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ABSTRACT

This thesis presents a demonstrated method for achieving rapid, iterated product development between
an automobile manufacturer and a component supplier. The work occurred in the context of a semi-
automated design process being developed at Ford. The thesis also discusses the organizational and
cultural context of this new product development process and their implications.

Designing an automobile demands the coordinated design of thousands of parts. Systems engineering
proposes that this challenge can be simplified by decomposing the car into systems, sub-systems and
components: manageable pieces which are designed individually and then reintegrated into the whole, a
process repeatedly iterated until final design approval. Complications arise when suppliers design some
parts, and engineers must manage supplier communication at each iteration.

To meet pressure for increased speed, a Ford group is instituting their view of a "next generation"
design process, a semi-automated software-based methodology which embodies knowledge
management and systems engineering. This thesis addresses a crucial next step: integrating suppliers
into this new, faster process. Working with a team applying the new design process to a Throttle Body,
the research culminated in the successful demonstration of a method for integrating supplied part
design into assembly design.

The technical and cultural setting for this work was also studied. Organizational issues influencing
immediate acceptance as well as the longevity of the proposed process change were assessed using a
Core Capabilities/! Rigidities framework Introducing the new semi-automated design and
communication process delivered an order-of-magnitude reduction in design iteration turnm-around time.
However, the complexity of the software tools may impair long-term adoption. And the process
demands many changes to the existing product development culture, resulting in significant resistance
to this innovation in product development
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1. INTRODUCTION

The problem this thesis addresses is how to realize the speed advantages of a new product

development process when a significant part of the product is designed outside the immediate

organization. The solution presented is a demonstrated method for implementing rapid,

iterative product development between an automotive customer and a component supplier

which embodies a systems engineering approach. The method was created and tested over the

course of an internship at the Ford Motor Company. A team of engineers and managers at

Ford have been developing and deploying a proprietary "next generation" semi-automatic

product development process and had identified the need to integrate suppliers and supplied

components into their new process.

For this research, a candidate supplier was chosen, and a method for integrating the supplier

into the new product development process was developed and demonstrated. The method,

which is the focus of this thesis, is sensitive to the technological and cultural setting and the

differences in skills, capabilities, and tools available to the customer (Ford) and the supplier.

While the method was developed within the new proprietary process, the writer believes the

results are generally applicable to other supply-chain product development relationships.

In addition to the supplied-component development process, the research revealed many

organizational and cultural issues which impact the proposed change from current product

development practice to the "next generation" process. These are discussed throughout.

This thesis is organized as follows. The remainder of Section 1 outlines the organizational

setting, the product used to demonstrate the supplier process, and the new semi-automatic

product development process at Ford. Section 2 presents a short summary of assembly design

and systems engineering, and asserts that this methodology belongs at the core of the "next

generation" process. Section 3 then discusses how supplier-designed components can be

integrated into systems engineering and the product-development process. Section 4 describes

the demonstration of the integrated supplied-component development process between Ford

and the candidate supplier. An assessment of the types of supplied components to which this

process can be applied is presented. Section 5 discusses the observed organizational and



cultural issues that will influence the long-term success of the new semi-automatic product

development process. Section 6 concludes with some suggestions for future research.

1.1 ORGANIZATIONAL SETTING

The research that led to this thesis was conducted during an LFM internship at the

Rawsonville, Michigan plant of Visteon, an enterprise of the Ford Motor Company. The LFM

(Leaders for Manufacturing) Program is a partnership between twenty U.S. manufacturing

firms and the Massachusetts Institute of Technology. Visteon was announced during the

internship, bringing all Ford's components divisions under one corporate banner. The

Rawsonville plant designs and manufactures a variety of automotive components, including

alternators, fuel rails, intake manifolds, and the subject of this thesis- Throttle Bodies.

1.2 OVERVIEW OF PRODUCT STUDIED

This thesis presents a product development methodology using a Ford/Visteon Throttle Body

and Throttle Return Spring as an example. Both are shown in Figure 1-1. The Throttle Body

is in essence a butterfly valve operated by the driver's foot that modulates the flow of intake

air to a car's internal-combustion engine. The Throttle Return Spring provides a closing

Figure 1-1 Throttle Body, shownpartialy open (Throttle Return Spring is the coil to night)



torque that shuts this valve as the driver's foot relaxes.

All Throttle Body components are assembled into a die-cast aluminum housing. Inside this

housing, the butterfly valve is comprised of a round, flat plate supported across its center by a

shaft. The plate fits snugly in a round bore machined through the aluminum housing; as the

shaft and plate rotate from the dosed position, the cross-sectional air flow area gradually

increases. The shaft rotates in bearings which are pressed into the housing at either side of the

plate. One end of the shaft is attached to an input lever, typically a cable-operated cam. The

other end of the shaft engages a rotary potentiometer- the Throttle Position Sensor- which

provides throttle plate position (ie. throttle opening) signals to the electronic engine

controller.

The Throttle Return Spring surrounds the shaft between the housing and input lever. This

torsion spring contacts the housing and lever, and is wound to produce a torque on the shaft

which doses the butterfly plate. This is an important safety feature, insuring that the engine

can not "run away" if it becomes detached from the accelerator pedal input. The return spring

also contributes to the load pushing the accelerator pedal back at the driver's foot.

The Throttle Body controls the amount of air traveling into the internal-combustion engine.

When the driver presses the accelerator pedal, a mechanism (most commonly a cable)

transfers this motion through the input cam to the shaft, which rotates and opens the plate to

admit more air to the engine. In modem internal-combustion engines, injectors deliver fuel in

proportion to the air flow reaching the cylinders. Therefore, overall vehicle throttle response

is controlled by the Throttle Body and its design influences the "performance feel" of the

entire car. The "performance feel" of the car also depends on accelerator pedal effort, which

is influenced by the Throttle Return Spring's preload and spring rate.

At Visteon's Rawsonville plant, Throttle Bodies are always custom-designed for each new

engine, and are commonly modified for each unique combination of a given engine and car

platform. The Throttle Return Spring, designed by a supplier named Michigan Spring, is

similarly adapted to each new vehicle and/or engine application. Because the car's

"performance feel" often isn't known until pre-production builds are completed, Throttle

Return Spring design changes can occur very late in the car design process.



As is discussed in later sections of this thesis, Throttle Bodies are currently designed in a

traditional engineering process. But prior to and during the internship, Ford and Visteon

engineers have been applying a "next generation" semi-automatic product development

process (described below) to the development of Throttle Bodies. Introducing this process

will dramatically increase Throttle Body development speed. However, the Throttle Return

Spring is tightly integrated within the Throttle Body, so speeding up Throttle Body design

necessitates speeding up the development process for this supplied component. This thesis

presents a demonstrated approach for accomplishing this goal.

1.3 FORD'S SEMI-AUTOMATED PRODUCT DEVELOPMENT ENVIRONMENT

A group of managers and engineers at Ford are developing and applying a vision for how

products will be designed in the future. They call their concept for a semi-automated

knowledge-based product development process the DIRECT ENGINEERINGM process

(or, the DEsm process)'. The details of the DEsM process are considered proprietary by Ford,

and are not a focus of the thesis. However, its development led to the need for this thesis, so

it will be helpful to discuss in general terms what the DESM process is about.

The DIRECT ENGINEERINGsm process's definition is in flux, as continued learning and

development have influenced the Ford team's concept. It continues to develop. The vision is

quite broad, as shown by the statement below. This vision for the DEsm process is perceived

(and marketed within Ford) as being more than just a tool- it is a process to capture, manage

and develop knowledge of products and their production environment, with the goal of

enabling rapid design of variant components which are fully compliant with the constraints of

all systems that interact with a product- including the product's surrounding assembly and the

manufacturing process environment. The DESM process presents a major organizational shift

in terms of engineering roles, activities and focus. Section 5 describes and assesses this impact.

1 DIRECT ENGINEERINGSM and DEsm are Service Marks of Ford Motor Company.



The DIRECT ENGINEERINGM Vision: To proide an environment that allows an

engineer to simultaneously consider both product and manufacturing requirements throughout

the desgn/development/manufacturing ycle, resulting in a Total Product Definition built

upon the collective intellect of the organiZation.

Key Prindples (selected): An integral, dynamic knowledge managementprocess; Seamless

knowledge deliver and application; Rapid Development of a Total Product Definition;

Variant Design

@ 1997 by The FordMotor Co. Used with Permission

The "tool" that enables the DESM process of defining, capturing, and encoding the engineering

process is a high-level software application. The DESM organization considers the choice of

software important but has not prescribed a particular tool; they feel that developing a

consistent, disciplined engineering process that connects and integrates sources of knowledge

is the key to the DESM process. Most commonly, DESM applications have been developed on

Unix workstations using IDL/ICAD, a LISP-based expert-system development package. This

is not the only solution- the work in this thesis created a DESM application in Microsoft Excel.

The DIRECT ENGINEERING sm organization is comprised of a core "DESM Team" and a

number of application groups. The managers and technical specialists on the DESM Team are

developing the vision and planning for its growth and dissemination across Ford. A major

team goal is to generate a product development "mindset shift" across Ford which will

overcome resistance to change and initiate a transition to the DESM approach. Among the

DESM Team's activities are coordination of technological advances, detailing a formal Business

Case, identifying standard processes, and targeting appropriate projects for applying the DESM

process. The application groups are distributed across Ford and Visteon, each creating a

unique DESM application for a specific vehicle component or assembly. Application groups

are comprised of a supervisor or manager and several engineers, designers, and software

developers.

Additional DESM process details will be presented as needed throughout the thesis.
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2. PRODUCT DEVELOPMENT OF ASSEMBLIES

Automobiles are assemblies of many discrete components, and a large part of the vehicle

engineering challenge is the integration of thousands of parts into a unified whole. Managing

assembly design is a core part of automobile design. It is challenging in part because it defies

the skill of any one person: "the intuitive resolution of contemporary design problems simply

lies beyond a single individual's integrative grasp" [Alexander (1964)]. A typical car contains

more than 10,000 parts, and organizing their collective design is perhaps the greatest challenge

in manufacturing a motor vehicle [Womack, Jones and Roos (1990)].

The problems associated with assembly design have been the subject of much research and

writing. Numerous methods for managing the successful integration of many parts have been

presented in the literature. This thesis draws on these writings, but focuses mainly on the

details: specifics of what to do within a larger assembly strategy. This section "sets the stage"

by presenting the assembly context in which this research was done.

Section 2.1 introduces and defines the concepts of assemblies, components, and architecture,

and introduces the problem of architectural evolution. Section 2.2 discusses Systems

Engineering, a crucial vehicle design skill Topics introduced include decomposition and

reintegration (and limitations of this methodology), the FPDS V, and two key skills:

specification writing and rapid iteration. Section 2.3 discusses Assembly Knowledge, which

captures the relationships between parts and the assembly's system model

2.1 ASSEMBLIES, COMPONENTS AND ARCHITECTURES

Vehicles are made of groups of interrelated parts- called assemblies - that together perform the

desired functions. An assembly is not merely a collection of parts. Together, the connected

parts in an assembly do things that the parts alone cannot. However, these parts interact in

complex, not always anticipated ways, an important point that will be discussed below.

Components are separable physical parts or sub-assemblies [Ulrich (1995)]. Henderson and

Clark (1990) define a component as a physically distinct portion of the product that embodies

a core design concept and performs a well defined function. This definition confirms that



components need not be single physical entities and can be assemblies in their own right.

These concepts are best illustrated with an example. The approach used in the discussion

below draws on Alexander (1964) who uses the illustration replicated in Figure 2-1 to discuss

complex system design. The lines represent interactions between components, represented by

the heavy dots. Sub-systems are represented by the large circles. Just how the sub-systems are

identified is the subject of much research and is discussed in Section 2.2 below.

Component Sub-System
Inter-relationship

Figure 2-1 A System IllMstrating Sub-ystems [re. Alexander (1964)]

This simple picture does not tell the full story, of course. Particularly absent is a

representation of the functions of the assembly. Some if not all of the properties of an

assembly are an outcome of the interaction of two or more components. These functions are

assumed to reside within each sub-system even if not explicitly drawn.

Considering adapting Figure 2-1 for the Throttle Body. At what level of abstraction should

the system be drawn? For illustration purposes, I will be begin by identifying the Throttle

Body as a sub-system and presenting the surrounding sub-systems which interact with it. This

is shown in Figure 2-2. The sub-systems conform to the circles in Figure 2-1; the components

within them which will be addressed in later figures.



For Figure 2-2 to be strictly correct, some of the interconnecting links between sub-systems

should pass through the system boundaries to show that most interactions occur between

components themselves. Also, this figure is illustrative and does not present an exhaustive

picture of all the sub-systems and their interactions.

Each sub-system represents a collection of components. Drawing these actual components

for the Throttle Body results in Figure 2-3. This is a "close-up view" of the Throttle Body,

and illustrates that surrounding sub-systems interact with components within the Throttle

Body. Inside every other sub-system are similar "real components." If all of these

components were also shown, the diagram would become quite complicated.

But this level of detail does not complete the picture. There is much more detail within the

Throttle Body itself. Consider the Spring and all of its features. Figure 2-4 shows the Throttle

Body sub-system with the spring details. Note that the spring interacts directly with

components within the Throttle Body, but also with sub-systems that are outside it.

Figure 2-2 Throttle Body and surrounding sub-systems



Figure 2-3 Close-up View of Tbrottk Body Components and suromnding sub-9stems

The same level of detail shown in Figure 2-4 for the Spring can also be identified for the TPS

(Throttle Position Sensor), for the Housing, or for the Lever/Cam. Now consider expanding

Figure 2-2 for all such details for all components for all the sub-systems shown. This

represents a problem of enormous size. Yet solving this type of problem occurs each time a

car is designed; dearly vehicle engineers figured out many years ago how to manage this size of

problem.

How? By using the process above, breaking a large, unwieldy vehicle design challenge into

simpler, manageable problems. This is a key part of Systems Engineering and is discussed in

Section 2.2. The above discussion and figures also help to illustrate Product Architecture and

Architecture Evolution, important product development issues. These are discussed below.



Figre 2-4 Throttle Body Sb-system with Spring details shown

2.1.1 ProductAchitectures

Ulrich and Eppinger (1995) define architecture as the scheme by which the function of the

product is allocated to physical components, and the scheme by which the components

interact. Architecture has also been defined as the laying out of how the various components

will work together [Henderson and Clark (1990)]. The network of inter-relationships shown in

Figures 2-1 through 2-4 above demonstrate a system architecture- one that is known and

understood since the system exists. Issues of architecture design are only touched on here.

Ulrich (1995) presents good arguments for various architecture choices, cast along an integral

versus modular distinction. Suh (1990) presents a process for choosing architectures based on

functional requirement independence. There are many worthwhile references for this topic;



Pimmler and Eppinger (1994) offer a useful summary.

Figures 2-1 through 2-4 illustrate an important architecture question: the assignment of

components to a particular sub-system. How should one decide what component belongs

where? The spring, for instance, is linked to components both within the Throttle Body and

outside it (see Figure 2-3). Why is it located within the Throttle Body sub-system? An

approach to answering these questions is Systems Engineering, discussed below.

21.2 Amhitectm Evolution

Assembly architectures are an important topic in product design, as the adoption, evolution

and obsolescence of architectures are of central importance to design tasks and design

organizations. The architecture illustrated in the figures above is applicable to a current

generation of vehicles. Not many years ago, however, carburetors (which combined air and

fuel metering) represented the dominant technology, and electronic engine control did not

exist. Possible future developments include direct-drive throttle technology. Each of these

significantly alters the sub-system map shown in Figure 2-2, and all maps "below" it (Figures 2-

3 & 2-4).

