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Abstract

Revenue and product planning for automatic test equipment (ATE) manufacturers has
been difficult due to the cyclical nature of the semiconductor industry. Any insight into
this area can provide a significant competitive advantage through tighter controls on cost
and improved customer service. This work reviews possible improvements in revenue
planning and introduces tools to help better understand the market. A model for
developing forecasts of ATE demand based on planned semiconductor fab capacity
increases is proposed. This is meant to address some of the shortcomings of the current
approach, which is based on semiconductor revenue forecasts. The accuracy of the new
model's predictions is compared against the existing process's output. Although the data
used to support the model has not been in existence for long, early results show some
improvement. Both the new and old techniques are then used to assess the impact of
possible technology changes that would greatly affect the ATE market. This helps to
demonstrate the strengths and weaknesses of each approach. A financial model is also
presented which provides a quantitative assessment of tradeoffs in selecting capacity
levels. The competition and volatility in the semiconductor manufacturing equipment
industry drive the results of this analysis. Sensitivity analysis shows the impact of
improvements to forecasting accuracy and flexibility. Finally, more general
recommendations and observations are abstracted from each of the models and
applications presented. These primarily focus on the need to incorporate forecast error
into revenue and product planning.
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1. Introduction

1.1. Problem Statement

Automatic test equipment (ATE) serves the semiconductor manufacturing industry in

three ways. It is used to test fabricated wafers in the wafer sort operation, to test

packaged die in final test and to characterize the frequency and other performance

parameters of devices. It has been an integral part of the semiconductor manufacturing

process since the late 1960's [1]. Since the introduction of the personal computer in 1983

and its subsequent success, the ATE industry has had enormous growth, with a

compounded annual growth rate of 18.6%. However, this industry is not without its

problems. Although current annual revenues are over $3.5 billion, sales have been very

cyclical due to the nature of its customers, semiconductor manufacturers. Figure 1.1

shows the annual growth in revenues for the semiconductor industry and its equipment

suppliers (data source: VLSI Research).
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Figure 1.1 Revenue Growth: Semiconductor and Semiconductor Equipment Markets

In addition, there are strong efforts to reduce the cost of ATE. The growing complexity

of the semiconductor manufacturing process and device requirements have driven up the

price tag of a new fab to over $1B. Meanwhile, the price per million instructions per

second (MIP, a common measurement for computer power) has been in a steady decline



in accordance to Moore's law. As a result, semiconductor manufacturers are pushing

their suppliers to be more cost conscious [2], [3], [4], [5]. The effective management of

expenses caused by dramatic swings in demand can be the difference between a

successful and unsuccessful semiconductor manufacturing equipment supplier.

Due to the size and interest in the semiconductor industry, there are a variety of firms

focusing on developing accurate forecasts of future revenue to help in the management of

cyclicality. A common technique used by semiconductor manufacturing equipment

manufacturers is to track the percentage of revenue that semiconductor companies spend

on their type of equipment. This ratio is called the buy-rate. Trends in this percentage

are used in conjunction with semiconductor forecasts to create a top-down estimate of

sales for their respective industry.

In recent years, there has been an increased interest in using more concrete market data to

create bottoms-up forecasts [6], [7], [8]. Particularly since 1994, when the memory

industry was recovering from a dramatic downturn due to over capacity, research

agencies and industry journals have been closely following announcements of new fab

starts. There have been databases developed dedicated to tracking current worldwide

semiconductor fab capacity as well as future projections based on announced increases

[9]. Because fabs take more than two years to complete and are very visible, it is thought

that the tracking of new starts is a good means to predict future business for

manufacturing equipment companies [10], [11]. However, the relationships between

increases in worldwide fab capacity and ATE demand have not been explored to the point

where the industry can exploit such information.

1.2. Thesis Objective

The goal of this work is to investigate improvements to, and gain a deeper understanding

of, revenue planning for the ATE market. This includes:

* Testing the viability of using a bottoms-up forecasting process based on current and

planned worldwide fab capacity for revenue and product planning.

* Understanding how modeling can be used to investigate the impact on future demand

caused by predicted technology changes.



Quantifying financial trade-offs that exist due to the characteristics of ATE

manufacturing and the inevitable error that will exist in forecasting demand.

The benefits of findings in these areas include the ability of ATE manufacturers to take a

more proactive approach in supporting changes in customer demand. This could lead to

competitive advantages in the market place due to operational improvements such as

creating shorter, stable lead-times. Also, operating costs related to reactive capacity

expansions/reductions could be greatly reduced.

1.3. Research Description

The research for this work centered on modeling. This includes both an examination of

existing tools, as well as the development of new ones. Older models reviewed are

representations of current policies and processes. Newer models are a conglomeration of

internal tacit knowledge, market data, customer input, and statistical techniques aimed at

turning data and knowledge into information. These models were based on operations

research, particularly those that deal with planning for non-deterministic demand [12],

[13], [14], [15]. Although most of the work presented here describes the concepts behind

the models and their general effectiveness, there was a concerted effort made to ensure

that tools were developed that were practical and applicable.

There were a variety of sources that served as a foundation for the formulation of models

and parameters that were used. A large amount of the information was collected by

interviewing employees within Teradyne. Also, discussions were held with some of their

customers. Sources of market data include several consultant firms and industry

organizations such as Dataquest. VLSI Research, Strategic Marketing Associates, SEMI,

and Sematech. SEMI and Sematech also served as sources of technical information,

along with the SIA and industry journals.

1.4. Thesis Structure

This thesis reviews the effectiveness of current forecasting processes, introduces a model

to aid in revenue planning using fab announcement data, and reviews the trade-offs

involved in capacity planning. Chapter two examines the current process for performing

top-down forecasting. Its effectiveness is measured and assumptions that have been



brought into question are outlined. Chapter three reviews the development of a bottoms-

up forecasting model which is meant to address some of the concerns with the top-down

approach, as well as to take advantage of the detailed market data that now exists on

worldwide fab capacity. The effectiveness of this model is compared against the current

process. Chapter four addresses the operational impact of the inevitable error that will

exist in any forecasting tool. A financial model that has been developed is reviewed

which quantifies the trade-offs between excess capacity and lost sales given the market

conditions and forecast error. Chapter five explores how either of the two models

discussed in the first two chapters could be used to assess the impact of predicted

technology changes on the ATE market. This will help to highlight some of the strengths

and weaknesses of each approach discussed and demonstrate an application of the models

to more strategic planning. Finally, Chapter six summarizes the key findings. This

includes abstracting some of the detailed results into more general recommendations.

Also, possible directions for future work are identified.



2. Top-Down Forecasting

Teradyne purchases forecasts of semiconductor industry revenues from Dataquest, a

leading consulting firm to semiconductor manufacturers. They have hard copies of these

reports dating back to 1987. They also have diligently tracked the buy-rate for their

industry over time, and use this in conjunction with Dataquest forecasts to help in

estimating their own future sales. However, reviews of forecasting effectiveness have

been focused on internal numbers, which are only a portion of the entire industry. These

are heavily influenced by expected market share improvements and specific account

wins. The goal of this section of the study is to investigate the variability in forecast error

of the underlying data that is used as a basis for internal estimates. This will give some

understanding to how effective the current top-down revenue planning process can be.

The overall goal of this section of the research is to set up a baseline against which to

compare the bottoms-up forecast model.

2.1. Model Description

The model used in the top down forecasting technique is very simple. It can be written as

follows, where ATE, represents the revenue in the ATE market at time t, BRt is the buy-

rate for the given time period, and sc, is the revenue for the semiconductor market:

ATEt = BRt x SCt (2.1)

This model can be used for the entire market, or for a particular segment. First, the

estimate of revenue for a selected group of devices is obtained from Dataquest. Next a

value for the buy-rate for the given forecast is determined. Typically, trends in past buy-

rates are determined and carried forward to future years. Finally, the revenue and buy-

rate forecasts are multiplied to predict ATE demand.



2.2. Evaluation of the Model

In order to evaluate the effectiveness of this model, forecasts and actual values from 1987

to 1996 were examined. Dataquest publishes a spring and fall report that contains

semiconductor revenue predictions for the current year, as well as for each of the

following five years. Therefore, the shortest forecast that exists is one quarter in

duration, and there is a forecast every two quarters up to a maximum of 21 quarters in

length. For the purposes of this study, one quarter to thirteen quarter forecasts were

examined.

The report also breaks down the semiconductor market into device type. In conjunction

with Teradyne's typical forecasting process, various types are grouped into the memory,

logic, or analog markets, or are identified as not requiring ATE, as in discrete or optical

devices. The logic market consists of both microprocessors/microcontrollers and logic

ASICs. The analog market is the combination of pure analog devices and hybrid ASICs.

The sum of the three markets that use ATE makes up the total integrated circuit (IC)

market. In this study, forecast error is assessed for each market individually as well as in

total.

