires nonlinear simu-

lations with a means of obtaining the nonlinear turbulence saturation level. To address the

outer half-radius, we develop a transport code which allows us to evolve the ion temperature

and radial electric field simultaneously. Starting with the IFS-PPPL model, we include the

effect of shear-flow stabilization with the simple ansatz Xi = Xio(1 - WExB/t7na x) [45], where

Xi is the ion thermal diffusivity, WExB is the radial electric field shearing rate for turbulence,

1max is the maximum linear growth rate of the toroidal ITG mode computed in the absence

of shear flow, and Xio is the ion thermal diffusivity from the IFS-PPPL model not including

sheared rotation. We then accurately calculate the neoclassical radial electric field in fully

nonlinear simulations of the ion temperature. This model ignores the effect of destabiliza-

tion by gradients of the parallel velocity and any (small) effect of velocity gradients on the

toroidal ITG threshold. Because we find that radial electric field shear is an effect that can

double the ion temperature, calculations using the radial electric field evaluated statically

from measured profiles would not be predictive, and in addition, do not converge properly.

This new code allows us to compare calculated temperature profiles, accounting for the sta-

bility properties of the toroidal ITG mode, with and without self-consistent radial electric

field shear stabilization.

1.5 The Scaling of Energy Confinement with Density Profile

Peakedness

1.5.1 Transport Analysis of Wall Conditioning Experiments

Chapter 4 develops models to explain the strong coupling of ion thermal energy and

particle confinement in supershot plasmas. We begin with a review of supershot confinement

characteristics and their relation to peaked density profiles and wall conditions. We then

review in some detail the hot ion regimes on other tokamaks with peaked density profiles.

Revisiting the first transport analysis of improved confinement with lithium pellet injection

[46], we show that the ion thermal diffusivity and electron particle diffusivity at the one-third

radius are strongly correlated with density profile peakedness, while the electron thermal

diffusivity is uncorrelated with it. Comparing cases without pellets to cases with boron

pellets and with lithium pellets, we find the ion thermal and particle confinement trends

are independent of the conditioning technique, and can be described as functions of the

density profile peakedness ne(O)/(ne). This lends support to the model we propose Chapter
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Figure 2. The interior of the Tokamak Fusion Test Reactor vacuum vessel, showing the inner bumper limiter,
which is composed of carbon graphite tiles. Hydrogenic species are readily adsorbed on the limiter tiles,
resulting in an influx during beam heating roughly proportional to power loss density from the plasma edge.
The composition and strength of the influx depends on the recent operating history of the machine. Photo
courtesy Princeton Plasma Physics Laboratory.

4 to explain the improvements with lithium conditioning in terms of underlying changes in

particle transport.

1.5.2 Lithium Pellet Injection

Lithium pellet injection has been used extensively on TFTR and has resulted in dra-

matically improved ion thermal energy and particle confinement [46, 47, 15]. The plasma

rests on an inner bumper limiter which is made up of graphite tiles, as shown in Fig. 2.

Hydrogenic species are readily adsorbed on the surface of the limiter and released during

subsequent discharges at a rate proportional to the power density incident on the limiter.

The composition and strength of the influx depends on the recent operating history of the

machine. Fortunately certain species, such as helium, are not adsorbed by the graphite tiles.

The hydrogenic species are typically removed from the limiter by discharge cleaning, consist-

ing of a sequence of typically twenty-five ohmically heated helium discharges. This reduces
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both the density of subsequent hydrogenic target plasmas and the proportionality constant

relating edge influx to loss power during auxiliary heating. The process of removing hy-

drogenic species from the limiter graphite tiles is known as "wall conditioning." The edge

influx, as determined by wall conditioning, has been shown to be of paramount importance

in determining supershot confinement [34, 48, 47, 14]. Techniques such as boronization, and

to a much greater extent lithium pellets injected several particle confinement times prior to

neutral beam injection (and/or following neutral beam injection on preceding discharges)

[49, 47], have proven their utility in reducing the influx of hydrogenic species and carbon

from the limiter during neutral beam injection, resulting in significantly improved supershot

core confinement. The improvements due to lithium pellet injection are consistent with the

usual scaling TE/7lTER89P ne(O)/(ne) at constant heating power observed with conven-

tional helium discharge cleaning, but have extended the range of this scaling by factors of

more than three.

The presence of lithium in the plasma is not responsible for the improvements; the electron

density following the injection of lithium pellets into an ohmic target plasma decays to values

lower than that preceding the pellets, indicating that the lithium has left the plasma after

several particle confinement times, before neutral beam injection begins. The observation

that the electron density is actually lower following the pellet suggests the lithium has an

additional "coating" effect on the limiter graphite tiles, which reduces the efflux of hydrogenic

species from the limiter. Lithium appears to be completely adsorbed by the limiter, consistent

with the notion that a monolayer coating of lithium on the graphite tiles acts to reduce the

efflux of underlying hydrogenic atoms. Because this reduces both the target density and

the edge influx during beam injection, one may ask which is responsible for the improved

confinement. This question was addressed in recycling perturbation experiments [48], which

showed that tiny puffs of helium gas during beam injection could dramatically reduce, or

"spoil" the performance of supershots to that of L-Mode plasmas for the remainder of the

discharge. Helium is not readily adsorbed significantly by the limiter, is therefore fully

recycling, and increases the edge particle influx. On the other hand, lithium pellets injected

during beam heating spoiled performance only temporarily, and the confinement time later

in the discharge returned to its value before the pellet was injected. These experiments

showed wall conditioning improves performance most through edge conditions, rather than

by reducing the target density per se.

1.5.3 Model for Improved Confinement with Lithium Conditioning

In the latter part of Chapter 4, we study a controlled sequence of four consecutive dis-

charges, ranging from zero to three pre-beam lithium pellets. The central ion temperature
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increases a factor of two over the scan. The model with self-consistent radial electric field,

introduced in Chapter 3, reproduces the dramatic increase in ion temperature. The original

IFS-PPPL model, without radial electric field shear, gives ion temperatures almost a factor

of two lower, together with a trend half the strength. This shows that, while the stabilization

of the toroidal ITG mode by the density gradient and the other mechanisms discussed in Ref.

[16] are significant, radial electric field shear stabilization results in factor of two increases in

Ti(O). We also find that the edge ion temperature does not change, which eliminates explan-

ations for the improved core confinement with lithium similar to those proposed to explain

the improved core confinement in the H-Mode.

We then examine the change in the thermal ion density profile, which strongly influences

the radial electric field, as a function of the number of pre-beam lithium pellets. We find that

the radius of maximum curvature in the thermal density profile corresponds to the radius

where the fueling rates from the edge and from the neutral beams are equal. Inside this

radius, the beam fueling rate is unaffected by lithium pellet injection, and the changes in the

shape of the thermal density profile are due to changes in the particle diffusivity. Outside this

crossover radius, the opposite prevails. There, the thermal density profile is relatively flat,
while changes in particle diffusivity with lithium pellet injection are small, and the density

is determined by the edge fueling source rate. This leads us to propose a model, based on

strong nonlinear coupling between particle and ion thermal transport by radial electric field

shear, to explain the improvements with lithium pellet injection. In essence, lithium pellet

injection reduces the edge fueling, which lowers the thermal ion density outside the crossover

radius, increasing the curvature of the thermal ion density profile. The practical stability

criterion predicts that increases in the curvature of the thermal ion density profile result in

large increases in the ion temperature. The coupling of the ion thermal transport and particle

transport, supported by their empirical correlation, results in a heightened sensitivity to such

changes in edge fueling. This is supported in part by the observation that the peak E x B

shearing rate increases quadratically with the density peaking parameter ne(O)/(ne) and with

the number of pre-beam lithium pellets.

1.6 Perturbation Experiments

In Chapter 5, we consider three perturbation experiments on supershots by performing

TRANSP [50] analysis of the latest data and carrying out ion temperature simulations with

the models of Chapter 3. The first, a helium puff experiment, degrades a high-performance

supershot plasma to L-Mode by permanently increasing the edge recycling. We show that

this change in performance is consistent with the change in the edge hydrogenic influx, on
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the basis of known empirical scalings. The model with self-consistent radial electric field

well-reproduces the ion temperatures before and after the helium puff, spanning a factor of

3.5 change in the central temperature. This demonstrates that the model with self-consistent

radial electric field reproduces the ion temperatures of both L-Mode and supershot plasmas.

The effect of the helium puff is to flatten the radial electric field and density profiles. This

diminishes the beneficial effects of large Ti/Te and peaked density profiles on the toroidal

ITG mode [16] as well as the benefits of radial electric field shear. A large peak in the

E x B shearing rate WExB, lying between r/a = 0.25 and r/a = 0.5, in the region where

y7na x  WExB, vanishes after the helium puff, and the toroidal ITG mode growth rate is

significantly increased by the flattened density profile.

Next we study deuterium pellet perturbation experiments. These experiments are rich

in information and demonstrate a bifurcation in ion thermal confinement with respect to the

density peakedness parameter ne(O)/(ne). Upon the injection of the pellet into the beam

heating phase of a high-performance supershot, the density profile is immediately flattened,
but recovers almost exactly its original profile in roughly a particle confinement time. The ion

temperature, however, remains a factor of three lower than before the pellet for several energy

confinement times. Considering a case with balanced neutral beam injection, for which the

radial electric field profile is necessarily similar in shape with the measured impurity velocity

profile, isolates the connection between the ion temperature gradient and the radial electric

field well. The velocity profile notch is much less pronounced after the pellet, when the ion

temperature has decreased by a factor of three. This confirms the theory of the notch posed

in Chapter 2, which shows that the temperature gradient is largely responsible. The velocity

profile notch indicates a similar feature in the radial electric field profile, and the peak E x B

shearing rate decreases by roughly the same factor that the ion temperature decreases. This

closes the loop, demonstrating the self-reinforcing mechanism through which E x B shear

improves core ion thermal confinement, independent of the density profile and its influence

on toroidal ITG stability.

Subsequent experiments were carried out on TFTR to study the mechanism we proposed.

These had neutral beam heating sustained for a longer time after the pellet, which showed a

slow recovery in the energy confinement time, lasting several confinement times. The density

profile again recovered relatively quickly. Using the fully nonlinear model of Chapter 3, we

simulate the evolution of the ion temperature profile in a pellet perturbation experiment.

The longer timescale for energy recovery is shown to consist of two stages. During the initial

period in which the density profile recovers entirely, radial electric field shear is estimated to

be unimportant. This is followed by a roughly equal period in which radial electric field shear

becomes progressively more important and leads to further increases in the ion temperature



Sec. 1.7. Favorable Power Scaling

of up to 40%.

1.7 Favorable Power Scaling

In Chapter 6, we address one of the most important and basic trends in supershot con-

finement, the observed weak or favorable scaling of global confinement with heating power.

Here we consider a beam power scan over the range 5-18 MW, and accurately reproduce the

ion temperature profiles for each member of the scan. The expansion of the enhanced con-

finement region with increasing power, as shown in the profile of the simulated ion thermal

diffusivity, is well-reproduced.

The favorable global scaling with, or insensitivity to, the neutral beam heating power has

been expressed experimentally as an apparent inverse scaling of the ion thermal diffusivity

with ion temperature Xi oc 1/T [51] at fixed radius in the core. This is merely an approximate

and apparent result near the one-third radius, and should not be taken as a local scaling law

for the thermal diffusivity. Our model suggests this is ill-posed as a local scaling as well,

nevertheless, we reproduce it together with the similar but unfavorable scaling in the outer

region. This favorable apparent scaling can be viewed as a consequence of the nonlinear

improvements due to the coupling of the particle and energy transport by radial electric field

shear. Comparing the simulations using a self-consistent neoclassical radial electric field

with the original IFS-PPPL model, we show that the effect of radial electric field shear is

unimportant at the lowest powers, while at higher powers, it results in factor of two increases

in central ion temperature.

1.8 The Isotope Effect in Deuterium-Tritium Plasmas

The isotope effect in deuterium-tritium supershot plasmas is significantly stronger than in

the L-Mode regime. In TFTR supershots, the global scaling of the energy confinement time

is described by TE Oc A9.80-0.8 9, while TFTR L-Mode plasmas show the scaling TE Oc A9 .5

typical of other experiments, where Ai is the volume average thermal hydrogenic atomic

number [52]. Our first published analysis [53] of deuterium-tritium supershots revealed this

strong effect in the ion channel, which was a surprise in light of the TE oc A 0 .5 scaling obtained

in a large number of other experiments comparing hydrogen and deuterium mixtures [54].

Further dedicated experiments on TFTR confirmed the strong scaling for deuterium-tritium

supershots [55, 56], demonstrated that it was distinct from the favorable scaling Xi oc 1/Ti,

and revealed an apparent dependence of the effect on heating power. In Chapter 7, we study

this set of 45 supershot discharges comprising a heating power scan with cases having pure
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deuterium beam injection and pure tritium beam injection at each power [55, 56]. These

experiments were designed to distinguish the isotope effect from the favorable scaling with

ion temperature discussed in Chapter 6.

We first propose a simple mechanism for the amplification of the isotope effect in supershot

plasmas over that of the L-Mode regime. The mechanism involves the strongly nonlinear

sensitivity of the ion temperature in the core to changes near the half-radius, as found from

the expedient shear-flow stability criterion of Chapter 3. If a weaker intrinsic isotope effect

were present, perhaps consistent with a global "rE oc A 0 "5 scaling, small improvements due

to it would then be amplified by radial electric field shear in the core. This would create

large improvements in ion thermal confinement in the inner half-radius, where 75% of the

thermal energy is stored, having a significant impact on the total stored energy. We show

this mechanism reproduces the large changes in ion temperature at the axis, given small

changes at the half-radius, in a pair of supershot comparison discharges.

Next in Chapter 7, we simulate the ion temperature profiles, using the fully nonlinear

model, from the first comparison pair of supershot discharges used to demonstrate the isotope

effect. We then consider the larger set of 45 discharges and carry out three simulations

for each discharge. The model with self-consistent radial electric field reproduces the ion

temperature at each radius with an average error of +7%, while the original IFS-PPPL

model is 45% low on average in the core. The central temperature, from the practical stability

condition WExB C-- y nax in the inner half-radius, also agrees well with the temperature from

the experiments. A comparison of the calculated and measured thermal ion stored energy at

each power shows that the model with self-consistent radial electric field well-reproduces the

isotope effect, while the original IFS-PPPL model does not distinguish it. We then consider

a discharge pair with matched profiles [57] in which the beam power in tritium is 15 MW,
while the beam power in deuterium is 20 MW, and show that the model with self-consistent

radial electric field correctly yields nearly identical ion temperatures. Finally, we study power

dependence of the isotope effect in detail and reproduce it. A minority of the ion temperature

simulations fail (5 out of 39 cases), all of which are in rotating plasmas with pure co-injection

at very low densities.
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The Velocity Profile Notch

2.1 Introduction

The non-monotonic feature, or "notch" we discuss, frequently appears in the measured

toroidal velocity profiles of the carbon impurity in high temperature experiments on the

Tokamak Fusion Test Reactor (TFTR). It is most pronounced in high performance supershot

discharges [1], when the tangential neutral beam powers are nearly equal and opposite, and

the net torque is small and in the direction parallel to the plasma current. The observed

notch is centered near the radius of strongest ion temperature and density gradients, and

is directed counter to the plasma current. Accordingly, the notch is most striking under

conditions generally found to optimize supershot performance [30].

The velocity profile notch has represented a puzzling issue in the interpretation of data

from high-performance TFTR experiments for several years. Prior to the correction of tor-

oidal velocity data for the energy dependence of the excitation cross-section, the notch feature

did not seem to show any correlation with performance. When the cross-section correction

was routinely used in Charge Exchange Recombination Spectroscopy (CHERS) [58, 59] data

analysis, beginning in late-1994 [56], it became possible to address the notch as an issue

in momentum transport. Without resolution of this issue, claims to an understanding of

momentum transport or the radial electric field profile in these plasmas may be less than

convincing. The notch is a revealing problem in general regarding parallel momentum ex-

change in multi-species plasmas.

In this work [29], we propose an explanation for the velocity profile notch by first ob-

serving that the hydrogenic ions must have a well-behaved, monotonic toroidal velocity profile

if their toroidal momentum is transported radially by anomalous, diffusive processes. We

then perform neoclassical calculations which predict large parallel heat flows in the hydro-
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genic ions, resulting from the large ion temperature and density gradients in the core. We

propose that the notch in the impurity toroidal velocity arises primarily from the parallel

heat friction of the hydrogenic ion neoclassical parallel heat flow acting on the impurity ions.

Adding the difference in toroidal velocities calculated from the neoclassical theory to the

measured impurity toroidal velocity then results in an inferred toroidal velocity profile for

the hydrogenic ions which is monotonic.

A large and unexplained velocity profile notch was recently observed in conjunction with

the core ion thermal energy transport barrier on the JT-60U tokamak [32], in high-f3p H-

mode plasmas. The figures in Ref. [32] also appear to show that the radial position of the

JT-60U velocity profile notch coincides with the radius of strongest temperature gradient as

it evolves with time. This behavior is consistent with our observations of TFTR plasmas and

with the model we propose. Velocity, density, and temperature profiles bearing a striking

resemblence to those of TFTR supershots were observed in JT-60U hot-ion mode plasmas

as well [33].

The explanation of the notch supports the neoclassical theory of ion parallel momentum

exchange in multispecies plasmas. This, in turn, supports the inference of the radial electric

field profile from the measured toroidal impurity velocity, using the neoclassical theory in

the absence of direct poloidal velocity measurements. Radial electric field shear is thought

to underly enhanced confinement in several regimes [60]. We show that the notch indicates a

similar structure in the radial electric field Er, which results in a localized shear layer in Er,

near the half-radius of TFTR supershot plasmas, that may have significant implications for

confinement.

In Sec. 2.2, we present TFTR velocity profile data showing the notch and use the results

of our neoclassical calculations to construct an explanation for this feature. In Sec. 2.3,
we carry out both improved analytical and numerical calculations of neoclassical velocities

starting from Ref. [10]. The more comprehensive, numerical calculation we carry out employs

full velocity-space integrations to obtain viscosity coefficients for arbitrary collisionality. Our

analytical expressions for the neoclassical parallel and poloidal velocities and radial electric

field reproduce the numerical results, and are of general use in the core of high temperature

experiments. We include the significant effects of neoclassical viscosity, heat stress, friction,

heat friction, and density and temperature gradients. These results are used to infer the radial

electric field in Chapter 3. Finally, a heuristic derivation, from an entirely different kinetic

point of view, of the neoclassical temperature gradient corrections to the radial electric field

is given in Sec. 2.3.6. Approximate expressions for the neoclassical viscosities are provided

in Sec. 2.3.4.
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2.2 Model for the Velocity Profile Notch

The observed notch in the carbon velocity is directed counter to the plasma current, and

is generally centered within 5 cm of the radius of strongest ion temperature gradient. This

is illustrated in Fig. 1(a), which shows the measured toroidal rotation velocity of the carbon

impurity ions in an early record TFTR deuterium-tritium supershot [53, 61, 62] #73268

(Pb = 29.5 MW, 19.5 MW in tritium, Ip = 2.0 MA, Ro/a = 252/87 cm, B. = 5.0 T) at a

time 360 ms after the start of neutral beam injection, where Pb is the neutral beam power,
Ip is the plasma current, R is the major radius, and B, is the toroidal magnetic field. This

discharge followed an extensive lithium-conditioning campaign. The radial resolution of the

CHERS diagnostic is +0.5 to 2.9 cm, with channel spacing 5 to 7.5 cm. The momentum

deposition profile calculated by TRANSP Monte Carlo simulations of the beam ion thermal-

ization [50] is well-behaved, positive, and monotonically decreasing over the cross-section.

The tangential neutral beam powers are only slightly unbalanced, with 8% more power in-

jected parallel (co-) than anti-parallel (counter-) to the plasma current. The toroidal angular

momentum balance has reached quasi-equilibrium. The temperature and density profiles

do not have any unusual features, and are shown in Ref. [53]. The accepted practice [63],

has been to assume that the toroidal velocities of all species are strongly coupled by clas-

sical friction. This would require that the toroidal angular momentum carried by hydrogenic

ions be transported against the velocity gradient, across the notch. Correspondingly, the

global momentum diffusivity, inferred by assuming all species have equal toroidal velocities,
is negative in this region. However, it is well-known that the radial transport of toroidal

momentum in TFTR plasmas is dominated by diffusive processes [64]; the observed radial

transport of toroidal momentum exceeds neoclassical predictions by one to three orders of

magnitude [64]. Previous experiments on TFTR using square-wave off-axis heating have not

required a momentum pinch term to model the evolution of the central velocity [63]. In addi-

tion, convection plays a relatively minor role in the momentum balance because the toroidal

rotation velocity of the thermal plasma is much less than the average beam ion velocity [65],

even in cases where the ion heat loss in the core is dominated by convection.

Figure 2 compares the measured impurity velocity profiles for TFTR #73268 (deuterium-

tritium), and a deuterium-only comparison discharge #73265 [53]. Significant differences in

the deposited beam torque are apparent; #73268 has 4 Nm in the co-direction, while #73265

has 1 Nm in the counter-direction, effectively balanced. Despite this, the notches in the

impurity velocity profiles are virtually identical. This shows that the notch is independent of

the applied beam torque.

The magnitude of the notch has reached 150 km/sec in TFTR supershots, comparable to
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Figure 1. The velocity profile notch in TFTR #73268 (40% tritium, 30 MW quasi-balanced neutral beam
injection), shown on the outer midplane, 400±50 ms following the start of neutral beam injection. The shaded
area marks the radial extent and location of the notch. (a) The carbon toroidal velocity V., measured by
Charge Exchange Recombination Spectroscopy (CHERS) of the carbon n = 8 to n = 7 transition. The
hydrogenic toroidal velocity Vwi inferred by adding the calculated neoclassical parallel velocity difference to
Vp is essentially monotonic. The analytical result using Eqn. (26) is shown for comparison. (b) The toroidal
velocity difference Vi - V,, from the numerical solution, showing the separate contributions of the thermal
hydrogenic density and temperature gradients.
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Figure 2. Comparison of TFTR #73268 (40% tritium) and #73265 (deuterium only) after 450 ms of NBI. (a)
The measured carbon toroidal velocity profiles have identical notches despite different beam configurations,
showing the notch is independent of the beam torque. #73268 has 4 Nm in the co-direction, while #73265 has
1 Nm in the counter-direction. (b) The measured carbon temperatures for both shots, showing the isotope
effect.
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the central toroidal velocity for quasi-balanced beam injection. This has resulted in measured

profiles which contain regions of both of co- and counter- directed impurity velocities. For

reference, this magnitude exceeds the central velocities of many TFTR L-Mode plasmas

with co-only neutral beam injection at moderate powers, and is approximately one order of

magnitude less than the record rotation of 1300 km/sec achieved on TFTR at low currents

(- 700 kA) and densities [66]. Large notches frequently appear in the velocity profiles of

supershot discharges utilizing all of the available neutral beams, which on TFTR results in

near-balanced torques. For example, the record discharge #80539 (Pb = 39.4 MW, 64% in

tritium, I, = 2.65 MA, Ro/a = 252/87 cm, B, = 5.50 T) that produced 10.6 MW of DT

fusion power, displayed this feature [29], shown in Fig. 1.

We observed the notch during an earlier 1992 TFTR run campaign, but considered it a

potential artifact of the CHERS diagnostic until recently, pending the correction [67] for the

energy dependence of the cross-section for n = 8 electron capture in carbon [68]. This has

now been routinely applied to the CHERS analysis and tested [59]. The resulting velocity

correction, carrying out the full velocity-space integrations, is quite linear in the carbon

temperature, approximately 7 km/sec/keV in the co-direction, for the usual TFTR viewing

geometry and deuterium beams. The correction to the temperature is relatively insignificant.

Both are fully included here. Finally, we have observed the notch in similar plasmas taken

from different run-years, with velocity data taken by different sets of sightlines, viewing

different neutral beam sources. This confirms that the notch is not an artifact of the CHERS

measurement.

Typical results of the neoclassical calculations of Sec. 2.3, which provide only the differ-

ences in the toroidal velocities of the various species, are shown in Fig. 1(a) and (b). Despite a

large notch in the measured impurity velocity profile, the toroidal hydrogenic velocity profile,

inferred by adding the neoclassical interspecies toroidal velocity difference to the measured

impurity toroidal velocity profile, is essentially monotonic. Fig. 1(b) shows the calculated

difference in toroidal velocities for the two species. The magnitude, width, and radial location

of the velocity difference coincide with that of the measured notch. The contributions of the

ion temperature and density gradients, shown individually, are both important. The theory

gives nearly equal weights to both driving terms, but the temperature gradient driving term

is roughly twice as strong in the plasmas we consider.

We expect this neoclassical momentum exchange process to affect the impurity velocity

most strongly, resulting in the observed notch, while the hydrogenic species is well-behaved.

This is a consequence of momentum conservation together with the ratio of the impurity to

hydrogenic mass densities. First, it is well-known that the neoclassical radial transport of

toroidal momentum is negligible. The viscous, as well as friction forces, conserve toroidal
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angular momentum, which is carried only by circulating particles; e.g., (R 2V. V-r) - p?/a2

where R is the major radius, pi is the ion gyroradius, o is the toroidal angle, and 7r is the

viscous stress tensor for a given species (the next order theory can be found in [69, 70]). For

toroidal momentum-carrying particles, the ion gyroradius pi is the relevant random-walk step

size, rather than the banana width. This results in a negligible perpendicular viscosity XV "

0.1viip 2, where vii is the ion-ion collision frequency. Accordingly, we take Ej mjnj(u!B)R2,

where j runs over all species, to be constant when considering the neoclassical effects of

density and temperature gradients on the toroidal velocities.

The equilibrium beam-driven parallel momentum balance summed over species, with

diffusivity Xv, and (Fb B) the beam momentum source, where B is the magnetic field and ()

is the flux-surface average, can be written

dr r (1 + ) mini xp (r ) = (FiB), (1)

which corresponds to a monotonic mean angular velocity profile (V~B), where p = m.n./mini.

Then to O((r/qR)2), where r and R are the major and minor radii and 27r/q is the pitch of

magnetic field lines, the parallel velocities of hydrogenic and impurity ions respectively are

given by

(ulB) = ( VB) + AucB) (2)

(t4B) = (VB) 1 (Au'CB). (3)

where A 1
c = uj - uX is calculated from the neoclassical theory. For small P, a counter-

directed notch appears in the impurity toroidal velocity profile while we expect the hydrogenic

toroidal velocity profile to resemble the mean velocity profile, deviating slightly from it in

the co-direction.

Over a wide variety of TFTR discharges, we find the magnitude of the predicted velocity

difference is sufficient to account for the notch, while the radial location is matched to within

5 cm. This is taken to be respectable agreement given the potential errors in the thermal ion

density, and gradient scale lengths that sometimes approach the diagnostic channel spacings.

No radial smoothing has been used in the analysis. We account for the gradient of the

Shafranov shift when taking the derivatives of measured profiles with respect to the minor

radius. This correction, while zero at the axis, can be up to a factor of two at the edge.

The hydrogenic ion temperature profile used in these comparisons is calculated from classical

differences in the neutral beam heating powers to impurity and hydrogenic ions. We have also

evaluated the classical differences in the toroidal velocities of carbon and hydrogenic species,
to be presented elsewhere. The classical differences resulting from the beam differential
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torque are small, monotonically decreasing from the axis to the edge, and cannot account

for the notch. This finding underlies our present neglect of the beam source terms given

that all momentum imparted by beams is lost by the collisionless radial transport of toroidal

momentum. Preliminary calculations including radial momentum transport have improved

the agreement, and will be presented in a future paper.

2.3 Neoclassical Calculations

The neoclassical velocities within a flux surface can be described for the regimes of interest

using the standard neoclassical transport coefficients of Ref. [10]. In this approximation, the

distribution function takes the form

f =f (l + [u + )1), (4)
vthi 5pi v2hi 2

where {ui,qi} are the hydrogenic flow velocity and heat flow, v is the particle velocity,

Vthi 2 = 2Ti/mi is the thermal velocity, pi is the ion pressure, and fM is the Maxwellian

distribution.

While the accepted practice has been to assume the measured impurity toroidal velocity

represents that of all species in the core [63], significant differences in the velocities of the

hydrogenic and impurity species were predicted in Ref. [71], from the neoclassical theory.

These predictions were experimentally tested in Ref. [72] on the DIII-D Tokamak at the

edge of an H-Mode plasma, but have not been examined in the core region. The work of

Ref. [72] does not address the radial electric field or discuss the notch, and does not provide

accurate expressions for the velocities in the relevant case of finite impurity concentration.

In addition, the normalized viscosity coefficients used in Ref. [71] were approximate rational

combinations, and did not include dependence on the ion mass.

We extend this work to arbitrary collisionality in a more complete numerical calculation

and provide improved analytical expressions for the neoclassical poloidal and parallel velocit-

ies and viscosities. We develop the corresponding expressions for the radial electric field, and

compare these with the more comprehensive numerical calculation, which is accurate within

the context of Ref. [10]. Our results for the velocities differ significantly from those of Ref.

[71]. This analytical treatment provides a convenient discussion of experimental results and

yields expressions that accurately reproduce the numerical solutions.

Our starting points are Eq. (16b) of Ref. [73] and Ref. [10], Eq. (7.11). We consider

timescales long in comparison with the ion-impurity collision time, which is of the order of

10-100 ms in the region of interest. We then construct an expansion in the ratio of viscosity

to friction (i.e., an expansion in the fraction of trapped particles) as has been done to find
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the lowest order neoclassical flow velocity common to all ion species [73]. The procedure we

carry out amounts to finding the parallel heat flow corrections to the common flow. We split

the common flow into two separate flows; one for the hydrogenic species, and one for the

impurity. In doing so, we retain as the sole next order term the friction force on impurity

ions (x) due to the hydrogenic ion (i) parallel heat flow q1. This term, driven in the trace

impurity limit by the hydrogenic ion temperature gradient, is primarily responsible for the

observed notch in the impurity velocity profile. When the impurity concentration is finite, as

is generally the case, the hydrogenic ion density gradient makes an additional contribution, in

the same direction, that can be equally significant in discharges with peaked density profiles.

This is treated in Sec. 2.3.2. We begin in the trace impurity limit, and then correct the

results for the case of finite impurity concentration, yielding density gradient contributions.

Approximate viscosity coefficients that may be used for finite a are given in Sec. 2.3.4.

2.3.1 Effect of Temperature Gradients

The first order (in the gyroradius expansion) neoclassical fluid velocity and heat flow ve-

locity are well-established results of perpendicular momentum conservation and are repeated

here to clarify our notation. Using MKS-eV units, we have

(1)u B + V) (5)

(1) B VT (6)
q - B2 Z (6)

where Z, n, T, 4 are the charge, density, temperature, and radial electrostatic potential for

the ion species of interest, p = nT, and B is the magnetic field. The parallel heat flux is then

5pq1/2. The first order parallel velocities are then

U11 = V + fio(O)B uo = ioBo (7)

qll = V2 + 4e(V)B qo = 7oBo

where i0(0) and de(V)), the neoclassical responses to (5) and (6), are constant on flux surfaces

4. We define the speeds

S T (ldp Zd4
V1 - ZBo p dr T dr(8)

1 dT
2  ZBo dr' (9)

which can be generalized to flux-surface geometry by taking Bo-lar -+ I(4')B-1a, where

B = Vp x V4 + I(4)Vo. The TFTR magnetic geometry is circular to within roughly 2% for

the discharges we consider, so we prefer to write derivative with respect to the minor radius
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on the outer midplane because the diagnostic data for the plasma profiles is taken on the outer

midplane. When evaluating gradients of profiles measured with respect to major radius on the

outer midplane, we account for the derivative Shafranov shift using R = Ro + A(r) + r cos 6,

where A(r) is the Shafranov Shift and Ro is the major radius of the last closed flux surface.

The system of equations to be solved is given by

(B. V. ri) = (B Fil) (10a)

(B V -o ) = (B Fi2) (10b)

and similarly for the impurities, where iri is the parallel viscous stress tensor and Oi is the

parallel heat stress tensor, and Fil,i2 are the friction and heat friction forces from collisions

with other species. These are defined explicitly as moments of the distribution function in

Ref. [10]. The viscous forces are expressed in terms of the dimensionless viscosity coefficients

/i as follows,

(B -V -ri) = nimi (filiei + fi2qoi)(B 2 ), (1la)
Tii

(B V Oi) = nimi (Ai2fiOi + fi 3 0i)(B 2), (11b)
Tii

and are due only to the poloidal components of the flows in an axisymmetric system. Here

Ai is the hydrogenic viscosity coefficient normalized to nimi/Tii, where ni is the thermal

hydrogenic density, mi is the corresponding particle mass, and

1 - 4 Z2 (jZ A (12)
Tii 3 m1/2r3/2

is the momentum exchange rate for collisions of species i with species j, in cgs units as in

Ref. [10], with Zi the charge.

The parallel friction forces in the limit mx > mi, Tx - Ti become

F" _ F = I I nimi [(u I) + 3 3 Tzm riqv] (13)
F1=1 -F11=- % q - q, (13)1X = i ix X 2 Timz

where the term due to qz can be neglected. Neglecting the impurity parallel viscous stress

for a = nzZx/niZ2 < 1 (the trace impurity limit) gives F1/ x 0 and

= - . (14)

Here we have neglected friction with the electrons as well as their viscous stress. We have

separately estimated the effect of electrons to be of order 5-10% in the direction which makes

the hydrogenic poloidal rotation stronger. The relative electron contribution of electrons to

the friction force on the hydrogenic ions scales as
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F 1 (me 1/2eImne)(§ )5/1% (15)

FI x1 a mi ni Ti

assuming comparable velocity differences, Ti ' 3Te, Zeff 2, and a - 1.

Taking the sum over species of the parallel momentum balance equations provides the

viscous stress constraint (B -V - ri) + (B V -7 r,) + (B -V - re) = 0. Again we neglect the

electron contribution as a 10% correction and also neglect the impurity viscous stress given

the starting assumption a = nxZ2/niZ2 < 1 corresponding to the trace impurity limit. Then

to lowest order, the hydrogenic ions are not strongly affected by interactions with electrons

or trace impurities, and

(B - V - 7ri) oc filOi + fi2oi 0. (16)

where () is the flux-surface average. The hydrogenic ion parallel heat stress is balanced by

the important heat friction term due to q I. In the limit where Ti _ Tx and mx > mi,

(B V. Oi) = (B Fi2) becomes

(B 2) [i 2 iei +i3i = - + a) (q IB) (17)

using the friction coefficients from Ref. [10]. To obtain Eq. (17), we have taken the heat

friction in the form

F" - n=m [(u -U ) - ( + ')q] (18)2i 2 4 +a

and used Eq. (13) to eliminate uJ - ux.

