
Theoretical and Experimental Investigations of

Electrostatic Effects Associated with Ionic

Surfactant Micelles

by

Nancy Zoeller Diggs

B.S.E., Chemical Engineering, Princeton University (1992)
M.S.C.E.P., Massachusetts Institute of Technology (1994)

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

@ Massachusetts Institute of Technology 1998. All rights reserved.

A uthor ........................... - -
Department of Chemical Engineering

May 6, 1998

Certified by................. . .. . ..... . ... .... . .....

-Daniel Blankschtein
Professor

Thesis Supervisor

Accepted by...
Robert E. Cohen

St. Laurent Professor of Chemical Engineering
Chairman, Committee for Graduate Students

.! 09194i 8



Theoretical and Experimental Investigations of

Electrostatic Effects Associated with Ionic Surfactant

Micelles

by

Nancy Zoeller Diggs

Submitted to the Department of Chemical Engineering
on May 6, 1998, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

Ionic surfactants are the most commonly used type of surfactant, yet the complex
electrostatic intramicellar and intermicellar interactions involved in micelle formation
and micellar solution phase behavior of these surfactants are not well understood.
In this thesis, both theoretical and experimental investigations were conducted in
order to develop a better molecular-level understanding of the micellar properties of
aqueous ionic surfactant solutions.

The first major contribution of this thesis was to extend a molecular-thermody-
namic theory of micellization and micellar solution phase behavior previously de-
veloped by our group for nonionic surfactants to describe and model the behavior
of ionic surfactants. Analytical approximations to the Poisson-Boltzmann equation
were used to calculate the electrostatic contribution to the free energy of micelliza-
tion. To correct for the neglect of the finite size of the ions in the ion cloud, the model
was modified to include a Stern layer, a region immediately surrounding the micelle
surface from which the counterions are excluded. Including the Stern layer improved
CMC predictions and provided some counterion specificity. In addition, a model
for the fractional counterion binding was developed based on the Gibbs adsorption
equation.

In an effort to make the molecular-thermodynamic theory more accessible to both
academic and industrial surfactant researchers, it was incorporated into a user-friendly
computer program, known as program PREDICT. Program PREDICT is capable of
predicting a wide range of micellar solution properties for a variety of ionic, non-
ionic, and zwitterionic surfactants. Examples of many of its predictive capabilities
are presented and compared with experimental data. In addition, some fundamen-
tal predicted surfactant solution properties are correlated with industrially-relevant
surfactant performance characteristics.

The molecular-thermodynamic theory with a Stern layer model was found to un-
derestimate micellar growth of typical ionic surfactants in the presence of added salt.



This underestimation of micelle size is due primarily to the neglect of electrostatic
intermicellar interactions. In an effort to address intermicellar interactions using a
more rigorous, systematic approach, a new statistical-thermodynamic framework for
micellar solutions based on the McMillan-Mayer theory of multicomponent solutions
was developed. The framework was first implemented in the case of nonionic surfac-
tant solutions exhibiting attractive and excluded-volume intermicellar interactions. It
was demonstrated that repulsive excluded-volume intermicellar interactions encour-
age micelle formation and growth. In addition, this framework was used to make
accurate predictions of several micellar solution properties, such as the CMC, the
critical concentration for phase separation, and the osmotic compressibility.

The McMillan-Mayer approach was then extended to model the behavior of ionic
surfactant solutions which exhibit both excluded-volume and electrostatic intermicel-
lar interactions. To model the electrostatic intermicellar interactions, the other mi-
celles in solution were included as part of the diffuse ion cloud surrounding a central
micelle. Two different approaches were used to calculate the electrostatic potential
created by the micelle and the ion cloud. First, the Debye-Hickel approximation,
which provides an analytical solution and can model both spherical and cylindrical
micelles, was used to predict micellar growth. Indeed, it was found that electro-
static intermicellar interactions encourage micellar growth, yielding a significant im-
provement over the predictions of the simpler molecular-thermodynamic theory. The
second approach involved the use of a modified Poisson-Boltzmann equation, which
included the effect of the finite size of the charged solutes in the ion cloud. This
approach represents a more accurate description of the electrostatic potential, but
can only be used in the case of spherical micelles. Although quantitative accuracy
is not yet achieved, both of these approaches represent a valuable "first step" in the
development of a theory for electrostatic intermicellar interactions.

In conjunction with the theoretical work, an experimental investigation into the
properties of dodecyl ethoxy sulfate micelles with 1, 2, 4, or 6 EO groups was con-
ducted. Light scattering and viscosity techniques were used to measure micelle shape
and size at various salt concentrations and temperatures. The DLVO potential was
used to quantify the effect of electrostatic and attractive intermicellar interactions on
the light scattering data. It was found that the resulting equilibrium micelle shape
and size is determined by an interplay between steric and electrostatic interactions
among the surfactant heads at the micelle surface. Specifically, the surfactants with
one and two EO groups exhibited one-dimensional growth in the presence of added
salt, a common behavior for typical ionic surfactants. In contrast, the surfactants
with four or six EO groups formed small spherical micelles over the entire range
of salt concentrations and temperatures examined. This experimental investigation
provided valuable insight into the molecular-level interactions which govern the equi-
librium micelle shape and size.

Thesis Supervisor: Daniel Blankschtein
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

Ionic surfactants are the most commonly used type of surfactants in industry and

research,[1] in diverse applications ranging from pharmaceuticals and personal care

products to industrial uses involving coatings and lubrication. As the economic envi-

ronment becomes more and more restrictive, companies which use these surfactants

are decreasing research budgets and demanding more from surfactant manufacturers.

In turn, surfactant manufacturers must provide their customers with complete infor-

mation on their product's characteristics and behavior in order to sell. At the same

time, they must continue to develop new surfactant products which possess certain

desired qualities but are less expensive to produce. Consequently, surfactant manufac-

turers are relying increasingly on research to provide an understanding of surfactant

behavior.[1] There are two ways to gain this understanding: experimentation and

theory. Through a series of experiments, one can accurately probe the properties of a

particular surfactant. However, this can be expensive and time-consuming, allowing

the study of only one surfactant at a time. In order to understand the behavior of a

broad class of surfactants, one must turn towards theory. As research budgets dwin-

dle, comprehensive theories which quantitatively predict surfactant behavior become

increasingly valuable.

In this thesis, I studied surfactant solutions, focusing on ionic surfactants, in



order to develop comprehensive theories which quantitatively model their behavior. A

significant amount of theoretical work has already been done by others, but, due to the

long-range nature of the electrostatic interactions involved, much of this work involves

sophisticated models which require significant computational power. An important

goal of this thesis was to develop a theory involving relatively simple computations

that can accurately describe ionic surfactant solutions.

In addition to theoretical work, experiments were conducted in order to collect

relevant information on surfactant solution behavior. Although a wealth of exper-

imental data is available in the literature, it originates from a variety of different

sources and hence is not systematic. In order to fully understand surfactant solution

behavior, consistent reliable data is required for comparison with newly-developed

theories. Towards this end, the effects of surfactant concentration, salt concentra-

tion, and temperature on the micellization behavior of a novel family of surfactants,

the alkyl ethoxy sulfates, have been studied as part of this thesis.

In this chapter, a general background on current research on micellar solution

behavior will be presented. In addition, the specific objectives of this thesis are

delineated, and the organization of the remainder of the thesis is explained. First,

however, a general background on surfactant solution properties is provided in the

next section.

1.2 Background on Surfactant Solution Behavior

Surfactants are molecules composed of a polar hydrophilic group, the "head," at-

tached to a nonpolar hydrophobic group, the "tail." The head can be anionic (nega-

tively charged), cationic (positively charged), zwitterionic (dipolar), or nonionic (un-

charged). The tail is typically a linear hydrocarbon chain, although branched tails

and non-hydrocarbon tails are also encountered. This unique molecular structure

leads to a rich spectrum of complex self-assembling phenomena when surfactants are

dissolved in polar or nonpolar solvents.[2, 3] For example, when dissolved in water,

surfactants form a monolayer at the water-air interface with the polar heads oriented



towards the water and the nonpolar tails oriented towards the air. As the surfactant

concentration increases, the water-air interface becomes saturated, and the additional

surfactant molecules self-assemble into aggregate microstructures, known as micelles,

coexisting with the surfactant monomers, in which the polar heads remain exposed to

water while the nonpolar tails are shielded inside the micellar core. The entropic cost

of constraining the surfactant molecules in micellar form is balanced by the enthalpic

gain of shielding the hydrophobic tails from water, the net effect being a minimum

in the micellar solution free energy. The threshold surfactant concentration beyond

which micellization occurs is known as the critical micellar concentration (CMC).

The CMC is characteristic of a particular type of surfactant, and typically depends

on temperature and salt concentration. Various solution properties, such as the sur-

face tension, osmotic compressibility, and conductivity, exhibit dramatic changes at

the CMC.[4]

Micelles are dynamic entities which are continually exchanging surfactant mole-

cules with the monomeric state and with each other, a process which can generate an

entire distribution of micellar sizes.[5, 6] Indeed, micelles can appear in sizes ranging

from tens to thousands of monomers. Typically, the smaller micelles are spherical,

while the larger ones are cylindrical or discoidal.[3, 5, 7] Micellar shape and size are

not necessarily fixed. In some cases, dramatic morphological changes can be induced

by varying solution conditions such as overall surfactant concentration, temperature,

ionic strength, or pH.[2, 3, 6] For example, in the absence of salt, ionic surfactants

typically form spherical micelles to maximize the available area per head at the mi-

cellar surface, thereby minimizing the electrostatic repulsions between the heads. At

high salt concentrations, where the charged heads are shielded by salt ions, the mi-

celles may elongate into cylinders.[8, 9] Since one dimension of the micelle is limited

by the length of the fully-extended hydrocarbon tail, cylindrical micelles may grow to

be quite long at high surfactant concentrations.[7] Beyond some surfactant concentra-

tion, the elongated micelles may entangle and form a mesh.[10] This concentration is

known as the crossover surfactant concentration, and, in the case of ionic surfactants,

typically occurs at very high salt concentrations. It is also possible that the micelles



may grow in two dimensions, forming discoidal structures. Again, in the case of ionic

surfactants, this would typically occur at relatively high salt concentrations. Micelles

may also form more complicated structures,[5] such as bilayers and vesicles, but these

will not be considered in this thesis.

At low surfactant concentrations above the CMC, typically below 20wt%, micellar

solutions often exist as homogeneous isotropic liquid phases. For many surfactants,

particularly nonionic surfactants, phase separation can be induced in this concen-

tration range by varying temperature or ionic strength.[6, 11, 12, 13, 14, 15] The

corresponding coexistence or cloud-point curve, delineating the boundary between

the one-phase and two-phase regions of the temperature-surfactant concentration

phase diagram, usually exhibits a pronounced asymmetry between the dilute and con-

centrated branches, and can display lower and/or upper critical (consolute) points.

Typically, the observed critical points occur at very dilute surfactant concentrations,

for example, in aqueous solutions of nonionic surfactants at concentrations below

5wt%.[6, 11, 12, 13, 14, 15]

1.3 Previous Theoretical Work

In veiw of the broad variety of complex behavior exhibited by surfactant solutions

discussed in the previous section, it would be valuable to develop a theoretical de-

scription of their behavior which explicitly incorporates the unique chemical structure

of the surfactant molecules. In the past, the modeling of micellar solution behavior

has proceeded primarily along two fronts: (i) describing the micellization process it-

self, and (ii) describing the overall micellar solution phase behavior. Along the first

front, extensive work has been done on modeling micelle formation based on physico-

chemical arguments.[2, 3, 7, 8, 16, 17, 18, 19] These models calculate the free energy of

micellization, which is the free-energy change per surfactant molecule associated with

transferring a surfactant molecule from bulk solution into a micelle. In this descrip-

tion, the micelle is assumed to be at infinite dilution, and intermicellar interactions

can thus be neglected. The CMC and information regarding micellar shape and size



can then be computed directly from the free energy of micellization.[3, 8, 16, 17, 18, 19]

Many of these models also make use of various phenomenological parameters based on

experimental data to obtain a high degree of predictive accuracy. For example, an em-

pirical constant has been estimated based on CMC data to quantify the repulsive con-

tributions to the free energy of micellization,[3, 8] and geometric packing constraints

have been utilized to determine optimal micellar shapes. [7] Later models incorporated

the unique molecular structure of the surfactant molecules into the formulation by

explicitly describing the repulsive free-energy contributions associated with micelliza-

tion through separate steric, interfacial, and electrostatic contributions.[8, 16, 19, 20]

The calculation of the electrostatic contribution represents a particularly chal-

lenging problem, one that has been addressed using several different approaches. For

example, a diffuse ion cloud model was used to describe the distribution of counterions

around an ionic micelle.[21, 22, 23] A modification of this approach used a cell model

to calculate the electrostatic potential between two charged micelles surrounded by

their ion clouds in a micellar solution which was divided into cells.[24, 25] An al-

ternative approach used a lattice model to describe the location of the charges on

the micellar surface.[26, 27] Finally, extensive work has been done using liquid-state

theory to describe ionic micellar solutions.[28, 29, 30, 31, 32]

Along the second front, that is, describing the overall micellar solution, theoretical

work has been driven by the need to fundamentally understand and quantitatively pre-

dict micellar growth and micellar solution phase behavior.[6, 11, 33, 34, 35, 36, 37, 38]

At low surfactant concentrations, micelles are somewhat globular and monodisperse.

As the surfactant concentration is increased, two additional micellar solution charac-

teristics become important: (i) micelles may change shape and size, becoming more

polydisperse, and (ii) intermicellar interactions may become stronger, possibly leading

to phase separation. Early attempts to model micellar solution phase behavior as-

sumed ideal solution behavior, where interactions between micelles are negligible, and

concentrated mainly on the entropy of mixing polydisperse micelles in solution.[8, 39]

However, intermicellar interactions must be treated in order to model certain micellar

solution characteristics at higher surfactant concentrations, such as the stabilization



of particular micellar structures,[40, 41, 42] micellar diffusion coefficients,[43] the mi-

cellar size distribution,[44] and phase separation.[6, 11, 33, 35, 45] Experimentally,

the importance of light and neutron scattering in elucidating micellar structures has

also led to a demand for detailed descriptions of intermicellar interactions. Specifi-

cally, an accurate model of intermicellar interactions is required to interpret scattering

data and obtain a clear description of the micellar size distribution and the diffusion

coefficients.[43, 46, 47, 48, 49, 50, 51, 52, 53]

Clearly, there is a need for a theoretical approach capable of unifying the pre-

viously disconnected treatments of micellization and overall micellar solution phase

behavior. Several theoretical approaches have examined the coupling of intramicellar

and intermicellar interactions and their effects on micelle shape, average size, and

size distribution,[37, 38, 40, 44, 54, 55] but these theories do not have a molecu-

lar basis. The fundamental challenges associated with developing a molecular-level

understanding of the behavior of surfactant solutions, coupled with the tremendous

practical importance of these complex fluids, indicates the need for developing a

quantitative theoretical description of these systems capable of predicting their rich

behavior. Preferably, the desired theory should incorporate explicitly the detailed

molecular structures of the surfactants involved and the specified solution conditions.

With this in mind, a molecular-thermodynamic theory has been developed by our

group to describe and predict micellization and micellar solution phase behavior of

aqueous surfactant solutions.[16, 56] This molecular-thermodynamic theory combines

a molecular model of micelle formation with a thermodynamic free-energy description

of phase behavior and phase separation of micellar solutions. The molecular model

of micellization accounts explicitly for the effects of surfactant molecular structure

and solution conditions on the physical driving forces which control micelle forma-

tion and growth.[16, 56] The free-energy description accounts explicitly for the effects

of intermicellar interactions (described at a mean-field level) and multiple chemical

equilibrium on the micellar size distribution as well as on the equilibrium bulk ther-

modynamic properties of the solution. [6] It was found that this theory yields accurate

predictions of micellar properties and micellar solution phase behavior for nonionic



surfactants.[16] However, since the model was developed primarily for nonionic sur-

factants, electrostatic effects were ignored.

The conceptual basis of the molecular model of micellization involves breaking

down the process of micellization into a series of steps, each reflecting one of the

important molecular factors responsible for micellization, and then calculating the

free-energy changes associated with each of these steps separately. The sum of all

these free-energy changes yields the free energy of micellization, gmic, which is equal

to the free-energy change associated with transferring a free monomer into a micelle

at infinite dilution. Once gmic is known, it can be utilized to calculate the equilibrium

micelle shape and size. One contribution to gmic, which is particularly relevant to this

thesis, is the electrostatic free-energy change associated with bringing the charged

polar heads into close proximity to each other on the micellar surface, known as gelec-

More specifically, geec can be described as the free-energy change required to localize

a set of like charges on the surface of a micelle. For nonionic surfactants, this free-

energy change is negligible. However, for ionic and zwitterionic surfactants, gelec, or

the free-energy cost associated with charging the micellar surface, is essential and

hence must be calculated.

To calculate gelec, the electrostatic potential around the micelle can be modelled

using the Poisson-Boltzmann (PB) equation, which describes the distribution of ions

around a charged surface.[57] Several key assumptions are made in the development

of the PB equation. In particular, the ions are treated as point charges, and the

solvent is treated as a continuum having a uniform dielectric constant. In addition,

the PB equation is nonlinear, and therefore, tedious numerical routines are required

for its solution. For the convenience of incorporating electrostatic interactions into a

molecular-thermodynamic framework that can be easily rationalized and utilized, an

analytical solution to the PB equation is desired. For this purpose, several analytical

approximations to the Poisson-Boltzmann equation have been developed.[21, 22, 23,

58, 59, 60]

The calculation of the free energy of micellization, gmic, is only one element in the

overall thermodynamic framework to theoretically model micellar solutions. In addi-



tion to the formation of a single micelle, captured in gmic, a description of the entropy

of the entire micellar solution, as well as of the interactions between micelles, is needed

to fully characterize the micellar system. In the molecular-thermodynamic theory, the

Gibbs free energy is decomposed into three contributions accounting for: (i) forma-

tion of the micelles at infinite dilution, (ii) mixing of the micelles with monomers,

water molecules, and other micelles, and (iii) attractive intermicellar interactions.

The attractive intermicellar interactions are modeled using a mean-field interaction

description. It was found that predictions made using this molecular-thermodynamic

theory were in good agreement with available experimental data for a range of micellar

solution properties for nonionic surfactants.[10, 16, 61]

In the next section, the specific objectives of this thesis are discussed.

1.4 Thesis Objectives

In view of the above discussion on current theoretical advances in modeling ionic

micellar solutions, the objectives of this thesis were laid out. These include:

" Improve the ability of the molecular-thermodynamic theory to quantitatively

predict the behavior of ionic micellar solutions. The main focus here was on

developing accurate descriptions of the electrostatic interactions among the

charged surfactant heads leading to an expression for the electrostatic free en-

ergy, gelec. The Poisson-Boltzmann equation, a fundamental equation of electro-

statics, was modified to improve on some of its inherent limitations. Specifically,

the finite size of the counterions immediately surrounding the micelle was in-

cluded in the model through the use of a Stern layer. In addition, a model

based on the Gibbs adsorption equation was developed to estimate counterion

binding, that is, the fraction of surfactant molecules which do not dissociate.

* Develop program PREDICT, a user-friendly computer program created to make

the molecular-thermodynamic theory accessible to industrial and academic re-

searchers interested in surfactant design and formulation.



* Develop a new thermodynamic framework to address issues regarding inter-

micellar interactions specifically related to the modeling of ionic micellar so-

lutions. This framework, based on rigorous statistical-mechanical principles

in the context of the McMillan-Mayer theory of multicomponent solutions, al-

lows for the treatment of a variety of intermicellar interactions, including those

of the excluded-volume and electrostatic variety, in addition to the mean-field

type attractive interactions that were introduced in the context of the original

thermodynamic framework.

* Perform experiments in order to obtain systematic, reliable data on ionic surfac-

tant behavior. Dodecyl ethoxy sulfates (C 12H25-(OCH 2 CH2H2)j-OSONa + , with

j =1, 2, 4, or 6) were used as a model system. This is an interesting class

of ionic surfactants which can exhibit behavior typical of that of an ionic or a

nonionic surfactant, depending on the number of ethoxy groups in the head and

on the solution conditions. The effects of salt concentration and temperature on

micelle shape and size were investigated using viscosity and static and dynamic

light scattering methods.

1.5 Thesis Organization

The thesis is structured as follows. In Chapter 2, the molecular-thermodynamic the-

ory of micellar solutions originally developed for nonionic surfactants is extended to

include ionic surfactants. The classical Poisson-Boltzmann (PB) model is used to

describe the distribution of ions around the charged micelle. Some modifications are

made to the PB equation to correct for some of its inherent limitations. Specifically,

a Stern layer is added to account for the finite size of the counterions at the micellar

surface. In addition, a model for calculating the fractional counterion binding at the

micellar surface using the Gibbs adsorption equation is developed. Several exam-

ples of predictions of CMC's and counterion binding for typical ionic surfactants are

presented and compared with experimental data.

The molecular-thermodynamic theory was incorporated into a user-friendly com-



puter program, called program PREDICT, in an effort to make it accessible to indus-

trial and academic researchers interested in surfactant design and formulation. The

operation of this program is explained in Chapter 3, along with a thorough description

of its predictive capabilities.

The molecular-thermodynamic theory presented in Chapters 2 and 3 is somewhat

limited in its ability to predict micelle size for ionic surfactants. Indeed, it was found

that this theory is unable to predict the micelle growth of some of the dodecyl ethoxy

surfactants observed in the experimental study described in Chapter 7. Recall that

the intermicellar interactions in the molecular-thermodynamic theory are limited to

attractive mean-field interactions. This simple approach may not be appropriate for

charged surfactants where the repulsive electrostatic interactions may be dominant,

thus leading to significant correlations between micelles which are neglected in the

mean-field description. In addition, splitting the solution nonidealities into mixing

and interaction free-energy contributions without a rigorous underlying statistical-

mechanical basis can sometimes lead to ambiguities. Specifically, when the theory

is unable to describe some aspect of the experimentally observed micellar solution

behavior, it is difficult to unambiguously determine if the source of the discrepancy

lies in the mixing or the interaction contributions to the micellar solution Gibbs free

energy. A thermodynamic framework based on rigorous statistical-thermodynamic

principles is required to address these issues in an accurate and consistent manner.

Therefore, a new thermodynamic framework for the modeling of micellar solutions

was developed based on the McMillan-Mayer theory of multicomponent solutions.

Chapter 4 presents the derivation of this framework.

Because electrostatic intermicellar interactions can be very difficult to model, the

McMillan-Mayer approach was first applied to nonionic surfactant solutions which

exhibit attractive and excluded-volume interactions. In particular, Chapter 5 in-

cludes a description of the implementation of the McMillan-Mayer theory for non-

ionic surfactant solutions. Note that the molecular model of micellization presented

in Chapter 2 can be used in this thermodynamic framework, where gelec = 0 for non-

ionic surfactants. The effect of including attractive and excluded-volume intermicellar



interactions in the new thermodynamic framework is examined through qualitative

predictions of the micellar size distribution. In addition, quantitative predictions of

several micellar solution properties are made and compared with experimental data.

In Chapter 6, the McMillan-Mayer theory is implemented in the case of ionic sur-

factant solutions which exhibit both excluded-volume and electrostatic intermicellar

interactions. An approach for modeling the electrostatic intermicellar interactions

whereby the charged micelles are included as part of the ion cloud is described. The

molecular model of micellization presented in Chapter 2 can be used within this

framework, with the exception of the calculation of geec. Specifically, the interaction

between a charged micelle and its surrounding ion cloud (which includes counterions,

salt ions, monomers, and other charged micelles) is included in the nonideal contribu-

tion. Therefore, in this approach, gelec corresponds to the electrostatic contribution to

the free energy of micellization, gmic, at infinite dilution with no surrounding ion cloud.

The reasons for modifying the calculation of gmic in this manner are discussed further

in Chapter 6. Two different models for the distribution of the charged solutes in the

ion cloud are used and compared. One involves the use of the Debye-Hiickel equation,

which, although approximate, is analytical and can be used to model elongated mi-

celles. The second approach involves the use of the full numerical Poisson-Boltzmann

equation in which the ion distribution is modified to include the effect of the finite

size of the charged solutes in the ion cloud. Several qualitative predictions are made

to assess the impact of the electrostatic intermicellar interactions on the micellar size

distribution.

In conjunction with the theoretical investigations described above, an experimen-

tal investigation was conducted on dodecyl ethoxy sulfates, as described in Chapter 7.

Using viscosity and static and dynamic light scattering techniques, the effect of solu-

tion conditions (salt concentration and temperature) on the micelle shape and size of

alkyl ethoxy sulfate surfactants were studied. It was found that the resulting equilib-

rium micelle structure is determined by an interplay between steric and electrostatic

intramicellar interactions among the surfactant heads at the micelle surface. In addi-

tion, the effect of intermicellar interactions was accounted for in the light scattering



analysis using the DLVO potential. This experimental study provided an opportunity

to gain a better understanding of the molecular-level interactions which determine the

resulting micelle structure.

Finally, in Chapter 8, the key results of this thesis are summarized, and suggestions

for future research in the area of ionic micellar solutions are presented.



Chapter 2

Extension of the

Molecular- Thermodynamic

Theory of Micellization to Ionic

Surfactants

2.1 Introduction

As stressed in Chapter 1, ionic surfactants are widely used in diverse industrial and re-

search applications. Clearly, there is a need for a theory which can accurately predict

the behavior of these surfactants in aqueous solution, while retaining some computa-

tional simplicity. Our group has recently developed a molecular-thermodynamic the-

ory to describe and predict micellization characteristics and micellar solution phase

behavior of aqueous nonionic surfactant solutions.[6, 16] The central goal of this

chapter is to extend this theory to incorporate ionic surfactants in an accurate and

consistent manner. Specifically, the electrostatic contribution to the free energy of

micellization, gelec, must be quantified for ionic surfactants. The free energy of mi-

cellization, gmic, is the free energy required to transfer a surfactant monomer into

a micelle at infinite dilution. If the surfactant is ionic, the micelle is surrounded



by a diffuse ion cloud consisting of counterions, monomers, and salt ions, if salt is

added. Note that intermicellar interactions, except for attractive mean-field interac-

tions, are neglected in the molecular-thermodynamic theory. This neglect eventually

led to the development of a new statistical-thermodynamic framework based on the

McMillan-Mayer theory of multicomponent solutions, as described in Chapters 4 and

6.

The electrostatic contribution to the free energy of micellization, gelec, can be

calculated using the Poisson-Boltzmann (PB) equation to describe the distribution of

ions in the ion cloud. The PB equation is a nonlinear differential equation which can

be solved numerically.[24, 62, 63] However, a central goal of this chapter is to develop

a model which is computationally simple. One option is to linearize the PB equation

to obtain the well-known Debye-Hiickel (DH) solution.[7, 8] While this solution is

relatively simple to obtain, it is not accurate enough for the high surface charge

densities typically encountered on a typical ionic micellar surface. Alternatively,

several analytical approximations are available in the literature[21, 22, 23, 58, 59, 60]

that afford ease of computation while not sacrificing quantitative accuracy. Some of

these analytical approximations will be discussed in this chapter.

While an analytical approximation may be very close to the actual solution of the

PB equation, there are some approximations inherent in the formulation of the PB

equation itself. In particular, the ions in the cloud surrounding the micelle (includ-

ing counterions, co-ions, and surfactant monomers) are treated as point charges.[57]

In other words, they are assumed to have zero volume, and therefore, can approach

infinitely close to the micellar surface and to each other. Consequently, the PB

equation is expected to overpredict the counterion concentration at the micellar sur-

face, thus reducing the head/head electrostatic repulsions more than is physically

possible.[26, 27, 64] In order to overcome this problem, a model was developed which

includes the finite size of the counterions at the micellar surface, representing a more

realistic picture of the charged micelle and its ion cloud. This modification to the

PB equation allows for more accurate predictions of micellization properties, such as

the CMC, as well as for a better incorporation of the effect of added salt on these



properties.

Due to the electrostatic attractions between the oppositely-charged surfactant

heads and their counterions, not all the surfactant molecules will be fully dissociated.

In other words, some counterions will remain "bound" to the surface of the micelle.

The distinction between bound and free ions constitutes a controversial issue in the

field of colloid science, one that remains to be fully elucidated. In this chapter, this

issue will be addressed by estimating the fraction of bound counterions based on the

Gibbs Adsorption Equation. This approach is somewhat similar to that presented

by Evans, Mitchell, and Ninham[22] and others,[23, 65] but here it is applied to the

molecular model of micellization developed by our group, which includes a more de-

tailed description of the micellization process, including the effect of finite counterion

volume in the region of the micellar surface. In addition, a rigorous thermodynamic

derivation of the expression for fractional counterion binding is presented which is

lacking in the published literature.[22, 23, 65]

The remainder of this chapter is organized as follows. In Section 2.2, the phe-

nomenological thermodynamic framework, originally developed for nonionic surfac-

tant solutions, is described. In Section 2.3, the molecular model of micellization is

presented, along with an extensive discussion of the various analytical approximations

available for solving the PB equation and calculating gelec. In addition, the Stern layer

model, which accounts for the finite size of the counterions at the micelle surface, is

derived in this section. Finally, in Section 2.4, a model for the prediction of fractional

counterion binding is incorporated in the context of the molecular-thermodynamic

theory of micellization of ionic surfactants.

2.2 Thermodynamic Framework

Previously, a thermodynamic free-energy description was developed by our group to

describe the phase behavior and phase separation of nonionic micellar solutions.[6, 16,

17] This description is also applicable in the case of ionic micellar solutions. In this

section, the salient features of this thermodynamic framework will be briefly reviewed.



The surfactant solution under consideration consists of N, solvent (water) mol-

ecules and N, surfactant molecules, which, depending upon the solution conditions,

can form a distribution of micellar aggregates, {N,}, where N, denotes the number of

micelles of aggregation number n, also known as n-mers. The total Gibbs free energy

of the micellar solution can be written as follows

3

G = Nwp + Nip, + E EE Nn(S, 1c)An(S, 1c) (2.1)
S=1 1, n>1

where , and p 1 are the chemical potentials of solvent (water) molecules and surfac-

tant monomers, respectively, pn(S, 1,) is the chemical potential of an n-mer of shape

S (where S = 3 for spheres, 2 for cylinders, and 1 for bilayers) and micelle core radius

lc, and N,(S, 1c) is the number of n-mers of shape S and micelle core radius 1,. Note

that Nn(S, 1,) and #n(S, lc) in Eq. (2.1) are summed over all possible values of S and

Ic.

The total Gibbs free energy of the micellar solution can be modeled as the sum of

three contributions, reflecting (i) the formation of the {N,} distribution of micellar

aggregates in chemical equilibrium with each other and with the monomers in solu-

tion, (ii) the entropy of mixing micelles, surfactant monomers, and solvent molecules,

and (iii) the attractive intermicellar interactions modeled at a mean-field level. The

resulting Gibbs free energy is given by[6, 16, 17]

3

G = Npo + NIp[ + Z Nn(S, Ic) P (S, Ic)
S=1 Ic n>1

+kBT N, ln X + 1: E Nn(S, lc) lnXn(Sc) 2 (2.2)
S=1 Ic n>1

where po and p are the standard-state chemical potentials of a solvent molecule and

a surfactant monomer, respectively, pn (S, l,) is the standard-state chemical potential

of an n-mer of shape S and micelle core radius lc, X,, is the mole fraction of solvent,

X,(S, 1c) is the mole fraction of n-mers of shape S and micelle core radius l, C is a

mean-field interaction parameter reflecting the magnitude of the effective intermicellar



attractions, 4 is the total surfactant volume fraction, kB is the Boltzmann constant,

and T is the absolute temperature.

The mass balance of the surfactant molecules must be maintained. Specifically,

3

N = N + E E nNn (S,1,) (2.3)
S=1 lc n>1

The surfactant solution is in thermodynamic equilibrium, indicating that the

Gibbs total free energy, G, is at its minimum value. That is, at a given temper-

ature, T, pressure, p, N,, and N, one has

dG IT,p,Ns,Nw = 0 (2.4)

Using Eq. (2.1) in Eq. (2.4) yields

3

0 = pldN + : E E Pn(S, lc) dNn(S, lc) (2.5)
S=1 1, n>1

Because N, is held constant, Eq. (2.3) provides a connection between dN1 and

dNn(S, l1). Hence, Eq. (2.5) becomes

3

E E [Pn(S, 1c) - npi] dNn(S, 1,) = 0 (2.6)
S=1 1, n>1

Thus, for every n, S, and Il, the following relation must be satisfied

Pn (S, Ic) = n1u (2.7)

which is the mathematical statement of multiple chemical equilibrium.

The chemical potentials, pn(S, lc) and pL, can be obtained by differentiating the

free energy given in Eq. (2.2). That is, /Ln(S, lc) = (OG/ON,(S, 1C))T,pN,,wN,mn} , which

results in the following expressions for Pn(S, 1c) and pi



3

pn(S,I1c) = po(S,1c) + kBT 1+lnXn(S,lc)+n(X-1)- nE ZZ Xm(S, lc)
S=1 c1 m

+ Cn(1 2 X+] (2.8)

S1 = p° + kBT 1 + nX + (X - 1) - E E Xm(S, c) + 2 [(1- )2 1
S=1 Bc m2

(2.9)

Using Eqs. (2.8) and (2.9) in Eq. (2.7), the following expression is obtained for

the micellar size distribution[6, 17, 56]

Xn(S, 1,) = (X e)" exp [-ngmic(n, S, 1c)] (2.10)
e

where 3 = 1/kBT, and gmic(n, S, 1c) = (pn(S, 1l)/n - po) is the free-energy change

required to transfer a surfactant molecule from bulk solvent to a micelle of aggregation

number n, shape S, and micelle core radius I,. This free-energy change is known as

the free energy of micellization, and will be evaluated based on the molecular model

of micellization described in Section 2.3.

Using the micellar size distribution equation, Eq. (2.10), all the equilibrium micel-

lar solution properties associated with it can be computed. In particular, the moments

of the micellar size distribution are given by

3

Mk = X 1 + E E E n kXn(S, lc) (2.11)
S=1 1, n>1

Note that the zeroth moment corresponds to the total mole fraction of micelles and

monomers. That is,
3

Mo = Xi + E E Xn,(S, I) (2.12)
S=1 1, n>1

In addition, the first moment corresponds to the total mole fraction of surfactant, X,



and is given by

M, = X = X 1 + E E E nXn(S, lc) (2.13)
S=1 1, n>1

Various average characteristics of the micellar size distribution which can be mea-

sured experimentally can be calculated from the moments defined in Eq. (2.11). For

example, the number-average and weight-average micelle aggregation numbers, (n)n

and (n),, respectively, are given by

(n, = (2.14)

(n, = (2.15)

The relative variance, Var, is a quantitative measure of the polydispersity of the

micellar size distribution, and is given by

Var = M 1 -1 (2.16)

It has been shown[6, 16] that monodisperse spherical micelles are characterized by

Var = 0.0, whereas polydisperse cylindrical micelles are characterized by Var = 0.5.

Typically, one micelle shape is energetically favored over the other two shapes, so

that all the micelles form in the optimal shape, S*. In this case, it is not necessary

to sum over all three shapes because only one micelle shape is present in solution. In

addition, the distribution, Xn(S*, 1,), is usually sharply peaked at a specific value of

I, = C1, the optimal micelle core radius. Hence, to a very good approximation, it can

be assumed that all the micelles have the same shape, S*, and the same micelle core

radius, l*. To determine the optimal shape, S*, and the optimal micelle core radius,

l , X,(S, I) is maximized with respect to S and l,. By rewriting Eq. (2.10) as follows

X,(S, l,) = [Xi exp (-3gmic(n, S, ,) + 1)]n /e (2.17)

it is clear that X, is maximized at the minimum value of gmi(r, S, l). In other words,

S* and I are given by the S and l, values for which gmi(n, S, l,) is minimized. The



minimization procedure is described in more detail in Section 2.3.1.

When all the micelles are assumed to be at the optimal S* and l , Eq. (2.10)

becomes

Xn, Xn(S*,) (X ) exp [-Ongmic(n, S*, (X)] (2.18)

The various moments fo the micellar size distribution are then given by

Mk = Xl + E nkXn (2.19)
n>1

From knowledge of the micelle size distribution, several experimentally measurable

micellar properties can be predicted. For example, the critical micelle concentration,

CMC, can be obtained from Eq. (2.18) by taking the natural log of X, and retaining

ony the terms that are of order n (n > 1). Specifically,

CMC - exp [pgmic(n, S*, l*) - 1] (2.20)

The crossover surfactant concentration, X*, signaling the transition from the di-

lute (nonentangled) to the semidilute (entangled) micellar solution regimes can be

computed using Eq. (2.18) in the context of the theory developed in Ref. [10]. The

critical point, which signals the onset of phase separation, is characterized by the

critical surfactant concentration, XC, and the critical temperature, T.. At the critical

point, thermodynamic stability requires that the two conditions, (a 2g/OX 2)T,p = 0

and (O3g/OX 3 )T,p = 0, should be satisfied, where g = G/(N, + N,). By simultane-

ously solving these two equations, it is posible to deduce the values of Xc and the

critical interaction parameter, C., for a given value of Tc. In order to make predictions

using the thermodynamic framework described here, a model for the calculation of

gmic is required. This model is described in the next section.



2.3 Molecular Model of Micellization for Ionic

Surfactants

A molecular model of micellization has been developed to calculate gmic(n, S, 1,).[16,

17] This model involves systematically calculating the magnitude and temperature

dependence of the essential physical factors involved in the process of micellization,

and is summarized below.

2.3.1 The Thought Process

The molecular model of micellization is used to calculate the free energy of micel-

lization, gmic, based on the chemical structure of the surfactant molecule and the

solution conditions. Specifically, gmic(n, S, 1,) represents the free-energy change as-

sociated with the transfer of a surfactant molecule from the aqueous solvent to a

micelle characterized by an aggregation number, n, shape, S, and micelle core radius,

lc, present in the aqueous solvent. A more negative value of gmic results in a stronger

tendency towards micellization. The magnitude of gmic can be evaluated using a con-

ceptual thought process which describes the formation of a micelle from individual

surfactant monomers as a series of reversible steps, each associated with a physico-

chemical contribution to the micellization process. For a schematic representation of

the micellization thought process, see Figure 2-1.

The following steps are involved:

1. Breaking the bonds between the surfactant heads and tails. The free-energy

change associated with this step is considered to be equal in magnitude and

opposite in sign to the free-energy change associated with reforming the bonds

between the surfactant heads and tails, once the surfactant molecules have been

incorporated into the micelle, and consequently, does not need to be quantified.

2. Transferring the surfactant hydrophobic tails, separately and independently

from the heads, from bulk solvent to bulk hydrocarbon (representative of the

micellar core). This is an attractive free-energy contribution that can be eval-
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Figure 2-1: Schematic representation of the thought process to visualize the transfer
of a charged surfactant monomer from aqueous solution at infinite dilution to the
interior of a micelle.



uated using experimental data for the solubility of hydrocarbons in an aqueous

solvent. The resulting expression is given by[3, 16]

gtr/kBT = [3.04 - 1.05(n, - 1)](298/T) - [5.06 + 0.444(nc, - 1)] (2.21)

where nc is the total number of carbon atoms in the tail.

3. Creating the interface between the micellar core and the surrounding solvent.

This contribution is evaluated using the concept of a macroscopic interfacial free

energy of a hydrocarbon-water interface, including its dependence on interfacial

curvature. The interfacial free energy, gint, is given by

gint/kBT o a - ao ) (2.22)
+ (S-1)T kBT

where ao0 is the interfacial tension between bulk hydrocarbon and the solvent,

6 T is the Tolman distance (a measure of the interfacial thickness), a is the total

interfacial area available per monomer at the micellar core-water interface, and

ao is the interfacial area screened from contact with the solvent by the bond

between the surfactant head and tail when the head is "reattached". The area

available per surfactant molecule at the micellar core-water interface is given by

a = t (2.23)

where vt is the volume of the surfactant tail. For details on the calculation of

vt and 6T, see References [17, 16].

4. Anchoring the surfactant tails to the interface formed in Step (3). In this step,

the tails lose some of their conformational degrees of freedom. The resulting free

energy of packing, gpack, is calculated using a statistical-mechanical mean-field

hydrocarbon chain packing calculation.[16, 66] For computational speed, the

numerically-generated functions of gpack (lc) are fitted to a second-order polyno-



mial for a range of nc values between 4 and 18.[66] This yields

gpack/kBT = A 2 (lc/lmax) 2 + Ai(lc/lmax) + Ao (2.24)

where Ao, A1 , and A 2 are polynomial coefficients which depend on micellar

shape as well as on the number of carbon atoms in the hydrocarbon chain, n,

and Imax is the maximum (fully-extended) length of the hydrocarbon tail, given

by Imax = 1.54 + 1.265(nc - 1), in A.

5. Transferring the uncharged surfactant heads from their original positions in

the solution to the interface between the micellar core and the solvent. The

head/tail bonds are reformed, but, as mentioned earlier, the free-energy change

associated with reforming the head/tail bonds is cancelled by the free-energy

change of breaking these bonds in the first step. The presence of the heads

at the interface results in steric and other nonelectrostatic interactions. As a

first appoximation, only steric repulsions between the heads are considered (see

[16]), and therefore, specific interactions, such as hydrogen bonding between

the heads, are neglected. The free-energy change associated with these steric

repulsions is calculated by treating the heads present at the interface as an

ideal localized monolayer.[16] The resulting free-energy contribution, get, can

be expressed as

g9t/kBT = - ln(1 - ah/a) (2.25)

where ah is the effective cross-sectional area of the head. Note that in this

step, as part of the thought process, the charges are left behind, so that the

electrostatic interactions are calculated separately in the next step. The free-

energy change associated with discharging the surfactant heads before transfer-

ring them is included in the calculation of the last step.

6. Charging the surfactant heads present at the micellar surface surrounded by a

cloud of charged counterions. For nonionic surfactants, this step can be ignored.

In the case of ionic surfactants, the charges, which were left behind in the



previous step, must now be restored to the uncharged surfactant heads residing

on the micellar surface. Note that the free energy associated with discharging

the surfactant heads in Step (5) is accounted for in this last step. The work

involved in this step is the electrostatic free-energy contribution, gelec, and its

calculation, discussed in detail in the next section, is a central element of this

chapter.

The sum of all the five free-energy contributions described above yields the free

energy of micellization, gmic(n, S, l,). Specifically,

9mic = - - P1t = 9tr + gpack + gint + 9st + gelec (2.26)

As discussed in Section 2.2, it is convenient to determine the optimal 1l value, in

order to simplify the calculation of the moments. Accordingly, for each of the three

regular micelle shapes, gmic is calculated and subsequently minimized with respect

to lc to determine the minimum free energy, gmic(S), and the corresponding optimal

micelle core radius, ic, for that particular micelle shape, S. The optimal micelle shape,

S*, corresponds to that associated with the lowest gmic(S, *) value. If the optimal

shape, S*, corresponds to a sphere, the micelles are assumed to be monodisperse

spheres with an aggregation number no = 47r(1) 3/3vt. If the optimal shape, S*,

corresponds to an infinite cylinder, the micelles are polydisperse with aggregation

numbers ranging from the minimum-sized spherical micelle of aggregation number

no = 4wr(l) 3 /3vt to infinity. In this case, g*iC(n) is estimated by linearly interpolating

between the g*ic values for spheres and infinite-sized cylinders. Specifically,

gSc(n) = no-gmic(S = 3, l ) + gmic(S = 2, l) (2.27)
n n

2.3.2 The Electrostatic Free Energy, geec

The electrostatic contribution, gelec, represents the free-energy change associated with

charging a surfactant molecule in a micelle surrounded by a cloud of ions. Note that

in the McMillan-Mayer statistical-thermodynamic framework presented in Chapter 6,



gelec is calculated for a bare micelle with no surrounding ion cloud. In other words,

the standard state is defined differently. Hence, a different approach for calculating

getec in the context of the McMillan-Mayer statistical-thermodynamic framework will

be discussed in Chapter 6. The following discussion on the calculation of gelec applies

only to the molecular-thermodynamic theory presented in this chapter.

The ions (counterions and co-ions) surrounding the micelle are already fully-

charged and arranged in their final spatial configuration, as if the micelle were already

fully-charged. In that case, gelec is equivalent to the reversible work, W, involved in

bringing a charge into a region having an electrostatic potential, 4, in the electrical

double layer created between the micellar surface of charge and the ion cloud sur-

rounding the micelle.[57] This is known as the Guntelberg charging process. In this

approach, the work of charging is given by[57]

1 nze (ze) 2  z (ze) 2

W = gelec = I o (q) dq - ach z o(or) dc - (2.28)
n Jo 2crE o 2Erh

where 0o is the electrostatic potential at the surface of charge, q is the micelle charge

(equal to nze when fully charged), a is the surface charge density (equal to ze/ah

when fully charged), e is the electronic charge, z is the surfactant valence, and ach

is the area available to a surfactant molecule at the surface of charge. The negative

term in Eq. (2.28) represents the free-energy change associated with discharging the

surfactant head in the previous (fifth) step, where rh is the radius of the surfactant

head, and e is the dielectric constant of the solvent. Because the monomer is dis-

charged at infinite dilution, this free-energy change is simply the negative of the Born

solvation energy of the monomer head. This contribution is typically negligible com-

pared to the work of charging the micelle, but it is included for completeness. Note

that in calculating gelec, it is assumed that the surfactant charges are smeared over

the surface of the micelle.