Two common parameters used in reviewing forecasting models were used as measures of

accuracy, mean square deviation (MSD) and BIAS. As a slight deviation from most

applications, both were normalized to create a percentage value. This was done to

compensate for the large growth in the industry. The assumption is that the variability in

forecasts in this market is proportional to the market size. A review of the data supports

this assumption. The resulting formulas for the calculation of the two parameters are as

follows, where f(t) is the forecast at time t, A(t) is the actual value, and n is the number of

forecast/actual pairs observed:

BIAS [(f(t) - A(t))/ A(t)]BIAS =, (2.2)
t=l

MSD [= [(f(t) - A(t))/ A(t)] 2  (2.3)
t=1



Interpreting the results of the study on forecast accuracy requires an understanding of

what these calculations demonstrate. The BIAS, which can be either negative or positive,

is a measure of the accuracy on average. If the BIAS is negative, the forecast tends to

underestimate the actual value. The opposite also holds true. It is important to note that

a zero bias does not mean that the forecasts are always accurate, only that over estimates

are balanced by under estimates. Conversely, the MSD can only be positive, and is an

average squared size of error on the forecast. The square root of the MSD is reported in

all of the charts and tables that follow to express this error in more natural units. A

perfect forecasting tool would have a zero BIAS and MSD.

2.2.1. Market Forecasts for Integrated Circuits

The accuracy of any model has an upper limit, which is set by the data on which it is

based. Therefore, the first step in this study was to review the effectiveness of

Dataquest's forecasts for each of the market segments, as well as the total IC market.

BIAS and MSD 1 2 values were calculated by lumping forecasts with the same duration.

Reports from 1987 through 1996 were used. Table 2.1 shows the results of this study.

Forecast Duration
IC Market Statistic

I Qtr 3 Qtrs 5 Qtrs 7 Qtrs 9 Qtrs 11 Qtrs 13 Qtrs

BIAS -0.6% -1.1% -0.8% -4.3% -6.5% -8.6% -5.2%
Total IC's
Total IC's MSDI/2  4.3% 9.3% 15.5% 16.1% 18.1% 21.6% 22.4%

Memory BIAS -2.1% 0.5% -0.4% -4.6% -9.5% -11.0% -8.6%
IC's MSD 1/2  7.6% 21.2% 34.7% 32.5% 35.0% 38.4% 37.5%

BIAS -0.5% -1.5% -1.4% -3.6% -5.3% -7.3% -4.9%
Logic IC's

MSD I/2  4.2% 6.1% 9.6% 12.7% 12.1% 16.9% 17.0%

Mix Signal BIAS 0.5% -0.9% 1.2% -1.1% -2.1% -2.7% -1.0%
IC's MSD /2  4.5% 5.2% 9.3% 8.9% 10.7% 11.9% 12.9%

Table 2.1 BIAS and MSD' t for Semiconductor Revenue Forecasts



One of the noticeable characteristics of the data is that there is a negative BIAS that exists

in all three market segments for forecasts that are greater than five quarters. In Figure 2.1

the BIAS values by market are plotted by forecast duration. This grows larger as the

duration of the forecast increases. In particular, the memory market rapidly drops off to

values around -10%. This could be a result of the particular time period tested, but may

also suggest that market predictions tend to be conservative. This certainly has a strong

influence on the effectiveness of the top-down approach.
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xX .

0.0% X.
x... ..x-2.0% X- ... . - -- Total
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6.0%--- Logic
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Forecast Horizon

Figure 2.1 BIAS for the IC Revenue Forecasts (1987-1996)

As would be expected from any forecasting model, the MSD 12 grows as the duration is

increased. In Figure 2.2, all three market segments show an upwardly sloping line for the

calculated MSD 1/2 over duration. Once again however, there is a big difference between

the groups. The memory market has a quick increase to greater than 20% in just three

quarters, where as the others never reach this value. Again, all of the results could be

attributed to the time span that the data represents. However, if it is assumed that this is

representative of Dataquest's forecasting accuracy, than a 7% increase can be expected in

MSD" 2 per year in duration for the market as a whole.

_____ __ _ ___
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Figure 2.2 MSD'V for the IC Revenue Forecasts (1987-1996)

2.2.2. Buy Rates

An important step described above is the selection of a buy-rate for the top-down

approach. Teradyne has tracked this ratio over time and has searched for trends that

might help in predicting what it will be in the future. The typical method has been to

look for an exponential decay. In this section of the study, both a linear and exponential

regression were performed to try to understand the trends that might exist in this ratio

over time. Buy-rates from 1983 through 1996 were used and values were determined for

each market segment. The data sources consisted of Dataquest's report of actual revenue

for each semiconductor type per year as well as Prime Research's report of actual ATE

revenue. Table 2.2 lists the coefficients from each of the regression tests, as well as the

R2 value, which serves as a measure of the accuracy of the regression model. Line fits

from the regression results can be seen in Appendix A.

_ _~_ _ __ ____I _ __ __



Exponential Regression Linear Regression
ATE Type

Decay/Year R2  Slope/Year R2

All ATE 95.64% 0.716 0.15% 0.688

Memory ATE 95.74% 0.400 0.15% 0.373

Logic ATE 93.64% 0.888 0.19% 0.852

Analog ATE 99.01% 0.074 0.04% 0.068

Table 2.2 Parameters from Buy-Rate Regressions

The data supports the existence of a general trend in which the buy-rate is decreasing

over time. This proves to be most significant in the logic market segment. There was a

weak statistical significance to this trend in the memory segment and relatively no

significance in the analog market. A possible explanation for the lack of statistical

significance for the memory segment is that the cyclicality in this market has had the

most dramatic impact, especially on pricing. Fluctuations in memory manufacturer's

revenues drown out any downward trend in the buy-rate. The analog market on the other

hand is less cyclical, but is less cost focused than technology focused as compared to the

logic segment. Therefore. less has been done to reduce the cost of test.

Although there is a great deal of disparity between the market segments, the coefficients

from the exponential regression will be used for each segment to determine the forecasted

buy-rate value in the overall examination of the top-down forecasting model. This

matches the process that is used internally to Teradyne most closely, and has the most

plausible long-term result.

2.2.3. ATE Forecasts Using Market Data and Buy Rate Trends

ATE forecasts were generated by multiplying the forecasted revenue for a given market

segment with its effective buy-rate. Revenue forecasts were taken from Dataquest as

described above, from 1987 to 1996. Buy-rates were determined by multiplying the

previous year's ratio by the calculated decay coefficient raised to the duration of the

forecast. BIAS and MSD" 2 values were calculated for the model, again combining

forecasts by duration to determine values for these parameters. The ATE market was

split into segments corresponding to the semiconductor markets by matching the tester

type to the device that it tests. Therefore, actual ATE revenues were compared with the



model's forecast in total and by market segment. The results are shown in Table 2.3.

Forecast Duration
ATE Market Statistic

I Qtr 3 Qtrs 5 Qtrs 7 Qtrs 9 Qtrs 11 Qtrs 13 Qtrs
BIAS -2.1% -2.5% -4.8% -7.4% -9.2% -10.3% -6.7%

Total ATE
MSD' 2  11.5% 14.5% 18.3% 23.0% 25.1% 29.4% 31.6%

BIAS -4.1% -2.7% -9.3% -10.0% -14.7% -12.8% -11.1%
Memory ATE

MSDI' 24.0% 25.9% 32.5% 41.9% 43.7% 51.8% 49.8%

BIAS -0.2% -1.1% -1.4% -3.5% -3.6% -5.3% -2.1%
Logic ATE

MSD 2 8.9% 10.6% 12.1% 15.3% 13.8% 18.7% 21.3%

BIAS -0.6% -1.5% -3.8% -5.7% -8.3% -8.5% -7.7%
Analog ATE

MSD1 2 13.3% 16.5% 20.1% 21.3% 23.4% 24.7% 27.6%

Table 2.3 BIAS and MSD' 2 for Top-Down Forecasting Model

Similar to the underlying semiconductor revenue predictions, there is a negative BIAS in

all three ATE market segment. However, the rate at which it increases as the duration

increases is significantly larger. The memory ATE market reaches as low as -15%. The

BIAS values for the top-down model by market and forecast duration are plotted in

Figure 2.3. Again. the negative BIAS may be specific to the time period that was used.

However, this suggests that this technique produces conservative estimates.

ATE

------ Mem ATE

- - Log ATE
- - --- -- MixSig ATE
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Figure 2.3 BIAS for Top-Down Forecasting Model (1987-1996)

0.0%
-2.0%
-4.0%
-6.0%
-8.0%

-10.0%
-12.0%
-14.0%
-16.0%



The same relationship between semiconductor forecast BIAS and the top-down

forecasting model BIAS exists in their MSD /2. The shape of the MSD/2 curves are the

same for both, however the parameter grows much more rapidly in the ATE forecast.

Also, just as in BIAS measurement, there is a big difference between the market

segments. The memory ATE market increases to over 40% after two years, where as the

others never reach this value. The model for the market as a whole produced an MSD/2

that increased by approximately 9% per year. Figure 2.4 is a plot of the parameter for the

various forecast durations.