Common themes of evolution seen are the separation, elimination or merging of both

functions and components. These changes represent fundamental architectural changes,

demanding that network of interactions be redrawn. A goal of product development

management is that knowledge is retained and reused as these evolutions occur. And the

method of saving knowledge must make change simple to implement, lest the organization

become resistant to product evolution. These themes are picked up in Section 5. Examples

of architectural evolution are:

* Separation of Functions: The internal-combustion engine carburetor has evolved into

a butterfly valve and fuel injectors. Functions that were once in tight proximity are

now physically dispersed, and the components can be developed by independent

suppliers.

* Elimination of Components: The carburetor had jets, a float bowl and so forth, all of

which are no longer necessary. Expertise in the design and production of these

~~



products is no longer relevant; this knowledge became obsolete.

* Merging of Components: The throttle-body and intake manifold are expected to be

integrated in the future. This change won't alter key sub-components such as the

butterfly plate and cam-lever. Engineers will re-use know-how by integrating existing

parts into the new architecture.

2.2 SYSTEMS ENGINEERING

Like most automotive assemblies and sub-assemblies, the figures in Section 2.1 illustrate a

small part of a large and complex system with numerous interrelated parts. Overall

performance depends on the collective performance of all these parts: vehicle functional

requirements are established for the whole, not the pieces. Systems Engineering is the term

given to a product realization process that addresses this challenge. It is used extensively in

this thesis. The following description is taken from Fine and Whitney (1996).

The Systems Engineering process views the product as a series of levels; each lower level is

defined in more detail than the level above, and contains subsidiary subsystems or

components. The requirements defined for the lower levels support the levels above in

precisely defined ways. Within a given level, requirements flow from the level above, are

broken into supporting elements at this level, and are then expressed in terms of requirements

for the level below. The "requirements" for an element means providing a function, or

physical support, or power, etc.

Performing the systems engineering process means repeatedly determining the boundaries

between elements in the level below. A basic principle of systems engineering is that the

system at each level should be broken down into elements that have "dear and terse

interfaces" with each other and the levels above. Interfaces are where elements and

subsystems connect and across which the requirements are delivered. As much as possible,

complex interactions are kept within subsystem (element) boundaries. Doing so simplifies

subsystem requirements and minimizes the amount of interaction needed between subsystem

developers during design. As Figure 2-1 suggests, components which share complex or strong

interactions belong in one sub-system, and there should be few interactions between sub-



systems. Determining the relative strength of the interactions is an important question.

Often simple heuristics can be used to decide which sub-systems components belong to.

Pimmler and Eppinger (1994) note that some types of interactions are more important than

others, and that spatial adjacency requirements generally have a high priority in product

architectural clustering. For this reason, engineering organizations have typically chosen to set

architectural sub-system boundaries at dearly defined physical joints, instead of dumping all

the components that contribute to a specific function into a sub-system.

A throttle body example is illustrative. The Throttle Return Spring's interaction with the Pedal

Assembly can be characterized by a few numerical values (installed load and spring rate) which

are easily communicated. It's harder to describe the spatial interaction of the Spring with the

Throttle Body housing. Managing Spring-to-Throttle Body integration is more complex than

managing Spring-to-Pedal Assembly integration. This heuristic approach satisfies the

"judgment test": it is somewhat self-evident that the Spring belongs as a component of the

Throttle Body.

In systems engineering, the process of setting the boundaries between elements at each

successively more detailed product level is called decomposition. The decomposed,

manageable pieces are developed individually and then reintegrated into the whole. Basic tasks

required for systems engineering are determining good decompositions and then writing clear

specifications (requirements) for each element or subsystem.

Figures 2-2 through 2-4 illustrate an example of decomposition, where the elements are

assemblies or parts and the lines connecting them represent their interactions. The recursive

nature of systems engineering is evident from these figures; each level of decomposition

requires the same skills and presents the same challenges as the level above or the level below.

At each level of the systems engineering process, specification skills are the ability to determine

the needs of the level above (essentially customers), break them down into supporting

capabilities (decomposition) and then describe (specify) these capabilities to people or

companies (essentially suppliers) who will have to figure out how to develop and deliver them

[Fine and Whitney (1996)]. Defining a component's specification demands full knowledge of

its interface with the system around it. On a purely technical level, it doesn't matter if
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Figur 2-5 The Systems Model and Interface must be identified at each decomposition kvel

"suppliers" are members of the "customer" company or not: the engineering challenges are

the same. As discussed in later sections, organizational issues do have important effects.

A look at Figures 2-3 & 2-5 illustrates an important concept that is central to the work done in

this thesis. Consider the Throttle Body in Figure 2-3, or the "sub-system" in Figure 2-5.

Applying the Systems Engineering process demands identification of three kinds of

knowledge:

(1) The interface of the system with higher levels of the decomposition. In other words, the

requirements imposed by the system's surroundings- how the Throttle Body interacts with

the world around it.

(2) The system model at this decomposition level- what the Throttle Body elements are, and

how they interact with one another. This will be called Assembly Knowledge here.

^____~_~



(3) The interface of the system with its elements, which are designed by "suppliers." Higher

level requirements together with the system model determine element requirements or

specifications.

Item (1) is the responsibility of the level above that being studied. Item (2), Assembly

Knowledge- the system model- is discussed in Section 2.3. Item (3), the interface problem, is

addressed in Section 3 along with other matters for supplied components.

Systems engineering problems are usually solved in an iterative process because they are too

complex to solve in a single, deterministic step. Cognizant engineers at a given level perform

repeated technical communication with suppliers, specifying requirements and collecting

"latest revision" design information at each iteration. The goal is an optimum or acceptable

design that satisfies the requirements and constraints of both the level above (the customer)

and the numerous suppliers (the levels below, whether internal or not). The speed and

accuracy of each iterative step have a significant impact on development time and the quality

of the outcome.

The remainder of Section 2.2 discusses decomposition and re-integration in some depth, and

identifies some problems inherent to this approach.

2.21 lantudtv Deco posiuon

Observations at Ford and Visteon suggest that cars have traditionally been decomposed into

assemblies, subassemblies and components, manageable pieces which can be designed

individually. The decomposition process occurs naturally to engineers and designers, who

recognize their own limitations at managing simultaneous complex problems. The breakdown

of automotive programs into engine systems, interior systems, and so forth recognizes similar

coordination limitations at the engineering department level. Thus vehicle design

organizations demonstrate an application of decomposition, a process which intuitively makes

sense and enables rational management of the complexity inherent in an automobile.

There are limitations to this approach to decomposing vehicle systems. The decomposition

may be along organizational or political boundaries that are not technically optimal. Without a

formal process, clear requirements identification and specification probably does not occur.



Fortunately, the Ford Motor Company has adopted an explicit recognition of the

decomposition /reintegration process: the FPDS V discussed below.

2.2.2 Ford's Fmamewcfor Decomnposidion he FPDS Vee

Systems engineering is an integral part of the Ford Product Development System (FPDS)

currently being rolled out across Ford. A primary tool for implementing systems engineering

processes is the FPDS "V" which is shown in Figure 2-6. The figure's horizontal axis is time;

the vertical axis represents levels of decomposition.

At the top of the V are broad vehicle requirements, which apply to major vehicle systems.

Going down the V as a vehicle program proceeds, these requirements are decomposed into

more and more specific sub-system, assembly, and component requirements. This is called

"cascading" of design targets. Along the bottom of the V, design targets are converted into

actual component designs, which are then integrated together into complete vehicle systems as

the program proceeds up the right-hand side of the V. Thus the FPDS V is a visual

representation of the decomposition and re-integration process.

Surprisingly, the need for iteration is not explicitly addressed with the V; the arrows shown on

Design iterations
occur throughout the

process

Figure 2-6 Ford Product Development System V Used with pewnision.
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the figure are my addition and are discussed below. However, iteration is addressed in the

FPDS course taught across Ford. The FPDS V is a useful model for describing the complex

vehicle development process.

2.23 Limitaons of Decompositon/Reintegradon

The systems engineering decomposition process is a valuable tool, but it captures complexity

imperfectly. Problems within actual vehicle decompositions include components that

influence multiple assemblies, performance parameters that aren't connected with a particular

component, and designs which are not deterministic. Each of these are discussed below. The

inability to capture complexity leads to inevitable conflicts between components and

assemblies during the development process, which leads to repeated design iterations. While

not guaranteed, the number of conflicts should decrease with each iteration of decomposition

and re-integration.

Components influence multole .ystems

It is the nature of complex integral assemblies such as automobiles that components will reach

out beyond their place in the V by interacting with other parts, in "distant" assemblies. If

these effects are strong, then determining system performance demands knowledge of

components that aren't within the sub-system under consideration. For instance, the Throttle

Return Spring interacts with other parts of the car: the Accelerator Pedal (pedal feel), the

Speed Control System (operating loads), and the Accelerator Cable (location and direction).

This is related to the problem of choosing the system's decomposition. For instance, consider

Figure 2-7, which is Figure 2-2 re-arranged with several candidate systems to which the

Throttle Body could belong. Which one is the right one? Briefly, its hard to say. This is an

area of study that has attracted much research attention. A noteworthy methodology for

solving this problem is the Design Structure Matrix, or DSM [Steward (1981); McCord and

Eppinger (1993)]. The DSM is developed by interviewing the development organization staff

about interaction between parts. After the Design Structure Matrix is completed and

optimized, it reveals the important component interactions or "clumps" and states that

product development will proceed more effectively if these clumps are explicitly managed



together.

A simple heuristic discussed earlier is that components belong to the system with which they

have the "strongest physical interaction." This appears to describe the chosen Throttle Body

decomposition, which is considered part of the Air Intake System. The Throttle Body shares

two mounting surfaces with this system: a flange on the Intake Manifold and a lip on the

Intake Duct.

Performance parameters aren't connected with single components

Often overall system performance is an outcome of the interactions of many components and

sub-systems and can't be cleanly assigned to a single component. This commonly occurs in

highly integral architectures, where there are problems applying the systems engineering

approach [Fine and Whitney (1996)]. Where many components interact in a small space and

need to meet many integrative functional requirements, the system is not readily decomposed.

Fuel Electronic
System Engine Firewall

Control

Pedal
Assembly

Throftle
Throttle Cable

Air Body
Intake
Duct

Intake
Manifold Accelerator

Feel
Cable System/ 0-.41-6

Figure 2-7 The Throttle Body is a candidate member of several systems



A good example of this is a car's B-pillar. Here, structure (roof, floor, door system),

appearance (interior and exterior styling), and numerous functions (stiffness, NVH, safety,

weight, wind noise) all intersect in a tight space. A systems engineering decomposition of this

area is nearly impossible, as is recognized by many engineers at Ford.

Deigns are not deterministic

As has been mentioned earlier, systems engineering decomposition may not produce a

deterministic design. Experience shows that simply cascading targets doesn't insure that they

can be met: going down the V once and back up again will not result in a good or even

adequate design. This is due in part to the types of interactions discussed above, and explains

why systems engineering requires iteration. Repeatedly, at intermediate stages in the V,

individual components are assembled and the integrated whole is checked for performance.

Problems as apparently simple as mechanical interference are identified, requirements are

tweaked, and the design process is repeated. The need for such iterations suggest that the

systems engineering process cannot be automated.

These observations suggest various strategies that may expedite the vehicle development

process. One such strategy is "Set-Based Design" [Ward et al (1995)]; another is "Synch-and-

Stabilize" [Cusumano and Selby (1996)]. Both are discussed as a directions of future research

in Section 6.

Conflicts. the norm rather than the exception

The above paragraphs suggest that complex assembly design will lead to frequent conflicts

which must be managed. For instance, a straightforward decomposition falls apart upon

reintegration due to what I call the "reach across the V" problem. Yet traditional

development processes seem to treat these as unlikely exceptions, unplanned problems that

demand special attention and shift the overall process off the smooth development path.

Since experience shows such conflicts will always occur, perhaps they should be treated as part

of the normal process. For instance, the DESM process should not be planned to provide one-

time optimization, but instead to identify and manage the conflicts that will arise as the 10,000

parts in a car are collectively developed. The development process described in Section 4



suggests how conflicts between component requirements and component design can be

managed for the Throttle Return Spring. Such a perspective is needed for the entire vehicle.

2.3 ASSEMBLY KNOWLEDGE

The term Assembly Knowledge is the name given here to the system model which captures

how elements (components) interact with one another within a given decomposition level

For the Throttle Body, this is the network of interactions shown in Figure 2-3. Assembly

knowledge also refers to a component's system model, because components can be viewed as

assemblies of features. For instance, the spring in Figure 2-4 is an "assembly" of simpler

elements. Managing assembly knowledge is central to the DEsm vision for expediting the

product development process.

Each DIRECT ENGINEERINGsM application, in essence a semi-automatic software model

of an assembly, requires that assembly knowledge be collected and encoded. Depending on

the decomposition level, the assembly knowledge might consist solely of integration of

components designed at lower levels, or might include components designed at this level.

However, assembly knowledge is difficult to describe, difficult to capture and generally not

explicitly defined. While certainly known to product-development personnel, observations of

real organizations show that such knowledge is informally maintained. And due to assembly

evolution, there is a real risk that assembly knowledge, if captured, will soon be obsolete.

This section discusses assembly knowledge: what it is, where it is found. It then identifies the

need for managing assembly knowledge within the DEsM process: assembly knowledge is

important, and the DESM organization needs to figure out how to manage it.

2J.1 Defning Assembly Kowledge

Assembly knowledge is the set of everything needed to be known about an assembly in order

to design it at the assembly level. This includes how functional requirements, or specifications,

for the assembly are related to individual part parameters. It includes the interactions between

parts- the architecture- and the parametric equations that relate component dimensions to one

another. It includes information related to each part which is not about the part, but about its



interaction with its surroundings. In short, assembly knowledge is the collection of

information and relationships used when the assembly is developed. In the DIRECT

ENGINEERINGM vision, assembly knowledge also includes the interactions of parts with

their manufacturing processes, such as existing assembly lines and tooling.

23.2 Organizatonallocadon of assembly knowledge

In the organization studied at Visteon, assembly knowledge is managed by the people who do

the assembling: designers (CAD drafting personnel). A new assembly is typically created by

modifying existing designs and components to work together to new requirements. Parts are

modified as needed to make them fit. An engineer will intervene to confirm tolerance stack-

ups and resolve technical problems, but the assembly work is done by the designers.

When the engineers developing the Throttle Body DE sm Application realized they needed

assembly knowledge, they went looking and found very little recorded information. They had

to create their own, and in so doing developed a tool which was called the Associativity Map.

The story of this map is a telling example of how assembly knowledge is maintained.

An early version of the Associativity Map is reproduced (albeit illegibly) in Figure 2-8. The

map was normally printed on E-size (44" x 34") paper; the figure illustrates its general form.
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Figure 2-8 Preminay Associatiity Map



Each block represents a Throttle Body component feature which can be either fixed,

dependent on other features, or user-edited. The blocks are grouped and color-coded to

identify particular components. Relationships between the features are denoted by arrows

running from one block to another.

The Associativity Map was first developed using Post-it Notes and a large roll of paper. Later,

it was moved to a computer file. During the internship, this writer maintained the map,

updating and extending it as the DEsM application grew to contain more components. The

Associativity Map was difficult to get or keep up-to-date, was probably never completely

correct, and has surely languished since. The engineers contributing to the Associativity map,

which was the only record of the complex inter-part relationships outside of the Throttle

Body DE sm Application code, saw it as an "extra" task and only infrequently used it to develop

or understand the Throttle Body system model.