Solving (16) and (17) simultaneously, we find the difference in parallel velocities and the

hydrogenic parallel heat flow,

((J - ul)B) = 3 (q B) 2 a2 (V2iB) (19)
2 21 + a2

where

a2 i3 2) 1 (20)
Ail V/2 + a

The hydrogenic ion poloidal rotation velocity is obtained from the poloidal heat flow velocity,

using (16),

al (V2iB)

S1 +a2 (B 2)

where we have defined al = -Li2/fil, which agrees with the solution of [73], which assumes
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all species have the same velocity, and with the single species result al = 1.173 [74], in their

respective limits (small r/R and a < 1). We find al - 1.0 accurately reproduces the more

comprehensive numerical results. The dependence of al on the impurity strength parameter

a is very weak within the banana regime for realistic values a > 2, with this variation tending

to cancel out of ratios of the viscosity coefficients. For typical supershot parameters, a2 is
of order unity near the radius of steepest ion temperature gradient. We find these results

for the ion temperature gradient dependence, obtained in the trace impurity limit, continue

to reproduce the numerical solution even for realistic finite values of a > 1. However, the

dependence on the density gradient is not yet accounted for with a finite. For a heuristic

derivation of these results, see Sec. 2.3.6.

2.3.2 Finite Parallel Viscosity and the Effect of Density Gradients

In the more relevant case where a > 1, the the parallel viscous stress for hydrogenic ions

does not vanish, i.e., the impurity pressure tensor is more anisotropic, the hydrogenic density

gradient can result in significant differences ul - ul.

The density gradient contributions to the hydrogenic flows can be well-described by re-

laxing the hydrogenic ion viscous stress constraint. Choosing a frame of reference rotating

toroidally in which uI  0 decouples the parallel momentum equations of hydrogenic and

impurity species. This yields a density gradient dependence in reasonable agreement with

the full numerical solution. The lowest order parallel momentum balance is

ilU ei + Ai24s i = -a(i2 -f i - % (22a)

Ai2fOi + iOi = c( - ull) - (v2 + -a) (22b)

where fl = (uB)/(B2), etc. When u is neglected, this is trivially solved to give

fiI= D-l (ilE - ti2F)V1 i + D-' (i 2 E - AF) V2i (23a)

%I = D-l(i 2G - FilF)Vrli + D-l (i3G - Ai2F)V2i (23b)

where Vii = (VjiB)/(B 2 ), D = EG - F 2 , E = Ai3 + V_ + 13a/4, F = /i2 - 3a/2, and

G = Ail + a. A similar expression was obtained in Eqn. (41) of Ref. [71]. However, we find

sign differences that can be traced to an inconsistency in Ref. [71] in the definition of the

heat flow velocity and the the relation between parallel and poloidal flows, and the signs of

the off-diagonal friction coefficients. The corrected results are significantly different.

In the limit a -+ 0, the coefficient of the first term of Eqn. (23a) approaches unity,
reproducing the diamagnetic flow, while the second term in both Eqns. (23a) and (23b) agrees

with the results of Sec. 2.3.1. However, when a is finite, this approach leads to significant
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errors in the temperature gradient dependence relative to the full numerical solution. On

the other hand, the accuracy of the previous section in describing the temperature gradient

dependence persists for finite a. For this reason, our prescription for the case of finite a is

qualitatively different from that of Ref. [71].

The first term of Eqn. (23b) introduces a new correction proportional to a. This can be

rewritten

a2 +a i3 + 3/i2/2 a 1 3
/11Iil a 1( 3  i2

1 + 20 V/2 1  + a 2  A

where a20 = a2 (a = 0). Using Eq. (14), this results in relatively small corrections to our

previous result for the parallel velocity difference.

Taking the first term of Eqn. (23a), instead, to give the density gradient dependence gives

a stronger correction, shown in Fig. 1(b). This result yields better agreement with the more

comprehensive numerical solution. Expanding Eqn. (23a) to lowest order in a, we find the

term proportional to Vi is

-IKA (1_ a 3/i2/2 +/i3 + V (25)
21 V/ (1 + a20)Ail

so that the neoclassical corrections to the diamagnetic velocity have a density gradient de-

pendence roughly proportional to a for small a, reinforcing the temperature gradient term.

To construct the full solution for the velocities, we take the density gradient dependence of

Eq. (23a) together with the temperature gradient dependence of Sec. 2.3.1.

2.3.3 Combined Effects of Temperature and Density Gradients

Our expressions for the rotation velocities in the core of high temperature experiments

are applicable provided the hydrogenic species is in the banana regime and the impurity is

significantly more collisional. Comparison with the full numerical solution indicates that this

approximation is well-substantiated even when the impurities are in the banana regime. The

difference in parallel velocities of the hydrogenic and impurity species is then

I \ 3 a2 B 1 dTi B Ti 1 dni
.((u - l )B) = 2 a (26)d -3d

2 1 +a2 B0Zi dr' Be Zi ni dr

where

13 3
Ai(i3 + a+ a) - i2(i2 - -a)

a3 13 4 2 (27)

(Ai3 + V+ a)(Ail + a) - (Ai2 - )24 2
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The coefficient a 3 - 0.8 at the axis and decreases almost linearly to a3s 0.2 at the edge in

typical TFTR supershots. The ratio a 3/(1.5a 2/(1 + a 2)) is near unity in the core and drops

smoothly to 0.8 in the outer 3/4 radius. The full numerical solution of Sec. 2.3.5 indicates

that the hydrogenic poloidal velocity has negligible density gradient dependence, so Eq. (21)

remains valid, giving

al B B 1 dT (28)() =\. (28)I 1 + a2 (B 2 )  Zi dr

The impurity poloidal velocity takes the form

Be [((u'l -u ) B ) ( B  11 dpi 1 dpx (29)
U(B ue 2 2(B2  X Be Zi n dr Z dr

In cases where uos is damped to zero, in the presence of a significant density gradient, either

the density gradient dependence of ((u - ul)B) must be purely diamagnetic, or ue0 must

depend on the density gradient. Generally we find uox remains small but finite. Equation

(29) becomes

Be al - 1 + a2/2 B 1 dTi B 1 Ti dni B 1 1 dp (30)
(B2) 1 +a2 B0 Zi dr Be Z i n i d r  Be Z. n x dr

Of the expressions given here, the result of Eq. (29) is the most sensitive to errors in input

data, depending on the cancellation of several comparable terms to give relatively small

impurity poloidal rotation velocities. The coefficient of VTi in Eqn. (29) is approximately

(1/2)a2/(1 + a2) > 0, while the opposing coefficient of Vni is (a3 - 1) < 0. The impurity

pressure gradient term is typically comparable to these. In the numerical solution, this

quantity is sensitive to all gradients of density and temperature, with the impurity gradients

weighted by Zi/Zz < 1. The generalization to flux-surface geometry is straightforward as

described in Sec. 2.3.1.

To order (r/qR)2 , the difference in parallel velocities is equal to the difference in toroidal

velocities,

(AuncB) ((ul - ul)B) - ((Vpi - Vpx)B) - BoRoAnc(0). (31)

The toroidal component of the diamagnetic flows can be evaluated by writing V = u11 e + u()

and taking the projection onto Vp. The resulting correction is next order in the inverse aspect

ratio e, and was found to be insignificant.

Figure 3 shows the numerical and analytical results for the poloidal velocities for #73268.

The hydrogenic poloidal velocity can be quite large in the core where the ion temperature

gradient is large, and is always in the ion diamagnetic direction in the banana regime. The
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carbon poloidal velocity is much smaller, and can be in either direction. The ion and electron

diamagnetic velocities, v,i and ve, as well as the E x B velocity are shown for comparison.

Note the E x B velocity is influenced by the toroidal impurity velocity and is qualitatively

quite different from the neoclassical poloidal velocity. Although the resulting velocity is

predominantly toroidal, one must remember that the poloidal and toroidal velocities make

comparable contributions to the V x B term in the radial electric field. Therefore, the poloidal

velocity of the hydrogenic ions cannot be neglected in the hyrogenic radial force balance in

the core of high temperature plasmas.

As shown in Sec. 2.3.5, these expressions reproduce the full numerical solution. The

errors in the density and temperature gradient dependence of Eq. (26), relative to the nu-

merical solution, tend to cancel. Comparing with Ref. [71], we find the temperature gradient

dependence predicted by their Eqn. (48) to be roughly a factor of two stronger than our

result, with a density gradient dependence weaker than ours. The discrepancy in the density

gradient dependence can be traced to an inconsistency in the signs of the off-diagonal friction

coefficiets and the starting definitions of the flows used in Ref. [71].

2.3.4 Approximate Coefficients

In comparisons of the analytical models with experiments it was necessary to include a

reasonable dependence of a 2 on both collisionality and impurity strength. The dependence

on a is especially important to obtain good behavior near the plasma edge, while some

dependence on collisionality is important near the axis. As a lowest order approach, we form

a "rational combination" for a2, starting from the rational combination approximation for

Kij given in Ref. [10]. Here we take a single carbon impurity of strength a and consider

the variations in the average hydrogenic atomic number Ai relevant to typical deuterium and

deuterium-tritium plasmas in TFTR. This approximation may written as

a2B (a, Ai) ft/f (32)
S= ( + a) (1 + viA 2 (a, Ai)) (1 + e 3/ 2 viB 2 (a, Ai))

where aB is a banana regime coefficient, and fe = 1 - ft. For TFTR, which has almost

exactly circular cross-section, we use the simple form ft = 1.46V - 0.95e3/2. Over the

relevant ranges 0 < a < 6 and 1 < Ai < 3, the coefficients A 2 and B 2 are quite linear in both

a and Ai, taking the forms a B = a2 0 + (a2B1 + aB22A) a, A 2 = A2,0 + (A2, 1 + A 2,2Ai) a,

and B 2 = B2,0 + (B 2,1 + B 2,2Ai) a. The numerical coefficients and the accuracy of these

approximations are given in Table I. The error column in Table I refers to our linearized

expansion relative to the rational combinations obtained from the two-term version of the

Pfirsch-Schliiter coefficients, and exact banana and plateau coefficients, given in [10].
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pared with the numerical solutions of Sec. 2.3.5. (b) The E x B velocity VEXB compared with the ion and
electron diamagnetic velocities vi and v,e, and the neoclassical hydrogenic poloidal velocity uei.

'I'll I ~ ' 1111111I I ' 1 I' 1 '- ' ' I I I I I

.h qlkh



Sec. 2.3. Neoclassical Calculations 43

Table I. Numerical coefficients for rational combination obtained for a2.

Qty (j = 0) (j = 1) (j = 2) Error
S(B)

a2j 0.6562 0.9500 -0.04467 0.7%
A 2j 0.6258 0.5699 -0.03161 5%
B 2j 0.5944 0.4350 0.04644 0.7%

Table II. Numerical coefficients for rational combination obtained for Kij.

[i, j] Cij (o) Ci () Dij (o) DI (1) Dij (2) Error

[1, 1] 0.6207 1.1649 0.6156 0.4817 0.3340 3.5 %
[1,2] 0.2746 0.3883 0.4488 0.3022 0.2672 2%
[2, 2] 0.1544 0.1942 0.3804 0.2376 0.2274 1%

Rational approximations to the separate viscosities are obtained from the following. The

general form of Kij for hydrogenic ions, in the rational combination approximation, is given

by

KiB (a, Ai) (33)
[1 + v.iCij(a, Ai)] [1 + e3/2viDij (a, Ai)]

where KijB is the banana regime coefficient. The {Cij} are linear in a and have simple

Ai dependence, so no expansion is necessary for these. The general forms of Cij and our

expansions for Dij are

Cij = Ci ( ) + aCi ( 1) fij(Ai/Al)

Dij = Dij (0 ) + a (Dij (1) + Dij (2) (Ai/At))

where the numerical coefficients and the accuracy of our approximations are given in Table

II, and fill(x) = (1 + x) 1/ 2 + xln(x 1/ 2/[1 + (1 + x) 1/ 2 ]), fl2(x) = (1 + x) - 1/ 2 , and f 22 (x) =

(1 + 5x/4)(1 + x)- 3/2 . We have assumed a single heavy impurity of strength parameter a.

The normalized viscosity coefficients are obtained from the Kij as in Ref. [10]: Al = K1 1,

A2 = K 12 - (5/2)KnI, and p3 = K 2 2 - 5K 12 + (25/4)KI1 . These approximations are not

made in the numerical calculation, where instead the viscosities are calculated directly by

integration over velocity space.

2.3.5 Numerical Solution for Arbitrary Collisionality

The results obtained in this section were used as a basis for comparison when developing

the analytical expressions. The approximations to the viscous stress of the previous sections
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can be avoided by solving the 4x4 matrix equation for the poloidal velocities {Ie0i, uo x, qoi, }

numerically. We have developed a code ("TRV") [75, 76, 77] to carry out such calculations

from TRANSP data [50].

First, it is straightforward to show, using the full friction matrix, that any component

of the driving terms VI and V2 which is independent of species does not contribute. The

poloidal flows are accordingly independent of the radial electric field, as is well-known in
the absence of orbit squeezing, therefore ((u - u)B) = ((Vi - Vix)B) + (B2 )(ioi - iox)

is as well. The hydrogenic toroidal angular velocity is obtained from this equation with

Er = 0, using the measured carbon velocity on the outer midplane, 2,i(b) = Vmeas'/R +
[(("u - u1)B)]Er,=/BoRo. The radial electric field follows from the radial momentum balance

equation using the toroidal and poloidal velocities as calculated or measured. The equations

for the poloidal flows are written

(34)

where the right-hand side is evaluated with Er = 0 and {i, j} run over all ion species. The

parallel flows are then obtained using Eq. (7).

We obtain the viscosity coefficients for each species, for arbitrary collisionality, from

Eq. (4.72) of Ref. [10] by direct numerical integration over velocity space. The effective
connection length described by Eq. (4.66), L* qR, which enters the collisionality, as well as

the other geometrical quantities required for the calculation, are evaluated in the large aspect

ratio limit, i.e., (B2)/((V 11B) 2) 2 2(qRo/e) 2, where e = r/Ro. Although our code includes

routines that calculate the metric quantities for arbitrary flux surface geometry, the finite

aspect ratio and noncircular corrections are insignificant in the TFTR plasmas we consider.

We also use the full expressions, Eqns. (4.4-4.14) of Ref. [10], for the friction coefficients {0b, }.
Two ion species are considered for simplicity. The result is valid for arbitrary collisionality

and otherwise retains the full accuracy of Ref. [10].

2.3.6 Heuristic Approach in Trace Impurity Limit

Distribution Functions

The results for a trace impurity can be found from first principles using an entirely

different approach. Following Ref. [78], we deduce the distribution functions for trapped and

passing ions. Then we use these results to construct a simple model for the velocity profile

notch and radial electric field. The method is intuitive and gives the correct temperature
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gradient dependence. The deformations of the trapped and circulating particle distributions,
relative to the Boltzmann distribution, can be deduced without solving kinetic equations or

considering collision operators.

First, we discuss constants of the motion. The toroidal canonical angular momentum is

p, = R(mv, + eA,) (35)
c

where A is the magnetic vector potential, R is the major radius, m is the particle mass, e

is the charge, c is the speed of light, and v, is the particle velocity in the toroidal direction.

The toroidal vector potential and poloidal magnetic field B0 are related by

d(RA) = -BOR (36)
dr

where r is the minor radius, so that

p, = mR , - frodr' o (r')), (37)

where ro is a turning-point of the trapped particle orbit and Qe = eBo/mc is the poloidal

gyrofrequency. Expanding for small banana width, we find that along trapped-particle orbits,

p, = mRo (v - (r - ro)) - (38)

The trapped particle distribution function fT is a solution to the Vlasov equation (in

the collisionless limit), and according to the Jeans theorem, must be a function solely of

the constants of the motion. Therefore we write fT = fT(E,pw,...) and the dependence on

toroidal canonical angular momentum must take the form

f (p,,) = fT(r - Fm (r) 1 - d In Fm (r)) Fm (r)(1 + 6fT) (39)

where

d dln n ed dln T E 3
-n Fm(r) = + r +  (40)dr dr T dr dr T 2

This is consistent with the constraint that trapped particles have no poloidal flow.

The circulating ions can be considered to have, in the absence of temperature gradients,
a distribution function which is a shifted Maxwellian. Their macroscopic toroidal flow can

be defined by continuity at the trapped-passing boundary. This leads to

vf = (1 dni e d (41)
Poi ni dr Ti dr
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with the macroscopic toroidal flow velocity

c Ti dni e d (42)
u p =- +  (42)

eBe ni dr Ti dr

Comparing this result for hydrogenic ions with that from the full kinetic theory [74, 79], we

find a term proportional to the ion temperature gradient should be included, corresponding

to

c Ti dn e d .dT'i
usi = - -(+ 3- a (43)

eBO ni dr Ti dr 'dr '

where ai = 0.172. Using this toroidal flow velocity in the radial momentum balance equation,

1 d@ Ti dni 1dTi
0 = -(uiBo - uoiBW) + + T + d (44)

c dr eni dr e dr

we infer the poloidal velocity for circulating ions,

c dTi (45)
=os - (1 + ai) (45)

eBI, dr

The coefficient ai is not essential to our explanation, but is included for completeness. To

produce this poloidal flow, the circulating ion distribution function must have a term propor-

tional to vo,

, 1 dni e d~ 1 dTi vo 3 E 1 ldTi
Qoi n dr Ti dr Ti -dr 2 Ti T dr

This can be expressed in terms of the trapped-particle deformation. The poloidal velocity

can be eliminated using vil - v, + veBeB, to yield

vil (3 E 1 dTi (47)

Coi 2 Tj T dr

Next we must match the trapped and passing deformations at the trapped-passing boundary

in velocity space, so that the total distribution function is continuous there. We require

6fiT(A -+ A+ ) = 6fic(A -+ A-), (48)

where A = ILBo/E and Ac = 1 - r/Ro corresponds to the trapped-passing boundary, where

Bo is the magnetic field at the magnetic axis, M = miv2/2B is the adiabatically invariant

magnetic moment, B is the local magnetic field, and E = miv 2/2 is the particle kinetic energy.

This condition is physically imposed by the drag of the poloidal (parallel) flow of passing

ions on the poloidally stationary trapped ions. The effect of the drag diminishes somewhat

gradually away from the trapped-passing boundary and is felt by a significant fraction of the

passing ions. We model this by taking
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l-+ (vjl)(A) - (vll)(Ac) (49)

in Eq. (47), where (vjl)(A) = av,/ - A, () is the flux-surface average, and (vll)(Ac) = aviFe.

This satisfies the condition of continuity at the trapped-passing boundary smoothly. The

deformations are then written

(vl)(A) - (v)(Ac) E 3 1 dT
Sfic = fT + + ai) d-H(Ac - A) (50a)

0i T 2 T dr
v_.T = 1 dni e d E 3 1 dTi] (50b)

6
fiT= + + (50bi ni dr Ti dr T 2 T dr

where H(x) = 1 for x > 0 and H(x) = 0 for x < 0. The remaining work departs from Ref.

[78] to make use of these results in a simple model for the notch feature.

Velocity Space Integrals

In this section, we develop velocity space integral operators to facilitate taking moments

of the distribution functions found in Sec. 2.3.6. The required integrals are of the form/ 0O
d3v = dvj 7r d(v2), (51)

which, for convenience, will be expressed as integrations over A and E, where

A- pB_ v h(0) (52)
E 2v2

with h(O) = RIRo = Bo/B = 1 + E cos 0, and E = mvy2/2. First, we find the Jacobian for

the transformation from cylindrical coordinates in velocity space.

vi = E 1 -h() (53a)

2 _ 4E A
v I = (53b)

m h(0)

where a = +1. Transforming from (vil, v±) to the adiabatic invariants (E, A), we write

dvll = dE - vi dA (54a)
2E 2h(1 - A/h)
4A 4E

dv2 = dE + dA (54b)
I mh mh

so that the Jacobian becomes

dv dv = E dA (55)
, T, 1h 1 -A/h
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and the integration over circulating particle space can be written

d3v = 7 d
2 m o T)

E 1/2 Ac dA

T o0 h(O) 1- A/h(9)
(56)

where particles are passing for 0 < A < Ac = 1 - e and trapped for 1 - e < A < 1 + E.

Normally we are interested in the operator

c d3 Fm = Ac

dA

h(O) l-A/h(O)
(57)

where

Fm m\3/2eEITFm= ,2TI (58)

The moments of the passing particle distribution require the following integral operator,

acting on integrands which are isotropic in velocity space, where (vii) = au2_E/mvV7-A is

the flux-surface averaged parallel velocity.

f d3v Fm vl [(vll)(A) - (vll)(Ac)]

= 
2 n 2T

S 2,/r m A dA (v_ Ao h(0)100 dE) E)3/2 -EEITo T T

2T 2 1 0 0 (E
= n-- fc d

m3 T'ro
(E) 3/2 ET

(59a)

(59b)

(59c)

where

fc = - 3 + E3/2) (1
)

331 - +
2

E3/2
4 (60)

is the effective fraction of momentum-carrying particles. The required moments are then

readily evaluated:

f d3 v Fm vi [(v1i

d3v Fm vii E[(vil

)(A) - (vlj)(Ac)]

)(A) - (vll)(Ac)]

/ (~ E 2Sd3 v Fm vi (-) [(vl ) (A) - (vl)(Ac)]
The other moments for the diamagnetic terms are

/ nTd d3 v Fm VllV nTm
E 5 nT

T 2 m

nT
S cm

5 nT
2m
57 nT
22mc22 m

5 7 nT

22 m

In the next section, we make use of these results to obtain the parallel flows.

(61a)

(61b)

(61c)

Sd 3 v Fm vjvy (E)2
I T

(62a)

(62b)

(62c)

Sn 00,,+2/7 V!- d (E)E) 1/2 e-E/ T
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Velocity Profile Notch and Radial Electric Field

We consider the case where the impurity ions (subscript x) have a shifted Maxwellian

distribution, while the hydrogenic ions are in the banana regime. In the limit where the

impurity ion mass is much greater than the hydrogenic ion mass, and their temperatures are

equal, the parallel friction force on the impurity ions is due to the usual collisional momentum

exchange and heat friction from the hydrogenic parallel heat flow, as shown in Sec. 2.3.1. This

provides

S 3 2 qlli (63)
x - 2 5 niTi

where qjjl is the hydrogenic parallel heat flux. Because the profile of ul is expected to be nearly

monotonic, determined by anomalous momentum diffusion and the centrally deposited beam

torque as described in Sec. 2.2, explaining the observed notch in the profile of ux requires a

calculation of q1li1
Using the results of the previous section, the macroscopic parallel ion velocity is

niu = d3v FmV(1 + 6fic) (64a)

j cTi 1 dni e db 3 1 dT( 64b)U= i [(1 + ai)(1- -V) - 1] (64b)
eBe ni dr Ti dr 2 Ti dr

where terms of order e have been ignored. To lowest order, the coefficient inside the square

brackets is equal to ai, and the result is identical with the result from the full kinetic theory

given first in Ref. [74]. This lends confidence that the distribution function is reasonable.

The hydrogenic parallel heat flux can be calculated as follows.

Q||i + 5niTu = d3v Fmi(1 + 6fic) miv2V ll (65)

Making use of the operators in the previous section yields

5 3 c dTi (66)
Q li- = -niT ix -/ (66)

2 2 eBe dr

The expression for the impurity toroidal velocity is then

II 3 3 / c dT
Ull U~. + _- -dT (67)
X 2 2 eBe dr

which shows that significant temperature gradients can produce non-monotonic features in

the impurity velocity profile, directed counter to the plasma current. The heuristic theory

correctly reproduces the main results of Sec. 2.3.1, giving the terms due to the ion temperature

gradient.
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The results of this section can be used to construct an expression for the radial electric

field. Retaining up to order \F in Eq. (64b), and using Eq. (67) with Vx = ux, we reproduce

the results of the moment approach corresponding to the trace impurity limit,

Er n- VxBo - ai + 3 - + i dn (68)2 dr ni dr

where the units are Er(V/m), Vvx(m/s), Ti(eV), B(T), r(m) and ai = 0.172. Notice that

the hydrogenic poloidal velocity cancels the temperature gradient contribution with only a

small term (ai) left over. Equation (68) gives the correct result in the trace impurity limit

corresponding to a < 1. The density gradient corrections, not shown, become significant

when the impurity ion distribution is less collisional and a is finite. These are discussed using

the moment approach in Sec. 2.3.2. The more accurate version of this result is presented in

Chapter 3 in Eq. (20).

2.4 Comparison with the NCLASS code

The NCLASS code [80] was developed simultaneously and independently of this work [29].

In fact the first results from both codes were obtained within one to two days of each other

[75] by coincidence. Further results from both codes were presented at several conferences

[75, 76, 77]. Although the two codes solve similar problems, along the lines of Ref. [10],
their aims are somewhat different. While the NCLASS codes aims to be comprehensive

within a neoclassical context, particularly with respect to the electron bootstrap current,
the TRV code neglects electrons and other small effects of order 5-10% for the regimes of

interest, and solves the parallel momentum and ion energy balances only for ions. The TRV

code reasonably describes the neoclassical radial electric field in the supershot regime. This

code was developed to test analytical expressions for the radial electric field under identical

assumptions, which were developed for efficient transport predictions. For the regimes of

interest in this work, the TRV and NCLASS codes should, in principle, give the same results

within of order 10%.

The two codes are related in the following ways. The TRV code uses the viscosity

coefficients of Ref. [10] by integrating over velocity space, and is therefore valid for arbitrary

collisionality to the extent that the work of Ref. [10] is. The NCLASS code uses revised

viscosity coefficients evaluated in a similar manner. The corrections relative to Ref. [10]

affect only the collisional contributions to the viscosities at finite r/R. These corrections are

negligible, away from the magnetic axis and the edge for the plasmas we consider, where the

hydrogenic ions are well into the banana regime and the results are only weakly dependent

on the collisionality of the impurity species. Thus the differences in viscosity coefficients
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between the two codes should be insignificant. The TRV and NCLASS codes use the same

friction coefficients. The NCLASS code incorporates a treatment of orbit squeezing, which

we find in supershot plasmas is an effect at most of order 5%. Both codes include the parallel

electric field, whose effect on the ion velocities is insignificant. The most significant difference

between the two codes is that the NCLASS code solves the parallel momentum balance for an

arbitrary number of mass species and charge states, using the reduced charge state formalism

of Ref. [10], while the TRV code is restricted to two ion species, each with a single charge

state, with no special formalism. Results from the NCLASS code show that the effect of

lumping five species (H,D,T,C,e) into an ersatz ion species and a carbon impurity, neglecting

electrons, is indeed small. Differences near the magnetic axis are the likely result of different

methods used to take radial derivatives, or differences in the collisional contributions to the

viscosities.

Both codes neglect effects which are potentially much more important than the neoclas-

sical refinements described above. The effects of neutral beam sources and radial momentum

diffusion are likely to be important in certain situations. We have carried out preliminary

calculations including these effects and find they can resolve a discontinuity in the toroidal

velocities that arises in cases with convectively limited, clipped ion temperature profiles.

Presently, a quantitative discrepancy exists in the hydrogenic poloidal velocity evaluated

by the two codes, shown in Fig. 4. The machine parameters are #75936: Pb = 26.2 MW (11

MW tritium), I, = 2.0 MA, B, = 5 T, Ro/a = 2.52/0.87, Tcofr = -0.05, fie = 3.8 x 1019

m - 3, Eb = 100 keV, and Zeff = 2.6, where Tcofr = (T 0 - Tctr)/(Tco + Tctr) and T is the beam

torque. Neither orbit squeezing nor the parallel electric field was included in the NCLASS

calculation shown. There is a compensating discrepancy in the toroidal velocity difference,
so that the radial electric fields are quite similar, as shown in Chapter 3. The only qualitative

difference in the results are that, while the TRV code finds the density gradient dependence

of the hydrogenic poloidal velocity to be insignificant, the NCLASS code finds a relatively

strong contribution, of order 30%. This density gradient dependence accounts largely for

the difference in the two results. Nevertheless, both codes compute a small carbon poloidal

velocity. This results in radial electric fields which are quite similar, except in the inner

one-quarter radius under extreme conditions. The shearing rates computed from these radial

electric fields are not much different, so our conclusions regarding the effect of radial electric

field shear on transport are not jeopardized. This comparison was carried out on October 2,

1997, using the latest available version of the NCLASS code.

The results of the relatively simple TRV calculation have been checked in the following

ways. First, the poloidal velocities were verified to be independent of the radial electric

field when it is included as a driving term, as required by momentum conservation. Second,
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the results satisfy the viscous stress constraint. Third, the numerically calculated viscosities

agree with the known analytical expressions in the banana regime. Fourth, the results of the

analytical calculation are in agreement with the results of the TRV code.

It is possible that such a discrepancy could arise from relatively small differences in the

computations of the hydrogenic viscosities, and does not necessarily imply major inconsist-

encies in either code.

TBI + 450 ms TFTR #75936A08
10 1 1 1 1 1 1 1 1 1

-10

-20

-30
2.8 2.9 3.0 3.1 3.2 2

Midplane Major Radius (m)

Figure 4. Calculated poloidal
analytical calculation.

velocities for TFTR #75936 from the TRV code, NLCASS code, and the

2.5 Discussion

We have shown the observed notch in the impurity toroidal velocity profile of very high

temperature plasmas may be regarded as a neoclassical artifact of the impurities, and is

not an indication of such behavior of the main plasma species. We proposed a model for

the notch in which it is a consequence of parallel heat friction due primarily to the large

hydrogenic parallel heat flows due to large temperature and density gradients. Adding the
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neoclassical toroidal velocity difference to the measured toroidal velocity of carbon resulted

in a monotonic toroidal velocity profile for the hydrogenic species. This is consistent with

the experimental observation that the radial transport of toroidal momentum is diffusive

(in strongly rotating discharges). Because the same physics underlies both the difference in

parallel velocities and the neoclassical poloidal velocity, this supports the use of the calculated

poloidal velocity when inferring the radial electric field.

In the fundamental sense, the notch prediction confirms that higher moments, e.g. ion

parallel heat stress and heat flow [73], are essential to explain the observed velocity profiles in

high temperature experiments, within a neoclassical context. The neglect of these moments

and the resulting small differences in the velocities of the various ion species would imply

outward radial momentum transport against the velocity gradient in the high temperature

experiments we consider.

We have provided improved analytical expressions for the neoclassical poloidal and tor-

oidal velocities in the core of high temperature plasmas and compared these with a more

comprehensive numerical calculation that is valid for arbitrary collisionality. For simplicity,
our results were obtained for a primarily hydrogenic plasma with a single dominant impur-

ity, on the reasonable assumption that no qualitatively new phenomena are uncovered by

considering additional species. We have neglected orbit squeezing on the basis of earlier

observations that the toroidal velocity difference is not affected by it [81], and because the

squeezing parameter is within 5% of unity for the considered discharges. The only significant

effect of orbit squeezing in this context appears to be the suggested (weak) dependence of

the poloidal velocity on the density gradient [82, 83, 12, 13].

Numerous cases exist (for example TFTR #73265, shown in Fig. 5) in which the hy-

drogenic and impurity species are predicted to rotate toroidally in opposite directions over

a small fraction of the plasma cross-section. A brief search did not turn up cases where

low (m, n) magnetohydrodynamic modes were observed to rotate in a direction opposite the

measured impurity velocity, assuming no mode poloidal rotation. Further investigation of

quasi-balanced discharges may be fruitful, although the the mode rational surfaces corres-

ponding to q = 3/2 and q = 4/3 are located typically near a major radius of 3.0 m in these

plasmas, which is outside the region near 2.90 m where the reversed impurity toroidal rotation

is observed. This may explain why no cases could be found.

One may envision testing the predicted toroidal velocity difference by injecting an ad-

ditional heavy impurity such as neon, and measuring its velocity as well as that of carbon.

Desirable conditions include highly peaked density profiles, balanced beam injection, and

low plasma current. On the other hand, the magnitude of the notch is only weakly dependent

on the charge of a heavy impurity through the strength of the density gradient dependence.
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Time = TBI + 400 ms
300-

(a)

200-

100-

- "Notch"

-100-

0.0 0.2 0.4

73265N01

0O Numerical
L_ Analytical

--- CHERS
(measured data remapped
to minor radius)

Inferred Vyi

Measured Vpx

0.6 0.8 1.0
Normalized Minor Radius (r/a)

Figure 5. The velocity profile notch in TFTR #73265 (deuterium, 30 MW quasi-balanced neutral beam
injection), shown on the outer midplane, 400 ± 50 ms following the start of neutral beam injection. The
shaded area marks the radial extent and location of the notch. The carbon toroidal velocity Vz measured
by Charge Exchange Recombination Spectroscopy (CHERS) of the carbon n = 8 to n = 7 transition. The
hydrogenic toroidal velocity Vi inferred by adding the calculated neoclassical parallel velocity difference to
V,, is essentially monotonic. The analytical result using Eqn. (26) is shown for comparison. The predicted
effect of neoclassical heat friction is to cause the impurity and hydrogenic toroidal velocities to be in opposite
directions over a significant fraction of the plasma cross-section.

____
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For a heavy trace impurity with a < 1, the density gradient dependence is negligible. The

experiment would then test the predicted hydrogenic density gradient dependence of the car-

bon toroidal velocity. The thermal hydrogenic density is not directly measured, however,

and the predicted difference in the toroidal velocities of carbon and neon is small. An exper-

iment comparing the velocities of helium and carbon may be more useful [72]. One may also

envision injecting an impurity for which Er is dominated by the measured toroidal velocity,
giving a nearly direct measurement of Er. Equation (20) shows that the temperature gradient

dependence cannot be avoided. It may be possible to reduce the sensitivity to the calculated

hydrogenic density gradient by adjusting a3 for the radii of interest, but this is of dubious

benefit because a3 is only weakly dependent on a under typical conditions.

As will be discussed in Chapter 3, this same process produces a well structure in the

radial electric field in the core of high temperature TFTR experiments. In more strongly

co-rotating plasmas, the notch, which is an arithmetic difference independent of the average

toroidal rotation velocity, remains visible in the form of a flat spot on the velocity profile,
without a region of positive velocity gradient. The calculated well structure in the radial

electric field is still present in such cases.





Chapter 3

Radial Electric Field and Model for

Supershot Core Confinement

3.1 Introduction

This chapter introduces calculations of the radial electric field in very high temperature

plasmas, and makes use of them to develop a transport model that simultaneously calculates

both the radial electric field and the ion temperature profile. This model is used throughout

the remaining chapters to study the role of radial electric field shear stabilization as an

explanation for the favorable confinement trends of very high temperature plasmas.