60.0%

50.0%

40.0% ATE

30.0% _ ----- Mem ATE

_ - ---- Log ATE
20.0% -- - MixSig ATE

10.0%

0.0%

Forecast Duration

Figure 2.4 MSD'2 for Top-Down Forecasting Model

2.2.4. Results Summary

A model can only be as accurate as its underlying data. As was the case in this study, it

will likely be worse because of the variability that is present in model. As expected, both

the BIAS and MSDI /2 were larger in value for the top-down forecasting model than the

semiconductor forecasts themselves. This resulted in the following characteristics for

the total ATE market estimates:

* A one quarter MSD1/2 of 10% which increases by 9% per year.

* A negative BIAS which grows more negatively per quarter.

_ _ __ _ _ ____



This suggests that forecasts on average will be conservative and have errors reaching

close to 50% for five year estimates.

Also, results differed greatly between the market segments. The memory ATE market

was less predictable, with a BIAS value of-9% and MSD 12 of 33% for a forecast with a

five quarter duration. The logic ATE market had a BIAS of-1% and MSD /2 of 12% for

the same type of forecast. The analog ATE market fell in between the two.

2.3. Assumptions in to Top-Down Forecasting

In order to understand the sources of error in the forecasting model, it is important to

review the assumptions on which it is based. This will also address the possible reasons

for the discrepancies in the different market segments. The two assumptions that are

fundamental to the success of the model are also the ones that are called into question the

most. They are:

* Semiconductor manufacturer's main influence in determining when to purchase ATE

is their current revenue.

* Past performance is a good predictor of future action.

There are arguments both for and against the accuracy of the first assumption, that the

level of IC revenue drives ATE purchases. Certainly when money is tight for

semiconductor manufactures, the purchase of capital equipment and other durable goods

is likely to be postponed. In addition, when sales are slow, there is less of a need for test.

However, the price of devices is also directly connected to semiconductor revenue.

Decreases in price without corresponding decreases in volume would drive total revenue

down, without a reduction in the need for ATE. Teradyne has looked for other factors

that correspond to the need of their customers to buy their product. With this as a goal, a

study was done to compare the strength of correlation between ATE revenue, IC revenue,

and IC units shipped for a given year. The values for these three parameters were

collected from 1984 through 1996. The results of the correlations are shown in Table 2.4.



Total Market

IC Units IC Rev ATE Rev

IC Units 1.000 -

IC Rev 0.914 1.000

ATE Rev 0.853 0.972 1.000

Memory Market Segment

IC Units IC Rev ATE Rev

IC Units 1.000 -

IC Rev 0.930 1.000 -

ATE Rev 0.879 0.932 1.000

Logic Market Segment

IC Units IC Rev ATE Rev

IC Units 1.000 -

IC Rev 0.710 1.000 -

ATE Rev 0.634 0.972 1.000

Analog Market Segment

IC Units IC Rev ATE Rev

IC Units 1.000 -

IC Rev 0.983 1.000

ATE Rev 0.918 0.937 1.000

Table 2.4 Correlation Coefficients Between IC Units, IC Revenue, and ATE Revenue

In fact, ATE revenue did show a greater correlation to IC revenue than to IC units. This

was true in the ATE market as a whole, as well as in all three market segments.

However, because of the conflicts mentioned above, there is still uncertainty around the

first assumption in the top-down forecasting model.

The second assumption, that past performance is a good predictor of future action, also

has drawn criticism. The selection of a buy rate is determined by projecting past trends

to subsequent years. Similarly, semiconductor revenue forecasts are heavily influenced

by trends found in previous years. Certainly, dramatic changes in the current paradigm

would seriously affect the use of this model. Perhaps more importantly, transitions from

growth periods to downturns, and vise versa, are missed. Recognition of these swings is

critical to controlling costs and maintaining adequate customer service levels.

The motivation behind the bottoms-up forecasting model described in the next section is

to address some of the questions behind these assumptions. In particular, semiconductor

manufacturer's existing and planned fab capacity, which has become increasingly more

visible to the public, is used as a the basis for ATE demand. Also, this information is not

a simple interpolation of past performance, as is the case with revenue forecasts. Instead,

it is the ATE customer's own prediction of their future action. With an understanding of

the accuracy of the top-down approach, how well the bottoms-up model addresses the

possible flaws in previous assumptions can be measured.



3. Bottoms-Up Forecasting Model

There are several different databases available that focus on worldwide fab capacity.

Strategic Marketing Associates (SMA) publishes a database through SEMI entitled the

International Fabs on Disk. This contains a variety of information on announced and

existing fabs, including location, wafer size, line width, and wafer starts per month

(WSM). SMA also publishes a database which tracks the construction and equipment

expenditures made by semiconductor manufacturers in new fabs. Other sources exist

which also track these and other characteristics of worldwide fab capacity. However,

little has been done to use this data to determine the relationships between semiconductor

capacity increases and ATE demand. This section of the study addresses this issue by

performing the following:

* Combining data from different relevant databases by matching specific entries as well

as sorting information into related groups. This focused on using the two SMA

databases mentioned above.

* Using regression techniques to identify and characterize relationships.

* Performing other basic statistical analyses to support regression findings and to fill

holes required for a complete bottoms-up model.

* Interviewing key representatives from Teradyne's customer base to both perform a

sanity check on previously identified relationships as well as develop new ideas.

The overall goal of this section of the research is to see if a bottoms-up approach has a

narrower range of forecast error as compared to the top-down approach. It is thought that

this method can address some of the assumptions from the top-down model that might be

troublesome.

3.1. Model Description

After reviewing results from statistical studies, and interviewing both Teradyne

employees and customers, a model was formulated. It consists of a group of five



equations based on ratios of key fab and market data. The first step in the calculation is

to determine the expected ATE revenue generated from purchases of wafer sort testers to

support new fab capacity. This is achieved by multiplying capacity increase projections

by the proportion of processing equipment dollars that is typically spent on wafer sort

ATE. This representation can be expressed in equation form. Here ATENwFab is the

expenditures on ATE for wafer sort as a result of new fab capacity, CAPs-wsM is the new

semiconductor capacity in 8" equivalent wafer starts per month', and EquipmentNewFab is

the expenditures on capital equipment as a result of new fab capacity:

ATENewFab = CAP" WSM x EquipmentNew Fab ATENewFab

CAPs" wsM EquipmenNewFab 31)

Historical ratios of spending on final test ATE as compared to wafer sort, and

characterization ATE to wafer sort are then used to determine the total amount of revenue

generated. The baseline value for ATENewF.b is multiplied with historical ratios to

determine each ATE application's projected revenues to support new capacity. The

different applications are then summed to calculate a total. The next three equations

summarize these relationships:

ATENewTest = ATENewATE ATENewest (3.2)
ATENewFab

ATENewChar= ATENewFabX ATENewChar (3.3)
ATENewFab

ATlhewTota- AThewFab+ AT]NewTest+ ATEewChar (3.4)

Ratios of wafer areas are used to adjust the capacity levels for fabs producing with wafers other than 8" in

diameter.



Where ATENewTest represents expenditures on ATE for final test as a result of new fab

capacity, ATENe,,Ch is the expenditures on ATE for characterization as a result of new fab

capacity, and ATENewTotal is the total expenditures on ATE as a result of new fab capacity.

The final step in determining a forecast using this model is to multiply the total ATE

revenue expected to support new semiconductor capacity by a ratio which relates it to

total ATE spending. This will help to capture ATE purchases that are unrelated to

capacity increases such as ongoing support, service, or upgrades. The last equation for

this model is as follows, where ATEToW is the total expenditures on ATE for both new and

existing capacity:

ATETotai = ATENewTotalX ATETota (3.5)
ATENewTotal

3.2. ATE / Fab Capacity Relationships

The main sources of quantitative data for determining the ratios listed in the equations

above were SMA's International Fabs on Disk and the Sourcebook on New Fab

Expenditures. These databases were combined by matching entries. Each fab was

classified into one of five catagories, foundry, logic, memory, analog, and memory/logic.

This was based on the devices that it manufactured, similar to the segmentation of the

markets in the top-down approach, and the market that it served. Table 3.1 shows the

actual values used for all the parameters in the model. The following sections discuss

how these values were selected.



Fab Type

Parameter
ALL Foundry Logic Memory Analog. Memory/

Logic

EquipmentNew Fab

CAP"WSM 0.027 0.029 0.033 0.028 0.024 0.016

ATENewFab

Equipment New Fab 0.09 0.09 0.09 0.09 0.09 0.09

ATENewTest
ATENewFab 1.33 1.33 1.33 1.33 1.33 1.33

ATENewchar

ATENewFab 0.33 0.33 0.33 0.33 0.33 0.33

ATETotal
ATENewTotal 1.12 1.12 1.12 1.12 1.12 1.12

Table 3.1 Parameters for the Bottoms-Up Forecasting Model

3.2.1. Fab Equipment / Fab Capacity Ratio

The Sourcebook on New Fab Expenditures outlines equipment expenditures for over 300

specific fabs. Some are still in the construction phase, or were older fabs that were being

completed during the start of the database. However, 174 had been followed from initial

ground breaking through complete facilitation. These were separated into the five device

type groups. The value for the ratio of equipment expenditures to wafer start per month

of fab capacity was calculated by performing linear regressions for total equipment

expenditures verses 8" equivalent wafer starts per month. Table 3.2 shows the results

from this study. The line fits from the regressions can be seen in Appendix A.