The next challenge is to calculate the electrostatic potential at the charged micelle

surface, Vo. For this purpose, the classical Poisson-Boltzmann (PB) equation can be



utilized to describe the electric field around a charged micelle. Specifically,

2 () 4e cizi exp (T) (2.29)i kBT

where j' is the location measured from the center of the micelle, c? is the number con-

centration of ions of type i in the bulk solution far from the micelle, zi is the valence

of ions of type i, c = 4 7cocr is the dielectric constant, where E, is the relative permit-

tivity of water (78.5 at 250C) and eo is the vacuum permittivity (8.854 x 10- 22C2/JA).

Equation (2.29) is general and can be applied to any electrolyte solution. The re-

mainder of this chapter treats only symmetric surfactants, where Zsurf = -Zcounterion.

Consequently, only the general notation z will be used, where z refers to the va-

lence of the surfactant molecule (with Zcounterion = -z). In addition, if salt is

added, it is assumed to have the same valence as the surfactant molecule, that is,

Zcounterion,salt = Zcounterion = -z and Zcoion,salt = Zsurf = Z.

The three types of micellar shapes considered here, spheres, infinite cylinders, and

infinite bilayers, are axi-symmetric, which effectively reduces the solution of Eq. (2.29)

to a one-dimensional problem. In other words, for a sphere, the only direction along

which the potential varies is the radial distance from the center of the sphere. For

the case of an infinite cylinder, the only direction along which the potential varies is

the radial distance from the cylindrical axis. For inifinite bilayers, the only direction

of interest is the distance normal to the planar bilayer. The scalar variable, r, is used

for each of these three cases, such that the Laplacian operator on the left-hand side

of Eq. (2.29) takes on the following form

22V m 0
V 2  )  r 2  r r (2.30)

where r is the scalar distance from the center of the micelle, and m = S - 1 is a shape

factor (with S = 3 for spheres, 2 for infinite cylinders, and 1 for infinite bilayers).

The right-hand side of Eq. (2.29) describes the distribution of ions surrounding

the charged micelle. This ion distribution (known as the Boltzmann distribution)

neglects the finite volume of the counterions, an approximation which leads to exces-
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Figure 2-2: Section of the micellar interface, illustrating the pertinent regions involved
in the Stern layer model: I indicates the Stern layer region, and II indicates the diffuse
ion cloud region. le is the radius of the micelle core, Rch is the radius of the surface of
charge, 6i is the radius of the hydrated counterion, and R, is the radius of the outer
edge of the Stern layer.

sive screening at the micellar surface. In order to provide the counterions with some
volume, the original Poisson-Boltzmann equation was modified to include a Stern

layer,[67, 26, 27] defined as the region immediately surrounding the micellar surface
from which counterions are excluded. The Stern layer is illustrated in Figure 2-2,
where region I refers to the Stern layer and region II refers to the diffuse ion cloud.
The boundaries are defined by the radius of the surface of charge, Rch, the radius
of the hydrated counterion, 6i, and the radius of the outer edge of the Stern layer,
R, = Reh + 6i. The thickness of the Stern layer, 6 i, is approximately equal to the dis-
tance from the surface of charge to the center of the associated counterions, including
hydration.

In the Poisson-Boltzmann model, the charge of an ion in the ion cloud is localized

at the center of the ion. Because the centers of the ions do not penetrate the Stern

layer region (region I), the right-hand side of Eq. (2.29) reduces to zero. In other



words, in region I, 4 satisfies the Laplace equation, that is,[64, 57]

V 2 l,(r) = 0 (2.31)

where 0i represents the electrostatic potential within the Stern layer. From Gauss'

Law at the charged surface of the micelle (r = Rch), the following boundary condition

is obtained (see Appendix A for a detailed derivation):[57]

( rI - -47ra _ 47rze (2.32)
Or r=Rch  ach

Note that the dielectric constant in region I is assumed to be equal to that in region

II, which is equal to the bulk value, that is, E, = E2 = E. The behavior of the dielectric

constant is discussed in more detail in Section 2.3.3.

At r = R,, where the Stern layer region (I) meets the diffuse ion cloud region (II),

both the electrostatic potentials and the derivatives of the potentials must equal each

other (see Appendix A). In other words,[64, 68]

OI(Rs) = O,'1 (Rs) (2.33)

and1

( )1Rs = R (2.34)
r=Rs ) r=R ,

By integrating Eq. (2.31) subject to these boundary conditions (see Appendix A),

the following expression is obtained for the electrostatic potential at the surface of

charge:

1Note that if charges were physically present on the Stern layer surface (at r = R,), the boundary
condition given in Eq. (2.34) would have an additional contribution to account for the charge at
r = R, (see Appendix A for details). In the model presented here, it is assumed that the charges
are infinitesimally displaced from the Stern layer surface, and therefore, the additional contribution
can be neglected.



f iI(R,) + Each(1+,/1 Rh)

i(Rch) = 0 1 i(Rs) + In (1 + 6i/Rch)

OII(Rs) + 4Ieach

, for a sphere

, for an infinite cylinder

, for an infinite bilayer

where 4I'(Rs) is the electrostatic potential at the outer edge of the Stern layer. The

Poisson-Boltzmann equation, Eq. (2.29), can then be utilized to solve for 01/ in the

diffuse ion cloud region (II) to obtain O,,(R).

The electrostatic potential given in Eq. (2.35) can be integrated according to

Eq. (2.28) to determine geiec, Specifically (see Appendix A for details),

(2.36)/gelec = fgelec,I + F(S) - (ze) 2

2 2ErhkBT

where gelec,II is the electrostatic free energy contribution due to the ion cloud region

(II) and F(S) is a function which depends on the shape, S, of the micelle, given by

6i(1 + 6i/Rch)

F(S) = Rch(1 + 6i/Rch) In(1 + 6i/Rch)

, for S=3 (sphere)

, for S=2 (infinite cylinder)

, for S=1 (infinite bilayer)

where s is a dimensionless surface charge density (see Appendix A for details), given

by
47e2 z 2

EKachkBT(1 + 6i/Rch)m

and r-1 is the Debye screening length, where

(2.38)

(2.39)
87rc'e2 2

K
2 = e 2

FkBT

where c' is the concentration of ions in the bulk, including the surfactant monomers.

In other words, c = csalt + cl, where Csalt is the concentration of added salt and cl

is the concentration of the surfactant monomers. Note that K-1 has units of length,

and is a measure of the thickness of the ion cloud. At low concentrations, c' is low,

(2.35)

(2.37)



and the ion cloud surrounding the micelle is relatively thick. Conversely, at high salt

concentrations, c' is high, and the ion cloud is thin.

As stated above, gelec,II is the electrostatic free energy due to the ion cloud region

(II). To calculate gelec,ii, the integral in Eq. (2.28) is applied to the diffuse-ion cloud

region. Specifically,

-gelec,II = ach 01 (R) d (2.40)
kBT fo

In order to determine OII(R,), the electrostatic potential must be calculated ac-

cording to Eq. (2.29), subject to the following boundary conditions (see Appendix A

for details).[57, 21]

(i) at r = R,, the potential must be continuous, as described in Eq. (2.34). In

addition, the value of this derivative is given by Gauss' law, as follows,

(8O = I -47rze
Or rr r=R Each(1 + 6 i/Rch)m

(ii) as r - oc, the potential decays to zero due to electroneutrality in the bulk, that

is,

1ii(r - oo) = 0 (2.42)

( 0 = 0 (2.43)

Recall that Eq. (2.29) is a nonlinear differential equation, and an analytical solu-

tion for 0II cannot be realized. Instead, Eq. (2.29) can be solved numerically, which is

computationally expensive, or analytical approximations can be utilized. ,II can then

be integrated according to Eq. (2.40) to obtain gelec,IT. Several different analytical

approximations are available in the literature. Among these, four widely-used approx-

imations were selected for study. The first is a solution by Evans and Ninham[21]

based on an expansion in powers of 1/i'R, around the planar solution (m = 0), which

is analytical. This solution will be denoted as the EMN83 approximation, and is



given by

/getec,II(EMN83) = 2 In [(s/2) + (1 + s2/4)1/2] + [ - (1 +2/4)1/2]

4m In 1 + (1 + s2/4)1/2

KRs 2

In a subsequent publication, Evans, Mitchell, and Ninham[22] amended their pre-

vious solution with a slightly different approximation. This solution, referred to as

the EMN84 approximation, is given by

9gelec,II(EMN84) yo -2(w) + 1
/ 2

(W - 1

8m In (
KRes I ( + 1)1/2 2(w -1)1/2

where w = cosh(yo/2), and Yo is the scaled surface potential, obtained from the

following expression

cosh(yo/2) + 2 2

r, R, /

S2] 1/2

4
4

2
SR,

(2.46)

More recently, Mitchell and Ninham[58] added additional curvature correction

terms to the 1983 approximation (to order 1/(KR,) 2).

hereafter as the EMN89 approximation, is given by

This solution, referred to

= Eq. (2.44) + m 2/(KRs) 2 [1/s - 8/s 3 + 8/(s 3(1 + s2/4)1/2)]

2m(m - 1)f[(1 + s4) ]

s(KR,) 2

f(x) = 2 fX ln[(1 + t)/2] dt
) =t 2 -2

(2.47)

(2.48)

Hayter[23] contributed a fourth approximate expression based on a renormaliza-

(2.44)

8
+ - + 2 )1/2

KR,

- In21/2 1 ((2.45)

(2.45)

/3gelec,i (EMN89)

where



tion of the planar result corresponding to the EMN approach. Specifically,

/getec,II(Hayter) Y= o - R4m 1+ (u + 1)2/4)1/2 (1 + 2 +)

4m In[1 + (1 + x2) 1/ 2] -In [1 + (I + 2(u + 1)2/4)1/2]

(2.49)

where s is given in Eq. (2.38), and xo and yo are the scaled radius and surface potential,

respectively, and are given by

xo = KR, (2.50)

Yo = 21n [u+ (u2 _1)1/2] (2.51)

u is calculated from the following implicit equation

= ( 1/2 + + (x(u + )2)1/ (2.52)
8 o x +1 2

Each of the four approximations described above can be studied separately to

determine which is most appropriate for use in the micellar solution case. There

are two critieria that could be used to determine the best approximation: (i) select

the approximation which most closely matches the exact solution of the Poisson-

Boltzmann equation, or (ii) select the approximation which yields the most accurate

predictions of micellar solution properties, such as the CMC. In other words, due to

its inherent limitations, the PB equation itself may not be the most accurate model

of the electrostatic field surrounding a micelle, such that criterion (ii) may be more

appropriate than criterion (i).

The major variables on which gelec depends are I, the miclle core radius, and K,

a measure of the ionic strength of the solution. Hence, the behavior of the various

analytical approximations to the PB equation will be studied for a range of l1 and K.

First, each approximation will be compared with the numerical solution to the PB

equation by calculating gelec as a function of /i,,max for a fixed K. As an illustration, an



SDS solution at the CMC will be considered. In this case, c' = CMC(SDS) =8mM

at T = 250C, resulting in K = 0.0294A- 1. The radius of charge is given by Rh =

lc + dch, where dh(SDS) = 3.7A is the distance from the tail to the location of the

charge (including the first CH 2 group), and 6I (Na + ) = 1.85A. Figure 2-3 shows gelec

calculated from Eq. (2.36) using the various approximations for gelec,II. Specifically,

gelec,II is given by Eq. (2.44) for EMN83 (...), Eq. (2.45) for EMN84 (- -- - -- -),

Eq. (2.47) for EMN89 (- --), and Eq. (2.49) for the Hayter (- -- --) approximations.

These are compared with the numerical solution to the Poisson-Boltzmann equation

(-). The EMN83 solution clearly yields the closest agreement with the numerical PB

solution at the larger l, values, but deviates significantly from it for c/imax < 0.85.

The behavior of gelec as a function of l, is important to the minimization procedure

for determining gmic(l*). At the smaller 1c values, it may be safer to use one of the

other approximations, which, although they underestimate gelec with respect to the

numerical PB solution, exhibit a dependence on l, similar to that of the numerical

solution.

As mentioned above, in addition to its dependence on 1c, glec also depends on

K. The dependence on r, is not as important as the dependence on lc/lma for the

minimization of gmi,. However, it is important for the determination of the CMC,

since ir is a function of cg $ CMC when no salt is added. To study the behavior of

geec over a range of co values, the approximations for ge ec are analyzed over a range of

CMC predictions, which depend on both l and K. Each gelec approximation was used

in gmic to calculate the CMC for dodecyl ethoxy sulfates at 50'C, where the number of

ethylene oxide (EO) groups in the head varies from zero to four. Note that the range

of 4, values over which gmic was minimized was restricted to 0 .51max l 1 max. The

results are presented in Figure 2-4 for the EMN83 ( ... ), EMN84 (- .- - -), EMN89

( - - -), and Hayter (- - - --) approximations, and for the numerical solution to the

PB equation (-)2. The experimental CMC values are denoted by the circles.[69]

2Note that gelec depends on r., which, in turn, depends on the monomer concentration through

the concentration of ions, c° . However, gelec is required to calculate the surfactant monomer concen-

tration. In other words, gelec and the monomer concentration must be solved simultaneously through

an iterative procedure. In order to speed up the calculations, the CMC is used to approximate the
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Figure 2-3: Calculation of gel,,ec as a function of ic/imax for SDS at 25'C using the
numerical solution to the Poisson-Boltzmann equation (-), and the EMN83 (...),
EMN84 (- -- - -- -), EMN89 (- ), and Hayter (- -- - -) approximations.
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Figure 2-4: Predicted CMC as a function of the number of EO groups in the head for
aqueous solutions of dodecyl ethoxy sulfates at 500C. Predictions were made using
the EMN83 (-..), EMN84 (- ...- .. -), EMN89 (- - -), and Hayter (- - - - -)
approximations and the numerical solution to the PB equation (-). Experimental
CMC values are denoted by the circles.



Figure 2-4 indicates that the numerical solution to the PB equation consistently

underpredicts the CMC. The EMN84 and EMN89 approximations overestimate gelec

compared with the numerical PB solution, and therefore, predict higher CMC values.

In fact, the EMN84 approximation mathematically compensates for the limitations

of the Poisson-Boltzmann model, resulting in fairly accurate CMC predictions. The

EMN83 and the Hayter approximations both underestimate gelec compared with the

numerical PB solution, and therefore predict CMC values which are even lower than

those predicted by the numerical PB solution. Note that as the number of EO groups

increases, all the CMC predictions become much closer to each other. This reflects

the fact that the surfactant charges are displaced farther away from the micellar core,

and therefore, electrostatic effects become less important.

Because the EMN84 approximation predicts CMC values which are very close to

the experimental values, it was chosen as the best approximation for use in additional

studies. However, it should be kept in mind that this approximation overestimates

the true numerical solution to the PB equation, and, in so doing, mathematically

corrects the Poisson-Boltzmann predictions, resulting in better CMC predictions.

For comparison, the EMN83 approximation was also used in the additional studies,

because at larger l1 values, it closely resembles the numerical PB solution. However,

this approximation should also be used with caution, since, during the minimization

of gmic, the micelle may have a tendency to favor smaller 1, values for which the

calculated gelec becomes very small (see Figure 2-3).

The EMN84 and the EMN83 approximations were also used to study the effect of

varying the counterion size. In Figure 2-5, the predicted CMC is shown for dodecyl

sulfate surfactants with various counterions (C 12H 25SO 4X, or XDS, where X= Li,

Na, K, or Cs.[64]) The dark-shaded bars represent experimental CMC values.[70] The

striped bars represent CMC predictions made with the EMN84 approximation, and

the dotted bars represent CMC predictions made with the EMN83 approximation.

monomer concentration. In the calculations presented in Figure 2-4, the CMC was used in place

of the monomer concentration for all the analytical approximations, but the numerical solution was

calculated with the actual monomer concentration. If the numerical solution was calculated with

the CMC, the numerical predictions would decrease by approximately 10%.
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Again, because the EMNM84 approximation mathematically corrects the limitations

of the PB equation by overestimating gelec, it results in better CMC predictions

than those of the EMN83 approximation, which is very close to the numerical PB

solution(see Figure 2-3). Note that the CMC decreases as the hydrated radius of the

counterion decreases (6i = 2.35A, 1.85A, 1.32A, and 1.27A for Li, Na, K, and Cs,

respectively [71]). This is due to the fact that smaller counterions can approach closer

to the micellar surface, thereby screening the head/head electrostatic repulsions more

effectively. In other words, as 6i decreases, it is easier to form a micelle, and therefore,

the CMC is lower. Figure 2-5 also illustrates the effect of including a Stern layer in

the model. The Stern layer allows not only for a more accurate calculation of gelec,

and hence, of the CMC, but also introduces counterion specificity.

Solution conditions can have a strong effect on micellar size. In particular, it is well

known[9] that the addition of salt screens the surfactant charges, allowing spherical

micelles to grow into cylindrical micelles. For SDS, this sphere-to-rod transition

occurs at approximately 0.5M NaCI.[9, 72, 73] Figure 2-6 shows the effect of adding

NaCl on the predicted relative variance of the micellar size distribution, with a Stern

layer (-) and with no Stern layer (- - -).

As discussed in Section 2.2, a variance of 0.0 corresponds to monodisperse, spheri-

cal micelles, while a variance of 0.5 corresponds to polydisperse, elongated cylindrical

micelles. As can be seen in Figure 2-6, the model without a Stern layer actually pre-

dicts the micellar shape transition quite accurately as compared with experimental

measurements which indicate that it occurs at 0.5M NaCl. In comparison, the Stern

layer model appears to inhibit growth of the micelles from spheres into cylinders.

Indeed, the Stern layer increases the repulsive electrostatic interactions between the

surfactant heads such that much more NaCl must be added to screen the charges

and allow the micelles to grow. This behavior is true regardless of the analytical

approximation (or numerical solution) used to calculate geec.

Although the Stern layer model is instrumental in achieving accurate CMC predic-

tions, it is clearly missing an important element to accurately predict micellar growth.

Recall that in the thermodynamic framework described in Section 2.2, only mean-
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Figure 2-6: Predicted relative variance of the micellar size distribution for an aqueous
SDS solution at 250C as a function of NaCl concentration with (-) and without (-
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field attractive intermicellar interactions are included in the model. Electrostatic

intermicellar interactions, which can be quite long-ranged, are neglected. Clearly, a

new approach to systematically address the impact of intermicellar interactions based

on rigorous statistical-thermodynamic principles is needed. This was the motivation

for developing the McMillan-Mayer statistical-thermodynamic framework presented

in Chapters 4 through 6. However, the molecular-thermodynamic theory presented in

this chapter is still valuable in that the equations that must be solved are relatively

simple. Accordingly, it can provide accurate predictions of many micellar solution

properties in a matter of seconds. In addition, several minor modifications can be

made to the Stern layer model to improve predictions. These are discussed in the

next section.

2.3.3 Modifications to the Poisson-Boltzmann Model

Size of the Stern Layer

In the previous section, the width of the Stern Layer was chosen to be the radius

of the hydrated counterion. In addition, the surface of the micelle was assumed to

be smooth, and the Stern layer surface was measured from the surface of charge. In

reality, the surfactant head layer is a fluid region consisting of surfactant heads, water

molecules, and counterions. Therefore, the width of the Stern layer may fluctuate.

There is some evidence[74, 75] that the surfactant heads themselves are hydrated.

Indeed, in the case of metal electrodes, certain ions, such as Cs + and Cl-, prefer to

lose their hydration sheaths and contact the surfactant heads directly. Other ions,

such as Na + and F-, prefer to retain their hydration sheaths and remain separated

from the surfactant heads by the surfactant's hydration layer.[57] In addition, the

surfactant head may contain some atoms which sterically inhibit the counterions

from directly contacting the surface of charge. Of course, it is also possible that the

charge is not localized at one position, but is shared among several atoms. Figure 2-7

illustrates the micellar interfacial region for the case where a charged sulfate group is

the terminal group on the surfactant head.
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Figure 2-7: Expanded schematic view of the micellar interface for a surfactant with
a charged sulfate group as the terminal group in the head. Measurements are in A.

In order to test the effect of the Stern layer width, CMC predictions were made for

dodecyl ethoxy sulfate surfactants with a Stern layer width of 4.45A, which is equal

to the radius of the hydrated counterion plus the distance that the oxygen atom

extends from the charged sulfur atom (see Figure 2-7). For comparison, predictions

were also made with a Stern layer width of 1.85A, which includes only the radius of

the hydrated counterion. Note that this is the same 6i value used in the predictions

illustrated in Figures 2-3 and 2-4. Figure 2-8 illustrates predictions made using the

EMN84 approximation with Stern layer widths of Si = 4.45A (- - -) and 6 = 1.85A

(- - -), and using the EMN83 approximation with Stern layer widths of 56 = 4.45A

(- -- ) and Si = 1.85A ( ... ). For comparison, experimental CMC values are also shown

(circles). Note that the predictions with 6i = 1.85A are the same as those presented

in Figure 2-4.

For the EMN84 approximation, it can be seen that increasing the width of the

Stern layer increases the CMC. This is due to the fact that a larger Stern layer

prevents the counterions from shielding the surfactant charges as effectively, thereby

making it more difficult to form a micelle, resulting in a higher CMC. Increasing

the Stern layer width improves the CMC predictions made with the EMN84 model

for zero EO groups. The EMN84 approximation overestimates the CMC for higher

numbers of EO groups, although the effect becomes negligible as electrostatics are

less important for the larger numbers of EO groups. In contrast to the behavior

exhibited by the EMN84 approximation, the larger Stern layer actually resulted in

lower CMC predictions for the EMN83 approximation over much of the EO range
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Figure 2-8: Predicted CMC as a function of the number of EO groups in the head for

aqueous solutions of dodecyl ethoxy sulfates at 500C. Predictions were made using

the EMN84 approximation with a Stern layer width of 6i = 1.85A( -- -.. -) and

Si = 4.45A(-), and using the EMN83 approximation with a Stern layer width of

6i = 1.85A( ... ) and 6~ = 4.45A(- - -). Experimental CMC values are denoted by

circles.



examined. This result is an artifact of the minimization procedure. Recall that

the EMN83 approximation deviates from the numerical solution at small radii (see

Figure 2-3). When the Stern layer width is increased, the electric field is stronger, and

the micelle compensates by shrinking to very small radii where gelec(EMN83) becomes

very small. This behavior is an illustration of the need to select an approximation

which is accurate over the entire range of l values, in order to obtain the correct

minimization. The Stern layer width could be increased further by including some

water of hydration around the sulfate group. However, recall that the Stern layer

model prevents micellar growth (see Figure 2-6), an effect which would be worse for

a larger Stern layer. All of these factors should be considered when deciding on an

appropriate value for 6 i.

Dielectric Constant

In the Poisson-Boltzmann equation, the solvent is treated as a structureless contin-

uum characterized by a uniform dielectric constant, E. This treatment ignores two

important effects. [76, 77] The first effect is that, in reality, E will decrease as the

strength of the electric field, E, increases. That is, at high electric fields, the water

dipoles become oriented in the direction of the applied electric field, so that any ap-

plied potential (for example, that resulting from other ions present in the solution)

would have little or no effect on these dipoles. This is known as dielectric saturation,

and may occur at the charged micellar surface where the high local density of the

charged surfactant heads can generate strong electric fields. The second effect on C is

due to the presence of counterions in the head layer, as a result of which the water

molecules structure around the ions, thus inducing a decrease in the value of E.

Several attempts have been made to model the variation of e with the electric field

strength and the ionic concentration. For example, empirical relationships have been

developed where the dielectric constant is decreased depending on the concentration of

the ions.[76] However, in order to develop a truly predictive theory, the introduction

of additional parameters should be avoided. An alternative approach is to define

certain regions surrounding the micelle and assign a different dielectric constant to



each, with the outermost layer having a dielectric constant corresponding to that of

bulk water. This approach is appropriate for the present model, in which a region

surrounding the micelle has already been defined for the Stern layer. The Stern layer

model can be revised such that the dielectric constant inside the Stern layer, region

I, has a value El, and the dielectric constant in region II has a different value, C2 (see

Figure 2-2). In this revised description, the boundary conditions must be modified

to incorporate the difference in the dielectric constants (see Appendix A for details).

Specifically, Eq. (2.32) becomes

(_ 47r _ _ 4rze (2.53)
\r ) r=Rch E ach

and Eq. (2.34) becomes

f1 (""I) = 62 ( (2.54)
r=R, ) r=R,

Following the same procedure as in Section 2.3.2 with these modified boundary

conditions, the following expression for gelec is obtained (compare with Eq. (2.36))

KS )2 (ze) 2

etec = 3 gelec,I + (S 2 2rhk (2.55)

where F(S) is given in Eq. (2.37).

/3geec,Un can be obtained from a solution of the Poisson-Boltzmann equation us-

ing any of the analytical approximations discussed previously. Note that s must be

calculated using the dielectric constant in region II, C2.

The value of the dielectric constant in the Stern layer, e1, will be much lower than

that of bulk water because the water molecules will be aligned with the strong electric

field. Indeed, experimental measurements indicate that the dielectric constant at the

micellar interface is approximately 4.12 x 10-1 9C2/JA at 250 C, which is equal to

3.67 x 10-19C2/JA at 50 0C. For comparison, bulk water has a dielectric constant

of 7.79 x 10-19C 2/JA at 500C. It is likely that the dielectric constant will gradually

increase from 3.67 x 10-1 9C2/JA up to 7.79 x 10-19C2/JA throughout the Stern layer



region. In order to approximate this behavior, a linear variation in e was assumed

from E = 3.67 x 10- 9C 2 /JA at r = Rch up to E = 7.79 x 10- 19C 2IJA at r = R,. 61

was then assigned the average value, that is, E1 = (E) = 5.79 x 10- 19C 2/JA.

CMC predictions were made with e1 = 5.79 x 10- 19 C2/JA and 62 = 7.79 x

10-19C 2/JA for dodecyl ethoxy sulfate surfactants at 50'C. Results are presented

in Figure 2-9 for the EMN84 approximation (-) and for the EMN83 approxima-

tion (- - -). For comparison, the CMC predictions made with a uniform dielectric

constant are also shown for the EMN84 approximation (- - -- -) and the EMN83

approximation ( ... ). The circles denote the experimental CMC measurements. Note

that the predicitons with the uniform dielectric constant for both approximations

are the same as those presented in Figure 2-4. As can be seen, for both of these

analytical approximations, reducing the dielectric constant in region I increases the

CMC, because the ability of the water molecules to shield the electric field is re-

duced. In fact, reducing the dielectric constant to the value at the micellar surface,

E1 = 3.67 x 10- 1 9C2/JA, would increase the electric field too much. A moderate

change in E, such as E1 = 5.79 x 10-19C 2/JA yields the most accurate representation

of the electric field surrounding the micelle.

2.4 Fractional Counterion Binding

When ionic surfactant molecules aggregate to form a micelle, a fraction of the counte-

rions dissociate from the surfactant molecules and distribute freely in solution, while

the remainder bind to the micellar surface in order to reduce the electrostatic repul-

sions between the charged surfactant heads. Indeed, experimental evidence indicates

that micelles are only ionized to a degree of 20 to 50% of their full charge.[23, 47, 78]

However, a quantitative distinction between bound and unbound counterions remains

an unresolved issue, subject to different interpretations.[79, 80, 81, 82] For example,

"bound" ions may be considered to be those which are physically attached to specific

sites at the micelle surface. An alternative picture includes those ions which, although

not physically attached, are attracted to the micelle surface through electrostatic in-
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Figure 2-9: Predicted CMC as a function of the number of EO groups in the head for

aqueous solutions of dodecyl ethoxy sulfates at 50 0C using the EMN84 approximation

( ) and the EMN83 approximation ( - -) with a lower dielectric constant in the
Stern layer region (e1 = 5.79 x 10- 9C2/JA). Predictions made with a uniform dielec-
tric constant equal to the bulk value are also shown for the EMN84 approximation

(- - -) and for the EMN83 approximation (. . ). The circles denote experimental
CMC values.



teractions to such a degree that they are not free to move independently in solution.

Experimental estimates of counterion binding vary widely, as different experimental

methods probe different regions of the micellar/water interface.[83]

Theoretically, there are two competing pictures of the micellization process. The

first picture assumes that the counterions participate along with the surfactant mole-

cules in the micellization process,[81, 84] and therefore, should be included as part of

the micelle itself. In this case, the thermodynamic framework presented in Section 2.2

would have to be altered to include the counterions as part of the micelle, as described

in Appendix C. The second picture assumes that the micelle is formed from the

bare surfactant molecules only, with the counterions participating in the micellization

process indirectly through their presence in the diffuse ion cloud surrounding the

micelle, as described in Section 2.3.[22, 65] In this picture, the counterions are in

thermodynamic equilibrium with the micelle throughout the micellization process, as

accounted for in the calculation of gelec. Hence, a certain fraction of counterions are

very close to the surface of charge and can be viewed as thermodynamically "bound"

to the micelle surface.

The second picture is consistent with the micellization description presented in

Section 2.3. In this description, a thermodynamic competition for the counterions

exists between (i) binding to the micelle surface to reduce the micellar surface charge

density, and (ii) dispersing in solution to maximize entropy and satisfy their own

solvation energy.[65] In order to quantify this thermodynamic equilibrium, funda-

mental surface chemistry principles are used in the next section to define "bound"

counterions, based on the Gibbs adsorption equation.

2.4.1 The Gibbs Adsorption Equation

The Gibbs adsorption equation is based on the Gibbs free energy of an interface

in equilibrium with two bulk phases. Although the Gibbs adsorption equation was

derived for a macroscopic interface, as in the case of the interface between a bulk oil

phase and a bulk water phase, the approximation is made here that it can also be

applied to a microscopic interface such as that associated with the micellar interface.



In the Stern layer model, the bound counterions reside at the outer edge of the Stern

layer (at r = R, in Figure 2-2). The inner phase includes the surfactant molecules

in the micelle and the water molecules residing between the surfactant heads and the

counterions. The outer phase includes counterions, water molecules, and coions if salt

is added. In calculating gelec, the assumption was made that the dielectric constant

in the Stern layer is equal to the bulk value, which implies that the concentration

of the water molecules within the Stern layer is equivalent to the bulk concentration

of water. Accordingly, the adsorption of water molecules on the dividing surface is

zero. [85] By convention, the location of the Gibbs dividing surface is typically selected

such that the adsorption of the solvent is zero.[85] However, since there is no solvent

(water) adsorption on the dividing surface, this requirement is automatically satisfied.

Note also that the Gibbs dividing surface has no volume.[85]

At this surface, the following equation is obtained for the surface excess Gibbs

free energy[85]

dG = -S'dT - A"da + E pjdNj (2.56)

where a is the surface tension at the surface r = Rs, A' is the total surface area, S'

is the surface excess entropy, Nj" is the excess number of molecules of type j at this

surface, and pj is the chemical potential of component j residing at this surface, which

is equal to the chemical potential of component j in the bulk due to thermodynamic

equilibrium. The summmation in Eq. (2.56) is over all the components adsorbed at

the surface. Note that the original equation for the Gibbs' free energy of the surface

also includes some curvature terms, but, by the appropriate selection of the Gibbs'

dividing surface, these terms become negligible.[85]

The surface excess Gibbs free energy can be rewritten in terms of chemical poten-

tials as follows

Go, = Z jNJ (2.57)



and its differential is given by

dG = E jdN + E Ndj (2.58)

By combining Eq. (2.58) with Eq. (2.56), the Gibbs adsorption Equation is ob-

tained, that is,[86]

- S"dT - A"da - E Nad/uj = 0 (2.59)

At constant temperature, the number of ions bound per surface area, known as

the Gibbs Surface Excess, Fi, is calculated from Eq. (2.59) as follows[86, 87]

= 0-__o (2.60)

The fractional counterion binding, aB, is defined as the number of ions bound

per number of surfactant molecules in the micelle, N, that is, aB = Ny/N. Using

Eq. (2.60) for N.y, the following equation is obtained for aB

Ns - a - a -a (2.61)

where a" = A"' N is the surface area per surfactant molecule at the surface of interest,

located at r = Rs. Note that for the remainder of this analysis, the derivatives are

taken at constant 1pji, which is left out of the equations in order to simplify the

notation.

The chemical potential of the ions is given by

tti = ti (T) + kBTlnc' (2.62)

kBT
dgPi T = dc IT (2.63)

Ci

where 1t is the standard-state chemical potential of the ions. In Eq. (2.62), the

assumption was made that the ions behave ideally because they are relatively dilute.

This assumption may not be very accurate because the ions may have very long-

range electrostatic interactions. In order to gain more accuracy, Eq. (2.62) could be



based on activities rather than on concentrations,[87, 79, 80] but this would require

additional parameters. For the purposes of calculating binding at or near the CMC,

the dilute approximation appears reasonable.

Using Eq. (2.63) in Eq.(2.61) the following relation is obtained

a - = a (2.64)kT ac?

The surface tension at the surface of interest (r = R,) is affected by electrostatic

and steric interactions among the counterions adsorbed at the surface. Hence, the sur-

face tension in Eq. (2.64) can be written as a sum of both of these two contributions.

Specifically,

U = Oelec + Uster (2.65)

where lelec and aster are the "effective surface tensions" due to electrostatic inter-

actions and steric interactions, respectively. Recall that throughout this analysis,

the micelle is fixed in its equilibrium state. That is, l1 and the area per surfactant

molecule are fixed at their optimal values (1l and a*). Since a is fixed, the steric

interactions between the counterions remain fixed. Thus, in the derivative of a, the

major contribution is due to changes in the electrostatic surface tension, that is,

da = daeiec (2.66)

The surface tension is equivalent to the free energy of a surface per unit area.

Hence, the electrostatic free energy at the surface of interest, ge'ec, can be used to

calculate aelec, as follows

aa elec = gelec (2.67)

Thus, at constant a",

daeitec d- el (2.68)

Utilizing Eq. (2.68) in Eq. (2.64), the following expression for the fractional coun-



terion binding is obtained

aB = ' 2 c (2.69)ksT aco )T

This equation can be further simplifed in terms of the Debye screening length,

K- 1. Noting that,
87rc e2 2

K2  87e (2.70)
ckT

Equation (2.69) can be rewritten as follows,[22]

aB = - elec (2.71)
2 T

Equation 2.71 is the same expression found in Refs. [22] and [23], but here a more

complete derivation was presented. The next step is to evaluate the quantity g'ec, the

electrostatic free energy of interactions among the counterions directly surrounding

the micelle, which is described in the next section.

2.4.2 Calculation of g liec

g0ec is the electrostatic free energy at the surface of interest, which is the outer edge

of the Stern layer region (r = R, in Figure 2-2). The electrostatic free energy at

r = Rs is equal to the electrostatic free-energy contribution due to the diffuse ion

cloud region, gelec,II. In other words,

s = (geec,Ir (2.72)
2 OK ,T

Any of the approximations for the evaluation of gelecj, discussed in Section 2.3.2

can be utilized to calculate counterion binding. In this analyis, EMN84 will be used

because it exhibited the most accurate behavior. Use of the EMN84 approximation

in Eq. (2.72) results in the following expression for the counterion binding[22]
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w 2 ( + (2 -1)1/2
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[(I + R
2 J+ S]1/2 SKR

The s in Eqs. (2.73)-(2.75) represents the dimensionless surface charge density of

the counterions, given in Eq. (2.38). Alternatively, one could assume that only the

bound counterions contribute to g,,c. In this case, s would be reduced by the fraction

of counterions bound, that is, s' = aBs. Note that including aB in the quantity s'

causes this to become a nonlinear problem. In that case, the derivative in Eq. (2.72)

which was easily calculated analytically in Eq. (2.73) becomes a nonlinear differential

equation which must be solved numerically. Results using the full charge, s, and the

partial charge, s', will be compared in the next section.

2.4.3 Comparison with Experiments

Figure 2-10 shows the predicted and experimental fractional counterion binding of

sodium octyl sulfate (SOS, C 12H25OSO 3Na) at 25 0C with varying salt (NaCl) con-

centrations. Predictions were made using Eq. (2.73) with a fully-charged micelle, s

(-), and with a partially-charged micelle, s' (- -- ). The circles denote experimental

and

(Ow s

(2.74)

(2.75)
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Figure 2-10: Counterion binding predictions for sodium octyl sulfate (SOS) as a
function of NaCl concentration for a fully-charged micelle (-) and a partially-charged
micelle (- - -). The circles denote experimental counterion binding values.



values.[22, 23] The counterion binding gradually decreases as the concentration of salt

is increased. This trend is probably due to the fact that the electrostatic attractions

between the negatively charged sulfate groups and the positively charged sodium

counterions will be weakened by the additional screening, such that fewer counterions

are attracted to the surface. Although both approximations consistently underpredict

counterion binding, they capture the downward trend in aB with added salt. Possible

reasons for the underprediction are discussed below. Note that the predictions based

on s', the partially-charged micelle, are lower than those based on s, the fully-charged

micelle. This is reasonable, since gec,, will be lower for a partially-charged micelle than

for a fully-charged micelle, and therefore, fewer counterions would be attracted to the

micellar surface, thus resulting in lower aB values.

Figure 2-11 shows fractional counterion binding predictions for several cationic

surfactant systems with a fully-charged micelle (striped bars) and a partially-charged

micelle (dotted bars). Predictions are compared with experimental results (dark-

shaded bars).[22, 23, 47, 78] Surfactant systems examined include cetyltrimethylam-

monium bromide (CTAB, C16H33N(CH3 )3Br), myristyltrimethylammonium bromide

(MTAB, C 14H29N(CH3 ) 3Br), cetyltrimethylammonium chloride (CTAC1, C16H33N-

(CH 3) 3C1), and dodecyltrimethylammonium bromide (DTAB, C12H25N(CH 3)3Br),

with and without added sodium chloride (NaC1). The counterion binding predic-

tions generally underestimate the experimental results, except for the case of DTAB

and CTAC1. Possible reasons for the underprediction are discussed below. It is

interesting that the aB predictions for DTAB and CTAC1 are higher than the exper-

imentally measured aB values. However, it is important to note that experimental

measurements of aB are less accurate when no salt is added. In any case, the results

in Figures 2-10 and 2-11 indicate that the model based on the fully-charged micelle

yields better predictions than that based on the partially-charged micelle.

The experimental techniques utilized to obtain counterion binding values often

have errors in the range of 10-20%.[83] In addition, different techniques can yield dif-

ferent results for the same system, depending on which region of the micellar interface

the technique is probing. It is likely that the underprediction of the theoretical re-
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Figure 2-11: Counterion binding predictions for several cationic surfactant systems
for a fully-charged micelle (striped bars) and a partially-charged micelle (dotted bars).
Experimental counterion binding values are denoted by the dark-shaded bars.

69



sults is due to the fact that the model does not represent the same counterion binding

that is being measured. In other words, the experimental technique probably probes

a region that is farther away from the micelle surface than the Stern layer, thereby

including more counterions in the binding value that is measured. However, it is

valuable to note that the model, in general, captures the experimental trends quite

nicely.

2.5 Conclusions

In this chapter, a molecular-thermodynamic theory for the micellization of ionic sur-

factants was presented. The electrostatic contribution to the free energy of micel-

lization was described using the Poisson-Boltzmann equation. In order to correct for

some inherent limitations of the PB equation, a Stern layer was included in the model.

The Stern layer approach represents a valuable correction to the Poisson-Boltzmann

equation. Specifically, it results in more accurate CMC predictions, and it provides

counterion specificity. However, it also inhibits the growth of ionic micelles from

spheres into cylinders upon the addition of salt. In addition, it underestimates the

degree of counterion binding. There are alternative approaches to predicting coun-

terion binding, such as that using a Langmuir isotherm,[88, 89] but these require

additional adjustable parameters. The model presented here contains no adjustable

parameters, yet it adequately predicts the observed experimental trends in counterion

binding.

The Stern layer model improves on the Poisson-Boltzmann equation only through

the excluded volume at the micellar surface. However, the counterions may also

exhibit excluded-volume effects throughout the micellar solution which are not ac-

counted for. The molecular-thermodynamic framework presented in this chapter

includes only mean-field attractive intermicellar interactions. Electrostatic and ex-

cluded-volume intermicellar interactions are neglected, which could have a signifi-

cant effect on the resulting micellar shape and size. To address this issue, an al-

ternative statistical-thermodynamic framework which incorporates electrostatic and



excluded-volume intermicellar interactions was developed based on the McMillan-

Mayer theory of multicomponent solutions. This framework is described in detail in

Chapters 4 through 6. It is important to keep in mind, however, that the molecular-

thermodynamic theory presented in this chapter is quite valuable because the equa-

tions are relatively simple, and predictions can be made in a matter of seconds.

The predictions presented in this chapter focused primarily on the CMC's of some

typical ionic surfactants. The molecular-thermodynamic theory is also capable of

predicting a wide range of surfactant solution properties for a variety of ionic, non-

ionic, and zwitterionic surfactants. To enhance the usefulness of this theory, it has

been incorporated into a user-friendly computer program, program PREDICT, for

industrial use which is described in the next chapter.



Chapter 3

User-Friendly Computer Program

to Predict Surfactant Solution

Properties

3.1 Introduction

In Chapter 2, a molecular-thermodynamic theory to describe and predict micelliza-

tion and micellar solution phase behavior of aqueous surfactant solutions [16, 56] was

presented. The molecular model of micellization, described in Section 2.3, accounts

explicitly for the effects of surfactant molecular structure and solution conditions on

the physical driving forces which control micelle formation and growth.[16, 56] The

thermodynamic framework, described in Section 2.2, accounts explicitly for the ef-

fects of intermicellar interactions (described at a mean-field level) and multiple chem-

ical equilibrium on the micellar size distribution as well as on the equilibrium bulk

thermodynamic properties of the micellar solution.[6] In addition to predicting bulk

surfactant solution properties, a molecular-thermodynamic theory to predict surface

tensions of aqueous solutions containing nonionic surfactants has been developed.[61]

The predictions of both the theory for the bulk and the theory for the surface were

found to be in good agreement with available experimental data for a variety of



surfactant systems.[10, 16, 17, 18, 61]

In order to make these theoretical advances accessible to all those interested in

surfactant design, manufacturing, and formulation, some of the theoretical predictive

capabilities have been incorporated into a "user-friendly" computer program known

as program PREDICT. This program can be utilized with relative ease to predict a

broad spectrum of surfactant solution properties for a variety of surfactant types and

solution conditions. Predicted surfactant solution properties include: (i) the criti-

cal micellar concentration (CMC), (ii) the micelle shape, size, and size distribution,

(iii) the monomer concentration, (iv) the crossover surfactant concentration signaling

the transition from the dilute to the semidilute micellar solution regimes, (v) the

critical surfactant concentration for phase separation, and (vi) the surface tension

of nonionic surfactant solutions. In addition, some of these fundamental surfactant

solution properties can be correlated to industrially-relevant surfactant performance

characteristics, such as viscosity or skin irritation. Accordingly, with the use of pro-

gram PREDICT, the surfactant scientist in industry or academia can obtain valuable

information on surfactant solution properties while greatly reducing tedious and time-

consuming experimentation.

The remainder of this chapter is organized as follows. In Section 3.2, program

PREDICT is described, including a summary of its predictive capabilities and an ex-

planation of the inputs required to run the program. In Section 3.3, several examples

of predictions made by program PREDICT are presented, along with a comparison

with available experimental data. Finally, conclusions are presented in Section 3.4.

3.2 Program PREDICT

3.2.1 Predictive Capabilities

Program PREDICT can be utilized to predict micellar solution properties of non-

ionic, ionic, and zwitterionic hydrocarbon-based surfactants under a variety of solu-

tion conditions. Note that program PREDICT can also be utilized in the case of



fluorocarbon-based surfactants, but this case will not be addressed in this chapter.

Given the surfactant molecular structure and the solution conditions, the following

properties can be predicted using program PREDICT:

1. Bulk solution properties such as the critical micellar concentration (CMC).

2. Equilibrium micellar characteristics such as the optimal micellar shape, size,

and size distribution.

3. Phase behavior characteristics such as the critical surfactant concentration sig-

nalling the onset of phase separation, and the crossover surfactant concentration

marking the transition from the dilute (nonentangled) to the semidilute (entan-

gled) micellar solution regimes.

4. Surface tensions of aqueous solutions containing hydrocarbon-based nonionic

surfactants.

Program PREDICT is designed to be "user-friendly" to both those interested

solely in predicting solution properties of surfactant types already incorporated into

the program, as well as to those who are interested in incorporating new surfactant

structures which are relevant to their specific needs. For both types of users, minimal

knowledge of the underlying theoretical details is required. Instead, what is required

is knowledge of the surfactant molecular structure and the solution conditions, which

serve as inputs to the program (see Section 3.2.2). This greatly reduces the level of

expertise and amount of computational effort required to make predictions of surfac-

tant solution properties. For a flow diagram of program PREDICT, see Figure 3-1.

In order to facilitate the use of program PREDICT, it was written in FORTRAN

for use on a typical personal computer. The necessary calculations are performed

in a matter of seconds. The operation of program PREDICT is interactive, that

is, the program leads the user through a series of questions in order to gather the

relevant data and determine which properties need to be predicted. The output is

in a tabular format. First, the inputs are listed, then the free-energy calculations
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are presented, and finally the desired predicted properties are displayed. After the

output is displayed, the user has the option of repeating the calculations using new

adjusted molecular parameters or solution conditions. For later use, the outputs are

saved in a data file.