The supershot outer half-radius has characteristics resembling the L-Mode regime, where

the local confinement trends are unfavorable. It is far from marginal stability with respect

to the toroidal ITG mode, and must be treated nonlinearly in the sense that estimates of

the turbulence saturation level are required, and that these estimates affect the predicted

temperature. The core displays a large well structure in the radial electric field profile where

the ion temperature gradient is strong. This radial electric field well is present in supershot

plasmas with near-balanced neutral beam injection, but not in L-Mode plasmas, and is

associated with significant shear near the half-radius. A very similar well shape is observed

in the radial electric field profile near the edge of H-Mode plasmas [84, 85, 86, 60]. This leads

us to explore the role of radial electric field shear in determining the favorable confinement

properties of supershot plasmas relative to comparable L-Mode plasmas.

During the first few hundred milliseconds following the start of neutral beam injection

in supershot plasmas, the core region of enhanced confinement expands and the well in the

radial electric field deepens. The well in Er is deeper for lithium-pellet injected plasmas

which is suggestive that it may underly the improved confinement. In addition, the radial
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electric field depends on the density, temperature, and velocity profiles in a way that would

appear to be self-reinforcing given an associated reduction in transport. This dependence, in

view of the favorable confinement properties observed, is also suggestive that radial electric

field shear is an important underlying, and possibly unifying, mechanism. However, as we

demonstrate, these observations are merely suggestive. The linear stability properties of the

toroidal ion temperature gradient mode [18] and trapped-electron modes [87, 18, 88] are

themselves suggestive of a self-stabilizing and self-reinforcing route to enhanced confinement.

We find, in fact, that the core region (inner half-radius) is not far from marginal stability

to the toroidal ion temperature gradient driven mode. This tends to make comparisons of

growth rate and E x B shearing rate strongly dependent on potential errors in measured

profiles and their gradients. To resolve this problem, we develop models that simulate the

ion temperature and radial electric field profiles simultaneously and self-consistently.

In the following, we develop the neoclassical corrections to the measured impurity velocity

term in the expression for the radial electric field, and perform the full neoclassical calculation

of Er corresponding to our previous analysis of the notch. The explanation of the observed

velocity profile notch supports our use of a neoclassical radial electric field for near-balanced

beam injection. This validation holds for the profile shape of the radial electric field, and is

stronger than the statement that the neoclassical poloidal velocity is small in magnitude as

a result of poloidal flow damping. We use this neoclassical radial electric field in transport

models to calculate the ion temperature without influence from the measured temperature.

Next we assume that the linear growth rate, maximized over kopi, serves as a good approx-

imation to the nonlinear turbulent decorrelation rate. The criterion that turbulent transport

vanishes when the E x B shearing rate approaches the nonlinear turbulent decorrelation rate

[42, 35], approximated by the maximum linear growth rate, is adopted, as discussed in Sec.

1.4.

Although the linear stability properties, rather than less well-understood nonlinear phe-

nomena, may be the dominant influence on the stabilization criterion discussed above (for an

example in slab geometry, see Ref. [38]), a nonlinear theory is still necessary to describe the

effect of radial electric field shear on transport when complete stabilization by radial electric

field shear is not achieved. First, the radial correlation length is strongly affected by shear

flow. Second, the nonlinear isotropization of turbulence determines the strength of the effect

of shear flow on transport. Here these effects are described with a simple linear approxim-

ation valid at both endpoints, i.e., the case of zero E x B shear, and the case of complete

stabilization by E x B shear, evaluated according to the expedient criterion of taking the

E x B shearing rate and maximum linear growth rate of the toroidal ITG mode (evaluated

as discussed in Chapter 1) to be approximately equal.
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We develop two calculations of the ion temperature in supershot plasmas which self-

consistently include radial electric field shear stabilization (by self-consistently, we mean the

radial electric field and temperature profile are calculated together). The first, an analytical

model for the temperature in the inner half-radius, uses a simplified form for the radial electric

field. This model is based on the practical shear-flow stability criterion WExB ~ "yin. A

corresponding analytical expression for the ion temperature gradient scale length is derived

and shown to be consistent with the dominant confinement trends of supershot plasmas. This

model does not rely on estimates of ITG nonlinear saturation. The second calculation, an

extension of the IFS-PPPL parameterization [16], uses a reasonably accurate expression for

the neoclassical radial electric field E, and self-consistently evaluates both Er and the ion

temperature profile, over the radii 0 < r/a < 0.85, in fully nonlinear simulations. A new

transport code is developed to carry out these calculations.

3.2 Modeling Choices

The quantitative understanding of transport processes in high temperature, neutral beam

heated plasmas has improved greatly in just the last few years. The linear theory of collective

modes in axisymmetrically confined, non-rotating plasmas has matured to the point where

accurate and fairly comprehensive growth rates can be calculated with radially local but po-

loidally nonlocal codes [89, 26, 28, 21, 90, 27] for the modes of interest in the core region.

However, these codes do not include equilibrium sheared flows. The radially local approx-

imation holds for large toroidal mode numbers, which are found to be of order n = 20 - 100

for the fastest-growing instabilities. Linear kinetic codes which are radially and poloidally

nonlocal also exist [91, 92], but are limited by the available computing power to describe

trapped-ion modes with toroidal mode numbers of order n < 15. These codes include finite

ion banana width but assume zero gyroradius. Fortunately, the range of n covered by radi-

ally nonlocal codes addresses the shortcomings of the radially local codes. Surprisingly good

agreement in the calculated growth rates between the radially local and radially nonlocal

codes has been demonstrated for toroidal mode numbers as low as n - 5 [92].

The nonlinear theory, which is required to describe the saturation level of the turbulence

and the corresponding level of transport has shown recent progress. Gyrokinetic particle

simulations [93] have been performed in realistic geometries, enabled by technological im-

provements in computing speed. These simulations, using gyrokinetic Vlasov and Poisson's

equations, advance along their orbits a large number of effective particles whose cyclotron

motion has been averaged over. This provides radially nonlocal, nonlinear results in real-

istic confinement configurations [94], with simulation regions presently extending over regions
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as large as 100-200 ion gyroradii. However, these codes are also limited by the number of

practically attainable grid points to low toroidal mode numbers.

Recently, the nonlinear problem has been addressed in general through a computationally

efficient moment method referred to as the gyrofluid approach [95]. This involves taking mo-

ments of the gyrokinetic equation to obtain equations for the guiding center density, parallel

velocity, parallel and perpendicular pressure, and parallel and perpendicular heat fluxes. Fi-

nite Larmor radius effects are carefully approximated, and a closure scheme is then devised to

mimic the fully kinetic results, including the dominant nonlinear terms [96, 20]. These mod-

els have been carefully developed and benchmarked in comparisons with kinetic and particle

calculations [97]. The present models [98, 20, 99] include trapped electron destabilization

and nonlinearly self-generated, fine-scale flows that appear to control the nonlinear satura-

tion level of the turbulence [20], but not equilibrium large scale flows. In these calculations,
a flux-tube representation is used with periodic boundary conditions.

Accurate toroidal nonlinear calculations, and particularly linear calculations, that self-

consistently include the effect of sheared parallel and perpendicular velocities, for realistic

toroidal mode numbers (n > 20), either do not exist, or are only now under development

[36, 39, 40]. A toroidal linear kinetic calculation, assuming adiabatic electrons and pure

toroidal rotation, for toroidal mode numbers less than of order 10 was carried out in Ref.

[100]. A nonlinear gyrokinetic particle simulation with the same limitations was carried

out in [101], although with fixed plasma profiles and purely toroidal rotation. While these

calculations represent theoretical progress, the radial electric field used did not include the

pressure gradient or poloidal rotation terms, and the toroidal mode numbers are not relevant

to the fastest growing modes in the experiments we consider.

In the case of plane geometry, on the other hand, much work has been done to study

the effects of E x B shear on the linear (and in the last reference, nonlinear) behavior of

the slab ITG mode (Refs. [102, 103, 104, 105, 106, 107, 108] and others). Most of this work

is numerical and finds that relatively modest shear in the perpendicular velocity results in

complete linear stabilization of the slab ITG mode [109], and that positive radial electric field

curvature (an Er well) is also stabilizing.

In Ref. [38], in plane geometry, a condition for the existence of normal modes is derived.

In this work, expressions for the mode width and displacement as a function of the E x B

Doppler shear rate are given and used to derive a condition for the eventual transition from

normal modes to short-lived "non-normal" modes (wavepackets containing many frequen-

cies). This work gives some indication of the physics that may underly the relevant condition

for the disappearance of the normal modes in the toroidal case.

The expedient stability criterion (as discussed in more detail in Sec. 1.4), is relevant
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to toroidal geometry and supported in part by the poloidally nonlocal, nonlinear, gyrofluid

results of Ref. [36], and by local linear kinetic calculations of the effect of parallel velocity

gradients on the growth rate [110]. The latter show that the effect of shear flow on the

threshold of the toroidal ITG mode is generally small.

To perform the fully nonlinear simulations in this work, a computationally efficient means

of obtaining the radial electric field, toroidal ITG linear growth rate and critical gradient,

and nonlinear turbulence saturation level must be used. These quantities must be evalu-

ated on a 100 point radial grid more than 100 times at each radius and time in a discharge

to achieve convergence in the present simulations. Therefore the IFS-PPPL parameteriza-

tions are a practical and reasonably accurate way to obtain these quantities, although the

parameterizations were obtained in the flat density gradient limit as discussed in Sec. 1.1.

3.3 Review of Nonlinear Shearing Rate

In numerous assessments of the potential role of shear flow stabilization in enhanced

reverse shear plasmas [111, 112, 113, 37, 114], the rule of thumb that turbulent transport

vanishes when the nonlinear shearing rate [35] is equal to the maximum linear growth rate

(in the absence of E x B shear) is used. Comparisons of the E x B shearing rate evaluated

from measured profiles with the maximum linear growth rate of the even-parity trapped-

electron-ITG mode are made. However, in view of the fact that the pre-transition plasmas

are essentially supershots with reverse shear, the same toroidal ITG marginal stability issues

we discuss may give rise to the same strong sensitivity to ion temperature gradients. It is

somewhat suprising that the shearing rate and maximum linear growth rate were found to be

nearly equal at the ERS transition in these cases.

A nonlinear shearing process is necessary, in addition to any linear stabilization by E x B

shear, for the following reason. Away from marginal stability, one must know the behavior

of the radial correlation length to calculate the effect of shear flow on transport. Recently,

Ref. [101], two-dimensional (global in (r, 0)) particle simulations showed that the nonlinear

isotropization in the r-O plane diminishes the benefits of sheared flow, which are strongest

when radially extended structures are acted upon. This causes the mixing length rule to

infer much stronger reductions in transport with Mach number than observed in the simula-

tions. While this work assumed pure toroidal rotation, it does demonstrate the importance

of nonlinear processes.

The rate for shearing apart of turbulent eddies by a spatially nonuniform equilibrium

velocity has been calculated in Refs. [115, 35]. The approach was simply to assume fluctu-

ations are "frozen-in," i.e., constrained to be convected by the local guiding center parallel
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and E x B velocities. On this basis, the rate of change of the general two-point correlation

function was calculated in flux coordinates, assuming the usual, unmodified ballooning rep-

resentation, which makes use of an eikonal for rapid variation perpendicular to the magnetic

field. In essence, the result is the toroidal generalization of the Biglari-Diamond-Terry (BDT)

cylindrical shearing rate [42], as applied to describe the decorrelation of turbulence in the

H-Mode edge by flow shear. The previous cylindrical rate is given by

010 dr r)
where ro and roAo0 are the ambient radial and poloidal correlation lengths in the absence of

flow shear, r is the minor radius, and uo is the equilibrium poloidal velocity.

Carrying out the calculation in flux coordinates [115, 35] ensures that radial derivatives

account for the varying spatial distance between surfaces of constant poloidal flux. It was also

suggested that the effect of equilibrium velocity shear on turbulent transport is significant

when the shearing rate due to velocity shear WExB becomes comparable to the ambient

nonlinear decorrelation rate AwT in the absence of velocity shear. The radial correlation

length in the presence of flow shear AO, with , the poloidal magnetic flux, is reduced relative

to its ambient value 0o according to [35]

(~ )2 W B+ A -1 (2)

where the ambient correlation length A,0o is itself significantly reduced during nonlinear

saturation relative to its linear value. However, most applications of the shearing rate wExB
compare it to the maximum linear growth rate, with the assumption that the maximum linear

growth rate approximates the nonlinear turbulent decorrelation rate AWT.

The toroidal generalization [116, 115, 35] for the nonlinear shearing rate [42], for fluctu-

ations elongated in the direction of the magnetic field, is

Ao 2 0o(P)
WExB = AO 0 2  (3)

where A 0o and A0o are the ambient radial and toroidal correlation lengths measured in units

of poloidal flux and radians, respectively, and 4o is the equilibrium electrostatic potential.

Here the contribution of shear in the parallel velocity has been neglected for field-aligned

fluctuations, and the sign of WJExB is irrelevant.

This can be expressed in simple terms for a shifted-circle magnetic equilibrium (to which

TFTR plasmas conform within a few percent). Considering a toroidal annulus of radius R

and width dr, one finds the poloidal flux through the annulus to be de = RBe dr, or as can be
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shown more formally, IVI = (RBo)-1 . For fluctuations elongated parallel to the magnetic

field, we have A(0o - q9 o) - 0 along B, where q rBV/RBe. This yields

S0 R2B0
2  Ar0 (4)

Ao B ( rAo

which with Aro rAOo gives

RB 0  (Er (5)
B, Or RBe

Generally speaking, the assumed nonlinear evolution tends to isotropize the turbulence in

the plane perpendicular to the magnetic field, so that the width of the kr and ko spectra

become comparable. This is supported by beam emission spectroscopy measurements in

TFTR plasmas [117, 118], as well as by the results of existing nonlinear simulations ([96, 20]

and many others), and by particle simulations that incorporate the same effects [94] (see for

example, the references discussed in the summary paragraphs of Ref. [97]).

Taking the derivative with respect to major radius R would result in an overestimate of

WExB by up to 40% as follows. A shifted circle equilibrium with R = Ro + A(r) + r cos 0,
with Shafranov shift A(r) _ Ao (1 - r2/a 2), where in typical TFTR supershot plasmas

Ao/a " 0.2, yields on the outer midplane

dR 2Ao r- 1 - (6)
dra a)

which is 0.8 at the half-radius and 0.6 at the edge. This could be more significant in ERS plas-

mas, which have large Shafranov shifts. All TFTR comparisons to date, using the NCLASS

code to evaluate shearing rates, have taken the derivative of Er/RBe with respect to major

radius on the outer midplane. This should be kept in mind if comparisons are made between

our results for the shearing rate and those of the NCLASS code.

Next we demonstrate that the linear Doppler shear rate resulting from the spatial variation

of the Doppler shift is in fact equal to the nonlinear shearing rate for isotropic turbulence

as given in Eq. (5). We begin with an equilibrium velocity V = V1 1-1 + VExB. We then

consider an expansion about a particular rational surface ro, with x = r - ro, taking a

concentric circular magnetic geometry for simplicity. In the frame moving with velocity V,
the frequency w relative to its value in the laboratory (non-moving) frame is given by

w = WLAB - k V(0) - x (k V) (7)
dr I ro

where k is a wavevector. The E x B drift velocity is then

Er r Er r (8)
VExB - er X qRee) = (-eo + qR (8)Sq qR
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where B is the magnetic field, Er is the radial component of the electric field, R is the

major radius, q is the magnetic field inverse pitch, and r, x 60 = 6, are the unit vectors

in the radial, poloidal, and toroidal directions, respectively. Then, for fluctuations for which

k1 > kll, where k1 and kII are the wavenumbers normal and parallel to the magnetic field,
we assume an eikonal description with variation proportional to q(0) exp in[p - q(O - 00)],
where q(0) is a slowly varying function of 0 which accounts for varation along field lines (the

same end result is obtained from the ballooning representation [119, 120] or the "disconnected

mode approximation" of Coppi [121, 122, 123]) and n > 1 is the toroidal mode number. Then

the wavector becomes

i a n nq nq
k=6 qR -- + -R r- e+ -gS(9 - o) er (9)

where 9 = (r/q)(dq/dr), and the Doppler shift can be computed as

k V il + nq1 + ( () 2 1E (10)
qR 0 I-r qR (10)

so that to lowest order in r/qR we find

dk V)=d d q Erd(k V) =i r a- + n (g . (11)r d r qR a0 dr r B

To evaluate Eq. (7) in k-space, we take the Fourier transform with respect to x. Then x

transforms according to x -+ O/(ikr), and using kr = gko(9 - 9o), where ko = nq/r, we can

write

8 -1 8S -1- 
(12)

kr 9k 00o'

where both derivatives are taken at constant (0, ko). Defining

w = WLAB - k V(0), (13)

we have

i ir d V 0 r d (qEr]
w = -+ q r (14)

Snq dr q r r B 00

For large toroidal mode number n > 1 (field-aligned fluctuations; typically n ~ 20 - 100

for the fastest growing ITG modes in typical experiments), we can neglect the first term to

obtain

i 8
w = W + - WE (15)

s t00

where, taking the cylindrical approximation q = rBV/RBo, we find
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rd q Er RBe d Er (16)

qdr rB B, dr RB(

The latter is equal to the Hahm-Burrell shearing rate WExB [115, 35] when the turbulence is

isotropic in the (r, 0) plane. Again, the two rates, although equal, describe different phenom-

ena. The linear Doppler shear rate is not particularly meaningful by itself, but enters the

gyrokinetic equation as a Doppler shift operator, which is added to the real frequency. The

effect on linear stability can then be found by solving the resulting dispersion relation.

3.4 Neoclassical Corrections and the Well Structure in Er

In the TFTR experiments we discuss, only the toroidal velocity of the carbon impurity

ions is presently measured. The equilibrium radial electric field is inferred from the radial

momentum balance, which must be satisfied for each ion species with a common electric field

Er,

1  dpi (17)
Er = ViBe - VB, + 1i (17)

Zieni dr

The first order flows were derived from this equation, so the resulting Er is independent of

the species used to infer it for any self-consistent calculation of the velocities.

A relatively simple argument shows that the radial electric field profile has a well shape in

the core for quasi-balanced neutral beam injection. First, the parallel viscosity for impurity

ions with Z, > 1 is much larger than for hydrogenic ions, as can be seen from the ratio

nm /nimi mx 1/2 Ti 3/2 2m/ ( - a > 1, (18)
Trz ii mi T

where rij is the ion-ion momentum transfer time in collisions with species j, a = nzZ~ /niZi >

1 and Ti 2 T, typically, and (mi, ni, Zi ,Ti) are the hydrogenic ion mass, density, charge,
and temperature, and similarly for the impurity. Then the impurity poloidal velocity is

well-damped by parallel viscosity, and its residual flow is small to satisfy the viscous stress

constraint. Then the pressure gradient term in Eq. (17) is inversely proportional to Z", so

that

Er - Vv,,Be + {neoclassical corrections}. (19)

From Eq. (19) it is immediately apparent that, when a notch feature exists in the impurity

toroidal velocity profile, a corresponding well exists in the radial electric field profile. Consid-

ering Eq. (17) for the hydrogenic species (Zi = 1), we find the hydrogenic poloidal velocity,
driven by the ion temperature gradient, cancels the contribution from the temperature gradi-

ent part of the pressure gradient. Using the results derived in Chapter 2 for the neoclassical
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velocities, an expression for the neoclassical corrections to the impurity velocity term in the

radial electric field can be readily derived,

Ti dn 1- 01 -a 2/2 dTi
Er = (1 - a 3 ) Tdn+ 1-+ VxBo. (20)

ni dr 1 + a2 dr

Here the units are Er(V/m), Vi(m/s), r(m), Bo(T), and Ti(eV). From Eq. (20) it is also clear

that a well exists in the radial electric field profile. The profile shape of V,i is determined by

the beam momentum deposition profile and the anomalous momentum diffusivity X '- Xi,
and takes a monotonically decreasing shape very similar to that of the ion temperature

profile [124, 64]. Then the negative gradient terms, large in the inner half-radius of supershot

plasmas, create a well in the radial electric field profile.

This analytical form can be used to accurately infer the radial electric field in high

temperature plasmas, with quasi-balanced or unbalanced neutral beam injection, from a

measurement of the impurity toroidal velocity. The results of Sec. 2.3.3 were used for the

velocities, which give the same E, expression when the impurity radial momentum balance is

considered. Here we used the coordinate system Vr x rVO = RVp, with Vp in the direction

of the toroidal plasma current, and VJ < 0 in the banana regime, and considered a circular

magnetic geometry.

The neoclassical terms involving a 1,2,3 describe the effect of parallel viscosity, heat vis-

cosity, friction, and heat friction in response to the diamagnetic flows caused by density and

temperature gradients. The poloidal flows are assumed to have come to equilibrium, e.g., on

timescales longer than ri/ F. It is often assumed, particularly in studies of rotational effects

on drift waves, that the poloidal flows are completely damped by parallel viscosity, so that

the remaining flow is purely toroidal under realistic experimental conditions. In very high

temperature plasmas, "residual flows" [69, 125] are often significant, especially for balanced

neutral beam injection.

In Ref. [126] the charge separation due to the outward shift of the ions caused by the

centrifugal force is addressed. This is also mentioned in Ref. [10]. On the basis of Refs.

[126, 127, 128], we find this correction can be included in Er by the substitution

ViBe -+ ViBoe (1 - an)a, cos 0 (21)

where 2 is the toroidal angular velocity, Oci = ZieB/mic is the ion cyclotron frequency,

e = r/Ro is the inverse aspect ratio, 0 is the poloidal angle, and a, = ZiT/(1 + Zir) and

an = -(2r/) d~/dr, 7 = Te/Ti, and q _ rB/RBe is the inverse rotational transform. This

correction is generally small, especially for balanced beam injection, so we neglect it here.

The poloidal flow for low-Z ions makes a contribution to the radial electric field that

nearly cancels the temperature gradient part of the their pressure gradient. In addition,
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the terms due to the toroidal angular velocity difference ((ul - ul)B), or equivalently the

carbon poloidal rotation, oppose the density gradient part of the hydrogenic ion pressure

gradient. This is conveniently described in terms of ri = d In Ti/d In ni, the well-known slab

ion temperature gradient drift wave criticality parameter, giving

Ti dni
E, = an (ri - ) -ni + VxBo, (22)

ni dr

where r7i = (1-a 3)(1+a2)/(al- 1 +a2/2) and an = (a2/2)/(1 +a2). The critical parameter

q 4 depends almost entirely on the local minor radius. For the discharges we consider, i ~ a/r

to within a few percent in equilibrium.

In the outer half-radius of supershot plasmas, where the local confinement trends are

unfavorable and resemble those for so-called L-mode plasmas [34], we find Er n Vox Be, even

for quasi-balanced neutral beam injection. This relation provides a good approximation to

Er in L-mode plasmas over the entire cross-section. However, in the enhanced confinement

region of supershot plasmas, typically the inner half-radius, r7i - 1. This gives a significant

residual flow contribution to Er, especially for balanced neutral beam injection. Together

with the effect of the temperature and density gradients on Vx, this creates a well structure

in Er centered near the radius of strongest temperature gradient. The well structure in Er

appears even in the absence of the velocity profile notch in cases where the density profile

is strongly peaked. Typically, a3 < 1, so the density gradient makes a dominant negative

contribution to Er, which is weakly opposed by the ion temperature gradient term.

Figure 1 shows the results of the neoclassical numerical calculations from the TRV code,
valid for arbitrary collisionality, for the high-performance, high power discharge #73268

discussed previously in Chapter 2. Frame (d) shows the notch prediction, where a monotonic

toroidal velocity profile for the hydrogenic ions is inferred. Frame (b) shows the well structure

in the radial electric field, which is associated with a region of strong positive shear (shaded

area). The analytical results of Eq. (20) and the term V~,Bo are shown for comparison.

The neoclassical corrections amount to the difference Er - VxBo. Frame (c) shows this

shear layer is associated with a large peak in the shearing rate WExB. The radial electric

field shear layer and peak shearing rate are in the region separating the core, which displays

enhanced confinement properties, and the outer, degraded region. The contributions of the

impurity and hydrogenic toroidal rotations to the shearing rate, via the respective radial force

balances for each species, are shown separately in Frame (c). The hydrogenic temperature

profile, shown in Frame (a), calculated from classical collisional heating and interspecies

energy exchange, was used in the calculation of Er.

Figure 1(c) shows the effect of co-injection on the shearing rate of Sec. 3.3. In this near-

balanced case, the co-rotation of the hydrogenic ions V4i makes a negative contribution to the
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Figure 1. Radial electric field and shearing rate for TFTR #73268. (a) Measured impurity ion temperature
T,, classically inferred hydrogenic ion temperature Ti, and electron temperature Te. (b) Radial electric fields
inferred from the TRV code compared with analytical result of Eq. (20). The shaded area indicates the shear
layer location. (c) Shearing rates showing the opposite contributions of the impurity toroidal velocity and
the hydrogenic toroidal velocity via their respective radial momentum balances. Note the shearing rate is
maximum at r/a 2 0.4. (d) The toroidal velocities from the numerical and analytical solutions shown with
the measured carbon toroidal velocity. The toroidal velocity difference is largest at r/a 21 0.25, where the
temperature gradient is strongest.
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shearing rate, using the radial momentum balance for hydrogenic ions. This diametrically

opposes the contribution of V.,, using the impurity radial momentum balance to infer Er

and the shearing rate. We have shown in earlier sections that the behavior of Vx is an

artifact produced by the temperature and density gradients, working against friction with

the hydrogenic ions, and that its behavior is effectively decoupled from the beam torque in

quasi-balanced cases. At the same time, V~xBO qualitatively resembles the radial electric

field. On the other hand, the hydrogenic velocity is influenced by the beam torque (and

parallel electric field), but not strongly by the impurity species. Therefore the same process

that gives rise to the notch in the impurity toroidal velocity results in a well in the radial

electric field profile with co-injection acting to reduce the peak shearing rate.

Figure 2 shows the shearing rates from the TRV code for the first pair of discharges used

to demonstrate the isotope effect in TFTR [129], also discussed in Chapter 7. The tritium

discharge has a bulk toroidal rotation twice that of the deuterium discharge, as well as larger

temperature and density gradients associated with the isotope effect. The peak shearing

rates of the two discharges are essentially equal as shown in Fig. 2(a). This remains true

throughout beam injection. This illustrates that the larger bulk toroidal rotation of #73268

compensates its larger temperature and density gradients to give the same peak shearing rate.

Figure 3 shows the radial electric fields from a recent comparison of the two-ion species

TRV code developed in this thesis, the analytical result of Eq. (20), and the multi-species

NCLASS code (discussed in Chapter 2). For the extreme case of balanced beam injection

(zero net torque input), a discrepancy exists near the magnetic axis (for r/a < 0.25) in

the radial electric fields from the NCLASS code relative to our calculations. Generally we

compute a slightly deeper well in the radial electric field in this region. The difference in

hydrogenic poloidal velocities obtained from the two codes is larger as discussed in detail in

Chapter 2. In cases where the toroidal rotation is significant and the density and temperature

profiles are not as strongly peaked, the agreement with the NCLASS radial electric field is

quite good.

We use the analytical result of Eq. (20) for the transport calculations in the remainder of

the thesis. In the degraded outer region, the measured impurity toroidal velocity component

V~xBo is a very good approximation to the neoclassical radial electric field. In the core, the

neoclassical corrections of Eq. (20) become important. The discrepancy we find does not

significantly impact the strength of the radial electric field shear layer or the shearing rate,
as evident from the agreement in the radial electric fields obtained for the region r/a > 0.25.

Therefore, it does not significantly affect our conclusions on the effect of radial electric field

shear on supershot confinement.
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Figure 2. The Comparison of TFTR #73268 (40% tritium) and #73265 (deuterium only) after 450 ms of
NBI. The shearing rates are identical in the inner half-radius despite a central toroidal velocity twice as large
in #73268 relative to #73265. The steeper ion temperature gradient in #73268 overcomes the reduction in
WExB due to toroidal rotation. The analytical estimates well-reproduce the numerical results.
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3.5 Formation of the Radial Electric Field Well

The edge influx has been shown experimentally to be of great significance in determining

TFTR supershot confinement [47, 48, 1], and similarly for VH-modes in the DIII-D Tokamak

[130, 116], and many other enhanced confinement regimes as discussed later in Chapter 4.

During run sequences in which lithium pellets are injected into the ohmic heating phases

of supershots [47, 15], some discharges develop dramatically improved ion thermal energy

and particle confinement during the beam heating phase. These improvements, relative to

neighboring comparison discharges, appear to be associated with increased radial electric

field shear. However, as we show, this "open loop" comparison leaves unanswered questions

that require a comparison of shearing rate and growth rate, or better, a fully nonlinear

simulation of the ion temperature. Both are formulated here carried out in later chapters.

Figure 4 shows the temporal development of a comparison pair of 1992 discharges taken

following an extensive lithium-pellet campaign [47] (#68244 and #68230: Pb = 21 MW

in deuterium, Ip = 1.6 MA, Ro/a = 245/80 cm, B. = 4.8 T). The measured carbon ion

temperature Tx at the one-third radius reaches values 70% greater in #68244, which had

two pre-beam lithium pellets injected, and followed a sequence of discharges with lithium

pellets, than #68230, which had no lithium pellets. Figure 4(e) shows a similar improve-

ment in the central electron density ne(0). Figure 4(c) shows the global energy confinement

time -rE reaches values 50% greater for #68244 before beginning a decline at 3.55 seconds to

values equal to that of #68230 at 3.8 seconds. This decline is evident in the density peaked-

ness parameter shown in Figure 4(f), followed by a sudden drop in the central density, ion

temperature, and density peakedness at 3.75 seconds which is not yet understood.

Figure 4(b) compares the shearing rates at r/a = 0.425. The improved ion thermal

energy confinement and particle confinement in #68244 are temporally correlated with a

larger E x B shearing rate at first. At 3.55 seconds, the difference in the shearing rate

begins to diminish together with the particle and energy confinement. Frame (d) shows that

incidentally, the TRANSP neutron production rate drops more sharply at this time than

the measured rate. This suggests that TRANSP overestimates the drop in the thermal ion

density, so the change in WE B at 3.55 seconds may not be as sharp as it appears in frame (b).

The diamagnetic flux comparison in frame (h) shows reasonable overall agreement between

TRANSP and magnetics for both discharges.

Figure 4(g) shows the Ha line intensity, which is proportional to the influx of neutrals

at the edge, is lower in #68244 during the time the confinement is improved and the E x B

shear is larger. At 3.55 seconds, the Ha intensity begins to rise to that of #68230, mirrored

by the convergence of the density peakedness parameter, WExB, TE, SDD, and T,. The
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improvement in the ion thermal energy transport in #68244 relative to #68230 begins in the

range 100-150 ms (e.g., an equilibrium beam ion slowing-down time) after the start of NBI,

and expands outward from the axis. This is consistent with the temporal evolution of the

radial electric field profile. As the ion temperature and density gradients increase, the radial

electric field is driven more negative, creating the well structure we discuss, and forming an

outwardly expanding shear layer.

Figure 5 shows the formation of the radial electric field well over a period of 300 ms,

starting 100 ms from the start of beam injection. Frame (d) shows that Xi decreases first

near the axis, and that the reduction expands radially outward. Frame (b) shows that the well

in E, grows deeper as the ion temperature gradient increases, resulting in radially outward

motion of the shear layer. Frame (c) shows the associated peak in the shearing rate also moves

radially outward. The improvement in Xi is localized within r/a < 0.6, where the shearing

rate becomes large. All of the profiles shown evolve over the same timescale, reaching steady

state 400 ms after the start of neutral beam injection.

In Fig. 6, the radial profiles of the shearing rate and ion thermal diffusivity for #68244 and

#68230 are compared. At a time 100 ms after the start of NBI, the ion thermal diffusivities are

equal, while the shearing rates differ over the entire cross-section. At 150 ms, the difference

is evident in both WExB and Xi. The expansion in minor radius continues at successive

intervals. The expansion is not a simple direct artifact of the Shafranov shift, which increases

with increasing stored energy, because it is apparent as a function of minor radius.

While suggestive at first that radial electric field shear may be important in supershot

core confinement, an examination of later times raises questions. At 400 ms, for example,

the shearing rates are nearly equal, while the ion thermal diffusivities are very different over

the entire cross-section. This suggests that no definite conclusion can be reached regarding

the role of radial electric field shear without some more direct assessement of its effect on

and changes in the underlying turbulent transport. It has become customary to make a

primitive assessment of the relevance of E x B shear by comparing the E x B shearing rate

for turbulence with the maximum linear growth rate for toroidal drift modes [37, 111]. The

shearing rates calculated from the neoclassical radial electric field, using measured profiles,
are of the same order as the growth rates for toroidal drift instablilities in supershots calcu-

lated by comprehensive gyrokinetic codes [131, 132, 89]. However, as accounted for in later

sections, the proximity to marginal stability with respect to toroidal ITG modes complicates

the picture, requiring their evaluation to separate the effects of radial electric field shear. In

following chapters, we make a detailed assessment for a large number of discharges in fully

nonlinear calculations of the ion temperature.
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Figure 4. Evolution of TFTR #68244 (deuterium, 2 Li pre-beam pellets, solid line) and comparison discharge
#68230 (deuterium, 0 Li pellets, dotted line). (a) Measured carbon temperature at the one-third radius. (b)
Calculated shearing rate at r/a = 0.425, near the radial maximum for #68244. (c) Global energy confinement
time from magnetics together with injected beam heating power. (d) Measured neutron production rate
compared with TRANSP. (e) Central electron density. (f) Electron density peakedness parameter. (g) Ha
line emission intensity, which is proportional to the influx of edge neutrals. (h) Measured diamagnetic flux
compared with TRANSP.
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Figure 6. Comparison of shearing rate and ion thermal diffusivities for TFTR #68244 (deuterium, 2 Li
pre-beam pellets, solid line) and #68230 (deuterium, 0 Li pellets, dotted line).

3.6 Model for Supershot Core Ion Thermal Confinement

Here we investigate the hypothesis [133] that a positive feedback mechanism in which

"Er shear raises Ti, which increases the gradient of Ti, which increases the Er shear, and

so on" explains the favorable confinement properties of the supershot core. We assume at

first that nonlinear turbulence saturation effects are relatively unimportant in the core. This

assumption is supported by the fully nonlinear simulations later performed. We start by

imposing the practical stability criterion found by taking the maximum linear growth rate

equal to the Doppler shear rate in the core.