This anecdote supports the assertion that assembly knowledge is difficult to identify, collect

and record, and because the benefits of doing so aren't immediately apparent, these tasks are

neglected. As a result, assembly "knowledge management" occurs informally in the

organization's unwritten memory, a topic discussed in Section 5.

2.3 Managing assembly kmowledge for the long term

If an assembly's architecture- its part-to-part relationships- are recorded as assembly

knowledge in a manner that supports ready modification, then architecture evolution is easily

accommodated. If the components of an assembly are viewed as "building blocks" with well

defined interfaces with their surroundings, then assembly knowledge is the map that reports

these interactions: which components interface with one another, and how they interact.

Because the assembly architecture will evolve, this map will have to change- an eventuality

which must be considered at the outset. Good techniques for managing assembly knowledge

for the long term weren't developed during the internship and aren't proposed here; this is an

area of potential future research.



2..4 Assemblyknowledge and the DIRECT ENGINEERIN(M appl caton

The DIRECT ENGINEERING sm semi-automatic development environment- e.g., the DESM

application- embodies the product' system model and therefore all captured assembly

knowledge. The DEsM application also manages supplied component interfaces as described in

Section 3. Despite its importance, the DESM process does not address assembly knowledge

per se, and does not have a defined methodology for managing it or planning for its change.

As discussed above, recording assembly knowledge is a difficult but important step in

developing a systems engineering model of a product, and this knowledge must be recorded in

such a way as to make it readily modifiable. Therefore, as a DE SM team plans a new

application, their first step should be to identify the product architecture and corresponding

system model, and then the components and their interfaces. After all this in-depth

"homework" is complete, the coding can begin. A systems engineering perspective is useful

here: each component or sub-system can be treated as a "subroutine" while a top-level set of

code embodies the assembly knowledge and the system model Architectural change then

entails altering the top-level code and a small amount of lower-level component information.

This is not far from the process the writer observed with the Throttle Body team. New DESM

applications are commonly written in the arcane LISP language of ICAD programs; some

sample lines are shown in Figure 2-9. LISP is an object-oriented programming language, and

the Throttle Body DEsm Application organized many assembly relationships into top-level

code with well defined parent-child relationships to the component objects. However,

component-to-component interactions were often written into the low-level component code.

As a result, much of the assembly knowledge was buried rather deeply into 30,000 or more

lines of LISP programming, which is not very easy to decipher. The code certainly maintains

all the proper relationships, but is difficult to interpret and can rapidly grow beyond a new-

comer's capacity to absorb (or for that matter, the original writer after a few months hiatus).

When one of the developers changed jobs after some 10 months of active involvement, his

undocumented work was left to the others to sort out, a difficult task.

Thus, my observation was that assembly knowledge in the Throttle Body DESM Application

was embodied in the code but not well documented. Recording assembly knowledge was



(def-part shaft (subtracted-solid)
:inputs
(:body-bore-diameter
:plate-diameter
:plate-thickness)

:modifiable-attributes
(:shaft-style :slotted

:attributes
( :overall-shaft-length (+ (:the :shaft-center-to-stake-end-length)

(:the :shaft-center-to-tang-length))
:shaft-center (the :slot :center)

:pseudo-parts
((shaft
:type cylinder-solid
:radius (half (the :shaft-diameter))
:length (+ (:the :shaft-center-to-stake-end-length)

(:the :shaft-center-to-tang-length))
:orientation (:numeric (alignment

:top (the :vertical-vector)
:rear (the :longitudinal-vector)))

:position-about
(:local-point (:face-center :rear)
:model-point (translate (the :center)

:longitudinal (the :shaft-center-to-tang-length))))

Fgure 2-9 Sample ICAD LISP Code

given a low priority because the immediate value of the Throttle Body DESM Application could

be provided without it. And time pressures for developing demonstrable code didn't favor

careful documentation. Not recording assembly knowledge will make incorporating product

changes difficult- but this problem will appear only slowly. Assembly knowledge management

is a complex, long term matter- which the DESM organization should learn to address.

2.4 ASSEMBLIES AND SYSTEMS ENGINEERING: CONCLUSIONS

This section reviewed product assemblies and architectures using the Throttle Body and

Throttle Return Spring as examples. Product architecture was defined as the scheme by which

product functions are allocated to components and how these components interact. Product

architectures continually evolve through the separation, elimination, or merging of

components and functions.

The systems engineering process was then introduced as an approach to managing the large,

complex, and interrelated problems associated with designing automobiles. An important



lesson from systems engineering is that good product design begins with good specification

and good decomposition. Fine and Whitney (1996) assert that this is a top level skill of major

importance. At each level of decomposition, these steps identify individual components and

how they relate to their surroundings. This information evolves as the system architecture

evolves.

The systems engineering discussion identified limitations to decomposition which lead to the

need for iteration in the design process. Iterations are necessary because decompositions

don't result in deterministic solutions. The faster iterations are completed, the quicker a good

solution can be reached.

Finally, assembly knowledge was argued to play a central role in product development yet be

difficult to identify or manage. Assembly knowledge is at the core of DEsU applications, but

has received little attention from application developers and was observed to be of secondary

importance to the Throttle Body DESM team.

This section "set the stage" for the remainder of the thesis by presenting the product context

in which the research was done, and suggests some important observations for the DESM

effort. Systems engineering should be a focus of the DESM process, since DESM applications

are tools that design systems. And inevitable product evolution demands that systems

engineering information and assembly knowledge be recorded and maintained in a format

amenable to extension and modification. Anticipating and accommodating product evolution

is of central importance to the DESM process as a product development methodology.



3. PRODUCT DEVELOPMENT WITH SUPPLIER-DESIGNED

COMPONENTS

The previous section introduced the systems engineering process as a tool for managing the

challenges inherent to the development of large, complex assemblies. At the core of systems

engineering is the decomposition of assemblies into simpler elements, or subsystems. A

subsystem can be decomposed and worked on separately if its performance requirements can

be stated clearly and independently of those for other subsystems [Fine and Whitney (1996)].

Once the subsystem is completed, it can then be re-integrated with the rest of the product.

A primary motivation for systems engineering decomposition is that the subsystems can be

developed by independent organizations. At automotive companies, "independent

organizations" once meant component specialists within the parent company. In recent years,

external suppliers have developed the capability to provide significant design content. In many

respects the technical challenge is the same whether the component is outsourced or not: a

different engineering group (the "supplier"), separated by distance if not organizational barriers

from the "customer," develops part of the product. While the customer manages the

assembly integration problem (Section 2.3 above), significant end-product design responsibility

is in the hands of "supplier" engineers.

To create an effective process for product development in this environment, the nature of the

relationship between the "customer" and the "supplier" along technical and organizational

dimensions must be understood. Section 3.1 below presents a framework for classifying

customer-supplier relationships along two axes: degree of product customization and design

process interaction. A specific type of relationship, termed variant-iterative development, is

identified as most relevant to the studied problem. It is applicable to a great many supplied

components, whether developed internally or outsourced.

Since the thesis is focused on an outsourced component, the nature of the relationship

between the customer and supplier (in this case, Visteon-Rawsonville and Michigan Spring,

respectively) is important. Rather than focus on this single relationship, Section 3.2 discusses

in broader terms the history and current norms of the automotive industry customer-supplier



relationship. The wide disparity in technology and skill levels observed have significant

implications for any Systems Engineering process.

In the context of systems engineering, Fine and Whitney (1996) argue that good design equals

good specification writing. But how is good specification writing done? And what if the

specifications must be written repeatedly as the design is iterated? This work separates

supplied component specifications into two complementary pieces: (1) a shared component

framework or architecture (which will be called a variant component attribute structure), and

(2) the set of unique information defined within this framework which must be communicated

at each design iteration. The component attribute structure and the communicated

information is described in Section 3.3.

3.1 TYPES OF CUSTOMER/SUPPLIER DEVELOPMENT INTERACTION

When exploring methods for improving the supplied-component development process, it

became clear that there are many different approaches to developing supplied components.

Supplied components can be classified by the degree to which a new design is custom, as well

as the type and frequency of communication between customer and supplier organizations.

3.1.1 Chamctedzitzgby degree of customizaton

Supplied components can be characterized by the degree of customization of the design. I

propose three general ranges, although more properly this should be considered a smooth

continuum.

At one end of the scale of customization are Catalog parts, components which are selected

from a predetermined set of alternatives- e.g., a list of fastener styles, sizes, and lengths.

Developing new designs with catalog parts is pretty straightforward: the design engineer simply

needs the list of alternatives and decision criteria. A part closest to the requirements is then

selected from the list.

At the other end of the spectrum are fully Custom parts. These are parts which have a "never

been done before" nature- or are at least perceived as such by the design group. Truly custom

parts share no common features with any existing components. More realistically, custom



parts do have some common features, but are mostly new and different. Or a custom part

could share a large number of common features with pre-existing designs, yet have them

arranged in such an unusual architecture that they look nothing like stuff that's been made

before.

Between the Catalog and Custom extremes are Variant parts, which Sferro et al (1993)

describe as sharing many of the characteristics of items which have been designed before while

being variations of these characteristics that have not yet appeared. They argue that "90% of

all products fall in this category." Thus variant parts are unique variations drawn from an

existing set of design options. For instance, a component may have several flange shapes, each

conforming to a certain type of mating part. And it may have a few discrete diameter choices,

as well as upper and lower length bounds. These 3 variant choices constrain design freedom,

yet can result in "infinitely" many combinations, such that no two parts are alike.

Variant parts can have numerous design options, or very few. They can have quite flexible or

rather rigid architectures: a boss feature might be restricted to a single location, or be freely

located on any of several surfaces. Variant parts require well-defined and shared understanding

of the component architecture and component-to-surrounding interfaces. Variant parts

greatly increase the likelihood of reusing existing process tooling and component knowledge

while giving the designer broad latitude in configuration. The variant approach is readily

applied to automotive components.

An example of applying a variant approach (although not by this name) to automotive

component assemblies is identified at Nippondenso Co. Ltd. (now Denso) by Whitney (1993).

There, a "combinatoric method" delivers high assembled-product variation by having several

versions of each component available, with well defined interfaces between the components.

A noted advantage to Nippondenso's product development strategy is the ability to easily and

rapidly design and manufacture very different assemblies. Variant parts apply the same type of

thinking at the component level, allowing high component variation to be easily and rapidly

realized.

Variant parts also are potential candidates for re-use. Since they can be catalogued in a well-

defined manner, it is straightforward to review a product database and identify existing parts



that are close to a new component request. It is unlikely that a perfect match can be found,

due to the high number of possible product permutations supported in a variant framework.

Variant parts lend themselves well to parametric, features-based design processes, as supported

by recent CAD packages. They are also ideal for the DIRECT ENGINEERING sM semi-

automatic development environment. Developing a DEsM application is comparatively

straightforward when the components or subsystems being designed conform to well

understood component architectures and design options.

3.1.2 FChaM teneibg by type of inteacon

Supplied components can also be characterized by the type of interaction observed between

the customer and supplier during design development. While development interaction is

properly considered a continuous variable, I propose three general ranges of interaction: static,

iterative, and dynamic.

In many instances, and particularly in the older pattern of supplier relationships, there is a one-

time communication with the supplier. The customer might supply the supplier with a

completed drawing, a marked-up drawing or a complete specification. No supplier feedback

into the design or specification is solicited or expected. I term these "one-time-through"

component development processes Static Interactions.

Often, a customer will be uncertain of a supplied component's final design or final design

specification. Because customer engineers lack the ability to translate their specifications into a

supplied components' shape or size- they rely on the supplier to do that- they need to review

the supplied part's fit with surrounding systems after it is designed. They then confirm or

adjust its specification. Changing the specification repeats- iterates- the process. In this

Iterative Interaction components are developed through repeated communication of product

requirements and product design. At each step in this development process, a complete

design is exchanged. Iterative Interaction is an outcome of the limitations to decomposition

discussed in Section 2.2.3. It was observed for the Throttle Return Spring, where Throttle

Body engineers don't know if a spring with the needed performance will fit in the space left

for it until completing at least one design iteration.
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Finally, in some instances the supplier designs a new component in a Continuous Interaction

process. Here, the customer and the supplier develop the requirements and configuration of

the supplied part together. Frequent communications between the two parties convey partial

design changes, say to only a small area on the part. These "mini iterations" occur so

frequently that the product evolves in a more-or-less continual manner. Performing

Continuous Interaction demands strong communication process, perhaps through collocated

supplier/ customer development teams.

3.1.3 Foc s of tbis w=k Vadatt Itade Dei

The two axes of characterization described above can be plotted against one another, which

makes a three-by-three chart of potential types of customer/ supplier interaction (see Figure 3-

1). Any supplied component can be characterized and then placed on the chart. In general

terms, the development process is different in each cell

The process developed in this thesis is applicable to Variant, Iterative types of parts. To

-p



reiterate from above, these parts are unique variations drawn from an existing set of design

options, where the design process is iterative in nature: both functional requirements and

component design evolve over time.

It is important to note that a great many types of products, particularly those in rapidly-

evolving industries, cannot claim to have a well-defined architecture or clearly defined

component-to-surrounding interfaces. For these industries, the Variant- Iterative process

described in this thesis is not particularly relevant. But many industries and products are

mature, with significant product changes occurring every decade or longer. For these

industries, the product development challenge is the rapid adaptation of a known component

to a new application. This problem is addressed by the Variant-Iterative process defined in

this thesis.

3.2 ORGANIZATIONAL AND BUSINESS RELATIONSHIPS

Supplied components are developed outside an organizational boundary, an important

distinction which raises pricing and intellectual property concerns that are tightly intertwined

with the history of the automotive industry. The "big three" talk about long term supplier

partnerships, but organizations moving in this direction are still pioneers. Old behavior

patterns and expectations remain. This section is intended to demonstrate that establishing

the trust necessary for the process described in this thesis is challenging given today's typical

automotive supplier relationship.

This section discusses the relationships inherent to an automotive supply chain from an

historical and organization viewpoint. It begins with a brief general history and then discusses

the relationships observed at Visteon Rawsonville and the importance of developing trust. A

discussion of the heterogeneity observed in the supply chain product development

environment concludes the section.

3.2.1 Automotve Supph'er Relaaonships- a short history

The following short history draws from Womack, Jones and Roos (1990), as well as personal

reading and experience. Early in the automotive industry's history, Henry Ford decided the
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best approach was complete vertical integration: every single part of a car was designed and

manufactured within the Ford Motor Company. In the 1920s, Alfred Sloan of General

Motors modified this approach slightly, by making internal "suppliers" independent profit

centers. Then in the 1950s, Ford began to bid fully designed parts out to independent

suppliers, a practice that become commonplace. By and large throughout the automotive

industry, internal engineers designed parts for each new car and provided suppliers with

complete drawings. This was a world of "arm's-length, market-based, short-term interactions

with independent businesses," and it lasted for decades. Parts were detail-designed internally by

the vehicle manufacturer, and some 1,000 to 2,500 suppliers would be called in to review the

drawings and supply bids. Contracts were for short periods- several years at the most.

In recent years suppliers have taken on greater and greater amounts of design responsibility.

In this process, competing bids submitted in response to preliminary specifications are used to

select suppliers and set pricing; prices are then incremented if the design changes. One

common supplier practice is to start with a low-ball price and expect to raise it to profitable

levels during redesign [Ward et al (1995)]. The usual contract duration is still only a few years,

and the customer typically buys the suppliers' tooling partly to control the profitable

aftermarket. However, this makes the threat of switching suppliers quite realistic.