3.2.2 Inputs to Program PREDICT

In order to operate program PREDICT, the user needs to input information about

the surfactant molecular structure and the desired solution conditions. Regarding

the surfactant molecular structure, descriptions of both the surfactant head and tail

are needed. To describe the tail of a hydrocarbon-based surfactant, the user needs to

simply input the total number of carbon atoms, nc, comprising the tail. To describe

the head, the user needs to input the effective cross-sectional area of the head, ah, for

all classes of surfactants. If the head is nonionic, no additional inputs are required.

However, if the head is ionic, the distance between the position of the charge in the

head and the beginning of the tail (including the length of the CH2 group adjacent

to the head), dcharge, as well as the valence, z, constitute additional required inputs.

In addition, due to the presence of the Stern layer (see Section 2.3.2), the type of

counterion (Na + , Br-, etc.) must be specified. If the head is zwitterionic, the dis-

tance between the two charges comprising the dipole in the head, dsep, is a required

input. The surfactant head molecular parameters, ah, dcharge, and dsep, can be calcu-

lated from the known bond lengths and bond angles of the various chemical groups

comprising the head. If the head is particularly complex, it is often convenient to

make use of commercially available molecular-simulation software to carry out these

calculations. For a summary of the molecular parameters which need to be input in

the case of nonionic, ionic, and zwitterionic surfactants, see Figure 3-2 and Table 3.1.

Additional inputs may be needed to predict certain properties, including the crit-

ical surfactant concentration for phase separation, Xc, the crossover surfactant con-

centration for entanglements, X*, and the surface tension, a. For a summary of the

additional required inputs, see Table 3.2.

Regarding solution conditions, the user needs to input the temperature, the to-
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Table 3.1: Required surfactant molecular inputs for Program PREDICT: nc is the
total number of carbon atoms in the tail, ah is the effective cross-sectional area of
the head, z is the valence of the head, dcharge is the distance between the position
of the charge in the head and the beginning of the tail (including the length of the
CH 2 group adjacent to the head), and dsep is the distance between the two charges
comprising the dipole in the zwitterionic head. In addition, for ionic surfactants, the
type of counterion must be specified.
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Table 3.2: Additional required inputs to predict the critical surfactant concentration
for phase separation, Xc, the crossover surfactant concentration, X*, and the surface
tension, a(X): T, is the critical temperature for phase separation, lhg is the length
of the head including the first CH 2 group adjacent to the head, ( is the micellar
"chain" persistence length, and a(X) is a surface tension value at a total surfactant
concentration, X.

Property Required Input
Xc Tc
X* lhg,

Surface Tension a(X), X

tal concentration of surfactant, and the type and concentration of any additive (for

example, salt).

Using the inputs described above, program PREDICT can be utilized to predict

a wide range of surfactant solution properties. Several examples of these predictive

capabilities, including a comparison with available experimental data, are presented

next.

3.3 Comparison with Experiments

3.3.1 Critical Micellar Concentration

Program PREDICT was utilized to predict CMC's of some widely-used, representa-

tive nonionic, ionic, and zwitterionic surfactants. In this section, some examples are

presented.

The nonionic surfactants examined belong to the alkyl poly(ethylene oxide), CiEj,

family. These surfactants possess a hydrophilic head consisting of j ethylene oxide

(CH 2 CH 20, or EO) groups, and an alkyl tail consisting of i carbon atoms. The

effective cross-sectional areas of the Ej heads, ah(j), were estimated as a function

of j in the following manner. For the relatively short E3 head, ah was estimated

by assuming a fully-extended (all trans) conformation of the PEO head, and then

utilizing the known bond lengths and bond angles of an EO group, resulting in a



value of ah(j = 3) = 26.9A2. For the longer and more flexible Ej heads (j 2 4), ah

was estimated as a function of j by utilizing a recently proposed[16] scaling law based

on an E6 head. Specifically, ah(j > 4) = ah(j = 6) (j/6) s , with ah(j = 6) = 38.1A2.

Figure 3-3 shows predicted CMC's at 25°C of aqueous solutions of CiEj surfactants

as a function of the number of EO groups, j, for i = 8 (solid line), i = 10 (dashed

line), and i = 12 (dotted line). The circles, triangles, and stars denote experimental

CMC values for C8Ej, CloE,, and C12E,, respectively.[90, 91, 92]

The ionic surfactants examined belong to the sodium alkyl sulfate, CiH 2i+lSO 4 Na,

family. Figure 3-4 shows predicted CMC's (line) at 25'C of aqueous solutions of

CiH 2i+1SO 4 Na as a function of the number of carbon atoms, i, in the tail. The circles

denote experimental CMC values.[19] To make these predictions, values of z = 1,

dcharge = 3.7A, and ah = 25A 2 were input into program PREDICT.

The alkyl betaine family, CiH 2i+lN+(CH 3 )2CH 2COO - , was used as a representa-

tive zwitterionic surfactant family. Figure 3-5 shows predicted CMC's (line) at 25°C

of aqueous solutions of CiH 2i+iN+(CH 3)2CH 2COO - as a function of the number of

carbon atoms, i, in the tail. The circles denote experimental CMC values.[19] To

make these predictions, values of dsep = 2.5A, and ah = 32A 2 were input into pro-

gram PREDICT. In Figures 3-4 and 3-5, the observed systematic deviation of the

predicted CMC's from the experimental ones as n, increases can be attributed to an

overestimation of the Tolman distance, 6 T (see Ref. [17] for details).

In addition to analyzing reagent-grade surfactants, program PREDICT can be

utilized to estimate CMC values of commercial surfactants, where impurities (chem-

ical heterogeneity) are typically present. Table 3.3 compares predicted CMC's to

experimental CMC's 1 at 250 C for aqueous solutions of four representative commer-

cial surfactants, including zwitterionic surfactants from the Zwittergent family and

nonionic surfactants from the MEGA family. In view of the chemical heterogeneity

of these surfactants, their average molecular structure was utilized as an input to

program PREDICT. For Zwittergent, the molecular parameters input into program

'The experimental CMC values were taken from A Guide to the Properties and Uses of Detergents
in Biology and Biochemistry, J. Neugebauer,CALBIOCHEM Corporation, 1990.
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PREDICT include nc = 8 or 14, dsep = 5.03A, and ah = 32.2A2. For the MEGA

surfactants, the molecular parameters n, = 8 or 9 and ah = 40A 2 were input into

program PREDICT. As can be seen from Table 3.3, program PREDICT provides

reasonable estimations of the CMC's of these chemically heterogeneous commercial

surfactants.

Table 3.3: Examples of CMC predictions at 25°C for aqueous solutions of four rep-
resentative commercial surfactants along with the experimental CMC values (see
footnote on page 79).

Commercial Surfactant Type Predicted Experimental
CMC (mM) CMC (mM)

Zwittergent - 8 284 330

CH 17 - N+(CH3 )2(CH 2) 3SO3
Zwittergent - 14 0.1 0.1-0.4

C14H29 - N+(CH 3 ) 2 (CH 2 ) 3 S03

MEGA - 8 23 19-25
C8H 17 - CON(CH3 )CH 2 (CH(OH))40H

MEGA - 9 6 6-7
C9H19 - CON(CH3 )CH 2 (CH(OH))4 0H

Changes in solution conditions can have marked effects on the CMC of the surfac-

tant solution. With the aid of program PREDICT, the user can manipulate solution

conditions by varying the temperature or additive type and concentration. As an illus-

tration of this capability, Figure 3-6 shows the effect of adding sodium chloride, NaC1,

on the CMC of an aqueous solution of sodium dodecyl sulfate, SDS. The line corre-

sponds to the predicted CMC at 25'C as a function of NaCl concentration, and the

circles denote experimental CMC values.[93, 94] As the salt concentration increases,

the electrostatic repulsions between the charged sulfate heads decrease, making mi-

celle formation more favorable. Consequently, the CMC decreases, as predicted quite

accurately by program PREDICT.

As can be seen, the CMC predictions presented in Figures 3-3 through 3-6 and

Table 3.3 constitute a reasonably good representation of the experimental CMC data.
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3.3.2 Characteristics of the Micellar Size Distribution

A very challenging and still controversial aspect of micellar solution phase behavior

involves the extent of micellar growth and associated degree of polydispersity of CiEj

nonionic micelles in aqueous solutions. As discussed in Section 2.2, the relative vari-

ance of the micellar size distribution, Var, constitutes a quantitative measure of poly-

dispersity. In particular, elongated, polydisperse cylindrical micelles are characterized

by Var = 0.5, whereas small, monodisperse spherical micelles are characterized by

Var = 0.

As illustrated in Figure 3-7, program PREDICT can be utilized to predict the

temperature variation of the relative variance of the micellar size distribution for

C12Ej surfactants in aqueous solutions, where j = 5, 6, 7, and 8. In particular,

for j = 6, 7, and 8, the narrow temperature range over which the relative variance

changes rapidly from 0 to 0.5, corresponds to a sphere-to-cylinder micellar shape

transition. The experimentally determined shape transition temperatures (see the

dashed arrows in Figure 3-7) are 18'C,[95] 34°C,[14] and 50'C[96] for C12E6, C12 E7,

and C12E8, respectively. As can be seen, program PREDICT is capable of predicting

the micellar shape transition behavior quite accurately.

3.3.3 Crossover Surfactant Concentration

At certain temperatures, increasing surfactant concentration may cause the micelles

present in aqueous solutions of CiEj surfactants to grow into cylindrical microstruc-

tures, which may elongate sufficiently to overlap and form an entangled mesh. This,

in turn, can dramatically alter the rheological behavior of the micellar solution. In or-

der to quantitatively characterize the relatively broad surfactant concentration region

separating the nonentagled and entangled micellar solution regimes, it is customary

to single out a crossover surfactant concentration, X*, based on excluded-volume

considerations, associated with the initial contact of micellar volumes.[10] Program

PREDICT is capable of predicting the crossover surfactant concentration, as illus-

trated in Figure 3-8. In addition to the inputs involving the surfactant molecular
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structure and the solution conditions described in Section 3.2.2, the prediction of X*

requires the user to input the micellar persistence length, (, which constitutes a mea-

sure of micellar flexibility, as well as the length of the head, 1hg, including the first

CH 2 group adjacent to the head (see Table 3.2).

Figure 3-8 illustrates the prediction of X* as a function of temperature for C12E6 ,

where a typical value of ( = 200A was input into program PREDICT. In addition,

values for lhg in the range 9.7-11.5A were input into program PREDICT, depend-

ing on the temperature. Experimentally, X* can only be deduced indirectly from

observed changes in certain solution properties with surfactant concentration as the

solution traverses the nonentangled to entangled transition region. Since this transi-

tion region is relatively broad, the experimentally deduced X* values are meaningful

only to within about 20%. With this in mind, Figure 3-8 shows experimental de-

ductions of X* as a function of temperature for C12E6 based on determinations of

micellar diffusion coefficients using quasi-elastic light scattering (circles) and viscosity

measurements (diamonds).[10] Considering the theoretical and experimental limita-

tions discussed above, the X* versus T predictions presented in Figure 3-8 provide a

fair representation of the experimental data, and, as such, provide a useful practical

guideline.

3.3.4 Critical Surfactant Concentration

Program PREDICT can also predict characteristics of the critical point, signalling the

macroscopic separation of the micellar solution into two coexisting micellar solution

phases. Specifically, if the user inputs the critical temperature, Tc (in addition to the

required inputs regarding surfactant molecular structure and solution conditions),

program PREDICT can be utilized to calculate the critical surfactant concentration,

Xc. Figure 3-9 illustrates the prediction of Xc in the case of several CiEj nonionic

surfactants. In this example, the critical temperature values input into program

PREDICT are 44 and 58°C for C10E5 and C1oE6, respectively, and 23, 50, 67, 770 C for

C12E5 , C12E 6, C 12 E 7, and C 12E8 , respectively.[16] As can be seen, the X, predictions

(left-hatched bars) compare favorably with the experimental data (white bars).[12,
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14, 15, 97, 98]

3.3.5 Surface Tension

For nonionic hydrocarbon-based surfactants in aqueous solutions, program PREDICT

can be utilized to predict surface tensions as a function of surfactant concentration.

The user needs to input a single surface tension value and its corresponding surfactant

concentration, and then program PREDICT can predict the surface tension at any

other surfactant concentration requested by the user. Figure 3-10 illustrates the

predicted surface tension (line) at 25°C as a function of surfactant concentration for

aqueous solutions of C12 E6. In order to make these predictions, a surface tension

value of 35 dyn/cm at a surfactant concentration of X =0.0556mM was input into

program PREDICT. As can be seen, the predictions compare favorably with the

experimentally measured[61] surface tension values (see circles in Figure 3-10).

3.3.6 Correlation between Predictions and Applied Surfac-

tant Performance Characteristics

The fundamental micellar solution properties predicted by program PREDICT are

closely related to the performance behavior of surfactant systems in many practical

applications. For example, CMC's and micelle shape and size can be related to

detergency, skin irritation, and viscosity characteristics.[99, 100, 101, 102] Surface

properties of surfactant solutions can be related to foaming, wetting, emulsification,

and solubilization characteristics. [99, 102] In this section, some examples of these

useful correlations will be presented.

As mentioned above, micellar size can be correlated to solution viscosity. As de-

scribed in Section 1.2, some micelles may exhibit growth with increasing temperature

or surfactant concentration. When micellar growth is significant, the micelles may

elongate sufficiently to overlap and form an entangled mesh, dramatically altering

the rheological behavior of the micellar solution. Figure 3-11 shows the predicted

number-average micellar aggregation number, (n),, together with experimental vis-



E

00 45 -

(DOS40

t 35
C *

30
0 0.05 0.1 0.15 0.2

Surfactant Concentration (mM)

Figure 3-10: Predicted surface tension as a function of surfactant concentration at
250C for aqueous solutions of C12E6. The line represents the theoretical predictions,
and the circles denote experimental values.



cosity measurements, for a series of tetradecyl poly(ethylene oxide) surfactants, C14Ej,

as a function of j, the number of ethylene oxide (EO) groups.[102] As j increases,

both the predicted (n), values and the observed solution viscosity decrease. While

program PREDICT does not predict solution viscosity directly, it does predict the

variation of (n), with j. This variation reflects the observed change in viscosity with

j, and thus provides a useful indicator of the rheological behavior of the micellar

solution.

It has been shown that skin irritation is associated with the diffusion of single sur-

factant monomers across the skin.[101] To model this phenomenon, researchers have

measured the diffusion of surfactants across a collagen membrane, a useful model

of the skin. In Figure 3-12, the SDS monomer concentration in aqueous solution,

predicted using program PREDICT, is plotted as a function of the concentration

of added NaCl (solid line) at 25°C. On the secondary Y-axis, the experimentally

measured flux of SDS across a collagen membrane is also plotted as a function of

NaCl concentration (circles).[100] As the salt concentration increases, the CMC of

SDS decreases due to a decrease in the electrostatic repulsions between the charged

SDS polar heads (see Figure 3-6), and consequently, the SDS monomer concentra-

tion also decreases. The trend of the predicted SDS monomer concentration matches

the observed trend in SDS diffusion across the collagen film. Since skin irritation is

reduced when surfactant diffusion is minimized, the predictions imply that skin irri-

tation may also be reduced when the surfactant monomer concentration is minimized

through the addition of salt. Although we cannot predict the complex skin irritation

phenomenon directly, this example demonstrates our ability to correlate fundamental

predicted surfactant properties, such as the monomer concentration, to more practical

performance characteristics, such as surfactant diffusion across a collagen film.

3.4 Conclusions

As the need for a detailed understanding of surfactant solution behavior increases, the

surfactant technologist is faced with the challenge of modeling the complex behavior
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of these systems. With this need in mind, a comprehensive molecular-thermodynamic

theory of micellar solution behavior has been developed. As described in Chapter 2,

this theory combines a molecular model of micellization with a thermodynamic de-

scription of micellar solution phase behavior. To further enhance the practical utility

of these theories, they have been incorporated into program PREDICT, a "user-

friendly" computer program for industrial use.

As demonstrated in Section 3.3, program PREDICT is fairly accurate in predict-

ing a wide range of surfactant solution properties, including the CMC, the micellar

shape, size, and size distribution, the crossover surfactant concentration, and phase

separation characteristics. In addition, program PREDICT can also quantify quite

accurately the surface behavior of aqueous solutions containing nonionic surfactants.

Moreover, the surfactant technologist can correlate these predicted fundamental mi-

cellar solution properties to industrially relevant surfactant performance characteris-

tics such as viscosity and skin irritation.

The availability of program PREDICT should facilitate the design of new sur-

factants possessing desirable properties by alleviating the need for a priori synthesis

and characterization. In addition, the speed and relative ease with which surfactant

solution properties can be predicted using program PREDICT should aid in greatly

reducing the level of experimentation required to evaluate the performance of the new

surfactants.



Chapter 4

McMillan-Mayer

Statistical-Thermodynamic

Framework for Multicomponent

Solutions

4.1 Introduction

As discussed in Chapter 2, the molecular-thermodynamic theory of micellization is

capable of accurately predicting a wide range of micellar solution properties for both

ionic and nonionic surfactant solutions (see Chapter 3 for several examples). In the

thermodynamic component of the theory (described in detail in Section 2.2), the

Gibbs free energy of the micellar solution is decomposed into three contributions:

formation, mixing, and interactions. Although this approach has been highly suc-

cessful in describing a wide range of micellar solution properties, particularly for

nonionic surfactants, splitting the solution nonidealities into mixing and interaction

free-energy contributions without a rigorous underlying statistical-mechanical basis

can sometimes lead to ambiguities. Specifically, when the model is unable to describe

some aspect of the experimentally observed micellar solution behavior, such as the



growth of ionic surfactant micelles with added salt, it is difficult to unambiguously

determine if the source of the discrepancy lies in the mixing or in the interactions

contributions to the micellar solution Gibbs free energy. In addition, the intermicellar

interactions have only been accounted for at a mean-field level of description. More-

over, excluded-volume, electrostatic, and other specific intermicellar interactions have

been neglected.

In view of the above, a theoretical framework for the calculation of the micellar so-

lution Gibbs free energy has been developed based on rigorous statistical-mechanical

principles in the context of the McMillan-Mayer theory of multicomponent solutions.

An advantage of this theoretical framework is that the approximations made in con-

structing the solution Gibbs free energy model are clearly delineated, and therefore,

in principle, it is possible to systematically improve upon the theory, if needed. In

addition, the theoretical framework allows for the implementation of a variety of ex-

cess free energy models. Determining the optimal model for the excess free energy

requires a tradeoff between accuracy and computational complexity. In other words,

a complex model may have a high degree of accuracy for all types of surfactants, but

may be computationally difficult to handle. A more simple phenomenological model

may be computationally fast, but would have to be specialized for each type of sur-

factant. In this chapter, as well as in Chapters 5 and 6, an excess free energy model

is presented which is somewhat computationally complex, and yields an accurate de-

scription of micellar solution behavior over a wide range of surfactant concentrations

and other solution conditions. Indeed, a similar theoretical framework has already

been successfully applied to model solute partitioning in phase-separated surfactant

solutions.[103]

In the next section, a general description of the McMillan-Mayer theory and its

application to multicomponent solutions will be presented. Specifically, the McMillan-

Mayer theory is utilized to develop a general statistical-thermodynamic framework

for the calculation of the solution Gibbs free energy. In Section 4.3, the statistical-

thermodynamic framework developed in Section 4.2 is implemented in the case of

aqueous micellar solutions. This statistical-thermodynamic framework will then be



used in Chapter 5 to model the behavior of nonionic micellar solutions, and in Chap-

ter 6 to model the behavior of ionic micellar solutions.

4.2 Basic Principles

For many multicomponent fluids of practical interest, such as dilute colloidal dis-

persions and micellar solutions, one of the components, referred to as the solvent,

is present at a much higher concentration than those of the other components, re-

ferred to as the solutes. There are several levels of approximation to approach the

statistical-mechanical problem of constructing a free energy model for such systems.

A widely-used approximation involves treating the solvent as a background, or con-

tinuum, through which the solute molecules interact with each other. Properties of

the solvent molecules are averaged, and are therefore not accounted for explicitly

in the statistical-mechanical analysis. As a result, the interactions between the so-

lute molecules now include not only the "bare" solute-solute interactions, which are

present when the solutes are located in vacuum, but also additional interactions due

to the presence of the solvent. The resulting effective interaction potential between

the solute molecules, W(IN }), where {N)} = {N 1 , N 2, ..., N,} is a shorthand nota-

tion for the various numbers of solute molecules, is known as the potential of mean

force[104] and is a required input to the theory. W({ND}) can be quite complex, since

it must reflect the properties of the solvent, such as its structure and the manner in

which it restructures in the presence of the solutes, in addition to its dependence on

the thermodynamic state of the system (for example, on temperature and pressure).

Consequently, approximations are typically required to model W({N ).

Once an expression for the potential of mean force is available, the next step is

to construct the free energy of a system consisting of molecules interacting via this

potential. There are many approximate free energy models for various molecular

systems,[5, 105, 106] such as hard-sphere and Lennard-Jones fluids, but these models

are strictly only applicable to particles interacting in vacuum, rather than embedded

in a solvent. In view of this, it would be extremely useful to be able to apply the



models for particles interacting in vacuum to particles interacting in a solvent. The

McMillan-Mayer theory establishes such a connection.[104, 107]

In the remainder of this section, the basic results of the McMillan-Mayer theory

are summarized, with details of the derivations left to Appendix D. In what follows,

Greek indices (u,a) refer only to solute species, the index w refers to the solvent (that

is, water), and all other Latin indices (i,j) refer to both solvent and solute species.

In the McMillan-Mayer theory, the natural independent variables of the system are

temperature, T, volume, Vt, {N)}, and the chemical potential of the pure solvent,

p/. Note that Vt = V(T, p + II, {N,}, N,) is the total volume of the solution at

T, p + II, {N}, and N,, where II is the osmotic pressure of the solution and N, is

the number of solvent molecules. In other words, Vt is the volume of the solution in

osmotic equilibrium with pure solvent at T, p, and N,. The reason for this selection

of variables will become apparent later in the paper. The free energy associated with

this set of independent variables is a Legendre transform[108] of the Helmholtz free

energy, A, whose natural variables are T, Vt, {N }, and N,. If N, is transformed to

its conjugate variable,p ,, then the Helmholtz free energy, A, is transformed into the

McMillan-Mayer free energy, F, that is,

F = A-N,, (4.1)

In order to evaluate the McMillan-Mayer free energy, F, it will be decomposed

into IDEAL and EXCESS contributions, FID and FEX, where F = FID p FEX. An

IDEAL solution is defined as one in which the solute molecules do not interact with

each other. The IDEAL contribution to the McMillan-Mayer free energy is given

by[103]1

FID(T,Vt , {N}, p) = ZNpj + kBsT N, (ln(ct/c?) - 1) -p(T, {0}, p4)Vt

(4.2)

1Note that Eq. (8) in Ref. [103] contains two typographical errors: (i) it is missing the -pVt
term, which is the last term given in Eq. (4.2), and (ii) pw should be replaced by po.



where pe is the standard-state chemical potential of solute a corresponding to a

concentration c., ct = N/Vt is the concentration of solute a, kB is the Boltzmann

constant, T is the absolute temperature, and p(T, {0}, pw) is the pressure of the pure

solvent at T and pw, where {0} denotes zero solute concentrations. Note that the

standard-state chemical potential of solute a, p, is chosen to be solute molecules

dissolved in solvent molecules at concentration c?, usually chosen to be 1 mol/L, in a

hypothetical standard state in which the solute molecules do not interact with each

other. This standard state is frequently utilized to model electrolyte solutions.[109]

An EXCESS property is defined as the difference between the property of the

actual system and that of an IDEAL system at the same T, Vt, {N)}, and p. In

particular, the EXCESS McMillan-Mayer free energy, FEX, is given by

FEX(T, Vt, {No},r IL) = F(T, Vt,{N}, o) - FID(T, Vt, {N,}, ,) (4.3)

In the system of interest, referred to hereafter as the "solvent" system, the solute

molecules interact with each other through a potential of mean force, W({N } ), which

depends on the positions and orientations of all the solute molecules in the system.

Consider a system in which the solute molecules are placed in vacuum but still interact

with each other through the same potential, W({N~}). This system will be referred to

hereafter as the "vacuum" system. In what follows, properties of the vacuum system

will carry a tilde to distinguish them from those of the solvent system. For example,

the Helmholtz free energy of the vacuum system will be denoted by A.

The central result of the McMillan-Mayer theory is the following relation[104]

FEX(T, Vt, {N, },o) = Are(T, V, {N}) (4.4)

where the superscript res denotes the residual property of the vacuum system, that

is, the difference between the property of the actual vacuum system and that of an

ideal vacuum system at the same T, V, and {N)}. Note that the volume of the

vacuum system is V(T, p, {N}), evaluated at a different pressure than the volume

of the solvent system, Vt(T, p + II, {N,}, N,). Note also that the "vacuum" system
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depends on one less variable than the solvent system because it contains one less

component, namely, the solvent.

Equation (4.4) establishes a relation between the residual Helmholtz free energy of

a vacuum system and the EXCESS McMillan-Mayer free energy of a solvent system.

Accordingly, a model for the residual Helmholtz free energy of solute molecules in

vacuum can be utilized to calculate the EXCESS McMillan-Mayer free energy of

solute molecules interacting through solvent. In theory, therefore, a complete model

for the system of interest has been developed. Specifically, given T, Vt, {N)}, and

p, of a system, Eqs. (4.2), (4.3), and (4.4) can be utilized to calculate F, from which

other thermodynamic properties, such as the chemical potentials and the osmotic

pressure, can then be obtained. The difficulty in implementing this approach in

practice, however, is that /, is not a convenient, experimentally-accesible variable.

Instead, in a typical experiment, the independent variables which are most easily

manipulated are temperature, T, pressure, p, the numbers of solute molecules, {N,},

and the number of solvent molecules, Nw. The free energy associated with this set of

independent variables is the Gibbs free energy, G, and therefore, in order to effectively

model the thermodynamic behavior of the system, a model is required for the Gibbs

free energy rather than the McMillan-Mayer free energy. Consequently, in order to

make a connection with actual experimental measurements, a relation between the

McMillan-Mayer free energy, F, and the Gibbs free energy, G, is required.

As in the case of F, in order to derive an expression for G, its ideal and excess

contributions will be computed separately. As before, an ideal solution is defined as

one in which there are no interactions between the solute molecules. Note, however,

that an "ideal" solution is different from the "IDEAL" solution defined earlier, in spite

of the fact that in both systems the solutes do not interact with each other. This

difference reflects the fact that the solvent molecules can still interact with themselves

as well as with the solute molecules, and the effect of these interactions depends on

the thermodynamic variables which are held constant. For the ideal solution, these

variables are T, p, {N)}, and N,, while for the IDEAL solution, the variables are T,

Vt, {N,}, and p,.
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The ideal Gibbs free energy, Gid, is given by[103]

Gid(T,p, {N,},N,) = N,~p + N,~L d  (4.5)

= N,pi + Nop + kBT E N,(In m, - 1) (4.6)
W 0.

where p1 id is the ideal chemical potential of water, pid is the ideal chemical potential

of solute a, p is the standard-state chemical potential of component i (i = w or a),

and m, = N,/,N, is the "molality" of solute a. Eq. (4.6) is obtained from Eq. (4.5)

by expanding pid to leading order in m,. For the solvent, the standard state is chosen

to be pure solvent at the system T and p. For a solute species, the standard state

is chosen to be a solute molecule at infinite dilution in the solvent at the system T

and p. Note that /p (at ce) in Eq. (4.2) and p (at infinite dilution) in Eq. (4.6) are

related through the following expression[109]

S= - kBT In c Vw (4.7)

where V, = V(T,p, {0}, N,)/Nw is the volume per molecule in pure solvent (water).

From Gid, all the other thermodynamic properties of the ideal system can be

determined. For example, one finds that

id -(G p + kBT In m, (4.8)
or0 aNO ) T,p,{N 0,},N.

and

id= (Nid) , p - kBTm (4.9)

where m = C, m, is the total solute molality.

In addition, an excess property is defined, denoted by a superscript ex, to dif-

ferentiate it from the superscript EX utilized earlier, as the difference between the

property of the actual system and the property of an ideal system at the same T, p,
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{N,}, and N,. Specifically,

Gex(T,p,{N,},Nw) = G(T,p, {N},N) - Gid(T,p, {N},Nw) (4.10)

The excess Gibbs free energy can be obtained from the EXCESS McMillan-Mayer

free energy through the appropriate thermodynamic transformations (see Appendix D

for a detailed derivation).[107] This yields

Gex(T,p, {N},N) = FEX (T, Vt, {N, },p) - V (T, p', N, }, N) dp'

Vt

+IIVt - NkBTln Vt (4.11)Vw Nw

The advantage of rewriting Gex in this form is that FEX can be related to the

residual Helmholtz free energy of solute molecules interacting in vacuum with poten-

tials equal to the potentials of mean force [see Eq. (4.4)]. Therefore, one can apply

all the available models for dilute fluids directly to solute molecules interacting in a

solvent.

From the excess Gibbs free energy expression given in Eq. (4.11), one can ob-

tain the following expression for the excess chemical potential of solute a, P. (see

Appendix D for a detailed derivation)

ex - OGezx
aN~ ) Tp,{N, a,Nw

= EX V,(p') dp' - kTl In Vt (4.12)

where V,(p') is the partial molar volume of solute a at pressure p'. Similarly, the

excess chemical potential of the solvent, pex, is given by (see Appendix D)

ex =(OG (N ) T,p,{N,}

= kBTm - V(p') dp' (4.13)
Sp+n
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where V, (p') is the partial molar volume of the solvent at pressure p'.

The total chemical potentials of the solutes and the solvent include both the

ideal contributions (from Eqs. (4.8) and (4.9)) and the excess contributions (from

Eqs. (4.12) and (4.13)), as shown below for solute a

Ap, = I + e = EX + kBT Inm, + pEX

p+fn _ Vt
- V , (p') dp' - kBTln (4.14)

and for the solvent

/.Lid ex 0 p+n

W = + i L = Pw Vw(p') dp' (4.15)

In summary, it has been shown that the McMillan-Mayer theory allows one to use

the thermodynamic properties of a system in vacuum to predict the thermodynamic

properties of a system in a continuum solvent. In the next section, the results derived

in this section will be used to construct a Gibbs free energy model for an aqueous

micellar solution.

4.3 Application to Micellar Solutions

In the previous section, a general statistical-thermodynamic framework for construct-

ing a Gibbs free energy model of a solution, given the potentials of mean force between

the solute species, was described. In this section, the general aspects of implementing

this theoretical framework in the case of aqueous micellar solutions will be discussed.

In particular, the chemical potentials of the solute species (micelles and monomers)

are calculated and utilized, along with the principle of multiple chemical equilibrium,

to obtain an expression for the micellar size distribution and its moments.

The surfactant-water micellar system is modeled as a multicomponent solution

containing: (i) N, water molecules, (ii) N surfactant monomers, and (iii) a dis-

tribution of {N)} surfactant micelles of aggregation number n also referred to as

n-mers, where {N,} is a shorthand notation for the various numbers of n-mers,
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{N 1 , N 2 ,..., Nn}. Note that the subscript a utilized in Section 4.2 is now replaced

by the subscript n.

Micelles are self-assembling aggregates which continually exchange surfactant mol-

ecules with each other and with the monomers in solution. These material exchanges

must satisfy the principle of multiple chemical equilibrium, that is,[5]

~An= npl1  (4.16)

where Pn is the chemical potential of an n-mer, and pl is the chemical potential of

a monomer. The chemical potential of an n-mer is obtained from Eq. (4.14) with

a = n, where n = 1 for the monomers and n > 1 for the micelles. The chemical

potential of water is given in Eq. (4.15).

In Eqs. (4.14) and (4.15), V, and V, are the partial molar volumes of an n-mer

and water, respectively, which, in general, can be complicated functions of solute con-

centration, pressure, and temperature. Consequently, to evaluate the volume terms in

Eqs. (4.14) and (4.15), a model for the volumetric behavior of the solution is required.

In general, the total volume of the solution, V, is given by

00

V = NwV + NnVn (4.17)
n=1

Since the micellar solutions considered in this thesis are assumed to be quite

dilute, solute concentration effects on the partial molar volumes, V, and V,, can be

neglected. In addition, pressure effects on V, and V, will also be neglected, since

these should not be significant at the atmospheric conditions typically encountered

experimentally. With these assumptions in mind, V, = V,, the volume occupied by

a water molecule, which is taken to be a constant, V, 4 R, = 30A3 . Similarly, the

partial molar volume of a surfactant monomer, V 1 , is equal to Os, the volume occupied

by a surfactant monomer, independent of surfactant concentration and pressure.

Regarding a micelle of aggregation number, n, it is assumed that: (i) the partial

molar volume, V,, is equal to the sum of the partial molar volumes of its n constituent

surfactant molecules, and (ii) the partial molar volume of a surfactant molecule in a

105



micelle is equal to that of a free surfactant monomer in solution. In other words, (i)

and (ii) imply that Vn = nVi = nQs.

Combining these volumetric approximations, the total volume of the micellar so-

lution is given by

V(T,p,{Nn),Nw) = Vt(T,p+I, {Nn},Nw) = NwR +Ns (4.18)

Note that the neglect of pressure effects (incompressibility assumption) in Eq. (4.18)

also implies that the solute concentrations utilized in the McMillan-Mayer theory,

c = Nn/Vt, are equal to the solute concentrations in the actual system, cn = Nn/V.

In the context of the model for the volumetric behavior of the micellar solution

given in Eq. (4.18), the chemical potential expressions in Eqs. (4.14) and (4.15) can

be simplified (the pressure integrals can be easily carried out). Specifically,

n = o + kBTln c + pX _ unn, (4.19)

and

/,1 = /, - II J (4.20)

Note that the natural log terms in Eq. (4.14) have been combined in Eq. (4.19) to

transform from molalities, mn = Na/Nw, to concentrations, cn = Nn/V.

The micelle (n > 1) and monomer (n = 1) chemical potential expressions in

Eq. (4.19) can be utilized in the chemical equilibrium condition, /, = nl1, to obtain

the following expression for the micellar size distribution

RwCn = (wcl) n L exp{-Q(/n - nuLp) - ,(IuEX - nl EX)} (4.21)

Note that the osmotic pressure contribution in Eq. (4.19) cancels out in Eq. (4.21).

Equation (4.21) defines the entire micellar size distribution in terms of the concentra-
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tions of n-mers for any n > 1. The first term, (OQ,c 1 )n, corresponds to the entropic

cost associated with localizing n monomers at one position to form the n-mer, and

the exponential term reflects the free-energy advantage associated with forming the

n-mer. This last term includes both an ideal (infinite dilution) contribution and an

EXCESS contribution. If there were no interactions among the various n-mers, then

the EXCESS contribution would be zero, and the "traditional" expression for the

micellar size distribution equation would be recovered.

Up to this point, the only approximation made involves the use of Eq. (4.18) for the

volumetric behavior of the micellar solution. Consequently, Eq. (4.21) can be applied

to any micellar solution which satisfies Eq. (4.18). To complete the calculation, models

are required for the standard-state chemical potential difference, P~ - np4, and for the

EXCESS chemical potential difference, pEX - nlpE X, appearing in Eq. (4.21). The

calculation of these quantities is discussed in Chapter 5 for nonionic surfactants, and

in Chapter 6 for ionic surfactants.
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Chapter 5

Application of the

McMillan-Mayer

Statistical-Thermodynamic

Framework to Nonionic Micellar

Solutions

5.1 Introduction

In Chapter 4, the McMillan-Mayer theory was utilized to construct a statistical-

thermodynamic framework for the calculation of the Gibbs free energy of a micellar

solution. Using this framework, an expression for the micellar size distribution was

derived. All that is needed now is a model for the calculation of the standard-state

and EXCESS chemical potentials. In this chapter, a model will be derived and tested

for nonionic micellar solutions which exhibit one-dimensional micellar growth in the

presence of excluded-volume and attractive intermicellar interactions. A model for

ionic micellar solutions which includes electrostatic and excluded-volume intermicellar

interactions will be presented in Chapter 6.
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The remainder of this chapter is organized as follows. In Section 5.2, the differ-

ence in the standard-state chemical potentials of an n-mer and n monomers will be

analyzed for the case of spherocylindrical micelles. In Section 5.3, the EXCESS chem-

ical potentials of n-mers and monomers will be derived, based on excluded-volume

and attractive intermicellar interactions. Expressions for the moments of the micel-

lar size distribution will be presented in Section 5.4. Interestingly, as discussed in

Section 5.5, in the limit of extensive micellar growth, expressions for the micellar

size distribution and its moments corresponding to the well-known phenomenological

"ladder model" are recovered. Micellar solution phase separation will be discussed

in Section 5.6, where expressions for the spinodal curve, the critical point, and the

coexistence curve will be derived. In Section 5.7, a qualitative analysis of the effect

of excluded-volume intermicellar interactions on the monomer and micelle concentra-

tions and on the weight-average micelle aggregation numbers for a typical nonionic

surfactant will be presented. In addition, quantitative predictions of CMC's, micellar

size distribution polydispersity, critical surfactant concentrations signalling the onset

of phase separation, and the osmotic compressibility of aqueous micellar solutions of

alkyl poly(ethylene oxide) nonionic surfactants will be presented and compared with

experimental data. Finally, the key results of this chapter will be summarized in

Section 5.8.

5.2 Standard-State Chemical Potential

Each n-mer has a distinct standard-state chemical potential, p', which is equal to

the chemical potential of a micelle of aggregation number n at infinite dilution in

water. In the micellar size distribution equation, Eq. (4.21), the relevant quantity is

the difference between the standard-state chemical potential of an n-mer and that of

n monomers. This difference, per surfactant molecule, is referred to as the free energy

of micellization, gmic.[16] Specifically,

gmic(n) = (p - np)/n (5.1)
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gmic represents the free-energy change when a surfactant molecule is transferred from

the aqueous solvent to a micelle of aggregation number n present at infinite dilution

in the solvent. The magnitude of gmic can be evaluated using the thought process

described in Section 2.3, which models the formation of a micelle from individual

surfactant monomers as a series of reversible steps, each associated with a physico-

chemical contribution to the micellization process.[161

The calculation[16] of gmic depends on the micellar core radius, 1c, and on the

micelle shape, S, which can be a sphere (S = 3) or an infinite cylinder (S = 2).

(Theoretically, the shape can also be an infinite bilayer (S = 1), but this case will not

be addressed here since it is not relevant to the experimental systems examined in

this thesis.) gmic is then minimized with respect to c, and S to determine the optimal

micellar core radius, 1C, and shape, S*, of the micelle. Note that the optimal 1* value

for a sphere may be different from that corresponding to an infinite cylinder. As

previously discussed in Section 2.2, it would be instructive to sum over all the pos-

sible l1 values rather than forcing all the micelles to adopt the optimal 1*. However,

when intermicellar interactions are included in the model, this process becomes com-

putationally prohibitive. In order to obtain analytical expressions for the moments

of the micellar size distribution, it is assumed that all l = l. Note that, for large

aggregation numbers, it has been shown[5] that this is a very good approximation

because the distribution over l1 is very sharply peaked at 1*.

If the optimal shape, S*, corresponds to a sphere, the spherical micelles are as-

sumed to be monodisperse with an aggregation number, no, derived from geometric

considerations. Specifically, no = 47r(l*)/3vt, where vt is the volume of the surfac-

tant tail. If the optimal shape, S*, corresponds to an infinite cylinder, the micelles

can be quite polydisperse, with aggregation numbers ranging from n = no to infinity.

In this case, g~i~n) is estimated by linearly interpolating between the gmic values

corresponding to a sphere and an infinite cylinder, namely,[16]

no (n - no)
c (n) = -gsph + n cyl (5.2)n n

110



where gsph is the optimal micellization free energy, gmic( , S* = 3), of a sphere, and

gcy, is the optimal micellization free energy, gmic(l , S* = 2), of an infinite cylinder.

5.3 EXCESS Chemical Potential

The EXCESS chemical potential of an n-mer, EX , can be calculated from the EX-

CESS McMillan-Mayer free energy, FEX, as follows

p IEX = (5.3)n (9n , T,{Nm},p-w

where / = 1/kBT (recall that, according to Eq. (4.18), Vt = V). FEX can be

obtained by integrating over the osmotic pressure of the micellar solution, H, with

respect to the total solute concentration, c, that is,[103, 107, 108]

pFEX c (11 dc'(5.4)
N c' c'c

where N = Z N=1 N, and c = ECn= c, are the total number and total concentration

of aggregates (micelles and monomers), respectively. In order to model HI, the virial

equation of state is used because it provides a reasonable, mathematically tractable

representation of the nonidealities arising from solute-solute interactions in a dilute

micellar solution. Specifically,[103]

/3lI = c + B$cncm + Z B( pcncmcp +"" (5.5)
n=l m=1 n=l m=l p= 1

where B(2) is the second-virial coefficient between aggregates of aggregation numbers

n and m, and B () is the third-virial coefficient between aggregates of aggregation

numbers n, m, and p. Note that the first term in Eq. (5.5) represents the IDEAL

contribution to the osmotic pressure (01ID = c), while the additional terms represent

the EXCESS contribution, JlIEX . As discussed above, the micellar solution is dilute,

and therefore, the contributions of the third- and higher-order virial coefficients in
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Eq. (5.5) can be neglected. For convenience, hereafter, the superscript (2) is dropped

from the second-virial coefficient, that is, B(2) - Bnm.

Using Eq. (5.5) for 3IH in Eq. (5.4) yields

OFEX 0o 00

V = E E BnmCnCm (5.6)
n=1 m=1

The EXCESS chemical potential, p x, can then be obtained using Eq. (5.6) in

Eq. (5.3) (recall that c, = Nn/V). This yields

00oo
EX = 2 Bmcm (5.7)

m=1

In a typical micellar solution, the interaction potentials reflect three types of

interactions: (i) hard-core, steric repulsions, (ii) electrostatic repulsions, and (iii) at-

tractions. This chapter focuses on nonionic surfactants, for which electrostatic in-

teractions are negligible. Consequently, the EXCESS chemical potential is divided

into hard-core (HC) and attractive (att) contributions, each characterized by its own

second-virial coefficient. Specifically,

3UEX EX,HC ± -EX,att (5.8)

Equations (5.8) and (5.7) indicate that

pEX 25B/Hccm + EB Battcm (5.9)
n nm nmCm

m= m=1

where B'C and Batt are the hard-core and attractive contributions to the second-

virial coefficient, respectively.

The attractive contribution, BRa  in Eq. (5.9) is estimated utilizing a mean-field

approximation. Specifically,

Batt = _nmC(T), (5.10)nm 2kBT
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where the attractive interaction between an n-mer and an m-mer is assumed to be

proportional to the number of pairwise interactions (nm/2) associated with the n-mer

and the m-mer. Use of this simple form for the attractive intermicellar interactions

implies averaging over all possible micellar configurations, a reasonable assumption

for isotropic micellar solutions which lack both positional and orientational long-range

order. C(T) in Eq. (5.10) is a phenomenological parameter reflecting the magnitude

of the attraction between two surfactant molecules, in units of kBT. Note that C(T)

in Eq. (5.10) is multiplied by the volume of a surfactant molecule, Qs, in order to

express the virial coefficient in volumetric units. Using Eq. (5.10) for Btt in the

second summation of Eq. (5.9) yields the attractive contribution to the EXCESS

chemical potential, that is,

j EXatt C(T)Qs 0 M (511)
kBT Z = n B E mcm (5.11)

n kBT m=1

where EC~ mcm = cs, the total surfactant concentration.

The hard-core repulsive contribution is somewhat more difficult to quantify be-

cause nonionic micelles often exhibit growth from monodisperse spheres into flexible,

polydisperse cylindrical aggregates. The model for the repulsive interactions should be

applicable to the full range of shapes and sizes. Gelbart et al. have developed[44, 110]

a description of the hard-core, repulsive interactions between cylindrical micelles by

modeling them as rigid spherocylinders, consisting of a cylindrical body of length Ln

and cross-sectional radius Rm, terminating in two hemispherical end-caps of radius

Rm. Note that Rm = l* + lhg, where lhg is the length of the surfactant head. In this

model, the smallest micelle that can form is a sphere (L = 0) having aggregation

number no = 47r(l) 3/(3vt) , 4rR /(3Q,).

For the spherocylindrical micelle case, the excluded-volume contribution, Op EX,HC

can be written as
OO

-PEX,HC = 2BHCc1 + 2 BHCm (5.12)

m=no

where the second-virial coefficients, BHC and BHC are given by[111, 110, 103] (see
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Appendix F.1 for details)

B 2 ( 2 / 3) n 0no (5.13)

and

2rd 3  rd2 n
BH3 +2 (L + Lm) + 7dLnLm, n, m no (5.14)

where d = 2Rm, and 'y = (1 + 1/n/3 ) is a geometric factor associated with the

smallest micelle of aggregation number no. Note that for the case of spherical micelles,

BHC(sph) can be obtained from Eq. (5.13) with n = no, and BHC(sph) can be

obtained from Eq. (5.14) with Ln = Lm = 0.

Utilizing Eq. (5.13), along with the fact that BHC = 4S, in Eq. (5.12) with n = 1,

the following expression is obtained for the hard-core EXCESS chemical potential of

a monomer (see Appendix F.1 for details).