For toroidal ITG modes in the absence of rotation, the linear growth rate can be approx-

imated [24],

RoVthi RLT R

where LT1 = -dln Til/dr, li = dln Ti/dln ni, En = rn/Ro, r- 1 = -dln ni/dr, Ro is the major

radius, Vthi = (2T/mi)1/ 2, = Te/Ti, bi = k pf/2, k is the perpendicular wavenumber,

and Pi = Vthi/~i, Qi = ZieB/mic, and ric is the critical value of i = dln T/dlnni. The

parameter Ro/Lrit is the critical temperature gradient, which we assume to be given by the

IFS-PPPL parameterization derived from the results of a comprehensive linear gyrokinetic

code [16] for cases in which the density gradient is relatively flat. In this expression, we note

Ro T 0ocT) (24)
Lyit Te

where 3 = 0.52 - 1/2. Next, there exists a recent IFS-PPPL parameterization of the



Sec. 3.6. Model for Supershot Core Ion Thermal Confinement 77

gyrokinetic initial value code [21] results for the maximum linear growth rate for all values

of bi, with approximations discussed in Sec. 1.1. This corresponds roughly to

max Te Vthi Ro R (25)
lin 4Ti Ro LT Lit

where we have redefined Vthi2 = Ti/m i without the factor of two, and use this definition in

all later sections. Next we are led to consider a simplified expression for the shearing rate

that makes use of the cancellation of the temperature gradient part of the poloidal flow with

the pressure gradient [29]. It is useful to expand the shearing rate in the form

RBo d ( Er 1 dEr Er dln(RBo)
B dr RBO B dr B dr

so that using Eq. (20) we have

Ex ( Ti Bo dln(RBo) 1 d(ViBo) 1 d Ti ) 1d a2 dTi

Br n  BI dr B dr Bdr r B dr + 2 d (27)

where rn = -dln ni/dr. In the following we neglect the term proportional to a2 "-' /r/Ro,

which allows us to reduce the resulting differential equation from second to first order. In

principle this is not necessary. Then to avoid confusion arising from the velocity profile

notch, which we have shown is an artifact of the impurities, we approximate the toroidal

velocity of the hydrogenic ions as

Ti(r) - Ti(a) (28)
Ti(O0) - Ti(a)

and we take Vvi (0) _ V, (0). In addition, we note that the region of interest happens to lie

near the maximum in the radial profile of Bo, so that dr(ViBo) 2- BeOrVi. Then

dVi , Vi (0) dT dT
dr - Ti(0) - Ti(a) dr - dr

where the dimensional constant v depends on the beam directionality. The growth rate close

to marginal stability, maximized over kopi, becomes

max Te Ti 1/21 dTi 1 Te ) 1/2

S4Ti mi Ti dr 4Lrit (Te = Ti) mi(30)

Then we write the practical stability criterion as WExB = f (B,.. .)7nax, where in general

f(B,...) - 1 accounts for variable dependences not well-described by the criterion in its

basic form, e.g., dependence on the toroidal magnetic field. This can be written as a first

order differential equation for Ti(r):
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dT T
dT+ Ti 0 (31)

dr LTE

where

T d 1 Ti r V dln(RB) (Te1/2 f(B,...)

1 B dr rn Br, qR i dr mi 4Lcrit(T = T)

LTE -T Ti + Te Ti 1/ .,v Ti + f(B ...)
Br. qR 4T mi

where (v depends on the beam directionality. We have temporarily included a term in the

numerator proportional to Vi for discussion purposes, but drop this in all future evaluations.

In the flat density gradient limit, Eq. (32) reduces to the condition for marginal stability

of the odd-parity toroidal ITG mode when WExB -+ 0. The shearing rate determines the

deviation from toroidal ITG marginal stability (as described by the IFS-PPPL parameter-

ization, in the absence of sheared flows). According to this criterion, finite shearing rates

allow the ion temperature gradient to steepen beyond that which is marginally stable to the

toroidal ITG mode in the absence of sheared flows.

Equation (31) can be readily integrated from the half-radius toward the axis to obtain the

ion temperature profile in the core. Figure 7 shows Eq. (32) evaluated for a supershot plasma

(#79011a02, Ip = 1.6 MA, B = 4.75 T, Ro/a = 2.52/0.87 m/m, ie = 3.0 x 1019 m -3 ,

Zeff = 2.74, Eb = 98.7 keV, Pb = 20.2 MW, ne(O)/(ne) = 2.56, TE = 145 ms), and Figure

8 shows the corresponding temperature profile in the inner half-radius, found by integrating

inward from the measured value. The agreement with the experimental profile is quite good.

The marginally stable ion temperature profile, in the absence of radial electric field shear,
for the toroidal ITG mode in the approximation discussed in Sec. 1.1, is readily calculated

by integrating the equation

dln Ti 1
r+ L =it =0. (33)

dr Lit

The result for the ion temperature at a radius r < ro is

Ti(r) _ r i  dx Ti(ro) 1 1/ (34)

Ti (ro) ro L (Ti = Te, nb = 0) (T(r) 1- b)/ ) (34)

where 0 = 0.52 and nb/ne is the ratio of the beam density to the electron density. Figure 9

shows the strongly nonlinear effect of the radial electric field on the central ion temperature

calculated from Eq. (32). The result of Eq. (34), found by integrating the toroidal ITG

marginal stability condition inward from the half-radius without shear flow stabilization,

is shown for comparison. In the presence of radial electric field shear stabilization, small

variations in the ion temperature at the half-radius are strongly and nonlinearly amplified
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time = TBI + 900 ms
30 -

S-0 Ti (CF
. Ti (PrC

20 - Cr

10-

- Region 4--d
Predicted

0- F
0.0 0.2 0.4

r/a

Figure 8. Ion temperature profile calculated from the practical
profile, for #79011a02, 900 ms after the start of NBI.

-2

0.6 0.8 1.0

stability condition compared to the measured

I



Sec. 3.6. Model for Supershot Core Ion Thermal Confinement 81

I I

E

60,

50,

40,

30-

20,

10,

0'

time = TBI + 900 ms

0 5 10

Ti (r/a=1/2) (keV)
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at the half radius in a strongly nonlinear fashion. The effect of the radial electric field is to increase the
central temperature by a factor of two relative to toroidal ITG marginal stability.
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toward the axis. This is shown to amplify the isotope effect in supershots in Sec. 7, which

explains the relatively strong effect observed relative to that in L-Mode plasmas.

Equation (32) can be seen to be qualitatively consistent with the dominant confinement

trends of supershots as follows:

1. The basic nonlinearity in ion temperature explains the favorable power scaling of the

core.

2. The first term in the numerator depends on the curvature of the ion density profile,
which is large near the half-radius and increases with density peakedness ne(O)/(ne).

This underlies the scaling of energy confinement time with density peakedness as well

as the favorable core power scaling.

3. The second term in the numerator, the Shafranov shift nonlinearity, is non-negligible

and contributes favorably to the nonlinearity in Ti. This term is made slightly less

favorable by toroidal rotation in the direction of the plasma current. The importance of

this reduction overall depends on the strength of the density gradient, the ion temperat-

ure, and the Shafranov shift. In ERS plasmas, which have large density gradients and

large Shafranov shifts, this is an important term. In supershot plasmas, the Shafranov

shift nonlinearity is non-negligible, but the effect of Vvi on it is small.

4. The last term in the numerator expresses the influence of the critical gradient depend-

ence on Ti/Te and density peakedness, as discussed in Refs. [16, 17], and the isotope

effect. The terms in the numerator are all comparable in the core.

5. The first term in the denominator may be responsible for masking the isotope effect

in ERS plasmas, and is a diamagnetic velocity much smaller than the last term in the

denominator, which is of order the ion thermal velocity.

6. The second term in the denominator describes the preference for co-dominated beam

injection, and can be a 30% effect for discharges with co-only neutral beam injec-

tion. This explains the preference for co-dominated beam injection arising from E x B

shear stabilization in supershot plasmas.1 This is a striking confirmation given the con-

ventional wisdom that co-directed neutral beam injection reduces the effect of radial

electric field shear, as shown in Fig. 1(c). The apparent conflict with our results may

1Some recent work suggests that the stability properties of radially nonlocal trapped ion modes are more
favorable for co-injection than counter-injection [100] in L-Mode plasmas, assuming pure toroidal rotation
(the trapped ion mode in the fluid limit is a close cousin of the toroidal ITG mode, for which y2 - 26ni,2i,
and has a growth rate 72 2riw as one may expect ).
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be reconciled by the fact that this conventional wisdom is relevant to the strong density

gradient limit only.

7. The last term in the denominator is the dominant term, and strongly influences isotope

scaling and the scaling with Ti/Te.

Finally, because the coefficients of f in Eq. (32) are dominant, the effect of varying f is not

as strong as one may at first expect. Clearly the effect of varying f is important to the extent

that E x B shear matters relative to the linear stability properties of the toroidal ITG mode.

In the following chapters, this equation is evaluated for over 50 supershots assuming f - 1,

with the magnetic field held constant in each scan, and found to result in generally good

agreement with the measured ion temperature. An important point is that this calculation

does not rely on estimates of nonlinear saturation levels of turbulence or radial correlation

lengths. In this sense, it serves to support the results of the fully nonlinear simulations

described in the next section. The fully nonlinear simulations, in turn, support the use of

this approximate criterion in the core.

3.7 Fully Nonlinear Simulations with Self-Consistent Radial

Electric Field

3.7.1 Previous Simulations of Supershot Temperatures

The consistency of the IFS-PPPL model [16] with the confinement trends of beam-heated

L-Mode plasmas supports the postulated dominant role of the toroidal ion temperature gradi-

ent instability, discovered in Ref. [18] (p. 983), as a determining factor in the ion thermal

confinement trends in toroidal, beam-heated L-Mode plasmas. The model does not generally

work well in situations where trapped-electron modes are important, such as in ohmically

heated plasmas [88]. This model consists of a parameterization of the critical gradient for the

toroidal ITG instability calculated by a comprehensive linear gyrokinetic initial value code

[21, 90, 27], together with a parameterization for the ion thermal diffusivity calculated by

nonlinear gyrofluid simulations [20, 96]. The form of the linear parameterization, for example

the model for dilution by impurites, appears to be guided somewhat by the existing literat-

ure. The saturation level of the turbulence is determined by nonlinearly-generated, fine-scale

sheared flows,2 . The version of the code on which the parameterization is based does not

include the effects of trapped electrons or large scale equilibrium sheared flows.

2These are assumed to be rapidly damped by collisionless magnetic pumping, as inferred from the con-
stancy of the magnetic moment and toroidal canonical angular momentum[20]. However, there is an ongoing
discussion in the community regarding the damping mechanism and final equilibrium state of the flows, which



84 Chapter 3. Radial Electric Field and Model for Supershot Core Confinement

These calculations of the ion temperature [16] generally find that the core of L-Mode

plasmas is close to toroidal ITG marginal stability, while the deviation from marginal stability

increases with minor radius in the outer half. This underlies the correct simulated increase

of the ion thermal diffusivity Xi with minor radius, and demonstrates the importance of the

nonlinear part of the model [16]. This part of the model is also important to describe the

outer half-radius of supershot plasmas, which has local confinement properties qualitatively

similar to the L-Mode regime (but with higher ion temperatures).
Reference [16] also contains a preliminary comparison of the L-Mode and supershot re-

gimes with roughly similar machine parameters (TFTR discharges #68208 and #68244).

In this simulation, the ion temperature for the supershot #68244 is lower than measured.

The data used for this comparison was taken from the SNAP code [134, 135], which uses a

Fdkker-Planck treatment of the beam thermalization and heating. The most important point

is that reliable Zeff profile data was not available at that time, so that artifical profiles had to

be used. The artificial profiles were chosen to qualitatively reproduce data from the Visible

Brehmstraahlung array, which may be influenced by wall reflections. Relative to the Zeff

profiles now available from cross-section corrected CHERS data [59], the artificial ones were

much more hollow. On the other hand, the Zeff profile from CHERS depends on a calculation

of the neutral beam attenuation at each radius, and a confirmation of the accuracy of this

calculation has not been given. Artificially hollow Zeff profiles tend to improve the agreement

in supershots by increasing depletion by impurities. Figure 7 of Ref. [16] shows the simula-

tion for discharge #68244 with two Zeff profiles. The first rises parabolically from 2 to 5,
and results in a calculated central temperature of 27 keV. The second, rising parabolically

from 2.5 to 4, gives a calculated central temperature of 22.5 keV. Both are lower than the

1992-3 measured value of 29 keV. The correction for background light in the CHERS dia-

gnostic data analysis has been improved since then. This, and perhaps other improvements,
has generally increased the latest measured values of the ion temperature on axis by several

keV. Figure 10 shows the revised ion temperature measurement for #68244 is now 10 keV

larger on axis, while the Zeff profile increases from 2.6 to 4.0 from the half-radius to the

three-quarter radius. This corresponds to the lower IFS-PPPL estimate for Ti of Ref. [16].

The new measured value on axis is 39 keV, so the model gives a central ion temperature 31%

low while using a somewhat realistic Zeff profile.

In addition, as stated in Ref. [16], trapped-electron destabilization (of the even-parity

mode [18]) was not accurately included because, in addition to finding the parameterization

determines the turbulence saturation level. Suggestions have been made that the saturation level is signific-
antly lower than estimated by the IFS-PPPL model. Initial comparisons with gyrokinetic particle simulations
do not appear to show large discrepancies, but work is ongoing.
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near the flat density gradient limit, adiabatic electrons were assumed in the nonlinear code

at that time. This prevents a prediction of particle transport, and is particularly relevant to

supershots, where the core ion thermal transport is dominated by convection [136, 14]. Work

toward an improved model including trapped electrons has progressed [98, 20]. The present

parameterization, and the version we use, both use the radial particle flux inferred from

particle beam source rates, and no predictions of particle transport, which would require a

more complete treatment with trapped-electron destabilization, are made.

All of these effects tended to make the preliminary comparison between the measured and

calculated ion temperatures and supershot plasmas look better in Ref. [16] than more recent

data suggests. Consistent with this, we find the IFS-PPPL model, without sheared rotation,
underestimates the temperature of supershots by roughly 45%, depending on the injected

power and other parameters. For this more recent analysis, we had CHERS ion temperature

data reanalyzed, and carried out TRANSP Monte Carlo analysis to infer the thermal density,
q-profile, heating power densities and losses, etc. We then developed an independent trans-

port code "TRV" to calculate the ion temperature while simultaneously accounting for the

difference in ion temperature between carbon and hydrogenic species, among other correc-

tions. The TRV code is used throughout this work to perform the transport and neoclassical

calculations, using the TRANSP code to infer the thermal densities, power deposition profiles,
and magnetic geometry.

3.7.2 Shear Flow Stabilization Model

To account for the transport reduction due to E x B shear, the present model multiplies

the nonlinear diffusivity of the original IFS-PPPL model [16] by (1 - WExB/7 ax) [45], where

ylr' is the maximum linear growth rate from the parameterization, and E ExB is the shearing
rate from the sheared perpendicular velocity (the sheared parallel velocity is ignored). It is

an approximate fit (a straight line between two points) to nonlinear four-moment gyrofluid

simulations by Waltz, which can underestimate the growth rate by up to a factor of two [36].

In addition, Ref. [36] does not include impurities or trapped electrons, and assumes purely

toroidal rotation (although this does not appear to affect the conclusions). Virtually all IFS-

PPPL simulations to date include only the toroidal velocity component of the radial electric

field in WE xB, and the only simulations that have been done with this shear-flow stabilization

model have been carried out in beam-heated L-Mode and H-Mode plasmas. Here we use an

accurate characterization of the neoclassical radial electric field which includes the effects of

pressure gradients and poloidal rotation.

A-priori, one cannot expect to use the coefficient 1 - WExB/ aX to model shear flow

stabilization unless the effect of sheared flows on the toroidal ITG mode threshold is small,
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and the destabilization from the gradient of the parallel velocity is also small. These issues

are addressed to some extent in the work of Ref. [110].

3.7.3 Radial Electric Field Model

We find it is necessary to allow the radial electric field to evolve with Ti during the simu-

lation to achieve convergence as well as to avoid influence from the measured ion temperature

profile. The core (inner half-radius) of supershot plasmas is not far from marginal stabil-

ity to odd-parity toroidal ITG modes, assuming no equilibrium flows. Because in general

vthi/R e WExB, small deviations from such marginal stability cause wild swings in the ratio

of shearing rate to growth rate according to Eq. (25). This makes it necessary to close the

loop and perform a fully nonlinear simulation of Ti while simultaneously determining the

radial electric field. Accordingly, open-loop comparisons of shearing rate and growth rate

using measured profiles are generally inconclusive, as shown earlier.

In Sec. 3.4 we developed an analytical expression for the neoclassical radial electric field

that reproduces the numerical results of Chapter 2, which are valid for arbitrary collisionality,
quite accurately (see Fig. 1, this Chapter). To evolve the the neoclassical radial electric field

together with the ion temperature profile in our simulations, we use this expression, given

by Eq. (20). This is computationally much more efficient than solving the matrix equations

for the neoclassical velocities while performing multiple integrations over velocity space to

obtain the viscosity coefficients. The analytical expressions for the neoclassical velocities of

Chapter 2 were developed with this application in mind.

3.7.4 Transport Code

We have developed a large, modular transport code (the TRV code) to perform the neo-
classical calculations and transport simulations in this work [75, 76, 77]. The ion energy
conservation equations are solved separately for the impurity and hydrogenic species, with

classical collisional energy exchange between species and to electrons, as well as beam dif-

ferential heating terms [137, 63]. The power densities coupled from viscous, compressional,
alpha particle heating, charge-exchange, ionization, beam anomalous diffusion, beam thermal-

ization, electrons, and beam collisional heating are each separately partitioned to impurities

and hydrogenic species according to their differing density, mass, and charge. The same

ion thermal diffusivity is used in the respective power balance equations. The hydrogenic

temperature is then used in the IFS-PPPL parameterization [16] to obtain the calculated

ion thermal diffusivity, which is multiplied by the factor 1 - WExB/Yj ax and used to obtain

the ion temperature profiles from the power deposition profiles calculated by TRANSP. The
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coupled transport equations are formulated in general flux-surface geometry, and routines

for computing the various metric coefficients from flux-surface moments are used. A fully

implicit, multi-dimensional partial differential equation solver (Appendix A) was written to

solve the system of transport equations, which are then iterated until convergence is achieved.

Because the system can be quite stiff, the code has a graphical interface that allows one to

step manually through each iteration while observing the results. All of the simulations in this

work were carried out manually in this fashion, and the convergence was carefully monitored

with both relative and absolute criteria. Convergence would often not be achieved without

careful monitoring of the step size and radial smoothing. Typically 100-150 iterations were

required. We have chosen to use r/a = 0.85 as the edge boundary, taking the simulated

ion temperature equal to measured there. The convective heat transport is calculated by

assuming a convective multiplier of 3/2 while using the radial particle flux calculated by

TRANSP Monte-Carlo analysis of the neutral beam and wall fueling sources. Portability is

achieved by preparing input data from TRANSP analysis in netCDF files [138, 139, 140],
which allows random access to array elements. The code is modular in the sense that new

calculations can be readily added as subroutines which access common blocks of input and

output channels. Groups of channels can be plotted in a variety of ways, and new channels

are added somewhat automatically. The temporal grid and smoothing are user-defined, and

a given calculation can be performed for an arbitrary selection of times in a discharge. The

algorithm developed to solve the transport equations is described in Appendix A.



Chapter 4

Lithium Conditioning, Density

Peakedness, and Energy Confinement

4.1 Introduction

The scaling of the maximum energy confinement time with the peakedness of the electron

density profile TE/rL-Mode - ne(O)/(ne) has remained a salient but unexplained feature of

supershot confinement. Recent experiments [47, 141] in which lithium pellets were injected

during the ohmic heating phase, prior to the start of neutral beam injection, have extended

the range of this scaling by almost a factor of three. Empirically, lithium pellet conditioning

reduces the edge influx of both hydrogenic and impurity species during the heating phase of

succeeding discharges. The edge influx is of paramount importance in supershot confinement

[48, 47], and is often inversely correlated with density peakedness. This is the case in these

experiments. We choose to regard lithium conditioning as simply a means of reducing the edge

recycling, and ascribe no special properties to the use of lithium, other than its efficacy over

other wall conditioning techniques. We carry out a transport analysis of wall conditioning

experiments in which various conditioning techniques were used, including ohmic helium

discharges, boron pellets, and lithium pellets, and find that they show the same scalings with

density peakedness, regardless of conditioning technique.

We begin with a review of peaked density profile regimes observed in various experi-

ments following the discovery of the supershot regime, with an emphasis on plasmas with

Ti > Te. These experiments share many features in common with supershot plasmas in

addition to having peaked density profiles. Generally, performance is quite sensitive to edge

recycling, and hot-ion regimes are initiated with low target density that is either associated

with low plasma current or extensive wall conditioning or both. Significant improvements in
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confinement are observed relative to L-Mode plasmas. Strong correlations of particle and ion

thermal transport are observed in most of the regimes reviewed, which is consistent with the

model we discuss. Many of the regimes are neutral beam heated with strong core fueling. On

the other hand, several cases illustrate that changes in particle transport, rather than specific

source profiles, can cause the peaking of the density profile. This helps reinforce our point

that supershot confinement is more than a simple linear consequence of strong core fueling

by neutral beams.

Transitions to H-Mode are often seen to occur from hot-ion regimes in which the edge

ion temperature increases as well as the edge density. The hot-ion character is preserved

following the H-Mode transition, perhaps because of the increase in the edge temperature.

This supports the notion that improved confinement in the core may result from elevated

edge ion temperatures [16]. On the other hand, we find the edge ion temperature does not

change with lithium conditioning in supershots, while the central ion temperature doubles.

In this chapter, we propose instead that radial electric field shear, through the nonlinear

coupling of ion thermal and particle transport, stimulated by changes in the thermal ion

density profile, underlies the strong improvements with lithium pellet injection.

The thermal ion density profile changes significantly during the scan, and the point of

maximum curvature, which is the important contribution to the E x B shearing rate, coin-

cides with the crossover radius where the beam fueling source and the wall source are equal.

The beam fueling rate does not change significantly, and the ion density profile changes much

more strongly than the electron density profile with further lithium conditioning.

Lithium pellet conditioning diminishes the wall fueling source, which reduces the thermal

ion density in the outer half-radius, tending to increase its curvature near this crossover point.

This increases the central ion temperature according the equation for the ion temperature pro-

file of Sec. 3.6, which further increases the radial electric field shear. As a result, the particle

confinement improves inside the crossover point, and the density profile steepens there, fur-

ther increasing its curvature. This nonlinearity results in a heightened sensitivity of core

ion thermal and particle transport to the edge fueling. We propose that lithium conditioning

acts as the seed for strong nonlinear changes that accompany the increased shearing rate,
which increases quadratically with the number of lithium pellets, further reducing particle

transport, and so on. The transport analysis we perform supports the correlation between

core ion thermal and particle transport. The increases in ion temperature and density profile

peakedness are mutually reinforcing through radial electric field shear stabilization, which is

at least as important as the effect of the density gradient on linear stability to toroidal ITG

modes at higher temperatures.

To illustrate this mechanism, we simulate the ion temperature profiles, using the nonlinear
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model with self-consistent radial electric field, in a sequence of four consecutive supershot

discharges in which the additional pre-beam lithium pellets are injected into each successive

discharge.

4.2 Peaked Density Profiles

An early suggestion [142] that peaked density profiles might improve thermal confinement

by stabilizing the ion temperature gradient mode [109, 143, 18, 144] was confirmed in exper-

iments [145] on the Alcator-C tokamak. These experiments created centrally peaked density

profiles by fueling the plasma core directly using hydrogen pellet injection instead of gas

puffing. The global energy confinement time, which in Alcator-C ohmically heated plasmas

scaled in proportion to the density, ceased to increase with density with modest gas fueling

rates (Saturated Ohmic Confinement). Pellet fueling in Alcator-C ohmic plasmas extended

the saturation of TE to much higher densities, as would be consistent with the stabilization

of ion temperature gradient driven modes by the increased density gradient. In addition,

the mechanism (e.g., variants of the ion-mixing mode [146]) underlying the inward flow of

particles during gas fueling may simultaneously carry thermal energy outward, making edge

fueling intrinsically undesirable.

The supershot regime on TFTR [147] appears to be the next case in which peaked dens-

ity profiles, in the presence of central fueling by neutral beams rather than pellet injection,

appeared to play a role in improving thermal confinement. Repeated ohmic helium discharge

cleaning of the limiter was also required to reduce the target electron density (as later dis-

covered [148], it is not the target electron density per se, but rather limiter recycling, that

is the controlling factor). The energy confinement times obtained in early supershots (-170

ms) were three times the corresponding L-Mode scaling, with central ion temperatures three

times the electron temperature, the highest produced in a tokamak at that time ( 20 keV

for 15 MW heating power). A continuous distribution of confinement times was observed

depending on limiter conditioning, beam torque, and the MHD activity, in contrast with the

discrete bifurcation of H-Mode plasmas [5]. Sawteeth were present before and after beam

injection, but not during it. In addition, the confinement time did not degrade with beam

power for quasi-balanced beam injection, in contrast with the L-Mode regime under similar

operating conditions, for which TE cx Ip/Pl/2, where Ip is the plasma current and Pb is the

beam power. With pure co- beam injection, however, the degradation with power appeared

to return (primarily as a result of the reduction in beam penetration caused by rotation away

from the beams). The neutral beam configuration at that time prevented a comparison with

counter-dominated beam injection.
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Other early observations [149, 150] indicated that toroidal velocities (650 m/s) of the

order of the sound speed were typical, as were beam densities comparable to the thermal

ion density. Nevertheless, the classically computed differences between measured carbon

and inferred hydrogenic ion temperatures [137] were small, supporting a picture of strongly

improved ion thermal confinement. The toroidal velocity increased linearly with the torque

per particle [149, 151], independent of plasma current, which hinted that transport in the ion

channel had departed from traditional L-Mode scaling.

In the following we review various regimes that show improved thermal confinement with

peaked density profiles. Another review up to the year 1990 can be found in Ref. [152].

Confinement times in the L-Mode regime are discussed in terms of the ITER-89P empirical

scaling [4], which is given by 7 T ER 89P = 0.038B 0.2j10.81 5 p toR1.2 0.3 5 , where

B~o(T) is the toroidal magnetic field, ieo(10 19 m- 3) is the line average central electron density,
Ip(MA) is the plasma current, Ptot(MW) is the heating power, {R, a}(m) are the major and

minor radii, n = b/a is the elongation, and Ai is the ion atomic mass. This scaling was derived

from the data of many tokamaks and provides a common empirical basis for comparison.

4.3 Related Regimes

4.3.1 ASDEX Counter NBI

A beam-heated regime showing improved thermal confinement with peaked density pro-

files was discovered on the ASDEX tokamak [153]. This regime, accessible only with counter-

dominated neutral beam injection, developed gradually improved energy confinement, relative

to that for coinjection at the same power, together with a gradual peaking of the electron

density profile. Additional transitions to the H-Mode [5] with counter-NBI were observed in

which the density peaking occurred more rapidly. In this regime, heavy impurities are also

well-confined, which results in their accumulation in the plasma core as observed in ISX-B

with counter-NBI [154, 155, 156], with Zeff increasing from 2.0 to 2.7 as the density profile

peaked. When sawteeth, which were normally present, ceased, the discharges were termin-

ated by a radiative collapse. Apart from the difference in beam directionality relative to

TFTR supershots, the regime had roughly equal ion and electron temperatures, of the order

of 1 keV for 1 MW of heating power, but had toroidal velocities, density profile shapes, and

global confinement times [157] comparable to moderately performing TFTR supershots. In

particular, the ion thermal energy confinement improved as the density profile became more

peaked [153]. The global momentum confinement [158] showed an even stronger improve-

ment than the global energy confinement. This suggested the improvement was in the ion

channel primarily. In general the parameters of these experiments were density peakedness
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ne(O)/(ne) - 2, where () is the volume average, toroidal velocities V -. 150 km/sec, plasma

currents Ip = 420 kA, toroidal magnetic fields B = 2 T, neutral beam powers Pb = 0.9 MW,
energy confinement times -rE - 50 - 150 ms, central ion temperatures Tio - 1 keV, edge

qa - 2.3, and aspect ratio Ro/a = 1.65/0.40.

4.3.2 DIII-D Hot-Ion L-Mode

The Hot-Ion L-Mode (as opposed to H-Mode) on DIII-D also has a peaked density profile

with Ti > Te [159, 160], although not as peaked as in TFTR due to the unidirectional beam

injection on DIII-D. Access to this regime required low target density and the use of limiter

discharges to prevent the H-Mode transition, which flattens the density profile by creating

an edge pedestal. Sawtooth suppression was evident as in supershots. No improvement

was observed with counter-dominated neutral beam injection as on ASDEX, apart from a

20% lowering of the H-Mode power threshold [161]. No peaking of the density profile over

that of co-injected L-Mode plasmas was observed with counter-injection, however it is not

clear whether low target density, hot-ion scenarios were investigated in this regard. It is

interesting that in the H-Mode regime, the ratio of Ti/Te appears to increase in the inner

half-radius even though the density profile is flat relative to the L-Mode case [160]. Thermal

transport improves over the entire cross-section more slowly than at the edge following the

H-Mode transition, consistent with fluctuation measurements [162]. In the outer half-radius,
the larger density in the H-Mode appears to strengthen the ion-electron energy exchange

so that Ti'  Te there. The ion temperatures reported for the DIII-D Hot-Ion mode [160]

were one-third those of TFTR supershots, and the density gradient, while more peaked than

in H-Mode plasmas, remains rather weak, so the radial electric field is approximated by

Er = VBB, with a broad profile in the core.

4.3.3 JFT-2M Switchover Experiments

A regime similar to that of ASDEX with counter NBI was discovered on the JFT-2M

tokamak [163] during "switchover" experiments in which the beam directionality was changed

from co- to counter- in the middle of the heating phase. Following the switchover, the electron

density became gradually more peaked, and the central ion temperature, line-average density,

and toroidal rotation speed nearly doubled, while the central electron temperature slowly

decreased by a factor of two. The radial electric field Er = VVBe develops a well shape over

much of the cross-section. Earlier results on JFT-2M [164] showed that counter-injection led

to improved particle and ion thermal confinement in L-Mode plasmas, without edge pedestals.
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4.3.4 TEXTOR I-Mode

The I-Mode of TEXTOR [165, 166, 167] also bears a resemblance to the supershot regime.

Co-injection (with or without counter-injection or RF), low wall recycling, and the absence of

MHD activity are necessary conditions to obtain the I-Mode. While the machine parameters

are quite similar to those of ASDEX and JFT-2M (Ro/a = 1.75/0.46, Ip =200-500 kA,
B = 2.25 T, PbO = pbctr = 1.7 MW in hydrogen or deuterium, circular cross-section,
toroidal belt limiter similar to TFTR), TEXTOR has an additional 4 MW of H-minority

ICRF power, and perhaps most important, boronized walls. With balanced beams, very

peaked density profiles are obtained with ne(O)/(ne) f 2.5 (3.5 with ICRH), Ti > 2Te, and

TE/T ITE R89P _ 1.7. There is no power threshold. The current scaling of TE is characteristic

of L-Mode plasmas, while the power scaling is somewhat more favorable. Finally, as in

supershots, TE/ TER 89 P O( ne(O)/(ne) at the time of peak stored energy, and ne(O)/(ne)

decreases with density.

4.3.5 JET Hot-Ion Regimes

The JET Project, with the aim of exploring reactor-relevant regimes in deuterium-tritium

plasmas, has incentive to operate at high ion temperatures with peaked density profiles

[168]. Hot ion regimes may provide an energy-efficient route to ignition [169] because the

electrons do not have to be heated to the temperature of the ions to achieve ignition. The

Hot-Ion H-Mode regime of JET is attained by fueling low density target plasmas (re -

1.5 - 2.0 x 1019m - 3 ) with neutral beams under low-recycling conditions, resulting in Ti "

(1.5 - 3.0)Te and moderately peaked density profiles ne(O)/(ne) - 1.5 and unidirectional

beam injection in the direction of the plasma current. The discharges used a divertor with at

least one X-point. The highest ion tempertures achieved correspond to the convective limit

(3/2)(Ti + Te) = (Wb), as in supershots, where (Wb) is the average energy of slowing-down

beam ions.

Early JET hot-ion plasmas [170, 171] were produced under conditions similar to of TFTR

supershots, and were small bore plasmas with dimensions similar to TFTR. The plasma was

in contact with carbon tiles on the inboard side or rested on the outer belt limiter. Extensive

helium conditioning was used to remove deuterium from the carbon tiles before neutral beam

injection. With 21 MW of neutral beam power, Ti(0) < 20 keV and Te(O) P 8 keV were

produced with ne(0) r 2 x 1019 m - 3, Ip = 3 MA, and B = 3.4 T. The inner wall plasmas

had effectively tangential neutral beams as in TFTR, while the outer wall plasmas may have

shown weakly improved confinement due to major radius scaling [172]. The density and

beam ionization source profiles were quite peaked, and the ion toroidal angular velocity and
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ion temperature profiles had similar shapes [173].

The early JET hot-ion discharges were strongly degraded by a sudden large influx of

carbon from the limiter. Later refinements, using feedback to control the plasma shape,

eliminated the carbon bloom problem [174]. The use of overnight beryllium evaporation on

the inner wall carbon tiles produced significant improvements as well, lowering the target

density to ne(O) < 0.7 x 1019 m - 3 , allowing the plasma current to be extended up to 5

MA [174]. Confinement times were three times those of early TFTR supershots and scaled

similary with heating power. ICRH was used to create hot electron plasmas as well [170], with

Te(0) < 12 keV and Ti(0) - 7 keV at densities ne(0) r 3.5 x 1019 m - 3 . Interestingly enough,

with beryllium conditioning, some hot electron plasmas displayed spontaneous transitions to

enhanced particle and energy confinement [174] after reaching steady state.

4.3.6 JT-60U Hot-Ion Regimes

The first hot-ion enhanced confinement plasmas on JT-60 were obtained in 1989 after

with a modification of the divertor geometry to lower single-null, and with extremely low

plasma currents [175]. These discharges, having high poloidal beta, were unique in the sense

of having bootstrap currents up to 80% of the total plasma current. The initial hot-ion

plasmas were characterized by Ti - 12 keV, Te ~ 6 keV, TE/ L-Mode < 1.6, pp - 2.9,

B, =4-4.5 T, Ip, =0.3-1.2 MA, Ro/a =2.9/0.65 m/m, Pb up to 20 MW in hydrogen, 65 keV

beams with (Pco - Pctr)/(Pco + Pctr) =0.1-0.25 with perpendicular injection at angles ±15

degrees, ntgt , 0.5 x 1019 m - 3 , f = 4 x 1019 m -3 , and Zeff - 3 - 4 dominated by carbon.