This is often not a friendly business, and suppliers can be treated quite aggressively. Of course,

suppliers are known to attempt to reap excess profits when possible [Walton (1997)]. As a

result relationships between the "big three" and their supply base can be pretty strained, with

no lack of mutual responsibility and plenty of mutual blame. Unfortunately for many

suppliers, the potential for good relationships with the automotive companies is often spoiled

by the behavior of less level-headed suppliers. Automotive management really does not trust

the suppliers they rely upon. Suppliers expect periodic non-negotiable price cuts. The

supplied-component design process occurs in a context where it is difficult to be open about

many issues.

3.2.2 Organational norms at Visteon-Rawsonvfile

While broad historical generalizations are helpful in setting the stage, every specific customer



and supplier has a unique relationship. My research was conducted at the Visteon Rawsonville

plant, and with a spring supplier named Michigan Spring. Visteon is perhaps leading the way

at Ford as the automotive giants move in the direction of long-term mutually beneficial

relationships with their suppliers. Michigan Spring expressed a great deal of commitment to

an open and trusting relationship with Visteon. While memories are durable and there is a

long history to overcome, this relationship suggests that improvement can happen.

Despite this positive experience, evidence of earlier behavior patterns remain. For instance,

Visteon personnel generally expect suppliers to bid below cost and make money back on

design changes. And all parties expect Procurement to beat suppliers up on price. Some

engineers express doubt as to whether Procurement is part of the same organization, or shares

the same goals. These same engineers, however, can recount tales of why suppliers can't be

trusted. One such story told of a supplier asking Ford for specification relief on a component,

suggesting that it could then use a lower cost material When the requested specification

change came through, the supplier increased the price- knowing that the cognizant parties at

Ford weren't likely to discuss the matter with each other. A Visteon engineer caught the

supplier and was furious. Needless to say, the supplier's action hurt the future prospects of

itself and other suppliers. To counter such behavior, Procurement maintains an approved

suppliers list that engineers are supposed to use.

Visteon Procurement personnel, not unlike any at the "big three," expect suppliers to be

compliant due to the large volume of business they are offering. For example, suppliers are

asked to adopt Visteon's specific CAD system. To this end, Visteon may provide CAD

systems to suppliers. Accepting this "gift" means that (1) the supplier will train and maintain

the skills needed to support it, and (2) that only Visteon/Ford business will be conducted on

this piece of hardware/software. But even small suppliers are likely sell to all of the "big

three" (each making a similar demand) plus other non- automotive businesses. For many

suppliers the cost of supporting a stand-alone CAD seat for Visteon alone will be untenable

despite the size and importance of this customer.



3.2.3 The impotance of trust

Designing a product with an supplier is not the same as doing it with a separate in-house

organization. While internal and external organizational barriers both impede communication

and interaction during design, new concerns arise when company boundaries are crossed. To

perform the process presented in this thesis, the customer and supplier must create a shared

technical component strategy. Because each must "reveal their hand" to the other as to

potential design options and features, they have to be ready to work together. This demands

an expectation that the customer-supplier relationship will be longer than just the next part. It

demands trust- that the supplier's contributions won't be taken to another bidder, and that the

customer won't capriciously change its system architecture, obsolescing the supplier's

investment in the current approach.

In addition, exchanging product development information leads to intellectual property

exposure for both parties. Suppliers are very concerned about protecting their knowledge

even when rational judgment suggests that the customer has no use for it. Partly they are

concerned that proprietary information could be accidentally (or intentionally) revealed to a

competitor. Customers have the same concerns, since suppliers conduct business with the

customer's competitors and information might similarly be revealed.

An anecdote helps illuminate these concerns. During my internship, Visteon was "spun-off"

from Ford as a wholly owned automotive component supplier which would now compete in

the marketplace for Ford business. At a meeting the same week as this announcement,

Visteon engineers (who had been Ford engineers the previous week) began raising concerns

about intellectual property: they feared Ford would use them to help design a new component

and then bid the business out to competing suppliers. The irony was not lost on a gray-haired

supplier engineer nearby who chuckled and muttered, "Welcome to the real world."

While the need for trust is universally recognized, establishing it despite the influence of

historical automotive supplier relationships will be difficult. Yet trusting supplier relationships

are crucial for meeting the stated goal of speeding the development process.



32.4 Hetegeneous emirnments

Across any automotive supply chain, the observed product development environments differ

along many dimensions. There are broad disparities both vertically (Ford compared to

suppliers) and horizontally (suppliers compared to one another). Observed dimensions of

variation are:

* Software used. Components may be modelled in complex 3-D solid modelling

packages (especially at Ford) or simpler 2D wireframe packages (smaller suppliers).

Ford is a heavy user of CAE, some supplier use paper charts as design standards.

* Operating Systems: Most high-end CAD/CAE software runs in a hardware-specific

version of Unix. Mid-to-low end software runs on PC/ Windows.

* Hardware used. Many suppliers use a PC environment; Ford uses workstations. This

impedes either organization adapting the other's standards because there is a wide

difference in software availability and cost.

* Range of expertise. Ford is more likely than suppliers to have personnel devoted to

developing expertise in software customization, as well as complex programming.

During this research, Ford was developing 30,000 line LISP-based ICAD programs,

while the was writer coaching the supplier in writing Microsoft Excel macros.

* Differing rates of technology adoption, particularly with respect to Internet/Intranet

technologies. Ford is an early and strong adapter of Intranet technology [Cronin

(1998)] whereas Michigan Spring came "on-line" during the internship.

* Differing valuation of technology as a business tool. Suppliers see adopting technology

as a means of keeping up with Ford's requirements; whereas engineers and managers at

Ford (like the DE su team) see technology as a competitive investment.

In summary, Ford/Visteon differs along many technical and organizational dimensions with

most of its supply base. These differences somewhat impede the dissemination of new

processes and technologies. For a new product development process to succeed, it must work

across the broad range of skills, tools, and technologies that exists within the supply chain.



3.3 SUPPLIER-DESIGNED COMPONENT DEVELOPMENT FRAMEWORK

The following steps occur during supplied variant component development:

* The customer determines the supplied product's requirements (specification).

* The customer communicates the requirements to the supplier.

* The supplier designs a component that may or may not conform to the requirements.

* The supplier communicates the resulting component design back to the customer.

* The customer integrates and evaluates the component in its system, determining if the

design is satisfactory. If not, the supplier will be asked to try again, possibly with

revised requirements.

This process (specify-communicate-design-communicate-integrate-evaluate) repeats until the

design is accepted as complete. This section describes the framework developed during the

thesis research for performing these steps; Section 4 then shows how the framework was

demonstrated.

This development process might proceed at a leisurely pace if it weren't for competitive time-

to-market pressures in the automotive industry. The DIRECT ENGINEERING su semi-

automatic product development environment is meant to meet this need. In the hands of a

knowledgeable engineer, a DESM application can develop new assemblies remarkably quickly.

The problem this thesis addresses is how to realize this speed advantage when a significant

component is supplier-designed, while supporting the systems engineering process.

Systems engineering demands comprehensive specifications; competitive pressures and the

DESM process demand rapid communication. These needs are accommodated by separating

component specifications into two complementary pieces: (1) a shared component framework

or architecture (which will be called a variant component attribute structure here), and (2) the

set of unique information defined within this framework which must be communicated at each

design iteration. The shared component framework applies to all instances of the item being

designed; the set of unique information applies to a specific instance.

The first piece of the component specification- the shared component framework- is readily



established for variant parts. Such a framework isn't required for catalog parts as their design

is fixed, and is too restrictive to be useful for truly custom parts. As described above, variant

parts are unique combinations and variations drawn from an existing set of design options. A

shared variant part framework simplifies writing component specifications as described by

example in Section 3.3.1. An approach for identifying the second piece of the component

specification- the unique information communicated at each design iteration- is presented in

Section 3.3.4.

33.1 DeFning a vaant component attn'bute structuM

Using a variant part requires a well-defined and shared understanding of its architecture,

available design options, and its component-to-surroundings interfaces. The architecture and

available design options can be codified; this component design strategy is here given the name

variant component attribute structure. The component attribute structure conforms to the

part's location within the customer's system model (Section 2), as well as the supplier's design

and manufacturing processes. Therefore, the variant part's attribute structure is developed

jointly with input from both parties.

Fortunately, the attribute structure concept fits nicely into parametric, features-based design

processes. And variant components are central to the DE sM process. Therefore, extending

this concept to supplied parts is straightforward.

Figure 3-2 illustrates (in abbreviated form) an example of a attribute structure for the Throttle

Return Spring. It is shown as a "tree" of design options; all terms have shared customer and

supplier definitions. All allowable options or ranges are predetermined. This is not as

restrictive as it sounds: the attribute structure shown can result an infinite variety of unique,

dissimilar-appearing springs.

Why develop a component attribute structure? For these reasons:

* It identifies and records the Variant component design framework- the architecture, all

design options, and how the options interact. Not all options are compatible, as seen

for the End Types in Figure 3-2. The component attribute structure clarifies

component discussions.



Throttle Return Spring
Variant Component Attribute Structure

(partial)
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Left Hand
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lusic Wire

025" die.

026" dia.

)27" dia.

_ .026" Music Wire

endurance limit

yd strength

Figure 3-2 Component attibute structure exampk (for Throtlk Retrn Spring)

* The component attribute structure determines manufacturing process capability needs.

And it insures that requested parts conform to the established manufacturing process.

* The component attribute structure makes communication much easier, which is shown

in Section 4. Since both the customer and supplier share the same understanding of

the component's general configuration and the meaning of selected options, they can

simply exchange option selections instead of a drawing or solid model.

Developing the variant component attribute structure is a necessary first step when

introducing a supplier designed component into the DEM process.

Throttle Return Spring
I mn ..... ~rig .



3J..2 Customer intedace and sinplified represenadon

The customer is uniquely interested in and capable of understanding the component's fit into

its surroundings. However, the customer is neither aware (nor particularly interested) in the

intricacies of the inner workings of the component- this is the supplier's concern. What the

customer needs in order to work with the component is:

* A model of the component's functional interactions and interfaces with its

surroundings: the system model.

A model of the component, with sufficient detail to insure that all interfaces and

performance characteristics are properly accounted for.

* A capability for writing the specification for the component: turning the interface and

surrounding parts into component requirements.

These are illustrated in the left-hand side of Figure 3-3. The customer manages the integration

Customers Simplified Spring
model (function, appearance &

interfaces only)

Figure 3-3 Customer and Swppker cont'ibutions to the Suppied-Component Framework



and the interfaces, but not the component design.

The customer's simplified Spring Model looks like the spring in all relevant ways, but is not the

spring. It lacks unnecessary details. For instance, the coils are modeled as a cylinder, not a

specially created helix. It is really just a shell, a simplified representation of the spring which

contains only needed information and which converts the Spring's surroundings into Spring

requirements.

Thus, the customer manages everything about the spring that isn't the spring. The supplier

manages the spring. The customer manages the system model and integrates the spring into

this model, while relying on the supplier to understand its stated spring requirements and

perform spring design. In this process, the customer's initial determination of spring

requirements is unwittingly limited by a lack of knowledge of supplier capabilities or springs in

general. This contributes to the observed need for iteration of both requirements and design.

3.3.3 Sqppier exhaustie componentmodel

The supplier is uniquely able to model the intricacies of the component and to perform

component design, but is unable to determine the component's requirements and expects

them to be stated by the customer. The supplier contributes to component architecture

definition, and (in my observations) often learns enough about the customer's engineering

concerns to offer valuable advice about the surrounding assembly. This is reinforced by

differences in department tenure between supplier and customer engineers- a topic discussed

in Section 5.2 below.

The supplier designs the spring using an exhaustive component model, which is also the

system model at its level of decomposition. This system model may be found in engineers'

memories, in design guides, or in complex software tools. Requirements come from above

(the customer); if there are supplied components within its model, requirements are specified

to levels below. For the Throttle Return Spring, the only supplied components were off-the-

shelf plastic bushings, and no lower-level system models were used.

The supplier's knowledge is local to its component. But the supplier "knows" things that can

help the customer optimize the overall system design for weight, size or cost. The supplier's



component model probably involves expertise which is not transferable to the customer due

to its experience-based or proprietary nature. Then optimizing the assembly requires supplier

involvement through repeated iterations. How much does a customer such as Ford need to

know about the supplier's processes to reach a satisfactory outcome? Not very much. Ford is

relying on the supplier to provide skills which Ford doesn't have or has chosen to not develop.

During my internship, it was dear that Throttle Body engineers understood spring design in

only general terms and must rely on the supplier. This is reasonable when the two

organizations have developed a mutually beneficial relationship and some degree of trust, as

was discussed in Section 3.2.3 above.

3.3.4 Idendfying what is communicated attaibutes describe the component

The pieces of the supplied component development framework described thus far are the

variant component attribute structure, the customer's simplified component model, and the

supplier's exhaustive component model. The next step is to identify what needs to be

communicated between the supplier and customer. This communicated information was

classified by introducing the concept of an "attribute language." Attributes are names assigned

to every component feature- those that interact with the surrounding assembly, and those that

are internal to the component. The variant component attribute structure described above

lists the attributes which the customer and supplier both care about- and their allowable values.

Types of attributes are:

Descriptive. A word that conveys a feature of the part that is more than a single value.

For example, Spring-Fixed-End-Type = "FO-8" defines a set of interface dimensions

for both the spring and the mating surfaces of the Throttle Body housing.

Numeric. An attribute assigned a value. Examples are Length, Installed-Load, or

Wire-Size. Numeric attributes can be bounded (Length > 0.0mm) or discrete-valued

(wire is available in .001" diameter increments).

The attribute listing for a component is a method of communicating the requirements and the

part's configuration, performance, and interface. Therefore, shared definitions are absolutely

necessary- the supplier and the customer must agree on the meaning of every attribute.



Attribute List

Attribute A
Attribute B
Attribute C
Attribute D
etc.

Requirements Definition

Customer Definition

Complete Definition

Figure 3-4 Attibute Classes

3.3.5 Cassi ying attributes

Some attributes are specified by the customer. Others are determined by the supplier when

the part is designed. For instance, the customer specifies a Throttle Return Spring's required

rate, deflection, and overall dimension limits, but has no idea what the spring's wire size will be

given these requirements. Yet the customer needs the wire size to create a CAD model of the

spring. The supplier receives the requirements and identifies the wire size while designing the

spring, and communicates this value along with the rest of the spring design.

This example suggests attributes can be classified in terms of who controls, and cares, about

them. I developed three classifications: complete definition, customer definition, and

requirements definition. Each of these attribute classes is a subset of the former class; see

Figure 3-4.



* Complete definition. All the information needed to fully define and manufacture the

part. This is the information managed by the supplier (the development organization)-

normally seen on the comprehensive collection of drawings that define the part.

* Customer definition. A subset of the complete definition. All the information that the

customer needs to incorporate the part into its assembly. Therefore all interface,

dimensional, performance information. This information is traditionally on an

"installation" drawing.

Requirements definition. A subset of the customer definition which conveys the

complete component specification; sometimes called "functional requirements." Note

this is not all the information that the customer must have about the part. Because the

supplier defines the part, the customer cannot know some aspects of it before

receiving a customer definition created in response to a requirements definition.

Table 3-1 illustrates these attribute classifications using the spring. Each successive definition

contains greater amounts of information. The customer specifies the requirements, but many

Spring Attribute List (Abbreviated)
Attribute List Requirements Customer Complete

Definition Definition Definition
Installed Load
Max Work Load
Working Deflection

Installed Deflection
Direction of Rotation
Maximum OD -. .
Actual OD

Mean Free OD
Maximum Confined Length 5

Minimum Confined Length
Free Length
Leg Length .. .. ..-_

Fixed End Bushing Type
Number of End Coils . .
End Coil Diameter 7_ 4 Z

End Coil Orientation
Design Life

Stress Margin at Max Work
Spring Wire Diameter
Material 7

Key: I~ :i 5il Not Included

Tabk 3-1: Abbreviated Spring Attribute List

--- P



of the design characteristics that are needed to evaluate the design are determined by the

supplier. In addition, the supplier manages a lot of information that the customer has no use

for- things that are internal to the design, such as the diameter of the end coils that wrap

around the end bushing. These internal features are of no interest to the customer. From a

practical standpoint only the Requirements Definition and Customer Definition are important

to the communication process; these are defined by the variant component attribute structure.