3 , EX,HC = 8sC 1 + sy 2 (C - Cl) + s 2 2/3 (C - C1 ) (5.15)

where c, = c1 + EZ-no mcm is the total surfactant concentration, and c = cl +

~0-no Cm is the total aggregate concentration. Note that for the case of monodisperse

spherical micelles, no(c - cl) = c, - cl, and the EXCESS chemical potential of a

monomer becomes /LEX,HC(sph) = 8Qsci + 'y3 (c5 - cl).

Utilizing Eqs. (5.13) and (5.14) in Eq. (5.12), the following expression is obtained

for the hard-core EXCESS chemical potential of a spherocylindrical micelle of aggre-

gation number n > no,

,EX,HC 2 / 3 )C+ 4 3  E cm+rd2  cm(Ln+Lm)+2d _ cmL,Lm
3 m=no m=no 2m=no

(5.16)

Note that for the case of monodisperse spherical micelles, pXH(sph) can be ob-

tained from Eq. (5.16), with n = no and Ln = Lm = 0. Using a geometric relation

for Ln (see Appendix F.1 for details), the following relation between p EX,HC and n is
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obtained

EXHC2 2/3 2rd3  8Q
n EX,HC + 2/3(c - cl) + - (cs - c1)

+n Q 2C - Cl) + s Cl) (5.17)
3 7rd3

5.4 Micellar Size Distribution and its Moments

The EXCESS chemical potentials, pEX and pEX, are now fully defined through

Eqs. (5.8), (5.11), (5.15), and (5.16), and can be utilized to evaluate the micellar

size distribution through Eq. (4.21). The attractive contribution to the EXCESS

chemical potential in Eq. (5.11) was computed in the context of a mean-field ap-

proximation, and was shown to depend solely on the total surfactant concentration,

c, = F, , mcm. As a result, this contribution cancels out when used in Eq. (4.21).

Specifically,

EX,att EX nl ,att -nC(T), mcm + n C(T)Q mcm = 0 (5.18)

m=1 m=l

In view of Eq. (5.18), only the hard-core, repulsive interactions contribute to the EX-

CESS chemical potentials appearing in the size-distribution equation. This hard-core

contribution can be conveniently written as a linear function of the micelle aggrega-

tion number, n. Specifically, for the case of spherocylindrical micelles, one obtains

p(EX X) = P ,EX,HC - EXHC) = Acy - nA y'  (5.19)

where

Q'72 2/3 27rd3 8Q
A'Y = o2/3 1 (c - c) + (Cs - cl) (5.20)

and
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AC' = [ -r (2 + n/3~] + 2cs + Ry n2 - - - - C )

(5.21)

For the case of monodisperse spheres, A ph and Aph can be obtained directly from

Eqs. (5.20) and (5.21) by making use of the fact that n = no = 7rd 3/(6 s) and

no(c - cl) = c, - cl . Specifically, Aph = , 72 n2/ 3C1 + 4Q,(c, - ci) and A =

[12 - 72(1 + 7y)]Qcl + Qsy 3c, - 4Qc.

Note that A'yl and Acyl in Eqs. (5.20) and (5.21) are dimensionless quantities

which are independent of n. When very few micelles are present in the solution,

A~"y and Ayl' are very small, since, as c, -+ 0, cl c x c,, and therefore, Acy' and

Acyl -+ 0.

Utilizing Eqs. (5.19) and (5.1) in Eq. (4.21), the following expression is obtained

for the micellar size distribution of spherocylindrical micelles

",c, = (Q cl)n exp {-3ngmic(n) - (Ay"' - nAcy')} (5.22)

with gmic(n) = gy (n) given in Eq. (5.2). Note that Eq. (5.22) is also applicable to

monodisperse spherical micelles of aggregation number no, with gL(n) replaced by

gsph = gmic(l*, s* = 3), and Acy' and Acyl replaced by A ph and A ph, respectively.

By substituting the expression for gmc(n) given in Eq. (5.2) in Eq. (5.22), the

following convenient form is obtained for the micellar size distribution of spherocylin-

drical micelles

qn
c (5.23)

K

where

K = Q, exp[p3 no(gph - gcyl) + A yl] (5.24)
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and

q = (2,cl) exp[-,3gyl + A'Y'] (5.25)

Equations (5.23)-(5.25) describe the effect of excluded-volume interactions on the

micellar size distribution of spherocylindrical micelles through the parameters A yt

and A'Y1. It is noteworthy that, in the absence of excluded-volume interactions (the

"ideal case"), A yi' = A' y1 = 0, and one recovers the well-known expressions for

ca, q, and K.[9] Interestingly, Gelbart et al. obtained[44] a similar expression for

the size distribution of spherocylindrical micelles by utilizing the same model for

the excluded-volume interactions with an alternative equation of state.' However,

they only considered the relatively high surfactant concentration limit, and hence,

neglected the monomer excluded-volume contributions. In addition, the spherocylin-

drical micelles at these conditions were assumed to be sufficiently long such that the

effect of the excluded-volume contributions associated with the hemispherical end-

caps could be neglected. Consequently, their expressions for A~Y' and A~Y" are slightly

different from those given in Eqs. (5.20) and (5.21).

In order to better characterize the spherocylindrical micellar system, it is useful

to introduce various moments of the micellar size distribution. In general, the kth

moment of the micellar size distribution is given by

00oo

Mk = n k Cn (5.26)
n=l

From these moments, one can calculate various average characteristics of the micellar

size distribution, which can be measured experimentally. For example,[6]

1Gelbart et al.[44, 110] utilized the "y-expansion"[112] which rescales the virial expansion in
terms of a new concentration variable, thus incorporating the effect of higher-order terms. For the
relatively dilute surfactant solutions of interest in this chapter, the two approaches yield similar
results.
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(5.27)
Mo

(5.28)

and

Var
M 3M 1= 2

M22
(5.29)

where (n)n is the number-average micellar aggregation number, (n), is the weight-

average micellar aggregation number, and Var is the relative variance of the micellar

size distribution, constituting a measure of micellar-size polydispersity.

For spherocylindrical micelles, Mk in Eq. (5.26) is given by

00oo

Cl+ : n k c n

n=no

(5.30)

Expressions for (n)n, (n),, and Var corresponding to spherocylindrical micelles can

be obtained by using Eq. (5.30) for Ml"' (with k = 0,1,2, and 3) in Eqs. (5.27)-(5.29),

respectively.

Utilizing Eq. (5.23) in Eq. (5.30) with k = 0 and k = 1, expressions for c and cs,

respectively, can be derived. Specifically,

c - McYl
C MOLrt

n=oo-- C -+-
qno

K(1 - q)
(5.31)

Sqn
SC1 + E nK - c l +

n=no

qn0
q n 2 [no(1 - q) + q]

K(1 - q)

Equation (5.23), describing the size distribution of spherocylindrical micelles, can
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c, = Mcyl (5.32)
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also be utilized to define a critical micellar concentration (or CMC). Specifically, by

taking the natural log of c, in Eq. (5.23), and keeping only terms that are of order n,

because n > 1, one can show[16, 9] that the CMC (in units of mole fraction) is given

by

CMC m exp (/gyi - A~Yt)  (5.33)

where gcyt = gmi,(l, s* = 2). In view of the fact that A'yl depends on surfactant

concentration (see Eq. (5.21)), it is necessary to set c, = CMC and solve Eq. (5.33)

iteratively.

Note that Eqs. (5.27)-(5.33) are also applicable to monodisperse spherical micelles

of aggregation number no, with gcy, replaced by gsph = gmic(l*, s* = 3), and Acyl and

Acyl replaced by A ph and Asph, respectively.

In summary, using Eqs. (5.24) and (5.25), along with Eqs. (5.20) and (5.21), in

Eq. (5.32), one obtains an implicit equation relating cl and c,. Note that solving

Eq. (5.32) requires the simultaneous solution of Eq. (5.31), since K and q depend

on Ac y' and A yl , respectively, which, in turn, are functions of c. Solving this set of

equations numerically, one can, in principle, calculate cl as a function of c., which can

then be inserted back in Eq. (5.23) to obtain the entire distribution of micellar sizes,

{cn}, as a function of c, and T. Illustrative example calculations of (i) the variation

of cl with c,, (ii) the CMC, and (iii) characteristics of the micellar size distribution,

including c, (n),,, and Var, will be presented in Section 5.7.

5.5 Limit of Extensive Micellar Growth

It is instructive to consider the limiting case of extensive spherocylindrical micellar

growth, in which (n), > no. For this purpose, it is convenient to introduce a con-

centration, cb, which corresponds to the maximum monomer concentration attainable

in this limit. Therefore, ,,cb is equivalent to the CMC defined in Eq. (5.33), that
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is,[9, 6]

RQcb = exp(3gcyl - A Y" )  (5.34)

In view of Eqs. (5.25) and (5.34), it follows that q = cl/Cb. Note that cb is a function

of the total surfactant concentration, cS, through the excluded-volume parameter,

Acyl (see Eq. (5.21)). In particular, as c, increases, the excluded-volume term, A' yl ,

increases, and cb decreases. At high c, values, the monomer concentration, cl, ap-

proaches its maximum value, Cb, and hence q ? 1. In order to explore this limiting

behavior, it is useful to introduce a parameter f = 1 - q. Substituting q = 1 - f in

Eq. (5.32), c, can be expressed in terms of this new parameter as follows

(1 - nof) no 1-f f(535)
K f f2

In the limit of extensive micellar growth, q O 1, and f <K 1. Expanding the right-

hand side of Eq. (5.35) in powers of f (to leading order in f), and rearranging terms,

the following expression is obtained for f[9]

f = [K(cs - c1)]-1/2 (5.36)

At high surfactant concentrations, (cS - cl) - c8, and, by utilizing Eq. (5.36) in

Eq. (5.23), one obtains the following remarkably simple expression for c [9]

KC~ 1 = exp [-n (Kcs) - 1/ 2] , > no (5.37)

Consequently, in the limit of extensive micellar growth, the micellar size distribution,

{c,), is a monotonically decreasing exponential function of n. Using Eq. (5.37) in

Eq. (5.26), the following expression for the kth moment is obtained:

c =k! (cK)(k+1)/2 , n0  (5.38)

In particular, the zeroth moment is given by M'Y' = c = (c,/K)1 /2 . The parameter

K provides a quantitative measure of the ability of the spherocylindrical micelles to
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grow.[9] Recall that K is a function of the surfactant concentration, cs, through the

excluded-volume contribution, A~y' (see Eqs. (5.24) and (5.20)). In the ideal case,

when AY' = 0, K does not depend on cs, and c increases as the square root of c,.

However, when AV0 > 0, as c, increases, K also increases, thus reducing the rate at

which c increases with c,.

In addition, in the limit of extensive micellar growth, the average micellar aggre-

gation numbers are given by

(n)n Mi= (cK)1/2  (5.39)

(n)> = = 2 (csK)1 / 2  (5.40)

Equations (5.39) and (5.40), along with Eq. (5.24), indicate that excluded-volume in-

teractions affect these aggregation numbers through the growth parameter, K, which

depends on A yl . When Al ut = 0 (ideal case), both (n), and (n), increase as the

square-root of the total surfactant concentration, cs. However, in the presence of

excluded-volume interactions, Acy' increases as cs increases (see Eq. (5.20)), which,

in turn, leads to an increase of K with cs. As a result, in the presence of excluded-

volume interactions, (n), and (n), are not only larger, but also increase at a rate

faster than c1/ 2 with increasing c. Interestingly, although excluded-volume interac-

tions separately affect both (n), and (n),, in the limit of extensive micellar growth,

their ratio, (n),/(n)n, remains equal to 2 (see Eqs. (5.39) and (5.40)), a well-known

finding corresponding to the ideal case.[9, 6] In addition, the relative variance of the

micellar size distribution, Var, has a value of 0.5 even in the presence of excluded-

volume interactions, which is another well-known finding corresponding to the ideal

case.[9, 6]
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5.6 Micellar Solution Phase Separation

5.6.1 Spinodal Curve and Critical Point

Nonionic surfactants, particulary those of the alkyl poly(ethylene oxide) variety, can

phase separate into a micelle-rich phase coexisting with a micelle-poor phase by vary-

ing temperature and/or surfactant concentration. The phase separation behavior can

be quantified by making use of thermodynamic stability requirements. The spinodal

curve is obtained from the following requirement[108]

TdC, = 0 (5.41)

The critical point is obtained from the following additional requirement[108]

(2 1_  =- 0 (5.42)

The derivatives of the monomer chemical potential in Eqs. (5.41) and (5.42) can

be taken directly using Eq. (4.19), with n = 1. The following expression is then

obtained for the spinodal curve

D T,+ k BT ac)C , , = 0 (5.43)
C Tp CS C1  DCs T,p C Tp

At constant temperature and pressure, the Gibbs-Duhem equation requires that

(daII/dcs)T,p,N. vanishes at the spinodal.[108] Since the standard-state chemical po-

tential, p, (T, p), depends only on T and p, Eq. (4.20) indicates that (dO,/dcs)T,,N =

-,W (II/dC,)T,p,N, = 0. Hence, the last term in Eq. (5.43) can be set to zero.

A second differentiation of Eq. (5.43), with (n ),p= 0 as explained above, with

respect to c, yields the additional expression required to evaluate the critical point,

that is,

(_2 1 (_2E
X  kBT (Dc 1 " 2 kBT 'D 2c 1

SC 2 + D = 0 (5.44)
( ) 2C2s p 

c C
2

, C _C2 ,
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For the micellar solutions exhibiting phase separation considered in this chapter,

the micelles are cylindrical in shape.[13, 12, 113] Therefore, in what follows, the

micelles are modeled as spherocylinders, so the results derived in Sections 5.3-5.4

for this micellar shape will be used. Recall that the monomer EXCESS chemical

potential includes both attractive (Eq. (5.11) with n = 1) and repulsive (Eq. (5.15))

contributions, that is,

EX EX,att EX,HC

2 BTy2 c +kT 2 2/3 cBTs[8 - 2(1 + 2/ 3 )] c1 - C(T)QSc,ksT -p2cs + kBTQ,-2 no c + ksT, 8 - y 2/3] C1

(5.45)

Utilizing Eq. (5.45) for PEX in Eq. (5.43), the following expression is obtained for

the spinodal curve

S2 C(T) 2 2/3 T7 2l 2/31 1T = 0
S T ++ + n[8-2(1± no 3)] +-

kBT + 19c, )T,, cl 19Cs T,p

(5.46)

The critical point is then obtained from the following additional requirement, obtained

by utilizing Eq. (5.45) for pEX in Eq. (5.44)

2 2/3 (2C [8 2/3 +--,} c CT,p =0ri+ n )] + - 0C __

(5.47)

Note that c and cl, as well as their derivatives with respect to cs, which appear in

Eqs. (5.46) and (5.47), can be calculated from Eqs. (5.31) and (5.32), respectively

(see Appendix E for details).

Typically, both c and cl depend on solution conditions such as temperature

through the free energy of micellization, gmi,. Given models for gmi(T) and the

attraction parameter, C(T), one can predict both the critical temperature, T,, and

the critical surfactant concentration, ccrit, by simultaneously solving Eqs. (5.46) and
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(5.47), utilizing the expressions for the derivatives given in Appendix E. Alternatively,

given the critical temperature, Tc, solving Eq. (5.47) yields the critical surfactant con-

centration, crit. Then, Eq. (5.46) can be utilized to solve for the attraction parameter

at the critical point, 'crit(Tc). Illustrative calculations of the critical surfactant con-

centration are presented in Section 5.7.2.

5.6.2 Coexistence Curve

The coexistence curve can be obtained through the requirements of thermodynamic

equilibrium. Specifically, the temperature, the pressure, and the chemical potential

of each component present in the two coexisting micellar phases A and B should be

equal, namely,

pA = pB, n> 1 (5.48)

and

pA = B (5.49)

Recall that due to the multiple chemical equilibrium condition (see Eq. (4.16)), re-

quiring -A = IB is equivalent to requiring /A =A = = npB = pB for any n. Hence,

Eq. (5.48) can be replaced by the following requirement

pA = Bf (5.50)

In addition, specifying the water chemical potentials in phases A and B is equivalent to

specifying the osmotic pressures of phases A and B (see Eq. (4.20)). Hence, Eq. (5.49)

can be replaced by

rHA = I B  (5.51)

The monomer chemical potential, pi, is given in Eq. (4.19) with n =1, with pEX
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given in Eq. (5.45). Utilizing the resulting expressions in Eq. (5.50) yields

,-2 (cA - cB) + S 2n2 / 3 (cA - CB) + Q(8 - 2(1 + n - c B )

C(T)Qs (c A _ cB) + In = 0 (5.52)
kBT s C=

where the superscripts A and B indicate the values of cl, c, and cs in phases A and

B, respectively.

The osmotic pressure, H, is obtained directly from the virial equation of state

used in Section 5.3 to model the attractive and repulsive intermicellar interactions.

Utilizing the second-virial coefficients corresponding to the attractive interactions (see

Eq. (5.10)), along with those corresponding to the hard-core repulsive interactions (see

Eqs. (5.13) and (5.14)), in Eq. (5.5), truncated at quadratic order in concentration,

results in the following expression for the osmotic pressure

frI = c - C(T)Qsc2 2 Cc s2 2/ 3CC1 + [4 - y 2(1 + /3
2kBT

7rd 3  8 4(5.53)
+ (c - C)2 + (c - C1)(C, - C ) + 4 (C -(5.53)

9 3 7rd3

Utilizing Eq. (5.53) in Eq. (5.51) yields

0 cA c C (B _ T) [(A)2 - (CB)2

+ 2 CA CA CBCB - 2 2/3 CAA A CB CB
12Y L8 1 5 1 ± 1L"/l( 1 1

+fs (4 - 2 (1 + n/3)) [(CA)2- (cB) 2 ] + CA - )2 B B)2

SQ [(c - C) CA - CA ) - B - ,B)(C - CB)]

4Q2

+ S [(c A _ cA)2 - (CB - c)2] (5.54)

Accordingly, given a model for the attraction parameter, C(T), a simultaneous

solution of Eqs. (5.52) and (5.54) at a fixed temperature and pressure yields the

two coexisting concentrations, cA and cB. Repeating this calculation for a range of

temperatures generates the entire coexistence curve in the temperature-concentration
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plane.

Note that Eq. (5.53) can also be utilized to derive an expression for the osmotic

compressibility of the micellar solution in the one phase region, (a) T,. By differen-

tiating Eq. (5.53) with respect to cs, we obtain the following result

dCS T,p

Oc C(T)Qs, c+ 2  + c tl
= ) T kBT 72 cl Cs Tp

+ s22/ 3  ac T,p c C T,p] + 2( (4 - 21 + /3))c C T,p

2 +  -c c8-
+2rd3  [)C c icl + 8  -, (C- ) 1- iT,p9 c)a c 3 acs
8Q s Dc dci1 8Q2  ac

+ (C c) C + d (CS - C1 ) 1 }
3 4cS 1c9x d c, -155

(5.55)

As stated earlier, the derivatives of c and cl with respect to c, are given in Appendix E.

If the temperature dependence of C(T) is known in the one-phase region (that is,

for T < Tc in the case of the alkyl poly(ethylene oxide) surfactants considered in this

thesis), then solving Eq. (5.55) at a given value of c, yields the osmotic compressibility

for temperatures less than T,. Illustrative calculations for both the coexistence curve

and the osmotic compressibility are presented in Section 5.7.2.

5.7 Results

In this section, the theoretical results derived in Sections 5.4 and 5.6 are appplied to

aqueous micellar solutions of alkyl poly(ethylene oxide) surfactants, a representative,

widely-used class of nonionic surfactants. First, a qualitative analysis of the effect of

excluded-volume interactions is presented. Then, micellar solution properties, such as

the CMC, the relative variance of the micellar size distribution, the critical surfactant

concentration for phase separation, and the osmotic compressibility, are quantitatively

predicted and compared to experimental data.
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5.7.1 Excluded-Volume Contribution

As a representative example, aqueous solutions of the nonionic surfactant C12E6,

CH 3(CH 2)11(OCH 2CH 2)6-OH, were examined at 20'C. Using Eq. (5.32), the monomer

concentration, cl, was predicted as a function of the total surfactant concentration, cs,

and plotted in Figure 5-1 (solid line). In addition, the same prediction was made as-

suming ideal behavior, that is, in the absence of excluded-volume interactions (dashed

line in Figure 5-1). Two main conclusions can be drawn from these predictions.

First, the monomer concentration is lower when excluded-volume interactions are ac-

counted for, indicating that such interactions encourage free surfactant monomers to

form micelles. Second, as the total surfactant concentration increases, the monomer

concentration initially increases both in the presence and in the absence of excluded-

volume interactions. However, beyond the CMC (signalled in Figure 5-1 by the abrupt

changes in the slopes of each curve), the monomer concentration remains constant in

the ideal case, while it decreases in the presence of excluded-volume interactions.

In general, as micelle formation becomes more favorable from a free-energy per-

spective, larger micelles are formed.[3] Indeed, this is also true in the present case.

Figure 5-2 depicts the micelle concentration, c - cl, predicted using Eq. (5.31), as

a function of c, for the ideal case (dashed line) and in the presence of excluded-

volume interactions (solid line). In the ideal case, as more surfactant molecules are

added, they aggregate to form new micelles, such that the overall micelle concentra-

tion increases. When excluded-volume interactions are considered, as c, increases,

the micelle concentration increases at a slower rate. This indicates that instead of

forming new micelles, the additional surfactant molecules are incorporated into al-

ready existing micelles, thus inducing micellar growth. This is further corroborated

in Figure 5-3, which shows predictions of the weight-average micellar aggregation

number, (n),, as a function of cs. Indeed, Figure 5-3 reveals that, for a given c,

value, when excluded-volume interactions are accounted for (solid line) the micelles

that form have larger aggregation numbers than those corresponding to the ideal case

(dashed line).[44]
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Figure 5-1: Predicted monomer concentration, cl, as a function of total surfactant
concentration, cS, for an aqueous solution of C12 E6 at 200C. Predictions were made
using the excluded-volume model (-) and the ideal solution model (- - -), which has
zero excluded volume.
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Figure 5-2: Predicted micelle concentration, c - cl , as a function of total surfactant
concentration, c., for an aqueous solution of C12E 6 at 200C. Predictions were made

using the excluded-volume model (-) and the ideal solution model (-- -), which has
zero excluded volume.
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Figure 5-3: Predicted weight-average micellar aggregation number, (n),, as a func-
tion of total surfactant concentration, cs, for an aqueous solution of C12E6 at 20'C.
Predictions were made using the excluded-volume model (-) and the ideal solution
model (- --), which has zero excluded volume.
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The results in Figures 5-1 through 5-3 indicate that the overall effect of excluded-

volume interactions is to encourage micellar growth, since a solution containing fewer,

larger micelles excludes less volume than one containing a larger number of smaller

micelles. This is a general result which should be applicable to any micellar system

in the presence of excluded-volume interactions. However, it should be kept in mind

that the predictions presented here were made using a particular excluded-volume

model, namely, that corresponding to rigid spherocylinders treated at the second-

virial expansion level of approximation. This derivation assumes that: (i) third- and

higher-order body interactions can be neglected, and (ii) micelle flexibility can be

neglected. In order to test the validity and range of applicablility of assumptions

(i) and (ii) corresponding to the excluded-volume description presented above, other

excluded-volume models were analyzed.

First, to examine assumption (i), the third-virial coefficient corresponding to rigid

spherocylinders[44] was utilized in Eq. (5.5) to account for the effect of three-body

interactions. The various EXCESS chemical potentials were then obtained following

a procedure similar to that described in Section 5.3, and predictions for the micel-

lar size distribution, analogous to those presented in Figures 5-1 through 5-3, were

made. As expected, at relatively low surfactant concentrations, no difference was

observed between the predictions made in the context of the second-order and third-

order virial equations. Only when the surfactant concentration exceeded about 200

mM, which is approximately 1000 times the CMC, did the predictions made using the

third-order virial equation begin to deviate from those made using the second-order

virial equation. This clearly indicates that, for the relatively dilute surfactant con-

centrations of interest in this paper (0-100mM), it is reasonable to neglect three-body

excluded-volume effects.

Second, to examine assumption (ii), an equation of state for flexible, hard-sphere

chains[114, 115] was utilized, instead of the virial equation of state, to investigate

the effect of micellar flexibility on the theoretical predictions. Similar to the finding

regarding the third-virial coefficient contribution, deviations from the rigid case were

only observed at surfactant concentrations greater than - 200 mM. At these relatively
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high surfactant concentrations, the flexible model predicted slightly higher monomer

concentrations and higher micellar aggregation numbers than the virial equation ap-

proach, indicating that the nonideal contributions were even stronger for this equation

of state. However, for the relatively low surfactant concentrations of interest in this

paper (0-100mM), is is reasonable to neglect micellar flexibility.

In summary, the virial equation of state truncated at quadratic order in the context

of an excluded-volume model for rigid spherocylinders is adequate for the calculation

of micellar solution characteristics at the solution conditions of interest in this paper.

Carrying out these additional calculations was also valuable in demonstrating the

versatility of the McMillan-Mayer theory and the relative ease with which alternative

models of intermicellar interactions and micellar flexibility can be analyzed in the

context of this statistical-thermodynamic framework.

5.7.2 Comparison with Experiments

In this section, the excluded-volume model is utilized to make several quantitative

predictions of micellar solution characteristics. The molecular parameters, Qs, no,

and gmic, of the CiEj surfactants examined in this chapter (i = 10, 12, and 16;

j = 4-9) were determined using the molecular model of micellization presented in

Section 2.3.[16, 17] gmic has a strong dependence on temperature, while no and Q,

are approximately constant over the range of temperatures examined. Specifically,

no = 34, 48, and 84 for Clo, C12 , and C16 , respectively, and Qs = vt + Vhead, where

vt = 312A3 , 366A3 , and 473A3 for C 10 , C 12, and C16, respectively, and Vhead =

(42.3 + 63.5j)A . Note that the -CH 2 group adjacent to the poly(ethylene oxide)

head has been included as part of the head.[16]

Figure 5-4 shows predicted CMC's at 20'C corresponding to aqueous solutions of

CiEj surfactants as a function of the number of ethylene oxide (EO) groups, j, for i =

10 (solid line), i = 12 (dashed line), and i = 16 (dotted line). The circles, diamonds,

and stars denote experimental values for C1oEj, C12 Ej, and C16Ej, respectively.[16,

90, 91] Note that the theory consistently captures the trend of increasing CMC with

increasing j.
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Figure 5-4: Predicted CMC as a function of the number of ethylene oxide (EO)

groups, j, for aqueous solutions of C1oEj (-), C 12 Ej (- - -), and C1 6 Ej (...) at 20 0C.

Experimental values are denoted by circles for C1oEj, diamonds for C12Ej, and stars

for C16Ej.
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As discussed in Section 5.4, the relative variance of the micellar size distribu-

tion, Var, constitutes a quantitative measure of polydispersity. In particular, elon-

gated, polydisperse cylindrical micelles are characterized by Var = 0.5, whereas small,

monodisperse spherical micelles are characterized by Var = 0. Figure 5-5 illustrates

the predicted temperature variation of the relative variance of the micellar size dis-

tribution for C12Ej surfactants in aqueous solutions, where j = 5, 6, 7, and 8. In

particular, for j = 6, 7, and 8, the narrow temperature range over which the relative

variance changes rapidly from 0 to 0.5 corresponds to a sphere-to-cylinder micellar

shape transition. The experimentally determined shape transition temperatures (in-

dicated by the various arrows in Figure 5-5) are 160 C,[95] 34'C,[14] and 50'C[96]

for C 12E 6 , C12E 7 , and C 12Es, respectively. As can be seen, the theory is capable of

predicting the micellar shape transition behavior quite accurately.

The critical behavior of several aqueous solutions of CiEj surfactants was pre-

dicted by solving Eqs. (5.46) and (5.47). As discussed in Section 5.6, the quantites cl

and c depend on temperature through gmic(T). Consequently, in order to make these

predictions, experimental values of the critical temperatures, Tc, served as inputs to

the theory. Then, Eq. (5.47) was used to solve for the critical surfactant concentra-

tion. Figure 5-6 illustrates the predictions of the critical surfactant concentration for

several CiEj surfactants. The experimental critical temperature values are 210 C,[15]

440 C,[15] and 580 C[97] for C1oE4, C10E5 , and Co1 E6 , respectively, and 3.5°C,[35, 36]

250C,[14] 500C,[14] 620C,[14] and 77 0C[12, 113] for C 12E4 , C12E 5, C12E 6 , C 12E 7, and

C1 2E8 , respectively. The theoretical predictions are given by the left-hatched bars,

and the experimental values are given by the white bars.[14, 15, 97, 12, 113, 98] As

can be seen, the theory yields accurate predictions for the critical behavior of CiEj

surfactants. It should also be noted that the predicted coexistence curves correspond-

ing to the aqueous CiEj micellar solutions examined (not shown) were relatively flat,

in accordance with experimental observations.[14, 12, 113]

In order to gain a quantitative understanding of the mean-field attraction pa-

rameter, C(T), experimental values[13] for c (T) and cB(T) were used in Eq. (5.52)

to predict C(T) as a function of T (> T,). The predictions close to the critical
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point (T - Tc < 2°C) indicated a linear dependence on temperature (specifically,

C(T)/kB = 0.45T - 141, in units of 'K). This expression for C(T) was assumed to

be applicable for T < T, as well, and was utilized in Eq. (5.55) to predict the osmotic

compressibility along the critical isochore, for which the surfactant concentration is

equal to the critical concentration (ce = 57mM,[13]) for temperatures in the range

150 C < T < T,. Predictions of the osmotic compressibility are shown in Figure 5-

7 (solid line) and compared to experimental data from Ref. [113] (stars) and from

Ref. [13] (diamonds). The expected divergence of the osmotic compressibility as the

temperature approaches T, is clearly observed. The predictions follow the experimen-

tal data closely, indicating that the linear dependence on temperature found for C(T)

at T > Tc is a reasonable approximation, even when extrapolated to temperatures

which are less than Tc. In addition, because the osmotic compressibility and the

coexistence curve represent two independent characteristics of the micellar solution,

the agreement of the osmotic compressibility predictions with experiments can be

interpreted as an independent validation of the present theory.

5.8 Conclusions

In summary, a statistical-thermodynamic framework to model nonionic micellar so-

lutions, based on the McMillan-Mayer theory of multicomponent solutions, has been

developed. The advantage of this approach is that it clearly delineates the ideal and

excess contributions to the solution Gibbs free energy, thus allowing, in principle, for

successive improvements of the theory as equations of state of increasing complexity

and accuracy are implemented. In addition, this statistical-thermodynamic frame-

work allows for the quantitative analysis of the effect of intermicellar interactions on

micellar solution characteristics, such as micelle formation, micellar size distribution,

and micellar solution phase separation.

In the calculations presented in this chapter, intermicellar interactions were mod-

eled in the context of a virial equation of state, truncated at quadratic order. In

particular, attractive intermicellar interactions were modeled using a mean-field de-
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scription, while repulsive intermicellar interactions were described using a model for

excluded-volume interactions between rigid spherocylinders. It was shown that the

inclusion of excluded-volume intermicellar interactions has a profound effect on the

micellar size distribution. Specifically, excluded-volume interactions encourage micel-

lar growth, resulting in fewer, larger micelles. The theory was compared to an earlier

phenomenological model (the ladder model[9]) which was developed for an ideal sys-

tem devoid of excluded-volume intermicellar interactions. In particular, in the limit

of extensive micellar growth, the expressions for the average micellar aggregation

numbers and the relative variance of the micellar size distribution were found to have

exactly the same mathematical form as those predicted by the ladder model. The

only difference is that, in the presence of excluded-volume interactions, the growth

parameter, K, depends on surfactant concentration and more readily promotes mi-

cellar growth. It is interesting that a micellar solution model based on an entirely

different thermodynamic framework leads to the same limiting behavior.

In addition, several quantitative predictions of micellar solution characteristics

were made and found to compare favorably with experimental data. These include

(i) the CMC, (ii) the variance of the micellar size distribution, (iii) the critical sur-

factant concentration for phase separation, and (iv) the osmotic compressibility for

aqueous solutions of alkyl poly(ethylene oxide) nonionic surfactants. In view of this,

for the dilute micellar solutions examined in this chapter, the model for intermicellar

interactions presented here constitutes a reasonable approximation. However, if more

concentrated micellar solutions are investigated, then alternative models of intermicel-

lar interactions may need to be considered. As better descriptions of the interactions

occuring between nonionic micelles are developed, they can be incorporated into the

statistical-thermodynamic framework presented here.
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Chapter 6

Application of the

McMillan-Mayer

Statistical- Thermodynamic

Framework to Ionic Micellar

Solutions

6.1 Introduction

In this chapter, the McMillan-Mayer statistical-thermodynamic framework described

in Chapter 4 will be applied to an ionic surfactant solution. One of the key results

of the theory presented in Chapter 4 is an explicit expression for the micellar size

distribution equation, given in Eq. (4.21) and repeated below for completeness

wcn = (ci)" exp (-(pE - r/) - PpEX - npEX)) (6.1)

where p = 1/kBT, c, is the concentration of micelles of aggregation number n, cl is

the concentration of monomers, /t and Ip are the standard-state chemical potentials

of micelles and monomers, respectively, and -EX and pEX are the EXCESS chemical
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potentials of micelles and monomers, respectively. Equation (6.1) is general, that is,

given an appropriate model for the various chemical potentials involved, Eq. (6.1)

can be implemented for any micellar solution. In Chapter 5, a model was developed

to implement Eq. (6.1) in the case of nonionic micellar solutions. In this model, the

difference in standard-state chemical potentials, (p' - np)/n, is equivalent to gmic,

the free energy of micellization. The EXCESS chemical potentials included hard-core

intermicellar interactions, described using a spherocylinder excluded-volume model,

and attractive intermicellar interactions described using a mean-field approach. In

this chapter, a model for the standard-state and EXCESS chemical potentials appro-

priate for ionic surfactants, including contributions due to hard-core and electrostatic

intermicellar interactions, will be developed.

Recall that a molecular-thermodynamic theory for ionic micellar solutions was

presented in Chapter 2. This theory resulted in accurate predictions of CMC's, but

strongly underestimated micellar growth for ionic surfactants, particularly in the pres-

ence of added salt. The McMillan-Mayer statistical-mechanical approach presented

here corrects some of the limitations of the molecular-thermodynamic theory pre-

sented in Chapter 2, yielding more accurate predictions of micellar growth in the

presence of added salt. Specifically, in the molecular-thermodynamic theory pre-

sented in Chapter 2, only the ions immediately surrounding the micelle were assigned

a finite volume (through the Stern layer). In the McMillan-Mayer approach, the ex-

cluded volume of all the charged solutes, including counterions, monomers, micelles,

and salt ions, are incorporated in the model. More importantly, electrostatic inter-

micellar interactions, which were neglected in the molecular-thermodynamic theory

presented in Chapter 2, are treated in the McMillan-Mayer approach. Note that the

standard-state chosen in the McMillan-Mayer approach is different than that utilized

in the molecular-thermodynamic theory presented in Chapter 2. In particular, in the

McMillan-Mayer approach, the ion cloud is not included in the standard state. This

will be discussed in more detail in Section 6.2.1.

The remainder of this chapter is organized as follows. Section 6.2 presents a

general definition of the various constituents of the ionic surfactant solution, and
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a description of a general thought process for implementing the McMillan-Mayer

statistical-thermodynamic framework in the case of ionic surfactants. In addition,

various methods for calculating the electrostatic contribution to the EXCESS chemi-

cal potentials will be discussed. In Section 6.3, the Debye-Hiickel (DH) approximation

will be utilized to evaluate the electrostatic contribution to the EXCESS chemical po-

tentials. In Section 6.4, a modified Poisson-Boltzmann (PB) equation which accounts

for the finite size of the ions will be derived, and then utilized to calculate the elec-

trostatic contribution to the EXCESS chemical potentials. Both the DH and the

modified PB descriptions will be used to make qualitative predictions to assess the

effect of electrostatic intermicellar interactions on the micellar size distribution. In

addition, some quantitative CMC predictions will be made and compared with ex-

perimental CMC values. Finally, in Section 6.5, the key results of the chapter will be

summarized.

6.2 General Description of an Ionic Surfactant

Solution

6.2.1 Definition of System

The ionic surfactant solution consists of three or four types of charged solutes: (i)

surfactant monomers, (ii) surfactant micelles, (iii) counterions, and (iv) coions, if salt

is added. Note that counterions are those ions whose charge is opposite to that of

the surfactant ions, while coions are those ions whose charge is equal to that of the

surfactant ions. For example, in a solution containing sodium dodecyl sulfate (SDS)

and NaCl, sodium (Na + ) is the counterion and chlorine (Cl-) is the coion. The

notation used in this chapter to describe the various charged solutes is summarized

below in Table 6.1. Note that for spherocylindrical micelles, the radius of charge and

the hard-core radius refer to the cross-sectional radius of the cylindrical body.

The following reasonable assumptions have been made to simplify the calculations:

* The surfactant molecules in the micelles are assumed to be fully-extended. In
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Table 6.1: Summary of the notation used in this chapter to describe the various
charged solutes, where c, is the concentration of n-mers, cl is the concentration of
monomers, cc is the concentration of counterions, cco is the concentration of coions, c,
is the total surfactant concentration, and c,,at is the concentration of added salt. Rh
is the micelle radius of charge, rh is the monomer radius of charge, R is the micelle
hard-core radius, R 1 is the monomer hard-core radius, ri is the radius of charge and
the hard-core radius of an ion, Q, is the volume of the surfactant molecule, Qi is the
volume of an ion, and z is the valence of the surfactant molecule.

Radius of Hard-Core Hard-Core
Ionic Species Concentration Valence Charge Radius Volume
micelle (n-mer) cn nz Rch R nQ,

monomer Cl z rh R 1 Qs
counterion Cc - Cs + Csalt -z ri ri i

coion Cco = Csalt ri i i

other words, it is assumed that 1* = Imax, which is the natural conformation for

most ionic surfactants within a micelle, except at very high salt concentrations.

Indeed, this conformation reduces repulsive electrostatic head/head interactions

occurring at the micellar interface. The reasons for making this assumption are

further discussed in Section 6.2.3.

In treating excluded-volume interactions, the surfactant monomers are treated

as effective spheres of radius R1. Note that the hard-core monomer volume

includes the volume of the entire surfactant molecule, including the tail (Q, =

4wR3/3), whereas the radius of charge is based only on the charged monomer

head (rh = [ah/7i]/ 2 ), where ah is the cross-sectional area of the head. The

reason for this minor distinction is that the charge remains on the surfactant

head, and therefore, rh is the relevant dimension for the electrostatic calcula-

tions. However, the tail contributes to the excluded volume, and therefore, for

the excluded-volume calculations, R1 is the relevant dimension. Note that rh

is typically 2-4 A, while R 1 is typically 5-8A. It should be noted that the pre-

dictions of micelle size can be sensitive to the value of R 1, and therefore, the

distinction between R 1 and rh can be important.
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* The counterions and coions are assumed to be spheres having the same radius,

ri, in order to simplify the calculations. This is a reasonable approximation

because the micelles are much larger than both the counterions and the coions,

and therefore, are expected to dominate the excluded-volume interactions.

* Both the salt and the ionic surfactant are assumed to be symmetric electrolytes

with the same valence. That is, if the surfactant is monovalent (as is the case

for most ionic surfactants), the salt must also be monovalent. This assump-

tion is made for practical convenience, since most commonly encountered ionic

surfactants and salts are monovalent. Theoretically, the model presented in

this chapter can be extended to treat asymmetric salts, but then, the equations

derived in Sections 6.3.1 and 6.4.2 need to be modified accordingly.

The standard state of the surfactant solution is chosen to be a state of infinite

dilution in water. That is, Ipn and IL must be evaluated at infinite dilution, defined

here as a bare charged micelle (or monomer) in water with no surrounding ion cloud.

The difference in standard-state chemical potentials, (po - njp)/n, represents the free

energy of micellization at infinite dilution, in the absence of counterions or coions.

As mentioned earlier, this standard state is different from the standard state defined

in the context of the molecular-thermodynamic theory presented in Chapter 2, which

included the ion cloud. The new standard state is chosen because all interparticle

interactions, including interactions with the ion cloud, will be included as part of the

EXCESS chemical potentials. Accordingly, the EXCESS chemical potential of an n-

mer (where n = 1 corresponds to a monomer) will now include interactions between

(i) n-mer/m-mer, (ii) n-mer/monomer, (iii) n-mer/counterion, and (iv) n-mer/coion.

Note that this modification of the standard state will require a different model for

gelec, which will be discussed further in Section 6.2.2.

The intermicellar interactions considered in this chapter include both electrostatic

and hard-core (excluded-volume) repulsive interactions. For ionic systems, it is also

possible that attractive, van der Waal's-type intermicellar interactions may operate

at very high salt concentrations. However, for the solution conditions considered in
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this chapter, the attractive intermicellar interactions should be negligible.

In order to keep track of the various ionic species and their contributions to the

standard-state and EXCESS chemical potentials, it is useful to construct a thought

process which represents the formation of an n-mer from n monomers in an ionic

surfactant solution. This thought process breaks down the micellization process into

several steps, each step associated with one of the chemical potential quantities that

needs to be evaluated. A detailed description of the thought process is presented in

the next section.

6.2.2 Thought Process

The formation of a charged n-mer from n charged monomers is broken down into three

steps (refer to Figure 6-1): (i) transferring n charged monomers from the surfactant

solution to infinite dilution, (ii) assembling the n charged monomers into a charged n-

mer at infinite dilution, and (iii) transferring the charged n-mer from infinite dilution

back into solution.

In the first step, the n charged monomers are transferred to infinite dilution in

water, a process which is exactly opposite to that associated with calculating the

EXCESS chemical potential of these n monomers, -nf x . In the second step, at

infinite dilution, the charged n-mer is assembled from the n charged monomers, a

process which is equivalent to that associated with calculating the difference in their

standard-state chemical potentials, (t - nrof). Finally, in the third step, the charged

n-mer is transferred from infinite dilution back into solution, a process which is equiv-

alent to that associated with calculating the EXCESS chemical potential of the n-mer,

pEX. Breaking the micellization process into these three steps allows us to calculate

each of the associated chemical potential quantities separately.

The total change in chemical potential from the initial state (n charged monomers

in solution) to the final state (charged n-mer in solution) can be viewed as the re-

versible work (equivalent to a free-energy change) involved in forming the charged

n-mer from the n charged monomers in solution. This work, W1- 3, is equivalent to

the difference in the standard-state and EXCESS chemical potentials associated with
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Figure 6-1: Schematic representation of the thought process to visualize the formation
of a charged n-mer from n charged monomers in solution.
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the n-mer and the n monomers. Specifically,

W1-3 = /P - nill + pEX _ npEX (6.2)

Note that -PW 1- 3 is the quantity appearing in the exponent of the micellar size dis-

tribution expression given in Eq. (6.1). Next, the calculation of each step is described

in detail.

Step 1: Transferring n charged monomers to infinite dilution

In the first step, n charged monomers are transferred from an aqueous micellar solu-

tion to infinite dilution in water, defined as the standard state. In other words, the

interactions between the monomers and all other solutes, including micelles, other

monomers, counterions, and coions, are "turned off". This step is equivalent to the

negative of the EXCESS chemical potential of the n monomers, -nP E X , including

hard-core (HC) and electrostatic (elec) interactions. In other words,

W1 = -n E X = -n-rEX1 C - n p E X ele (6.3)

In order to evaluate these quantities separately, this step is further broken down

into three substeps. The model for excluded-volume interactions treats the micelles

and monomers as uncharged bodies. Therefore, in order to evaluate EX,H, the

monomers are first discharged in solution. In other words, the electrostatic interac-

tions between the monomers and all other charged species, including micelles, other

monomers, counterions, and coions, are "turned off". The work associated with dis-

charging the n monomers is WjI, and its calculation will be discussed in Section 6.2.3.

In the second substep, the uncharged monomers are transferred from solution to

infinite dilution. Because the monomers have already been discharged, only steric

interactions are accounted for in this substep. In other words, the excluded-volume

interactions between the monomers and the micelles, other monomers, counterions,

and coions are "turned off". Hence, the work involved in this substep is the negative
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of the hard-core EXCESS chemical potential. That is,

Wlb = -nEXHC (6.4)

The hard-core EXCESS chemical potential was already evaluated in Chapter 5 for

the case of nonionic micelles. The same model will be utilized here, along with an

additional contribution arising from the excluded volume of the counterions and the

coions. In this model, the micelles are treated as rigid spherocylinders consisting of a

cylindrical body of variable length capped with two hemispheres of total aggregation

number no. Thus, the minimum-sized micelle is a sphere with an aggregation number

equal to no. As discussed in Section 6.2.1, the monomers are treated as effective

spheres with a radius R 1 = (3Q,/47) 1 /3 , where Qs is the volume of a surfactant

molecule. This model results in the following expression for pEX,HC (see Eq. (F.15)

in Appendix F.2)

X,HC 4 (R1 + ri)3 ci + 8scl + y2 (c' - C1 ) + y 2 n/ 3 (- cl)3
(6.5)

where c is the zeroth moment of the micellar size distribution, ci is the total concen-

tration of counterions and coions (ci = cc + cco = cs + 2csaut), and y = (1 + 1/no/).

Note that Eq. (6.5) is very similar to Eq. (5.15), with an additional contribution (the

first term) due to the excluded volume of the counterions and the coions.

In the third substep, the n uncharged monomers are recharged at infinite dilution.