With balanced NBI and Vv(O)/vthi(O) < 0.2, very hollow carbon toroidal velocity profiles

were observed, bearing a striking resemblance to the notch we discuss on TFTR. The central

toroidal velocity was = 1.0 x 105 m/s, dropping to 0.25 x 105 m/s at r/a = 0.25, then rising

again to - 1.0 x 105 m/s at r/a = 0.64, as shown in Fig. 2 of Ref. [175]. The steepest ion

temperature gradient occured at r/a _ 0.2. The velocity profile is monotonic, or only slightly

concave, in L-Mode plasmas. An attempt to infer the radial electric field is made in Ref. [175],

assuming Vi = V,, in contrast with our interpretation. Not surprisingly, and consistent with

our model for the notch, the change in the carbon toroidal velocity from the axis to r/a = 0.4

(effectively the depth of the notch feature) is strongly correlated with the ion temperature

gradient as shown in Ref. [175]. In a subsequent study [33], hot-ion mode plasmas with

density, temperature, and carbon toroidal velocity profiles, with notches, strikingly similar

to TFTR supershots were shown. Density peaking parameters up to ne(O)/(ne) - 3 were

observed. An attempt to explain the velocity profile notch on the basis of torques from ion

losses is made in Ref. [33], however the predicted feature is much more broad, extending over

the outer three-quarter radius. The assumption Vi = V,, was made, in contrast with our
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model of Chapter 2.

Hot-Ion L- and H-modes have been routinely produced on the JT-60U Tokamak with a

graphite first wall and extensive ohmic conditioning [176], with B. =2-4 T, Ip =1-4 MA,
Pb =5-25 MW (15% ripple loss), 90-95 keV beams, 78% full energy component, H-factors

up to 2.2, nt < 1 x 1019 m -3, e = 2 x 1019 m -3 (at 2.7 MA, 4.2 T) and large poloidal

fields Be - 0.9 T at Ip = 4 MA. The temperature profiles in these regimes bear strong

resemblance to the supershot regime, but the density profile is not as strongly peaked with

ne(O)/(ne) = 1.3 - 1.5 [177]. The particle and energy confinement times were comparable,

7p T E, and ion thermal conduction was the major loss channel. In the L-Mode case a

relatively weak scaling with plasma current was observed TE OC I0.6 and attributed to poor

current penetration [178]. Growing plasmas improved performance. Other scalings in the

L-Mode regime were similar to ITER89P, such as -E oc B0.2pb-0.'5 [176].

Hot-Ion H-Mode plasmas with Ti/Te - 3 were also created [179] with Ip = 3 MA,

B, = 4.2 T, he = 2.5 x 1019 m -3, and Ti(O) - 30 keV. Most interesting was a "transition-

free H-Mode" that did not show an abrupt change in Ha light or edge ion temperature (but

did have Edge Localized Modes (ELMs)). This mode had a favorable power scaling relative

to ITER89P above about 10 MW of heating power, similar to supershots. Performance was

better than the high-flp mode and similar to high-f3p H-Mode (sharp transition in edge Ti).

The most striking feature relative to ordinary H-Modes was that the edge ion temperature

Ti(0.95) increased steadily following the start of beam injection to values as high as 7 keV.

The sudden change in edge Ti at the H-Mode transition was comparable to this, but occurred

after 800 ms of beam injection. The large core ion temperatures were attributed in both cases

to the change in edge ion temperature, rather than peaked density profiles [179].

Other experiments on JT-60U [180], at lower currents Ip = 0.37 - 1.2 MA, produced

hot-ion modes with Ti(0) < 13 keV using 18 MW of quasi-balanced 65 keV Ho beams into

hydrogen plasmas with target densities ie 5 1 x 1019 m- 3 , with B, = 4.5 T, in the so-called

high-q regime with qa - 4 - 10. The divertor configuration was single null with Rola =

2.9/0.7, and ellipticity b/a = 1.3. The beams consisted of eight co- and six counter-injection

sources with approximately perpendicular injection angles balanced at -15 degrees. These

plasmas more closely resembled traditional Hot-Ion modes [33]. Extensive glow discharge

conditioning and titanium flash of the graphite tiles was carried out to minimize recycling.

The density rose to 7 x 1019 m -3 in the heating phase. Confinement times TE/T - M ode , 1.6

were obtained in the presence of sawteeth. A good correlation Ti(0)/(Ti) oc ne(O)/(ne) was

observed, similar to supershot plasmas. The toroidal velocity and ion temperature profiles

both peaked inside the same radius, in the vicinity of the q = 1, 2, 3 surfaces [180].

In 1992, a high pp enhanced confinement regime (HPEC) was achieved in smaller bore
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plasmas (Ro/a =3.05/0.71 m/m, b/a = 1.7, BW = 4.4 T, and Ip =0.6-1.9 MA, with 90 keV

deuterium beams, 22 MW perpendicular and 6 MW tangential) that did not suffer significant

ripple losses of the beam ions and allowed beam penetration closer to the magnetic axis

[181, 182]. The density and ion temperature profiles were highly peaked, with Ti - 38

keV, Te - 12 keV, and confinement times three times L-Mode were achieved. Moreover,
the scaling TE/7-MOde oxC p was observed. As in supershots, recycling was found to

be an important influence on confinement; helium glow discharge cleaning was carried out

nightly, and between-shots ohmic helium discharge cleaning was used as well. Confinement

was degraded when Ha emission increased [181].

More recently, internal ion thermal energy transport barriers were observed to form

suddenly in the HPEC regime [9] near the three-quarter radius. The machine paramet-

ers were the same as those discussed above, and initial heating phase was characterized by

ne(0)/(ne) 3.7 and TE/T ITER89P = 1.4. A transition occurred in which the ion temperature

gradient in the region r/a = 0.65-0.8 suddenly increased, accompanied by the formation of a

counter-directed notch in the carbon toroidal velocity profile and a large spinup of the carbon

poloidal velocity to . 50 km/s. The global confinement time increased to TE/T I T ER 89P = 2.5.

The V x B term of the radial electric field was evaluated, but no conclusion as to its role in

the improved confinement was drawn [9]. The improved confinement phase was terminated

by a f-collapse, after which the edge ion temperature, which was previously unchanged dur-

ing the confinement transition, jumped to H-Mode values and the density profile broadened.

This phase, following the formation of the ion transport barrier, was dubbed the "high-lp

H-Mode." Confinement remained well above L-Mode during this time but suffered Edge

Localized Modes (ELMs). Further studies of the internal transport barrier [32] showed that

it was a barrier to particle transport (of carbon ions) as well as thermal energy. In these later

studies, the unexplained velocity profile notch, located at the position of the barrier, was

striking. The radial location of the notch moved with the transport barrier and was not tied

to any particular rational surface. Recent experiments in the hot-ion H-Mode and high-3p

H-Mode regimes have achieved ion temperatures up to 45 keV with neutral beam powers up

to 41 MW and plasma currents up to 4.5 MA [183].

4.3.7 JET PEP Modes

The Pellet Enhanced Performance (PEP) mode discovered on JET serves as a clear

demonstration that confinement properties, rather than source profiles, can determine the

shape of the density profile [168]. The first PEP modes were obtained with ICRH heating. The

PEP mode is initiated by pellet injection near the time auxiliary heating begins, establishing a

peaked density profile a-priori [184, 185], which upon heating is sustained for several particle
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confinement times. This very peaked profile shape is superposed on an almost completely

flat H-Mode density profile. Significant improvements in core energy confinement are evident

[186]. The PEP mode has been achieved in H-Mode plasmas independent of heating method,

including with neutral beams only. Large bootstrap currents are associated with the large

pressure gradient in the core, and are sufficient to produce negative magnetic shear, which

may partly underly the improved confinement [187]. The ion and electron temperatures are

approximately equal in PEP discharges.

4.3.8 Heliotron-E High Ion Temperature Mode

A regime resembling the supershot was created in the Heliotron-E [188], a heliotron/torsatron

with poloidal number 2 and toroidal number 19, Ro/a = 2.2/0.214 m/m, B = 1.9 T, and

total perpendicular neutral beam power 3.2 MW. The beams were injected into a low-density

target plasma with ne(0) = 1 x 1019 m-3, heated by ECH with boronized walls. When gas

puffing was turned off during the beam heating phase, both the central density and ion tem-

perature increased slowly in time by factors of more than two. The same transition can be

provoked by pellet injection, and in both cases Ti(0) oc ne(0)/(ne) during the improvement.

Transport analysis shows an improvement in ion thermal diffusivity underlies the change in

ion temperature. In a heliotron/torsatron V. - 0 due to parallel viscosity, so the radial

electric field is determined by the pressure gradient and the poloidal velocity [188]. The

measured poloidal velocity did not change relative to gas-fuelled plasmas, so the increased

pressure gradient created a broad negative well in the radial electric field profile Er in the

region r/a < 0.6, which was not present in the gas-fueled case. The fact that the Er changed,

while the velocity did not, served as a basis to suggest that radial electric field shear, rather

than velocity shear, underlies the improved confinement [188]. However, the impact of the

observed radial electric field on confinement was not assessed.

4.4 Supershot Confinement and the Density Profile

The initial perception was that the TFTR supershot regime depended on low target dens-

ity, which allowed deep beam penetration [189] (which depends on the number of electrons

encountered by incoming beam neutrals along their straight paths), resulting in peaked dens-

ity profiles. Continued studies of supershots [148] revealed a scaling for the enhanced energy

confinement time over that of L-Mode plasmas TE/T L - Mode ~ ne(O)/(ne) [148, 189, 190],
as observed in the ASDEX counter-NBI regime [157]. More specifically, a scaling rE =

0.024 (ne(0)/(ne) )0 76 0.18P-0 12 can be found [189], showing the weak dependence on heat-

ing power and plasma current. The ion thermal diffusivity Xi at the half-radius scaled in-
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versely with ne(O)/(ne) [190], while the heating effectiveness [191] did not change much with

variations in ne(O)/(ne), indicating a change in transport, rather than heating profile, was

responsible for the change in ion temperature [190].

Experiments [148] in which the major radius or current in the target plasma was changed

to change the target density had no effect on the maximum ne(0)/(ne) attained during beam

heating. When the target density was increased by deuterium gas puffs, the maximum TE

during beam heating was also unchanged. However, puffs of helium (-100% recycling) prior

to beam injection did degrade performance. The conclusion, which is particularly relevant

to the following sections, was that "These results suggest that the variation in ne(O)/(ne) is

not simply due to changes in the target density but is caused by changes in the underlying

transport properties coupled to the edge recycling conditions. At each plasma current, the

density achieved without additional gas fueling is simply a measure of the overall recycling

level [148]." A careful study using pre- and mid-beam helium puff (recycling) and lithium

pellet (non-recycling) perturbations [48] to decouple wall recycling from target density clearly

demonstrated that the edge conditions during neutral beam injection, rather than target

density per se, is the dominant influence on supershot performance.

Transport analysis of supershot plasmas [149, 136] showed that the core ion thermal dif-

fusion in supershots was essentially negligible, leaving only the residual outward convection

that is necessary in equilibrium with central beam fueling. In addition, the convective mul-

tiplier qi/lriTi, where qi is the radial ion heat flux, Fi is the radial ion particle flux, and Ti is

the ion temperature, could not be as large the 5/2 of neoclassical theory [136], and multipliers

below 3/2 were in fact observed. Subsequent analysis [14] by the author of more extreme

lithium-conditioned cases, with refined CHERS analysis, gave an ion convective multiplier of

3/2 (discharge #77309).

Early analysis of co-only and near-balanced injection cases showed that the thermal dif-

fusivities are not enormously different in the two cases [67, 192], or at least were not worsened

with co-dominated injection, so that the worsened global performance with pure co-injection

could be attributed largely to the classical effects of rotation away from the incoming beams,
which broadened the heating and fueling profiles [63]. Changes in particle transport with ro-

tation were not addressed, however. The global energy confinement time -E from magnetics

measurements does not subtract the effects of rotation, and is reduced in strongly rotating

plasmas for this reason as well. However, early plots of TE vs. beam directionality [30, 193]

show that global rE is maximized with slightly co-dominated beam injection. The trend is

asymmetric; counter-injection is observed to worsen supershot performance. This indicates

that an underlying improvement in thermal transport with co-rotation apparently exists to

offset the deleterious classical effects. In addition, the transport of heavy impurities followed
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this same rule [194]. Both results are in marked contrast with the results of the ASDEX and

JFT-2M experiments [153, 157, 156, 163].

Transport experiments comparing supershot and helium-spoiled L-Mode plasmas [34]

demonstrated the favorable scaling with heating power of core Xi and ne(O)/(ne) in super-

shots, over the range 7-21 MW. The density peakedness improved with beam heating power,
in contrast with L-Mode plasmas, above about 15 MW. At lower powers, the scaling of

ne(O)/(ne) with power resembled that of L-Mode plasmas. The diffusivity for toroidal angu-
lar momentum XV, in power scans at constant torque, showed a scaling with ion temperature

similar to that of Xi. Therefore the core particle, ion thermal [51], and toroidal momentum

diffusivities [34], all scale favorably with beam heating power in supershots, in contrast with

the L-Mode regime.

Further experiments [124, 64] confirmed that the ion thermal and toroidal momentum

diffusivities are approximately equal over a wide range of plasma conditions, in both supershot

and L-Mode plasmas, as would be consistent with simple quasilinear arguments assuming

electrostatic modes [195]. This suggested the toroidal momentum diffusivity as a diagnostic

for ion thermal transport in supershots, where the core is dominated by convection. The

momentum balance is never convection-dominated [136, 64], making the inference of XV
more direct than that of Xi in the core of high-performance supershots.

When discussing improved confinement in connection with the peakedness of the electron

density profile, or equivalently the beam fueling profile, circular arguments tend to arise.

The first question that must be addressed is whether changes in source profiles or changes in

the diffusivity dominate the resulting density profile shape. This was considered initially in

edge versus central heating experiments [196, 197], where the resulting density profiles were

indistinguishable. This indicates that the details of the source profile may not be as important

as other influences. Studies of the peaked density profile regimes on ASDEX [198], including

the Improved Ohmic Confinement (IOC) regime [199], which can be provoked by a sudden

reduction of the gas puff rate during density ramp-up, demonstrated that "in no case could

the changes be explained solely by changes in the charged particle deposition profiles. They

imply rather a change in particle transport."

Second, the density profile shape in supershots directly influences the source profile

through the beam penetration depth, and as we show, influences particle diffusivity (e.g.,
possibly through the even-parity toroidal ITG mode destabilized in part by trapped elec-

trons [18], and perhaps the ion-mixing mode [146] near the plasma edge). In addition, the

core particle (and thermal transport) is strongly correlated with the edge hydrogenic influx,
which is correlated with the loss power density delivered to the limiter. Perturbation experi-

ments, discussed in Chapter 5, have demonstrated hysteresis in the energy confinement with

100



respect to the density peakedness parameter ne(O)/(ne). Accordingly, a direct causative role

of peaked fueling profiles per se in supershot confinement has not been demonstrated.

Nevertheless, the empirical correlation TE/TlE- M de , ne(O)/(ne) [148, 189, 190], charac-

teristic of supershots and other regimes with peaked density profiles, demonstrates a connec-

tion between particle and thermal energy confinement. This, as well as the hysteresis with

respect to density peakedness, is consistent with our model of Chapter 3, arising from both

the stabilizing effect of the density gradient on the toroidal ITG and trapped-electron modes

and an equally important effect of radial electric field shear stabilization.

4.5 Transport Analysis of Wall Conditioning Experiments

The motivation to reduce the wall influx stemmed from the desire to increase the DT neut-

ron rate, which in supershots scales approximately in proportion to the square (1.8 power) of

the plasma stored energy Wtot [200] (more recent analysis also indicates an inverse depend-

ence on VIp [201]). Simultaneously, the best discharges suffered disruptions in accord with a

Troyon-type beta limit, limiting the plasma stored energy to Wt'x oc IpB,. This suggested

operation at higher plasma current [200], which required a better method for reducing the

wall influx than ohmic helium discharge cleaning.

Analysis of the CY1990 TFTR supershot data [202] revealed that the maximum energy

confinement time attained during beam injection was correlated with the hydrogenic influx

(Ha light) during beam injection, and with the carbon (CII) light in the target plasma, but

not with the Ha light in the target plasma or with the CII light during beam injection (except

at a fixed time). Furthermore, during beam injection, the instantaneous energy confinement

time scaled with the instantaneous hydrogenic influx according to

TE OC H0. 2 4 . (1)

This held for CY90 supershot plasmas with blooms, with MHD, or supershots free of both

MHD and blooms. The effect described by Eq. (1) is quite strong given the wide variations

in Ha emission commonly observed. It was also found that ohmic helium discharge cleaning

did not reduce the carbon influx, acting primarily on the hydrogenic influx [202]. In addition,
carbon blooms in preceding plasmas were found to be beneficial, as described by the following

empirical scaling [202] for the CII light in the ohmic target plasma,

CII oc I,3 dt (CII)0- 1 (t), (2)
where the time integral is over the p rev

where the time integral is over the preceding discharge. The associated effect on the peak
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energy confinement time was found to scale as -rTE  (CII)-0.32 in discharges without lithium

pellets.

Initial results using lithium pellet injection were described in Ref. [203], where it was

found that lithium or boron pellets injected into the ohmic phase, several particle confinement

times before the start of beam injection, reduced the carbon content of the plasma during

beam heating and improved global performance by 15-20%. Preliminary results indicated

that boron pellets reduced the carbon influx, but not the hydrogenic influx, while lithium

pellets appeared to reduce both carbon and hydrogenic influxes.

The lithium was shown to have a coating effect on the carbon tiles [203], reducing the

wall influx, rather than having a beneficial presence in the plasma:

* The number of Li atoms in a single pellet was much larger than the number of Li ions

in the plasma, even after 23 successive discharges, each with a Li pellet.

* The amount of Li not remaining in the plasma after a single pellet was sufficient for a

coverage of 1-2 monolayers of the limiter active surface.

* Spectroscopic measurements indicated that the decrease in the total number of carbon

ions in the plasma was several times the number of Li ions present after the same series

of 23 discharges. The Li ions were not simply replacing carbon ions.

* The target electron density was lower following the exponential decay of the pellet

contribution, indicating most of the Li left the plasma prior to beam injection.

* Sputtering calculations showed that a layer of Li on C significantly reduces the sput-

tering yield.

In addition, the beneficial effects of lithium were found to persist over 3-4 discharges to

follow, which suggested injecting lithium pellets into the post-beam heating phase of preceding

discharges [203].

Detailed experiments, in which the author participated, to assess the efficacy of boron

and lithium pellets in various sequences were carried out and described in Ref. [47]. This

work clearly demonstrated an apparently boundless efficacy of lithium relative to modest

improvements possible with boron. Here we reconsider these experiments, which effectively

varied the edge influx and target electron density while keeping the same machine operating

parameters. Because ne(O)/(ne) at the time of peak stored energy is well-correlated with

the edge hydrogenic influx and with the energy confinement time, these experiments provide

a convenient framework to discuss the energy and particle confinement as a function of

ne(0)/(ne). This variation is described by the model presented in Chapter 3. We emphasize
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however, as previously discussed, that the controlling parameter is in fact the edge hydrogenic

influx.

The first transport analysis demonstrating improved ion thermal and particle confine-

ment with lithium pellet injection was given in Refs. [46, 204]. This analysis of 210 dis-

charges showed that the ion thermal and electron particle diffusivities were strongly reduced

by lithium pellet injection while the electron thermal diffusivity showed no definite trend.

Here we present a more controlled subset of this data, recently reanalyzed using the SNAP

equilibrium transport code [134, 135].

The machine operating parameters were held constant (Ro/a = 2.45/0.80, Pb = 18 or 21

MW, Ip = 1.6 MA, Bp = 4.76 T) while various wall conditioning techniques were employed.

Here we consider sequences 1 and 3 of Ref. [47]. Three sets of consecutive discharges are

analyzed. The first set consisted of discharges without pellet injection. The second set had

boron pellets injected during the ohmic heating phase, prior to beam injection. The third

set had lithium pellets, usually one (sometimes two) preceding beam injection, sometimes

one following beam injection (for the benefit of the succeeding discharge) and in two cases

(#68244 and #68242), two lithium pellets preceding beam injection after a sequence of

lithium pellets both before and after beam injection.

Figure 1 shows the well-known correlation of energy confinement time with ne(O)/(ne)

[148, 189]. The boron pellets result in a modest improvement in peformance, while the

lithium pellets have a dramatic effect. The best discharges with lithium pellets qualitatively

resemble those without, and follow the same trend. Discharges #68242 and #68244 had two

pre-beam lithium pellets and were preceded by discharges with post-beam lithium pellets.

This not only illustrates the simultaneous improvement in particle and energy confinement,

but that the nature of the improvement depends only on the efficacy of the conditioning

method. This is consistent with the notion that the lithium and boron do not persist in

the plasma but instead coat the limiter surface [203]. This coupling of energy and particle

transport is qualitatively consistent with the model presented in Chapter 3.

In Figure 2, the dependence on target conditions is illustrated in agreement with Ref.

[202]. Frame (a) shows the density peakedness 400 ms after the start of NBI is inversely

correlated with target density, following early notions, invalidated in Refs. [148, 48], that

supershot confinement depends on beam injection into low density targets. In Frame (b), the

peak energy confinement time is inversely correlated with carbon light in the target plasma.

Frames (c) and (d) show that the density peakedness and energy confinement time 400 ms

after the start of NBI are not correlated with hydrogenic influx in the target plasma. Frame

(e) shows the target density is not correlated with hydrogenic influx in the target plasma.

Finally in frame (f) the target density is well-correlated with carbon light in the the target
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plasma. Boron does not appear to suppress the carbon influx.

In Figure 3, the global energy confinement time at the time of peak stored energy is

well-correlated with the instantaneous hydrogenic influx and with the carbon light. The first

is expected to hold on the basis of previous data described by Eq. (1). The latter may hold

as a result of Eq. (2) and the fact that the discharges are in sequence, but is not expected to

hold in general.

The results of the transport analysis are shown in Figure 4. Transport coefficients inferred

using the SNAP code are shown near the third-radius (r/a = 0.375) as a function of the

density peakedness parameter ne(O)/(ne). The analysis was performed at a time 400 ms

after the start of beam injection. Most of the boron pellet cases failed to converge, perhaps

indicating significant boron concentrations that needed to be accounted for. These are not

shown. Frame (a) shows the electron particle diffusivity decreases by a factor of two over

the scan, while frame (b) shows the ion thermal diffusivity (without convection) decreases by

a factor of five, and frame (c) shows the electron thermal diffusivity is not correlated with

density peakedness or edge influx.

The discharges we have shown represent studies during the early optimization of pel-

let conditioning techniques, and serve to demonstrate the strong sensitivity of ion thermal

and particle confinement to relatively small variations in limiter recycling. Following this,
other techniques such as "painting" [15] the limiter surface through a sequence of lithium

pellet injected plasmas which are moved or shaped to change the points of contact, and the

use of a laser blowoff (DOLLOP) apparatus to release very large amounts of lithium, have

been successfully used with dramatic results, producing energy confinement times as large as

330 ms.

4.6 Improved Ion Thermal Confinement with Lithium Condi-

tioning

Here we consider a sequence of four consecutive TFTR supershot discharges [14] in which

the number of pre-beam lithium pellets injected increases by one with each consecutive dis-

charge. The first discharge has no lithium pellets, while the final discharge was preceded by a

conditioning shot with two lithium pellets in addition to having two pre-beam lithium pellets

itself (roughly equivalent to three pre-beam lithium pellets). The increase in performance

is dramatic [141], and is correlated with increased peakedness of the electron density profile

ne(0)/(ne). Overall, a factor two range in central ion temperature is achieved over the scan.

The temperature range is an ideal test of our model, starting at temperatures where we pre-

dict that radial electric field shear stabilization is weak, and reaching ion temperatures where
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Figure 3. Correlation of peak energy confinement time with measures of instantaneous recycling for the set
of discharges shown in Fig. 1 (at TBI + 400 ms, near the time of peak stored energy). Energy confinement
time is inversely correlated with hydrogenic influx (a) and carbon influx (b).

it should be an effect of order unity.

Figure 5 [14] shows the global evolution of the discharges in the scan. The change in

performance as a function of the number of pre-beam Li pellets is shown in Fig. 6. The density

peakedness parameter ne(0)/(ne) increases by 40% over the scan. The improved performance

is associated with reductions in the edge recycling and impurity content. The edge ion

temperature does not change. Figure 7 shows the change in performance as a function of the

density peakedness parameter ne(0)/(ne). It is interesting that the global energy confinement

time improves by 25% while the value from L-Mode scaling does not change at all. The central

ion temperature increases almost linearly with peakedness, as does the kinetic energy stored

in the ions in the inner half-radius. The electron thermal confinement is not strongly affected

by lithium conditioning as shown in Sec. 4.5. The calculated nonlinear shearing rate [35] (or

equivalently, linear Doppler shear rate) is evaluated using the neoclassical radial electric field

from the TRV code with measured profiles from TRANSP analysis,

WExB - RB d ( Er (3)

near its radial maximum at r/a = 0.4. It increases quadratically with the density peakedness

because of the associated linear increase in the ion temperature. This can be seen by observing

that the radial electric field at the half-radius remains relatively constant, while the depth of

the radial electric field well increases. The shear in the outer part of the well is proportional to

the depth of the well. This follows from the the simplified expression (neglecting the toroidal

velocity for discussion)

Ti dniEr - dn (4)
ni dr
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This nonlinear increase is suggestive of a simultaneous reduction in particle and energy

transport associated with radial electric field shear stabilization. We have demonstrated in

Fig. 4 that the particle and energy transport in the core are well-correlated, but have not

proven this is associated with radial electric field shear. Figure 8 shows the profile of the

shearing rate WExB for each case, evaluated from the TRV code. The neoclassical radial

electric field is inferred from the numerical solution of Chapter 2 for arbitrary collisionality.

At the low end of the performance spectrum, the peak shearing rate is quite small. Evidently

the negative offset due to the co-directed toroidal velocity is relatively constant over the scan.

Figure 9(a) shows the inverse ion temperature gradient scale length and toroidal ITG crit-

ical gradient scale length evaluated from the IFS-PPPL parameterization [16], using the ex-

perimental profiles. This shows the toroidal ITG mode (under assumptions clarified Chapter

1) is estimated to be strongly unstable over a significant fraction of the cross-section, and

progressively more unstable as the ion temperature gradient increases. Figure 9(b), shows

the corresponding toroidal ITG mode linear growth rates maximized over k0pi, obtained
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Figure 8. Shearing rate increases with the number of lithium pellets beyond a certain performance level.

from the same parameterization. If this were true in reality, then the simulated trend in ion

thermal confinement would be opposite that observed. Fully nonlinear simulations show that

this behavior is consistent with a possible role of shear flow stabilization, which becomes

progressively more important as the ion temperature increases. Effectively, shear flow sta-

bilization allows deviations from toroidal ITG marginal stability (considered in the absence

of sheared rotation in the flat density gradient limit), without increased transport.

Another apparent contradiction arises. The maximum value of the growth rate is five

times the maximum shearing rate for the best performance case. However, this open-loop

comparison is relatively meaningless when one considers that vthi/R - WEXB, so that small

deviations from marginal stability result in wild swings in the growth rate. Because the core

region is found to be close to marginal stability to odd-parity toroidal ITG modes, a shearing

rate and growth rate comparison using measured profiles is very sensitive to experimental

errors, and therefore not particularly enlightening. These issues are readily addressed by

closing the loop to calculate the radial electric field and ion temperature self-consistently in

fully nonlinear simulations.
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Figure 9. (a) Inverse ion temperature gradient scale length from measured temperature profiles and critical
ion temperature gradient scale length, also from measured profiles. Significant deviations from toroidal ITG
marginal stability as described by the IFS-PPPL parameterization are apparent, suggesting the role of shear-
flow stabilization. (b) The toroidal ITG growth rate from the IFS-PPPL parameterization using measured
profiles. Note it is as much as five times the calculated shearing rate shown in Fig. 8.

113



Chapter 4. Lithium Conditioning, Density Peakedness, and Energy Confinement

4.7 Nonlinear Simulations of Lithium-Enhanced Confinement

The modified IFS-PPPL model as described in Chapter 3, with self-consistent neoclassical

radial electric field [29], successfully reproduces the large variation in ion temperature during

the scan as shown in Figure 10. Here the ion temperature profile is simulated over the

region r/a < 0.85, taking the calculated temperature equal to the measured temperature at

the boundary r/a = 0.85. The simulations calculate the carbon and hydrogenic temperatures

simultaneously, with classical beam differential heating and interspecies energy exchange. The

calculated hydrogenic temperature is used in the IFS-PPPL parameterization to obtain the

critical gradient, growth rate, and nonlinear ,ion thermal diffusivity, and is used to determine

the radial electric field self-consistently. The densities of the various plasma species and

magnetic geometry are taken from TRANSP Monte Carlo analysis, and are not predicted.

Without shear-flow stabilization, the original IFS-PPPL model cannot reach the measured

temperatures or span the improvement in temperature. The growth rate and shearing rate

increase together inside half-radius, where one clearly sees an outward expansion of the Er-

stabilized region as the number of lithium pellets increases, as shown in Fig. 11. This behavior

is remarkably similar to that observed in a beam power scan, as we demonstrate in Chapter

6. The model predicts increasing deviations from toroidal ITG marginal stability in the core

as the temperature increases. This is compensated by radial electric field shear stabilization

as shown. Again, as discussed in Chapter 1, the phrase toroidal ITG marginal stability

here refers to the linear stability of toroidal ITG drift modes of both parities in the near-

flat density gradient limit, without including sheared flows, as described by the IFS-PPPL

parameterization.

Interestingly, the edge ion temperature is nearly constant throughout the scan. The in-

crease in edge ion temperature is a leading explanation for the improved thermal confinement

over the entire cross-section following the H-Mode transition (e.g., Refs. [205, 206, 207, 208,

162]), possibly by propagation into the core through toroidal ITG marginal stability. This

argument does not seem to be relevant to the improvement with lithium conditioning we

have considered, first because the edge ion temperature does not change, and second, be-

cause the nonlinear simulations show that the outer half-radius is far from toroidal ITG

marginal stability (this does not preclude a conveyance of differences in edge ion temperat-

ure to the half-radius, where they would be amplified under the practical shear-flow stability

criterion toward the axis). Differences in edge ion temperature associated with differences in

edge recycling were proposed to explain the core L-Mode to supershot core ion temperature

difference through toroidal ITG mechanisms in Refs. [34, 48, 16].

We propose that the strong improvements with lithium pellet injection are due to the
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nonlinear coupling of improvements in core particle confinement and core ion thermal con-

finement, stimulated by changes in edge fueling. The thermal ion density profile, which

influences the radial electric field, changes strongly with lithium conditioning. We find that

the inflection point of the thermal density profile corresponds to the radius where the fueling

rates from the edge and the neutral beams are equal. Inside this radius, the beam fueling rate

is unaffected by lithium pellet injection and the changes in the shape of the thermal density

profile are due to changes in the particle diffusivity. Outside this crossover radius, the op-

posite prevails. The thermal density profile is relatively flat, changes in particle diffusivity

with lithium pellet injection are small, and the density is determined by the edge fueling

source rate. This leads us to propose a model, based on strong nonlinear coupling between

particle and ion thermal transport by radial electric field shear, to explain the improvements

with lithium pellet injection. In essence, lithium pellet injection reduces the edge fueling,

which lowers the thermal ion density outside the crossover point, increasing the curvature

of the thermal ion density profile at the crossover point. The practical shear-flow stability

condition of Sec. 3.6 shows that increases in the curvature of the thermal ion density profile

result in large increases in the ion temperature. The nonlinear coupling of the ion thermal

transport and particle transport, shown by their empirical correlation, results in a heightened

sensitivity to such changes in edge fueling. This is supported in part by the observation that

the peak E x B shearing rate increases quadratically with the density peaking parameter

ne(O)/(ne) and with the number of pre-beam lithium pellets. Figure 12(a) shows that the

thermal ion density profile changes significantly during the scan, and that the inflection point,
which is the important contribution to the shear-flow marginal stability condition, coincides

with the crossover point where the beam fueling source dominates the wall source. Figure

12(b) shows that the electron density profile changes less drastically than the thermal ion

density. Figure 12(c) shows that the beam fueling source changes little. The wall fueling

source changes more strongly, and determines the behavior of the thermal ion density outside

r/a = 0.4. This is supported by the behavior of the inferred electron particle diffusivity as

shown in Figure 12(d), which is significantly reduced inside the half-radius, but not outside

it. Changes in the thermal density in the outer region are source-driven, while changes in the

inner region are confinement-driven.

If the outward particle transport is determined by electrostatic modes, it is similarly

reduced by radial electric field shear (the leading explanation for the H-Mode edge particle

transport barrier [84, 60, 209]). We have illustrated a mechanism in which the increased

ion temperature and thermal ion density gradient are mutually reinforcing through radial

electric field stabilization. This results in a strongly nonlinear dependence of the central ion

temperature on the temperature near the half-radius, amplified by radial electric field shear,
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and a similar dependence of the particle transport. As shown by the increasing deviation from

toroidal ITG marginal stability at high temperatures, the effect of the radial electric field

becomes dominant over that of toroidal ITG marginal stability in the core as the temperature

increases. However, the stabilizing effect of the density gradient on the toroidal ITG mode

also contributes to the mutually reinforcing character. Our model describes a situation in

which the ion thermal energy transport and particle transport are strongly coupled through

the effect of the radial electric field (as well as through toroidal ITG marginal stability),
resulting in a strong nonlinearity that tends to amplify small changes, in either the ion

temperature or the thermal ion density or both, that arise in the outer half-radius. Lithium

pellet conditioning diminishes the wall fueling source, affecting the density profile in the outer

half-radius, providing the seed for strong core improvements.

Although we have not modeled the density profile, as a consequence of ignoring trapped

electron destabilization and other modes such as the ion-mixing mode, the effect of radial

electric field shear on particle transport is supported by a vast H-Mode literature.

4.8 Conclusions

In this chapter we have considered the correlation between ion thermal energy and particle

transport observed empirically in a variety of peaked profile regimes. Performing a transport

analysis of conditioning experiments in TFTR supershots, we demonstrated this coupling

over wide variations in the density peakedness parameter induced by ohmic conditioning,

boron pellet injection, and lithium pellet injection. Specifically, the ion thermal diffusivity

and electron particle diffusivity varied strongly together in the core with changes in the

edge recycling, while no correlation was observed in the electron thermal transport. Our

transport analysis results confirm the statements of Ref. [47], "The improvement in the plasma

performance associated with Li pellet injection is correlated to changes in the same parameters

that correlate with TE in supershots without Li pellets. In this regard, the Li pellets seem

to result in an extension to higher currents and higher confinement times of the supershot

regime rather than in a fundamentally new confinement regime."

On this basis, we considered controlled experiments in which the number of pre-beam

lithium pellets was varied, resulting in factor of two variations in central ion temperature. In

these experiments we successfully simulated the ion temperature profiles and radial electric

field simultaneously, demonstrating a nonlinear increase in the importance of radial electric

field shear stabilization with temperature. We have proposed an explanation for the strong

sensitivity of supershot core particle and energy confinement to edge recycling. In this model,
we have referred to lithium pellet conditioning as a method for reducing the edge particle
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influx, with no other distinguishing characteristics. The model we propose, to be complete,

should be augmented with a treatment of trapped-electron modes, trapped ion modes, and

modes related to the ion-mixing mode, so that the density profile can be accurately predicted.