How these attribute lists were communicated is described in Section 4.

3..6 Oganizadonal bariers to demlopimg a component framework

Creating a variant component attribute structure such as presented above demands the

cooperation of both customer and supplier engineers: all the "stakeholders" must understand

the reasons for and be convinced of the merits of doing so. In the writer's experience with

the Throttle Return Spring, customer engineers in particular did not see this framework for

design as particularly important, and did not contribute to its development. Why this might be

so is discussed in some detail in Section 5. Creating component frameworks- the variant

component attribute structure- may require a change in attitude towards component design.

3.4 SUPPLIED COMPONENTS- CONCLUSIONS

This section outlined a process for integrating supplier-designed components into a systems

engineering process such as the DIRECT ENGINEERINGM process. A key part of

systems engineering is writing good specifications, and a process was developed to do just that

while supporting the DESM process's need for rapid communication and design turn-around.

The identified process- which was developed and demonstrated for the Throttle Return

Spring- is applicable to variant components designed in an iterative process. Iterative design

of a supplied component consists of the following steps:

* The customer determines the supplied product's requirements (specification).

* The customer communicates the requirements to the supplier.

* The supplier designs a component that conforms to the requirements.



* The supplier communicates the component design back to the customer.

* The customer integrates and evaluates the component in its system, determining if the

design is satisfactory. If not, the supplier will be asked to try again, possibly with

revised requirements.

These steps are repeated until the design is accepted as complete; each loop is one design

iteration.

The identified process for supporting supplier-designed component development in the DESM

environment consists of the following "building blocks:"

* The variant component attribute structure (Section 3.3.1; Figure 3-2)

* The customer's simplified component model (Section 3.3.2; left side of Figure 3-3)

* The supplier's exhaustive component model (Section 3.3.3; right side of Figure 3-3)

* Communication process using attribute language (Sections 3.3.4 & .5; Figure 3-4)

These building blocks were demonstrated for Throttle Body Return Spring design, as

described in the following section.

Throughout this section, the organizational environment within which the product

development process will be implemented was discussed. Central to successfully introducing

this process is establishing commitment and an attitude of trust at both the customer and the

supplier. Given the history of automotive supplier relationships, this alone is a challenging

goal



4. DEMONSTRATED PROCESS FOR RAPID SUPPLIED-

COMPONENT DEVELOPMENT

As described in Section 1, the goal of this work was to develop a method for speeding the

development of a supplied component- the Throttle Return Spring- in the context of a semi-

automated product development environment called the DESM process which significantly

enhances the speed at which Throttle Bodies can be designed.

Sections 2 and 3 described the context of this work in a general way. The Throttle Body is an

assembly of numerous components arranged in an fairly fixed architecture. Each of these

components is adapted to a new vehicle application using systems engineering. In systems

engineering complex assemblies are recursively decomposed into simpler systems, sub-systems,

and components with dearly defined interfaces and requirements. The components are then

designed individually and re-integrated to produce a complete product.

Effective systems engineering demands effective specification writing: a component's

interfaces and requirements must be clearly communicated to the organization designing the

component. This is a key step for a supplier-designed component, whether the supplier is an

internal engineering group or a separate organization. It is simplified when the supplied

component can be described using a variant component attribute structure. In this case, a

component's specification can be split into two pieces: an attribute structure shared by the

customer and supplier, and a simple list of attribute choices and values.

This section describes the work that was completed to implement these ideas in a working

development process for Throttle Return Springs and Throttle Bodies. The process works

effectively between two very different companies: one very large, one very small; one an

aggressive adapter of technology, the other sticking to PCs. The "high-level" attribute

approach to component specification readily bridges the technology and skills gap between

these organizations. And the process significantly improved design turn-around speed, by

enabling very rapid communication and product design. It is presented as a model for other

similar relationships. For lack of a better name I have called it the Rapid Development

Process.



Section 4.1 presents a Rapid Development Process scenario, describing the activities at both

the customer and supplier. It then presents the elements of the design process in detail.

Section 4.2 presents measured results of applying the process. Section 4.3 assesses the

application of the Rapid Development Process in other areas of an automotive supply chain.

4.1 THE RAPID DEVELOPMENT PROCESS

The Rapid Development Process is introduced through an example below. Figure 4.1

illustrates the communication steps in the Rapid Development Process.

The Rapid Development Process begins at Visteon in Rawsonville, MI when a customer

requests a new Throttle Body design. A Throttle Body engineer receives the new Throttle

Body requirements, and turning to a nearby workstation, starts up the Throttle Body DEsm

Application. A "baseline" Throttle Body solid model with all components is immediately

visible. Selecting each component using the mouse opens its "graphical user interface" (GUI)

which allows the component to be modified to conform with the customer's requirements.

The engineer looks at the Throttle Return Spring by selecting it and opening the Return Spring

GUI. This sheet displays all of the relevant parameters for the spring. Some are not editable:

they are linked to other components in the Throttle Body. Some can be selected from a pull-

down options list. Others have open fields where a numerical value can be typed in. The

engineer notices there are two columns: one for requirements (which are being edited), and

one for an actual design. The design parameters are set to default values, and a note states that

"No spring has been designed yet."

The engineer inputs all the spring requirements- "fills in the blanks"- and exits from the Spring

Design
Figure 4-1 One iteration of the Rapid Devlopment Process

_ I C ___ _I_ I__~ __I~___ _ _; I _~I _~



GUI. Selecting a Reports button then writes all of the spring requirements just specified into a

simple text file. This file is attached to an email and sent to the spring vendor. In Figure 4-1,

the left and top half of the loop has been completed.

The Rapid Development Process now shifts to the spring vendor, Michigan Spring of

Muskegon, MI. A vendor engineer opens the email, retrieves the attachment, and then opens

the Torsion Spring Designer. This Microsoft Excel workbook incorporates worksheets for

each spring design activity. By selecting a macro button, the email attachment from

Rawsonville is automatically opened and the requirements are loaded into the spring design

workbook.

Next, the vendor engineer uses an automatic macro to search a stored spring database for

existing springs that might be used in this new application. In this instance, none are found,

and the "Design New Spring" button is selected, starting a macro that iterates through the

spring design process using the customer-specified requirements. The engineer evaluates the

resulting spring, and once satisfied, selects a "write output file" button which creates a new

text file containing all pertinent spring design attributes. This file is attached to an email which

is returned to the Throttle Body engineer at Rawsonville. The right-hand and lower half of

Figure 4-1 has been completed.

When the email arrives at Rawsonville, the attachment is opened from within the Spring GUI

of the Throttle Body DESM Application. All of the spring attributes are automatically loaded

into the design column on this sheet, and the solid model of the spring is updated to conform

to the actual design. The Visteon engineer reviews the spring, confirming its match with the

requirements and its fit with surrounding components.

A complete design iteration (one loop around Figure 4-1) has been completed in less than a

morning. The process may repeat if the Visteon engineer is dissatisfied with the spring design

or receives requirements changes from its customer. Then one or more of the spring

requirements would be edited, and another iteration performed.

4.1.1 The Customers ole in the Rapid Development Process

The Throttle Body DESM Application at Visteon-Rawsonville contains the customer's part of



the Rapid Development Process. It is important to note that the Rawsonville engineers have

chosen to not be spring experts and rely on the supplier to design the spring in response to

their requirements. Using the Rapid Development Process enhances the supplier's capabilities

sufficiently to support the speed of the DEsM application.

Throttle Body DESM Application:. a semi-automatic CAE development tool

Many details of the DIRECT ENGINEERING sM process are proprietary to the Ford Motor

Company, and this discussion is restricted to areas pertinent to describing the Rapid

Development Process. The Throttle Body DEsu Application contains a complete solid model

of the Throttle Body and all its components including a simplified model of the Throttle

Return Spring. These are far more than simple CAD solids. Instead, the DESM application

contains the entire systems model of the Throttle Body: the left side of Figure 4-1 embodies

the left side of Figure 3-3. This systems model, including part-to-part parametric relationships,

performance interactions, and so forth, is "in the background" but is tied to the solid modeL

Linked to the systems model is a great deal of product and process knowledge, which can be

accessed by a product engineer very rapidly. In this way the DESM vision of bringing

Rawsonville's collective Throttle Body expertise to bear on a new design is realized.

Each component in the DESM application can be edited by selecting it directly, which opens

the component's GUI (graphical user interface). The GUIs display different types of

information depending on the component chosen, but typically display all the relevant

component attributes- some of which are editable, and some of which are not. The Throttle

Return Spring is the only component designed by a supplier for each new Throttle Body, and

it is managed differently from the others. The design sequence below describes how the

Throttle Return Spring is incorporated into the Throttle Body DESM Application.

Developmentprocess sequence

The Throttle Return Spring development sequence is illustrated in the flowchart on the left

side of Figure 4-2. The right side of the figure shows the status of the Requirements and

Design Attributes, and the Geometry, at each step in the process. Some Requirements

Attributes (such as length) are established by assembly relationships in the Throttle Body
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systems model; other attributes (such as installed load and spring rate) are input by the

engineer based on performance criteria. These user-edited Requirements Attributes are input

using numeric fields or drop-down option lists as determined by the spring's attribute

structure.

The spring's Design Attributes aren't edited by the engineer: they can only be assigned by the

input of an actual spring design provided by the supplier. This results from Rawsonville's

inability to design the spring, or even be certain about a given spring's dimensions. After the

supplier responds to a design request the Design Attributes conform to an actual spring's

dimensions (such as outside diameter, wire size, and installed length).

The Throttle Body design process begins when Rawsonville's customer (typically Ford's Power

Train Operations, or PTO) requests a new Throttle Body. At the outset, the DIRECT

ENGINEERINGsu application displays a default Throttle Body. This is rapidly altered as the

engineer inputs new application-specific requirements, including those for the spring. Since

the spring is a visible part of the Throttle Body solid model, but no spring has been designed,

the spring's geometry is driven by the Requirements Attributes and default values. Doing this

lets Throttle Body design proceed before the spring supplier is involved.

Once the spring requirements are complete, the next step is communicating them to the

supplier. The communication process is described in Section 4.1.3 below. After designing the

spring, the supplier communicates its design back to Rawsonville. An automatic process loads

the supplier's response into the spring Design Attributes, and now both Design and

Requirements Attributes are defined. Also, the spring geometry can be toggled between the

Design and Requirements Attributes, so the exact appearance of the spring can be visually

inspected, and compared to the design that was requested.

At this point, the Throttle Body engineer evaluates the spring design against the spring

requirements: do the spring's Design Attributes equal its Requirements Attributes? Possible

outcomes are:

* The supplier designs an exact match; Design Attributes = Requirements Attributes.
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* No spring will meet the requirements within the space allotted. The supplier provided

a spring that is as close to the requirements as possible. For instance, all requirements

are met except spring length, which is exceeded. The result: Design Attributes

Requirements Attributes

* A close match is found in the existing spring database (it is highly improbable that an

exact match would be found). For instance, all dimensional requirements are met, but

the spring rate is a few percent too low. The result: Design Attributes * Requirements

Attributes

The first outcome is easy- the spring meets all requirements and the design process is done.

As shown in Figure 4-2, this tidy conclusion may well be upset when Rawsonville's customer

imposes a requirements change. As a result, through no fault of the Rawsonville or Michigan

Spring engineers, Design Attributes * Requirements Attributes, and the spring is non-

compliant. This occurrence imposes the same decisions on the Rawsonville engineer as the

second and third outcomes above.

When the spring is non-compliant (when Design Attributes * Requirements Attributes) the

Throttle Body engineer needs to change something to reach compliance. The decision is not

simply, "make the supplier do a better job," because the spring as originally requested may well

be physically impossible. Instead, the engineer must decide whether to change the

Requirements or the Design. The engineer's experience, judgment, and the various help tools

embedded in the DEsM application are all tapped to aid this decision.

Several factors may suggest the best choice is changing the Requirements. For instance, an

existing spring that is a close match could offer sufficient cost savings to justify asking

Rawsonville's customer to tweak one of their load requirements. Or the shaft could be

extended a few millimeters to accommodate an otherwise acceptable spring. For each of these

decisions, the Throttle Body engineer has to weigh the difficulty of changing the requirements

against the comparative cost of a fully compliant spring.

Often changing the spring will be the most practical approach- and the supplier will be asked

to provide a new, compliant design rather than an existing design that is not quite close



enough. It merits repeating that this supplied component cannot be modified directly by the

customer engineer- there is no in-house capacity for spring design. The spring can be

modified only by going around the design loop once again.

The Throttle Return Spring design process concludes at Rawsonville when the product

engineer accepts a spring design as final. Subsequent steps (engineering sign-off, procurement,

etc.) then proceed.

The above discussion demonstrates that maintaining separate Design and Requirements

Attributes lists supports differences between spring requirements and actual spring design at

every step in the development process, permitting (for instance) evaluation of a "close-but-

not-exact" spring from the existing spring database. In short, using two attributes lists

supports the fundamental difference between a specification and an actual design that is

inherent in systems engineering. At the same time, the two lists insure that the really

challenging "requirements versus design" decisions are clearly spelled out and left to the

customer engineer's discretion.

4.1.2 The Supph'er's role te Rapid Development Process

In a broad sense, the supplier has to identify with the goals of the process. The supplier has to

develop a disciplined approach to product design and help develop the supplied product's

variant attribute structure. These steps are sufficient if the speed of existing design processes

is satisfactory. But in the DESM world, the customer's product development speed is 10 times

faster than former practice. To actually participate in the Rapid Development Process, the

supplier must develop and maintain a process which expedites its design process as well.

For the demonstrated example, the supplier's speed was enhanced using a component-

development software tool which automated the Throttle Return Spring design process.

Created as a Microsoft Excel workbook, the "Torsion Spring Designer" embodied the

component systems model and its variant attribute structure. Features of the workbook

included automated input of Requirements Attributes, output of Design Attributes, searching

of an existing springs database, and design of new torsion springs.



Structured inpxt (reqairements) and output (desigx definition)

The supplier gets the Requirements Attributes from Rawsonville in the attribute terms defined

by the shared variant component attribute structure (discussed in Section 3.3 above). Included

are all attributes in the "Requirements Definition" column of Table 3-1. The requirements are

automatically read into the Torsion Spring Designer using a Visual Basic macro. After the

design process is complete, the resulting spring is communicated back to Rawsonville as

Design Attributes, using the same variant component attribute structure. Included are all

attributes in the "Customer Definition" column of Table 3-1. A Visual Basic macro

automatically creates the output file. More details of the communication process are presented

after a discussion of the Excel workbook below.

Contents of spplier's semi-automatic spring development tool

The supplier's Torsion Spring Designer is in essence a simplified DEsm application developed

SUPPLIER SPRING
DESIGN STEPS

Figr 4-3 Stpp "er Spring Design Flowcbart



in Microsoft Excel It embodies the complete systems model of the spring; the right side of

Figure 4-1 contains the right side of Figure 3-3. This systems model includes the engineering

relationships that define the spring and supports all of the options defined by the variant

component attribute structure. It incorporates a software process for determining optimal

spring design within manufacturing capabilities by performing the laborious, iterative

calculations inherent to spring design. However, it is not completely automatic, as the supplier

engineer's expertise is needed to evaluate and approve the final spring design.