Because there are no other ions at infinite dilution, the work involved in this substep

is simply the Born solvation energy of the n monomers.[57] That is,

Wic = n (6.6)
2Erh

where E is the dielectric constant of the solvent, e is the electronic charge, and rh is

the radius of the monomer head. Recall that rh is the radius of the monomer head

only, while the radius used for the excluded-volume calculations, R 1 , is the radius of
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the entire monomer.

Combining the contribution associated with discharging the n monomers in solu-

tion with that associated with charging the n monomers at infinite dilution results in

the negative of the electrostatic EXCESS chemical potential of the monomers. That

is,

Wla + Wlc = -nEX' el ec (6.7)

In other words, discharging the n monomers in solution and then recharging them

at infinite dilution is the same as "turning-off' the electrostatic interactions between

the n monomers and all the other charged solutes. The work involved in the entire

first step is the negative of the total EXCESS chemical potential of the n monomers,

that is,

Wl = Wla + W1b - Wlc

= -n(EX,HC + Xelec) = -n X (6.8)

Step 2: Formation of the micelle (n-mer) at infinite dilution

In this step, the n charged monomers aggregate to form a charged n-mer at infinite

dilution. This process represents the difference in standard-state chemical potentials,

IL - n', which is equivalent to ngmic, the free energy of micellization at infinite

dilution, that is,

W2 = -p' - np = ngmic (6.9)

Recall that, as discussed in Section 6.2.1, the standard state is defined differently

than the standard state defined in the context of the molecular-thermodynamic the-

ory presented in Chapter 2, and therefore, the calculation of gmic must be modified

accordingly. Specifically, there is no ion cloud in the current model, and hence, gmic is

the free energy associated with forming the bare micelle at infinite dilution. Because

there is no ion cloud, the electrostatic contribution, geec, will be dealt with as a sep-

arate contribution. The other contributions to gmic are the same as those described

in Section 2.3. This distinction is illustrated in the thought process by dividing the
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calculation of W2 = p - nI into three substeps.

In the first substep, the n charged monomers are discharged at infinite dilution

in order to evaluate the electrostatic contribution to the free energy of micellization

separately. This discharging is simply the reverse work of charging the n monomers

in Step ic, and is given by

W 2a = -n(z (6.10)

It may seem redundant to compute both W2a and W1c, since they cancel each other,

but it is important to include both of these substeps in order to determine separate
EX,elecexpressions for pEX, and gelec

In the second substep, the n uncharged monomers are assembled to form an un-

charged n-mer at infinite dilution. The work in this substep includes all the contri-

butions to the free energy of micellization, except for the electrostatic contribution,

denoted as gmi. Specifically,

W2b = ngmic = n(gtrans + gint + gpack + gster) (6.11)

The calculation of these contributions was described in detail in Section 2.3. gmic

has been calculated for three regular micellar shapes: spheres, infinite cylinders, and

infinite bilayers. Typically, bilayers are not formed by ionic surfactants at the solution

conditions examined here. For the other two shapes, the optimal shape is determined

by comparing the gomc values corresponding to a sphere, gsph, and an infinite cylinder,

g-. If g8Ph is lower, then the resulting micelles are assumed to be monodisperse

spheres with an aggregation number no = 47rl /3vt (with l = lmax, as explained in

Section 6.2.1). If g~yt is lower, then the resulting micelles exhibit one-dimensional

growth and are modeled as spherocylinders. In this case, gmic is estimated by linearly

interpolating between gph and gly, as follows

S n0o n- no 0
gmic = gsph + n 1 (6.12)

In the third substep, the uncharged n-mer is charged at infinite dilution. The work

In the third substep, the uncharged n-mer is charged at infinite dilution. The work
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involved in this substep is the Born Solvation Energy of the micelle, W2c = BSE.

Although it is difficult to model the Born Solvation Energy of a spherocylinder, it is

not necessary to evaluate it explicitly because it will cancel with a similar contribution

in Step 3.

The sum of the contributions in substeps 2a and 2c is equal to geec, the electro-

static contribution to the free energy of micellization at infinite dilution, namely,

W 2 a + W 2c = ng ec = BSE - (6.13)2crh

As discussed above, because there is no ion cloud in the current model, this gele is

different than the gelec defined in the context of the molecular-thermodynamic theory

described in Chapter 2.

The free energy of micellization, gmic, is obtained by summing up all the work

contributions involved in Step 2, that is,

(ze)2
W2 = - np7 = ngmic = ngmc + BSE - n( (6.14)

Step 3. Transferring the micelle (n-mer) to solution

In the third and last step, the charged n-mer is transferred from infinite dilution to

the solution containing other micelles, monomers, counterions, and coions. In other

words, the interactions between the n-mer and all the other solutes are "turned on",

which is equivalent to calculating the micelle (n-mer) EXCESS chemical potential,

including hard-core and electrostatic intermicellar interactions. That is,

W 3 = p E X = p1EX,HC + It E X ,elec (6.15)

In order to evaluate these quantities separately, this step is further broken down

into three substeps. In the first substep, the charged n-mer is discharged at infinite

dilution. The work involved in this substep is the negative of the Born Solvation

Energy of the n-mer, that is,

W 3a = -BSE (6.16)
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As noted above, this work contribution will exactly cancel W2c. As with the case

for the monomers, it is important conceptually to consider both of these substeps in

order to determine separate expressions for gelec and pEX

In the second substep, the uncharged n-mer is transferred from infinite dilution to

solution. Because the n-mer has been discharged, only excluded-volume interactions

are accounted for in this substep. Accordingly, the work involved in this substep is

equal to the EXCESS hard-core chemical potential of the n-mer, that is,

W3 b = X,H (6.17)

As with the case for the monomers, the excluded-volume model that was developed

for nonionic surfactants will be used here, with additional contributions resulting from

the excluded volume of the counterions and the coions. Treating the ions as spheres

of radius ri results in the following expression for 1 n"EX,H (compare with Eq. (F.19)

in Appendix F.2)

PEX,HC (R ± r' 2 4rii 2 2/3 27Cd3  ,8Qs

+n 2 8, (C - Cl) + 8 -s Cl) (6.18)
3 7rd3

where R is the hard-core radius of the micelle (n-mer), and d = 2R is the hard-core

diameter of the n-mer. Note that Eq. (6.18) is very similar to Eq. (5.17), with an

additional contribution (the first term) due to the excluded volume of the counterions

and the coions.

In the third substep, the uncharged n-mer is charged in solution. In other words,

the electrostatic interactions between the n-mer and all the other charged solutes,

including other micelles, monomers, counterions, and coions are "turned on". This

substep combined with substep 3a results in the electrostatic EXCESS chemical po-

tential of the n-mers, that is,

W 3 a + W 3 = unEX,elec (6.19)
W~a + ~c = n

152



The work involved in the entire third step is the total EXCESS chemical potential of

the n-mers, that is,

W3 = W3a + W3b + W 3c

- EX,HC EX,elec _ EX (6.20)

Finally, each of the three steps are combined to obtain the following expression

for W 1-3

W1-3 = Wl +W 2 + W 3  o +- 1rX EX

ngmic + (PEX,eXec EX,elec + (EX , HC nEX,HC) (6.21)
n - nl n -

6.2.3 Electrostatic EXCESS Chemical Potentials

Up to this point, the thought process described in Section 6.2.2 is completely general.

Any model for the electrostatic EXCESS chemical potentials can be used within

this framework. There are several approaches to calculating P EX,elec and pEX,elec

For example, one could use a liquid-state theory approach where the charged species

exhibit a Coulombic interaction. The EXCESS chemical potential is then obtained by

summing over all pairwise interactions. This approach is described in Appendix G.1.

Interestingly, it can be shown that this approach leads to the same expressions for

EX,elec and pEX,e ec as those resulting from the charging approach that will be utilized

here (see Appendix G.1 for details). Alternatively, one could use a virial equation of

state, similar to that used for the hard-core interactions, as discussed in Section 5.3.

This approach is summarized in Appendix G.2, along with an explanation of why it

will not be utilized here.

As indicated above, a charging process will be utilized to calculate pEX,elec and

EX, ec. In this process, the central micelle (or monomer) is gradually brought from

zero to full charge while interacting with a diffuse, fully-charged ion cloud. The

ion cloud consists of all the other charged species in solution, including counterions,

coions, monomers, and micelles. Including the micelle in the ion cloud is an ap-
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proximate way to account for micelle/micelle electrostatic interactions. That is, the

central micelle interacts with each component of the ion cloud, which also includes

other micelles. For the micelles in the ion cloud, the distribution of the charges over

the micellar surface is neglected. In other words, the micelles in the ion cloud are as-

sumed to have a charge of nze localized at their center, irrespectively of their shape.

This is a fairly good approximation for spherical micelles at dilute concentrations.

However, this approach is less accurate for elongated micelles because the orienta-

tions of the micelles in the ion cloud relative to the central micelle are neglected. In

either case, including the micelles in the ion cloud will at least account for the addi-

tional screening provided by these charged solutes. In general, the work associated

charging an n-mer (micelle) is given by

nze
7 mhar ge mic (Rch) dq (6.22)

where Omic(Rch) is the electrostatic potential at the micelle surface of charge, and q

is the micelle charge as it is raised from zero to full charge (nze). Similarly, the work

associated with charging a monomer is given by

ze

char = ge mon(rTh) dq (6.23)

where 4 mon(rh) is the electrostatic potential at the monomer surface of charge, and

q is the monomer charge as it is raised from zero to full charge (ze).

This charging process will be used to calculate Wla in substep la, where the n

monomers are discharged in solution, and to calculate W3c in substep 3c, where the

n-mer (micelle) is charged in solution. Specifically,

Wze

Wia = -nWcmg = -n j mon(rh) dq (6.24)

nze

W3c = lmzgec - mic(Rch) dq (6.25)

Note that Wia in Eq. (6.24) is the negative of the integral because the monomers are

discharged.
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The electrostatic EXCESS chemical potential of the n-mers is obtained by using

Eqs. (6.16) and (6.25) in Eq. (6.19), as follows

Inze
EX,elec -BSE + omic(Rch) dq (6.26)Atn =0

Similarly, the electrostatic EXCESS chemical potential of the monomers is obtained

by using Eqs. (6.6) and (6.24) in Eq. (6.7) (dividing by n), as follows

EX,e-ec -(ze)2 +  mon(rh) dq (6.27)

Using Eq. (6.14) for gmic, Eqs. (6.5) and (6.18) for pE X HC and p EXHC, respec-
Xn lec, respec-

tively, and Eqs. (6.27) and (6.26) for EX,eec and p ,eec respectively, in Eq. (6.21),

the following expression is obtained for W1-3

W1-3 = ng+ic + mic(Rch) dq - n mon(rh) dq + (Ao - nA)ksT (6.28)

where Ao and A1 are excluded-volume parameters, which, for spherocylindrical mi-

celles, are given by (see Appendix F.2)

A~c = 47r (R + ri) 2ci + sy2 2/3o c1 + 3 - 1 ) (6.29)

Ac = -4 [(Ri+ ri)3 (R+ r)2 I ci+ [8 -_72(2 + no )]Qsci
3 no

+Q,7y2 , C+ 0, 2 i'/ /3 s (- _ ) - 8 C, - 1) (6.30)
3 Wd3

Note that these expressions are slightly different from the A Yt' and Acy' expressions

given in Eqs. (5.20) and (5.21) due to the additional excluded-volume effect of the

counterions and coions. When ci = 0, the original expressions for A' Y' and A'yl are

recovered (see Appendix F for details).

As discussed in Section 6.2.2, the minimum-sized micelle is a spherocylinder con-

sisting only of the two endcaps, that is, a sphere with an aggregation number equal

to no, where no = 47rlj/(3vt). In this case, Aph and Aph can be obtained directly
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from Eqs. (6.29) and (6.30) by making use of the fact that n = no = rd3/(6Qs) and

no(c- ci) = c, - cl. Specifically, Aph = 47rri(R + ri)2Ci/3+ no /3 cl + 4Q,(c - ci),

and ASph = 47[(R1 + ri)3 - (R + ri)2R/no]ci/3 + [12 - 7 2(1 + y)]Q2Cl + sQ'y3 cs - 4Qc.

Note that these expressions are slightly different from the A ph and A ph expressions

given in Chapter 5 due to the additional excluded-volume effect of the counterions

and coions. When ci = 0, the original expressions for A p h and AIph are recovered.

Equation (6.28) can be implemented in Eq. (6.1) to obtain the following expression

for the micellar size distribution which is applicable to both spherical and spherocylin-

drical micelles

Qwc, = (,,c l )' exp (-ngmic - e Omic(Rch) dq + In f mon(rh) dq - (Ao - nA))

(6.31)

As discussed previously in Section (2.2), it would be instructive to sum over all

the possible 1, values for c,(l,), rather than forcing all c, to be at the same 1*.

However, this process is computationally very tedious, particularly when intermicellar

interactions are included. In order to simplify the calculations, it is assumed that all

l4 = 1*. As discussed in Section 6.2.1, it was assumed that 1* = Imax. The reason

behind this assumption can be understood by examining Eq. (6.31). To determine

the optimal le value, one should maximize c,(l4), which is equivalent to maximizing

the exponential term in Eq. (6.31). However, when intermicellar interactions are

included, the exponential term, and hence, the optimal 1 value, depend on n. It

was found that Ao and A1 have very little effect on the resulting 1* value. Therefore,

in the case of nonionic surfactants presented in Chapter 5, l* can be determined

based on minimizing gmic (that is, maximizing -gmic). However, for ionic surfactants,

the integral terms in Eq. (6.31) have a strong effect on l*, and therefore, cannot

be neglected. Hence, for the models presented in this chapter, it is assumed that

1 = Imax, in order to reduce computational complexity. As discussed earlier in

Section 6.2.1, this is a reasonable approximation, because lmax is the most favorable

l1 value for most ionic surfactants in a micelle in order to reduce the electrostatic
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repulsions among the charged surfactant heads at the micellar interface.

The main remaining challenge then is to calculate the electrostatic potential at

the micelle or monomer surfaces of charge. This can be accomplished by using the

Poisson-Boltzmann (PB) equation. However, it is first simpler to utilize the analytical

Debye-Hiickel (DH) solution to the PB equation to calculate mic(Rch) (or 'lmon(rh)).

This is done in Section 6.3. Following that, in Section 6.4, a modified Boltzmann

distribution is used to calculate omic(Rch) (or /mon(Th)). An examination of the

advantages and disadvantages of each approach will be undertaken in their respective

sections.

6.3 Debye-Hiickel Approximation

6.3.1 Debye-Hiickel Solution

In order to evaluate the electrostatic potential at the micelle (or monomer) surface

of charge, we begin with the Poisson-Boltzmann equation, given in Eq. (2.29) and

repeated here for completeness[57, 24]

-4oe -z e (r)
V 2 (r)= -47re cjzj exp je(rT (6.32)

f kBT

where cj is the bulk concentration of ions of type j, and zj is their valence. The Debye-

Hiickel model will be developed for both spherical and spherocylindrical micelles, the

most likely micelle shapes for the solution conditions examined here. Because these

shapes are axi-symmetric, the PB equation is written in terms of the radial scalar

variable, r. Note that the summation in Eq. (6.32) is over all the charged solutes

listed in Table 6.1.

Expanding the summation over all the charged solutes listed in Table 6.1, Eq. (6.32)

becomes

V2 = (sat +cs)(-z)exp kBT + Csatz exp kBT
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(-ze (-nze ] (6.33)
+cz exp ] +  Cnnz exp kT 33)

kBT n:no kBT

where no = 4rl ax/3vt is the aggregation number of the minimum-sized spherical

micelle, and the summation is over all the spherocylindrical n-mers.

Because the ion cloud contains ions of different valences, that is, z and nz, solving

the PB equation becomes more difficult than in the symmetric valence case, and the

common analytical approximations discussed in Section 2.3.2 are no longer applicable.

In order to obtain an analytical solution, Eq. (6.33) must be linearized, following the

Debye-Hiickel approach. In other words, it is assumed that the electrostatic potential,

V, in Eq. (6.33) is small enough to enable an expansion of the exponential terms. This

yields

V2 47rez -(Csalt s+ +BT] + Csalt 1 BT

E kBT kBT

+C 1 -ze ) +  ncn 1 - (6.34)
kBT E-no kBT

Recall that c, = cl + -,,no nc,, and M 2 = Cl + rn=no2 2C, where M 2 is the second

moment of the micellar size distribution, which allows for the following simplification

of Eq. (6.34)

8we2 z2  (cs (6.35)2V) 2 Csalt + 2 (6.35)
- kBT 2

Equation (6.35) can be rewritten as

V2 o = 2o (6.36)

where K is the inverse Debye screening length, given by

S8we21
s2 = (6.37)

ekBT
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and I is the ionic strength of the micellar solution, given by

I = (2csalt + c, + M 2) (6.38)
2

The expression for I in Eq. (6.38) can be understood physically as follows. The ionic

strength is the sum of the concentration of all the ions in the solution multiplied by

the square of their valence. calt is multiplied by 2 to account for both the cations

and the anions of the added salt. The second moment corresponds to the square of

the aggregation number, representing the valence of the micelles, multiplied by the

concentration of the micelles. Hence, in Eq. (6.38), c, corresponds to the contribution

of the surfactant counterions, and M 2 corresponds to the contribution of the micelles

and the monomers.

The Debye-Hiickel equation, Eq. (6.36), can be solved for both spherical and

cylindrical geometries, subject to the following boundary conditions.[57, 22] In the

bulk solution (as r -+ c), due to electroneutrality,[57, 116]

V)(r) = 0 (6.39)

At the micelle radius of charge (r = Rch), one has[57, 116]

8/ -4wezo = -4ez (6.40)
r Each

where ach is the surface area per surfactant head at the surface of charge, and is given

by

ach = Rch s- (6.41)

where l, is the length of the surfactant tail (assumed to be equal to 1max), vt is the

volume of the surfactant tail, and S is the shape factor (S = 2 for an infinite cylinder,

and S = 3 for a sphere).

Integrating Eq. (6.36) twice, subject to the boundary conditions given in Eqs. (6.39)

and (6.40), the electrostatic potential at the micelle radius of charge, Reh, is obtained.
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Specifically,

4-7xezReh q
)mic(Rch) , for spheres (6.42)

ic Each (1 + KRch) ERch(1 + KRch)

4fez Ko( Reh) _ 2A Ko( CRh)
aPmic(Rch) = we Ko(rRh) 2 A Ko (Rch) for infinite cylinders

raache Kl(KReh) KRch E K, (Rh)
(6.43)

where q is the charge of the micelle (q = nze), A is the charge per unit length of

the cylindrical micelle, that is, A = q/L, and K and K1 are the zeroth-order and

first-order Modified Bessel Functions of the Second Kind, respectively.

Integrating these expressions for 4mic(Rch) as the micelle charge, q, is increased

from zero to full charge (nze), the work of charging the micelles, W3 , is obtained, as

follows (where we have made use of the geometric relations nach = 47R 2h for spheres,

and nach = 27rRchL for cylinders)

flmic(Rch) dq nskBT , for spheres (6.44)
Jo 2 ( 1 + nReh)

Inze Ko( Reh)

mic(Rch) dq = skBT (RT , for infinite cylinders (6.45)

where s is a dimensionless surface charge density, given by

4xre2 2
s = (6.46)

,EachkBT

Note that the expression for s in Eq. (6.46) is the same as the one given in Eq. (2.38),

with 6i = 0, since there is no need for a Stern layer in the McMillan-Mayer approach.

Since the micelles in this model are finite spherocylinders, the work of charging is

estimated by linearly interpolating between Eq (6.44) for spheres and Eq. (6.45) for

infinite cylinders. This is the same interpolation model that was used in calculating
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gmic for spherocylindrical micelles. Specifically,

Se sphkBTRRch Ko(KReh)

emic(Rh) dq = noRh + (n - no)eykBT ,for spherocylinders
d 2(1 + KReh) K,(rRch)

(6.47)

where Ssph and scyl are the dimensionless surface charge densities in the hemispherical

endcaps and in the cylindrical body of the spherocylindrical micelle, respectively.

Note that in the limiting case of monodisperse spheres, n = no, and Eq. (6.47)

reduces to

f emic(Rch) dq = no Ssp, for spheres
o 2(1 + KRch)

(6.48)

The monomer discharging term, Wa, can also be solved with the Debye-Hiickel

approximation, by assuming that a monomer behaves as an effective spherical ion with

a radius equal to that of the head, rh = (ah/wr) 1/ 2. The electrostatic potential at the

resulting monomer surface of charge can be obtained from Eq. (6.42) by substituting

the appropriate parameters for the monomer, that is,

mon ((h) mon (6.49)
Erh(1 + Krh)

where qmon = ez is the charge of the monomer.

The work involved in discharging n monomers is obtained by using Eq. (6.49) in

Eq. (6.24) and integrating. This yields

- n j mon(rh) dq = -n (1+ h (6.50)
fo i2erh (1+ Krh)

We now have all the information required to evalulate the total work associated

with forming the spherocylindrical micelle. Using Eqs. (6.47) and (6.50) in Eq. (6.31),
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the following expression is obtained for the micellar size distribution

,c cn = (Qwcl) n exp [-Ongmic - (Eo y l  nE y ) - (AIy - nAcyl)] (6.51)

where

Ecyl no( SsphKRch ScylKo(KRh) (652)
= 2(1+ KRh) KI(KRh)

Ec (ez) 2  SylK(KR) (6.53)
1 2ksBTrh(1 + Krh) K,(KRch)

and with 9gic given in Eq. (6.12).

Note that when z = 0, s = 0, and both EC and Ecy' vanish. In that limit,

Eq. (6.51) reduces to the nonionic case given in Eq. (5.22). Equation (6.51) is also

applicable to the case of monodisperse spherical micelles with g'ic = gsph, and A~y" ,

dAy l, EylY', and E yl' replaced by Aph, A ph, E ph, and Eph, respectively. Note that

Eoph and E ph can be obtained from Eqs. (6.52) and (6.53) by neglecting the contri-

bution from the cylindrical region. That is, Eph = (nosSphKRch)/[2(1 + nRch)], and

E"1 = (ez) 2/[2ekBTrh(1 + Krh)].

It is convenient to rewrite Eq. (6.51) in the following manner (compare with

Eq. (5.23)):

c q(6.54)
K

where

q = Qcl exp (-pgo,1 + A~"y + Ey") (6.55)

K = Q, exp (Ono(gsph - gCyg) + AP + Eoyc) (6.56)

When there are no charge effects, EoY' = E yl" = 0, and Eqs. (6.55) and (6.56) reduce

to the nonionic case given in Eqs. (5.25) and (5.24). The moments of the micellar
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size distribution can now be written as

00oo

~ y  = c1 + E nkcn (6.57)
n= no

which is identical to Eq. (5.30). Hence, the same expressions for c and c, given in

Eqs. (5.31) and (5.32) also apply here. That is,

c = M = C C + = c 1 + (6.58)
n=no K1 ) - q)

and

cS = M Y  = C1 + 00 n c +K( q) 2 n ( 1 - q ) + q ]  (6.59)
n=no"K K(l - q)

Note that similar expressions for cn, c, and cs can be derived for monodisperse spheri-

cal micelles by replacing gic with goh, and Acy , Acy , E"yl, and EJ ' with A h , A ph

Eoph, and E ph, respectively.

The micellar size distribution can also be characterized by the number-average

micellar aggregation number, (n),, the weight-average micellar aggregation number,

(n),, and the relative variance, Var, given in Eqs. (5.27)-(5.29) and repeated here

for clarity

(n) n = (6.60)
Mo

(n, M(6.61)

and

Var = M 3M 1 (6.62)
M2

As described in Section 5.4, Eq. (6.54) can be utilized to define a CMC. Specifically,

by taking the natural log of cn in Eq. (6.54), and keeping only terms that are of order
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n, because n > 1, one can show[16, 9] that the CMC (in units of mole fraction) is

given by

CMC exp (3pg 1 - ACy" - Ey') (6.63)

In view of the fact that Acyl and E~yl depend on surfactant concentration, it is neces-

sary to set c, = CMC and solve Eq. (6.63) iteratively. This was fairly straightforward

for the case of nonionic surfactants described in Chapter 5 where E yl = 0. However,

in the case of ionic surfactants, the calculation of E"yl can be fairly complex, causing

the iteration routine to be very time-consuming. Instead, an alternative definition of

the CMC is utilized.[19] Specifically, the CMC was defined to be the surfactant con-

centration at which the monomer concentration is equal to 95% of the total surfactant

concentration (that is, 5% of the surfactant molecules have formed micelles).

6.3.2 Predictions of Micellar Solution Properties

The expressions given in Eqs. (6.58)-(6.62) can now be used to make predictions of

several characteristics associated with the micellar size distribution. A typical ionic

surfactant, sodium dodecyl sulfate (SDS, C 12 H25SO 4 Na), was used as a model sur-

factant to study the effect of electrostatic intermicellar interactions. For example, in

Figure 6-2, predictions of the monomer concentration of SDS are plotted as a function

of total surfactant (SDS) concentration. The dashed line corresponds to predictions

where the ion cloud consists only of monomers and counterions, and the solid line

corresponds to predictions where the micelles are also included in the ion cloud. In

other words, the dashed line predictions neglect micelle/micelle electrostatic interac-

tions (at the ion cloud approximate level of description adopted here), while the solid

line predictions include them. Note that there is no added salt, and hence, the coun-

terions are the Na+ ions dissociated from the surfactant (SDS) molecules. At low

surfactant concentrations, as the surfactant concentration increases, the monomer

concentration increases concomitantly. At a certain surfactant concentration, the

CMC is reached, beyond which micelles begin to form. When micelle/micelle interac-
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Figure 6-2: Predicted monomer concentration, cl, as a function of total surfactant

concentration, cs, for an aqueous solution of SDS at 25'C. Predictions were made

where the ion cloud consists only of monomers and counterions (- - -), and where

the ion cloud also includes micelles (-). The dashed and solid arrows denote the

corresponding predicted CMC values.
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tions are neglected, the monomer concentration levels off to an almost constant value

beyond the CMC (see dashed arrow in Figure 6-2), indicating that all the additional

surfactant goes to form micelles. In contrast, when the micelles are included in the

ion cloud, the CMC is reached at a much lower surfactant concentration (see solid

arrow in Figure 6-2). In addition, the monomer concentration exhibits a sharp de-

crease above the CMC. Including the micelles in the ion cloud results in additional

screening of the electrostatic repulsions among the surfactant heads at the micellar

interface, thus making micelle formation more favorable, thereby resulting in a lower

CMC. The monomer concentration decreases above the CMC because many of the

monomers form micelles once it is more favorable to do so. Note that this decrease in

monomer concentration above the CMC has been observed experimentally, although

typically, a more gradual decrease is observed.[25]

The sharp peak in the monomer concentration at the CMC is due to the fact

that the Debye-Hiickel approximation overestimates the screening ability of all the

charged solutes in the ion cloud, which particularly affects the micelles in the ion

cloud. Specifically, the Boltzmann distribution treats all the ions in the ion cloud

(including other micelles) as point ions. As such, these point ions can approach

very closely to the micelle and to each other. In other words, the micelles present

in the ion cloud are over-screening, resulting in a drastic reduction in the monomer

concentration. On the other hand, there are no micelles in the ion cloud for the

predictions illustrated by the dashed curve in Figure 6-2, and therefore, it does not

exhibit the sharp peak. This point-ion approximation will be further discussed in

Section 6.4.

Since the monomer concentration decreases with total surfactant concentration

beyond the CMC when electrostatic intermicellar interactions are accounted for, the

micelle concentration (c - cl) increases with total surfactant concentration, as illus-

trated in Figure 6-3. The dashed line represents the micelle concentration where the

ion cloud consists only of monomers and counterions, and the solid line represents the

micelle concentration where micelles are also included in the ion cloud. As before,

there is no added salt, and therefore, the counterions are the Na+ ions dissociated
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Figure 6-3: Predicted micelle concentration, (c - cl), as a function of total surfactant
concentration, cs, for an aqueous solution of SDS at 250 C. Predictions were made
where the ion cloud consists only of monomers and counterions (- - -), and where
the ion cloud also includes micelles (-). The dashed and solid arrows denote the
corresponding predicted CMC values.
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from the surfactant molecules. Below the CMC, micelles have not yet formed, and

therefore, the micelle concentration is zero. When electrostatic intermicellar interac-

tions are accounted for (solid line), the micelles contribute to the screening making

it more favorable to form micelles. Hence, the CMC is lower, and micelles form at a

lower surfactant concentration, thus resulting in a higher micelle concentration. Note

that the jump in the micelle concentration at the CMC for predictions including in-

termicellar interactions (solid line) is an artifact of the sharp decrease in the monomer

concentration, due to the point-charge approximation, discussed earlier with regard

to Figure 6-2.

Figures 6-2 and 6-3 illustrate the fact that including intermicellar interactions re-

duces the CMC predictions. This is also the case when salt is added, as illustrated in

Figure 6-4 for SDS at 250C in a NaCl aqueous solution. The dashed line represents

the CMC predictions where the ion cloud consists of monomers, counterions, and

coions only, while the solid line represents CMC predictions where micelles are also

included in the ion cloud. The diamonds denote experimental CMC values. Clearly,

at low salt concentrations, including electrostatic intermicellar interactions results in

much lower CMC predictions. Interestingly, as the salt concentration increases, the

two lines coincide, indicating that the effect of including electrostatic intermicellar

interactions becomes negligible. The salt concentration is much higher than the mi-

celle concentration at this point, and therefore, the salt ions screen the electrostatic

intermicellar interactions.

Intermicellar interactions, both of the electrostatic and hard-core variety, can

also have an effect on the average micelle size. Predictions of the weight-average

micellar aggregation number, (n),, are shown in Figure 6-5 for a 10mM SDS aqueous

NaCl solution as a function of the NaCl concentration. As discussed in Chapter 2,

adding salt to an ionic micellar solution typically causes the spherical micelles to

grow into elongated cylindrical structures. The dotted line in Figure 6-5 represents

predicted (n), values using the Stern layer model described in Chapter 2, which does

not include electrostatic or excluded-volume intermicellar interactions. As discussed

earlier in Section 2.3.2, the Stern layer model strongly underestimates micelle size,
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Figure 6-4: Critical micelle concentration (CMC) as a function of NaCI concentration
for aqueous solutions of SDS at 25'C. CMC predictions were made using a model
where the ion cloud consists only of monomers, counterions, and coions (- - -), and
where the ion cloud also includes micelles (-). The diamonds represent experimental
CMC values.

169



()

E
z
C-

. 70

C)
0)<
.60 

50.

-

40
0.6 0.8 1 1.2 1.4 1.6

Salt Concentration (M)

Figure 6-5: Predicted weight-average micellar aggregation number, (n)", as a func-
tion of NaC1 concentration for SDS in aqueous solution at 250C. Predictions were
made using a model where the ion cloud consists only of monomers, counterions,
and coions (- - -), and where the ion cloud also includes micelles (-). These were
compared against predictions made using the molecular-thermodynamic theory with
a Stern layer presented in Chapter 2 which does not account for either hard-core or
electrostatic intermicellar interactions (. - .).
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resulting in predictions of no growth in this salt concentration region. The dashed

line represents (n), predictions using the model presented in this section with only

monomers, counterions, and salt ions in the ion cloud. In other words, excluded-

volume interactions are present among all the solutes, but electrostatic intermicellar

interactions are neglected in the dashed line predictions.

As with the case for the nonionic surfactants discussed in Chapter 5, excluded-

volume intermicellar interactions encourage micellar growth, as exhibited by a sig-

nificant increase in (n), at about 1.6M NaCl (see the dashed line in Figure 6-5).

Interestingly, including electrostatic intermicellar interactions (by including the mi-

celles in the ion cloud) further encourages micellar growth, as shown by the solid line

which has a sharp increase at approximately 1.5M NaC1. In other words, including

the micelles in the ion cloud provides additional electrostatic screening, which allows

the charged surfactant heads to approach closer to each other at the micellar interface,

leading to micellar growth. Experimental measurements indicate that SDS micelles

exhibit growth at approximately 0.5M NaCl.[9, 72, 73] Although the McMillan-Mayer

approach with the Debye-Hiickel model presented in this section still underestimates

micelle size, it represents a significant improvement over the growth predictions of

the molecular-thermodynamic theory with a Stern layer presented in Chapter 2.

Note that at the higher salt concentrations, including electrostatic intermicellar

interactions has little impact on the CMC predictions (see Figure 6-4), but results

in larger (n), predictions (see Figure 6-5). This is due to the fact that the (n)w

predictions were made at a surfactant concentration of 10mM, which is at least 10

times higher than the CMC of SDS at the higher salt concentrations. Consequently,

more micelles are present in the ion cloud, and can contribute more significantly to

the screening.
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6.4 Modified-Poisson Boltzmann Equation

6.4.1 General Discussion

The Debye-Hiickel approach presented in the previous section is useful due to its an-

alytical nature, and could be implemented for both spherical and cylindrical micellar

geometeries. However, some of the approximations necessary to obtain an analytical

solution were fairly severe. Specifically, the linearization approximation used in the

Debye-Hiickel approach is really valid only for regions of low electrostatic potential

(ezo < kBT). As such, it is not a good approximation for the potentials at the

surface of a micelle, which are typically of the order of 100-200mV, corresponding to

ez4 in the range of 4 to 8 kBT. To accurately calculate this relatively high surface

potential, the full Poisson-Boltzmann equation should be used instead, necessitating

a numerical solution. An additional approximation is that the Boltzmann distribu-

tion assumes that the ions in the ion cloud have no size, that is, they were treated

as point ions. This may be acceptable for small ions such as Na+ or Cl-, but not for

micelles. In other words, the micelles in the ion cloud were treated as point ions of

valence nz. This is a severe approximation that should be improved. In addition, if

the model is to be consistent with the evaluation of the hard-core EXCESS chemical

potentials, the finite volume of all the solutes in the ion cloud should be included.

Therefore, in this section, a modified Boltzmann distribution will be derived which

incorporates the effect of the finite size of the solutes in the ion cloud. This will

be utilized in conjunction with the Poisson equation to numerically solve for the

electrostatic EXCESS chemical potentials of the micelles or the monomers.

Including the finite size of the solutes in the ion cloud represents a complicated

numerical problem which has not yet been fully resolved. For spherocylindrical mi-

celles, the model would have to account for the respective orientation of the micelles

in the ion cloud with respect to the central micelle. Clearly, this is a complicated

electrostatics problem, and will not be addressed here. Instead, the micelles will be

assumed to be monodisperse spheres. The aggregation number, n, of these micelles

is based on the micellar core, n = 47ll/3vt, where l1 is the length of the surfac-
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tant tail (assumed to be equal to Imax), and vt is the volume of the surfactant tail.

Because the aggregation number is fixed, this approach cannot be used to model mi-

cellar growth. Hence, in the analysis which follows, the predictions will be limited to

solution conditions at which the optimal micellar shape is spherical.

6.4.2 Modified Boltzmann Distribution

The Poisson equation can be used to describe the electrostatic potential at the surface

of a micelle. Specifically, for a spherically-symmetric distribution of ions,[57, 68]

V2 (r) = 4 ezjcj(r) (6.64)

where E is the dielectric constant of the solution, e is the electronic charge, zj is the

valence of ion j, and cj(r) is the concentration of ion j at radial position r measured

from the center of the central micelle (or monomer). As mentioned above, the micelles

are assumed to be spherical, and therefore, the Poisson equation is radially symmetric.

The summation in Eq. (6.64) is over all the ions in the solution, including counterions,

coions, monomers, and micelles. The Poisson equation sums over the interactions of

the micelle with each ion in the ion cloud, assuming that the charge of each ion in

the ion cloud is localized at position r.

To evaluate the concentration distribution, cj (r), one can make use of the electro-

chemical equilibrium existing between ions in the bulk and ions close to the central

micelle (or monomer). That is,[117, 118]

pj(r) = Pj (6.65)

where p, (r) is the chemical potential of ion j at radial position r measured from the

center of the central micelle (or monomer), and pj is the chemical potential of ion j in

the bulk. Within the context of the McMillan-Mayer theory, the chemical potential

of solute j is obtained from Eq. (4.14), where Eq. (4.18) is used for the volume of the
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solution. Specifically,

Ij = BT + kBTln[cj] +pX _ - j (6.66)

and

Ilj(r) = pI + ksTln[cj(r)Q,] + pEX(r) - H(r)Qj (6.67)

where cj and cj (r) are the concentrations of ion j in the bulk and at position r,

respectively, and HI and II(r) are the osmotic pressures in the bulk and at position

r, respectively. Note that j = 1 for monomers, n for n-mers, c for counterions, and

co for coions. Because all concentrations are relatively dilute, it has been shown[118]

that the difference in osmotic pressures is negligible, and therefore, it can be assumed

that I1 Hf(r). Using Eqs. (6.66) and (6.67) in Eq. (6.65), the following expression

is obtained for the concentration distribution of ion j in the ion cloud

cj(r) = cj exp P ((EXelec- EXelecr)) + (EX,HC X,HC (r))] (6.68)

In order to calculate the ion distribution given in Eq. (6.68), the various EXCESS

chemical potentials must be evaluated.

The hard-core EXCESS chemical potentials can be obtained from the virial equa-

tion of state, as described in Chapter 5 and in Appendix F. Specifically,

EX 'HC _ PHe
XH = 2kT I BHCCk (6.69)

k

where B'C is the excluded-volume contribution to the second-virial coefficient be-

tween species j and k, and the summation is over all other solutes. Thus, the difference

between the hard-core EXCESS chemical potentials in the bulk and at position r is

given by

EX,HC _ EX,HC(r) = 2kBT ZB HCc (Ck - Ck(r)) (6.70)
k

The electrostatic EXCESS chemical potential difference can be obtained using a
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charging process as described in Section 6.2, resulting in the following expression

Pxe x ) =j bdq - V(r) dq (6.71)

where O(r) is the electrostatic potential at position r and Pb is the electrostatic

potential in the bulk. In other words, the difference in electrostatic EXCESS chemical

potentials is equal to the difference in the work of charging ion j in the bulk and the

work of charging ion j at position r. Due to electroneutrality in the bulk, Ob = 0, and

therefore, the first integral in Eq. (6.71) can be neglected. The electrostatic potential

i(r) is determined by the central micelle (or monomer) being charged, and therefore,

does not vary with qj, the charge on ion j in the ion cloud. Hence, Eq. (6.71) becomes

Pf,elec , xeec(r) = 0 - 4(r) j' dq (6.72)

-= (r)qj (6.73)

The charge on ion j can be written as qj = ezj, and Eq. (6.73) becomes

EX,elec_ EX,elec(r ) =--ezj¢(r) (6.74)

By using Eqs. (6.70) and (6.74) in Eq. (6.68), the following expression is obtained

for the distribution of ion j

(r) = cexp ezj(r) exp 2 B (ck - Ck(r)) (6.75)cj(r) - cj exp kBT Ik

Recall that all micelles, monomers, and ions are assumed to be spherical. As

discussed in Appendix F, the excluded volume between two spheres is given by BH C =

27(rj + rk) 3/3, where rj is the radius of species j and rk is the radius of species k. The

excluded volume between two spheres of the same size can be further simplified in

terms of the volume of the sphere. For example, BHC = 27r(2R 1)3/3 = 4Qs. Similarly,

BHC = 4nQ, and BcH C = 4Qi, where Qi is the volume of a counterion or coion.

Expanding the summation term in Eq. (6.75) over all the solutes involved, including
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monomers, micelles, counterions, and coions, results in the following expressions for

the distributions of each charged solute

c (r) = c e - y(r) exp 8Qs (c1 - cl (r)) + (RI + R)3(cn - cn(r))

+ 7(RI + ri)3 (cc - c(r) + cco - cco(r)) ,for monomers (6.76)

cn(r) = cne - ny(r) exp (R1 + R) 3 (c, - ci(r)) + 8nQ,(c - c,(r))

+ 7(R + ri)3 (c - cc(r) + co - cco(r)) ,for micelles (6.77)

cc(r) cey() exp (R + ri)4(c, - c(r)) + (R + ri)3 (cn - cn(r))

+82i(c, - cc(r) + cco - co(r))] , for counterions (6.78)

47w 4r
co(r) = ccoe - y (r) exp 3 (R1 + ri)3(C1 - cl(r)) + 3 (R + ri)3 (cn - cn(r))

+8Qi(cc - cc(r) + cco - cco(r))] , for coions (6.79)

where y = ezo/ksT is a dimensionless electrostatic potential, written in terms of the

valence of the surfactant molecule, z.

Because the ion concentrations, c3 (r) for j = 1, n, c, co, appear explicitly in the

excluded-volume correction terms in Eqs. (6.76)-(6.79), the four ion distributions

are coupled and would have to be solved simultaneously with the Poisson equation,

making this a difficult computational challenge. Therefore, in order to simplify the

calculations, the traditional Boltzmann distribution is used to describe the ion con-

centrations appearing in the excluded-volume correction terms in Eqs. (6.76)-(6.79).

Specifically, c (r) c exp . Although this is approximate, it is appropriateSpecifically, cj(r) 0-cjexpI-

for use in the excluded-volume terms, because these are only correction terms that

only slightly modify the actual ion distributions. The ion concentration distributions
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then become

= c e - y(r) exp 8Qsc1 (1 - e- Y) + (R1 + R) 3 Cn(1 - e- n y )

+ 7 (Ri + ri)3 (cc(1 - ey) + co(1 - e-))
3

, for monomers

Sce - ny(r) exp [4(R 1 + R) 3 c1 (1 - e -Y) + 8nQsCn(1 - e- n y )

47
+ -(R + ri)3(cc(1 - ey) + C,,(1 - e

3
, for micelles

Sccey(r) exp [ (R1 + ri)3ci (1 - e-Y) +
4w
4 (R
3

+ r) 3cn(1 - e- ny )

+8Qj(cc(1 - ey ) + c,,(1 - e-Y))]

ccoe - y (r) exp [3 (Ri + ri)3c(1 -

+8Ri(cc(1 - ey ) + cco(1 - e-))]

for counterions (6.82)

4 + (R + Cn
e-Y) + , (R + ri)3C(1 - 6-ny)

, for coions (6.83)

The concentrations in Eqs. (6.80)-(6.83) can now be substituted in the Poisson

Equation, Eq. (6.64), as follows

=2 T(r)=- (e) c (r)+c(r) + Cco(r) - Cc(r)] (6.84)

Using Eqs. (6.80)-(6.83) in Eq. (6.84) results in the following modified PB equation

V 2 T(r) - (z) c= ,B(y)e -Y + ncBn (y) - n y - ccBi(y)ey + ccBi(y)e-Y ]

(6.85)

where the Bj(y) coefficients are the excluded-volume correction factors, given by

Bi(y) = exp [8Qsci(1 - e- ) + -3 (R 1 + R) 3cn(1 - e- n y )

4 R +
+--(R1 + ri)3 (Cc(1 --

3
ey ) + cco(1 - e-y))]
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B,(y) = exp (R1 + R) 3 c1 (1 - e-Y) + 8nsQc,(1 - e-"Y)

47
+ -- (R + ri)3(cc(1 - ey) + Cco(1 - e-Y))] (6.87)

47 47
Bi(y) = exp 3 (R 1 + ri)3Cl(1 - e- y) + (R + ri)3 c(l - e-ny)

+8Q(c,(1 - ey) + cco(1 - e-))] (6.88)

Note that because the counterions and the coions were assumed to have the same size,

they give rise to the same excluded-volume correction factor, that is, B, = Bco = Bi.

The modified PB equation, Eq. (6.85), can now be used to solve for bmic and /mon,

which, in turn, can be used in Eq. (6.31) to calculate the micelle size distribution.

The boundary conditions for this problem were given in Eqs. (6.39) and (6.40). a

standard finite element method[119] is used to solve Eq. (6.85). In this method,

Eq. (6.85) is replaced with a finite difference equation which is solved over a mesh

of points covering the entire range of the problem. In order to use this method, the

range of the problem must be transformed from an infinite range (from r = Rch to

r -+ oo) to a finite range (from w = 0 to w = 1/Rch) by using the transformation

w = 1/lr. In this case, Eq. (6.85) becomes

4 2 y - [C1Bl(y)e -Y + ncnBn(y)e - n y - ccBi(y)eY + coBi (y)e - ] (6.89)
1w 2  [Cl + n2Cn + Cco + Cc]

Recall that y = ez/kBT is the dimensionless electrostatic potential. The value of y

at each point on the mesh is gradually adjusted until the entire mesh is brought to

close agreement with the finite difference equation and with each boundary condition.

This solution method is used to solve for both Omic(Rch) and 4mon(rh), which are then

used in conjunction with Eq. (6.31) to calculate various characteristics of the micellar

size distribution.

Treating the solutes in the ion cloud as point ions (R = R1 = rh = 0) results

in B 1 = Bn = Bi = 1. In this limit, Eq. (6.85) becomes the traditional Poisson-
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Boltzmann equation, that is,

V 2 (r) 4rez)[C-Y + cn-y - ce + c,,e-Y] (6.90)

Equation (6.90) is the same as Eq. (6.32), where y = ez4/ksT, and the summation

has been carried out over all the charged solutes.