The basic mechanism we have suggested can be described without relying on estimates of

ITG nonlinear saturation via the expedient stability condition of Sec. 3.6.



Chapter 5

Perturbation Experiments

5.1 Helium Puff Perturbation

5.1.1 Plasma Response

Because of the strong sensitivity of core supershot confinement to edge recycling, small

amounts, of order 10 Torr-liters, of 100% recycling helium gas have drastic effects on perform-

ance when puffed into the edge of robust supershot plasmas. The degradation in confinement

varies roughly in proportion to the size of the puff. Small helium puffs have been used in

perturbative transport studies of supershots with the aim of testing the proximity to toroidal

ITG marginal stability [210, 178] in the abstract sense, examining the effect of edge recyc-

ling on edge ion temperature [48], perturbing the q-profile [211], and testing the effect of ion

Landau damping on the stability of TAE modes [212]. Gas puff perturbations have not yet

been used to isolate the effect of radial electric field shear.

Here we reconsider high-performance discharges originally taken under rather robust con-

ditions as part of the TAE mode study [212] (#75830, Pb = 21 MW, Ip = 2.0 MA, BW = 5

T, Ro/a = 2.52/0.87, fie = 3.15 x 1019 m - 3 , Eb = 100 keV, Zeff = 2.2, slightly co-dominated

NBI). Tail-end lithium pellets were injected into the post-heating phase of preceding dis-

charges. The reduced recycling and high power operation resulted in well-performing super-

shot plasmas prior to the perturbation. This provides a wide variation in plasma performance

associated with the perturbation, and provides starting conditions in which we predict radial

electric field shear stabilization provides for factor of two increases in the ion temperature.

To provide input data for the ion temperature simulations and to infer the ion thermal

diffusivity, we carry out TRANSP Monte-Carlo analysis [50, 213]. The CHERS ion temper-

ature and velocity data have been reanalyzed with the most recent models for the background

light correction and cross-section energy dependence [59]. In the TRANSP analysis we use
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the Zeff profile from CHERS normalized to the chordal visible Brehmstraahlung emission,
electron temperature profiles from the second harmonic ECE grating polychrometer, and

electron density profiles from the laser interferometer. The helium puff is ignored in the

TRANSP analysis as discussed below. Figure 1 compares the neutron production rate calcu-

lated by TRANSP compared with the measured rate, and the diamagnetic flux calculated by

TRANSP with that measured directly from the diamagnetic loop. Following the helium puff,
the calculated neutron rate is a factor of two too large. This indicates potentially significant

dilution by helium, which was not accounted for in the analysis. We show in the following,
however, that ignoring helium is not expected to have any other significant impact on the

results.

Figure 2 shows the global effects of the 17.5 Torr-liter helium puff 620 ms after the start

of neutral beam injection. The density peakedness ne(O)/(ne) drops by a factor of two in

a particle confinement time and does not recover. A similar discharge without perturbation

(#75832) is shown for comparison. The global energy confinement time in the supershot

phase is twice that of L-Mode ITER89P scaling before the puff. After the puff, it decays

to the L-Mode scaling value in one energy confinement time, on the same timescale that

characterizes the change in peakedness. The loss of plasma stored energy occurs over a time

roughly twice as long. The evolution of the electron density indicates increased edge recycling

following the puff. The rise during the first particle confinement time following the puff is

due in part to the helium and in part to increased hydrogenic and carbon influxes, where the

relative contributions are not directly measured.

Figure 3 shows the edge conditions during the helium puff perturbation. The Ha and

CII light increase by a factor of five and remain elevated with a very slow relaxation. The

observed increase in the edge Ha and CII light occurs on the more rapid timescale during

which the energy confinement time changes, rather than the longer timescale over which most

of the energy is lost. Surprisingly, the hydrogenic edge influx (proportional to the Ha light)

slowly decreases during the same time the plasma stored energy decreases. Nevertheless,
immediately following the perturbation, the increase in the Ha light projects to 47% decrease

in confinement time using the scaling TE (o (Ha)-0.24 [202]. This is quite close to the -49%

observed change in TE, which goes from 175 ms to 90 ms following the puff. This may be

related to the fact that transport analysis of helium-spoiled supershot plasmas [34] shows

that the confinement trends are indeed characteristic of the L-Mode regime as described

by, e.g., the ITER-89P empirical scaling. The only pronounced difference between helium-

spoiled L-Mode plasmas and comparable high-recycling deuterium plasmas seems to be that

the helium-spoiled cases reach significantly higher ion temperatures. This may be related to

dilution as discussed in the following sections.
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Figure 1. Agreement between kinetics and magnetics. (a) DD neutron rate calculated by TRANSP from
measured profiles compared with that measured directly. Following the helium puff, the calculated neutron
rate is a factor of two too large. This indicates significant dilution by helium, which was not accounted
for in the analysis. (b) Diamagnetic flux from TRANSP agrees well with result from diamagnetic loop
measurement.
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Figure 3 also shows that the 25% drop in edge ion temperature following the spoiling is

associated with a more drastic 71% drop in central ion temperature that occurs over a time

scale 150 ms following the puff. Most interesting, the drop in central ion temperature begins

immediately at the time the puff begins, rather than following the change in central density,
which actually decreases, as shown in Fig. 3. This decrease in central density may be due to

the loss of beam penetration to the core that results from the increased electron density in

the outer region. The total stored energy does not change much during this time.

This behavior is consistent with the destruction of a transport barrier located near the

half-radius. Figure 4 shows the drastic factor of four change in the ion temperature profile is

localized primarily to the inner half-radius. The evolution of the electron density profile shows

the gas puff has reached the half-radius in 40 ms, and that it effectively removes the region of

positive curvature from the density profile there in a period of 120 ms. The practical stability

condition of Chapter 3 would predict an immediate decrease in central ion temperature in

accord with that observed.

Figure 5 shows the radial electric field profile calculated from measured profiles using the

TRV code, valid for arbitrary collisionality. Prior to spoiling, a shear layer exists over the

radial range r/a = 0.3 - 0.4. Following spoiling, the radial electric field profile is effectively

flattened in the core, relaxing to a broad profile determined by the toroidal velocity. Figure

6 shows the corresponding evolution of the peak shearing rate from the TRV code and ion

thermal diffusivity inferred from the TRANSP code. The localized peak in the shearing rate

near the third-radius disappears while the ion thermal diffusivity inside this radius sharply

increases in the first 120 ms following the puff.

5.1.2 Temperature Profile Simulations

Here we estimate the effect of radial electric field shear by calculating the ion temperature

profile both with and without it, using the models described in Chapter 3. Figure 7 shows the

temporal evolution of calculated and measured central ion temperatures. The model with self-

consistent neoclassical radial electric field reproduces the high-performance supershot phase

and the L-Mode phase following the helium puff quite well. Without radial electric field

shear, the original IFS-PPPL model reproduces 63% of the difference between the L-Mode

and supershot phases, and reasonably matches the temperature in the spoiled L-Mode phase.

The emerging importance of radial electric field shear at higher temperatures, predicted in

Chapter 3, is apparent from the contrasting results of the IFS-PPPL model without shear-flow

stabilization, which is 36% low in the supershot phase.

The details of the ion temperature calculations before (3.45 sec) and after (3.85 sec) the

helium puff perturbation are shown in Fig. 8. The carbon temperature profiles calculated
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from the practical stability condition in the inner half-radius are shown, as well as those from

the fully nonlinear simulations with self-consistent neoclassical radial electric field for r/a <

0.85. The agreement is reasonable and the difference between the L-Mode and supershot

phases is well-reproduced. The comparison of calculated growth rate and shearing rate

shows that strong or nearly complete shear-flow stabilization is estimated in the region r/a =

0.25 - 0.50 before spoiling. This stabilization is entirely and permanently eliminated by the

helium puff, effectively causing the energy stored in the core to spill into the outer region

in our interpretation. The outer region suffers a loss of toroidal velocity as well in the

L-Mode phase. The volume-integrated thermal ion kinetic energy is the same before and

after the perturbation, expressing a tradeoff of ion density and temperature. The change in

temperature gradient scale lengths show that toroidal ITG marginal stability, in the sense

described by the IFS-PPPL parameterization, is also influential as described in Sec. 3.6.

The effect of the flattened electron density profile is coupled strongly to the temperature

gradient scale length in the inner half-radius. Shear-flow stabilization maintains stronger

temperature gradients before spoiling than mandated by toroidal ITG marginal stability

(under the approximations discussed in Chapter 1).

Next we justify our neglect, for simplicity, of finite concentrations of helium in the plasma

mixture. Figure 3(a) shows that significant hydrogenic recycling accompanies the recycling

of the helium following the puff. However, we presently have no direct means of separating

the contributions of helium, deuterium, and carbon to the electron density rise following the

puff. Two constraints on the helium concentration exist. First, assuming all helium atoms

are absorbed by the plasma, and given the measured increase in the total number of plasma

electrons, the number of helium atoms in the plasma cannot exceed half this value. We find,

with a measurement of the gas valve pressure and its volume, that 19.63 Torr-liters at room

temperature, or 6.87 x 1020 electrons were contained in the puff. The measured increase in the

total number of plasma electrons was 7.49 x 1020, which leads to an estimated concentration

nHe4/ne 0.46. However, this is larger than the number of plasma electrons left over after

subtracting the beam and carbon impurity contributions from the electron density. Second,
to determine a more realistic upper bound on the helium density, we perform a sequence

of SNAP analyses while artificially varying the helium concentration, assuming a helium

density profile in the shape of the electron density profile (this is in general supported by

more elaborate simulations of the helium transport using measured diffusion coefficients and

pinch velocities [214]). We find an upper bound of 37% helium using this technique. Starting

by neglecting helium, we determine the ion thermal diffusivity Xi from TRANSP. Holding Xi

constant, we predict Ti, using the SNAP code, for various helium concentrations up to 37%.

Because a similar helium plasma has half the number of ions, VTi must be more negative
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to maintain constant -niXiVTi, assuming Xi is unaffected by the presence of helium. If

the ion heat transport followed Bohm scaling, then Xi would be a factor of two lower in a

helium plasma relative to deuterium, while gyro-Bohm scaling predicts a stronger decrease of

1/23/2. We assume Xi remains unchanged for simplicity, in view of the fact that the mixture is

dominated by deuterium and the behavior of Xi in helium relative to deuterium plasmas is not

well-documented or included in the IFS-PPPL parameterization we use. Varying the helium

concentration in SNAP, starting from zero, takes the calculated central temperature from

12.25 to 15.75 keV. Adding this range of temperatures gives the error bars on the calculated

ion temperature in Fig. 7 following the helium puff. The helium fraction is predicted to be

20% for a similar discharge #61206, using a more detailed model [214] that assumes the

initial electron density rise is due entirely to helium and the diffusivity and pinch velocity

are typical of those measured by the CHERS diagnostic [215].

These results provide experimental evidence that shear flow stabilization is an effect strong

enough to double the ion temperature in high-performance supershot plasmas. Perturbations

that flatten the density gradient, and the radial electric field profile, while simultaneously

increasing the linear toroidal ITG growth rate, result in a decay to L-Mode performance

within a confinement time. The evolution of the temperature and density profiles is consistent

with a sudden release of stored energy from the plasma core to the outer region. The overall

effect of the perturbation is consistent with the sudden removal of a transport barrier, or

near transport barrier, just inside the half-radius.

Finally, Fig. 9 demonstrates that the parameter characterizing the radially and poloidally

local effect of perpendicular shear flow on the local linear stability of the toroidal ITG mode

with adiabatic electrons [110, 105] does not change as a result of the perturbation.

Chapter 5. Perturbation Experiments
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Figure 2. Global effects of helium puff in lithium-conditioned supershot. (a) The density peakedness drops
to 1/2 its pre-puff value in a particle confinement time and does not recover. Shown relative to a similar
discharge without perturbation (#75832). (b) The global energy confinement time in the supershot phase is
twice that of L-Mode ITER89P scaling, decaying to the L-Mode scaling value after the puff. The confinement
is lost in one confinement time. (c) The total stored energy and injected neutral beam power. (d) Evolution
of the electron density. Note the rise during the first particle confinement time following the puff can be
assumed to be due primarily to the helium. Significant helium remains in the plasma.
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Figure 3. Edge conditions during helium puff perturbation of supershot plasma. (a) H-a and CII light, show-
ing permanently increased recycling. (b) The edge ion temperature changes, but not enough to significantly
influence the central temperature. (c) Measured carbon temperatures at the magnetic axis, half-radius, and
edge, showing the nonlinearity in Ti. The core collapses most severely.
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Figure 4. Profile evolution during helium puff into lithium-conditioned supershot. (a) Measured ion temper-
ature profile before and after shows nearly a factor of four decrease as as result of the puff. (b) Electron
density profile evolution, showing the profile flattening from the outside in.
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Figure 5. Radial electric field profile, evaluated from TRV code using measured profiles (neoclassical, valid
for arbitrary collisionality). Shear layer in supershot near r/a - 0.35 is flattened after helium puff.
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Figure 6. Ion thermal diffusivity and shearing rate evolve together in the core during helium spoiling. (a)
Peak shearing rate, evaluated from measured profiles using the TRV code, drops drastically, eliminating
region of strong shear-flow stabilization. (b) The ion thermal diffusivity from the TRANSP code increases
simultaneously by a large factor within the radius corresponding to the peak shearing rate.

~Cy~1 Tp1 iim Puff prt,rhitnn

0

I,)
0

ci

3.9

!;. I. ,oirnP I . r "h fn .qIV.1R1



132 Chapter 5. Perturbation Experiments

40

30

I 20

10

0

TFTR #75830N02

3.4 3.5 3.6 3.7 3.8 3.9
Time (sec)

Figure 7. Temporal evolution of simulated and measured central ion temperature. The model with self-
consistent neoclassical radial electric field well-reproduces the high-performance supershot phase and the
L-Mode phase following the helium puff. Without radial electric field shear, the original IFS-PPPL model
reproduces 63% of the difference between the L-Mode and supershot phases.
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Figure 8. Details of ion temperature simulations before (3.45 sec) and after (3.85 sec) helium puff perturb-
ation. (a) Dashed line is carbon temperature from experiment, dotted line is temperature calculated from
shear-flow marginal stability condition in inner half-radius, solid line is from model with self-consistent ra-
dial electric field. (b) Comparison of growth rate and shearing rate. Strong or nearly complete shear-flow
stabilization is estimated in the region r/a = 0.25 - 0.50 before spoiling. The outer region indicates a loss of
toroidal velocity following the puff as well. (c) Volume-integrated thermal ion kinetic energy indicates the ion
thermal energy is unchanged by the perturbation. This is consistent with the simulations. (d) The inverse
and inverse critical temperature gradient scale lengths. The effect of the flattened electron density profile
influences toroidal ITG marginal stability in the inner half-radius. Shear-flow stabilization maintains stronger
temperature gradients before spoiling than mandated by toroidal ITG marginal stability ( as described by
the IFS-PPPL parameterization, discussed in Chapter 1).
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Figure 9. The linear stability parameter, characterizing the radially and poloidally local effect of E x B shear
on the growth rate, does not change significantly during helium spoiling. This shows the dominant linear
effect of Doppler shear, which is poloidally nonlocal, must be included. These estimates assume Ti = T and
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5.2 Deuterium Pellet Perturbation with Balanced Neutral Beam

Injection

Perturbation experiments with balanced beam injection are ideal tests of the model for the

notch and radial electric field proposed in Chapter 2. Here we consider shot #75936, which

has almost exactly balanced NBI, slightly counter-dominated. Following the perturbation,

the density profile recovers entirely, while the ion temperature profile suffers a lasting factor

of three degradation. Comparing the two times when the density profile is the same isolates

the effect of VTi on the impurity toroidal velocity, which closely resembles the radial electric

field profile with balanced beam injection. By isolating the effect of the ion temperature

gradient, this provides an experimental illustration of the connection between ion thermal

confinement and the radial electric field proposed in Chapter 3.

The global effects of the deuterium pellet perturbation are shown in Fig. 10. Two similar

discharges are shown, one with a helium puff (#75932) and one with a deuterium pellet

(#75936). The machine parameters are #75936: Pb = 26.2 MW (11 MW tritium), Ip = 2.0

MA, B, = 5 T, Ro/a = 2.52/0.87, Tcofr = -0.05, fie = 3.8 x 1019 m - 3 , Eb = 100 keV,

and Zeff = 2.6, where Tcofr = (Tco - Tctr)/(Tco + Tctr) and T is the beam torque. Fig.

10(a) shows the density profile peaking factor ne(O)/(ne) drops by a factor of two for both

the helium puff and pellet perturbation. While the effect of the helium puff is felt after

a confinement time, the pellet causes instantaneous flattening of the density profile. The

helium causes a permanent flattening, while the pellet case recovers in a particle confinement

time. As shown in Fig. 11(a), the Ha light decays on this same timescale in the pellet case,
and remains elevated in the helium case, demonstrating their different recycling behaviors.

Figure 10(b) shows the effect on the global energy confinement time. The helium puff degrades

performance permanently to L-Mode levels, while the pellet appears to make a long, slow

partial recovery during the remaining 400 ms of beam injection. The total stored energy and

neutral beam power for the pellet case are shown in Figure 10(c). Figure 10(d) shows the

effect of the pellet on the electron density measured by fast laser interferometry, at chords

intersecting the magnetic axis, the half-radius, and near the edge. The increment in density

at the half-radius is slower than near the edge, indicating the pellet does not penetrate beyond

the half-radius. The extra electrons near the outside increase the ionization rate of incoming

beam neutrals, diminishing the beam penetration to the axis. This results in a decrease in

the central density.

The effect of the perturbation on the edge conditions is shown in Fig. 10. As discussed

above, the helium puff results in increased carbon light and hydrogenic recycling with a lasting

effect. The deuterium pellet, on the other hand, only transiently increases the recycling, with
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a smaller permanent effect primarily on the hydrogenic influx. There is no lasting effect of

the pellet on the carbon influx. The evolution of the ion temperature at the magnetic axis,
half-radius, and near the edge is shown in Fig. 10(c). The central temperature drops by a

factor of three, while the temperature at the half-radius drops by only a factor of two, and

as shown in Fig. 10(d), the temperature at the edge by only 20%. The ion temperature does

not show signs of recovery within the remaining 400 ms of neutral beam injection.

The density profile recovers relatively quickly and completely, while the ion temperat-

ure profile suffers a large and lasting degradation, demonstrating hysteresis of the energy

confinement time with respect to the peaking factor ne(O)/(ne). This violates the empir-

ical relation TE/ IT ER 8 9 P ,' ne(O)/(ne) discussed in Chapter 4. This phenomenon was first

observed in Ref. [216] for the case of carbon pellet perturbations. This study confirmed pro-

file resiliency of the electron temperature [217] following the pellet, in addition to observing

that the electron stored energy actually increases transiently as a result of the perturbation.

Most interesting, however, was that in contrast with the large degradation and slow recovery

suffered by supershots, L-Mode plasmas suffered no loss of stored energy during deep carbon

pellet perturbations. We consider this supporting evidence for the fundamental difference in

core confinement characteristics between L-Mode and supershot plasmas resulting from radial

electric field shear stabilization. These 1990 experiments were also carried out with balanced

neutral beam injection, and our reanalysis of the velocity data finds a similar velocity profile

notch after the CHERS cross-section correction is applied, confirming the results of Chapter

2 with a different CHERS viewing geometry.

The electron density and ion temperature profiles before and after then perturbation are

shown in Fig. 12. A fortuitous loss of one neutral beam source following the perturbation

allowed the electron density to recover a profile virtually identical with the one prior to the

pellet. Despite this, the ion temperature takes on an effectively L-Mode profile with Ti - Te

following the perturbation, while the electron temperature is not strongly affected.

Figure 13 shows the effect of deuterium pellet perturbation on the radial electric field.

Two times, before and after the pellet perturbation, are shown. The electron density pro-

file is the same at the two times. The measured carbon toroidal velocity profile before the

perturbation has a large notch at the radius of steepest ion temperature gradient. Following

the pellet perturbation, the notch depth is a factor of three smaller, corresponding to the

remaining thermal hydrogenic density gradient contribution. The neoclassical radial electric

field profile before the perturbation has a deep well corresponding to the notch. When the ion

temperature gradient diminishes following the pellet, the depth of the well also diminishes.

The peak E x B shearing rate is a factor of two smaller after the perturbation. This demon-

strates the basic mechanism we propose through which the temperature profile and radial
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electric field are connected. For a constant thermal ion density profile, the depth of the radial

electric field well is proportional to the ion temperature gradient, as shown in Chapter 3.

This neoclassical prediction is supported by the behavior of the measured toroidal impurity

velocity in Fig. 13 together with the relation E, -- VwxBe + {neoclassical corrections}. Be-

cause the radial electric field in the outer half-radius is determined primarily by the toroidal

velocity, which changes less drastically there during the perturbation, the shear in the radial

electric field between the bottom of the well and the half-radius is determined by the ion

temperature gradient. Assuming a stabilizing effect of radial electric field shear, a nonlinear

relation between the ion temperature gradient and the ion temperature emerges, as shown in

Chapter 3. While this demonstration is not proof of the role played by radial electric field

shear stabilization, it serves to illustrate the basic mechanism connecting the ion temperat-

ure gradient and radial electric field, independently of the neoclassical theory, provided one

believes the qualitative relation Er - VxBe + {neoclassical corrections}. This follows from

the large Z. limit of the radial momentum balance equation for impurities.

The pellet perturbation is also a convenient test of the effect of the temperature gradient

on the linear growth rate.1 Figure 14 compares the linear growth rates from IFS-PPPL

toroidal ITG parameterization and "FULL" code. The FULL code is comprehensive with

the exception of rotation and finite banana width, and the fact that it is a radially local code

employing the ballooning representation (nq > 1 to neglect radial variation, where n is the

toroidal mode number). The latter proves to be a good approximation for the fastest growing

modes in these plasmas, which have toroidal mode numbers n = 20 - 100. The FULL code

is a eigenvalue code, which requires a labor-intensive search for the fastest-growing mode

by manually maximizing the growth rate over n. This value of n is found at the radius

of peak pressure gradient, and the same value of n is then used to trace out the growth

rate as a function of radius. The code is electromagnetic, but is restricted to electrostatic

modes here. The recent gyrokinetic initial value code of Kotschenreuther [21, 90] has been

benchmarked against the FULL code [27], which improved the collision operator for electrons

in the FULL code. The present IFS-PPPL rough parameterization for the maximum (over

kepi) linear toroidal ITG mode growth rate is based on runs of Kotschenreuther's code.

Figure 14(a) compares the two results prior to pellet injection, when the ion temperature

gradient is large. The agreement is generally good, and the real frequency, shown in Fig. 15,
is negative, indicating a mode propagating in the ion diamagnetic direction. The FULL code

1A run of the FULL code [26, 27, 28, 17] was completed on request by G. Rewoldt for the two times,
to obtain the growth rate (for TRANSP run N02, which used an older CHERS ion temperature analysis
than N03, resulting in a lower central ion temperature in N02). We compare this with the simple IFS-
PPPL expression used for 3" in the model and find reasonable agreement, although the trapped electron
destabilization of the even mode can be important.
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finds the growth rate is maximized for n = 56 corresponding to kopi = 0.79. Figure 14(b)

compares two results after pellet injection, when the ion temperature gradient is reduced,
and the electron density profile is the same as in Figure 14(a). Here a discrepancy is apparent

where the real frequency is positive, e.g., when trapped electron destabilization of the even

parity (about the midplane) mode becomes important. The parameterization, found in the

near-flat density gradient limit, does not accurately describe trapped electron destabilization,
consistent with the form assumed, which involves a hard threshold in the ion temperature

gradient. At this later time, the FULL code finds the growth rate is maximized for n = 84

corresponding to kopi = 0.86. Note these runs are based on TRANSP run N02, which used

an older version of the CHERS ion temperature, which is significantly lower near the magnetic

axis than the present one. Overall, the parameterization appears adequate to describe the

growth rate when the ion temperature gradient is strong and trapped electron destabilization

is not important. Finally, the consistency of the data used in TRANSP run N03 is shown in

Fig. 16.
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Figure 10. Global effects of supershot perturbations. (a) Comparison of effects of deuterium pellet and helium
puff, 600 ms after the start of neutral beam injection on the electron density profile peaking factor. The
density profile more than fully recovers from the pellet perturbation in approximately a particle confinement
time. (b) Effect on global energy confinement time rE. While the density profile recovers from the pellet,
the energy confinement suffers a lasting degradation with a possible slow recovery. (c) Evolution of the
total stored energy from magnetics and the neutral beam power for the pellet perturbation. One neutral
beam source was lost following the pellet, increasing the beam torque slightly in the counter direction. (d)
Evolution of electron density chords during the pellet perturbation. The magnetic axis corresponds roughly
to R = 2.65 m, while the edge is near R = 3.35 m.
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Figure 11. Edge conditions during supershot perturbation. (a) Hea light (proportional to edge hydrogenic
influx) for deuterium pellet and helium puff perturbations. (b) CII light for deuterium pellet and helium puff
perturbations. (c) Ion temperature at magnetic axis, half-radius, and edge for deuterium pellet perturbation.
(d) Edge ion temperature for deuterium pellet perturbation.
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Figure 12. Profiles before and after deuterium pellet perturbation at 3.6 seconds. (a) Ion temperature profile
at 3.45 sec. and at 3.87 sec. The electron temperature, also shown, does not change much. (b) Electron
density profile is flattened by the pellet and recovers, by 3.87 sec, to a profile identical with the one at 3.45
sec., prior to the perturbation.
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Figure 13. Effect of deuterium pellet perturbation on the radial electric field. Two times, before and after
the pellet perturbation, are shown. The electron density profile is the same at the two times. (a) The
measured carbon toroidal velocity profile before the perturbation has a large notch at the radius of steepest
ion temperature gradient. Following the pellet perturbation, the notch depth is a factor of three smaller,
corresponding to the remaining density gradient contribution. (b) The measured ion temperature profiles
before and after the perturbation. (c) The neoclassical radial electric field profile before the perturbation
has a deep well corresponding to the notch shown in Frame (a). When the ion temperature diminishes, the
depth of the well also diminishes. (d) The peak E x B shearing rate is a factor of two smaller after the
perturbation.
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Figure 16. Consistency of input data used in TRANSP run 75936N03. (a) Comparison of DT neutron rates
calculated from measured profiles and measured directly. (b) Comparison of diamagnetic flux calculated and
measured.
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5.3 Deuterium Pellet Injection with Recovery

Among the last experiments performed on TFTR were a series of perturbation experi-

ments motivated by the suggestion, made in this work, that pellet and helium puff perturba-

tions could be used to study the effect of radial electric field shear on ion thermal confinement

in supershot plasmas. Here we consider a supershot pellet perturbation experiment similar to

the one of the preceding section. This experiment, however, was performed with an extended

period of neutral beam heating following the perturbation. The purpose of this was to look

for signs of a possible long timescale recovery of the ion temperature. The plasma parameters

for discharge #104700 were Ip = 1.6 MA, Pb = 12.1 MW, B, = 4.8 T, Ro/a = 2.51/0.86

m/m, fe = 2.4 x 1019 m - 3 , Eb = 100 keV, and Tcofr = 0.25 co-dominated neutral beam

injection. The slow recovery is indeed observed on a timescale several energy confinement

times, twice the time required for the recovery of the density profile. We show that the model

with Er successfully reproduces the observed hysteresis with respect to the density peaking

factor during this slow recovery. The longer timescale for energy recovery is shown to consist

of two stages:

1. An initial period during which the density profile recovers entirely and the ion temper-

ature increases, and during which radial electric field shear is unimportant, and

2. A roughly equal period following this in which radial electric field shear becomes im-

portant and leads to further increases in the ion temperature of up to 40%.

The differing timescales for the recovery of density and temperature profiles in this experiment

help separate the estimated effect of shear flow stabilization from the calculated influence of

toroidal ITG marginal stability. The progressive importance of radial electric field shear at

higher temperatures therefore provides an explanation for the slow recovery of the plasma

stored energy relative to more rapid recovery of the density profile.

The global evolution of the discharge #104700 perturbed by a deuterium pellet 700 ms

after the start of beam injection is shown in Fig. 17, together with a similar discharge #104697

that did not have a perturbation. The density profile recovers in 300 ms to a slightly more

peaked shape in 300 ms, matching the long-term evolution of the unperturbed discharge. On

the other hand, the global energy confinement time recovers on a timescale twice as long.

The recovery is not complete, but matches the "rollover" in performance associated with a

gradually increasing edge influx as indicated by the unperturbed case. The unperturbed case

had slightly higher heating power. The electron density evolution at the magnetic axis, the

half-radius, and the edge shows that the pellet penetrated beyond the half-radius but not

all the way to the magnetic axis. The central density increases slightly following the pellet
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and remains elevated for 800 ms. Virtually identical behavior was obtained in a subsequent

discharge #104710.

The edge conditions are shown in Fig. 18. Following the pellet, the hydrogenic influx

settles to a slightly higher value than before the pellet on the 300 ms timescale characterizing

the density equilibration. The carbon light is actually lower following the pellet. The edge ion

temperature recovers on the longer 600 ms timescale on which the energy confinement time

recovers. The central temperature also recovers on this timescale, but not completely. The

increased hydrogenic recycling following the pellet is consistent with the incomplete recovery

of the energy confinement, according to the empirical scaling TE oc (Ha)- 0 .24 [202].

The ion temperature and electron density profiles before, during, and after the pellet

perturbation in #104700 are shown in Fig. 19. The pellet penetrates to r/a - 1/3, and

actually steepens the ion temperature gradient inside this radius, while cooling the plasma

outside this radius. Following the pellet, the temperature profile recovers nearly the same

shape but a lower temperature over the entire cross-section. The electron density profile is

made somewhat parabolic by the pellet, and recovers with a 20% higher central density and a

more peaked profile. Interestingly, the density gradient is larger inside the half-radius upon

recovery. The inverse ion temperature gradient scale lengths are shown in Fig. 21. The ion

temperature gradient inside the third-radius steepens following the pellet. This is consistent

with the behavior of the critical gradient for the toroidal ITG mode, which also increases in

the inner third-radius.

The effect of the pellet on the E x B shearing rate is shown in Fig. 20. The radial electric

field and shearing rate profiles are flattened immediately following the pellet. The toroidal

ITG linear growth rate and E x B shearing rate are driven in opposite directions during

the perturbation. The shearing rate, evaluated using the TRV code from measured profiles,
recovers on the slow 600 ms timescale to attain a 40% lower peak value. This slow evolution

is consistent with that of the energy confinement time.

We now turn to simulations of the slow ion temperature evolution using the model with

self-consistent neoclassical radial electric field. Figure 22 shows the results of the original

IFS-PPPL model and the model with self-consistent radial electric field. The top frame

compares the simulations with the measured carbon temperature at the magnetic axis. Al-

though at both radii, the model signficantly underestimates the central ion temperature, the

model with self-consistent radial electric field does reproduce the correct slow timescale for

recovery of the ion temperature. The neutron rate calculated by the TRANSP code strongly

overestimates the measured neutron rate, while Zeff - 1.2. A more recent analysis using the

SNAP code indicates Zeff - 2, suggesting a problem with the normalization of the visible

Brehmstraahlung emission in the TRANSP run on which the simulation is based. This may
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underly the discrepancy near the magnetic axis, because dilution by impurities is generally

stabilizing [90] and would raise the predicted ion temperature. The resolution of this minor

discrepancy is in progress and will be left for a future publication.

The Figure 22(b) compares the simulated and measured ion temperatures at r/a = 0.2

with better results. The model with self-consistent radial electric field reproduces the evolu-

tion of the ion temperature at this radius, including the long time scale recovery. Before the

pellet, the original IFS-PPPL model predicts a temperature 35% lower than the model with

shear flow stabilization. Immediately following the pellet, the two models find similar temper-

atures, consistent with the predictions of Chapter 3 that radial electric field shear stabilization

becomes progressively more important at higher temperatures. The slow recovery following

the pellet conveniently delineates the effect of radial electric field shear. At 3.7 seconds, 500

ms after the pellet perturbation, the temperature calculated by the IFS-PPPL model satur-

ates while the measured temperature continues to increase for another 500 ms. The model

with self-consistent radial electric field successfully follows this continued evolution.

Finally, because the TRV code is not fully time-dependent (modifications are in progress

to add this capability), it is prudent to examine the approximations made along these lines.

Because we do not predict the density, the time-dependence arises through the thermal inertia

term (3/2)Ot(niT). In the TRV code, this term is included in the ion power balance as read

from TRANSP; it is not simulated. While at first this treatment may appear to unfairly

influence the simulation with information from the Ti measurement, this is not a significant

effect during the slow recovery following the pellet. The size of the thermal inertia term,

relative to the total power density delivered to the ions, scales as the ratio of the ion thermal

energy confinement time to the characteristic time for slow ion pressure changes. In the

pellet perturbation experiment, we consider a slow recovery of the ion temperature lasting

several (between three and six) energy confinement times. Accordingly, the thermal inertia

term should be of order 25% or less of the total ion power density. Figure 23 shows the

thermal inertia term (3 / 2)Ot(niTi) as a fraction of the total power density conducted and

convected by the ions, taken from TRANSP. During the time 3.4 to 3.7 seconds, the fraction

increases from -20% to +10%, and diminishes thereafter. Therefore, using the measured ion

temperature to evaluate the thermal inertia term in the power balance does not influence the

evolution of the calculated ion temperature strongly. The simulation successfully follows the

slow recovery of its own accord.