Because the re-use of existing components in new applications can be very cost-effective, the

Torsion Spring Designer also supports intelligent searching of an existing / carryover spring

database. This feature alone attracted significant interest from Ford Procurement. Searching

through existing spring drawings was formerly a difficult, laborious process; it now takes 10

seconds of computer searching and then 5-10 minutes of engineering evaluation to compare all
the existing springs against the new requirements.

Describing the contents of the supplier's Torsion Spring Designer would take a great deal of

space and reveal some of the supplier's proprietary design processes. Suffice it to say that this

Excel Workbook contains approximately 10 worksheets and perhaps 20 Visual Basic macros

and subroutines. Some of the worksheets are formatted repositories of design alternative

information as determined by the variant component attribute structure (for instance, a list of

Fixed-end Bushing options). One of the worksheets manages the spring design equations,

another performs searching and evaluation of existing springs against the customer

requirements. Figure 4-3 illustrates a flow chart of steps the supplier takes in using the

Torsion Spring Designer to develop a new spring. Not surprisingly these are the same steps

observed in a manual process.

4.1.3 Commmdicaion in the Rapd Devmopment Process

The Rapid Development Process demands communication of customer requirements to the

supplier and component design definitions back to the customer. What is actually transmitted

between the supplier and the customer, as discussed in Section 3.3, are Requirements

Attributes (the Requirements Definition) and Design Attributes (the Customer Definition)



Customer,Ford
Program-name,Test
Customer-contact,Jared Judson
Customer-part-number,Test-0001
Date,13 November 97
Load-at-installed-required,.23
Load-at-max-work-required,.33
Working-deflection-required,78
Direction-of-rotation-required,Right-Hand
Winding-type-required,Single-Wound
Max-outside-diameter-required,30
Max-confined-length-required,20
Leg-angle-at-installed-required,305
Fixed-end-leg-length-required,25
Rotating-end-leg-length-required,25
Fixed-end-bushing-type-required,FO-8
Rotating-end-bushing-type-required, Reduced-Coil
Material-required,Music-Wire
Design-life-required,Infinite-life
Additional Comments,Trial run only.

Figure 4-4 Email flk of Customer Rsqirements

using a shared attribute language. This information is easily exchanged due to its simple

format.

For the spring, the list of attributes is pretty short, and a telephone call or fax might suffice to

communicate them. In interest of testing as "hands-off' a process as possible, the

demonstrated process chose to exchange information with email, using very simple comma-

delimited ASCII text files. All the information- the attributes and their values- could be

characterized using text strings, either words or numbers. To simplify programming the

automated input and output procedures, an agreed upon attribute sequence was specified.

Then both the customer and the supplier developed code to read and write compatible files.

Figure 4-4 illustrates a typical Requirements email file written at Rawsonville and ready to be

automatically read by Michigan Spring. The return email containing all Design Attributes is

slightly longer because the Customer Definition contains more attributes.

By using systems engineering to develop and apply a variant component attribute structure,

very small, "universal format" files contain all required component specification and definition

information. There is no need to impose hardware and software demands on suppliers or deal

with cumbersome conversion between incompatible CAD solid models. These are very



attractive characteristics of the Rapid Development Process.

4.2 OUTCOME: 10X REDUCTION IN DESIGN CYCLE TURN-AROUND TIME

The outcome of a series of trials conducted at Visteon and Michigan Spring in November and

December of 1997 are shown in Table 4-1. These were "realistic" trials in that no effort was

made to interrupt engineer's normal activities to wait for an email. The process described

above supports continual iteration, but in actual practice only one or two iterations were

required to reach a satisfactory spring. And demonstrated iteration times were very quick.

The former process needed 2-3 weeks to complete a new spring design. The new Rapid

Development Process showed an average Throttle Return Spring design turn-around time of

2-3 hours. If the customer and supplier engineers were coordinated, a 20 minutes turn-around

time could be achieved.

Given this process, Throttle Return Spring development is able to keep up with the speed

demands of the DIRECT ENGINEERINGsM semi-automatic Throttle Body development

process. In addition, the quality of the communication is better: more information with

dearer definition is communicated with less effort. Thus, rapid, accurate, high-content design

iteration is created and supported through the Rapid Development Process.

4.3 INTEGRATING RAPID DEVELOPMENT ACROSS A SUPPLY CHAIN

The proposed Rapid Development Process incorporates systems engineering while enabling

much improved product development speed. It allows the DIRECT ENGINEERING su

vision to be extended outside of Ford's boundaries. It delivers clear, organized product

information at all stages of the development process. However, it is not applicable to every

product development situation. This section notes where it can be applied and lists some of

the organizational benefits of using the process.

Trial # Number of Iterations Elapsed Time
2 2 2:41 (hours:minutes)
3 2 6:27
5 1 0:32
7 2 2:35

Table 4-1 Spring Design Iteration mresults ing the Rpid Development Process



43.1 Whee the Rapid Development Process can be applied

The Rapid Development Process is most applicable to variant, iterative parts. Rapidly evolving

products, or products that are custom designed are not good candidates. It can be applied

arguably at any level of a systems engineering decomposition.

Variant coponents, Iterated Design

The Rapid Development Process applies to variant products that are designed in an iterative

process. A variant component can be assigned an attribute structure which becomes the

"background specification." The communication process then simply transmits attribute

values. However, the Rapid Development Process is vulnerable to product evolution which

causes the attribute structure to change, or when the knowledge underlying the product and

process is changing rapidly. When this occurs, both the customer and supplier must revise

their shared understanding of the product and probably update their software programs that

embody a rapidly obsolescing attribute structure.

Applicable at any level of design decomposition

The Rapid Development Process was demonstrated at the Component level of a systems

engineering decomposition. It is equally applicable at higher levels, such as the assembly or

sub-system level. This is because system engineering problems look the same at each level of

decomposition. At Ford this is referred to as the "fractal" nature of systems engineering.

The challenge at higher levels in the decomposition is determining a well defined architecture

and variant attribute structure. Since higher decomposition levels often show more

architectural variety, this may be difficult. And more complex products are likely to have

lengthier attribute structures which increases the effort needed to identify and codify them.

Lastly, higher decomposition levels contain many sub-components and are more likely to be

vulnerable to the product evolution discussed above. Nevertheless, assemblies such as the

Throttle Body should fit into an "Air Intake System DESM Application" in the same manner as

the Throttle Return Spring fits into the Throttle Body DESM application today.



4.3.2 Business relation ps in the Rapid Development Process

The Rapid Development Process demonstrated above allows product development to proceed

much more quickly than the process it replaces. It benefits both customer and supplier while

addressing intellectual property concerns, and is sensitive to the local capabilities and skills of

the existing organizations. In short, as the paragraphs below discuss, the Rapid Development

Process was designed to closely fit the existing organizations rather than requiring an entirely

new culture.

Customer and sutplier interests are maintained

Using the Rapid Development Process to develop supplier designed components allows

Rawsonville's expectations for response time to be exceeded. At the same time, more and

better information is exchanged with the supplier. The speed and accuracy of Rawsonville's

overall product development process is enhanced.

At the supplier, Michigan Spring, implementing the Rapid Development process greatly

improves responsiveness toward many customers, not Ford alone. The "Torsion Spring

Designer" was developed to support both the specific Rawsonville attribute structure and

generic torsion springs as well. This leverages the supplier's investment in development and

maintenance across multiple customers- all of whom can expect greatly improved design

responsiveness. Also, the number of engineering hours required to complete a new product

design are very small, so more requests can be supported within the limited hours available to

the engineering group.

Proprietary information and trust

As demonstrated, the Rapid Development Process leaves proprietary knowledge where it

belongs. Ownership and maintenance of both the supplier's and customer's knowledge stays

within their respective organizations. As this was gradually realized during the internship, the

level of trust between the two organizations was observed to increase. Initial meetings with

the supplier were candidly tense. The supplier was uncertain about Ford's intentions and not

quite ready to believe that this activity wasn't an effort to "steal" knowledge. As the supplier



saw how the new process would work, its concerns subsided.

At the same time, Ford's early expectations that the supplier had to reveal all its knowledge in

order to be trusted gradually relaxed. Despite verbally supporting trust and long-term

relationships, some Ford engineers and managers initially felt that the only way to get an

"optimal" design was for the supplier to give its product development processes and deeply

held knowledge to Ford. These beliefs subsided as they realized that the supplier's expertise

was both valuable and unlikely to be matched within Ford, and that the supplier could turn

designs around very quickly, obviating the need to have Ford develop this ability in-house.

Process complexiy is sensitive to local capabilities

As discussed in Section 3.2.4, there are wide differences between the product development

environments observed in an automotive supply chain. By structuring and communicating

supplied component information using a "high level" shared attribute structure and language,

the Rapid Development Process readily conforms to local capabilities. The ICAD/LISP-

based Throttle Body DESM Application readily communicates with the Microsoft Excel-based

Torsion Spring Designer. As a result, the programming expertise needed at each organization

matches the skills available there. And there is no loss of information through conversion

between incompatible CAD software.

4.4 SUMMARY: THE RAPID DEVELOPMENT PROCESS

The Rapid Development Process is an application of the supplier-designed component

development process outlined in Section 3. The demonstrated and proven process consisted

of:

The variant component attribute structure for the Throttle Return Spring.

The customer's simplified component model developed with the Throttle Body DESM

Application. This component model incorporates separate Requirements Attributes

and Design Attributes lists, allowing the Throttle Body engineer to choose between

changing the requirements or requesting a new spring in order to reach a compliant

design.



* The supplier's exhaustive component model, developed as a Microsoft Excel

Workbook called the Torsion Spring Designer.

* Communication of Requirements and Design Attributes using ASCII comma-delimited

email. Both the customer and supplier developed automated procedures to read and

write these email files, making communication proceed very quickly.

Implementing the Rapid Development Process easily reduced product development turn-

around time by an order of magnitude. Applying this approach can produce similar gains for

other variant, iterative components at any level of a systems engineering decomposition.

However, rapidly evolving products, products that are custom-designed, or product with

complex architectures that are vulnerable to evolution are not good candidates.

The Rapid Development Process is sensitive to the local skills and capabilities of existing

product development organizations. It addresses intellectual property concerns for both the

suppler and customer. And it is applicable without demanding compatible software tools at

the two organizations. These all make the process an excellent model for other automotive

supply-chain relationships, both inside and external to Ford.
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5. ORGANIZATIONAL FIT AND THE LONGEVITY OF PROCESS

CHANGE

Prior sections have described a demonstrated process for integrating suppliers into Ford's

DIRECT ENGINEERING s semi-automated product development process. The focus has

been on the technical setting and illustrating a method for applying systems engineering to

supplier-designed components. But this work was done in the context of a proposal to

dramatically rethink the product development process: the DESM vision (Section 1.3). While a

carefully thought out technical solution is necessary, issues of organizational fit and long-term

adoption will ultimately hold more significance to the successful outcome of this project.

Introducing the DESM semi-automated product development process and the coordinated

supplier process produced an order-of-magnitude or better reduction in design iteration turn-

around time. However, the software tools that achieve this end are inherently quite complex.

And both creating and successfully operating the new process demands a high degree of

discipline in the software developers and the target engineering community, which are

substantial shifts from current practice within these organizations. Naturally one should be

concerned with the fit of these changes to their audience, as much as the fit of the technical

solution with the engineering problem.

The primary organizational issues are adoption and longevity. The technical work is of little

worth to Ford if its application is not accepted and sustained. Will the engineering community

embrace this new approach? Over time, will it evolve with the product, or will it atrophy

when enthusiasm fades and initial proponents move on?

The DIRECT ENGINEERINGsM group has been anticipating these problems and

developing means to address them as they arise. There is a strong emphasis within the DEM

management team toward creating and managing change, and every engineer on the DEsM

teams goes through training to build change management skills. The DESM group has

developed tools such as the Knowledge Management Process expressly to support long-term

adaptation in target engineering groups where applications are being developed. Thus the

DE sm group has been working toward bridging the gap between today's engineering



organization and the one that will support the DESM process.

This writer would be presumptuous to assert a new set of answers to the complex problems of

adoption and longevity. However, it is useful to identify characteristics of the organizational

setting that beart directly on these problems. To this end, the technical and cultural setting of

the Visteon-Rawsonville product development organization were studied through interviews

and observations over the course of the internship. It is important to note that mid-level

management at Rawsonville stepped forward and volunteered their organization to participate

in the DESM process, and have continued to voice their support. An assessment of the

product development organization at the engineer level is presented in this section, aimed at

helping the DEsM group understand the sources of resistance it will encounter.

This section looks at the Visteon-Rawsonville organization alone. While it is equally important

that suppliers embrace this process, I have not analyzed them in this section for several

reasons. I argued in Section 4.3 that the proposed process meets suppliers' business goals.

Whether it fits a supplier's organization is a problem specific to that organization. And

suppliers to some degree follow Visteon's lead: if Visteon embraces this process, suppliers will

gradually have to as well. Finally, I worked solely with Michigan Spring during the internship,

and it would be inappropriate to extend observations drawn from this single, and decidedly

positive, relationship across Visteon's broad supply chain.

Section 5 is organized as follows. Section 5.1 presents a short summary of the organizational

setting. Section 5.2 uses a Capabilities/! Rigidities framework to explore the organizational

changes that adopting the DESM process entails. Section 5.3 then looks more closely at

architecture as a source of rigidity. Section 5.4 focuses on the questions of acceptance and

longevity.

5.1 ORGANIZATIONAL REVIEW

Visteon's Rawsonville engineering organization is divided along major product lines. One such

division is Air/Fuel Handling, comprised of roughly 100 engineers. About 30% of these

engineers work exclusively on Throttle Bodies. There are two Throttle Body development

groups organized under engineering supervisors. One group is focused on smaller (1-4)



engines and the European market. The other handles Throttle Bodies for larger, generally

American engines (V-6s and V-8s); this is the group that the DESM team has been working

with. A typical Throttle Body engineer has an undergraduate engineering degree.

The history of this group deserves mention. Throttle Body development used to be based

within Ford's Dearborn campus as part of Power Train Operations (PTO), while all

manufacturing occurred in Rawsonville. Only a few years ago the design function was moved

the 20 miles or so west to the plant, in part to enable closer collaboration between

manufacturing and product engineers. All the Throttle Body engineers that had worked in the

PTO organization refused to move with their jobs, so the Rawsonville department was

somewhat built from scratch. The manufacturing engineers did not immediately accept their

new neighbors; it has taken the intervening years for the two groups to begin to work together

despite their proximity on either sides of an aisle. Some exclusivity is attributed to Product

Engineers whose attitude, in the words of one engineer, is: "I design parts, my shoes are

dean."

5.1.1 Func'tonal Roles in Product Development

Following are short job descriptions for the Rawsonville product development organization.

The Product Design Engineer is responsible for three Throttle Body programs on average,

and in this role works with the customer, does component design, and manages the balance of

vehicle system needs against internal targets such as cost, manufacturability and production

needs. Product Design Engineers coordinate all aspects of the product development

organization including supplier activities. They have a stronger program management role than

a technical development role. Product Design Engineers report to a Product Engineer

Supervisor.

The Product Engineering Designer performs the solid-model drafting of the Throttle Body,

and makes the drawings of all piece parts. In this role, designers actually do a great deal of

what they call the "real design work," per engineers' direction. This demands interpreting

engineers' concepts or sketches. Designers don't worry about cost issues directly. Their role

brings them in contact with the product engineers, manufacturing engineers, the prototype



shop, and even the manufacturing floor. Product Engineering Designers report to a

functional manager.