Fab Type

Regression Parameter ALL Foundry Logic Memory Analog Memory/
Logic

Slope (Equip $M / 8"eq WSM) 0.027 0.029 0.033 0.028 0.024 0.026

R2  0.606 0.774 0.585 0.683 0.736 0.191

Table 3.2 Regression Results for Fab Equipment verses Fab Capacity



As an example to demonstrate the interpretation of the ratios, a new memory fab would

typically be built to support 30,000 WSM. Using the calculated ratio, this fab would

require $840 M worth of manufacturing equipment. This number corresponds to

estimates that over 75% of the one billion dollar plus fab costs are spent on equipment.

In reviewing the specific ratios calculated, the logic segment proved to require the largest

equipment expenditure. This could be supported by the fact that these devices require

manufacturing equipment on the leading edge of technology and that this market is not as

cost competitive as the memory segment. Also, foundries proved to have the tightest

distribution around the regression line. Their construction does tend to follow a specific

cost and operational model.

3.2.2. Fab ATE / Fab Equipment Ratio

The ratio of wafer sort ATE expenditures to fab equipment expenditures was taken from

a study done by SMA. Their findings showed that on average, semiconductor

manufacturers spend 9% of their new fab equipment budget on wafer sort ATE. This is

also supported by data collected by VLSI Research. They report revenues collected in all

semiconductor manufacturing equipment markets. The average ratio of wafer sort ATE

revenue (adjusted from total ATE by ratios listed in the next section) to total wafer

processing equipment revenue was 9.1% for the time period of 1981-1996. The standard

deviation of this measure was 1.5%. When combined with the example supplied above,

the parameters suggest that for a new 30,000 WSM memory fab, approximately $76M of

wafer sort ATE is required.

3.2.3. Other ATE / Fab ATE Ratio

The determination of the ratios for final test ATE to wafer sort ATE and characterization

ATE to wafer sort ATE was primarily accomplished through interviews. The values for

these parameters, 1.33 and 0.33 respectively, were also supported by quantitative data.

VLSI Research has been attempting to segregate ATE sales into application since 1993.

The ratios that can be extracted from their data are 1.10 and 0.40, although more recent

data is closer to the values reported by Teradyne customers.



This results in the following breakdown of revenue for the various applications of ATE;

37.5% on wafer sort, 50% on final test, and 12.5% on characterization. Continuing the

30,000 WSM memory fab example, expenditures would be $76M on wafer sort ATE,

$102M on final test ATE, and $25M on characterization ATE for a total of $203M. This

corresponds to internal estimates of approximately $200M to $250M in ATE for a new

memory fab.

The last parameter required is the ratio of ATE revenue generated from new fab capacity

to other ATE revenue. Its value was determined by reviewing ATE expenditures

reported by SMA that were connected to new fab construction from 1994 through 1996

and comparing it against total reported ATE revenue. This was a viable process because

the SMA database is a complete set of all new fabs. The ratio remained fairly constant

for all three years at 1.12. These results suggest that 89% of all ATE expenditures from

semiconductor manufactures are the result of new capacity.

3.2.4. Ramp Rate of Fab Capacity

The model also needs to address the relationship between the announced year of first

wafer production for the various fabs to actual capacity increases. First a measure of how

quickly a fab reaches its full capacity was needed. General consensus in interviews with

Teradyne employees and customers was that for a 30,000WSM fab, the typical ramp rate

is approximately 5,000 WSM. Therefore, full capacity is reached in 6 quarters. After

performing some statistical analysis on the fab database, it was determined that the

average number of WSM per fab listed is approximately 20,000. Using 5,000 WSM per

quarter as a basis, this corresponds to an average of four quarters to obtain full capacity.

Fab announcements generally only specify the year that production will begin. Because

the ramp to full capacity takes 4 quarters, fabs started in the end of a given year will

actually drive most of its ATE demand in the following year. Therefore some process

was needed to assign fab capacity announced to start in the same year throughout the 4

quarters. For the purposes of the model it is simply assumed that it is equally distributed.



3.2.5. Forecast Calculations

It was important that the model be implemented in such a way as to facilitate its use in

the future. Microsoft@ Excel was used as the application. The model was constructed by

linking a series of spreadsheets, which consisted of an input/output worksheet and two

calculation sheets. Appendix B shows a typical view of the input/output screen.

3.3. Evaluation of the Model

In order to evaluate the effectiveness of this model, forecasts and actual values from 1994

through 1996 were examined. SMA first published its International Fabs on Disk

database in October 1994, and has updated it every quarter since. All nine revisions

between this first issue and October 1996 were included in the study. Later issues could

not be used since actual values for 1997 have not been determined.

Capacity levels in years that have been only partially completed, or are sometime in the

future, can be considered "forecasts". Reported capacity for 1994 in the October 1994

issue of the database has a forecast duration of one quarter, and capacity levels in 1995

have a five quarter duration. Therefore, there are forecast durations in quarterly

increments. Because of the nature of fab announcements, the accuracy of the database

falls off sharply after two years. Therefore, the longest forecast duration included in the

study was seven quarters.

To align with the model parameters, the fabs in the database were classified into the five

different product or market types. During all of the calculations, the groups were kept

separate from each other. However, it was impossible to break down actual ATE revenue

so that a correlation could be made to each of the five segments. Therefore, this study

focused on assessing forecast error for the ATE market as a whole. Again, the two

parameters, mean square deviation (MSD) and BIAS, were used to measure the accuracy

of the model. The same normalization step described in Section 2.2 was used.

3.3.1. Forecast Results

Capacity forecasts from each revision of the database were separately entered into the

Excel based model. Resulting ATE revenue predictions were then compared with actual



values taken from Prime Research marketing reports. Forecasts with the same duration

were grouped to calculate the accuracy parameters. Results were compared with those

obtained from the top-down forecasting model testing the same time period.

Forecast Duration

Parameter 1 tr 3Qtrs 5Qtrs 7 trs

Top- Bottoms- Top- Bottoms- Top- Bottoms- Top- Bottoms-
Down Up Down Up Down Up Down Up

BIAS -14% 0% -12% 2% -21% -5% -16% -8%

MSD I/2  15% 13% 20% 35% 24% 17% 16% 8%

Table 3.3 BIAS and MSD'2 for Bottoms-Up and Top-Down Forecast Models

The most noticeable difference between accuracy measures between the two models is

the BIAS. For the bottoms-up forecasting tool, this parameter is significantly closer to

the desired value of zero. There is still a drift towards a negative BIAS value as the

duration of the forecast increases. However, over the four different durations compared,

the BIAS of the bottoms-up model is on average 13% closer to zero. Figure 3.2 shows a

plot of the two parameters for the tested forecasts. One possible concern with these

results is that the parameters used in the model are correlated to the forecasts used.

Although this was avoided as much as possible, some ratios used were primarily derived

from the database. Also, it is possible that the improvement to the BIAS is specific to the

time period tested. There were only nine revisions of the database tested, which is not a

significant amount of data on which to base any clear conclusions.
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Figure 3.2 BIAS for Bottoms-Up Forecast Model (Oct 94 - Oct 96)

The differences between the MSD1/ 2 for the two models are much more difficult to

distinguish. Considering the limited amount of data available, the two models appear to

have similar MSD I/2 values. The expected upward trend as duration increases for both

models does not exist. This is definitely a result of the time period and the amount of

data studied. The plot of this parameter over the various durations tested is shown in

Figure 3.3. A more thorough understanding of the differences between the models will

be obtainable as more SMA database revisions are released.
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Figure 3.3 MSD' for Bottoms-Up Forecasting Model (Oct. 94 - Oct. 96)



3.3.2. Results Summary

The results of the study comparing accuracy of the bottoms-up forecasting model to the

top-down model are very preliminary due to the limited amount of data. However, the

new model does appear to show promise. For the data analyzed, it had a BIAS closer to

zero for all forecast durations and therefore, should have predictions that are not as

conservative on average. It is difficult to determine whether or not the MSD has been

improved. The model should continue to be used until statistical significance of any

improvement can be judged.

Also, there is significant correlation between the two different models. Not only does the

data support this, but it also follows from industry practice. Capacity increases are

planned when it is expected that semiconductor demand is going to increase. Similarly,

semiconductor revenue forecasts increase when announcements of new fabs are made

because of expected extra sales. This reinforcing loop tends to insure that the data from

the two models coincide. The hope is that timing issues would make the bottoms-up

model more resistant to sudden changes. For instance, if there are points in fab

construction where full commitment to capacity is reached prior to ATE purchase, the

bottoms-up approach would more closely follow the actual timing of demand swings than

the easily adjusted semiconductor revenue forecasts. Conversely, it is possible that the

error surrounding the accuracy of fab capacity announcements drowns out any possible

timing improvements. These answers will only come over time as the error for both

models are tracked.