Further work might test against "supershot overdrive" experiments, which provided per-

turbations essentially opposite the gas puff and pellet perturbations. The observed hysteresis

is qualitatively consistent with the coupling of particle and ion thermal energy transport by

radial electric field shear as discussed in Chapter 3. These experiments [2001 made use of
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Figure 17. Global effects of deuterium pellet perturbation 700 ms following the start of neutral beam injection

(#104700). (a) The electron density profile recovers on a timescale 300 ms, and is more peaked after the
pellet. (b) The global energy confinement time recovers much more slowly than the density profile, on a
timescale twice as long. (c) The beam power is constant and the stored energy does not fully recover. (d)
Electron density chords near the magnetic axis, the half-radius, and the edge.
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a initial doubling of the neutral beam power for roughly an energy confinement time. The

initial beam powers were well beyond levels which would cause a disruption if maintained in

equilibrium. The technique produced highly peaked density profiles which were associated

with enhanced energy confinement times TE/ L-Mode nr(0)/(ne) 3.5. In some cases,

the improvements were sustained for several energy confinement times, demonstrating a re-

markable hysteresis. The fact that the peaked density profiles were self-sustaining, well after

the increased fueling ceased, illustrates another case where the the density profile shape and

beam fueling profile are decoupled. The energy confinement time follows the shape of the

electron density profile.
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Figure 18. Edge conditions during deuterium pellet pellet perturbation in #104700. (a) Ha and CII light.
The increase in Ha light projects to a -4% change in TE, but the observed change is -18%. (b) The change
in edge ion temperature is of order -13% upon recovery. (c) The change in central ion temperature upon
recovery is -13% as well. The ion temperature at the half-radius and edge are also shown.
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Figure 19. Ion temperature and electron density profiles before/during/after pellet perturbation in #104700.
(a) The pellet penetrates to r/a - 1/3, and actually steepens the ion temperature gradient inside this radius,
while cooling the plasma outside this radius. Following the pellet, the temperature profile recovers nearly the
same shape but a lower temperature over the entire cross-section. (b) The electron density profile is made
somewhat parabolic by the pellet, and recovers with a 20% higher central density. The density gradient is
larger inside the half-radius upon recovery.
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Figure 20. The deuterium pellet flattens the radial electric field profile and transiently eliminates the peak
in the shearing rate in the core. The shearing rate does not fully recover following the pellet. The growth
rate, due to density profile flattening, moves strongly in the opposite direction during the perturbation.
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Figure 21. Evolution of ion temperature gradient scale lengths during deuterium pellet perturbation. (a)
Temperature gradient steepens following the pellet for r/a < 1/3. (b) Critical gradient also steepens at the
same radii, suggesting an influence of toroidal ITG marginal stability in response to the density gradient.
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Figure 22. Calculated and measured ion temperatures for the deuterium pellet perturbation experiment
#104700. (a) Both the model with self-consistent radial electric field and the original IFS-PPPL model
fall short of the measured temperature at the magnetic axis. The TRANSP agreement indicates potential
inconsistencies in the input data. (b) The agreement between the calculated and measured temperatures
is better at r/a = 0.2. The model with self-consistent radial electric field successfully reproduces the slow
recovery of the ion temperature profile (relative to the density profile) following the pellet. In addition,
the difference between the results of the original IFS-PPPL model and the model with self-consistent radial
electric field is small at low temperatures.
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(3/2)0t(niTi)/Qi is plotted.

Chapter 5. Perturbation Experiments



Chapter 6

Favorable Power Scaling

6.1 Introduction

On the basis of the radial electric field calculations of Chapter 3, which predict a large

well structure in the radial electric field inside the half-radius in supershots, one may expect

some qualitatively different behavior in the transport characteristics of the core and the

edge. This is indeed observed (51, 218]. Globally, supershots display weak or favorable

global power scaling as reviewed briefly in Chapter 4, evident in the empirical global scaling

TE = 0.024 (ne(O)/(ne))0. 76I,01 8Pb'0 12 [189]. The variables in this scaling are themselves

strongly correlated, i.e, ne(O)/(ne) increases strongly with beam power. This is in marked

contrast with the behavior of L-Mode (degraded) regimes, which are self-defeating to the

extent that TE oc Pb1/2 . Figure 7 of Ref. [34] demonstrates the favorable core scaling of

the experimentally inferred Xi and ne(O)/(ne) with heating power in supershots, relative to

helium-spoiled L-Mode plasmas, over the range of heating powers 7-21 MW. We suggest in

this chapter that the nonlinear coupling of improvements in particle and energy transport,

taking place through radial electric field shear stabilization, underlies these observations. In

the plasmas studied there, ne(0)/(ne) begins to improve with power, departing from L-Mode

behavior, for Pb > 15 MW. At lower powers, the scaling of ne(O)/(ne) with power is similar

to L-Mode. It is also shown, in Fig. 6 of Ref. [34], that the line-average density increases

strongly with beam power. The scaling of the momentum diffusivity X, with temperature is

also addressed in Ref. [34] by carrying out power scans at constant torque with and without

helium spoiling. The resulting behavior of X was found to be very similar to that of Xi.

Because the majority of the kinetic energy, typically 75%, is stored inside the half-radius

in supershot plasmas, where the temperature and density are large, the weak or favorable

global scaling with heating power must be an indication of favorable behavior in the core.
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Table I. Discharges in supershot beam power scan.

Shot Pb(MW) Tcofr Zef fi 1019(m - 3 ) ne(O)/(ne) TE(ms) hermal(ms) rE/rITER89P

79118 5 -0.07 3.30 1.7 1.77 151 102 1.08
79121 8 0.31 2.85 2.0 1.94 161 109 1.41
79014 13 0.15 2.64 2.5 2.40 164 99 1.72
79084 18 0.14 2.62 2.9 2.61 158 94 1.92

This is indeed the case; in the core a very rough effective scaling Xi c 1/T is inferred

experimentally at fixed radius, while in the outer region, Xi degrades with Ti as in the L-

Mode regime [51, 218]. Effectively, the favorable scaling of the core and the unfavorable

scaling of the outer region combine to give a weak global scaling of -E with Pb. Here we

demonstrate that radial electric field shear stabilization is necessary to reproduce the the

favorable scaling of ion thermal confinement in the core. We emphasize that the experimental

result Xi oc 1/Ti is not in fact a local scaling law, but an approximate indication of favorable

temperature scaling in the inner half-radius. The exponent of this inferred scaling changes

with radius, for example. We speak in terms of this result simply to illustrate that our model

reproduces this observation but with an entirely different interpretation.

6.2 Model Simulations

We have selected four deuterium supershot discharges with the same machine setup para-

meters, but differing injected neutral beam powers, ranging from 5-18 MW. The global para-

meters are I, = 1.6 MA, B, = 4.7 T, Ro/a = 2.52/0.87, ie =1.7-3x1019 m - 3 , Zeff = 2.6-3.2,

and quasibalanced NBI with -0.1 < Tcofr < 0.3, where Tcofr = (Tco - Tctr)/(Tco +Tctr) where

T is the beam torque, and beam voltage 100 keV. The parameters are shown in Table I. Here

the thermal confinement time is taken from SNAP analysis [134]. Both the line-average elec-

tron density and ne(O)/(ne,) increase significantly, and Zeff decreases with beam power. The

global energy confinement times show no correlation with beam power, presumeably because

the unfavorable scaling of the outer region and the favorable scaling of the inner region coun-

terbalance. However, nearly a factor of two improvement with respect to the confinement

time from L-Mode scaling is observed over the scan.

Next we simulate the ion temperature profiles over the region r/a < 0.85 using the

modified IFS-PPPL model with self-consistent neoclassical radial electric field as described

in Chapter 3. In Figure 1(a) the ion temperatures from the experiments are shown together

with the simulated ion temperature profiles. The agreement is quite good. Here we use the

diffusivity from the TRANSP code in the TRV code, which more accurately calculates the
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Figure 1. Results for supershot beam power scan. (a) Simulated hydrogenic ion temperature profiles for
r/a < 0.85 compared with experiment. (b) Ion thermal diffusivity simulated by the model with radial electric
field shows the expansion of the region of enhanced confinement with heating power.
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Figure 2. Parametric variation of the ion thermal diffusivity with ion temperature simulated by the model
with self-consistent neoclassical radial electric field as a function of heating power. The simulated scaling in
the inner half-radius is progressively more favorable toward the magnetic axis, while unfavorable behavior is
simulated outside the half-radius.

interspecies ion temperature difference, to obtain the "experimental" hydrogenic temperature

profiles for comparison. This helps to eliminate subtle errors from geometrical factors, source

terms, etc., between the two codes as well. Frame (b) shows the ion thermal diffusivity

simulated by the model with self-consistent radial electric field. The model reproduces the

outward expansion with heating power of the enhanced confinement region r/a < 0.4, while

little change is simulated for the region r/a > 0.4.

Figure 2 shows the simulated behavior of the ion thermal diffusivity Xi at various radii

as a function of ion temperature for the beam power scan. The simulated scaling with

temperature in the inner half-radius is progressively more favorable toward the magnetic

axis, while unfavorable behavior is simulated outside the half-radius. The figure bears a

strong resemblance to the results in Ref. [34, 218], which were inferred from experimental

data by transport analysis using the SNAP code. Figure 3 compares the same plot of Xi,
frame (a) as inferred from the experimental data, and frame (b) as simulated by the model.
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Here we infer the ion thermal diffusivity using TRANSP Monte Carlo analysis, assuming a

convective multiplier of 3/2. The convective heat transport is treated separately, and does not

contribute to the Xi shown. The model reproduces the scaling of the ion thermal diffusivity

with ion temperature at each radius. Given the difficulty in generating this comparison, which

is sensitive to local gradients, the qualitative agreement is taken to be quite reasonable.

Figure 4 compares the ion hydrogenic temperatures simulated using the original IFS-

PPPL model with the values from the experiments. The original model does not reproduce

the favorable power scaling without raLdial electric field shear stabilization, except at the

lowest temperatures. The agreement is good for Pb < 5 MW.

In Fig. 5, the comparison of growth rate and shearing rate for the members of the power

scan is shown. At very low powers, both growth rate and shearing rate are quite small. As

the injected power increases beyond 13 MW, a shear layer is present, initially very near the

magnetic axis. As the power is further increased, the region of strong flow shear expands

toward the half-radius. The comparison of the inverse temperature gradient scale length and

critical inverse scale length are shown also in Fig. 5. The behavior of the toroidal ITG critical

gradient scale length appears to be influential as well, and dominates the simulation at low

temperatures and heating powers in the inner half-radius. As the power increases, shear-

flow stabilization makes the necessary deviation from toroidal ITG marginal stability, in the

sense clarified in Chapter 1, possible so that the measured temperatures are reached. The

qualitative effects shown here are quite similar to those observed with lithium pellet injection,

as shown in Chapter 4. Figure 6 shows the radial electric field Er evaluated from measured

profiles using the TRV code. As the heating power increases, the temperature and density

gradients give increasingly negative contributions in the core, superposed on the broad profile

due to the toroidal velocity. This creates a shear layer that moves outward in radius as the

beam power increases. The important contribution to the shearing rate in Fig. 5 comes from

this shear layer. The lowest power case has very slightly counter-dominated NBI. Similar

co-dominated cases have a broad radial electric field profile with no shear layer.

The three models described in Chapter 3, the modified model with self-consistent neo-

classical radial electric field, the IFS-PPPL model, and implications of the practical stability

condition are compared in the following. Figure 7 shows the agreement of the central tem-

peratures through the scan. The model with self-consistent radial electric field agrees very

well with the experimental values, and therefore reproduces the favorable power scaling of

supershots. The IFS-PPPL model agrees reasonably for very low powers, but progressively

falls short of the experimental temperature as the power increases. This demonstrates that

the influence of the critical gradient is less significant relative to that of the radial electric

field at higher powers. This behavior is also evidence for the nonlinearity in the ion temper-
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Figure 3. Comparison of simulated and experimental scalings of ion thermal diffusivity Xi with hydrogenic
ion temperature Ti. (a) Experimental values as inferred from TRANSP Monte-Carlo analysis. (b) Simulated
values from the modified IFS-PPPL model with self-consistent radial electric field.
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Figure 4. Ion temperatures simulated by the original IFS-PPPL model without shear flow stabilization.
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Figure 5. The shearing rate and growth rate comparison for the supershot beam power scan. At low powers,
shear flow stabilization is unimportant. As the power increases, the shear-flow stabilized region expands
outward toward the half-radius. The increased ion temperature is partly due to the increased critical gradient
together with a comparable contribution of shear-flow stabilization with increased heating power.
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Figure 6. Radial electric field evaluated from measured profiles using the TRV code. As the heating power
increases, the temperature and density gradients give increasingly negative contributions in the core, super-
posed on the broad profile due to the toroidal velocity. This creates a shear layer that moves outward in
radius as the beam power increases.

ature expressed in Sec. 3.6. The analytical practical stability condition reproduces the power

scaling with a slight offset. At 18 MW, which is approximately 1/2 of the total beam power

available on TFTR, the difference in central ion temperatures due to Er is approximately

45%. Thus the effect of radial electric field shear stabilization increases strongly with heating

power.

6.3 Conclusion

Figure 8 compares the model with self-consistent Er to the original IFS-PPPL model as

a function of heating power. This clearly shows, because the model with Er shows excellent

agreement with the experimental values of the ion temperature over this range, that radial

electric field shear stabilization is unimportant at low heating powers Pb < 5 MW, where

the two models give the same temperatures. As the heating power is increased, the results

of the model with and without shear-flow stabilization diverge, and are nearly a factor of

.Cf~~~ fi~.3~ (Innt~lrlsinn 165~



166

0

5 10 15 20 25 30

Ti (0) (keV) [Experiment]

Figure 7. Comparison of central ion temperatures simulated and from the experiments. The model with
self-consistent radial electric field accurately reproduces the favorable power scaling over a factor of three
variation in heating power. The original IFS-PPPL model agrees at very low heating powers, but falls
progressively short at higher powers, demonstrating the increasing importance of radial electric field shear
at higher temperatures.
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two different at the highest power (18 MW) in the scan. We will see in Chapter 7 that the

power level where the two models diverge is approximately the same power level at which

the isotope effect begins to become noticeable. In addition, the qualitative behavior shown

by the practical shear-flow stability condition of Chapter 3 with increasing power is similar

to that for increasing numbers of pre-beam lithium pellets, as shown in Chapter 4.

Favorable power scaling is also characteristic of the hot-ion H-Mode regime. In JT-60U,

for example, the hot-ion H-Mode regime shows favorable power scaling relative to ITER-89P

for Pb > 10 MW of heating power, qualitatively similar to that of TFTR supershot plasmas

[179]. Much of this can be attributed to the incremental energy stored in the H-Mode edge

pedestal, because the edge pressure increases exponentially with heating power [179]. This

may be explained using an approach similar to ours by integrating the practical stability

criterion inward across the transport barrier. In supershots, the edge density is actually

lower than in similar L-Mode plasmas [196], so there is no large edge pedestal. However, the

pressure in the core increases with beam heating power nonlinearly in a way resembling the

H-Mode edge. We suggest this is due to the nonlinear coupling of reductions in ion thermal

and particle transport by radial electric field shear stabilization.

In summary we have demonstrated that radial electric field shear stabilization is neces-

sary to reproduce the favorable scaling of supershot core ion thermal confinement with beam

heating power, in the case where the toroidal ITG mode (in the approximation with adiabatic

electrons) is assumed to be the dominant instability in the core region. Both the linear (for

r/a < 0.5) and nonlinear (for r/a < 0.85) simulations well-reproduced the variation in ion

temperature over a factor three variation in heating power. The expansion of the region of

enhanced ion thermal confinement with heating power was demonstrated and reproduced. In

addition, we were able to qualitatively reproduce the inverse variation of the core ion thermal

diffusivity Xi with ion temperature by including the effect of radial electric field shear stabil-

ization. Finally, the comparison of the model with and without shear flow stabilization shows

that radial electric field shear is unimportant at the lowest heating powers, and gradually

gives rise to factor of two increases in the ion temperature even for moderate heating powers

of 18 MW.
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Figure 8. (a) Comparison of central ion temperatures simulated by the model with shear-flow stabilization
and the original IFS-PPPL model. The increasing importance of shear-flow stabilization with heating power
is clearly shown. At higher powers, the effect causes factor of two increases in the ion temperature. (b)
Comparison of thermal ion stored energies for the two models.
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Chapter 7

The Isotope Effect in

Deuterium-Tritium Plasmas

7.1 Introduction

The isotope effect in observed in deuterium-tritium supershot plasmas is significantly

stronger than in the L-Mode regime. The global scaling of the energy confinement time is

given by TE c A 0 .80- 0.89 in TFTR supershots, while on the other hand, TFTR deuterium-

tritium L-Mode plasmas show the scaling -E oc A ° '5 typical of other experiments, where

Ai is the volume average thermal hydrogenic atomic number [52]. Further, the effect in

supershot plasmas is primarily in the ion channel, while in the L-Mode case, it is in the

electron channel. Our first analysis [219, 220, 221, 53, 222, 223] of TFTR deuterium-tritium

supershots revealed this strong effect in supershots in the ion channel, which was a surprise

in light of the TE OC A°.5 scaling obtained in a large number of other experiments comparing

hydrogen and deuterium mixtures [224, 54].

In this chapter we propose an explanation for the apparent discrepancy between the

isotope effect in TFTR supershot and L-Mode deuterium-tritium plasmas on the basis of

amplification by radial electric field shear. In addition, this chapter provides useful tests of

the models introduced in Chapter 3, with wide variations in heating power, toroidal rotation,
and isotopic mass in deuterium-tritium plasmas. We demonstrate that both the modified

IFS-PPPL model, with self-consistent neoclassical radial electric field, as well as the practical

stability criterion of Chapter 3, well-reproduce the ion temperature profiles in the majority

of 45 supershot discharges. Accordingly, the models including a self-consistent radial electric

field distinguish the isotope effect from favorable power scaling. This confirms our original

hypothesis [75] that radial electric field shear stabilization amplifies the isotope effect in the
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supershot regime.

Improvements of thermal confinement with isotopic mixtures of increased mass were first

reported in Ref. [224]. Subsequently, the effect on was observed on a variety of tokamaks

around the world, as reviewed in Ref. [54]. In beam-heated, degraded confinement regimes,
when hydrogen is replaced by deuterium as the primary thermal species, the global energy

confinement time is observed to increase roughly in proportion to -rE . Ai 2 , where Ai is

the average atomic mass, in ASDEX, DIII, DIII-D (ECRH), JFT-2M, and JT-60U. These

experiments, except in the ECRH case, use hydrogen neutral beam injection into gas-fueled

deuterium or hydrogen plasmas. In similar beam-heated L-Mode regimes, improvements of

order half this are observed in JET [225], which compared nearly pure hydrogen and deu-

terium plasmas using the either hydrogen or deuterium neutral beam injection, and TFTR,
using deuterium beam injection into hydrogen plasmas. No improvement was observed in

DIII-D L-Mode plasmas, on the other hand, with deuterium beam injection relative to hydro-

gen beam injection. The TFTR L-Mode experiments were performed with deuterium neutral

beam heating up to 7 MW, in mixtures containing as much as 65% hydrogen to as little as

10%, varied by saturating the limiter with hydrogen. The results showed only a 15% change

in global energy confinement time [226], similar to JET, corresponding to TE oc A0.41+ 0.12 and

T7h oc A 0.26+ 0 11, in deuterium relative to hydrogen plasmas with matched electron density

profiles. Moreover, the effect was entirely in the electron channel.

In beam-heated plasmas, the beam stored energy is larger for heavier isotopes, injected

at the same voltage, because the slowing-down rate on ions decreases. Assuming the injection

energy Eb is the same for different isotopes, the beam stored energy Wb is proportional to

the stopping time Tstop oc (AbTe3/ 2 /Zb2e) ln(1 + E3/ 2 /E 2 ), where Ab is the atomic mass of

beam ions, Ec is the critical energy at which the slowing down rate on electrons and ions is

equal, where Eb < Ec typically, Te is the electron temperature, and ne is the electron density.

The critical energy is

Ec = 14.8 Ab [Z]2 / 3 Te (1)

where Ai is the average hydrogenic mass, and Te is the electron temperature. The definition

of [Z] is

(thermal ions)

[Z]= 3 (2a)
3 ne Aj

1 6 - Zeff _ b 1 Zeff (21)
Ai 5 ne 2 5

where in the second expression a two species plasma composed of a hydrogen isotope and a

carbon impurity has been assumed, where nb is the density of beam ions, ne is the electron
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density, and Zeff = EjnjZ2/ne. For typical values in L-Mode plasmas nb/ne " 0.1 and

Zeff L 2, we have [Z] = 0.05 + 0.7/Ai oc 1/Ai. Expanding the stopping time 7stop OC

(AbTe3/2/neZ ) ln(1 + E3/2/E3/2 ) for Eb < Ec, with constant injection energy and Zb = 1,

gives

Wb oc A 2/3A-1/2 (3)

The ratios of the beam stored energy Wb for pure (hydrogen:deuterium:tritium) plasmas

are then approximately (1.00:1.12:1.20). Isotopic increases of order 10%-20% are typical

as calculated by the SNAP [134, 135] and TRANSP [50] codes. This small increase is in

principle reflected in the total stored energy from magnetics measurements, and a transport

analysis is required to separate the increase in the energy stored in the thermal plasma, which

is determined by changes in heat and particle transport and to a much lesser extent, changes

in heating and fueling. In principle, the injection voltage could be adjusted to compensate

this classical increase in beam stored energy in experiments designed to isolate an isotope

effect in the thermal energy confinement. On the other hand, this would tend to increase

differences in the deposition profile that arise from the lower injection velocities and reduced

penetration of heavier isotopes. In addition, for heavier plasmas, the critical energy is larger.

For experiments injecting below the critical energy, this shifts power delivery toward the

ions [219]. This is not a strong effect in deuterium-tritium plasmas, and is fortunately in a

direction opposite increases in the thermal stored energy.

More recent experiments [227], using ICRF heating alone, which is subject to similar

considerations for the slowing-down minority tail, have confirmed an effect in the electron

channel in deuterium and deuterium-tritium L-Mode plasmas of order -rE - A9. 35-0.50, which

appears to be weaker with increased heating power. The advantage of ICRF heating is that,
because the tail ions are born perpendicular, the resulting anisotropy is an indication of the

tail stored energy as measured by magnetics. In addition, the average energy of tail ions is

considerably larger than Ec, so they slow down primarily by collisions with electrons. Sim-

ilarly, many smaller tokamaks achieve temperatures less than 5 keV, so that beam injection

is typically at energies above Ec.

The supershot regime, during the first high power DT experiments on TFTR, displayed

a surprisingly strong scaling oc A 80 - 0 .8 9 . where Ai is the average hydrogenic atomic

number. The first analysis of this effect [219, 220, 221, 53, 222, 223] using the SNAP equi-

librium code [134, 135], which performs a F6kker-Planck beam slowing-down and deposition

calculation separately in each radial zone, together with neutral wall deposition calculations,

and particle, momentum and energy balance calculations, showed that:

a The improvement was in the ion channel with little effect on electron energy transport.
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* A significant part of the increase in stored energy could be accounted for by the thermal

ions, consistent with the apparent increase in ion temperature observed.

* A reduction in the ion thermal diffusivity Xi of roughly a factor of two over much of

the plasma cross-section was evident.

* The partitioning of beam power was shifted more toward the ions slightly with tritium

neutral beam injection.

* The a-particle heating was offset by a comparable reduction in beam to electron heating

[228].

* The fraction of thermal tritium was inferred by finding the point of intersection of the

neutron rate curves for 50:50 and 100:0 ratios of the injected neutral beam powers

PT: PD.

The second item above was important because the effect of the beam isotope on the ion

temperature, as measured by the CHERS diagnostic, was not well-characterized at the time.

These results were obtained from the first high power deuterium-tritium experiments, which

were designed to achieve maximum fusion power, rather than to provide controlled condi-

tions for the study of transport. In particular, heating powers were restricted to the range

20-30 MW to provide high neutron rates while avoiding disruptions. In addition, the first

comparison pair of discharges, 73265 (DD) and 73268 (DT), benefitted from preceding dis-

charges with two tail-end lithium pellets. The machine parameters were generally robust

(Pinj = 20 - 30 MW, Ro/a = 2.52/0.87 m/m, Ip = 1.8 - 2.0 MA, neo = 7.5 x 1019 m - 3 ,

B, = 5 T). These discharges, while not affected by MHD tearing-type modes [229], did suf-

fer degradation during beam heating due to moderately increasing edge hydrogenic influx, in

accord with the empirical scaling TE oc (Ha)-0.24 [202]. Although the widest possible range

of isotopic mixtures on TFTR (1.9 < Ai < 2.6) was attained in the first high power DT ex-

periments, the limited range of heating powers prevented a determination of the importance

of the favorable scaling of core ion heat transport with ion temperature Xi oc 1/Ti [51]. This

issue needed to be addressed to ensure that the "isotope effect" was not an artifact of some

small effect, perhaps indirectly associated with isotope, which was then made to appear large

through the favorable dependence on Ti.

Further extensive experiments in the supershot regime were dedicated to the isotope

effect in deuterium-tritium plasmas [55] under more controlled conditions. In particular

a power scan in deuterium, paralleled by one with pure tritium neutral beam injection,

confirmed the suprising strength of the effect in conditions better suited to transport studies

[55, 56]. These experiments also revealed an apparent power dependence of the isotope effect
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in supershot plasmas. The power scan was carried out in order to distinguish the isotope

effect from the favorable approximate scaling Xi oc 1/Ti in the core, and successfully resolved

the two effects. Accordingly, the increase in ion temperature with tritium neutral beam

injection was attributed to the change in isotope alone. Momentum transport was studied in

parallel DD/DT sequences with co-only beam injection as well and showed a rather strong

improvement with tritium neutral beam injection. The TFTR results in various regimes are

further reviewed in Refs. [230, 52].

7.2 Mechanism for Amplification of the Isotope Effect in Su-

pershot Plasmas

The first theory proposed to explain the ohmic heating results can be found in Refs.

[231, 232]. This work captured the Zeff dependence as well as the isotope effect. Another

similar theory describes the isotope effect but not the Zeff part [233] relevant to helium

plasmas. An analogous argument, for the toroidal case, compromising the resonance of

the toroidal ITG mode, was proposed in Refs. [234, 235]. Very recently, the IFS-PPPL

model, with shear-flow extension, was applied to explain the isotope effect in a pair of L-

Mode plasmas on TFTR, using the static radial electric field as inferred from measured

profiles [52]. This was motivated by the well-known observation [54] that the isotope effect

is opposite the gyro-Bohm scaling of Xi calculated by the original IFS-PPPL model [16] and

most other drift-wave models. Including shear-flow stabilization broke gyro-Bohm scaling

and showed promise to explain the isotope effect in the L-Mode regime. We point out that

the radial electric field in L-Mode plasmas is determined to a very good approximation by

the toroidal velocity alone, as shown in Chapter 2, where Er -- VxB ' ViBo. Because the

radial electric field (toroidal velocity) was calculated from measured profiles in Ref. [52], the

results demonstrated consistency with the trend observed, but were not truly predictive. In

the supershot case, the strong dependence of shear-flow stabilization on the ion temperature

requires a simultaneous determination of the radial electric field, both for proper convergence,

and to avoid undue influence from the measured ion temperature.

It was suggested in Ref. [75] that radial electric field shear stabilization, nonlinearly

coupled with increases in the ion temperature, could provide the mechanism for amplifying

the isotope effect in supershots, given a weaker intrinsic scaling of the variety -rE o A /2

Here we provide a conclusive answer to this hypothesis, which proves to be true.

The practical stability criterion discussed in Sec. 3.6 provides the framework for ampli-

fication of an intrinsic isotope effect. Figure 1 shows the strongly nonlinear behavior of the

central ion temperature as a function of the ion temperature at the half-radius, for a compar-
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Figure 1. Mechanism of the strong isotope effect in TFTR supershots: Nonlinear amplification by radial
electric field shear. The central ion temperature is shown as a function of the ion temperature at the half-
radius, for a comparison pair of discharges having the same injected beam power and directionality. The
dotted curves show the profiles corresponding to toroidal ITG marginal stability, while the solid curves show
the result from the shear flow marginal stability criterion WEXB = 7max. In this comparison, a difference in
Ti(r/a = 1/2) of only 0.6 keV corresponds to a measured increase in Ti(O) of 8 keV and a predicted increase
of 7 keV. Without the effect of radial electric field shear, the estimated difference in central ion temperature
is only 1.5 keV.

ison pair of discharges having the same injected beam power and directionality. The dotted

curves show the profiles corresponding to toroidal ITG marginal stability as described by the

IFS-PPPL parameterization, while the solid curves show the result from the practical sta-

bility criterion. If the L-Mode like outer region showed a small improvement corresponding

to, e.g., rE  A/2 scaling, then this would be amplified nonlinearly to create large increases

in central temperature. In this comparison, a difference in Ti(r/a = 1/2) of only 0.6 keV

results in a measured increase in Ti(0) of 8 keV and a predicted increase of 7 keV. Without

the effect of radial electric field shear, the estimated difference in central ion temperature is

only 1.5 keV.

Figure 2 shows the original pair of discharges used to demonstrate the isotope effect.
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The ion temperature profile in the deuterium-tritium discharge is clearly more broad, while

some small improvement is evident in the electron density. In this comparison, we perform

a careful TRANSP analysis, using CHERS carbon density profile data for Zeff, normalized

to the chordal visible Brehmstraahlung emission (see Fig. 3). The latest available CHERS

analysis was carried out to obtain the ion temperature, carbon density, and carbon toroidal

velocity profiles with cross-section correction [59]. Figure 4 shows the kinetic (TRANSP)

vs. experimental (magnetics) comparison of the diamagnetic flux and neutron rate for both

cases is quite good. This demonstrates an excellent level of self-consistency in the input

data, which was taken immediately following a concentrated effort in preparation for the

high-power deuterium-tritium campaign on TFTR.

7.3 Simulations of Temperature Profiles

7.3.1 Initial DD/DT Comparison Pair

Next we turn to the nonlinear simulations of the ion temperature using the modified

IFS-PPPL model with self-consistent radial electric field, as described in Chapter 3. For

this comparison, the CHERS data was reanalyzed with the most recent background model

and the data analysis is fairly comprehensive. Accordingly, it provides a useful benchmark.

Figure 5(a,b) show the comparison of simulated and experimental temperature profiles for

r/a < 0.85. The experimental profiles of hydrogenic ion temperature were obtained by

using the ion thermal diffusivity from the TRANSP code in the TRV code to obtain the

temperatures of hydrogenic and carbon ions. The carbon temperatures obtained using this

technique are close to the measured values as will be shown in the following sections. In

addition to providing a more accurate hydrogenic temperature for comparison, this helps

renormalize subtle errors in the comparison resulting from differences in geometric factors

and power deposition profiles between the two codes. Note the hydrogenic temperature is

used in the IFS-PPPL parameterization and the calculated radial electric field, making it

the more fundamental quantity in comparisons of the model with experiments. Respectable

agreement with the measured carbon temperature is also obtained. The corresponding ion

thermal diffusivities are shown in Figure 5(c,d). The agreement is very good, and the isotope

effect in the ion channel is successfully distinguished.

Figure 6(a) shows the inferred impurity-hydrogenic ion temperature difference arising

from classical collisional beam heating and classical interspecies energy exchange. Frame (b)

shows the growth rate and shearing rate comparison. Evidently the behavior inside the half-

radius is quite similar in the two cases. However, a significantly larger effect of shear-flow

stabilization is evident in the outer half-radius in the DT case. Because the outer half-radius
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Figure 2. First pair of comparison discharges used to analyze the isotope effect in deuterium-tritium plasmas
in TFTR. (a) Measured ion temperature profiles. (b) Measured electron density profiles. Shown 450 ms
following the start of neutral beam injection, near the time of peak stored energy.
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Figure 4. Data consistency for DD/DT comparison pair during beam heating phase. (a,b) Comparison
of TRANSP calculated diamagnetic flux with that measured from diamagnetic loop. (c,d) Comparison of
TRANSP calculated DT and DD neutron rates with measured.
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has local transport characteristics similar to L-Mode plasmas, this is consistent with the

suggestion for L-Mode plasmas posed in Ref. [52] using a static radial electric field. Then the

mechanism illustrated in Fig. 1, involving the self-consistent radial electric field, amplifies

this difference in the core for r/a < 0.5. Frame (c) compares the volume-integrated thermal

ion kinetic energy, showing the model with self-consistent radial electric field reproduces the

isotope effect quite well. Frame (d) shows the inverse temperature gradient scale lengths.

The critical gradients for the toroidal ITG mode (without an accurate treatment of trapped

electron destabilization or including rotation effects) from the IFS-PPPL model [16] are

almost identical. The original IFS-PPPL model finds an insignificant isotope effect. The

effect of shear-flow stabilization is clearly evident over the radial range 0.2 < r/a < 0.5,

where the ion temperature gradient significantly exceeds the critical gradient. In the outer

half-radius, the nonlinear saturation level becomes important. There the deviation from

toroidal ITG marginal stability (as described by the IFS-PPPL parameterization near the

flat density gradient limit, in the absence of sheared flows) is progressively stronger toward

the edge, and not strongly compensated by shear-flow stabilization, and the simulated ion

thermal diffusivity increases monotonically with minor radius as observed [16].

7.3.2 Parallel Supershot Beam Power Scans in DD/DT (45 Discharges)

Next we consider the same set of 45 discharges studied in Refs. [55, 56], using the same

set of TRANSP analyses carried out as a part of that work. In cases with pure tritium

beam injection, the thermal deuterium density was effectively measured via neutron rate

profiles from the neutron collimator [56], and in all cases, the Zeff profiles were assumed

flat. Although it would be quite straightforward to use more recent carbon density profile

data from the CHERS diagnostic, we did not consider the issue important enough to merit

reanalysis of all 45 discharges. As a basis for this, we point to our having obtained very

good agreement between the simulation and the measurement in a number of comparison

pairs (e.g., in the preceding section) while including Zeff profiles, and also in this section

while assuming flat Zeff. As discussed in Chapters 3 and 4, this issue is more important if

one considers Zeff profiles from the visible bremsstrahlung chordal array, rather than carbon

density profiles from the CHERS diagnostic, which are less hollow. The global parameters

are Ip =1.6 MA, Ro/a = 2.52/0.87, BW = 4.8 T, Pb =5-23 MW, and a range of beam

directionalities, including many shots with balanced and co-only injection. The basic purpose

was to carry out a power scan with deuterium neutral beam injection and a parallel power

scan with tritium neutral beam injection so that the favorable temperature scaling of ion

thermal confinement could be separated from the isotope effect [55]. The edge hydrogenic

recycling remains constant to within 5-10% in DD/DT comparisons at the same heating
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Figure 5. DD/DT comparison pair: simulated and experimental temperature profiles for r/a < 0.85 from
the modified IFS-PPPL model with self-consistent neoclassical radial electric field. The corresponding ion
thermal diffusivities are shown in Figure 5(c,d). The agreement is excellent, and the isotope effect in the ion
channel is successfully distinguished.

a3 s/uZ '0

I I I I ' I I I I I I I * ' * '

-Ew

/- 

.

-HH

-

z
00CS4
c
N

I I

180 Chapter 7. The Isotope Effect in Deuterium-Tritium Plasmas



Sec. 7.3. Simulations of Temperature Profiles 181

1 -30S 9OJX

0 0 0

0 O O
C'n C

O

fiN

Figure 6. DD/DT comparison pair: details of simulated temperature profiles. (a) Simulated carbon and
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Volume integrated thermal ion kinetic energy simulated and from the experiment. The isotope effect is
well-reproduced. (d) Inverse ion temperature gradient scale lengths of the simulation with self-consistent
radial electric field together with the critical ion temperature gradient scale lengths from the IFS-PPPL
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power, while the CII emission is often 20% higher in tritium-injected plasmas. However, the

correlation of this with performance during beam injection has not been established [202]. In

addition, the radiated power fraction does not change appreciably over the data set [55].