A typical Product Engineering Supervisor in the Throttle Body has responsibilities including

supporting the individual engineers, reducing cost (both production and warranty) and

improving customer satisfaction. The supervisor works with suppliers on quality, financial,

and timing issues, and with customers only when higher level questions are posed.

5.2 CAPABILITIES AND RIGIDITIES AT RAWSONVILLE

Introducing the DIRECT ENGINEERINGM semi-automated product development process

into an existing organization requires (and causes) many changes in the overall organizational

setting. To identify these complex changes and assess their effects, I have chosen to use a

framework proposed in "Core Capabilities and Core Rigidities: a Paradox in Managing New

Product Development." [Leonard-Barton (1992)].

Product development organizations draw on sets of complementary skills, assets, and routines

to create new products. This skill set, which contributes to the firm's competitive advantage,

is called a Core Capability. One goal of the firm is to continually enhance this capability,

thereby maintaining its strategic position. An often conflicting goal is to develop new

capabilities or skills as the competitive environment changes. Leonard-Barton (1992) argues

that Core Capabilities are often self-reinforcing they enhance their own development. But

core capabilities are also a source of resistance to changing or redirecting the firm, and have an

equally important role as Core Rigidities.

For instance, a firm's success with a particular product line focuses attention and careers

around that product line, a "virtuous circle" that continually improves this line. Yet this

attention occurs at the expense of other, less successful products. To put it simply, many

factors conspire to keep a firm on the path it is currently taking. Leonard-Barton (1992) calls

this the "paradoxical struggle to maintain, yet renew or replace core capabilities." She

identifies four inter-related dimensions to a core capability/ rigidity: Technical Systems,

Managerial Systems, Skills and Knowledge Base, and Norms and Values.

I have introduced Core Capabilities/! Rigidities because I find the concept and its
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Figre 5-1 The four interlated dimensions of a Con Capaility/ Rgdiy [IDonard-Barton (1992)]

corresponding dimensions to be a useful framework for assessing the DE sM process's influence

in the Visteon- Rawsonville Throttle Body product development organization. For the DEM

process to attain its vision for Rawsonville, it must successfully change the way product

development is performed. In the language of Leonard-Barton, the DESM process must

replace some of Rawsonville's Core Capabilities and doing this will inevitably conflict with

some of the organization's Core Rigidities.

The four inter-related dimensions of Core Capabilities/! Rigidities are shown in Figure 5-1.

Each of these dimensions both influences and is influenced by the others. They are discussed

in detail in the following sections. The four dimensions vary in terms of ease of change. In

the sequence presented below, Leonard-Barton (1992) asserts that each is a little less tangible,

less visible and less explicitly codified than the one before.

521 Technical Systems

The Technical Systems dimension of a Core Capability/ Rigidity is comprised of information,

procedures, and tools developed in the organization over time- "artifacts" left behind by

talented individuals that embody their skills in a readily accessible form. Such Technical

Systems contribute to core capabilities by providing advantages over competitors in timing,

accuracy or amount of available detail [Leonard-Barton (1992)]. This description no doubt

sounds familiar to DE process proponents: developing such Technical Systems is central to



the DIRECT ENGINEERING sm vision.

Technical Systems: Status and Capabilities

Prior to the DESM process, only a limited amount of Technical Systems had been created by

the Throttle Body product development group. They had apparently inherited some Design

Handbooks from the earlier PTO organization. For example, the Throttle Body Design

Guide summarized component requirements and standard engineering and design parameters.

It did not provide clear design procedures or calculations. A sample component's fatigue

requirement (say, 1.5 million cycles) would be noted, but material properties, how to determine

loads or how to calculate stress, were not.

My impression was that Design Handbooks tended to be referred to only rarely. Existing

parts were (and are) frequently used as guidelines for new parts. A Complexity Reduction

effort identified a set of parts that were targets for re-use, with the expectation that designers

and engineers would turn to this list first in developing new parts. And in general, as is

discussed under "Employee Skills and Knowledge Base" below, there was an observed reliance

on the collective memory of the organization.

Rigidities associated with Technical Systems

Technical Systems become a Core Rigidity when they are difficult or expensive to change.

The skills and processes captured in software or hardware become easily outdated [Leonard-

Barton (1992)]. And there is a reluctance to leave familiar tools or abandon their "sunk" cost

even when faced with obsolescence. While arguably the current state of the Technical Systems

observed in the Throttle Body organization makes this a dimension that is open to change, I

observed a fair bit of attachment to today's development process. Throttle Body engineers are

comfortable doing their jobs without the support of firm design systems and procedures.

DIRECT ENGINEERINGsM and the Technical Systems dimension

Given the absence of strong Technical Systems today, the DESM process has the attractive task

of filling a relative vacuum. However, the DEsu process's necessary emphasis on structure and

form will introduce its own kind of Technical System rigidity, because the DESM tool



represents a significant investment in a particular product architecture. This won't be felt until

there is a need for architectural change, as discussed in Section 5.3 below.

Interestingly, one outcome observed during the internship was the development of a new,

more thorough design guide- almost a "competitive" effort. As the DEsm team was collecting

and organizing product information into the Throttle Body DEsm application, product

engineers in the other (European market) Throttle Body group began to extend their own

design guide.

5.2.2 Manageual ystem

The Managerial Systems dimension of a Core Capability/ Rigidity represents the formal and

informal ways of creating and disseminating knowledge (through job tracks or career

progression) and controlling knowledge (through incentive systems or reporting structures).

Managerial Systems that incorporate unusual blends of skills or foster beneficial behaviors

contribute to core capabilities [Leonard-Barton (1992)]. This dimension is illustrated through

the examples below.

Managerial Systems: Status and Capabilities

One prominent characteristic of the managerial systems in the Throttle Body organization is

the rotational career modeL In this model, apparently developed for the Ford College

Graduate (FCG) program, engineers spend 1 /z to 2 years in each of a succession of

departments; for example, product design, then operations, then manufacturing engineering,

and finally procurement. The stated goal of this process is to develop a well-rounded

understanding of the company. But, as one engineer told me, "it is understood that people

that don't have their boxes checked will not advance." The more promising engineers- those

who've been successful at each rotational step- are tapped to advance to a supervisory role,

where the rotation process begins anew. The most avid rotators are the recently recruited

FCGs who are anxious to begin the first steps toward a management career; many other

engineers follow this career pattern as well.

The result is high turnover and limited average stays in each functional area. I observed about



30% turnover/year on average in the Air/Fuel Handling departments. Clearly this has an

adverse effect on the average level of in-depth product knowledge- in the engineers who rotate

out and the organization they leave behind. It also interacts with the Employee Skills and

Knowledge dimension below by shaping the type of learning that occurs. It must be said that

not all engineers are on the rotation program- some settle into a department and become

technical specialists. These are the department "old guys," a key information resource with a

real impact on learning styles.

The rotational career model does not always please management. Engineers rotate away just

as they become experienced and successful within one department. But managers "learned the

ropes" and reached their positions through a similar rotational program. Engineering

supervisors are circulating through a similar process at their level. Interestingly, no one I

spoke to is particularly proud of this system, and many think it hurts competitiveness. One

feeling expressed was that the organization promotes people willing to do what it takes to

advance over those with core product knowledge. The group's "mile wide, inch deep" model

is compared negatively to the perception of in-depth engineering expertise at competitors like

Denso. Despite disparaging the system, few choose to buck it and give up the chance for

advancement.

Within a given department, an employee's performance is measured against stated yearly

objectives. Engineers recognize that anything not on this objective list is not of particular

importance- even topics that get substantial "lip service." For product development engineers,

key objectives are meeting program milestones and financial performance. Financial

performance is measured against figures from the Finance Department, which are hard to

interpret at the level of a specific program. There is a sense that the figures "flow down" from

the level of the plant manager, who is measured against the same criteria.

Rigidities associated with Managerial Systems

Managerial systems can become intractable. Career path models take on a life of their own:

managers evaluate subordinates against the yardstick of their own careers. Subordinates are

aware of the career paths that led to advancement and expect to follow in this path. As a

result it is difficult to create a new career path when the need for a new role is recognized.



Skilled people will be understandably reluctant to apply their abilities to tasks that had formerly

been undervalued or nonexistent [Leonard-Barton (1992)]. Rigidity in managerial systems

perpetuates existing career patterns.

The managerial systems observed at Visteon also contribute to rigidity of employee skills and

knowledge (below) and technical systems (above), in several ways. Because the rotational

model demands engineers make a good impression at every turn, and engineers expect to

complete an assignment in a limited time, there is a reluctance to try something new.

Innovation carries the risk of slowing down a career plan. At the same time, the short stays

mean that little in-depth knowledge is added by the average engineer to a given department.

DIRECT ENGINEERINGM and the Managerial Systems dimension

The DESM vision addresses the transfer of skills and knowledge both to and from engineers as

they rotate through the product engineering department. The DEsM vision proposes that

accumulated product knowledge can be embedded in a Technical System where it is readily

learned, rapidly applied to projects, and continually maintained and extended. But in doing

this, the DIRECT ENGINEERING sM process requires a shift in functional roles, which is

understood and promoted by the DESM management team. In the DE vision, product

engineers no longer spend most of their time repetitively collecting and applying the

organization's knowledge to each new Throttle Body. Using the DESM application, they

complete these tasks in days or hours instead of weeks. The engineers' freed-up time is used

to develop new product technology and then codify this knowledge for the DESM application.

A software developer who translates this knowledge into the DEM code is also added to the

organization.

Arguably the outcome of these changing roles will be better product knowledge and better

products developed much more rapidly than before. But while these new functional roles are

recognized and embraced within the DEsm organization itself, there are no precedents or

existing career paths for these roles in the target departments where most engineers work and

hope to advance. This is a clear conflict with Managerial Systems rigidity.

The DESM process, like any change of such broad scope, is also challenged by the existing



measurement system. Engineers report that supervisors are more concerned with meeting

targets than supporting a program like the DESM process because they know at the end of the

day they are measured on timing and financial performance. The message from management

is, "the (Throttle Body DESM Application) may be a good tool, but don't make me look bad."

As a result, time spent toward the DEsm project is lumped into the "10% miscellaneous" time

slot. In this culture, the DEsm process will make the department's objective list only when

senior management demonstrates genuine support through written, measured objectives.

5.23 SkiWs and Knowledge Base

The Skills and Knowledge Base dimension of a Core Capability/ Rigidity is simply what the

employees know. Included is specific product understanding-which may not be officially

recognized or documented- and the organization's collective memory. This dimension of

capabilities/ rigidities interacts strongly with the managerial systems dimension because the

latter shapes experiences that contribute to employee knowledge, and suggest the types of

knowledge most valued in the organization (the "mile wide, inch deep" model).

The Skills and Knowledge Base dimension has a significant tacit component. By tacit

knowledge is meant what MIT's Eric von Hippel calls "the things that people know but don't

know they know." Some knowledge is encoded in explicit terms, while some is not- it is tacit.

Often the skills and expertise extensively employed in problem solving are of the latter sort, as

individuals obey sets of rules which are not known as such to the person following them.

Even in modern industries indefinable knowledge is still an essential part of technology [von

Hippel (1994)].

Skills and Knowledge Base: Status and Capabilities

The skills and knowledge base of the engineers and designers reflect the technical systems and

managerial systems environments discussed above. Many engineers have a breadth of skills

and functional understanding, to the neglect of depth in any one area. Their knowledge is

built over many short department tenures and they are continually learning new roles and

responsibilities. The environment demands and expects good on-the-job learning skills.



During my discussions with this engineering group, questions about learning styles revealed a

strong preference for face-to-face learning via conversations with colleagues, often with the

department "old guy" (the resident technical specialist). A typical response was, "I'd rather

talk with (him) than study a manual or design guide." And there was even less appreciation-

and some genuine derision- for "learning from a computer."

This could be seen as more a critique of today's Technical Systems than a rigid learning

preference. The Throttle Body DEsM Application may well change these attitudes if it is user-

friendly and readily supports learning. Nevertheless, I felt the department's views demonstrate

a reliance on tacit knowledge. Rather than turn to a dry collection of recorded information,

engineers would rather tap into the comparatively rich set of experiences of the "old guys."

These experienced engineers could recognize problems and identify solutions intuitively and

much more quickly than consulting a design guide- and provide an interesting anecdote or two

to boot. When department engineers were asked to compare Design Handbooks to the

department's technical specialists, the Handbooks were regarded as a possibly useful reference,

whereas the technical specialists were seen as reliable source of practical advice for making the

best decision.

A second repository of tacit knowledge was recognized in the designers (CAD drafting

personnel). Designers aren't likely to rotate because their product knowledge is narrow and

focused, and they remain in the same role for long periods. Due to this durability, they are

important contributors to organizational memory. As one designer put it, "I spend a lot of

time educating the engineers, especially the new ones." Again, interviews and observations

confirmed that a great deal of this knowledge was experiential- in the designers' heads. And

there was value placed on the senior designers who "have been around for a while and seem to

know a lot about a lot." Designers, like their counterparts in engineering, relied on colleagues

for much of their learning.

Rigidities associated with Skills and Knowledge Base

The skills and knowledge dimension is not very amenable to change because skills are built

over time and many remain tacit- uncodified and in employee's heads [Leonard-Barton

(1992)]. If you can't see it or measure it, how can it be changed? Also, Skills and Knowledge



Base rigidities arise because focusing on a particular knowledge area becomes self-perpetuating.

The organization talks and listens in the language of mechanical engineering, impairing the

development of skills in less recognized areas such as computer programming.

DIRECT ENGINEERINGM and the Skills and Knowledge Base dimension

The DEM vision aims to enhance engineers' personal skills and knowledge by making

organizational knowledge easier to access. By establishing the department's collective Throttle

Body knowledge base, new efforts should add to that knowledge rather than reinvent it.

These are both valuable goals.

A fundamental step of the DESM process is collecting and encoding the knowledge that

employees have developed over time. But the tacit information relied on in this organization

can be difficult to collect and transfer for use in a new location- it's "sticky." Information

stickiness involves not only the nature of the information itself, but the amount of information

that must be transferred, and attributes of the seekers and providers of information [von

Hippel (1994)].

Such stickiness manifests itself in several ways for the DESM process's goal of collecting

everything the department knows. For instance, the Throttle Body DE sM Application team

lacks a deep technical understanding of Throttle Bodies, and must rely on those who hold

knowledge to help them. But there is a great deal of this sort of information, much of it

conveyed through anecdotes or the nonverbal, integrative skills of the technical specialists and

designers. Since the DESM team can't know in advance which subset of this vast array will be

most relevant, it is very difficult to know what to record. Over time this disadvantage should

decline as the Throttle Body DESM Application matures and knowledge gaps are filled in.

5.2.4 Values and Norms

The Values and Norms dimension of a Core Capability/ Rigidity identifies what knowledge is

valuable and who controls it [Leonard-Barton (1992)]. The values assigned to knowledge

creation and content, constantly reinforced by corporate leaders and embedded in

management practices, affect all the development projects in a line of business. The very same



values, norms and attitudes that support a core capability and thus enable its development can

also constrain it.

Values and Norms: Status and Capabilities

My observations of the Throttle Body development organization noted low possessive

ownership of knowledge, a certain unwillingness to codify knowledge, and a high value placed

on creative freedom leading to broad product variety.

Possessive ownership of knowledge or projects was not observed, even among the technical

specialists. Given the rotational nature of careers, this is hardly surprising. No one I spoke to

had conducted a Throttle Body project from its beginning; engineers pick up work from

someone who is rotating away. In this environment the culture must be open for projects to

survive. And by being open with their knowledge, the technical specialists enjoy the respect of

their more junior peers- who, given their short tenures, are unlikely to threaten the job security

of these "old guys." Everyone interviewed, engineers and designers alike, felt that generally

people throughout the organization are very open with their knowledge.