It has been mentioned throughout this thesis that the three market segments reviewed

have different characteristics. This includes varying susceptibility to cycles, as well as

products that are at different ends of the commodity to functionality differentiated

continuum. There was a hope that the bottoms-up model would work well for those

segments with devices that are more commodity-like. However, it was difficult to

establish with certainty the types of products that a particular new fab will produce.

Therefore, the differences in markets could not be exploited. Hopefully, this will change

as more an more experience is gained in using the model.



3.4. Assumptions in Bottoms-Up Forecasting

This model was formulated to address issues with the assumptions in the top-down

approach. In particular, questions concerning whether or not semiconductor

manufacturer's revenue is the best indicator of ATE demand, and if forecasts which rely

on projections of past performance can be used in such a cyclical market. Here, capacity

announcements replace revenue as a predictor of demand. This method is thought to be

more grounded on market data than on projections from the past.

However, this model is also based on assumptions that are questionable. As presented,

the ratios used in the model remain constant over time. Different fab costs are growing at

very different rates, depending on technology. It is not probable that the ratios used will

remain constant and it is unclear as to how they might be predicted to change. This

challenge may be more difficult than the tracking of changes to the buy-rate over time.

A more fundamental question involves the reliability of the fab announcement.

Semiconductor manufacturers are becoming skilled at responding to market demands by

delaying or speeding up facilitation to match capacity needs [16]. Projected dates of first

wafer manufacture are surrounded by uncertainty that adds to forecast error. As

mentioned previously, the work presented here is a first step. Much needs to be done to

measure the effectiveness of this model as more and more data is collected.

Forecasting models will have error. The next chapter looks at how to operate most

effectively given this fact. This will help to explain the relative importance of working to

develop the model discussed in this section, as well as give general guidance in the area

of capacity planning in industries with volatile demand.
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4. Capacity Planning Model

To effectively deal with variability in forecasts for planning, trade-offs must be made

between work in process (WIP), cycle time, service levels, capacity, utilization, and

quoted lead times. The characteristics of an industry drive which factors, inventory,

labor, sales support. etc., have the greatest impact. For example, ATE manufacturers

have extremely costly WIP, as a single unit can cost over $2M. But understanding the

driving forces does not make the trade-offs simple. The customers of ATE manufacturers

are pushing for short lead times, which requires buffers in capacity and WIP to meet

swings in demand. At the same time, these customers are demanding cost reductions,

which requires lower WIP levels and longer lead times.

Another option for dealing with volatile demand exists if capacity can be increased or

decreased swiftly and inexpensively. In the extreme, if ramp times are negligible and

free, a process where capacity is set by reacting to demand can be used. Thus the excess

costs required for a safety stock to cover variability are eliminated. However, this ideal

case is not likely to exist. Rapid increases in capacity usually result in excess labor costs

due to overtime and training, and increased material costs due to expediting and quality

issues.

This section of the study investigates the trade-offs in capacity planning for ATE

manufacturing for any forecast model given its error variability. The following steps

were performed for this purpose:

* Investigate the various costs related to a chosen capacity level by reviewing past

financial data.

* Examine the current costs related to the requirements for rapid capacity expansion by

reviewing financial results during highly volatile time periods.

The goal of this section of the study was not to create an exact quantitative model for

determining the optimal capacity planning strategy. Instead, a tool that could give a

quantitative feel was sought, which can help in understanding the relevant issues.



Quantitative analysis is performed, only not to the detailed level in which operating

decisions could be made on it alone.

4.1. Model Formulation

There are various ways to meet demand for a given time period, each having different

cost characteristics. The three options considered for this model are with planned

capacity, added capacity, or lost sales. Planned capacity is the level at which the

manufacturer chooses to operate over a given time period. The manufacturer also has the

ability to add incremental levels of capacity at an increase cost during this time.

However, this is limited by how volume flexible the particular manufacturing operation

is. The final option for meeting demand, losing the sale, is obviously not the most

desirable.

It is important to note that these concepts, as well as the model itself, require a time

interval component. A timing convention known as periodic review matches closest to

Teradyne's practices. Under this scenario, it is assumed that there is a fixed interval at

which capacity levels are reviewed, and a fixed amount of lead-time required to achieve

the level desired. Six months is considered the standard amount of time required to

change capacity levels at Teradyne, with reviews every six months. Therefore, a

planned capacity level chosen today will be available in six months and remain at that

volume until a year from date. Any changes during the time in which the planned

capacity is available falls in the category of added capacity.

The model created is in the form of an optimization problem where the objective is to

minimize the cost of meeting customer demand. The decision variable is the level of

planned capacity. This set of criteria can be formulated as follows, where Z represents

the total cost of meeting demand:

min Z = ccAPCAP + CADEMADEM + cvcwAVCAP + cisLS (5.1)
CAP



The equation consists of four cost components:

* The cost of planned capacity - cc,,,CAP. For this component, CCAp is the marginal cost

of a unit of capacity, assuming all costs are variable. CAP is the selected level of

planned capacity and is the key decision variable for the entire equation. This

captures all costs surrounding materials, equipment, space, overhead, and labor for

planned levels of capacity.

* The cost of reducing capacity - CADEMADEM. Here, the first variable, CDEM, represents

the marginal cost of reducing capacity for the next time period by one unit, and ADEM

is the expected amount of excess capacity for the next time period. Due to the

cyclical nature of the semiconductor industry, this cost is of great concern to ATE

manufacturers. Often the strongest inhibitor to deciding to increase capacity levels is

the fear of excessive costs that will be incurred during the following period because

of a down swing.

* The cost of added capacity - CVcApVCAP. This captures the cost incurred when extra

capacity is added during the time period in review, and includes premiums for

procurement, space and labor. CVCAP is the marginal cost of a unit of added capacity.

VCAP represents the expected added capacity needed to meet the demand distribution

* The cost of a lost sale - CLS LS. For this last component of cost to meet demand, CLS is

the marginal cost of a lost sale, and LS is the expect number of lost sales resulting in

meeting the demand distribution. Not only is the marginal revenue that would have

been realized had the unit been sold captured, but also any follow-on sales such as

service and maintenance. This also includes marginal revenues for future unit sales

generated.

The optimization problem described above can be thought of as the division of the

demand distribution into the three segments. For this model the demand distribution, D,

is considered normal, with t equal to the forecasted value for ATE, and c equal to the

MSD" 2 of the specific forecasting model. An example is shown in Figure 4.1. The

model selects an optimal planned capacity level such that the sum of the expected costs

from each segment is minimized.



0.015

0.013
Added Capacity

0.010 .o
Planned Capacity "

0.008 x
L.

0.005

Lost Sales
0.003

CAP
0.000

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Demand Distribution

Figure 4.1 Demand Distribution and Selected Planned Capacity Level

All of the distribution to the left of the determined level is met by planned capacity and

has a cost that is independent of the expected value of this area. The center section of the

curve represents added capacity needs. Here, the expected amount over capacity for this

area is calculated and multiplied by the appropriate cost. However, for this model, the

maximum amount of added capacity is limited, as only a certain amount of extra material,

labor and space can be acquired in a restricted amount of time. This imposes a constraint

on the optimization, that the amount of added capacity has a maximum. The following

equation expresses this relationship, where MAXvcA is the maximum amount of added

capacity that is possible:

VCAP = Elmax{O, D - CAP)J for D - CAP < MAX VCAP (5.2)

In addition, the marginal cost of the added capacity, CVCA in equation 5.1, is not modeled

as a constant. As more and more additional capacity is needed, higher and higher

premiums are required to expedite materials, procure space, and hire labor. This is

expressed as an exponential growth of a base marginal cost for the first additional unit of



capacity, CVCAPBASE. This is represented by the following equation, where g is the growth

rate of the marginal cost for added capacity:

(5.3)Cvc, = CVc.P&sE X (1 + g)VCAP

The remaining right tail in the demand distribution in Figure 4.1 is the lost sales segment,

and is the expected value above the maximum added capacity calculated. This can be

expressed in terms of previously described variables as:

LS = Elmax(O{0, D - (CAP + MAX VCAP)}]) (5.4)

The other distribution included in the model represents the possible capacity

requirements of the next time period, D,,,. This was considered a lognormal distribution,

with i equal to the average percent increase in demand from 1983-1996, and a equal to

the standard deviation of these increases. Figure 4.2 shows an example.
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Similar to the costs from extracted from the demand distribution, expected values are

used to calculate the cost of possible reductions in capacity. Here we are concerned with

the area to the left of the selected planned capacity level, which can be summarized by

the following equation:

ADEM = E[max(O, CAP - Dt + 1)1 (5.5)

This represents the probability that reductions in capacity will be required in the

following time period. Expected costs for a reduction are included in the optimization.

It is important to note that for any given time period, an exact value of ATE demand will

occur. Therefore, this model focuses on the expected costs and can be thought of as the

long term running averages for each of these categories.

4.2. Selection of Constants

In order to use the model as an aid in capacity planning, it is important to determine

accurate values for the constants required. The source for the demand distribution's

standard deviation is the results from the testing described in section 2 on the top-down

forecasting model. The MSD 1/2 for a forecast with a five quarter duration matches closest

to the timing for the period review, fixed lead time model used. Capacity will come on-

line six months from the date it is determined to be needed, and will need to cover six

additional months. The mean for the demand distribution was selected to represent a

division's forecasted output for a six month time period. Table 4.1 lists the values used

as the baseline for this study.