6.4.3 Predictions of Micellar Solution Properties

The modified Poisson-Boltzmann equation, Eq. (6.85), was used to calculate several

characteristics of the micellar size distribution for the same model ionic surfactant

used earlier, SDS. Figure 6-6 illustrates predictions of the monomer concentration for

SDS as a function of total surfactant concentration for the case where the ion cloud

consists of monomers and counterions only (dashed line), and for the case where

the ion cloud also includes other micelles (solid line). For both cases, at low sur-

factant concentrations, below the CMC (see the dashed and solid lines in Figure 6-

6), as the surfactant concentration increases, the monomer concentration increases

concomitantly. When intermicellar electrostatic interactions are neglected (dashed

line), as the surfactant concentration increases further, micelles begin to form, and

the monomer concentration levels out to a constant value (at higher surfactant con-

centrations not shown in this scale). In other words, all the additional surfactant

molecules form micelles. In contrast, when micelles are included in the ion cloud

(solid line), once micelles begin to form, as the surfactant concentration increases,

there is a marked decrease in the monomer concentration. This is due to the ad-

ditional screening provided by the micelles in the ion cloud, thus making it more

favorable to form micelles, and inducing more monomers to aggregate into micelles.

This behavior is qualitatively very similar to that found with the Debye-Hiickel ap-

proximation (compare with Fig. 6-2). However, when micelles are included in the ion

cloud in the modified PB solution, the decrease in monomer concentration above the

CMC is not as sharp as it is in the context of the DH solution. Because the finite size

of the micelles is accounted for in the modified PB solution, the screening provided
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Figure 6-6: Predicted monomer concentration, cl, as a function of total surfactant
concentration, cs, for an aqueous solution of SDS at 250C. Predictions were made
using a model where the ion cloud consists only of monomers and counterions (- -
-), and where the ion cloud also includes micelles (-). The dashed and solid arrows
denote the corresponding predicted CMC values.
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by the micelles in the ion cloud is more realistic. In addition, the electrostatic poten-

tial, 4, is not linearized, as it is in the DH solution, and therefore, the modified PB

equation provides a more accurate representation of V'. Both of these effects result in

a much smoother decrease in monomer concentration.

The predicted decrease in monomer concentration leads to a corresponding in-

crease in micelle concentration, as illustrated in Figure 6-7. The dashed line repre-

sents predictions made for the case where the ion cloud consists of monomers and

counterions only, and the solid line represents predictions made where micelles are

also included in the ion cloud. Clearly, including electrostatic intermicellar interac-

tions results in an increase in the micelle concentration as micelle formation becomes

more favorable. Again, this is the same qualitative behavior found with the DH ap-

proximation (compare with Figure 6-3). In addition, as the surfactant concentration

increases further, more micelles are formed, resulting in even more screening. At these

high surfactant concentrations, the effect of intermicellar interactions becomes even

more pronounced, as indicated by the widening of the gap between the solid and the

dashed lines.

Note that the CMC value predicted where the ion cloud contains only monomers

and counterions (6.4mM, dashed arrow in Figure 6-6) is lower than that predicted

using the DH model (11.3mM, dashed arrow in Figure 6-2). Interestingly, when

micelles are also included in the ion cloud, the difference in CMC predictions is quite

small (4.4mM for the modified PB model, solid arrow in Figure 6-6, and 4.2mM for

the DH model, solid arrow in Figure 6-2). The additional screening provided by

including the micelles in the ion cloud reduces the CMC considerably, regardless of

the model used to calculate it. However, at higher surfactant concentrations, when

more micelles are present, including the finite size of the micelles in the ion cloud

will have a significant impact on the resulting micellar size distribution predictions

(compare Figure 6-7 with Figure 6-3).

To compare the CMC predictions with experimental CMC values, the CMC was

also predicted for SDS in aqueous NaCl solutions at 25'C, as illustrated in Fig. 6-

8. The dashed line represents CMC predictions where only monomers, counterions,
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Figure 6-7: Predicted micelle concentration, c - cl, as a function of total surfactant
concentration, cs, for an aqueous solution of SDS at 250 C. Predictions were made
using a model where the ion cloud consists only of monomers and counterions (- -
-), and where the ion cloud also includes micelles (-). The dashed and solid arrows
denote the corresponding predicted CMC values.
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Figure 6-8: Critical micelle concentration (CMC) as a function of NaC1 concentration
for aqueous solutions of SDS at 25°C. CMC predictions were made using a model
where the ion cloud consists only of monomers, counterions, and coions (- - -), and
where the ion cloud also includes micelles (-).The diamonds represent experimental
CMC values.
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and coions are included in the ion cloud, and the solid line represents CMC pre-

dictions where micelles are also included in the ion cloud. The diamonds represent

experimental CMC values. At very low salt concentrations, including intermicellar

interactions clearly affects the CMC predictions, lowering the CMC by almost 2mM.

Again, including the micelles in the ion cloud provides more screening, thus making it

more favorable to form micelles, and hence reducing the CMC. The predictions which

include the electrostatic intermicellar interactions underestimate the CMC when com-

pared to the experimental measurements. Even so, this analysis has been helpful in

assessing the impact of the electrostatic intermicellar interactions. Interestingly, as

the salt concentration increases, the salt molecules dominate the screening, and the

difference between the solid line and the dashed line diminishes. Clearly, at higher

salt concentrations, it makes little difference whether the micelles are included in the

ion cloud or not. Note, however, that the concentration of micelles at the CMC is

very low. At higher surfactant concentrations, the concentration of micelles is much

higher, and the effect of including intermicellar interactions, even in salt solutions,

may become important.

To test the effect of the excluded-volume corrections, predictions were also made

using the full PB equation solved numerically, with B 1 = B, = Bi = 0. It was

found that neglecting the excluded-volume corrections results in slightly lower CMC

predictions. When the solutes in the ion cloud (including micelles) have no volume,

they can approach infinitely close to each other and to the central micelle, thereby

screening more effectively than when they have a finite size. Consequently, micelle

formation becomes more favorable, resulting in a lower CMC.

The modified PB equation can only be applied to spherical micelles, and therefore,

is unable to predict micellar growth. Therefore, it is important to use both the DH

model and the modified PB model. For spherical micelles, the modified PB approach

is more accurate, because it does not linearize the potential, and also treats the finite

volume of the solutes in the ion cloud. On the other hand, the DH model is more

versatile, in that it can also treat spherocylindrical micelles. Clearly, what is needed

in the future is an accurate model of the potential which can also be implemented
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in the case of elongated micelles. In any case, the two approaches presented in this

chapter represent a useful "first step" in the modeling of electrostatic intermicellar

interactions.

6.5 Conclusions

In this chapter, we have implemented the general statistical-thermodynamic frame-

work developed in Chapter 4 in the case of ionic micellar solutions. Due to their long

range, electrostatic intermicellar interactions are more difficult to model than the

shorter-ranged attractive and excluded-volume interactions considered in Chapter 5

in the case of nonionic micellar solutions. Several different approaches to modeling

electrostatic intermicellar interactions were discussed. Indeed, due to its versatility,

the statistical-thermodynamic framework developed in Chapter 4 is well-suited to

testing various models. The Debye-Hiickel approximation and a modified Poisson-

Boltzmann equation were used to model the electrostatic potential around the micel-

lar surface. The modified PB equation provides a more accurate description because

it does not linearize the potential and it includes the finite size of the charged so-

lutes. On the other hand, the Debye-Hiickel approximation is more versatile because

it is analytical and can be used to model elongated micelles. The CMC's predicted

by both models when no salt is present underestimate the experimentally-measured

CMC values. In fact, the molecular-thermodynamic framework with the Stern layer

presented in Chapter 2 actually predicts more accurate CMC's. However, including

the electrostatic intermicellar interactions significantly improves the predictions of mi-

celle size, which was underpredicted in the context of the molecular-thermodynamic

theory presented in Chapter 2. In conclusion, for convenient, fast predictions, the

molecular-thermodynamic theory presented in Chapter 2 is useful. However, the

McMillan-Mayer approach presented in this chapter is more accurate for predicting

micellar solution properties above the CMC where intermicellar interactions may be-

come significant.
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Chapter 7

Investigations of Micelle Shape

and Size in Aqueous Solutions of

Dodecyl Ethoxy Sulfates

7.1 Introduction

The predictions presented in the preceding chapters were compared against exper-

imental data from various sources found in the literature. As such, there may be

some variation in the purity of the surfactants investigated which could affect the

measured micellar properties. In addition, different experimental methods may yield

slightly different values for the same micellar property. In view of these limitations,

it would be valuable to obtain a set of consistent, reliable experimental data for

a family of surfactants of high purity. With this in mind, an investigation into

the micellar properties of dodecyl ethoxy sulfates was conducted and is described

in this chapter. Alkyl ethoxy sulfates represent an important and interesting fam-

ily of surfactants, both scientifically and commercially.[120, 121] Due to the unique

chemical structure of their hydrophilic heads, these surfactants exhibit a behavior

which is intermediate between that of nonionic and ionic surfactants. Specifically,

the head consists of a variable number of non-charged ethoxy (EO) groups capped
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by a charged sulfate group, while the tail consists of a straight-chain hydrocarbon

(that is, C12H25(OCH 2CH 2)nOSO 3 Na, where n is the number of EO groups). The

lengths of both the head and the tail groups can be varied in order to tune the

hydrophilic/hydrophobic character of these surfactants to achieve a specific desired

behavior.

By varying the number of EO groups in the surfactant head, one may study the

interplay of steric and electrostatic head/head interactions at the micelle surface. In

particular, when the number of EO groups is small, the presence of the charged sul-

fate groups results in strong electrostatic interactions among the surfactant heads.

Increasing the number of EO groups in the head displaces the charged sulfate group

from the micelle surface, thus diluting its effect. In addition, because the EO groups

are typically hydrated, they can be quite bulky. Accordingly, the overall effect of

increasing the number of EO groups is to both weaken the electrostatic interactions

and enhance the steric interactions among the surfactant heads. This interesting in-

terplay between steric and electrostatic head/head interactions at the micelle surface

is ultimately responsible for the resulting micelle shape and size. Typically, ionic

surfactants form spherical micelles in aqueous solution in order to reduce the electro-

static repulsions among the charged heads at the micelle surface.[9, 72] As discussed

in Chapter 2, it has been shown[9, 72, 122, 123, 49, 124] that the addition of salt

screens these electrostatic repulsions, which results in a reduction of the critical mi-

celle concentration (CMC) and allows the charged spherical micelles to grow into

more elongated, rod-like structures. This "sphere-to-rod" transition has been well-

documented in the case of sodium dodecyl sulfate micelles,[9, 72] but has not been

thoroughly investigated in the case of alkyl ethoxy sulfate micelles.

Although alkyl ethoxy sulfates represent the second most important group of

anionic sufactants commercially,[121] relatively few systematic experimental investi-

gations have been conducted on this interesting class of surfactants. Most of the work

to date has involved primarily surface tension and CMC measurements,[120, 125, 126]

as well as Krafft point studies.[127] Relatively little effort has been devoted to a sys-

tematic investigation of the shape and size of micelles formed by alkyl ethoxy sulfates
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in aqueous solution. Early work indicated that the micelles of dodecyl ethoxy sulfate

surfactants containing 1 to 10 EO groups form small, spherical micelles in 0.1M NaCl

aqueous solution.[128] To quantitatively determine the effect of salt concentration on

micelle size, a thorough light scattering study was conducted[129] on dodecyl ethoxy

sulfates with one, two, and four EO groups. However, this study focused only on

the effect of intermicellar interactions, and assumed that micellar growth was negli-

gible under the conditions examined. Recent investigations of micellar growth have

shown[130, 131] that dodecyl ethoxy sulfate micelles containing two EO groups ex-

hibit a distinct sphere-to-rod transition in the presence of multivalent counterions,

such as Ca 2+ and A13+. However, this investigation was conducted at a relatively low

surfactant concentration, and hence, intermicellar interactions were assumed to be

negligible.

In the study described in this chapter, previous work is extended by introducing

three new elements. First, the quantitative analysis incorporates both intermicellar

interactions and micellar growth. Second, two independent experimental methods

(light scattering and viscosity) are utilized in order to verify the effect of salt concen-

tration and temperature on micelle shape and size. Third, four different shape models

(spheres, prolate ellipsoids, oblate ellipsoids, and spherocylinders) are examined and

compared in order to determine the relative likelihood of one-dimensional versus two-

dimensional growth. These four micellar shapes were considered because they span a

plausible range of possible shapes for which the micelle average hydrodynamic radius

can be quantitatively deduced.

A serious challenge associated with studying alkyl ethoxy sulfates involves obtain-

ing pure samples. In particular, most synthesis procedures result in surfactants that

contain a distribution of EO groups in the head, as well as a distribution of hydrocar-

bon tail lengths. This polydispersity can have a significant effect on the observed solu-

tion properties of the surfactants.[132, 133] Unless the samples are well-characterized,

this heterogeneity may cause ambiguities in the analysis of the experimental results.

In order to minimize this potential problem, pure, monodisperse samples of alkyl

ethoxy sulfates were synthesized by Witco, Inc. specifically for the studies described

188



in this chapter. The surfactants investigated consist of a dodecyl (C12H 25) tail and

1, 2, 4, or 6 EO groups. Hereafter, these dodecyl ethoxy sulfates will be abbreviated

as E1S for one EO group, E2S for two EO groups, and so on.

Interestingly, one of the surfactants examined, E1S, was observed to phase sepa-

rate at high salt (NaC1) concentrations. Phase separation of aqueous ionic micellar

solutions is fairly unusual, typically only occurring at very high salt concentrations,

such as 4-5M salt.[134, 135] The phase separation of the aqueous E1S micellar solu-

tion is more similar to the coacervation typically observed in polyelectrolyte solutions

or surfactant/polymer mixtures.[136, 137] In coacervation, the micelle-rich phase is

very concentrated. It consists of hydrated elongated micelles which align with each

other in some kind of long-range order.[136] Although a thorough investigation of

this coacervation phenomenon is beyond the scope of this thesis, some cloud-point

measurements were conducted to map out the coexistence curve (see Section 7.4.2).

The remainder of this chapter is organized as follows. In Section 7.2, the materials

and experimental methods are described. In Section 7.3, the theoretical aspects

associated with the interpretation of the light scattering and viscosity measurements

are presented. In Section 7.4, the quantitative analysis of the light scattering data

is explained, followed by a thorough discussion of the light scattering and viscosity

experimental results. Finally, concluding remarks are presented in Section 7.5.

7.2 Materials and Methods

7.2.1 Sample Preparation

The dodecyl ethoxy sulfates investigated were synthesized by Witco, Inc. specifically

for this study and used without further purification. The starting materials were

monodisperse dodecyl poly(ethylene oxide) surfactants of a very high purity obtained

from Nikko Chemicals, Tokyo. These surfactants were then sulfated and analyzed for

composition by Witco, Inc. It was found that the final material was 92-99% sulfated

and contained approximately 3-6% residual sodium sulfate salts. However, because a
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relatively large amount of NaCl was added to all the solutions studied, the residual

sodium sulfate salt should have a negligible effect on the micellar solution properties.

Aqueous surfactant solutions were prepared using deionized water which was futher

purified using a Milli-Q ion-exchange system. These solutions were stored at 40C

and utilized within 48 hours. The sodium chloride used was of the analytical reagent

grade from Mallinckrodt, Paris, KY. Prior to use, the salt was roasted at 4500 C for

12 hours to remove organic impurities.

Before use, all glassware were immersed in a 1N NaOH-ethanol bath for at least

8 hours, then in a 1N nitric acid bath for another 8 hours, followed by a thorough

rinsing with Milli-Q water. The glassware were then dried in an oven.

7.2.2 Dynamic Light Scattering

Dynamic (quasielastic) light scattering measurements were performed at a scattering

angle 0 = 90', using an apparatus consisting of a Lexel model 95 2W argon laser

(A = 514nm), a goniometer, and an autocorrelator (model BI-9000AT, Brookhaven

Instruments, Holtsville, NY). The temperature of the samples was stabilized to within

±0.1'C by a circulating ethylene glycol bath. To minimize interference from dust, the

samples were filtered through a 0.2pm filter three times into a scattering cell that had

been rinsed with acetone. The collective diffusion coefficient, D., was extracted from

the measured autocorrelation function using the cumulants analysis method[9, 138]

with a quadratic fit. The average hydrodynamic radius of the micelles, RH, was

deduced from the measured collective diffusion coefficient by accounting for the effect

of intermicellar interactions (see Section 7.3.1).

7.2.3 Static Light Scattering

In the static light scattering measurements, the total scattered light intensity was

measured at 0 = 900 using the same apparatus that was described above. The

intensity of the scattered light is used to calculate the Rayleigh ratio of the micellar

solution, 1, by comparing with the scattering from a reference liquid having a known

190



Rayleigh ratio. Specifically,[139]

R = rI Re ( - Ro (7.1)
(Iref (0 )) nref

where (1(0)) is the average scattered light intensity of the micellar solution, (Irf(0 ))

is the average scattered light intensity of the reference liquid (toluene), lzref is the

Rayleigh ratio of toluene at the appropriate experimental conditions, n is the refrac-

tive index of the micellar solution, nref is the refractive index of toluene, and IRo

is the Rayleigh ratio of the aqueous salt solution in the absence of micelles. Values

of Jref and nef are available in the literature.[140, 141, 142] Note that, in gen-

eral, the Rayleigh ratio depends on the angle of the scattered light. However, for all

the measurements described in this chapter, the micelles are much smaller than the

wavelength of the scattered light, and therefore, the dependence of 1? on 0 can be

neglected.

The Rayleigh ratio can be utilized to obtain the apparent molecular weight of the

micelles, Mapp, as follows[139, 143, 144]

Kc 1 OH 1
_ - (7.2)

1Z - Ro kBT Oc Mapp

where c is the concentration of surfactant in g/cm3 , (O1/Oc) is the inverse osmotic

compressibility, kB is the Boltzmann constant, T is the absolute temperature, and K

is an optical constant, given by[139, 143]

47n 2( On2
K = 00T (7.3)

NAA 4

where (On/Oc)T is the refractive index increment, A (=514nm) is the wavelength of

the incident light, and NA is Avogadro's number. The average micellar aggregation

number was obtained from the apparent molecular weight by accounting for the effect

of intermicellar interactions, as discussed in Section 7.3.1.

The refractive index increment, (On/&c)T, was measured using an ABBE Refrac-
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tometer (American Optical Corporation, Buffalo, NY) connected to a water bath

having a ±0.01°C temperature stability (see Tables 7.1 and 7.2 for a list of the mea-

sured (On/Oc)T values).

Table 7.1: The refractive index increment, (anla/C)T, and the solvent viscosity, r0o,
for the various NaCl concentrations examined at a temperature of 250C. The blank
entries correspond to solution conditions which were not examined for that surfactant.

Table 7.2: The refractive index increment, (On/OC)T, and the solvent viscosity, 7o,
at the various temperatures examined at a NaCl concentration of 0.6M NaC1. The
blank entries correspond to solution conditions which were not examined for that
surfactant.
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NaCl [Mc] (2n),[C3/3g] (2n) [cmn/lg 0 [cP]

for E1S for E2S

0.1 0.167 0.148 0.900
0.2 0.184 0.154 0.909
0.3 0.177 0.158 0.917
0.4 0.198 0.150 0.925
0.5 - 0.157 0.933
0.6 - 0.158 0.941

Temperature [0C] ( )T [cm 3/g] (-9)T[cm 3 /g] 7o [cP]
for E4S for E6S

25 0.115 0.131 0.941
34 0.117 0.124 0.782
38 - 0.121 0.721
40 0.119 0.119 0.690
44 0.120 0.116 0.646
45 0.120 0.115 0.634
46 0.120 - 0.623



7.2.4 Viscosity

The kinematic viscosities of the aqueous surfactant solutions were measured using

Cannon-Ubbelohde capillary viscometers immersed in a water bath having a temper-

ature stability of ±0.01°C. The viscometer containing the sample was immersed in

the water bath for at least 20 minutes prior to taking a measurement, to allow the

surfactant solution to come to thermal equilibrium. Dilutions (by volume) were pre-

pared directly in the viscometer. The time it takes for the sample to flow through the

capillary was measured to the nearest 0.1s, and was then converted to kinematic vis-

cosity values using a calibration constant. The viscosity of the surfactant solution was

obtained by multiplying the kinematic viscosity by the density of the solution.[145]

To avoid the need for kinetic energy corrections, flow times were kept above 200s

by varying the diameters of the capillaries of the viscometers used. The viscosity of

each sample was measured at least four times, until the standard deviation among

the readings was less than 2%.

7.2.5 Cloud-Point Measurements

The coexistence curve for the liquid-liquid phase separation of EIS in a 0.9M NaCl

aqueous solution was determined according to the cloud-point method, which consists

of visually identifying the temperature at which solutions of known ElS concentra-

tion became cloudy when the temperature is lowered. Each sample was placed in a

transparent water bath whose temperature was controlled to within 0.01'C. Initially,

each sample was heated to a high temperature so that it exhibited a single, clear,

homogeneous phase. The temperature was then gradually lowered until the solution

started to cloud at a temperature Tcloud. Note that at each step the sample was first

stirred thoroughly, with a magnetic stirrer, to ensure temperature homogeneity, and

subsequently observed for any signs of cloudiness with the stirrer turned off. Over the

range of surfactant concentrations investigated, Tloud was found to be in the range

50-60'C. At this high temperature, E1S was unstable, making it impossible to obtain

reproducible results. Indeed, hydrolysis of ElS was detected with pH test papers.
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Accordingly, to improve accuracy, many solutions over a wide range of surfactant

concentrations (from 2mM to 160mM) were prepared and tested only once.

7.3 Theory

7.3.1 Light Scattering

As discussed in Section 7.2.3, the apparent micellar molecular weight can be deter-

mined by measuring the Rayleigh ratio of the micellar solution. The apparent micellar

molecular weight, Mapp, can be converted to the actual average micellar molecular

weight through the use of the structure factor, which accounts for the effect of in-

termicellar interactions. The weight-average micellar aggregation number, Nagg, can

then be obtained from the average micellar molecular weight, as follows,[43, 146]

N = pp (7.4)
agg ms S(q -+ 0)

where m, is the surfactant molecular weight, q = (47rns/A) sin(0/2) is the wave vector,

where n, is the refractive index of the solvent and 0 is the scattering angle, and

S(q -+ 0) is the structure factor in the limit of zero scattering angle (0 = 0 or q -- 0).

Equation (7.4) is valid for micelles which are much smaller than the wavelength of

the light scattered. The effective diameter of the micelles studied in this chapter is

in the range of 50-300A, which is well within this regime (A = 514nm). Although

the measurements were conducted at 0 = 900, because the micelles are much smaller

than the wavelength of the light scattered, the structure factor is independent of the

scattering angle. Therefore, S(O = 90') = S(O = 00)

In order to model the effect of intermicellar interactions, the micelles are assumed

to be spheres, even though, in some cases, the micelles exhibit growth into elongated

structures. This assumption reflects the current lack of an appropriate theory to

model the effect of intermicellar interactions for asymmetric particles, such as rods,

for which the relative orientation of the interacting particles becomes important.[43]

Hence, in the analysis of intermicellar interactions which follows, the elongated mi-
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celles are treated as effective spheres having an equivalent volume. Specifically, the

radius of these effective spheres is given by R = [3vsNagg/(47)] 1/3 , where v8 is the

volume of a surfactant molecule. One should keep in mind, however, that as the

micelles become more elongated, treating them as effective spheres may eventually

lead to some quantitative inaccuracy in the treatment of the effect of intermicellar

interactions, as well as in the deduced Nagg values. The impact of the spherical as-

sumption on the quantitative interpretation of the light scattering results is further

discussed in Section 7.4.

In general, for a solution containing spherical micelles which is relatively dilute

so that only pairwise intermicellar interactions need to be considered, the structure

factor in the limit q -4 0 is given by[146, 147, 148]

S(q -+ 0) = 1 + 32rR3Pj x2 (g(x) - 1) dx (7.5)

where p is the micelle number density, g(x) is the micelle pair correlation function,

and x = r/2R is a dimensionless distance, where r is the distance between the centers

of two interacting spherical micelles, and R is the micelle radius. The micelle number

density, p, is given by

(cs -cj) c

P gg Ngg

S3v(7.6)

4irR3

where c, is the concentration (number density) of surfactant molecules, and cl is the

concentration (number density) of surfactant monomers. Note that for the micellar

solutions examined in this chapter, c, - 3 x 10-5A - 3 > c1 _ 6 x 10-7A - 3 , and

therefore, in Eq. (7.6), the surfactant monomer concentration can be neglected.

Using Eq. (7.6) in Eq. (7.5), one obtains

S(0) = 1 + 24vc x 2(g(x) - 1) dx (7.7)
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where S(O) is a shorthand notation for S(q -+ 0).

Quasielastic (dynamic) light scattering measures the collective micellar diffusion

coefficient, DC, which includes the effect of intermicellar interactions. In other words,

when intermicellar interactions are present, the movement of one micelle is affected

by the presence of neighboring micelles, which may increase or decrease its overall

diffusion. D, can be related to the individual micellar diffusion coefficient, Do, as

follows[146, 148]
Do

D = [1 + H(0)] (7.8)
S(O)

where H(0) is the perturbation coefficient due to hydrodynamic interactions in the

limit of low scattering angle (q -+ 0).

The hydrodynamic perturbation coefficient, H(0), can be obtained from the hy-

drodynamic tensor, describing the flow of the solvent around the micelles. As already

stressed, the micellar solutions studied here are relatively dilute (the surfactant con-

centration is approximately 3 x 10-5A- 3), and therefore, the Oseen approximation

can be used to estimate H(0). Specifically,[146, 148]

H(0) = 16rR3p f x(g(x) - 1)dx (7.9)

More sophisticated expressions for H(0) are available, such as those due to Felder-

hof[148] or Batchelor[43], which account for the flow field at a higher level of detail.

For comparison, the Felderhof expression for H(0) was also examined. It was deter-

mined that the difference between using Eq. (7.9) and the more complicated Felder-

hof expression is negligible for the dilute micellar solutions considered here. Using

Eq. (7.6) for p in Eq. (7.9) yields

H(O) = 12vc, j x(g(x) - 1)dx (7.10)

The next step is to identify an appropriate expression for the micelle pair cor-

relation function, g(x), to be used in Eqs. (7.7) and (7.10). The function g(x) can

be obtained from the intermicellar interaction potential through an appropriate re-
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lationship. Several approximations are available in the literature which establish

this relationship, including the MSA[149, 150] and the HNC[146] approximations.

However, in view of the dilute nature of the micellar solutions considered here, the

relatively simple dilute gas approximation for g(x) is appropriate. It is noteworthy

that the dilute gas approximation has the added advantage of being analytical, which

greatly reduces computational times. Specifically, the dilute gas expansion for g(x)

is given by[146, 148]

0 , for x < 1
gx = (7.11)

exp ( kT , for x > 1

where V(x) is the interaction potential between two spherical micelles of radius R

whose centers are separated by a distance r, with x = r/2R. Note that the region

r < 2R (or x < 1) represents the hard-core interaction region from which the micelles

are excluded, and therefore, g(r) = 0 in Eq. (7.11). The micelles are in contact at

r = 2R (or x = 1), and for r > 2R (or x > 1), the micelles interact with a potential

V(x). Note that, for comparison, the HNC approximation[146] for g(r) was also used

to analyze some of the light scattering data, and it was found that the difference

between the use of the HNC and the dilute gas approximations was negligible.

Use of Eq. (7.11) in Eqs. (7.7) and (7.10) results in the following expressions for

S(0) and H(O)

S(0) = 1 - vc [8 +24 X2 j ( - eV()) dx] (7.12)

H(0) = -vcS [6 + 12 x (i - e-V(x)) dx] (7.13)

where ~ = 1/kBT. Note that the 8 in Eq. (7.12) and the 6 in Eq. (7.13) result from

integrating over the region 0 < x < 1, where g(x) = 0.

For the charged dodecyl ethoxy sulfate micelles considered in this study, there are

three main types of intermicellar interactions that need to be considered: (i) hard-
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core (repulsive), (ii) electrostatic (repulsive), and (iii) van der Waals (attractive).

As discussed above, the hard-core interactions were already accounted for in the

integration over the region 0 < x < 1. The electrostatic and attractive interactions

are modeled using the classical DLVO theory,[67] which provides a well-accepted

description of interparticle interactions in the colloidal regime. Specifically, the DLVO

interaction potential, V(x), for x > 1, is given by[43, 67, 149, 150, 151]

V(x) = Veiec(X) + Vatt(x) (7.14)

where Veiec(x) is a repulsive Coulombic contribution, and Vatt(x) is an attractive

London-van der Waals contribution.

The repulsive Coulombic potential between two charged spheres was calculated

in two different limits by Verwey and Overbeek.[67] These limits depend on the ratio

of the micelle radius, R, to the Debye screening length, K-1 , a well-known measure

of the ion cloud thickness. As discussed in Section 2.3.2, the Debye screening length

depends on the solution ionic strength: the higher the ionic strength, the lower the

value of K-1. Specifically,[67, 151]

-1 4e2 2]-(1/2)
K 1 = w ciz] (7.15)

where e is the electronic charge, c is the dielectric constant of the solvent, ci is the

concentration of charged species i, and zi is the valence of species i. For the systems

examined in this chapter, the salt concentration is much greater than the concentra-

tion of the charged surfactant monomers. Specifically, the salt concentration, Csalt,

is 0.1-1.0M, while the monomer concentration, cl, is less than 0.001M. Hence, the

contribution of the charged surfactant monomers to K-1 can be neglected. Accord-

ingly, in Eq. (7.15), _i c~iz9 , 2CsaltZ2 , where z is the valence of the salt (assuming a

symmetric salt, such as NaC1).

As stated above, K-1 has units of length (see Eq. (7.15)), and can be thought of as

a measure of the thickness of the ion cloud surrounding the micelle. When the ionic
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strength of the solution is low and K-1 is large, the micelle radius is much smaller

than the ion cloud thickness (R < --1 or KR < 1), and the micelles can be treated as

interacting point charges.[67, 151] On the other hand, when the ionic strength of the

solution is high and ,-1 is low, the micelle radius is much larger than the ion cloud

thickness (R > K-1 or KR > 1), and the spherical shape of the charged surface must

be taken into account. This is, in fact, the case for the surfactant systems examined

in this chapter ( KR ranges from 3 - 12). The electrostatic potential in this regime

is given by[67, 151]

Veec() = n [1 + e -2 R(x1)] , for KR >> 1 (7.16)

where V0 is the electrostatic potential at the surface of the micelle, given by[67]

00 = 2kBT sinh-[2 e2 ] (7.17)
e 2KR2EkBT

where zm is the valence of the micelle. Because only a fraction of the surfactant

molecules dissociate, the valence of the micelle is related to the average micelle ag-

gregation number through the fractional charge, a, that is, zm = aNgg.1

The attractive London-van der Waals contribution to the DLVO potential for two

spheres of equal radius R is given by[43, 67, 151]

-A 1 1 x2-1]
Vat() = -+ + 2 In (7.18)

Vatt 2 -1 2  2

where A is the Hamaker constant representing the magnitude of the attractive inter-

actions. Equation (7.18) indicates that as x = r/2R -+ 1 (r - 2R), Vatt approaches

negative infinity. Physically, this reflects the very large negative (attractive) inter-

action exhibited by micelles in direct contact with each other due to the relatively

short range of the potential. However, mathematically, when Vatt approaches nega-

tive infinity, the integrals in Eqs. (7.12) and (7.13) diverge. In order to carry out the

integration, a lower cutoff, x = 1 + 6, must be imposed.[43, 149, 150] This can also

1Note that a = 1 - aB, where aB is the fractional counterion binding discussed in Section 2.4.
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be understood physically. In the van der Waals attraction, the surrounding medium

(the aqueous solvent) is treated as a continuum. Hence, Eq. (7.18) is not valid for

distances which are less than an atomic diameter. The value 6 = 1A, which corre-

sponds approximately to the size of a typical counterion, is used in this analysis. It

should be noted that the results of the data analysis are not sensitive to the precise

value of 6.

Note that potentials other than the DLVO potential could also be utilized to model

intermicellar interactions. In particular, the Yukawa potential has been utilized to

model the attractive intermicellar interactions in nonionic micellar solutions.[33, 45,

52, 152] For comparison, this potential was also used to represent the attractive inter-

actions in our case. However, the Yukawa potential contains two unknown parameters

(the range and depth of the potential), and it proved difficult to determine a consis-

tent set of two parameters that fit the light scattering data as well as the van der

Waals potential, which has only one unknown parameter, the Hamaker constant (see

Section 7.4.1 for a description of the fitting procedure). This difficulty may be a

manifestation of the fact that the attractive intermicellar interactions in the micellar

systems examined here are small and, hence, are not very sensitive to the selection of

these parameters.

Equations (7.16) and (7.18) can now be used in Eqs. (7.12) and (7.13) to compute

S(O) and H(O). The fractional charge, a, and the Hamaker constant, A, are two

unknown parameters, and must be determined by fitting to the light scattering data.

The actual fitting procedure is discussed in Section 7.4.1.

The average micelle hydrodynamic radius can be calculated from the individual

diffusion coefficient, Do, using the Stokes-Einstein equation. Specifically, [47, 78, 148]

kBT
Rh = (7.19)

6rloDo

where ro is the viscosity of the solvent, given in Tables 7.1 and 7.2 for the solution

conditions studied here.[153]

The alkyl ethoxy sulfate micelles are typically hydrated. Following standard light
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scattering procedures for dealing with hydrated micelles,[129, 144] it was assumed

that dynamic light scattering is sensitive to the hydrated micelle, while static light

scattering is sensitive to the bare micelle (without hydration). The hydration can

then be calculated by comparing the bare average micelle radius, calculated using

static light scattering, with the average micelle hydrodynamic radius, calculated using

dynamic light scattering. Details of this calculation are provided in Section 7.4.1.

7.3.2 Viscosity

The relative viscosity, 77r, is a convenient measureable micellar solution property that

can provide useful information about micelle shape and size. Specifically, r, is defined

as the solution viscosity, rl, divided by the solvent viscosity, 70, and depends on the

volume fraction of micelles, q, as follows[143, 154, 155, 156, 157]

r - - = 1 + v + k (v) 2 + 0(0 3 ) (7.20)
r7o

where v, referred to as the shape factor, reflects the shape of the micelles, and kl is

a coefficient accounting for pairwise hydrodynamic interactions between the micelles.

For polydisperse micellar solutions, v represents the shape of the average micelle.

Note that in Eq. (7.20), the micellar volume fraction, q, includes the hydration of

the micelle, and is therefore given by ¢ = vhyd(C, - C1), where v hyd is the hydrated

volume of a surfactant molecule. As discussed above, since c, > cl, it follows that

Physically, one can rationalize Eq. (7.20) as follows.[155, 156] In infinitely dilute

colloidal solutions, the flow of the solvent depends only on the shape and size of the

individual particles which act completely independently of each other (fir - 1 = v¢).

As the particle concentration increases, the flow around one particle is affected by

the presence of a neighboring particle. These pairwise interactions are accounted

for by the second-order term in Eq. (7.20), k1 (vq) 2, where kl is a proportionality

constant that depends only on the shape (not the size) of the particles. In particular,

it has been determined that k = 2.2 for spheres,[158] and ki = 0.75 for elongated
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shapes.2 [155, 158] As the particle concentration increases further, physical contact

between neighboring particles may occur, which would be accounted for by the third-

order term in Eq. (7.20). The particle volume fractions of relevance in the present

study are relatively small (¢ ~ 0.04), and therefore, the third-order term in Eq. (7.20)

is negligible.

When charges are present, as in the case of the charged alkyl ethoxy sulfate

micelles considered here, the solution viscosity may be affected by a phenomenon

known as the electroviscous effect.[143, 159] It is believed that the electroviscous

effect is primarily due to the increase in the effective volume of the micelle as a result

of the presence of the electrical double layer around the micelle.[143, 159] Accordingly,

more work is required to drive the fluid flow around the charged micelles leading to

a viscosity increase. The electroviscous effect can be accounted for using a correction

to the second-order term in Eq. (7.20). However, it has been shown[159, 160] that

when the salt concentration is greater than or equal to 0.1M, as is the case for all

the micellar solutions examined in this chapter, the effective size of the double layer

decreases significantly, and electroviscous effects become negligible.

The shape factor, v, has been calculated for specific shapes based on hydrody-

namic considerations. In the simplest case, for a solution consisting of dilute, non-

interacting, spherical micelles, v = 2.5, as derived by Einstein.[143, 154, 161, 158]

The second-order term is negligible in this case, and the relative viscosity increases

linearly with the micellar volume fraction, with a slope of 2.5, that is,

T7r = 1 + 2.5 = 1 + 2.5v" ydc (7.21)

In this chapter, viscosity measurements are utilized to investigate the shape and

size of alkyl ethoxy sulfate micelles which may form in a variety of shapes and sizes.

It is expected that these micelles may grow beyond the limits of the simple Einstein

model. Expressions for v have been derived for several other shapes and are presented

2k1 has not been defined for disc-like shapes. However, when the oblate ellipsoid model was used
to model that shape, the resulting micelles had small shape factors, and therefore, the second-order
term could be neglected.
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in Table 7.3, where f is the micelle axial ratio (the major axis divided by the minor

axis), and rmin is the micelle minor axis.[143, 155, 156, 157, 161, 158, 162, 163] The

micelle minor axis was assumed to correspond to the radius of the smallest spherical

micelle, rmin, as measured using dynamic light scattering. Specifically, rmin = 21A,

22A, 24A, and 25A for E1S, E2S, E4S, and E6S, respectively.

7.4 Results and Discussion

7.4.1 Light Scattering Data Analysis

The average micelle aggregation number, Nagg, and the average micelle hydrodynamic

radius, RH, were extracted from the static and dynamic light scattering data, respec-

tively, by accounting for intermicellar interactions as discussed in Section 7.3.1. The

parameters of the DLVO potential, a and A, along with the surfactant molecular

hydrated volume, vs yd, were determined simultaneously by fitting the light scattering

data. Note that only two experimentally measurable properties (Mapp and De) can

be fitted for each solution condition (salt concentration or temperature). Hence, if

each solution condition were treated individually, only two parameters could be fitted

uniquely. Since there are three parameters that must be determined for each surfac-

tant, the same three parameters are fitted over the entire range of solution conditions.

That is, it is assumed that a, A, and v h yd do not depend on salt concentration or

temperature. The validity of this assumption is discussed later. The specific fitting

procedure is described in detail below.

For an assumed micelle shape (sphere, prolate ellipsoid, oblate ellipsoid, sphe-

rocylinder) corresponding to a given alkyl ethoxy sulfate, the following steps were

undertaken:

1. A wide range of possible values was specified for each parameter (a, A, and

vhyd). Values for each of the parameters were tested within this entire range.

2. For a given solution condition (NaCl concentration or temperature) examined:
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Table 7.3: Equations for the average micelle hydrodynamic radius, RH,[144, 164, 165]
and the shape factor, v,[143, 155, 156, 157, 158, 161, 162, 163] for four micelle shape
models. V?,C~ is the total volume of the hydrated micelle, rmin is the micelle minor
radius, and f is the micelle axial ratio (that is, the major axis divided by the minor
axis) .

Shape RH V

Spheres RH = V = 2.5

Prolate Ellipsoid RH n f+n(11/f 2)1 2

24 1 3
1 5 5 In 2 f-1.5 In 2f-0.5

( 3Vhyd
where f = '

Oblate Ellipsoid RH = rmn(f 2 -1)1/ 2

arctan[(f 2-1)1/2]
V 15 16f

15 arctan(f)

3= V 1/2where f = (, d1

Spherocylinder RH = mtf
_= + V15 60 ln- 1 .5 In n-0.5

where f= + )

where ( = 3f - 1
0.4738 0.4167 0.33940.32 + f + f2 f3
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(a) The average micelle aggregation number, Nagg, was calculated from the

Mapp value obtained from the static light scattering data using Eq. (7.4),

where the structure factor was calculated from Eq. (7.12) using the guessed

values of a and A in the interaction potential given by Eqs. (7.14), (7.16),

and (7.18). Note that the surfactant molecular volume, ve, appearing in

Eq. (7.12) is the bare surfactant volume, not v hyd

(b) The total volume of the hydrated micelle was then calculated from the

average micelle aggregation number deduced in (a), using the guessed value

of vhyd, that is, V hy d = Naggt hyd The average micelle hydrodynamic

radius, RH, was then calculated using V'd. (See Table 7.3 for detailed

expressions of RH for each shape tested.[144, 164, 165] Recall that rmin =

21A, 22A, 24A, and 25A for E1S, E2S, E4S, and E6S, respectively.)

(c) The average micellar diffusion coefficient, Do, was then calculated from

the average micelle hydrodynamic radius deduced in (b) using the Stokes-

Einstein relation, Eq. (7.19). The solvent viscosities, o, at the various

NaCl concentrations and temperatures examined are listed in Tables 7.1

and 7.2, respectively.

(d) The hydrodynamic perturbation coefficient, H(O), was calculated from

Eq. (7.13) using the guessed values of a and A in the interaction potential

given by Eqs. (7.14), (7.16), and (7.18). Note that the surfactant molecu-

lar volume, v5 , appearing in Eq. (7.13) is the bare surfactant volume, not

vUhyd

(e) The collective diffusion coefficient, Dc, was then predicted using Eq. (7.8).

The root-mean-squared error (RMS) between the predicted D, and the D,

obtained from the dynamic light scattering data was then calculated for

the given solution condition.

3. For the same surfactant, the RMS values corresponding to each of the solution

conditions examined (NaCl concentration or temperature) were calculated as

described above, and then added together.
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4. By minimizing the total RMS between the predicted and experimental D, values

calculated in 3, the optimal values of a, A, and vhyd were determined.

The analysis was repeated for each of the four model shapes: spheres, prolate

ellipsoids, oblate ellipsoids, and spherocylinders. For E1S and E2S, the prolate ellip-

soid model resulted in the best fit to the data (smallest RMS). For E4S and E6S, the

spherical model resulted in the best fit to the data. The optimal parameters deduced

for each surfactant are listed in Table 7.4, along with the range of error. The hydra-

tion, also shown in Table 7.4, is calculated from the difference between vhyd and ve,

where the volume of a water molecule was taken to be approximately 30A . Note that

Vs = Vt + Vhead, where vt was given in Section 2.3, and Vhead(in A 3 ) = 120.9 + 63.5j,

where j is the number of ethoxy groups in the head (v,= 508A33 , 571A33 , 698A3, and

825A3 for E1S, E2S, E4S, and E6S, respectively).[10, 166] The hydration is presented

in terms of the number of bound water molecules per EO group. To calculate this

number, the total hydration per surfactant molecule was divided by the number of

ethoxy groups, after subtracting the hydration due to the sulfate group (10 water

molecules[167]).

Table 7.4: Optimal surfactant parameters deduced from the light scattering data
using the prolate ellipsoid model for E1S and E2S and the sphere model for E4S
and E6S. A is the Hamaker constant representing the magnitude of the intermicellar
van der Waals attractions, a is the micelle fractional charge (that is, the fraction of
surfactant molecules in the micelle that have dissociated), and vhyd is the hydrated
surfactant molecular volume. The hydration number is the number of bound water
molecules per ethoxy group in the surfactant head.

Surfactant A(kBT) a vhyd (A 3) Hydration Number
EIS 0±1 0.16 ± 0.04 1450 ± 200 16
E2S 0±1 0.13 ± 0.05 1540 ± 100 8
E4S 1.4±1 0.16 ± 0.05 1860 ± 50 6
E6S 2.0±1 0.19 ± 0.02 2140 + 200 5

As noted above, it was assumed that a, A, and v hyd remain constant over the

range of NaCl concentrations and temperatures examined. This assumption can be

tested by fixing one parameter, and allowing the other two parameters to vary for
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each solution condition. In this manner, the range of error for each fitted parameter

was determined. It was found that the range of error for all three parameters was

relatively small (see Table 7.4), indicating that assuming that a, A, and v'yd do not

depend on salt concentration or temperature is a reasonable approximation. Note

that the RMS was minimized with respect to each parameter individually, to within

a tolerance of 0.1% or less. In addition, a wide range of initial guesses were tested to

prove that the optimization procedure was unique.

Recall that the analysis of the intermicellar interactions treats the micelles as ef-

fective spheres. Clearly, as the micelles grow and elongate, this approximation will

eventually become invalid. In particular, as discussed below in Section 7.4.2, at higher

salt concentrations, the light scattering data for E1S and E2S indicated that the mi-

celles were growing. When the fitting procedure described above was applied to this

data, it appeared that the hydrated surfactant volume increased with salt concen-

tration to unphysical values. This unlikely variation in the hydration values is due

to the approximate treatment of the interactions for these highly elongated micelles.

However, this approximation had very little effect on the other two parameters, a and

A, which remained approximately constant over the entire salt concentration range

examined. Accordingly, in order to avoid inaccuracies in the determination of v hyd

only the data from the lower salt concentrations (where the micellar axial ratios were

less than 5) were used to calculate v hyd. This vhyd value was then used to solve for

a and A for the entire range of NaCl concentrations examined. As discussed further

in Section 7.4.3, the larger heads, E4S and E6S, did not exhibit significant micellar

growth, and therefore, the spherical approximation for the intermicellar interactions

was applicable over the entire range of salt concentrations and temperatures exam-

ined.

The attractive interactions were found to be negligible for the small heads, E1S

and E2S, as reflected in the nearly zero values of the Hamaker constants reported in

Table 7.4. For E4S and E6S, although the attractions are not negligible, they remain

quite small (see Table 7.4). The a values are also relatively small, although they are

physically reasonable. It is interesting to note that the a values for all four surfactants
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are very close to each other, a property which has been observed in other surfactant

families.[168] The hydrated surfactant molecular volume increases with the number of

EO groups in the head, as expected. However, the hydration number, the number of

water molecules per EO group in the head, decreases with the number of EO groups

in the head. The behavior of the hydration numbers will be further discussed below.