Figure 7 shows the ratio of the simulated central hydrogenic ion temperature to the

experimental value, averaged over all 45 discharges, regardless of conditions. This shows

that the model with self-consistent radial electric field reproduces the central hydrogenic ion

temperature to within +7 ± 5% on average. The original IFS-PPPL model, without Er, gives

temperatures 35-40% low relative to the experimental value on average, and temperatures

40-45% low relative to the model with self-consistent radial electric field, in the core. This

demonstrates that radial electric field shear stabilization is an typically an effect important

enough to double the ion temperature in the core.

Figure 8 shows the distribution of the errors for the original IFS-PPPL model, the model

with self-consistent radial electric field, and the result from the practical stability criterion.

Here the radii are not considered separately. The original IFS-PPPL model has a large

variance and median considerably below unity. The model with self-consistent radial electric

field has a median very near unity, and a much smaller variance. A small tail of overestimated

ion temperatures is apparent which will be discussed in the following. The analytical theory

for r/a < 0.5 of Chapter 3 also has a median close to unity and a small variance. Both

models with shear-flow stabilization are apparently quite good for this set of 45 discharges.

Figure 9 compares the thermal ion and total stored energies calculated by the models

and inferred from the experiments. A trend toward disagreement at higher powers is clear,
indicating an emerging role of radial electric field shear stabilization as the power and ion

temperature increase. Figure 10 shows the TRANSP-calculated diamagnetic flux relative to

the measured values, indicating possible errors for strong rotation. The Mach number here

is defined M = Vp,/Vthi, where Vthi 2 = 2Ti/mi.

Figure 11(a) shows that the model with Er reproduces the isotope effect and its apparent

dependence on heating power as in Refs. [55, 56]. Frame (b) shows that the original IFS-PPPL

model estimates a factor of two lower thermal ion energy confinement time and essentially

no isotope effect. This is consistent with the results of Chapter 6, which demonstrated the

importance of shear-flow stabilization in achieving the favorable scaling of core ion thermal

confinement and the observed expansion of the region of enhanced confinement with heating

power. Figure 12 shows quite good agreement between the global stored energy calculated

by the model and the experimental data as a function of heating power. This is the simulated

rendition of the experimental data of Fig. 1 of Ref. [55, 56] with fewer constraints on rotation.

It is also interesting to consider the case of Ref. [57] where two discharges (#79099 (DD)

and #79021 (DT)) were selected in which the temperature and density profiles were almost
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Figure 7. Agreement between simulated and experimental temperatures at each radius for the original IFS-
PPPL model and for the modified version with self-consistent neoclassical radial electric field. Data are
averaged over the ensemble of 45 discharges making up the beam power scan in deuterium and tritium. The
model with self-consistent radial electric field reproduces temperatures from the experiment to within +7%
on average. The original IFS-PPPL model gives temperatures 45% lower in the core. This demonstrates
that radial electric field shear stabilization is an typically an effect of order unity in the supershot core.
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Figure 8. Distribution of relative errors for the IFS-PPPL model, the model with self-consistent radial electric
field, and the analytical theory for the inner half-radius (practical stability criterion).
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Figure 10. Comparison diamagnetic flux from TRANSP with measured values from diamagnetic loop. A
possible inconsistency in the input data is evident for very strong toroidal rotation.
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Figure 12. Total stored energy estimated by the model with self-consistent radial electric field, compared to
values from the TRANSP code, as a function of heating power.
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identical, but the heating power for the DT case was 15 MW and 20 MW for the DD case.

This provided direct experimental evidence that the ion thermal diffusivity is indeed lower

in plasmas containing significant concentrations of tritium. Figure 13 shows the simulated

carbon temperatures from the model with radial electric field are nearly identical. The

measured carbon temperatures, shown below, are also nearly identical.

Of the 45 discharges simulated, 11 showed excellent agreement with the hydrogenic tem-

peratures from the experiments (of order 10% for all radii), 17 were within 20% over the

entire cross-section, 6 underestimated the temperature by more than 20% only within the

inner third-radius, and 5 strongly overestimated the temperature over most of the cross-

section. Six of the 45 shots were not compared due to large MHD activity or other problems.

At low densities (low heating powers) and for pure co-injection, destabilization due to the

parallel velocity gradient appears to be important. The five discharges for which the sim-

ulated temperatures strongly overestimated the actual ones were localized to this region of

parameter space, as shown in Figure 15. The destabilization by the parallel velocity gradient

is theoretically most important in regions where the density gradient is small, i.e., the outer

region r/a > 0.5. This is consistent with our obtaining good agreement in the core where

the density gradient is large, despite neglecting this effect. However, at low density, the frac-

tion of beam ions is larger, and the thermal density is often inferred to be negligible. This

depletion, if overestimated, would also result in strongly overestimated temperatures in the

model calculations. Therefore, we cannot ascribe the errors to destabilization by shear in the

parallel velocity immediately. Finally, Figure 16 compares both the simulated and measured

carbon temperatures as well as the simulated and inferred hydrogenic temperatures, at the

axis, 1/3, 1/2, and 3/4 radius. Because the hydrogenic ion temperature was used in the IFS-

PPPL parameterization and neoclassical radial electric field during nonlinear simulations, we

regard the comparison with the hydrogenic temperature as a more direct test of the transport

model. The carbon temperature calculated by the TRV code, using the ion thermal diffusivity

from TRANSP, agrees reasonably well with the measured carbon temperature, as shown in

Figure 14. While the simulated central carbon temperature agrees well with the measured

temperature, the simulated carbon temperature is 20-30% higher than measured at the third-

and half-radius. Because the carbon density is small, the errors produced in the simulated

carbon temperature may be more sensitive to errors in the model for the interspecies ion

temperature difference. Had we ignored the interspecies ion temperature difference, a better

comparison with the measured carbon temperatures would probably have been obtained.

Figure 17 shows that the nonlinear simulations find that the growth rate is roughly equal

to the shearing rate on average in the radial range r/a = 0.2- 0.6, and that the growth rate is

progressively larger than the shearing rate toward the edge, where confinement is degraded.
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Figure 13. Comparison pair with matched profiles but differing neutral beam powers. The DT case 79099
was injected with 15 MW in tritium while the DD case 79021 was injected with 20 MW in deuterium.
(a) Simulated carbon temperatures are nearly identical. (b) Measured carbon temperatures are also nearly
identical.
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Figure 14. The carbon temperature calculated from the TRV code using the ion thermal diffusivity and power
deposition profiles from TRANSP, compared with the measured carbon temperature on at the magnetic axis.
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Figure 16. Comparison of simulated and measured carbon temperatures as well as the simulated and inferred
hydrogenic temperatures, at the axis, 1/3, 1/2, and 3/4 radius. Symbols are the same as in Fig. 15. Because
the hydrogenic ion temperature was used in the IFS-PPPL parameterization and neoclassical radial electric
field, we regard the comparison with the hydrogenic temperature as more significant. Because the carbon
density is small, the errors shown in the simulated carbon temperature may be more sensitive to errors in
the model for the temperature difference. The axis Ti(Experiment) represents the hydrogenic temperature
calculated as a small departure from the measured carbon temperature, calculated from the TRV code.
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Figure 17. Median ratio of max. linear growth rate of the toroidal ITG mode, assuming adiabatic electrons,
to E x B shearing rate for ensemble of 45 supershot discharges, as determined by nonlinear simulations.

This outer region requires a model for ITG nonlinear saturation.

The power scaling of the isotope effect is reproduced in a series of DD/DT pair discharges

as the power is increased. Each pair of discharges has matched beam directionality, where

balanced beam injection was preferred. Figure 18 shows the isotope effect gets stronger with

increasing power and this is reproduced by the model. Apparently the isotope effect suddenly

appears between heating powers of 10-12 MW. This behavior is well-reproduced by the model

with self-consistent neoclassical radial electric field. The strength of the effect increases with

heating power, as is qualitatively consistent with the underlying mechanism we suggest.

A more detailed comparison is shown in Fig. 19 at 15 MW of heating power. The

ion temperature profiles show a strong isotope effect and are well-reproduced. The inverse

ion temperature gradient scale length calculated, together with the toroidal ITG critical

one from the IFS-PPPL parameterization, show that the core is not far from toroidal ITG

marginal stability as described by the original IFS-PPPL parameterization. There, toroidal

ITG mode linear stability appears to play a role in the isotope effect in addition to shear-flow



Sec. 7.3. Simulations of Temperature Profiles 195

I I I I I I I I I I I0 0 0 0

Cl -'I j ' I I I ' I I I

,,!,
7/-

00 I / i

I' -''
//

00AI1

dre05299708c q
I I I I

0 0 0 0
0

' ' ' ' I I I I I I I I I

_ 0

-o , -.., OHO00 7c IC)

o... ,. 0" "

- -I

o 

,- -

W \ 0

0 0 0

Figure 18. Power scaling
the lowest powers, 5.3-6.4
difference in beam power.

of isotope effect: comparison temperatures simulated vs. experiment. (a) At
MW, sawteeth are present, and the difference shown may be due largely to the

(b) At the 10 MW level, the isotope effect is quite small, both simulated and
measured. (c) The effect seems to be suddenly apparent at 12.3-12.7 MW, and the DD/DT difference is
well-reproduced. (d) The effect is strongest at the highest power, 18 MW, and is again well-reproduced by
the model with shear-flow stabilization.

Z 00

Z 00
M 00

I I I I I I I I I I

I I

00

-.
0
00

Sec. 7.3. Simulations of Temperature Profiles 195

I II I I I I '



Chapter 7. The Isotope Effect in Deuterium-Titium Plasmas

stabilization, which is required to maintain marginal stability. In this case, the effect of shear-

flow stabilization appears to be important in the outer half-radius, where the shearing rates

are roughly equal but the growth rate is lower in the DT case according to max c 1/m/2

where -max is the linear growth rate maximized over kop i. Note the maximization changes the

mass dependence by eliminating that in koPi. Here relatively large ion temperature differences

between DD and DT are apparent in the outer half-radius, which are also well-reproduced

by the model.

7.4 Conclusion

We have demonstrated, in detailed calculations of the ion temperature for a set of 45

supershot discharges, that

* The strong isotope effect observed in supershot plasmas, relative to that observed

in regimes of degraded confinement, is quantitatively consistent with our proposed

mechanism in which radial electric field shear stabilization amplifies small changes in

the ion temperature in the outer region to create large changes in ion temperature in

the core.

* The model using our self-consistent neoclassical radial electric field, which is supported

by the explanation of the velocity profile notch, reproduces the ion temperature profiles

of supershot plasmas over the radial range r/a = 0-0.85, encompassing wide variations

of heating power, isotopic mass, and toroidal rotation.

* The ion temperature profiles for this same set of 45 discharges are well-reproduced in

the inner half-radius by the practical stability criterion of Chapter 3.

* The model with self-consistent neoclassical radial electric field distinguishes the isotope

effect from favorable power scaling and from the favorable scaling in the core. Neither

the favorable power scaling nor the isotope effect is reproduced by the original IFS-

PPPL model (gyroBohm). As pointed out previously by many others, the isotope

effect is opposite the trend of gyroBohm scaling Xi oc (pil/a)(cT/ZeB) oc m /2 that

arises almost universally in collisionless models of the drift-wave type.

* The isotope effect in the ion channel appears somewhat suddenly above heating powers

in the range 10-12 MW. This behavior is well-reproduced, and is consistent with the

emerging importance of radial electric field shear as the temperature increases.

* The ion temperature discrepancy resolved by including radial electric field shear is

typically of order 45% at high temperatures and increases with heating power.
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* The core ion thermal energy confinement time is twice as long with self-consistent shear

flow stabilization as without, demonstrating that radial electric field shear stabilization

can double the ion temperature in the presence of significant auxiliary heating power.

Although we have not modeled the particle transport in detail, a strong isotopic improvement

in particle confinement was also observed in supershot plasmas with a strong scaling of the

electron particle diffusivity De oc A - 1" [53]. This may well be the result of the coupling

of radial electric field shear stabilization in the presence of larger ion temperatures together

with an associated reduction in particle transport, as described in Chapter 4 for the case of

lithium conditioning.

The ion temperature simulations carried out here demonstrate the importance of radial

electric field shear stabilization in the core of very high temperature plasmas. This confirms

our original hypothesis [75] that radial electric field shear stabilization amplifies the isotope

effect in the supershot regime relative to that of L-Mode plasmas. This work resolves the

apparent discrepancy in the strength of the isotope effect between the supershot and degraded

confinement regimes. This resolution is possible even without relying on estimates of the

nonlinear saturation of ITG turbulence or the IFS-PPPL model.
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Chapter 8

Conclusions

In this thesis we have developed and tested a model that reproduces the striking trends in

ion thermal transport observed in very high temperature supershot plasmas. Because radial

electric field shear plays an essential role in the model, giving rise to factor of two increases in

the core ion temperature, we first provide an explanation for the large notch features observed

in measured toroidal velocity profiles of the carbon impurity. In Chapter 2, we developed

a model and explanation of the notch feature starting from the neoclassical theory with

impurities. As a part of this work, we carried out numerical calculations of the neoclassical

velocities, valid for arbitrary collisionality in a plasma with two ion species. We also developed

accurate analytical expressions for velocities that well-reproduce the numerical results. The

success of this interpretation, when tested against TFTR supershot data, supports the use of

a neoclassical calculation of the radial electric field.

In Chapter 3, we developed expressions for the neoclassical radial electric field for use in

the absence of direct poloidal velocity measurements. These expressions accurately provide

the neoclassical corrections to the expression E,r - V4 Bo, where V, is the measured impurity

toroidal velocity and Be is the poloidal magnetic field. The calculation finds a well in the

radial electric field profile, in the inner half-radius of supershot plasmas, that is suggestive

of beneficial effects on thermal and particle transport. Realizing this is only suggestive, we

then made a comparison of growth rate and E x B shearing rate, accurately evaluated from

measured profiles. The comparison seemed to indicate, if taken at face value, that E x B

shear was not the dominant influence on supershot core confinement. Further contemplation

led us to realize that this "open loop" comparison was ill-posed to assess of the relevance of

E x B shear to supershot confinement. If the core region of supershot plasmas were close to

marginal stability to the odd-parity toroidal ITG mode, then small errors in the measured

profiles or in the calculations of the growth rate and shearing rate would cause wild swings
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in their ratio. In addition, the initial results of the original IFS-PPPL model for supershot

plasmas suggest that the stability properties of the toroidal ITG mode play a significant

role. To remove this sensitivity and determine the importance of E x B shear, relative to

the stability properties of the toroidal ITG mode, we calculated both the radial electric field

profile and the ion temperature profile simultaneously and self-consistently. The resulting

model incorporates estimates of the turbulence saturation level and associated transport, and

is used to simulate ion temperature profiles over the inner 85% of the plasma cross-section.

We first hypothesized that the favorable transport properties of the core region, or in-

ner half-radius, of supershot plasmas could be described by the practical stability criterion

taking the maximum linear toroidal ITG growth rate and shearing rate approximately equal.

Formulating this criterion analytically, using the neoclassical expression for the radial elec-

tric field developed in Chapters 2 and 3, we obtained an equation for the ion temperature

gradient scale length which we then integrated inward from the half-radius. The resulting

ion temperature profile reproduces measured data. This equation appears to unify the ma-

jor unexplained ion thermal confinement trends of TFTR supershot plasmas, including the

favorable power scaling, the scaling of the energy confinement time with the peakedness of

the density profile, the preference for near-balanced neutral beam injection directed slightly

parallel to the plasma current, and the strong isotope effect. The practical stability criterion

describes a mechanism through which radial electric field shear stabilization amplifies the

sensitivity of the ion temperature in the core to that in the outer region. This results in a

strongly nonlinear relationship between the ion temperature at the magnetic axis and the ion

temperature at the half-radius. This formulation fortunately does not depend on estimates

of the nonlinear saturation level of turbulence and associated transport, but its relevance is

generally restricted to the inner half-radius of supershot plasmas. This is confirmed by the

fully nonlinear simulations.

We then developed a numerical algorithm for solving coupled transport equations in

general flux-surface geometry, and implemented this in a new predictive transport code (the

TRV code) with a graphical interface and extensive plotting capabilities. In the outer half-

radius, the density gradient is weaker and the deviation from toroidal ITG marginal stability,
as described by the IFS-PPPL parameterization, is estimated to be large. To calculate the ion

temperatures over the remainder of the plasma cross-section, including the outer half-radius,

fully nonlinear simulations that include estimates of the nonlinear saturation of turbulence

are required. To accomplish this, we make use of a modified IFS-PPPL [16] model with an

existing simple ansatz for the effect of E x B shear stabilization, Xi = Xio (1 -WExB/Ylax),

where Xio is the ion thermal diffusivity in the absence of E x B shear, 7-ax is the linear

growth rate of the toroidal ITG mode, maximized over kopi and considering both parities,
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and WExB is the E x B shearing rate for turbulence isotropic in the plane of the cross-section,
or equivalently, the linear Doppler shear rate. Our simulations differ from previous work

first by making use of an accurate expression for the neoclassical radial electric field, which

is determined simultaneously with the ion temperature profile. Second, we simultaneously

determine the interspecies ion temperature difference, which is generally more significant in

supershot plasmas than in L-Mode plasmas. The results of these fully nonlinear simulations

confirm that the supershot core is not far from toroidal ITG marginal stability in the sense

described previously, with deviations from it as described by the rough criterion WEXB !--

7ylax. Further, the deviation from toroidal ITG marginal stability increases with radius

outside the half-radius, resulting in the increase of Xi with radius as pointed out in Ref. [16]

for the case of L-Mode plasmas.

In Chapter 4, we studied the scaling of energy confinement in supershot plasmas with

the density peakedness parameter ne(O)/(ne). We first reviewed hot-ion regimes on other

tokamaks which may also be explained by this work, and which provide useful examples of

density profiles whose shapes are dominated by confinement properties, rather than source

profiles. Then we studied in detail the effect of various wall conditioning techniques on core

ion thermal, electron particle, and electron thermal transport. Performing a transport ana-

lysis of discharges with lithium conditioning, boron pellet conditioning, and helium ohmic

conditioning alone, we demonstrated that the scaling of energy confinement time with dens-

ity peakedness is independent of conditioning technique. This analysis also showed that

both the ion thermal diffusivity and the electron particle diffusivity, at the one-third radius,
decreased strongly with ne(O)/(ne), while the electron thermal diffusivity was uncorrelated

with ne(O)/(ne). The discharges with lithium pellets extended the range of the scaling with

ne(O)/(ne) by a factor of two, while leaving it qualitatively unchanged.

We then focused on a sequence of four nearly consecutive discharges, each with an addi-

tional lithium pellet injected into the ohmic phase preceding neutral beam heating, starting

from a case without lithium pellets. The modified IFS-PPPL model of Chapter 3, with

self-consistent neoclassical radial electric field, reproduced the factor of two variation in ion

temperature over the scan. In contrast, the original IFS-PPPL model, without radial electric

field shear, yielded temperatures almost a factor of two lower, and an improvement over the

scan roughly half as strong. Contrary to the conventional wisdom regarding the effect of the

edge ion temperature on H-Mode core confinement, and similar suggestions for supershot

plasmas, the edge ion temperature did not change in this lithium conditioning scan. This led

us to examine the behavior of the thermal ion density profile, and to propose a model for the

improvements with lithium conditioning based on nonlinear coupling between particle and

ion thermal energy confinement through radial electric field shear. This is supported both
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by the evolution of the thermal density profile resulting from reductions in edge recycling

during the scan, the practical stability criterion and equation for Ti of Chapter 3, and by

the observation that the peak E x B shearing rate increases quadratically with the density

peakedness parameter ne(0)/(ne). The behavior of the thermal ion density profile where wall

fueling is dominant appears to be determined by the particle source, while changes in particle

confinement appear to control the profile in the core where the beam fueling dominates. Lith-

ium pellet conditioning diminishes the edge fueling source, which affects the thermal density

profile in the outer half-radius, tending to reduce its curvature near the radius where the

beam fueling becomes dominant. The increased density profile curvature acts as the seed for

stronger nonlinear increases in the stabilizing effect of radial electric field shear.

In Chapter 5, we studied three perturbation experiments. The first, a helium-spoiling

experiment, effectively removed the influence of radial electric field shear by flattening both

the density profile and the radial electric field profile. The model with self-consistent radial

electric field reproduces the factor 3.5 reduction in ion temperature following the helium puff,
in accord with the loss of the stabilizing influence of the density gradient on the toroidal

ITG mode, and with the loss of radial electric field shear. This demonstrates that the model

with self-consistent radial electric field well-describes the difference between L-Mode and

supershot ion thermal confinement.

Next, we considered deuterium pellet perturbation experiments that demonstrate a bi-

furcation in ion thermal confinement with respect to the electron density profile peakedness

ne(0)/(ne). The injection of a deuterium pellet during the neutral beam heating phase transi-

ently flattens the density profile, which then quickly recovers its original shape after roughly a

particle confinement time. The ion temperature, however, suffered an apparently permanent

(on the scale of several energy confinement times) degradation, remaining a factor of three

lower than before the pellet. This experiment effectively removes the influence of the elec-

tron density profile on toroidal ITG stability and isolates the effects of radial electric field

shear and recycling. In addition, the neutral beams were almost exactly balanced, which

allowed us to clearly illustrate the effect of the ion temperature and temperature gradient

on the depth of the measured velocity profile notch, and the associated radial electric field

well described qualitatively by Er - VwxBO, where Vw, is the measured toroidal velocity of

the impurity. The peak E x B shearing rate is also significantly lower following the pellet,
consistent with the stabilizing effect of E x B shear on ion thermal confinement. Finally, at

the end of Chapter 5, we simulate the evolution of the ion temperature in a similar deuterium

pellet perturbation experiment. The neutral beams remained for a longer period following

the pellet in this experiment, and a slow recovery of the ion temperature was observed. The

model with self-consistent radial electric field reproduces the slow recovery of the ion temper-
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ature following the more rapid recovery of the density profile. This experiment is particularly

useful because it separates the role of toroidal ITG stability from that of E x B shear. During

the initial part of the recovery, while the density profile is still evolving, the physics of the

toroidal ITG mode dominates the temperature increase. In the latter half of the ion temper-

ature recovery, E x B shear stabilization becomes important. Changes in the E x B shear

stabilization underly the slower recovery of the ion temperature and the apparent bifurcation

with respect to the density profile.

In Chapter 6, we simulated a neutral beam power scan, successfully reproducing the

ion temperature profiles and ion thermal diffusivities. The improvement of the ion thermal

diffusivity with ion temperature in the core is well-reproduced, as is the unfavorable scaling

in the outer region. The model reproduces the expansion of the enhanced confinement region

with increasing neutral beam power. The comparison with the original IFS-PPPL model

shows that the effect of radial electric field shear is unimportant at the lowest neutral beam

powers. The effect increases with power and results in a doubling the central ion temperature

at neutral beam powers corresponding to half the available neutral beam power on TFTR.

Finally, in Chapter 7, we studied the isotope effect in detail. The work of this chapter

proposes an explanation for the strong isotope effect observed in deuterium-tritium supershot

plasmas relative to that in the L-Mode regime. We propose that the basic mechanism for the

amplification of the isotope effect in supershot plasmas is contained in the expedient stability

condition and resulting equation for ion temperature profile discussed in Chapter 3. Under

this criterion, small changes in the ion temperature at the half-radius (less than 1 keV) are

nonlinearly amplified to create large changes in the central ion temperature of order 10 keV.

According to the mechanism we propose, an intrinsic isotope scaling of the strength observed

in regimes of degraded confinement, e.g., -r c A .5, could be amplified by radial electric

field shear to give the strong global scaling observed in supershots, TE oc A.80-0. 89.

We then performed simulations of the first comparison pair of discharges used to demon-

strate the isotope effect in TFTR deuterium-tritium plasmas. The isotope effect is well-

resolved by the model with self-consistent radial electric field, and the agreement with the

hydrogenic temperatures inferred from the experiments is excellent. Following this initial

comparison, we analyzed an ensemble of 45 discharges comprising a beam power scan par-

alleled with pure deuterium and pure tritium neutral beam injection. This provides a test of

the models of Chapter 3 under conditions with varying heating power, isotopic mixture, and

toroidal rotation. The model with self-consistent radial electric field calculates the hydrogenic

ion temperature profiles at each radius with an average error +7%, while the original IFS-

PPPL model is on average 45% low in the core. The practical stability criterion, integrated

inward from the half-radius, also shows very good agreement. Comparing the calculated and
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measured thermal ion stored energies at each power shows that the model with self-consistent

radial electric field reproduces the isotope effect accurately while the original IFS-PPPL model

does not distinguish it. A small percentage (13%) of the simulations strongly overestimat-

ing the ion temperature. These cases occur for unidirectional neutral beam injection at low

densities, which may be due to their small inferred thermal ion densities.

Several issues remain to be addressed in future work, although we do not expect our

basic conclusions to change significantly. For example, the expedient stability criterion, is

approximate and not rigorously derived, and may not be well-founded. A theory addressing

the issue of normal mode existence in the presence of E x B shear was presented in Ref. [38],
in plane geometry. A criterion of similar purpose but with a different basis was derived there,
where the normal mode is assumed to disappear when the shift, in the transverse direction,
of the mode center reaches the mode width. Future work will concern analysis of the toroidal

modes.

In this thesis, we have presented a model, based on the physics of the toroidal ion tem-

perature gradient mode together with the stabilizing effect of a self-consistent neoclassical

radial electric field, that reproduces and explains the favorable core confinement properties

of supershot plasmas. We tested the model, in two separate formulations, against data from

over 50 TFTR supershot experiments. One formulation is independent of estimates of the

nonlinear saturation level of turbulence, but is restricted to the inner half-radius. The other,
a nonlinear model, simulates ion temperatures over the inner 85% of the plasma cross-section.

In these comparisons, we reproduced changes in ion thermal confinement with density

peakedness (lithium conditioning), isotopic mass, heating power, toroidal rotation at higher

densities, changes resulting from helium puff and pellet perturbations, and explained the

puzzling notch features observed in measured impurity toroidal velocity profiles. In addition,
we have shown that while E x B shear is relatively unimportant at the lowest heating powers,
it can double the ion temperature at higher powers. We have isolated the influence of the

ion temperature gradient from the electron density gradient, and illustrated its connection

with shear in the radial electric field through pellet perturbation experiments. We find the

effect of radial electric field shear serves to unify the favorable trends in core ion thermal

confinement in supershot plasmas that at first may appear unrelated. This common origin

is consistent with the experimental observation that the favorable trends are often mutually

reinforcing. The present work may also explain similar hot-ion regimes observed on other

tokamaks, as reviewed in Chapter 4. Our findings are unifying with regard to other enhanced

confinement regimes, such as the H-Mode, VH-Mode, and Enhanced Reverse Shear regimes,
which exhibit temporally and spatially localized transitions to enhanced confinement thought

to be controlled by radial electric field shear. While no similar bifurcation from another
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regime is generally observed in the evolution of supershot plasmas, we find the effect of radial

electric field shear is sufficiently strong to explain the observed confinement trends within the

supershot regime.





Appendix A

Coupled Transport Equation Solver

The power balance equations and heating terms are discussed in Refs. [236, 50], and

are well-known. In general, they take the form of a set of linear coupled partial differential

equations:

(naUa)= S + V { p [V((IVP2)Dabb - ( )C abUb)] + LabUb (1)atb a

where p = / T/ ax - r/a is the label for toroidal flux surfaces, V(p) is the volume

enclosed by flux surface p, na is the effective density of species a, Ua is the temperature,

velocity, etc. of species a, Dab is a diffusion matrix, Cab is a convection matrix, Lab is a

friction matrix, and Sa is a source term. We then difference the equation on a spatial and

temporal grid, where i labels the radial zone, and n labels the time step. The differenced

equation is

nai ti - Uai) V' 2 [Vi'+1/2Dabi(Tn+l _ +1 - V /2Dabi-1(U+ - Un+1,)]

-'Vip [ )/ ibi/2Cabil( - -1

+ LabiUi 1 + Sai. (2)

The phrase "fully implicit" refers to the method of constructing the solution at a given

timestep in terms of the solution and coefficients of the equation of the succeeding timesteps,

and then solving backwards for the preceding timestep. There are two main advantages to this

approach. First, the Neumann stability analysis shows it is unconditionally stable. Second,

a single, very large timestep yields the equilibrium solution, with fine-scale noise vanishing

in this limit. This property makes it very convenient to include the solver in a larger global

loop that iterates on the ion temperature while separately including the coupling to electrons

and new coefficients. The equation for the n-th timestep in terms of the (n + 1)-th is then
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Un = Un+l

At Vi+/ 2 (Dab - (Ap/2)Cab) +l V'-1/ 2 (Dabi-1 - (Ap/2)Cab-) +1

nai b (Ap) 2  Vbi+l Vi(Ap)
2  bi-1

Vi'+1/ 2 Cabi - Vi-1/ 2 Cabi-1 n+1 Va'+1/ 2Dabi - Vi/ 2 Dabi-1 L
Vi' 2Ap Ub '(Ap) 2  U + abibi

- Sai- (3)
nai

Defining the coefficient matrices

Ra = Sai (4)
nai

AAtab = Vi-1/ 2(Dabi-1 + (AP/2)Cabi-1)
vna(ap)2

Biab = - I( a Vi '+1/ 2 Cabi - Vi'1/ 2 Cabi-1 Vi+1/ 2Dabi + V-1/ 2 Dabi-l Labi}
nii 2(Ap) V' (Ap)2 V

CA = t Vi'+1/ 2(Dabi - (Ap/2)Cabi)

nai '(p) 2

we have the following matrix equation,

Uan  = Ri + 1 + Aiab Ubi 1+ BiabUbi + CiabU bi,+l (5)
b

which gives a block-diagonal matrix to invert if the {Uai} are grouped by radial zone. Equa-

tion (5) takes the form

R n+ 1 + [M] U n + 1 = Un, (6)

where the column vector U = (U11, U2 1 ,..., UN1; U12, U22,., UN2; ... ) and the matrix M

has along its diagonal the matrices Blab, B2ab,... flanked to the above-right by the matrices

Clab, C2ab,... and below-left by the matrices A2ab, B3ab,.... The matrix M is band-diagonal,
and packaged numerical routines are readily available to solve the equation (e.g., sgbco of

LINPACK, snbco of SLATEC, dgbtrs of LAPACK, sgbtrs of SCILIB, etc.) We solve the

system in double precision to avoid cumulative round-off errors.
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Appendix B

DT Experiments, Isotope Effect, and

a-Heating

Here we provide a brief discussion of the first high power deuterium-tritium experiments,

which is useful to introduce the isotope effect and illustrate the dependence of the plasma

mixture on wall fueling. Recent tokamak experiments had routinely used primarily deuterium

as fuel, with the exception of an earlier "Preliminary Tritium Experiment" (PTE) performed

on the JET machine in 1991 [237]. In this experiment, 15 MW of neutral beam heating power,
13% tritium, produced a very transient 1.4 MW of fusion power, terminated by a carbon

bloom event. On December 9 and 10, 1993, the first high power, sustained, experiments using

comparable concentrations of deuterium and tritium were carried out on the Tokamak Fusion

Test Reactor at the Princeton University Plasma Physics Laboratory [62, 61, 53]. The first

experiments achieved a record fusion power of 6.2 MW, for 30 MW of auxiliary heating, and

received international news coverage. These experiments were originally designed to use a

50:50 mixture of deuterium and tritium beam fueling. Because the limiter tiles had not been

previously exposed to tritium, the wall influx was composed primarily of deuterium, which

diluted the thermal mixture and reduced the neutron rate. The following anecdote provides

a useful discussion of plasma wall fueling, an issue of paramount importance in enhanced

confinement regimes.

On December 9, 1993, an initial high power discharge, #73235 (Pb = 24.4 MW, 48% in

tritium, Ip = 2.0 MA, Ro/a = 252/87 cm, B, = 5.0 T), was taken with a 50:50 mixture

of deuterium and tritium beam fueling, producing 3.8 MW of fusion power. The next run

day, December 10, 1993, consisted of lithium pellet conditioning in deuterium discharges

as described in Ref. [47], together with at first three high power power discharges using a

50:50 deuterium-tritium beam fueling mixture. During this experiment, a series of SNAP
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Figure 1. SNAP simulations for the initial high power DT discharge #73235. Comparing the measured
(shown with error bars) and initial calculated DT neutron rates (dotted line) revealed a discrepancy indicating
significant core dilution by deuterium influx from the limiter. This was consistent with a thermal tritium
concentration of only half that in the beam fueling (solid line). The SNAP simulations were then carried
out assuming a = 0.50, while artificially varying the beam fueling mixture. This showed that the fusion
power would would be maximized if the beam power were made tritium-rich. This led to our suggestion that
significant improvements in the DT fusion power output would be possible with beam fueling of roughly 70%
tritium, instead of 50%. The record discharge #73268 was achieved with 66% tritium beam fueling on the
basis of this suggestion.

simulations by the author, based on the previous day's tritium discharge, #73235, shown in

Fig. 1, demonstrated a route to improved peformance.

Adopting a simple model for the tritium concentration [53],

nT PT

nT + nD PT + PD

where nT and nD are the thermal tritium and deuterium densities, PT and PD are the

beam powers, and a = 1.00 was at first assumed, the calculated DT neutron rate from the

SNAP steady state transport code was much larger than the measured value, while the stored

energy was within 4%. This indicated significant deuterium influx from the limiter, which
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had no prior exposure to tritium. Decreasing a to 0.5 improved the agreement between

calculated and measured DT neutron rates, accounting for the dilution by limiter influx.

Performing a series of SNAP simulations with a = 0.5, while artificially varying the fraction

of beam power in tritium, demonstrated that the fusion power would be maximized if the

beam fueling were made 70% tritium-rich rather than with a 50:50 DT mixture, as originally

planned. As shown in Fig. 1, this information was used to change the experiment in progress,
and yielded the record fourth DT discharge #73268, with 6.2 MW of fusion power [62, 61].

The "isotope effect" on ion thermal confinement also resulted in improved performance over

similar deuterium discharges [219, 220, 238, 53]. The sum of the two effects, the increased

reaction rate resulting from optimizing the D-T mixture, and the isotope effect, resulted in

a 15% improvement in fusion power relative to discharges taken earlier that day. In DT

supershot plasmas, the ion thermal confinement time scales rather strongly as - E - (A) 1.25

where A is the thermal isotopic mass. The increased heating of electrons by the ions, resulting

from the isotope effect in the ion channel, together with poorer penetration of tritium neutral

beams, complicated the analysis of the a heating of electrons [219, 220, 238]. The initial

demonstration of the heating [228] of electrons by a-particles in magnetically confined plasmas

was made possible by accounting for these effects with an empirical scaling for the resulting

changes in the electron temperature.

Subsequent experiments, carried out in 1994, achieved the present record fusion power

of 10.7 MW [31] with increased plasma current and increased neutral beam power (2.5 MA,
40 MW). For a comprehensive review of the deuterium-tritium experiments, see Ref. [230].
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