Distribution a

Demand Distribution 120 30

Demand A Distribution 138 35

Table 4.1 Distribution Parameters for Demand and Demand A



The constants that reflect internal processes were determined by reviewing financial

numbers on a specific ATE division with Teradyne. 2 In particular, simple regression

techniques were used to understand basic capacity to cost relationships. Figure 4.5 shows

a typical line plot from such an analysis. Regression parameters were used as a basis for

understanding marginal costs.
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Figure 4.5 Regression Line Fit: Total Cost Per Revenue Dollar

Specific points that were further from the regression line were investigated further to

understand costs related to over or under capacity. In particular, costs that were related to

a requirement to quickly increase capacity were reviewed. Those data points in Figure

4.5 that are circled represent possible candidates to learn about costs incurred during up

or down swings. A detailed financial review was performed for those periods to

understand the cost factors in such market conditions.

The cost of a lost sale was the most difficult to quantify. A more qualitative approach

was taken to settle on baseline values. Marketing and finance personnel within the

company were interviewed. Certainly, a variety of opinions existed. However, there was

agreement that the cost of lost sales is extremely high due to switching costs and follow-

2 Values presented in the remainder of this section have been disguised.



on sales. A summary of the values for each of the constants that were derived from

internal data can be seen in Table 4.2

L Cosat au

Constant Value

CCAP $350

CADEM $350

CVCAPBASE $350

g 0.02

MAXVCAP 24

CLS $4,000

Table 4.2 Baseline Constants for the Capacity Planning Model

4.3. Model Use

The first step in using the model to understanding capacity planning trade-offs is to run it

using baseline constant values. Then sensitivity analysis is performed to understand how

different factors influence baseline results. The decision variable in all cases is the level

of planned capacity. Important output values for both baseline and subsequent variations

are the level of the decision variable, the expected amount of added capacity required,

and the expected number of lost sales. The combination of these values with their

appropriate accompanying costs also provides a useful measure of total cost.

4.3.1. Calculations

The model was implemented using Microsoft@ Excel with the Solver add-in. The

distributions within the model were represented by discrete versions with 240 sample

points. The input and output were both included on the worksheet. Appendix B shows a

typical view of the input/output screen for this model.

4.3.2. Baseline Results

Table 4.3 summarizes the results from the baseline case. The optimal planned capacity

level is 10% higher than the forecast value. This is driven by the high cost of lost sales.

The only reason that this value is not higher is the benefit provided by added capacity.

I i i



Amounts listed for added capacity and lost sales are expected values as derived from the

demand distribution. As mentioned above, expected values can be considered long term

averages and will vary from period to period.

Output Variable Value

Planned Capacity 132.0

Added Capacity Need 2.8

Expected Lost Sales 1.4

Expected Total Cost ($M) $56,119

Table 4.3 Baseline Results for the Capacity Planning Model

4.3.3. Sensitivity Analysis - Impact of Forecasting Improvements

In order to understand the impact of reducing the forecast error, sensitivity analysis was

performed. The value for the standard deviation of the demand distribution was reduced

by 1% and 10%, and model was run under the two scenarios. The results of this study

can be seen in Table 4.4.

Output Variable Baseline c = 29.7 a = 27

Planned Capacity 132.0 131.7 129.4

Added Capacity Need 2.8 2.8 3.0

Expected Lost Sales 1.4 1.4 1.2

Expected Total Cost ($M) $56,119 $55,885 $54,061

Table 4.4 Sensitivity Analysis Results for Forecasting Error Improvements

The resulting optimal fixed capacity was reduced from a 10% increase over the forecast

value to 9.75% and 7.8%. The expected total cost reduced 3.7%. These results can serve

as a measuring stick to determine if forecasting improvement efforts are worth the

investment. They also give a feel for how the accuracy of measurement for the forecast

error impacts the use of such a model.
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4.3.4. Sensitivity Analysis - Impact of Flexibility Improvements

A similar sensitivity analysis was performed on the parameter representing volume

flexibility. The value for the maximum amount of added capacity was increased by 1%

and 10% from the baseline of 20% of planned capacity. The results of this study can be

seen in Table 4.5.

Output Variable Baseline Flex = 20.2% Flex = 22%

Planned Capacity 132.0 131.8 130.5

Added Capacity Need 2.8 2.9 3.4

Expected Lost Sales 1.4 1.4 1.3

Expected Total Cost ($M) 56,119 56,030 55,258

Table 4.5 Sensitivity Analysis Results for Flexibility Improvements

The resulting optimal fixed capacity was reduced from a 10% increase over the forecast

value to 9.8% and 8.75%. The expected total cost reduced 1.5%. Changes in this factor

proved to have less of an impact on the output variables than forecast error variation.

Again, this can help in determining the merits of volume flexibility projects. Those

opportunities that cost more than the expected return for improving added capacity limits

should not be undertaken. These results also help to understand the impact of

measurement accuracy of the maximum amount of added capacity on the planning

process.

4.4. Results Summary

The cost of lost sale dominates the marginal cost of a unit of capacity as well as the cost

to reduce capacity. Thus is the driving force for recommendations to implement capacity

levels greater than forecasts. Forecast error increases the optimal level chosen, as

possible lost sales as a result of demand on the far right of the distribution move farther

away from predicted revenues. Therefore, improvements to forecasting models will

allow for less capacity buffer. However, the cost of making such an improvement might



be greater than the benefits that could be recognized. Increases in volume flexibility

may prove to be an easier, certainly are more quantifiable in the short term.

Most of what has been discussed in this thesis up to now has been tactical. Models for

one to two year forecasts, and planning at six-month intervals have been discussed. The

next chapter takes a more strategic look at revenue and product planning. Technology

often breaks existing paradigms that are integral to tactical approaches. It is important to

understand what effects such step function changes could possibly have. Tactical models

can be used to help track the impact of the acceptance of such technologies.
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5. Modeling the Impact of Technology on the ATE Market

Technology can heavily impact the effectiveness of any forecasting model. It can lead to

product or process improvements that create step function changes in demand profiles.

Or, more dramatically, it can completely break paradigms and make models based on the

past obsolete. In the ATE market in particular, the impact of developments and predicted

future advances in the area of design for testability (DFT) is expected to seriously affect

future revenue growth. The National Technology Roadmap for Semiconductors (NTRS)

which is published by SEMATECH and created by the Semiconductor Industry

Association was published first in 1992, and subsequently in 1994 and in the end of 1997

[17], [18]. This industry source tracks DFT, among other key characteristics of the

semiconductor industry, and highlights the direction of the technologies within this

classification. This section examines the impact of technical changes by performing the

following:

* Reviewing the latest trends and projections for DFT technology

* Projecting changes to top-down forecasting buy-rates and the resulting effects to

future ATE revenues.

* Projecting changes to the bottoms-up forecasting model and the effects on ATE

demand.

The goal of this section is to take a more strategic view of revenue and product planning,

as opposed to the tactical approach that most of this thesis has taken. This requires an

understanding of the long-term technical issues that will drive the direction of ATE

demand. Simple models for reviewing this impact have been developed that help to

proved a strategic viewpoint as well as to further explore the effectiveness of the top-

down and bottoms-up forecasting techniques.

5.1. Review and Outlook for Design for Test

Some of the main design alternatives currently considered in DFT are scan, built-in-self-

test (BIST), and Iddq. Scan testing, which is the most prolific of the three, can be further



broken down into full, partial, and boundary. This method for aiding in test requires

additional logic which is placed into the design which allow the tester to access specific

parts of the device. Partial and full scan are used to test internal nodes on a device. The

main difference between the two is that partial scan requires more complex set of

automatic test pattern generation (ATPG). Boundary scan uses latches/flip-flops around

the boundary of the device to allow for separate testing of the chip's 1/O and its internal

circuitry. In addition to the requirement of additional semiconductor real estate, up to

15% additional logic, this method usually is not capable of testing the functionality of

high-speed paths.

In BIST, the testing is put on the chip itself. In doing so, it is able to overcome the

inability to test high-speed paths found in scan techniques. The chip controls both the

input test patterns and output. An added benefit is that testing of devices can be done in

the field, where the generation of the current factory testing would not be feasible.

Iddq is a technique that breaks away from traditional functional tests in an attempt to

address questions of physical integrity, such as the quality of metal bridging. This results

in the detection of process errors that even at-speed tests may overlook. It involves the

measurement of leakage current after specific logic states are established through the use

of targeted test vectors. There is still a great deal of debate over the extent to which Iddq

can be applied.

The NTRS from both 1994 and 1997 identified DFT techniques as a major source for

containing test costs for semiconductor manufacturers. Projections from the 1994 issue

stated that by the year 2010, the cost of test systems would approach $50M if these

strategies were not incorporated. At the time, less than 25% of a typical logic IC was

being tested with this methodology, and far less for the memory and analog segments.