In order to gain a better understanding of the meaning of the deduced parameters,

they can be compared with similar data from other researchers. Unfortunately, only

one other study, a light scattering investigation by Minero et al.[129] was performed

on dodecyl ethoxy sulfates at the same conditions examined in the present work.

Their light scattering data resulted in larger Hamaker constants and larger fractional

charges than those found in the present study. Specifically, they found that A = 6kBT

and a = 0.30 for E2S while A = 1kBT and a = 0.40 for E4S (they were unable to fit

the data for E1S). However, their study focused only on intermicellar interactions,[129]

while both interactions and micellar growth are considered in the present study. If

micellar growth is neglected, stronger interactions are required to explain the observed

D, and Mapp values. For example, when the experimental D, decreases at higher salt

concentrations, they assumed that the observed decrease was due solely to attractive

intermicellar interactions rather than to micellar growth,[129] which could only be

explained by using relatively high values of A. Consequently, larger values of a were

required to balance the large values of A. In the present study, the observed decrease

in D, reflects both micellar growth and intermicellar interactions, and therefore, the

deduced A values are smaller. Indeed, when the data of Minero et al. is subjected to

the same fitting procedure described above, the deduced A and a values are similar

to those found in the present study (within experimental error).

The hydration numbers deduced in the present study (see Table 7.4) are simi-

lar to those obtained for some other ionic surfactants. For example, as mentioned

above, neutron scattering studies find the hydration of SDS to be approximately 10

water molecules per surfactant molecule,[167] while light scattering studies indicate

that dodecyl trimethylammonium bromide has a hydration of 4 to 16 water molecules

per surfactant molecule.[169] However, the deduced hydration numbers listed in Ta-
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ble 7.4 are larger than those obtained in the light scattering study by Minero et al.

The discrepancy cannot be explained by their neglect of micellar growth, nor is it due

to the fitting procedure used in this study. Indeed, when the data of Minero et al.

is subjected to the same fitting procedure described above, the resulting hydration

numbers are very similar to those found in their study. Instead, the difference in

hydration must be due to the fact that our samples were obtained from a different

source. It has been shown that micellar properties of alkyl ethoxy sulfates are sig-

nificantly affected by purity, which can be difficult to achieve.[132, 133] Interestingly,

the E4S and E6S hydration numbers found in the present study are very similar to

the hydration numbers of nonionic alkyl poly(ethlyene oxide) surfactants.[170]

Specific results on micelle shape and size are presented in the following two sec-

tions.

7.4.2 ElS and E2S

Using the fitting procedure described above, the light scattering data was used to

determine the shape and size of E1S and E2S micelles as a function of NaCl con-

centration. Figure 7-1 shows the measured average micelle hydrodynamic radius,

RH, of E1S and E2S micelles as a function of NaCl concentration for a fixed surfac-

tant concentration of 50mM at 250 C. Figure 7-2 shows the measured average micelle

aggregation number, Ngg, for the same experimental conditions. At low salt con-

centration (0.1M NaC1), the E2S micelles (circles) are small, with an average hydro-

dynamic radius and an average aggregation number that are consistent with a small

spherical micelle. (For comparison, the length of the fully-extended E2S molecule is

approximately 30A. Recall that the RH values in Figure 7-1 also include the water of

hydration.) The E1S micelles (diamonds) are slightly bigger than the E2S micelles at

this salt concentration, but are still quite small. As the NaCl concentration increases

beyond 0.1M, RH and Nagg of the E1S micelles increase, indicating that the micelles

are growing. The E2S micelles remain approximately the same size up to 0.2M NaC1,

but beyond this salt concentration, they also exhibit significant increases in RH and

N,,,. Note that the results in Figures 7-1 and 7-2 are based on the prolate ellipsoid
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Figure 7-1: Average micelle hydrodynamic radius, RH, calculated from the dynamic
light scattering data as a function of NaCi concentration for EIS micelles (diamonds)
and E2S micelles (circles) at a 50mM surfactant concentration and T=250 C. The error
in measurement was approximately 10%, as indicated by the representative error bars
shown. The lines are drawn to guide the eye.
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Figure 7-2: Average micelle aggregation number, Ngg, calculated from the static light

scattering data as a function of NaCl concentration for E1S micelles (diamonds) and

E2S micelles (circles) at a 50mM surfactant concentration and T=250 C. The error

in measurement was approximately 10%, as indicated by the error bars shown. The

lines are drawn to guide the eye.
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model which was found to give the best fit to the data (smallest RMS), indicating

that the micelles exhibit one-dimensional growth with increasing salt concentration,

rather than two-dimensional growth.

For comparison, SDS micelles have been observed to grow at approximately 0.5-

0.6M NaCl.[9, 72, 73] In the case of EIS, the charge on the sulfate group is displaced

from the micellar core by the EO group, resulting in a lower surface charge density. In

addition, the charge may be somewhat shielded by the dipoles of the water of hydra-

tion surrounding the EO group. Both of these effects allow the micelle to grow beyond

the lower salt concentration of about 0.1M NaC1. For E2S, the charge is displaced

even further from the micellar core. However, the presence of the additional EO

group induces larger steric head/head interactions, thus delaying the micellar growth

to 0.2M NaCl. Note that light scattering measurements could not be conducted on

solutions of ElS and E2S at NaC1 concentrations greater than 0.4M NaCl and 0.6M

NaC1, respectively, because their high viscosity prevented filtration.

To confirm the EIS and E2S micellar growth deduced from the light scattering

results, viscosity measurements were conducted on EIS and E2S aqueous solutions

at a low (0.1M) and a high (0.4M) NaCl concentration. Note that 0.1M NaCl is the

lowest NaCl concentration for which it has been proven that electroviscous effects are

negligible,[159, 160] and 0.4M NaCl is the highest salt concentration for which the

viscosity of the ElS solution could be measured accurately on our equipment. The

viscosity results are presented in Figures 7-3 and 7-4. Figures 7-3(a) and 7-3(b) show

the relative viscosity, 7rr, as a function of surfactant concentration at 25°C in 0.1M

NaCl for E1S (diamonds) and E2S (circles), respectively. Figure 7-4 is a similar plot

in 0.4M NaCl. The data at 0.1M NaCl show that, at this low salt concentration, r7r

increases linearly with c, (see lines in Figure 7-3), indicating that the micelles behave

like ideal spheres, according to Eq. (7.21). In contrast, at 0.4M NaCl (see Figure 7-4),

7r increases at a greater, nonlinear rate, consistent with the light scattering evidence

that the micelles have elongated. In addition, a comparison of the qr values for E1S

and E2S in Figure 7-4 indicates that the E2S micelles exhibit less growth than the

E1S micelles.
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Figure 7-3: Relative viscosity, 77, of (a) ElS (diamonds) and (b) E2S (circles) aqueous
micellar solutions as a function of surfactant concentration, cs, in 0.1M NaCl at
250C. The error in measurement was within 2%, and therefore, the error bars are
smaller than the size of the symbols. The lines denote the best linear fit through the
experimental data.
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Figure 7-4: Relative viscosity, ir, of EIS (diamonds) and E2S (circles) aqueous mi-
cellar solutions as a function of surfactant concentration, c., in 0.4M NaCl at 25°C.
The error in measurement was within 2%, and therefore, the error bars are smaller
than the size of the symbols. The lines are drawn to guide the eye.
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By fitting the 0.1M NaCl r7, data in Figure 7-3 to Eq. (7.21) (solid lines), the

hydrodynamic volumes of the E1S and E2S surfactant molecules could be determined.

In order to distinguish between the hydrated volume derived from the viscosity data

and the v hyd derived from the light scattering data (see Table 7.4), the viscosity-

deduced hydrated surfactant volume will be denoted as Vyd. For ElS, yd = 1190A3,

and for E2S, Yd = 1250A 3. These values are slightly lower than the vhyd values

obtained from the light scattering data (1450A 3 for ElS and 1540A 3 for E2S, see

Table 7.4). In fact, it is not clear whether these two hydrated volumes, v hyd and

h yd, should be equivalent.[143, 163, 171, 172, 173] In many studies, it appears that

different experimental methods measure different extents of hydration,[128, 163, 171]

with some disagreement over which method should yield larger hydration numbers.

From studies on block copolymer micelles[171] and on asphaltene aggregates,[173]

it has been observed that neutron and light scattering measurements yield larger

hydration numbers than viscosity measurements, in agreement with our results.

To further probe the region of micellar growth, the light scattering and viscosity

results were compared as follows. The light scattering data was analyzed as described

above for four representative shapes: spheres, prolate ellipsoids, oblate ellipsoids, and

spherocylinders. The axial ratio can be calculated from the deduced RH values using

the expressions for RH given in Table 7.3 for each shape. From the axial ratio, the

shape factor for each shape could be obtained, as described in Table 7.3. The relative

viscosity can then be calculated using Eq. (7.21) for spherical micelles, and Eq. (7.20)

for the other micellar shapes. The b.hyd value obtained from the ir data at the low

salt condition (0.1M NaC1) where the micelles are spherical is used for the hydrated

surfactant molecular volume over the entire range of salt concentrations. The resulting

predicted Dr values are presented in Figure 7-5 for ElS and in Figure 7-6 for E2S as a

function of NaCl concentration for each micellar shape examined: prolate ellipsoids

(-), spherocylinders ( ... ), and oblate ellipsoids (- - -). The 'ir predictions for the

sphere model were very similar to the predictions from the oblate ellipsoid model,

and were therefore omitted from these figures for clarity. For comparison, viscosity

measurements were conducted on micellar solutions of E1S and E2S under the same
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Figure 7-5: Relative viscosity, qr, of 50mM ElS aqueous micellar solutions as a func-
tion of NaCI concentration (diamonds) at 250C. The lines represent theoretical r,
predictions based on the light scattering data (see text) for prolate ellipsoids (-),
spherocylinders (... ), and oblate ellipsoids ( - - -).
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Figure 7-6: Relative viscosity, 7r, of 50mM E2S aqueous micellar solutions as a func-
tion of NaCL concentration (circles) at 25 0 C. The lines represent theoretical qr pre-
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solution conditions (250C, 50mM surfactant). These are also presented as diamonds

in Figure 7-5 for E1S and as circles in Figure 7-6 for E2S.

As the salt concentration increases, both E1S and E2S exhibit a nonlinear in-

crease in 7,, indicating a sphere-to-rod transition, consistent with the light scattering

results. For E2S, the r, predictions show remarkable quantitative agreement with the

~7r measurements for the prolate ellipsoid and spherocylindrical models. Although

quantitative agreement is not obtained for E1S, it is clear that the upward trend

in the qr measurements (diamonds) is better described as a one-dimensional type of

growth (as modeled with a prolate ellipsoid) than a two-dimensional type of growth

(as modeled with an oblate ellipsoid). For E2S, it is difficult to distinguish between

the prolate ellipsoid model and the spherocylinder model based on the q,r predictions,

but it should be noted that the prolate ellipsoid model yields a slightly better fit to

the light scattering data (smaller RMS).

The inability of Eq. (7.20) to quantitatively predict rl, values for E1S may be due

to the analysis of the intermicellar interactions, which treats elongated micelles as

effective spheres. This approximation is clearly inaccurate at the higher salt con-

centrations where the E1S micelles are elongated. Treating the elongated micelles

as effective spheres for the analysis of the intermicellar interactions would slightly

increase the RH values obtained from the light scattering data, which, in turn, would

increase the measured axial ratio, thereby increasing the r77 predictions. Because E1S

micelles exhibit more growth than E2S micelles, this approximation affects the E1S

results more strongly than the E2S results, possibly contributing to the discrepancy

in the Tr, predictions shown in Figure 7-5.

As mentioned in Section 7.1, the E1S micellar solution was observed to phase

separate at room temperature at high (> 0.8M) NaCl concentrations. The cloud-

point temperature (the temperature at which the solution phase separates, or becomes

turbid) was measured for a range of surfactant concentrations at 0.9M NaC1. The

results are presented in Figure 7-7. The scatter in the data is due to the fact that

the E1S surfactant molecule began to degrade (hydrolyze) at the high temperature,

and therefore, measurements could not be repeated.
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Figure 7-7: Measured cloud-point temperatures as a function of surfactant concen-
tration for aqueous solutions of ElS in 0.9M NaC1.
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It is believed that this phase separation is actually a coacervation, whereby the

micelle-rich phase consists of a very high concentration of hydrated elongated mi-

celles which are aligned with each other. The driving force for the phase separation is

entropic. When the micelles become highly elongated, it is more favorable for them

to align with each other, based on excluded-volume considerations. [136, 137, 38] At

higher temperatures, it is more favorable for the micelles to be dispersed, and there-

fore, the solution becomes a single homogeneous phase. This behavior would only

occur at high salt concentrations where the E1S micelles are elongated and repulsive

electrostatic interactions are screened. Coacervation was not observed for any of the

other surfactants at any of the solution conditions examined in this chapter, probably

because the micelles did not exhibit the high degree of micellar growth exhibited by

the E1S micelles.

7.4.3 E4S and E6S

In order to investigate the effect of NaCl concentration on the shape and size of

E4S and E6S micelles, light scattering experiments were conducted at varying NaCl

concentrations. Figure 7-8 shows the average micelle hydrodynamic radius, RH, as

a function of added NaCl concentration for solutions of 50 mM E4S (stars) and E6S

(squares) at 250C. It is clear that the E4S and E6S micelles grow very little even at

relatively high NaCl concentrations. The small values of the radii (35-40A) indicate

that these micelles are spherical over the entire NaCl concentration range, whereas the

E1S and E2S micelles exhibit significant increases in RH as the NaCl concentration

increases (compare Figure 7-8 with Figure 7-1). The steric effects associated with

the bulky EO groups dominate the behavior of the E4S and E6S micelles, inhibiting

micellar growth even at the high NaCl concentrations.

It is well known in the case of nonionic alkyl ethoxy surfactants that the ethoxy

groups dehydrate as the temperature is raised, resulting in micellar growth at high

temperatures.[170, 174, 12, 175] To test if this is also the case for the ionic alkyl

ethoxy sulfates, light scattering was conducted on E4S and E6S micellar solutions at

increasing temperatures. The results are presented in Figure 7-9, where the average
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Figure 7-8: Average micelle hydrodynamic radius, RH, calculated from the light
scattering data as a function of NaCl concentration for E4S (stars) and E6S (squares)
micelles at a 50mM surfactant concentration and T=250 C. The error in measurement
was approximately 10%, as indicated by the representative error bar shown. The lines
are drawn to guide the eye.
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Figure 7-9: Average micelle aggregation number, Nagg, calculated from light scat-
tering data as a function of temperature for E4S (stars) and E6S (squares) micelles
at a 50mM surfactant concentration in 0.6M NaCI. The error in measurement was
approximately 10%, as indicated by the representative error bars shown. The lines
are drawn to guide the eye.
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micelle aggregation number, Nag, is shown as a function of temperature for 50mM

E4S (stars) and E6S (squares) micellar solutions in 0.6M NaC1. The relatively high

NaCl concentration was selected to ensure that electrostatic interactions among the

surfactant heads would be considerably reduced. It is clear that, even at the higher

temperatures, the E4S and E6S micelles remain approximately the same size, within

experimental error. The E4S micelles have a slightly higher Nagg value (- 80) than

the E6S micelles (- 60). This reflects the fact that the E4S head is smaller than

that of E6S, and therefore, it can pack more tightly into a micelle, resulting in higher

aggregation numbers. This difference is also reflected in the hydrated surfactant

volumes (1860A 3 for E4S versus 2140A' for E6S, see Table 7.4).

The light scattering results presented in Figures 7-8 and 7-9 were interpreted using

the spherical shape model which resulted in the best fit to the data (smallest RMS).

In fact, the prolate ellipsoid model resulted in axial ratios that were close to one,

indicating that these micelles remain spherical over the range of NaCl concentrations

and temperatures examined. Interestingly, it was found that the v hyd value did not

depend on temperature, indicating that these micelles do not dehydrate as the tem-

perature is increased, in contrast to the nonionic alkyl ethoxy surfactants.[52, 170]

The constant vhy d value is consistent with the constant micelle size as the temperature

increases. In other words, if the EO groups do not dehydrate, there is no incentive

for the micelle to elongate. It is possible that a larger temperature range is required

to observe dehydration. Indeed, the molecular-thermodynamic theory presented in

Chapter 2 predicts that, for example, the volume of the nonionic C12E6 surfactant

changes by only 25A 3 (less than the volume of one water molecule) as the temperature

is increased by 200 C.[16]

The highest temperature plotted in Figure 7-9 for E6S is 38'C. Above this tem-

perature, a second peak appeared to develop in the micellar size distribution at very

high radii. As the temperature was increased, the second peak shifted to even higher

sizes (from 1500A up to 2000A). Although this second peak was much smaller than

the first peak at 35A, because it was located at much higher sizes, it skewed the value

of the resulting average micelle radius. In quasielastic light scattering, it is possible to
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distinguish between the two different length scales and only use the one related to the

actual micelle size. However, static light scattering measures the average scattered in-

tensity. There is no straightforward way to distinguish between the two length scales

in static light scattering. Hence, the analysis was limited to temperatures where only

one scattering length scale was detected (< 38 0 C).

There are three possible explanations for the second peak. First, the micelles could

be "clumping" together, as has been hypothesized for a nonionic alkyl ethoxylate.[176,

177, 178] The second explanation is that a very large aggregate, such as a vesicle,

could be forming at high temperatures.[144] The third, and most likely, possibility is

that the second peak represents some long-range correlations between the micelles.[12,

52, 152] At high temperatures, it is possible that attractive interactions could develop

between neighboring micelles. As the temperature is increased further, the attractions

would become longer ranged. This type of behavior is common among the nonionic

alkyl ethoxylates, and eventually leads to phase separation.[52, 12] Although phase

separation was not detected in the E6S system, it is possible that it occurs in a

temperature region that has not yet been examined.

Viscosity measurements were performed in order to confirm the light scattering

results and test for the presence of aggregating micelles or vesicles. Figures 7-10(a)

and 7-10(b) illustrate the relative viscosity of (a) E4S (stars) and (b) E6S (squares)

aqueous micellar solutions as a function of surfactant concentration in 0.6M NaCI at

45 0 C. The dashed lines (- - -) represent the best linear fit through the data points.

The solid lines (-) are viscosity predictions made using Eq. (7.21) with the v hyd

values determined from the light scattering analysis (see Table 7.4). The excellent

fit to Eq. (7.21) indicates that these micelles are small, spherical aggregates with

ideal flow behavior. The close resemblance between the qr predictions (-) and the

fit through the experimental data (- -- ) is remarkable. By fitting the experimental

data (-- -) to Eq. (7.21), a ihyd value can be obtained from the ,r measurements.

This fit results in jhyd values of 1470A 3 for E4S and 2040A' for E6S, slightly smaller

than the v hyd volumes derived from the light scattering data, similar to the results

for E1S and E2S.
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Figure 7-10: Relative viscosity, r1r, of (a) E4S (stars) and (b) E6S (squares) micellar
solutions as a function of surfactant concentration in 0.6M NaCL at 450C. The error
in measurement was within 2%, and therefore, the error bars are smaller than the
size of the symbols. The solid lines are theoretical viscosity predictions for spherical
micelles based on the light scattering data (see text). The dashed lines are linear fits
through the experimental data.
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7.5 Conclusions

The alkyl ethoxy sulfates with the smaller heads, E1S and E2S, exhibited siginificant

micellar growth upon the addition of NaCl, as measured using both light scattering

and viscosity. The prolate ellipsoid model gave the best fit to the data, indicating

that these micelles exhibit one-dimensional growth with increasing NaCl concentra-

tion. In addition, the light scattering data was utilized to predict the relative vis-

cosity, which was independently confirmed with actual viscosity measurements. For

E2S, quantitative agreement was obtained for the prolate ellipsoid and spherocylin-

drical models, which is indicative of one-dimensional growth. For E1S, although the

predicted r7r values did not agree quantitatively with the experimental values, the

viscosity measurements clearly indicated that the micelles exhibit one-dimensional

growth, in qualitative agreement with the light scattering results. Interestingly, the

micellar growth of ElS eventually led to phase separation at high (> 0.8M) NaCl

concentrations.

E2S formed smaller micelles than E1S, indicating that the additional EO group

induces more significant steric effects among the surfactant heads. Indeed, the larger

heads of E4S and E6S resulted in little or no micellar growth, even at the highest

NaCl concentrations (up to 1.OM NaCl), indicating that steric interactions among

these bulky heads at the micelle surface have a significant effect on the properties

of the micelle. These micelles remained spherical, even at high temperatures (up

to 45°C). Unlike the nonionic alkyl ethoxylates,[170, 174, 12, 175] the E4S and E6S

surfactants do not appear to dehydrate as the temperature increases, at least over the

temperature range examined in this chapter. The charged sulfate group has a high

number of water molecules clustered around, as is typical of ionic surfactants.[167, 169]

Perhaps, the effect of the sulfate charge extends throughout the entire head region,

causing the water of hydration to remain bound, and thus preventing micellar growth,

in contrast to the nonionic alkyl ethoxylate case.

In analyzing the intermicellar interactions, the micelles were treated as effective

spheres, even under conditions where they were clearly elongated. This approximation
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affected not only the deduced RH and Nagg values shown in Figures 7-1 and 7-2, as

well as in Figures 7-8 and 7-9, but also the values of the deduced parameters a, A, and

vhd. In particular, E1S exhibited a high degree of growth. The inaccurate treatment

of the intermicellar interactions for these elongated micelles led to a discrepancy in the

77r predictions (see Figure 7-5). In the future, as techniques for analyzing intermicellar

interactions between elongated micelles are developed, the light scattering data for

E1S should be reexamined.

Additional alkyl ethoxy sulfates should be investigated to further explore the in-

terplay of the electrostatic interactions between the charged sulfate groups and the

steric interactions between the hydrated EO groups. It may also be interesting to

examine a wider range of solution conditions. In particular, at high temperatures, the

E6S micelles exhibited a second peak at large length scales, possible evidence for the

presence of long-range attractive interactions. It would be interesting to determine if

there are solution conditions, such as higher salt concentrations or higher tempera-

tures, where these attractive interactions could actually lead to phase separation. It

may also be possible to see the same behavior in the E4S micelles at higher temper-

atures. In this case, the micellar solutions would exhibit a lower critical point rather

than an upper critical point, as in the coacervation behavior displayed by E1S. This

and other suggestions for future research on dodecyl ethoxy sulfates are discussed in

the next chapter.
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Chapter 8

Conclusions and Future Research

Directions

Surfactant solutions display a variety of micelle shapes and sizes, and exhibit a rich

phase behavior. Ionic surfactants, in particular, are very commonly used, yet are

poorly understood due to the complex electrostatic intramicellar and intermicellar

interactions affecting their aqueous solution behavior. This thesis attempted to con-

tribute to a better molecular-level understanding of ionic surfactant solution behavior

through both theoretical and experimental investigations, discussed in detail in the

previous chapters. In this chapter, the key results of the thesis will be summarized,

and possible directions for future research will be discussed.

8.1 Thesis Summary

A molecular-thermodynamic theory of micellization and micellar solution phase be-

havior had previously been developed by our group for nonionic surfactants. The first

major contribution of this thesis was to extend this theory to include ionic surfac-

tants, as discussed in Chapter 2. To calculate the electrostatic contribution to the

free energy of micellization, the Poisson-Boltzmann equation was used. Because the

Poisson-Boltzmann equation is nonlinear, in order to simplify the calculations and

associated computational time, several analytical approximations from the literature
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were utilized and compared. To correct for the neglect of the finite size of the ions in

the ion cloud, a Stern layer, which is the region immediately surrounding the micelle

surface from which the counterions are excluded, was added to the model. Including

the Stern layer improved CMC predictions, and provided some counterion specificity

(the width of the Stern layer is equal to the radius of the hydrated counterion). How-

ever, the Stern layer model severely inhibits growth of ionic micelles in the presence

of added salt, contrary to experimental observations. It is believed that this under-

estimation of micelle size is due to the neglect of electrostatic and excluded-volume

intermicellar interactions, which eventually led to the development of a new thermo-

dynamic approach based on rigorous statistical-mechanical principles, as described in

Chapters 4 through 6.

In an effort to quantify the actual surface charge of the micelle, the Gibbs adsorp-

tion equation was utilized to model the fractional counterion binding. A complete

derivation was presented in Section 2.4. Although this theoretical description was

found to underestimate the experimentally-measured counterion binding, it correctly

predicts the observed experimental trends, as demonstrated through several sample

predictions.

In addition to the CMC and the counterion binding predictions presented in Chap-

ter 2, the molecular-thermodynamic theory is capable of predicting a wide range of

micellar solution properties for a variety of ionic, nonionic, and zwitterionic surfac-

tants. In an effort to make this theory more accessible to both industrial and academic

surfactant researchers, the theory was incorporated into a user-friendly computer pro-

gram which can make predictions in a matter of seconds. This program, known as

program PREDICT, was described in detail in Chapter 3. Examples of many of its

predictive capabilities were presented and compared with experimental data.

As mentioned above, the molecular-thermodynamic theory with a Stern layer

model underestimates micelle size for ionic surfactants. This underestimation is prob-

ably due to the neglect of electrostatic intermicellar interactions, which can have a

significant effect on micelle shape and size. In an effort to address intermicellar inter-

actions using a more rigorous, systematic approach, a new statistical-thermodynamic
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framework for micellar solutions based on the McMillan-Mayer theory of multicom-

ponent solutions was developed. This theoretical framework was described in detail

in Chapter 4. The key result of this framework is an expression for the micellar size

distribution. All that is needed to implement the theoretical framework is an appro-

priate model for the standard-state and EXCESS chemical potentials of the micelles

and the monomers.

First, as described in Chapter 5, a model was developed for nonionic surfactant

solutions exhibiting attractive and excluded-volume intermicellar interactions, which

are, in general, simpler to model than the electrostatic intermicellar interactions. It

was found that repulsive intermicellar interactions, such as those of the excluded-

volume type, encourage micelle formation and growth. In addition, it was demon-

strated that this model could be used to make accurate predictions of several micellar

solution properties, such as the CMC, the critical concentration for phase separation,

and the osmotic compressibility.

The McMillan-Mayer approach was extended to model the behavior of ionic sur-

factant solutions in Chapter 6. To model the electrostatic intermicellar interactions,

the other charged micelles in solution were included as part of the diffuse ion cloud

surrounding the central charged micelle. Two models were used to calculate the elec-

trostatic potential created by the charged micelle and the diffuse ion cloud. First,

the Debye-Hiickel approximation provided an analytical solution. Because it can be

utilized to model both spherical and cylindrical micelles, it could be used to pre-

dict micellar growth. Indeed, it was demonstrated that electrostatic intermicellar

interactions encourage micellar growth, which is a significant improvement over the

predictions of the molecular-thermodynamic theory presented in Chapter 2. However,

the Debye-Hiickel solution is only an approximation for the electrostatic potential.

To improve the accuracy of the calculation of the electrostatic surface potential, a

modified Poisson-Boltzmann equation, which includes the effect of the finite size of

the ions throughout the ion cloud, was formulated. This description provides a more

accurate representation of the electrostatic potential, but it can only be used in the

case of spherical micelles. Both models presented in Chapter 6 require some improve-
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ments before good quantitative accuracy of the predictions, as compared with the

experimental measurements, is obtained. However, they represent a valuable "first

step" in the development of a theory for electrostatic intermicellar interactions.

In order to obtain additional data on micellar solution properties, an experimen-

tal investigation on dodecyl ethoxy sulfate micelles with 1, 2, 4, or 6 EO groups was

conducted. As described in Chapter 7, both static and dynamic light scattering and

viscosity techniques were used to measure micelle shape and size at various salt con-

centrations and temperatures. The DLVO potential was used to quantify the effect

of intermicellar interactions on the light scattering data. In addition, quantitative

agreement between the light scattering and the viscosity results was attained. It

was found that the surfactants with one and two EO groups exhibit one-dimensional

growth in the presence of added salt. The added salt screens the electrostatic repul-

sions among the charged sulfate groups, allowing the micelles to elongate from spheres

into cylinders. In contrast, the surfactants with four or six EO groups remain small

and spherical over the entire range of salt concentrations and temperatures exam-

ined. It is believed that steric interactions among these bulky EO groups prevented

micellar growth. This experimental investigation provided valuable insight into the

molecular-level interactions which govern the observed equilibrium micelle shapes and

sizes.

8.2 Future Research Directions

8.2.1 Theoretical Investigations

Molecular-Thermodynamic Theory

As described in Chapter 2, the molecular-thermodynamic theory of micellization was

developed for surfactants consisting of a linear hydrocarbon (or fluorocarbon) tail.

Not all surfactants fit into this category. For example, many surfactants have double

bonds in their tails, or have branched hydrocarbons as tails. Block copolymer sur-

factants, particularly those having a poly(propylene oxide) tail and a poly(ethylene
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oxide) head, are becoming more common. A new family of surfactants, known as

"gemini" surfactants, have two heads and two tails linked together with a hydro-

carbon spacer chain.[179, 180] It would be useful to expand the molecular model of

micellization to include these novel surfactant structures. In particular, gpack, the

free energy associated with packing the surfactant tails in the micellar core, would

have to be reevaluated for the novel tail structures. For the gemini surfactants, gster,

the free energy associated with packing the surfactant heads at the micellar surface,

would have to be recalculated to account for the connection between the two heads.

In addition, if the heads were charged, their effect on gel,,ec would also have to be

considered.

In order to model elongated micelles, the free energy of micellization was calculated

by linearly interpolating between the free energies of micellization corresponding to

spheres and to infinite cylinders. It is unclear whether this is a good approximation

if the cylinders are not sufficiently long, particularly with regard to the longer-ranged

electrostatic contribution, ge ec. Recently, new computational methods for solving

the Poisson-Boltzmann equation for ellipsoidal geometries have been developed.[181,

182, 183] Although they can be computationally challenging, it may be worthwhile

to explore these new methods to determine if an ellipsoidal shape provides a more

accurate representation than the spherocylindrical model for elongated micelles whose

size is finite.

The thermodynamic framework presented in Section 2.2 was general, that is, it

included micelles of all shapes (S) and sizes (lc). However, in later calculations, it

was assumed that all the micelles exist in the optimal shape, S*, and micelle core

radius, 1*. In fact, this is a very good approximation, particularly when the micelles

exhibit growth, and the distribution around Ic is very sharply peaked. However, it

would be instructive to consider a solution at the transition region where micelles

of various shapes and sizes coexist, in which case the entire distribution of l and S

values should be considered.

Recall that the total free energy of the solution includes a term based on the free

energy of mixing the micelles, the monomers, and the water molecules. In the case
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of ionic surfactants, the solution also contains counterions, and therefore, the free

energy of mixing should also include the mixing of the counterions. This contribution

was neglected in the thermodynamic framework presented in Section 2.2. Future

researchers may find it worthwhile to modify the thermodynamic framework to include

this contribution, keeping in mind that it should be consistent with the description

of counterion binding presented in Section 2.4.

In modeling the counterion binding, it was assumed that the counterions do not

participate in the micellization process explicitly, but instead are part of a diffuse

ion cloud interacting with the micelle being formed. In Appendix C, an alternative

approach was presented, whereby a certain fraction of the surfactant molecules in

the micelle do not dissociate, and the bound counterions are explicitly included in

the micellization description. Theoretical results of this approach are presented in

Appendix C, where it was shown that the CMC's predicted using both approaches

should be the same. However, more work is required to actually prove that the

two approaches are equivalent. Specifically, the model for the calculation of the

free energy of micellization when counterions are included explicitly, gmic, should be

modified to incorporate the effect of the bound counterions, not accounted for in

the original calculation of gmic. In particular, the bound counterions will reduce the

surface charge density of the micelle, thus significantly decreasing the electrostatic

contribution to the free energy of micellization.

McMillan-Mayer Statistical-Thermodynamic Framework

The McMillan-Mayer statistical-thermodynamic framework presented in Chapters 4

through 6 provided a rigorous, systematic investigation of intermicellar interactions,

including both excluded-volume and electrostatic interactions, for solutions of single

surfactants. However, for many practical purposes, surfactants are used in mixtures,

where the composition has been optimized to attain a specific desired property. The

molecular-thermodynamic theory of micellization with a Stern layer has already been

extended to model binary mixed micelles.[184, 185, 186, 187] The next step is to

extend the McMillan-Mayer approach to mixed micelles in order to more accurately
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study the effect of intermicellar interactions on the mixed surfactant solution behavior.

This is a challenging problem, because there is an additional variable to deal with in

the binary mixed micelle case, namely, the solution composition. However, because

so many practical applications exploit surfactant mixtures, such a theoretical effort

appears worthwhile.

The statistical-thermodynamic framework described in Chapter 4 was developed

for micelles which are in their optimal micellar shape, S*, and optimal micelle core

radius, l*. This framework could be generalized to incorporate a micellar solution with

a distribution of micelle shapes and sizes, as was done in the case of the molecular-

thermodynamic theory described in Section 2.2. Including a range of micelle sizes

in the context of the McMillan-Mayer approach is a challenging problem, because

both the electrostatic and the excluded-volume EXCESS chemical potentials would

also have to be modified to include the full range of micelle core radii. Of course,

as discussed above, assuming that all the micelles are at the optimal radius, l , is

typically a very good assumption, and therefore, the inclusion of these additional

features may not be as worthwhile.

A key issue that requires improvement relates to the model for the electrostatic

intermicellar interactions presented in Chapter 6. The Debye-Hiickel model is versa-

tile in that it can model charged cylindrical micelles, and therefore, it can be used

to model micellar growth in ionic surfactant systems. However, it is not an accu-

rate representation of the electrostatic potential. The modified Poisson-Boltzmann

equation is more accurate, but it cannot yet be utilized to model charged cylindrical

micelles. It was demonstrated that including electrostatic intermicellar interactions

improves the predictions of micelle size, so it is clear that developing a more accurate

model for the electrostatic interactions between charged elongated micelles is worth

the additional theoretical and computational effort. An interesting approach is to

use the modified Poisson-Boltzmann equation for the case where the central charged

micelle is an infinite cylinder, but the micelles in the ion cloud are treated as effective

spheres. The EXCESS electrostatic chemical potential of an elongated micelle could

then be calculated by interpolating between the chemical potentials corresponding
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to an infinite cylinder and a sphere. This is an interesting way to approximate the

electrostatic EXCESS chemical potential of a charged spherocylindrical micelle in the

presence of other charged micelles. The required theoretical development appears

to be relatively straightforward, but the calculations may be time-consuming due to

the extra interpolation step. Note that, as discussed above in the context of the

molecular-thermodynamic theory, the accuracy of the interpolation should be tested

by comparing the predictions with those corresponding to electrostatic models for

ellipsoidal micelles.

Another possible approach for calculating the electrostatic potential on the mi-

cellar surface is to use a cell model.[24, 25] In a cell model, the solution is divided

into cells of equal volume, each containing one micelle and associated counterions and

coions. In the context of the cell model, micelles are not included as part of the ion

cloud. Instead, intermicellar interactions are included indirectly through the ion dis-

tribution. That is, the counterions , coions, and monomers feel the presence of other

charged micelles, and therefore, order around the micelle within the cell accordingly.

In addition, the size of the cell depends on the micelle concentration, and therefore,

as more micelles are created, the potential has less room to decay. Mathematically,

this is accounted for through the boundary conditions. At the boundary of the cell,

the potential levels off due to the symmetry of the cells, but never actually decays to

zero.

In addition to the modified Poisson-Boltzmann equation that was derived in Sec-

tion 6.4.2, a more well-known modified Poisson Boltzmann equation has been derived

which includes liquid-state theory corrections for the ion/ion correlations.[188] This

equation can be implemented in the context of the cell model, and is referred to as

the MPB equation. The MPB equation is fairly complex mathematically, but it can

be applied to spherical, cylindrical, and planar geometries.[189, 190, 191] It would be

interesting to implement the MPB equation to determine the effect of a more accurate

model of the electrostatic potential on the resulting micellar solution properties.

Finally, as discussed in Appendix G, alternatives to the charging approach are

available. A simple liquid-state theory model was presented in Appendix G.1, the
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MSA model, which reduced to the Debye-Hiickel solution in the limit where the

solutes in the ion cloud are point charges. Alternative liquid-state theory approaches

are available. For example, Ronis et al. combined[192] the more complex hypernetted-

chain approximation (HNC) for the micelle/micelle pair potential with the analytical

mean-spherical approximation (MSA) for all other pair potentials (micelle/counterion,

micelle/monomer, counterion/coion, etc). In this way, an analytical solution was

obtained. Perhaps, some of these principles could be applied to calculate the EXCESS

electrostatic chemical potentials.

8.2.2 Experimental Investigations

In addition to the theoretical improvements described above, there are several ex-

perimental improvements that could be made as part of future research. The key

improvement to be made is to develop a more accurate method for interpreting the

light scattering data of charged elongated micelles. As discussed in Chapter 7, in the

analysis of the intermicellar interactions, the elongated micelles were treated as effec-

tive spheres. This introduced some error in the deduced values of the average hydro-

dynamic radius and aggregation number for E1S, because the E1S micelles exhibited

significant micellar growth. Currently, no model is available to describe electrostatic

intermicellar interactions between finite cylindrical or ellipsoidal micelles. As better

approaches are developed to model these anisotropic shapes, the light scattering data

for E1S should be reexamined.

The micellar growth of the E1S micelles eventually led to phase separation at

high salt concentrations. The coexistence curve was measured in 0.9M NaC1. It is

postulated that this phase separation corresponds to a coacervation of the micelles.

In coacervation, the micelles grow to be very long, and therefore, find it entropically

favorable to align, thus forming a separate liquid-crystalline condensed phase. The

resulting condensed phase should be examined more closely to determine if it is indeed

liquid-crystalline. It would be interesting to measure the coacervation phenomenon

at additional salt concentrations, in order to map out the entire cloud-point tempera-

ture surface as a function of both surfactant and salt concentration. In addition, more
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studies should be conducted to determine if any of the other dodecyl ethoxy sulfates

phase separate at solution conditions outside of the range examined in the study pre-

sented in Chapter 7. Finally, this coacervation phenomenon is not predicted by any

of the theoretical models presented in this thesis. As better models of intermicellar

interactions are developed, perhaps eventually, they will be able to predict this com-

plex phenomenon. A systematic investigation of coacervation, linking experimental

results with theoretical predictions, may also help in gaining a better understanding

of the molecular-level interactions responsible for coacervation.

Recall that a second peak at large length scales was observed for E6S at high

temperatures. This phenomenon should be investigated further in order to quantify

it more accurately and determine if it is due to intermicellar interactions. Other

scattering methods, such as neutron scattering, may help elucidate the nature of the

second peak. If it is representative of long-range attractions, perhaps bulk phase

separation occurs at some surfactant or salt concentration not investigated in this

study. It is also likely that E4S exhibits this secondary peak at high temperatures.

Based on the experimental results presented in Chapter 7, it appears that E1S and

E2S behave like typical ionic surfactants. On the other hand, E4S and E6S behave like

typical nonionc surfactants, even to the extent of possibly exhibiting strong attractive

interactions at high temperatures. Unfortunately, E3S, the surfactant which bridges

between these two groups, was unavailable at the time when this investigation was

conducted. In the future, if E3S could be synthesized, it would be interesting to study

its micellar properties to determine whether its behavior is dominated by electrostatic

interactions among the surfactant heads, as in the case of E1S and E2S, or by steric

interactions among the surfactant heads, as in the case of E4S and E6S.

Finally, in addition to the experimental investigation presented in this thesis, a

parallel study of the shape and size of mixed micelles formed by E6S and C12E6 has

been conducted in our group. Indeed, interesting results have been obtained regarding

the impact of steric and electrostatic interactions among the heads of the surfactants

forming the mixed micelles.[193] It would be interesting to expand the study of mixed

micelles to encompass the other alkyl ethoxy sulfates examined in this thesis, namely,
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E1S, E2S, and E4S, and quantitatively link these results with those presented in this

thesis for the pure surfactant case.

In this thesis, a thorough theoretical and experimental investigation of the mi-

cellization and micellar solution behavior of aqueous ionic surfactant solutions was

undertaken. It is hoped that the results presented in this thesis not only expand

our knowledge of ionic surfactant solution behavior, but also serve as a basis for

continuing investigations of these fascinating systems.
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Appendix A

Derivation of the Stern Layer

Equations

In this appendix, the boundary conditions and relevant equations required for the

Stern layer model are derived. Recall that, as illustrated in Figure 2-2, the Stern

layer is denoted as region I, and the diffuse ion cloud is denoted as region II.

According to Gauss' Law, the electric field, E, at a distance r outside a charged

body of radius R is given by[68]

4 Rmra 4xRmez
E u 4 (A.1)

erm ear m

where a is the area per charge, m = S - 1, and S is a shape factor (S = 1 for infinite

bilayers, S = 2 for infinite cylinders, and S = 3 for spheres).

The electrostatic potential, 4, is related to the electric field as follows

E = (A.2)
Or

By applying Eqs. (A.1) and (A.2) at the charged surface of the micelle, that is, at

r = Rch, the boundary condition given in Eq. (2.32) is obtained, that is,

r0 1 4ez (A.3)
19 r=Rh clach
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where e1 is the dielectric constant in region I, and ah is the area per surfactant

molecule at the surface of charge (r = Rch). Note that in Eq. (2.32) of the main text

it was assumed that the dielectric constant in region I is the same as that in region

II. In other words, E1 = C2 = 6.

At the radius of the Stern layer (r = R,), the electrostatic potential, 4, must be

continuous.[68] In other words,

4'(Rs) = II(Rs) (A.4)

which is Eq. (2.33) of the main text. In addition, the electric field, or the gradient

of the potential, in the direction normal to the boundary must be continuous.[68] In

other words,

EiE,(Rs) = 62EI(Rs) (A.5)

which implies that

(" (x ) = E2 (A.6)
r--Rs ( r=R,s

Equation (A.6) is Eq. (2.34) of the main text, where it was assumed that e6 = 62 = 6.

Note that if charges were physically present on the Stern layer surface (at r = Rs),

the boundary condition given in Eq. (A.6) would have an additional contribution to

account for the charge at the Stern layer surface. Specifically,

r = 47E2Us + 62 (A.7)

1 O)r=R s  )r=R

where a, is the surface charge density at the Stern layer surface. In the model

presented here, it is assumed that the charges are infinitesimally displaced from the

Stern layer surface, so that as = 0.

By applying Eqs. (A.1) and (A.2) at the radius of the Stern layer, R = Rs, the
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following equation is obtained

Or r=R

4rez (Rch 

clach k. Rs )
(A.8)

Making use of the continuity of the electric field, Eq. (A.6), the boundary condition

given in Eq. (2.41) of the main text is obtained (recall that Rs = Rh+ 6Si). Specifically,

Or )r= Rs 2 Or r=R

4irez

c2ach(1 + 6ilRch)m

The final boundary condition is due to electroneutrality in the bulk where the

potential decays to zero, namely,

,I( (r -+ oc) =

Or )_+(Or J +O

(A.10)

(A.11)= 0

Now that the boundary conditions have been defined, the Stern layer equations

can be derived. First, the Laplace equation, Eq. (2.31) in the main text, is rewritten

as follows

V20,(r) = [ ao = 0Or Or (A.12)

Integrating this equation once, and making use of Eq. (A.3), the boundary condi-

tion at the surface of charge, results in the following expression

rm Or JOr(80,
47rez
-- 1 ach61 ch

(A.13)

Integrating Eq. (A.13) for each shape separately, one obtains

41rez [r + C]
Elach

, for spheres

, for infinite cylinders

, for infinite bilayers

(A.14)
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I (r) =



where C is an integration constant. The boundary condition at the outer boundary

of the Stern layer (r = R,), given in Eq. (A.4), is utilized to solve for C. Hence, the

equation for the electrostatic potential in the Stern layer now becomes

S4 r(Rs) + Rh for spheres

0 (r) = I(Rs) zR [ln r - In R,] , for infinite cylinders (A.15)

(Rs) -4ez [r - Rs] , for infinite bilayers

where OII(R,) is the electrostatic potential created by the diffuse ion cloud at the

surface of charge, r = R,. This can be calculated by solving the PB equation,

Eq. (2.29), in region II, subject to the boundary conditions given in Eqs. (A.9) and

(A.10).

Finally, applying Eq. (A.15) at the surface of charge (r = Rch) results in the

following expression (recall that R, = Rch + 6i)

4II(R) + 4arezS) , for spheresiis) lach(1+lRh)

'I(Rch) = i+(R) + 4ezRch n (1 + i/Rch) ,for infinite cylinders (A.16)

0, 1 (Rs) + , for infinite bilayers

which is Eq. (2.35) of the main text, where it was assumed that E1 = E.