The prediction when on further to state that by the year 2010, 90% of a device needs to

be tested using DFT application, and that the cost of test per pin for testers will reduce

from $5-10 K to $0.5-1.5K while the pin count doubles or even quadruples. The 1997

issue of the NTRS is less optimistic about the strength of DFT and shied away from

predicting or proposing exact percentages needed. However, it projects that at current

levels of approximately 35%, the cost of a test system would approach $20M by the year



2010. And that even with rapid increases in DFT the cost per pin will remain constant at

$5-10K. It is clear that the direction that this class of technologies takes will have a

dramatic effect on ATE demand.

5.2. Projections Using Top-Down Model

The growth of the semiconductor industry's total revenue is a result of two separate

factors, increase in volumes and increase in functionality. Growth due to volume is a

simple concept to understand. As semiconductors are applied to more and more

products, volume requirements increase. Growth in revenue due to functionality is seen

when a single IC has more or improved features that demand a higher price from end

customers. The trend toward more complex IC's as well as increased use of the

semiconductor technology has resulted in both factors growing over the past two decades.

A similar statement can be said of the ATE market. Revenue growth comes from both

increases in volume to support larger IC production, as well as increases in functional

requirements.

5.2.1. Model Description

The claims of the NTRS, and other sources that worry about increasing test costs, are that

the increase in functionality of semiconductors is causing a proportionately larger

increase in the functional revenue growth of ATE. DFT is thought of as a means to

correct for, or reversal of this condition. By understanding how changes over time effect

the top down model, it is possible to use it as a tool for examining the impact that this

technology might have on ATE revenue. The first step is to understand how revenues in

both the ATE and semiconductor markets grow over time. The following two equations

express this growth as a function of increases in the volume of devices, and functionality

provided by these devices:

ATEt = ATIo (gvoi)t (gATEfun)t (4.1)

SCt = SCo (gvol) t (gscfun) t (4.2)



Here ATE, is the predicted level of ATE industry revenue at time t. It is a product of the

current ATE revenue, ATEo, the growth of volume in semiconductor devices, g,o, and the

growth in ATE functionality requirements due to increases in complexity of devices.

Similarly, SC, is the predicted value for the semiconductor market's revenue at time t.

This is also a product of current revenues, sco, the growth of volume in semiconductor

devices, g ro, and the growth in semiconductor revenue due to changes in device

functionality requirements. Plugging these into the equation for the top-down model as

described in section 2.1, the following equation results, which is the basis for the model

with BRo equal to the current buy-rate value:

ATEt = BRo( gATEfun SC (4.3)
. gscfun )

In order to simplify some of the terms for discussion, the following symbols are used:

gsc = (gvoiXgsCfun) (4.4)

gATE = (gvol)(gATEfun) (4.5)

gATEfun
gSR gsCfun (4.6)

The growth in semiconductor revenue, gSR, is expressed as the product of the volume and

functionality growth. The same relationship is used for ATE revenue, where gATE is the

variable used to represent the growth. The last representation is the ratio of growth in

ATE revenues due to functional increases in semiconductor devices verses the growth in

semiconductor revenues due to the same factor. This is termed the buy-rate growth, and

is expresses as g,. The current expectation by the NTRS is that the buy-rate growth will

be larger than one unless BIST/DFT adaptation increases.



5.2.2. Application to NTRS Projections

Values for the various parameters were determined from Dataquest and VLSI Research

market data reports, and from projections from the 1994 and 1997 NTRS roadmaps. The

four scenarios discussed here are derived from projections from the 1994 and 1997 NTRS

roadmaps. The first captures the forecasted parameters from the 94' issue if DFT is not

adapted from the initial level of 25% of IC's. The next is the forecasted industry

characteristics given an improvement to 90% DFT for IC's. The third is derived from the

97' issue, and represents an adjusted estimate of the market given no further adaptation of

DFT techniques. The final scenario is in which the cost per pin of test remains constant,

while the total number of pins increases. Table 5.1 summarizes the values for the

parameters used for the four scenarios.

NTRS 94' NTRS 97

Parameter
Rapid Increase in25% DFT 90% DFT 30% DFT Rapid Increase in

DFT

t (years) 15 15 12 12

gsc 1.170 1.170 1.160 1.160

gvo1 1.070 1.070 1.070 1.070

gscfum 1.093 1.093 1.093 1.093

BRo 0.018 0.018 0.018 0.018

ATEo ($M) S1.5 $1.5 $2 $2

ATE, ($M) S50 $1.5 $20 $8

aATE 1.351 1.070 1.296 1.201

gATEfun 1.263 1 1.212 1.122

gBR 1.155 0.915 1.109 1.026

Table 5.1 Parameters: Predicted Technology Scenarios and the Top-Down Model

From the results it is clear that the growth of ATE and the growth of the buy-rate could

dramatically change as DFT is adopted. Both the 94' and 97' issues suggest that there

would be enormous increases in revenues if this technology is not implemented. The

earlier issue projects a reduced buy-rate if the industry proceeds along to 90% DFT in



2010. Interestingly, the value for this reduction is similar to that seen in the section on

top-down forecasting when looking at changes to the buy-rate in the logic segment over

time. This is the area that has had the most success with these techniques and this

potentially provides some explanation. Perhaps even more interestingly, the 97' issue

backs away from the strong projections of DFT implementation and impact that was seen

in 94'.

These results can be used to estimate revenue levels in the future. Some key milestone

years are shown in Table 5.2.

NTRS 94' NTRS 97'
Market

Year
25% DFT 90% DFT 30% DFT

in DFT

2000 Logic SC $115B i $115B $122B $122B

2000 Total SC $245B $245B $230B $230B

2000 Logic ATE $6.2B 1 $1.6B $3.2B $2.4B

2000 Total ATE $13.4B $3.3B $9.7B $7.2B

2010 Logic SC $554B $554B I $585B $585B

2010 Total SC $1,183B $1,183B $1,108B $1,108B

2010 Logic ATE $127B $3.1B $45B $15B

2010 Total ATE $273B $6.7B $108B $37B

Top-Down Model Revenue Forecasts for Predicted Technology Scenarios

5.3. Projections Using Bottoms-Up Model

The bottoms-up model relates ATE demand to semiconductor capacity as opposed to

semiconductor revenue. However, similar relationships exist. Capacity also grows from

both volume and functionality factors. As it is measured in wafer starts per month

(WSM), an increase in volume requirements results in a larger number of starts. Also, as

chip functionality becomes more complex, more semiconductor real estate is required.

This is especially relevant with the concept of system-on-a-chip where multiple functions

are combined into one device.

Table 5.2



5.3.1. Model Description

Once again, the claims by industry sources are that increases in capacity due to

functionality require proportionately larger increases in spending on ATE. Here, DFT

can be thought of as the balancing technology that controls ATE costs as chip size and

function grows. For this formulation, the bottoms-up model is adjusted to incorporate

technology changes. The model formulation is very similar to that used for the top-down

model. Again equations that express growth in terms of volume and function are used:

ATEt = ATID (gvoi) t (gA TE fn)t  (4.7)

CAP t = CAP o (gvoi)t (gcAPfun )t (4.8)

The first equation is identical to equation 4.1. However, for the bottoms up model, the

focus is on capacity. Here CAP, is the predicted value for the semiconductor market's

added capacity at time t. This is a product of current added capacity, CAP0, the growth of

volume in semiconductor devices, g,~r, and the growth in semiconductor added capacity

due to changes in device functionality requirements. Plugging these into the bottoms-up

model, the following equation is derived, where Ko is the current ratio of ATE revenue

demand to new fab capacity:

ATEt= KgATEfun CAPt (4.9)
gCAPfun)

Again, notation is used to simplify terms for discussion:

gCAP = (gvol)(gCAPfun) (4.10)

gATE = (gvol)(gA TEfun) (4.11)

gATEfun
g gCAPfun (4.12)



The growth in semiconductor capacity, g,,,, is expressed as the product of the volume

and functionality growth. The same relationship is used for ATE revenue, where gATE is

the variable used to represent the growth. The last representation is the ratio of growth in

ATE revenues due to functional increases in semiconductor devices verses the growth in

semiconductor added capacity due to the same factor. This is termed the capacity-rate

growth, and is expresses as g.

5.3.2. Applications to NTRS Projections

The scenarios to be reviewed are again derived form the 94' and 97' issues of the NTRS.

They include projections from 94' of 20% DFT acceptance in 2010 as well as 90%.

Also, the 97' roadmaps for 35% and what is termed rapid increases. The growth rate that

is used for capacity is the CAGR for 8" equivalent WSM experienced from 1990-1996.

Table 5.3 lists the values for each parameter under the four different cases.

NTRS 94' NTRS 97'

Parameter 25% DFT 90% DFT 30% DFT Rapid Increase
in DFT

t (years) 15 15 12 12

gCAP 1.230 1.230 1.230 1.230

gvoI 1.070 1.070 1.070 1.070

CAPfun 1.150 1.150 1.150 1.150

Ko 0.0073 0.0073 0.0073 0.0073

ATEo 2 2 2 2

ATEt 50 2 20 8

gATEfun 1.263 1 1.212 1.122

gATE 1.351 1.070 1.296 1.201

gK 1.174 0.870 1.126 1.044

Table 5.3 Parameters: Predicted Technology Changes and the Bottoms-Up Model

Not surprisingly, the results are similar to those found in the top-down approach. The

90% DFT acceptance projected from the 94' issue produces a decaying growth rate for



the ATE to capacity ratio of 0.870. Also, the adjustments made in the 97' issue project a

smaller impact of DFT which result in a growth rate for the ratio of 1.044. Both issues

show significant functional growth if the technology stalls.

Table 5.4 shows the projected ATE revenues for each scenario in 2000, and 2010. This

helps to provide a better feel for the impact that technology might have as predicted by

the above model. Capacity in 8" equivalent WSM grows at a rate over one million per

year in 2000 from current levels of 780 thousand, and exceeds ten million per year by

2010. Current total levels are above five million.

i Capacity NTRS 94' NTRS 97'
Year Market Increase per

Year 25% DFT 90% DFT 30% DFT Rapid Increase
_ in DFT

2000 Total ATE 1,319,202 $25B $4.2B $15.4B $11.4B

2010 Total ATE 10.455.924 $523B $14B $317B $127B

Table 5.4 Bottoms-Up Model Forecasts with Predicted Technology Changes

5.4. Results Summary

This chapter has focused on adapting forecasting models to help in measuring the impact

technologies might have on the ATE market. In particular, two factors to growth have

been discussed, volume, and functionality. This separation of means to growth can be a

useful method to gain a different perspective on the role of technological changes in a

market place.

Specifically, DFT could have a dramatic impact on the functionality growth that the ATE

market has seemed to enjoy. Various semiconductor associations, such as SIA, see the

application of the design techniques in this category as a means to reverse ATE's

proportionally larger functional growth per increase in semiconductor functionality.

Models presented here suggest that if predictions are true, revenues in this industry will

vary by an order or two of magnitude depending on the acceptance of DFT.
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6. Conclusion

The semiconductor industry and the industries that support it have, and will continue to

have, enormous growth opportunities. With the continual interest and developments in

areas such as networking, and mobile computing, the need for new devices will certainly

increase. However, there is not much reason to believe that the cyclical nature of this

market will go away any time soon. The swings in 1997 alone are testimony to the fact

that fluctuations will continue.

Therefore, it is important to continue to work on improving forecasting. Modeling is an

important technique for making the forecasting process more quantitative and closely

connected to tangible characteristics of the market. Other less analytical approaches

should also be undertaken. This includes, if possible, working as close as possible to

customers. Such relationships can help to alleviate problems, such as over ordering

which are frequently found in supply chains. This is certainly an approach that Teradyne

and other ATE manufacturers have taken and should continue to do so in the future.

However, it is more critical to understand how to operate most effectively under such

volatile market conditions. Trends in the industry have heightened the importance of

this fact. The continual increase in worldwide capacity by foundries, which focus on

rapid response to their customers, has made lead times of primary concern. Even those

companies that do their own semiconductor manufacturing have improved their ability to

stop and start capacity increases to time market demand. Suppliers to the semiconductor

industry that can develop a competitive advantage in responsiveness will be the ones that

survive.

6.1. Forecasting in Semiconductor Related Markets

The bottoms-up forecasting model presented here does appear to have promise. The

negative bias that has existed in top-down approach was removed for the time period

studied. However, this technique is far from proven. The model should continue to be

used until the statistical significance of any improvement can be judged. Certainly, the



new model does not need to completely replace the older one, but instead it could serve

as a supplement.

An area not reviewed in much detail is the possibility of leveraging the differences in the

market segments. For instance, the memory market has had much more volatile revenue

totals than other device types. However, the functional requirement of memory makes it

much more commodity like. Thus process and product variations are fewer. This is a

segment where a closer look at capacity increases makes the most sense.

6.2. Operating with Forecast Error

Forecasts by definition are always wrong. The key questions that must be understood are

how wrong, and what operationally can be done to most effectively compete with the

given error. In the case of ATE, lost sales or even customer dissatisfaction due to long

delays in delivery dominate the discussion. Due to the extremely high switching costs

between ATE vendors, and the follow-on sales that are attached to each tester, the loss of

a sale costs significantly more than the marginal cost of increasing capacity. Under high

forecasting error, it is important to plan for volumes greater than those predicted. As

forecasting is improved, the amount over the predicted level can be reduced. Certainly,

this will result in material write-offs due to obsolescence, as well as other pains in

downturns. However, upswings will produce higher revenues and an increase in market

share when there is a chance to do so.

A more proactive approach to addressing the issue of operating with forecast error is to

recognize the importance of volume flexibility. Often when companies focus on design

for manufacturing (DFM), their efforts are on ease of assembly or repeatability. In ATE,

the concentration needs to be on effectively dealing with industry cycles. This might

include trading off an easy assembly process for a difficult one that include shorter lead-

time parts.

6.3. Impact of Technology

Clearly, in addition to more tactical approaches, it is important to also have a strategic

perspective while performing revenue and product planning. Focusing on near term

forecasting improvements could lead a company to miss the big picture. Design-for-test



is expected to significantly reduce the perceived increasingly larger cost growth of ATE

per functional improvement in semiconductors. Other technologies that are under

investigation could have similar effects. In an industry that is as fast paced as

semiconductors and semiconductor equipment, the effects of technology could dwarf the

errors in traditional forecasting.
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Appendix A: Regression Line Plots

There are two sets of regression line plots presented in this appendix:

Buy-Rate/Year Regression Line Fits

These graphs plot buy-rate verses year for the total ATE market as well as for the

individual logic, memory, and mixed signal segments. The data and the regression lines

are shown. They contain both exponential and linear fits.

Fab Equipment/Fab Capacity Ratio Regression Line Fits

These graphs plot equipment expenditures per 8" equivalent WSM. Graphs are specific

to the product that is produced with the wafer. There is also a plot that presents all of the

different fab types. For each, the data and the regression lines are shown.



Buy-Rate/Year Regression Line Fits
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Buy-Rate/Year Regression Line Fits

Buy Rate/Year - Linear and Exponential Fit for Memory ATE
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Fab Equipment/Fab Capacity Ratio Regression Line Fits

Equipment Expenditures per 8" Equivalent WSM
Linear Regression - All Fab Types
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Fab Equipment/Fab Capacity Ratio Regression Line Fits
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Fab Equipment/Fab Capacity Ratio Regression Line Fits
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Appendix B: User Interfaces for Models

There are two user interfaces shown in this appendix:

Bottoms-Up Forecasting Model Interface

This user interface consists of two sections. The user inputs capacity projections as

determined by fab databases for each product type into the correct year. The results table

shows the forecasted ATE revenues for the years in question after the user selects the

calculate button.

Capacity Planning Model Interface

This user interface consists of the data input/output section, graphical representations of

the output, and a detailed description of some key parameters. The user enters values for

the demand and cost parameters. Then he or she selects the optimize button. The results

appear in the results section and detailed output table. The graphs are also updated after

this button is selected.



Bottoms-Up Forecasting Model Interface

Input - World Wide Capacity
Year

Product Type 1992 1993 1994 1995 1996 1997 1998 1999
Foundry 34,000 3,938 100,000 85,656 216,300 259,000 70,000
Logic 37,125 30,888 72,219 117,797 75,500 74,688 77,000 80,000
Memory 75,063 92,313 189,481 265,400 250,094 267,781 609,850 90,000
Mixed Signal 10,125 28,828 2,500 42,094 63,375 42,963 31,250 28,672
Memory/Logic 54,688 70,125 75,375 79,375 143,987 135,000 87,000 8,000
Combination 26,563 20,000 19,063 4,000 44,000 28,000 12,000
Discrete 49,125 4,500 4,938 11,250 30,469 27,625 525
Not Specified 2,500 11,250 8,219 500 338 12,000 35,000 0
Total 262,625 264,466 376,669 635,478 653,419 820,356 1,127,625 288,672

Output - World Wide ATE Demand
Year

ATE Market 1992 1993 1994 1995 1996 1997 1998
Total ATE $1,015 $1,846 $2,510 $4,030 $4,744 $5,548 $7,623 $4,589 $824
Foundry ATE $174 $104 $20 $523 $745 $1,368 $1,987 $1,152 $215
Logic ATE $213 $305 $521 $925 $839 $689 $699 $724 $275
Memory ATE $361 $661 $1,179 $1,825 $1,971 $2,012 $3,710 $2,195 $260
Mixed Signal ATE $43 $148 $84 $185 $377 $344 $243 $202 $73
Mem/Log ATE $156 $294 $335 $356 $547 $632 $480 $172 $14
Combination ATE $0 $126 $171 $148 $73 $221 $259 $137 $34
Discrete $0 $0 $0 $0 $0 $0 $0 $0 $0
Not Specified ATE $12 $61 $71 $26 $3 $58 $201 $100 $0

1999 2000



Capacity Planning Model Interface

Demand Distribution w/ Selected Capacity
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