To determine gelec, the surface potential, 'i (Rch), is integrated according to

Eq. (2.28) of the main text (recall that ez/ach = a). Each of the shapes is inte-

grated separately. This yields

Spheres

ah f 47 6~ach f (ze) 2

3gelec - h ] /II(Rs) da + aT -a
=c kT o EkT(1 + 6i/Rch) B22hksT

= geec,I + 4r6e z (A.17)
S2lachkT(1 + 6i/Rch) 2c2rhkBT
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Infinite Cylinders

a= h o 4-Rchach _ _ (ze) 2

9gelec h I= - II(Rs) da + ln(1 + 65 /Rch) a da - (ze)2

kT o e1kT o 2 2 rhkBsT

4w7Rche2 2  _2 _ 2
= /gehec,ez + In(1 + Si/Rch) - (A.18)

2elachkT 2E2 rhkBT

Infinite Bilayers

gee ch " 457ri ach (ze) 2

ec kT (o E)kT o 212 rhkBT

47r6ie 2z2  (ze)2

= 3getec,I + 2lahkT - 2c2 rh(A.19)
2ElachkT 2E2ThkBT

where fgelec,tI is obtained by integrating ObI(R,) according to Eq. (2.40). Several

analytical approximations for 3 gelec,II are given in the main text.

Equations (A.17)-(A.19) can be further simplified in terms of the dimensionless

charge density, s, given by

4we2 z 2

s = (A.20)
S 2GachkBT(1 + 6i/Rch)m

which gives Eq. (2.38) of the main text, where E2 = e. Note that the surface charge

density, a = ez/ach, has units of C/A2. By multiplying by the quantity ez/lEksT,

which has units of A2/C, the surface charge density can be made dimensionless. It

is further multiplied by 47/(1 + 6i/Rch)m for convenience in order to simplify the

expressions for geec. This yields

Ogelec,II + _ (1 + 6i/Rch) - (Ze2B , for spheres
2 i1 2f2rhkBT

gelec = 3 getec,II + sRh f (1 + 6 i/Rch) In (1 + 6i/Rch) - (ze)2  , for infinite cylinders
g9elec,II + -2 - E BT , for infinite bilayers

2 el 2E2rhkBT

(A.21)

which is Eq. (2.36) along with Eq. (2.37) of the main text, where f1 = C2 =- -
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Appendix B

Numerical Model of Counterion

Binding

In addition to the thermodynamic model of counterion binding presented in Sec-

tion 2.4, it is possible to analyze counterion binding numerically. In this approach, the

micelle and its surrounding counterion cloud create an electrostatic potential based

on the Poisson-Boltzmann equation, which can be calculated numerically rather than

by using an analytical approximation. The counterion profile can then be calculated

directly from the electrostatic potential according to the Boltzmann distribution.

Specifically,
e' (B. 1)ci(r) = c' exp (B.1)

where ci(r) is the concentration of ion i at a distance r from the center of the micelle,

c' is the bulk concentration of ion i, ?(r) is the electrostatic potential a distance r

from the center of the micelle, zi is the valence of ion i, e is the electronic charge, kB is

the Boltzmann constant, and T is the absolute temperature. The Poisson-Boltzmann

equation was used to solve for O(r) in the region immediately surrounding the micelle,

with no Stern layer. The purpose of neglecting the Stern layer was to study the way

in which the ions distribute based solely on O(r) and Eq. (B.1). Then, this ion

distribution was used to determine the fraction of ions that are very close to the

micelle, in a region which is approximately the size of the Stern layer region.
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Sodium dodecyl sulfate (SDS) was studied as a typical example, which forms a

spherical micelle with a radius of charge equal to 15.7 A. A value of r = 0.029A - 1,

corresponding to the SDS CMC value of 8mM at 250C, was used. The ion distribution

given by Eq. (B.1) is shown in Figure B-1, where the counterion concentration, ci,

scaled with respect to the bulk concentration,ci, that is, ci/c , is plotted as a function

of the distance from the surface of charge of the micelle. Very close to the micelle

surface, the counterion concentration is higher than 150 times the bulk counterion

concentration. Far from the micellar surface, ci/c' approaches unity, indicating that

the bulk counterion concentration has been reached.

The same counterion distribution, ci(r), is illustrated differently in Figure B-2,

which shows the cumulative fraction of counterions located around the micelle as a

function of distance from the surface of charge. A distance equivalent to the thick-

ness of the Stern layer thickness ( 6 Na+ = 1.85A) is indicated by the dashed line.

According to this analysis, only 15% of the counterion cloud is located inside the

region equivalent to the Stern layer thickness. The dotted line indicates a distance

of one Debye screening length (r,-1 . 34A). This region includes 65% of the counte-

rions. At large distances, the profile levels off to 100% of the total counterions. It

is interesting to note that most experimental techniques measure counterion binding

values of 60-80%. According to the numerical analysis presented in Figure B-2, these

experimental techniques are measuring counterion binding at a distance equivalent to

at least a micelle diameter away from the micellar surface, not at the micellar surface,

as is commonly assumed.

In the future, it may be useful to use the numerical analysis presented here to

calculate the fractional counterion binding. However, this analysis was found to

be computationally challenging and time-consuming. While this approach provides

insight into the ion distribution surrounding the micelle, it is too tedious to be useful

as a predictive tool. The analytical approach presented in Section 2.4 provides a

much faster calculational tool.
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Figure B-1: Scaled ion concentration (ci/cf) as a function of the distance from the
surface of charge of a spherical micelle.
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Figure B-2: Fraction of counterions as a function of the distance from the surface of
charge of a spherical micelle. The dashed line indicates a distance equivalent to the
width of the Stern layer, and the dotted line indicates a distance equivalent to - 1 .
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Appendix C

The Role of Counterion Binding

in the Micellization Process

As mentioned in Section 2.4, there are two competing viewpoints on the role of

counterions in the micellization process. One viewpoint considers the micelle to be

formed in the presence of a diffuse ion cloud. The counterions do not participate

explicitly in the micellization process except through the interaction of the micelle

with the ion cloud in which they are distributed. This is the viewpoint taken in the

model presented in Chapter 2.

A competing viewpoint assumes that a certain fraction of the counterions par-

ticipate explicitly in the micellization process by binding to the micelle surface, and

thereby reducing its overall surface charge. This is the viewpoint taken by Zana

and others.[81, 84] Both viewpoints are correct, provided that a consistent thermo-

dynamic framework is developed for each. Specifically, if counterions participate in

the micellization process, many of the equations derived in Section 2.2 of the main

text need to be modified. In this appendix, these modified equations will be derived,

and it will be shown that both viewpoints are indeed equivalent.

If the second viewpoint is adopted, the total Gibbs free energy of the micel-

lar solution should be modified to explicitly reflect the presence of the counterions.
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Specifically (compare with Eq. (2.1) of the main text),

G = pwN N1 u1N1 + plNcl + 1 nNn (C.1)
n>1

where 1 c1 is the chemical potential of the free counterions, Nc1 is the number of free

counterions, jn is the chemical potential of an n-mer with bound counterions, and

all the other variables were defined in Section 2.2. Note that in Eq. (C.1), it was

assumed that all the micelles are in their optimal shape, S*, and optimal core radius,

I$ , so that the summations over S and l are not necessary.

The equilibrium thermodynamic state of the micellar solution corresponds to the

minimum of the Gibbs free energy, G. In other words, when the solution is in ther-

modynamic equilibrium, the following condition is satisfied

dG T,p,Ns,Nw,N = 0 (C.2)

where Nc is the total number of counterions, including those that are free in solution,

N 1 , and those that are physically bound to the micelles. Using Eq. (C.1) in Eq. (C.2)

yields

dG IT,p,N,Ns,N, = IldN + acidNc, + E fndNn (C.3)
n>1

Note that in Eq. (C.3) the variables dN1, dNcl, and dNn are not independent due to

mass balance constraints on the total number of surfactant molecules and counterions.

Specifically, the surfactant mass balance implies that

N, = N1 + Z nN, (C.4)
n>1

In addition, the counterion mass balance requires that

Nc = Nc + E naBNn (C.5)
n>1

where aB is the fractional counterion binding which is the fraction of surfactant
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molecules in the micelle which do not dissociate. Since N, is constant, and N, = N,

due to electroneutrality, it follows that

dN1 = - ndNn (C.6)
n>1

dNc1 = - naB dNn (C.7)
n>1

Using Eqs. (C.6) and (C.7) in Eq. (C.3) yields

dGIT,p,N,S,NW,Nc = E [ n- -ot a el] ndNn = 0 (C.8)
n>1

which indicates that, at thermodynamic equilibrium, the chemical potentials Pn, ,P1,

and pUc must satisfy the following constraint

n(pi + aBIl) = An (C.9)

Equation (C.9) is the equilibrium condition when counterions are included explicitly

in the micellization process, and is different from the equilibrium condition for the

case when the counterions do not participate explicitly in the micellization process,

given in Eq. (2.7) of the main text (again, it is assumed that the micelles are at S*

and l*).

Using expressions for ,n = (OG/ONn)T,p,N,N,,Ncl, f1I = (OG/ON1)T,p,N,Nm,Nc ,

and Ac = (&G/NNl)T,p,N.,N, derived from G in Eq. (C.1) in the constraint given by

Eq. (C.9), the micelle size distribution can be obtained. Specifically (compare with

Eq. (2.18) in the main text),

(Xi XaBe)n
C = (X e) exp [-3nmic(n, l*, S*, aB)] (C.10)

e

where gmic is the free energy of micellization when counterion binding is included and

is given by

9mic = - (pi + aBP 1 ) (C.11)
n
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where In is the standard-state chemical potential of the n-mer with naB bound

counterions. Hence, the mole fraction of n-mers depends on (i) the entropic cost

of localizing n monomers and naB counterions in one location in order to form the

micelle, and (ii) the free-energy advantage of forming an n-mer with naB bound

counterions. Equation (C.11) illustrates the difference between gmic and gmic (where

9mic = pn/n-p , as described in Section 2.2). That is, the bound counterions must be

included in gmic. Specifically, the electrostatic contribution, gelec, will be significantly

lower because a certain fraction, naB, of the surfactant molecules in the micelle will

not be charged. Clearly, when aB = 0, ' = - p'. Therefore, gmic reduces to gmic in

the limit of zero counterion binding.

The mole fraction of free counterions, Xci, is equal to the mole fraction of counte-

rions dissociated from the surfactant monomers plus the mole fraction of counterions

from the dissociated surfactant molecules in the micelles. That is,

Xcl = X 1 + (1 - aB)(XS - X 1) (C.12)

Using Eq. (C.12) in Eq. (C.10), taking the natural log, and retaining only the

terms that are of order n, the following expression is obtained for the CMC,

CMC exp mic C 1) (C.13)(C 1+aB

The expression for the CMC for the case when counterions participate in the

micellization process, Eq. (C.13), is clearly different than that corresponding to the

case when counterions do not explicitly participate, as derived in Eq. (2.20). However,

recall that gmiz will be lower (more negative) than gmic due to the presence of the

bound counterions, thus reducing the glec contribution. Dividing (gmic- 1) by 1 + aB

should reduce the exponential term so that it is equivalent to gmic - 1. Therefore, the

resulting CMC's from both approaches should be equivalent. Indeed, when aB = 0,

Eq. (C.13) becomes CMC , (gmic - 1), which, because gmic is equal to gmic in the

limit of no counterion binding, reduces to Eq. (2.20). It is important to note, however,

that including the counterions in the micellization process requires knowledge of an
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additional paramter, namely, aB, which must be determined experimentally.
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Appendix D

Excess Gibbs Free Energy and

Excess Chemical Potentials

In this appendix, Eq. (4.11) in the main text is derived, along with expressions for the

excess chemical potentials (Eqs. (4.12) and (4.13) of the main text). The definition

of the excess Gibbs free energy, Gex, is given by

Ge(T,p,{No,Nw) = G(T,p, {N},Nw) - Gid(T,p, {N,},N) (D.1)

The objective is to establish a connection between the Gibbs free energy at pres-

sure p and the McMillan-Mayer free energy at pressure p + HI. Accordingly, the first

step involves transforming G(T, p, {N)}, Nw) from pressure p to pressure p + I. In

view of the fact that

( G= V (D.2)
OP ) T,{N, },Nw

where V(T, p, {N)}, N,) is the system volume, integration of Eq. (D.2) from p to

p + II yields

G(T,p, {No},Nw) = G(T,p+ I,{N},N)- fP+H V(Tp', { N,}, Nw) dp'

(D.3)
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Inserting the expression for G given in Eq. (D.3), along with the expression for

Gid given in Eq. (4.6), into Eq. (D.1) yields the following expression for G ex

+
Gex(T,p, {N},N) = G(T,p+ II, {N},Nw) - V(T,p', {N}, Nw)dp'

- N- + NC+ + kBT E N,(ln m - 1)

(D.4)

Next, a Legendre transformation[108] is utilized to transform from the Gibbs free

energy, G, to the McMillan-Mayer free energy, F. Specifically, in order to transform

from G(T,p+ I, {N)}, N,) to F(T, Vt, {N}, po), the variables p+ II and Nw should

be transformed to the variables V t and p , respectively (recall that Vt = V(T,p +

II, {N)}, N,), as described in Section 4.2). This Legendre transformation yields

F(T,Vt, N,},p;) = G(T,p+II,(N},N) - (p+II)Vt - Npu (D.5)

Utilizing the relation between G and F, established in Eq. (D.5), in Eq. (D.4)

yields

Gez(T,p,{N)},Nw) F(T, Vt, {N}, It) + (p+ II)Vt - P+nV(T p', {No},N) dp'

- N - kBT N, (ln m, - 1) (D.6)
a

Next, the standard-state chemical potentials of the solutes in Eq. (D.6) are trans-

formed from p/ to p1 with the use of Eq. (4.7). Using this standard state will allow

a connection with FID given in Eq. (4.2). In addition, the resulting expression for

Gez is rewritten below utilizing number concentrations, c , rather than molalities, ma

(recall that m_ = ctVt/N w). Specifically,

Gex(T,p, {N},Nw) = F(T,Vt, {N},/,) + (p + II)Vt
- p+n V(T, p', {N)}, N,) dp'
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- PNo, B+ kTln

-kBT N, [In ( ) - 1] (D.7)

where V, = V(T, p, {O}, Nw)/N, is the volume per molecule in pure solvent (water).

By rearranging the natural log terms in Eq. (D.7), the following expression for

Ge" is obtained

Gex(T,p, {N}, N) = F(T,Vt,{N}, p) + (p + II)Vt
- + V(T, p', { No}, Nw) dp'

- NoI - kBT No [n (c -1]

Vt
-NkBTln In (D.8)

Vw Nw

where N = , N,.

Recall that the McMillan-Mayer free energy, F, can be divided into IDEAL and

EXCESS contributions (see Eq. (4.3)). Utilizing Eq. (4.2) for FID in Eq. (4.3), the

following expression for F is obtained

F(T, Vt, {Nr}, p) = Np +kBT N, (In - 1 -pVt+FEX (T, Vt, {N}, p)

(D.9)

Utilizing the expression for F given in Eq. (D.9) in Eq. (D.8), and cancelling the

appropriate terms, yields the following expression for GeX

Gex(T,p, {N}, N) = FEX(T, Vt, {N},/ ) + IIVt

- fp+I V(T, p', {N,}, N,) dp'

Vt
-NkBT In (D.10)

Vw Nw

Equation (D.10) is the GX expression given in Eq. (4.11) of the main text. The

advantage of utilizing this approach is that the McMillan-Mayer free energy can be
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related to a model for solute molecules interacting through vacuum. Equation (D.10)

provides the necessary relation to transform the McMillan-Mayer free energy, FEX

to the Gibbs free energy, Gex , for solute molecules interacting through solvent.

The excess contributions to the chemical potentials of the solutes and the solvent

can now be obtained directly by differentiation of Ge" with respect to N, and N,,

respectively. Specifically, for solute a, one obtains

(ace) T,p,{N ,,A,Nw

= +(IIVF +Vt 9__(No T,p,{N.,#},N. 0L, T,p,VN,)},Nw

p+ii Vt NkBTVt
V, (p') dp' - kBTln V V0

-V t '9 r )

T,p,{Na(D.11},Nw

(D.11)

where Vt is the partial molar volume of solute a at pressure p + H, that is,

(D.12)
V=( ON Vt T,p,{NO,},N

and V, (p') is the partial molar volume of solute a at pressure p'. Note that in

taking the derivative of the integral term in Eq. (D.10), the limits of integration must

also be differentiated. This yields the additional -Vt(I-I/No)T,p,{N.,,},N, term in

Eq. (D.11).

Cancelling terms in Eq. (D.11) and rearranging, one obtains the following expres-

sion for lpx

x (OFEX + NkBT
=IN, V I Vt

p+n , Vt
- V,(p') dp' - kBT In V (D.13)

The osmotic pressure, H, can be split into IDEAL and EXCESS contributions.

Specifically,
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I = IID I EX

= ctkBT + IEX (D.14)

where ct = N/Vt is the total solute concentration.

In addition, the derivative of FEX in Eq. (D.13) can be expressed in terms of its

natural variables, T, Vt, {N,}, and p. Specifically,

( OFEXONo T,p,{N.0, ,NW

(OFEX)

OVt

OEX ,V N, o
aNo ) ,vt,{ 5y,,,p-

a(OVt " (D.15)

T,{N,}, (ON T,p

In view of the fact that

OF E X

ON, )T,

and
( FEX

aVt

Eq. (D.15) can be rewritten as follows

(aFEX
N0. JT,p,{N4},Nw

SEX _ EX Vt
Pol V0

Using Eq. (D.18) for the derivative of FEx, along with Eq. (D.14) for the osmotic

pressure, HI, in Eq. (D.13), and cancelling terms, one obtains the following expression

for P.x

ex
II0

SEX f+n Vt
EX - V (p') dp' - kBT In VNI-o, pwN

(D.19)

Equation (D.19) is the 4x" expression given in Eq. (4.12) of the main text.

For the solvent, the excess chemical potential is also obtained by differentiation
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of the Gex expression given in Eq. (D.10). Specifically,

(aGex
ONw T,p,{N,}

N FEX T,p,{N,}

- Vw(p') dp'
ap

V + vt a ) V t
l", 1 T,p,{N,}

-- I ) T,p,{N,}

NkBT
Vt

(D.20)

w -twhere V w is the partial molar volume of the solvent at pressure p + l, that is,

(D.21)

and Vw(p') is the partial molar volume of the solvent at pressure p'.

The derivative of FEX in Eq. (D.20) can be expressed in terms of its natural

variables, T, Vt, {N, }, and p . This yields,

OFEX,,
ON ,p,N}

O F E X )

S V t  0

SIIEX 'Vt

Ovtp
O8wT,p,jN,}

(D.22)

Utilizing Eqs. (D.22) and (D.14) in Eq. (D.20), cancelling and rearranging terms,

yields the following expression for p" (recall that N/Nw = m)

ex
ft = kBTm - p+ V(p') dp' (D.23)

Equation (D.23) is the expression for ptx given in Eq. (4.13) of the main text.
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Appendix E

Derivatives of the Monomer and

Micelle Concentrations

The derivatives presented in this Appendix apply to the case of micellar solutions

consisting of cylindrical micelles which are modeled as rigid spherocylinders. As

explained in the main text, this is the optimal micellar shape of experimental interest

for the nonionic surfactant systems described in Chapter 5.

The first and second derivatives of the monomer concentration, cl, and of the ze-

roth moment, c, with respect to the total surfactant concentration, c,, can be obtained

by utilizing Eqs. (5.31) and (5.32). The resulting derivative expressions are very long

and complicated, due to the dependence of the excluded-volume contributions on the

size distribution. Specifically, since Al"' and A~yl depend on c, in order to calculate

(Oc1/cs), it is also necessary to determine (Oc/0c5 ).

Eq. (5.32) can be rewritten as follows

qno
c1 = Cs- - q) 2 no( - q ) + q] (E.1)

K(1 - q)

where

K = Q exp[3no(gsph - gcyl) + Acy' ] (E.2)
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and

q = (QRc l ) exp[-3gc,l + Acyl]

with the excluded-volume parameters, A yl' and A y' , given by

Acl = a2Cs + ac + (a5 - al - a2 )ci

Acy l = (a4 - a3 )Cs + (a5 - a2 )c + (4a2  a3 - 2a 4 - a5)cl

where (see Eqs. (5.20) and (5.21))

27rd3

9
8Q

8Q2
a3  = d

d3

a4  = Qs2

a5 = Qs72 
2 / 3

The first derivative of cl in Eq. (E.1) with respect to c, is given by

(Oc, X1
Y

where

X= 1 + (2a2 - a5)D + (a3 - a4)D 2 +a 1 D 3

+ (a - ala3 + ala4 - a2a) (D- D2D3)

and

Y= 1 + 2(a 2 - a5)D 1 + (3a2 + a3 - 2a4 )D2 + D2 + aD3

-( - a2 + ala3 + 3a l a2 - 2a1a4 + 2a2a5 - a) (D - D2 D 3) (E.13)
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with Di (i = 1, 2, and 3) given by

qno

D = - q [no + (1 - no)q]
K(1 - q)2

q no [n +(1 + 2no - 2n)q + (1D2= K(1- q)3

qno0

D3 K(1 - q)

- 2no + no)q 2]

(E.14)

(E.15)

(E.16)

The first derivative of c with respect to cs is obtained by differentiating Eq. (5.31)

with respect to cs. This yields

( a)
a c Oc)

X 2

Y2
(E.17)

X2 (c= ) (1 C1
+

c1
+ (4a 2 + a3 - 2a 4 - a5)D + (a + a 2 - a5)D 3)

(E.18)+ (a4- a3)Di - a2 D 3

Y2 = +(a 2 -a 5)Di + aiD3 (E.19)

A second differentiation of Eqs. (E.11) and (E.17) with respect to c, yields the

corresponding second derivatives. The algebra is tedious, but straightforward. The

resulting expression for the second derivative of the monomer concentration is given

by

( 2c1'J9C
= 1
y1 X' - (a)c, )Y (E.20)

where

X'= (2a 2 - a5)D' + (a3 - a4)D' + ajD' + (a2 - ala3 + ala4 - a2a5 ) (2D 1D' - D'D 3 - D2D')

(E.21)
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and

D' D2 c1
Y' = 2(a 2 - a 5 )D' + (3a 2 + a 3 - 2a4)DL + 2 + aD'

Cl C1 OC +

-(a - a + aas + 3a l a 2 - 2ala4 + 2a 2a5 - a ) (2DD1Dl

+ ( D )- D2D), 19c,
4 ,

- D'D3 - D 2D')

(E.22)

In these and the following equations, the ' indicates differentiation with respect to cs.

The expression for the second derivative of the micelle concentration is given by

( )
02C

1

Y2
(2 ('C)y1)ac, (E.23)

where

X' =Cl _ D1
X (9c, dc

1+ 

1 

(+ \02

1 ,\ c) + (4a 2 + a3 - 2a 4 -
c2 19c,

+
Cl

a5)D' + (al + a2 - a5)D'

a5 )D 3) + (a4 - a3)D' - a2D'

(E.24)

and

Y2 = (a2 -a 5)D' + aiD'

The D 's (i = 1, 2, and 3) in Eqs. (E.21)-(E.25) are given by

( ODI+Dj{
D 

2 19c,

+D2{

=_ q )O(1
K(1 - q)2

(E.25)

- no) (Oq) OCS

1
K(1 - q) Oc,

qno

K(1- q)3

OK)
Oc'

{(1 + 2no - 2n0) + 2(1 - 2no + n )q}

1
K

(1- q)(1 -q) cs (O8K

(E.26)

(.7)

(E.27)
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+ (4a 2 + a3 - 2a4 - a5)D1 + (al + a2 -



oD3)D ' - c3
3 ( 1c, )

3 no 1- q

I q (I - q) ac,

1(0c1 , A-I 1 1 Ic+ -5/ Cs ]

and

( c,)

= a2 + al ( )+ (a5- a, - a 2 ) c

Sa2) + (4a2 + a3

(E.31)

- 2a4 - a5) (E.32)
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SOK)
oc,

(E.28)

( iOc
(E.29)

with

(E.30)

OAO)

(-A~es)

1

K



Appendix F

Hard-Core Contribution to the

Excess Chemical Potential

F.1 Nonionic Micellar Solutions

As described in Eq. (5.12) with n = 1, the hard-core contribution to the monomer

EXCESS chemical potential is given by

00oo

opEX,HC = 2BHC c1 +2 E B HCCm (F.1)
m=no

where B H C is the hard-core contribution to the second-virial coefficient between two

monomers, and BHC is the hard-core contribution to the second-virial coefficient

between a monomer and an m-mer.

The contribution of the excluded-volume interactions between two monomers to

B HC can be estimated by modeling each monomer as an effective sphere of radius

R 1, such that 4rR'/3 = Q,, the volume of a surfactant molecule. In that case,

the monomer-monomer excluded volume is given by 8(47rR3/3) = 82. Since B H C

represents the excluded volume per monomer, it follows that B HC = 8Qs/2 = 40Q.

The contribution of the excluded-volume interactions between a spherocylindrical

micelle of aggregation number n > no, and a monomer to B HC = BHC is given16) tl~LL~IIVI~ln1 1nVu ~ I
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by[111, 103]

BHC - 7(R )31 + + R)2 Ln (F.2)n1 3 2

where Ln is the length of the cylindrical body of a spherocylindrical micelle of aggre-

gation number n, and R is the radius of the two hemispherical endcaps having aggre-

gation number no = 47F(1*) 3 /3vtaii 0 4wR3/3Qs. Note that it has been assumed that

the radius of the hemispherical endcaps, Rsph, is equal to the cross-sectional radius of

the cylindrical body, Rcy. In other words, it is assumed that Rsph = Rcyt - R. For

the nonionic surfactants studied in Chapter 5, it is assumed that R = 1 (S = 2) + lhy,

where lhg is the length of the polar head. Note that 1*(S = 2) is used rather than

l (S = 3) because the nonionic systems described in Chapter 5 are typically elon-

gated rods, where the majority of the surfactant molecules reside in the cylindrical

body of the micelle. For the ionic systems studied in Chapter 6, it was assumed that

l = Imax, which is a typical conformation for many ionic surfactants. Thus, for the

ionic micellar systems, R = Imax + lhg

L, can be calculated by using the total volume of the spherocylindrical n-mer,

V, which is given by

Vn= 7 (d L,+ = nQ, (F.3)
2 6

where d = 2R. Using Eq. (F.3), L, can be written in terms of the aggregation

number, n, as follows

4na, - rd3 _ 0)s
Ln 47rd2 3  ( - no)Q (F.4)

" d2  7rR 2

Since 4rfR3/3 = 7rd 3/6 = noQS, Eq.(F.4) indicates that L = 0 when n = no. From

the definitions of R1 and R given above, it follows that

R1 - 4 1/3 (F.5)
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Using Eqs. (F.4) and (F.5) in Eq. (F.2), the following expression for B H C is obtained

BHC 2QS-7 2
1 2

2/3 ( 2/3), for n > no (F.6)

where y = (1 + 1/n/3).

Using B H C from Eq. (F.6) along with B-H C = 4Q, in Eq. (F.1) yields

opEX,HC
IJ~

8Qc 1 + 2(C, - cl) + Q'y2 2/3 (c - cl) (F.7)

where cs = cl + Em>no mcm and c = cl + Emano Cm. Equation (F.7) is the expression

EX, HC
for p XH given in Eq. (5.15) of the main text.

The hard-core contribution to the n-mer EXCESS chemical potential, EnX,HC

was given in Eq. (5.12) in the main text, which is repeated below for completeness

opEX,HC - 2BHC C 1 + 2 E B H C
Sm=1 no m

m7no

(F.8)

where Bnm is the hard-core contribution to the second virial coefficient between an

n-mer and an m-mer. Bnm was given in Eq. (5.14) of the main text, and is repeated

here for completeness

27rd 3

3
wd2

+ 2 (Ln + Lm) + dLnLm
2 4

(F.9)

Using Eqs. (F.6) and (F.9) in Eq. (F.8) results in the following expression for nEX,HC

2 2 / 3 )C 4d 3

3 m=no

Cm + rd 2  cm(Ln+Lm)+ 2 d CmLnLm
m=no m=no

(F.10)

which gives Eq. (5.16) of the main text.

The expression for L, in Eq. (F.4) can be utilized in Eq. (F.10) to obtain the
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following relation between p EX,HC and n

S- no (c-c)+ (c-c)+n 1 -cl) + - C)9 3 3 Ord3

(F.11)

which gives Eq. (5.17) of the main text.
-,, EX,HC nZ E X 'H C ) for sphero-

Using Eqs. (F.11) and (F.7), one can compute 3 (uXHC - HC) for sphero-

cylindrical micelles. Specifically,

(PnXHC - EXHc A - nA~' -

Q2n 2/ 3  + 2rd3  8QS
0,9n3 (C - c1) + Cs - C1)

9 3
2( 2C 2 2/3 8Q C " Cl)__8 2

-n [8 - (2 + noo)/3)sC1 + s72Cs + 7 no 2/3C - - ) - - CI)

(F.12)

Equation (F.12), corresponding to Eq. (5.19) of the main text, permits the identifi-

cation of A'ut and Acy , which are given in Eqs. (5.20) and (5.21) of the main text,

respectively.

F.2 Ionic Micellar Solutions

For ionic micellar solutions, there is an additional contribution to the hard-core EX-

CESS chemical potentials associated with the excluded volume of the counterions and

the salt ions. Note that, in principle, nonionic micellar solutions could also contain

added salt which would contribute to the excluded volume. However, this is not the

case for any of the nonionic systems considered in Chapter 5. In contrast, in some

of the ionic systems considered in Chapter 6, salt is present in significant amounts,

and therefore, the excluded volume associated with the salt ions and the counterions

must be accounted for.

As mentioned in Section 6.2.1, the counterions and coions are assumed to be of

the same size, with a radius ri. Accordingly, the excluded-volume contributions of the

counterions and the coions are the same. By adding the additional excluded-volume
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contribution of the ions to Eq. (F.1), the hard-core EXCESS chemical potential of

the monomers becomes

o00

op-XHC 2BHCCi + 2BHCC1 + 2 BHcc (F.13)
m=no

where B HC is the hard-core contribution to the second-virial coefficient between

monomers and ions, and ci is the total concentration of ions, including counterions

and coions, that is, ci = c, + 2 csaut.

Both the monomers and the ions are treated as spheres. As described in Sec-

tion F.1, the hard-core contribution to the second-virial coefficient between two

spheres of radii rj and rk is given by Bjk = 27r(rj + rk) 3 /3. Hence, the hard-core

contribution to the second virial coefficient between a spherical ion of radius ri and

a spherical monomer of radius R1 is given by

BHC 2(R 1 + ri)3  (F.14)
3

where 47rR/3 = Qs, with Q, the volume of a surfactant molecule. Similarly, the

hard-core contribution to the second-virial coefficient between two ions is given by

BfH c = (2r(2ri)3 /3) = 4Qi, where Qi is the volume of an ion. Note that B H c does

not contribute to pEX,HC or pEX,HC, but it will be useful in deriving the modified

Boltzmann distribution presented in Section 6.4.2.

Using Eq. (F.14) for the contribution of the ions in Eq. (F.13), along with the

contributions from the micelles and the other monomers given in Eq. (F.7), results in
EXHC

the following expression for XHC

oPEX,HC 47 (R 1 + ri)3 i + 8,l y 2 (C, - cl) + Qs2 2/ 3 (c- cl)

F 3
(F.15)

For the hard-core EXCESS chemical potential of the micelles, the excluded-volume
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contribution of the ions is given by an additional term in Eq. (F.8). Specifically,

pEX,HC
n

00
- 2B HC Ci + 2BHCC1 + 2 B H C m

m=ni nno
m=no

(F.16)

where B H C is the hard-core contribution to the second-virial coefficient between an

n-mer and an ion.

The excluded volume between an ion and a micelle, B HC, can be obtained from

Eq. (F.2), where the radius of the monomers, R 1, is replaced by the radius of the

ions, ri. In other words,

BHC (R+ i) 3 + (R+i) 2L, (F.17)

Using the expression for L given in Eq. (F.4), Bng c in Eq. (F.17) can be simplified

as follows

BHC = (R +i 2 27rri (F.18)

Equation (F.18) for the contribution from the ions, combined with the contribution

from the monomers and other micelles (given in Eq. (F.11)), results in the following

expression for p EXHC

S(R+ ri)2 ( 47ri

+c l( +
+n (js,-y2 Cl +-

+ R2 i +

CS - c 1 ) +
3

s?, 2 n 2 /

8Q 2

d3

3C1 +d 3 (C - C) +
9

- Cl))

S(Cs - C1)

(F.19)

Using Eqs. (F.15) and (F.19), one can compute p(,XHC - n1 EXHC) for sphero-

cylindrical micelles in the presence of counterions and added salt. Specifically,

p(I EX,HC - nEX,'HC) (F.20)

where

= 'ri(R + ri)2ci + ~2 no/3 C1
3

2 Cd3

+ -3(C-cl) +
9

(Cs - C1)3
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Acl - nAcyl



and

Acyl r [(RI + r)-(R + r) 2  ] ci + [8 - 72(2 + n /)]cl1 3 no
y2C 2 2 /3  8Qs 82

+Q CS + - - - C1) - C - C1)

which correspond to Eqs. (6.29) and (6.30) of the main text.
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Appendix G

Alternative Models for the

Electrostatic EXCESS Chemical

Potentials

G.1 Pairwise Electrostatic Interactions

As mentioned in Section 6.2.3, a charging process is not the only way to calculate the

electrostatic EXCESS chemical potentials. In this appendix, a method using pairwise

electrostatic interactions will be described. Theoretically, because electrostatic inter-

actions can be very long-ranged, three-body and higher-order interactions may be

significant. This issue is further discussed in Appendix G.2. However, incorporating

the higher-order terms in the approach described here would make the calculations

very complicated. Instead, it will be assumed that the micellar solution is very dilute

so that the higher-order terms can be neglected. In the approach described in this ap-

pendix, all pairwise electrostatic interactions, including interactions between solutes

in the ion cloud, are dealt with explicitly. Liquid-state theory is then used to obtain

thermodynamic quantities, including FEX,elec, from the interaction potentials. It will

be shown that in the limit ezo/kBT <K 1, the Debye-Hiickel expressions for nEX,etec

and pEX,elec derived in Section 6.3.1 are recovered. It is important to note that the
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model described in this appendix is only valid for spherical micelles, and therefore,

cannot be used to model micellar growth.

G.1.1 General Theory

The electrostatic interactions between charged bodies i and j a distance r apart

can be described using the potential of mean force between the two particles, wij.

For charged particles, the potential of mean force is determined by the electrostatic

potential as follows[28]

I ezjoi(r) , for r 2> ij (G.1)
wij(r) = (G.1)

oo , for r < aij

where aiy = ri + rj is the closest-contact distance between solutes i and j where ri

and rj are the radii of solutes i and j,respectively, e is the electronic charge, zj is the

valence of ion j, and 4i (r) is the electrostatic potential at a position r from the center

of ion i. Note that spherical symmetry is assumed in Eq. (G.1). The pair correlation

function between solute i and solute j, gij, can be obtained from the potential of

mean force as follows

j(r) = exp[-wij(r)] = exp[-/ezji(r)] , for r > aij (G.2)
0 , for r < aij

Liquid-state theories can be used to calculate thermodynamic quantities from the

pair correlation function. For example, the electrostatic EXCESS internal energy per

unit volume can be calculated as follows[28, 194, 195]

EEX,elec 2e 2  00 2 ) (
S27re 1 pjPkZjZk dr r2gjk(r) (G.3)

V E k r T

where pj and Pk are the number densities of solutes j and k, respectively. The EX-

CESS McMillan-Mayer free energy due to electrostatic interactions can be obtained

272



by integrating over EEX,elec as follows[28, 194, 195]

FEX,elec _EEX,elec dT
= -T T(G.4)V V T2

The electrostatic EXCESS chemical potential of species i can now be obtained by

differentiating FEX,elec with respect to the number of i molecules, Ni, as follows[28,

194, 195]
,EX,elec FEXelec) (G.5)

Ai aN f

G.1.2 Point Charges

As a first approximation, to simplify the calculations, the exponential term in Eq. (G.2)

will be linearized. In other words, ezj4i < ksBT, such that the following approximation

can be made

gj(r) = 1 - ez (r) , for r > aij (G.6)
kBT

i (r) can be obtained by solving the Poisson-Boltzmann (PB) equation around solute

i. As above, the same linearization approximation is made, and the PB equation

simplifies to the Debye-Hiickel equation given in Eq. (6.36). The solution to the

Debye-Hiickel equation for spheres is given by

(r) = zie exp[-'(r - aij)]
S(r) = (+(G.7)

where i is the inverse Debye screening length, described in the main text.

Using Eq. (G.7) in Eq. (G.6), a new expression for the pair correlation function is

obtained

zizje2 exp[- (r - ai)] (G.8)
rckBT (1+ aj)

In this model, the central micelle (or monomer) has a finite volume with a radius

equal to Rh (or rh for monomers), but all the solutes in the ion cloud are treated
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as point charges. In this case, ri = Rh (or rh for monomers) and rj = 0 for point

charges. Thus, aij = Rh (or rh for monomers). Using Eq. (G.8) in Eq. (G.3), the

following expression is obtained for the electrostatic EXCESS internal energy, EEX,e lec

EEX,elec 2-ie 2  00 27e2 00

V rr drE i j zj pj zV f Rch i j E ch

dr Z Pi Z pj 2 2 (e 2 exp[- ,(r - Rch)]'

SEkBT(1 + Rh)

(G.9)

The first integral in Eq. (G.9) equals zero due to electroneutrality. The second integral

can be easily completed to obtain[28]

EEX,elec K 3 kBT

V 87r(1 + KRh)
(G.10)

The McMillan-Mayer free energy can be calculated by integrating the internal

energy according to Eq. (G.4). The integration is straightforward (note that K also

has a temperature dependence), resulting in the following expression[28]

FEX,elec -kBT K2

V [8Reh

K 1 1
S + ln(1 + KRch)|
4R4h 4 3

Finally, the electrostatic EXCESS chemical potential of an n-mer can be obtained

by differentiating Eq. (G.11) according to Eq. (G.5), namely,[28]

VkBT [4

(nez)2 K

2E(1 + KRch)

- 1+ 1 ( (G.12)
4Rh 4Rch(1 + Rch) N T,V,{Nmfn,NsNlt,N.

(G.13)

Similarly, for a monomer, the electrostatic EXCESS chemical potential is given by

EX,elec __ (eZ) 2

'1 2c(1 + KRh) (G.14)

Equations (G.13) and (G.14) can be compared with the electrostatic EXCESS

chemical potentials obtained by using the charging process with the Debye-Hiickel
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approximation given in Eqs. (6.26) and (6.27), and repeated here for completeness

nXeIec (-BSE + mic(Rch) dq for micelles

EX,e-ec ( e)rh + ze mon(rh) dq , for monomers
1 ~ 2Erh fo

(G.15)

(G.16)

where BSE is the Born solvation energy of the micelle, which, for a spherical micelle,

is given by

The integral terms

fzI
Jo

(G.17)BSE = (nze)2

were solved in Eqs. (6.44) and (6.50) as follows2Rh

were solved in Eqs. (6.44) and (6.50) as follows

SRch _ (nez)2
Omic(Rch) dq = usks T ( , for micelles

2(1 + KRch) 2cRch(1 + KRch)

(G.18)
e o(rh) dq (ez)2

'bmon(Th) dq = , for monomers (G.19)
2~Trh( + Krh)

where s was defined in Eq. (6.46).

Using Eq. (G.19) in Eq. (G.16) for the monomers, the following expression is

obtained for the electrostatic EXCESS chemical potential of the monomers

EX,elec _ (ez)2K
1 - 2c(1 + Krh) (G.20)

Similarly, using Eqs. (G.18) and (G.17) in (G.15), the following expression is

obtained for the electrostatic EXCESS chemical potential of the micelles

EX,elec (ez) 2
n 2E(1 + rRch)

(G.21)

Interestingly, Eqs. (G.20) and (G.21) are identical to the electrostatic EXCESS

chemical potentials obtained from pairwise interactions (compare with Eqs. (G.14)

and (G.13)). The same approximations were made in each approach, that is, the

central micelle (or monomer) has a finite volume but the solutes in the ion cloud

are point ions. Hence, the same physical model will lead to the same expression for
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pEX,eec, although different approaches were used to arrive at that result. In the next

section, the implications of using a more accurate model for g(r) will be discussed.

G.1.3 Poisson-Boltzmann Pair Potential

In the previous section, the pair correlation function, gij, was linearized to obtain

expressions for pXlelec and .xeec. As discussed in Section 6.4.1, this is not a good

approximation for the high charge density surrounding a micelle. One alternative is

to use the full Poisson-Boltzmann equation for V. In this case, the pair correlation

function is still given by Eq. (G.2), with Eq. (6.32) to solve for the potential. (Al-

ternatively, one could use Eq. (6.85) to include the effect of finite-sized solutes in the

ion cloud.) In dimensionless variables (y = ez /kBT), the pair correlation function,

Eq. (G.2), is given by

gij(r) = exp (-Yizj) (G.22)

This pair correlation function can then be used in Eqs. (G.3)-(G.5) to obtain

EX,elec or pEX,elec. However, the exact form of y(r) is not known analytically, and

therefore, Eq. (G.3) cannot be integrated directly. Instead, a coupling constant is

used. As the coupling constant varies from 0 to 1, it has the effect of placing the

micelle in the system. The pair correlation function is multiplied by the coupling

constant, A, to "turn on" the interactions. That is,

9ij(r; A) = A exp ( i) (G.23)

The EXCESS chemical potential is then given by[195]

PEX,elec _4 Xe2 k1 f g(r; A)r dr dA (G.24)Aj - Z Pk Zk ]]gjjtr;rtt

where j = n for micelles and j = 1 for monomers. Using a coupling constant is

essentially the same as the charging approach described in Section 6.2.3, and will

result in the same expressions for •fx,etec and ex,elec No additional accuracy is
reslt n te sme xprssins or n adp oadtoa cuayi
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gained by using pairwise interactions. In other words, the accuracy of the electrostatic

EXCESS chemical potentials is determined by the model used for the calculation of

,, and not by the method used to calculate pEX,elec from 4.

G.2 Virial Equation - Mayer Cluster Integrals

As described in Section 6.2.3, another alternative method for calculating the EXCESS

properties of the system is to use the viral equation of state. The virial equation of

state is given by

pl = c + B 2 c cjCk B CjCkC + ... (G.25)
jk jk I

where I is the osmotic pressure, and c is the total concentration of solutes. The

summations are over all the solutes including micelles, monomers, counterions and

coions. B (2) is the second-virial coefficient between solute j and solute k, and B k is

the third-virial coefficient between solutes j, k, and 1. Typically, micellar solutions are

dilute so that three-body interactions are negligible. In this case, the virial equation

of state can be truncated at quadratic order. The second-virial coefficient can be

calculated from the potential of mean force as follows[195, 196]

B 2) = -27r f [e- k() _- ] r2 dr (G.26)

where wjk(r) is the potential of mean force between solutes j and k located a distance

r from each other.

For electrostatic interactions, the potential of mean force can be modeled in terms

of a Coulombic interaction, as follows[196, 197]

00 , for r < jk (G.27)

where k for r > kdistance between ions andkwherer

where ajk = rj + rk is the closest-contact distance between ions j and k, where rj and
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rk are the radii of ions j and k. This potential is commonly known as the primitive

model. The primitive model is generally a good description for dilute solutions of

electrolytes, where it is not necessary to evaluate very short-range potentials.[195, 151]

When the potential of mean force given in Eq. (G.27) is used in Eq. (G.26) to

determine the second-virial coefficient for electrostatic interactions, the integral di-

verges. Physically, the divergence is due to the fact that the Coulombic interaction

is infinitely long-ranged, and therefore, the many-body interactions cannot be de-

composed into a series of two-body, three-body, etc. interactions. In other words,

higher-order terms cannot be neglected. However, the divergence in the integral does

not lead to a divergence in the osmotic pressure because summing over all the ions

in solution will cause the integral to go to zero due to electroneutrality.

In view of the above, it is clear that a traditional virial representation cannot

be used to express EXCESS properties due to electrostatics. Instead, an alternative

approach based on an expansion in cluster integrals was derived by Mayer.[196] It was

determined that all the infinite contributions of each of the virial coefficients can be

summed in such a way that they mutually cancel, and thus a finite result is obtained.

The Coulombic potential was recast with an exponential decay as follows[196]

2

Wjk(r) = zJZke-r (s) (G.28)

where w() is the short-range (hard-core) potential, and e-"r is a convergence factor

to assure that all the integrals converge. In the dilute limit, t -+ 0, and the integrals

become relatively straightforward. In this limit, the Debye-Hiickel result is obtained

by summing only the integrals which are lowest order in concentration, also known

as the cyclic graphs. In using only the cyclic graphs, short-range interactions are

neglected, that is, the ions are treated as point ions. The resulting equation of state

is given by[196]

3

pH = c (G.29)
24-r
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The corresponding electrostatic EXCESS chemical potential is given by[196]

EX,elec (ez)r (G.30)
i 2c

Note that, in the limit where the central micelle (or monomer) is also a point ion

(Rch = rh = 0), the EXCESS chemical potentials derived in Appendix G.1, Eqs. (G.21)

and (G.20), would reduce to Eq. (G.30). In other words, in the Debye-Hiickel limit for

point ions, no matter what approach is used, the same EXCESS chemical potential

will be recovered. However, it would be a strong approximation to treat the central

micelle as a point ion.

Mayer demonstrated that the finite size of the ions could be accounted for by

including all the cluster graphs (higher-order in concentration).[196, 198] However,

the resulting equations are only tractable for a solution consisting of ions of the same

size. Clearly, this is not the case for a micellar solution where the radius of a micelle

may be 20 times that of a counterion. It may be possible to extend this approach to

asymmeteric ions, but it would require extensive statistical-mechanical calculations,

and is probably not worth the computational effort.
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