Related to such knowledge openness was a certain unwillingness on the part of engineers to

codify knowledge- or to establish norms for their peers. In the course of my internship I did

not see the department settle on a Throttle Return Spring "variant component attribute

structure," required for the technical part of this thesis. The engineers agreed it was a good

idea, admired how the preliminary attribute structure (which I created) worked in the Rapid

Development Process, expected the supplier to contribute to this attribute structure, but never

recorded an "official" structure. Always cited were concerns that not all the issues had been

addressed. My impression was that under this reluctance to catalog the Return Spring was an

unspoken reluctance to accept the responsibility of creating the "rules" by which all Throttle

Bodies might be designed.

I also surmised that this reluctance to codify knowledge was related to the absence of a top-

level strategy for the content and evolution of the Throttle Body organization's product line.

Confusion was expressed about this at even the supervisor level. The lack of strategy might be

attributed to an "emergent" philosophy- but that hadn't been identified either, and it wasn't



apparent from where new Throttle Body technologies would emerge. Instead, the lack of a

defined strategy became an excuse: if you don't know where the product is headed, what's the

point of codifying what you know? You might record things that would soon be obsolete.

Another value observed throughout the organization, not uncommon to engineering cultures,

was the high importance placed on having sufficient creative freedom to precisely meet

customer demands. At Rawsonville this value can partly be attributed to past relationships.

Not many years ago, the customer- which was always Ford- did all the design work and called

all the shots, and the Rawsonville plant made whatever was requested of it. While the design

function has moved to Rawsonville, and components plants throughout Ford have been

joined under the Visteon banner, the earlier mindset remains (and is probably reinforced by

customer attitudes). As the new structure shifts focus towards cost and profitability,

Rawsonville may start to "push back" at the customer.

But until these new values have filtered through the organization, engineers and designers alike

look at the existing product line, see vast complexity, and feel that such will be necessary for all

future Throttle Bodies. As one engineer saw it, "There is always something on a Throttle

Body that demands a unique solution. Maybe there is need for a special bracket, or something

interfering on the engine. For whatever reasons, Throttle Bodies are always different, due to

issues we don't control."

Rgidities associated with Values and Norms

The value embedded in a core culture is the dimension least able to change; values are closely

bound to culture, and culture is hard to alter in the short term. Values and Norms tend to

reinforce the status quo- the people in the organization place low value on what outsiders

know or do [Leonard-Barton (1992)]. One interviewee observed that traditions are strong at

Rawsonville, noting that "It's always been done that way" is a common response to change.

DIRECT ENGINEERINGsM and the Values and Norms dimension

The high value Throttle Body engineers place on product flexibility impacts the DEsM effort in

several ways. Engineers see the remarkable variety in the current product line and decide that

such variety is an outcome of customer needs. There is a greater focus on what is different,



not what is the same, from one part to the next, particularly for Lever/Cams and Throttle

Body Housings. The widely held belief is that such variety results from genuine technical

needs rather than historical product development practice. Almost universally, engineers felt

that the DESM process would be unable to support this needed creative freedom and product

flexibility.

For example, the team assigned to collect design rules for adding the Lever/Cam to the

Throttle Body DESM Application decided this was an impossible task. This isn't unreasonable,

if one wanted to replicate the variety observed in existing Lever/Cams using one set of design

rules. But a functional decomposition of the Lever/Cam suggests that there are only a handful

of functional requirements, and the design rules could be quite straightforward. This would

result in fully compliant Lever/Cams with a "family" appearance. The important question,

which the team didn't ask, is: how much creative freedom is really needed? Today, the answer

is "quite a lot."

To be accepted in this cultural setting, the DESM process must gradually overcome the total-

flexibility mindset- a challenging task. One method for reaching this goal is to provide tools

that increase the incentive and authority to influence the customer, most notably by

supporting cost calculations. Better costing information for custom design requests would

provide constructive counters to customer demands. The DESM process does propose to

develop more and better costing information- but this goal has not been reached for the

Throttle Body DEsm Application. In the meantime, many of the criticisms Throttle Body

engineers level at the DESM process are associated with its inability to support "complete

creative freedom," a Values and Norms rigidity whose merit is not known, just assumed.

5.2.5 Summary of CapabiHides/ Ridites and DIRECT ENGINEERNGM

The severity of the challenge facing those who would alter or develop a core capability

depends on the number and types of the four dimensions that are mis-aligned with the new

effort. For instance, new Technical Systems (such as the DESM process) must be accompanied

by new skills- to both create and apply these systems- and new values- so that these systems

are adopted and used. But the new skills will atrophy or leave if the managerial systems are



incompatible. New values will not take root if associated behaviors are not rewarded.

[Leonard-Barton (1992)]. Successful change demands an appreciation of the multi-

dimensional nature of core Capabilities/ Rigidities.

The DIRECT ENGINEERINGM process is most strongly identified with the Technical

Systems dimension of the organization's core Capabilities/ Rigidities. This is readily explained:

it was the functionality of burgeoning Computer-Aided Engineering technologies that both lit

and continue to fuel the DEsM vision. But of the four dimensions in the Capabilities/

Rigidities framework, Technical Systems are most readily modified. Unfortunately, the DESM

process faces some misalignment on all the dimensions; the challenges facing it are significant.

The DESM organization recognizes and has been addressing these challenges; it is this writer's

intention that the preceding analysis helps to clarify some of the conflicts the DEsM process

will encounter.

5.3 ARCHITECTURAL EVOLUTION VS. ARCHITECTURAL RIGIDITY

As presented in Sections 2 and 3 of this thesis, the Throttle Body and Throttle Return Spring

are elements of a large, complex system. The systems engineering process was proposed in

earlier sections as an excellent tool for designing this system. In this process, the overall

system is decomposed into many levels, with each level being separated into individual

elements which are then decomposed again. The architecture of this system is the manner in

which the many elements are related to one another and to the overall functions of the system.

Each of these elements is designed somewhere in a large and complex organization which

encompasses the entire vehicle supply chain. While the organization for a single element at

one level of decomposition- the Throttle Body- has been discussed above, each level and every

element of the overall vehicle system decomposition is designed by an engineering group

within Ford, Visteon or suppliers. In theory, systems engineering leads to product

decomposition based on purely technical rationale. But in existing organizations the

decomposition is established by organizational boundaries and existing relationships.

Architectural knowledge becomes embedded in the structure and procedures of established

organizations [Henderson and Clark (1990)]. Therefore, the decomposition derived from



current organizational relationships for practical purposes defines the current state of the

architecture.

Earlier I argued that technology, components and component functions all evolve, so the

system architecture will evolve as well. This demands that the organization which designs the

system evolve: some engineer groups (or suppliers) disappear, new groups develop, and the

relationships between the many groups are rebuilt around a new architecture. An example

used earlier was the advent of fuel injectors and obsolescence of the carburetor: fuel and air

metering once occurred in one location but now are physically quite distinct. The speed with

which existing organizations react to technological and architectural evolution is an outcome

of what I call the organization's "architectural rigidity."

Architectural rigidity has implications both for the entire product development organization

(the supply chain) and within an individual engineering group. With respect to the former, the

process described in this thesis appears to more tightly link the supply chain- and therefore

increase its architectural rigidity. Because the Rapid Development Process demands close

coordination with a supplier to define a variant component attribute structure, it limits

competition unless several suppliers agree to use the same variant structure - or the customer

decides to give the structure to competitive suppliers. While this may hurt relations with the

first supplier, it is easily done given the simplicity of the communication process. More

importantly, the Rapid Development Process inhibits evolution of the product, as changes to

the variant attribute structure must be coordinated between all the organizations who use it.

The DEsM process and the Rapid Development Process deliver fast supplied-component

design and reinforce long-term relationships, but increase the product's architectural rigidity.

Architectural rigidity is also a factor within the Throttle Body engineering group. As Section

5.2 above showed, this group currently develops Throttle Bodies by relying on organizational

memory, tacit knowledge, and to a small degree, Design Handbooks. In this environment,

evolution of product or architecture occurs in an unstructured, exploratory process where who

sits next to who is as important as raw technical knowledge. Inefficiencies such as reinvention

no doubt result. One could posit that this organization absorbs technological evolution

somewhat unevenly. After a period where competing ideas would struggle for preeminence,



an improved architecture embodying the new technology would emerge. Disseminating this

new architecture would take some time.

The DIRECT ENGINEERINGM vision proposes to change all that by introducing a

complex semi-automatic product development environment that embodies the product's

architecture (and more) to develop new Throttle Bodies. With the DESM process,

architectural evolution would occur much differently. Engineers assigned to this as-yet

undeveloped role would identify new technologies and develop the corresponding "best"

architecture. Their solution would be embedded in the Throttle Body DESM Application

through a large-scale re-writing of the underlying code. After testing, the new application

embodying the new architecture would be published to the Throttle Body group.

Because such large scale rewriting will take a long time and not occur very often, the DEsM

process adds a new sort of rigidity to the product development environment. This rigidity in

the face of architectural change is an important concern. Relevant questions include: is the

proposed process more or less rigid than what is used today? How much current knowledge is

lost when the architecture changes? And, is the design speed payoff so great that the cost of

increased architectural rigidity is a small price to pay?

Certainly the DEsm process will be more rigid than the existing process- any tool is surely less

flexible than the absence of one. How much more so is really unknown, as no DESM systems

have to-date absorbed an architectural change. Within the application itself, it is vital that the

methodology chosen for capturing and recording component information simplifies reuse as

the surrounding assemblies evolve. The process described throughout this thesis is no doubt

satisfactory in this regard for Throttle Return Springs. Can the same be said for more

complex components or assemblies? It is hard to say. This section offers more questions

than answers. But architectural evolution is a real and inevitable phenomenon that the DESM

process will have to accommodate.

5.4 ACCEPTANCE AND LONGEVITY

This section presents short analyses of two fundamental problems facing all DIRECT

ENGINEERINGM applications including the Throttle Body group. These are acceptance of



innovation and software complexity. The question of longevity is then reconsidered.

5.4.1 Resistance to Innomvaon

To be ultimately successful, the DESM semi-automatic development process has to be

embraced by the organization and displace traditional Throttle Body development routines.

At the same time it will change traditional development roles. To do these things the DE sm

process must overcome an expected natural resistance to innovation- a "blind reaction to

technological change"- that will attempt to fight it off [Morison (1966)]. Thus the coming

months at Rawsonville will be a study in innovation and acceptance.

Innovations like the DE process are often opposed by three considerations: honest disbelief

in dramatic but unsubstantiated claims of the new process, protection of the existing devices

and instruments with which engineers identify themselves, and maintenance of the existing

society with which they are identified [Morison (1966)]. The first consideration, disbelief, was

observed repeatedly among peers and supervisors in Rawsonville, all of whom listened and

accepted the DESm teams' assertions but never seemed to really believe. The second

consideration is simply the Technical Systems rigidity discussed above.

The third consideration to resisting innovation is maintenance of the existing society, which

stems from a normal human instinct to protect oneself, and more especially, one's way of life.

Just like the military man who intuitively feels that "a change in weapon portends a change in

the arrangements of his society" [Morison (1966)], the engineers at Rawsonville will see the

DE sM process as a threat to their accustomed activities. Such fears, if unreasonable, are not

unfounded. The engineers and managers in the DESM organization expect (and indeed intend)

the DE sM process to bring about a fundamental change in development roles. In some ways

the DESM process is to product development engineering as automation is to manufacturing.

As automation enters a factory, less workers' time is spent in production and more is spent

tending the new robots. Similarly, the DEsm process intends to so expedite the product

development process that engineers' focus will shift to extending product knowledge and

updating the DESM application.

An alternative response to the increased speed of product development using the DEsm



process might be a reduction in the number of engineers- a strategy certain to sharpen

resistance to this innovation. However, this is neither a goal nor a perceived threat. The

DIRECT ENGINEERINGsM organization emphatically states that newly freed-up time must

be used to improve product technology. And designers and engineers in Rawsonville

unanimously expressed doubt that the DESM process would free up any department time at all.

They felt that every earlier product development enhancement introduced to purportedly save

time had always left department person-hours unchanged or increased, and the DEsM process's

claims were interpreted from this perspective.

The developers of DIRECT ENGINEERINGM tools see their product in a fundamentally

different light than their audience. Like any creator identifying with its creation, they obtain a

satisfaction from the successes of DEsm applications which prevents them from thinking too

closely about either their use or defects [Morison (1966)]. And many discussions with the

DESM organization suggests their technological choice represents a vehicle for the expression

and enactment of the worldviews of DEsM advocates and designers [Thomas (1994)]. Many

proponents fo the DESM process view it as applying exciting technology to an obvious

problem (in their eyes), the static, low efficiency of Ford's product development organizations.

But the targets for all this work and innovation- such as the Rawsonville Throttle Body

engineers- probably identify themselves with the "way of life" they have inherited or accepted

with little modification and aren't eager to change [Morison (1966)]. The DESM team is

developing a solution for a group with a fundamentally different worldview. They hope for

enthusiastic acceptance- and expect the tool to sell itself- while the audience sees the problem

differently (if at all) and certainly doesn't grasp the DESM team's solution. The writer also

found much of the DESM vision to be quite compelling, but believes that the DEsM team faces

an uphill battle in any product development environment.

5.4.2 A complexprocess vs. a complex software tool

Today, Throttle Body design is a complex process that is not well documented- it might be

called an "unrecoverable organization" because no one has ever written down how it works.

A proposed solution to this uncertainty is the DIRECT ENGINEERINGSM process which

leads to a complex program that is not well documented- what might be called an



"unrecoverable program." From observation, a DE M application rapidly grows in size

(developers spoke proudly of their code's line count exceeding 30,000). At the same time, the

language used is pretty arcane and documentation is light or nonexistent. Thus one outcome I

observed is hardly surprising- the application team members gradually began to lose the ability

to understand either the program's "big picture" or each other's work without help. When the

developers have difficulty navigating their program only months since its writing, there are

clear concerns for long term software evolution. And given the high turnover observed

throughout the organization, this is doubly worrisome.

This is a real problem that needs to be addressed. During development, the DESM application

teams are under pressure (both actual and perceived) to show results. Rather than spending a

long time documenting product architectures and knowledge while developing an overall

software strategy, teams are tempted to plunge onward. They create remarkable reams of

code, demonstrate early results, but ultimately hurt the long-term effectiveness of their DEsM

effort.

The DIRECT ENGINEERING sM process shouldn't simply replace a complex human system

with a complex software system. If not carefully planned and documented, the solution is as

obtuse as the process it is trying to capture. As a result, editing, extending or replicating the

software will not be easy: And (for instance) changing the throttle body architecture will be

very difficult. A vital first step for each DE sM team is to identify and record the systems

engineering structure for each application, be it Throttle Bodies or any other vehicle sub-

system. Within this structure (or architecture), each component, interaction, and interface can

be identified and described. Finally, only after these important steps, should the software be

written.

5.4.3 FitandLongeity

The DIRECT ENGINEERING s organization recognizes the far-reaching change that their

proposed process entails. They are aware that this will be met with resistance. In this section,

I have tried to identify and catalog much of that resistance. The DE sM process raises conflicts

with many types of rigidity, both organizationally and technically. These rigidities will resist its



introduction, even if not openly, but the DESM process's most important opponent is perhaps

the human resistance to innovation. Given its ultimate acceptance, the DE sM process's worst

enemy will be its own complexity and the resulting reinforcement of architectural rigidity. If

not anticipated and managed, this complexity could so impair the ability to adapt to change

that it could lead to the eventual abandonment of DESM applications. It is this writer's belief

that a concerted effort to address these concerns can successfully make the DESM process a

long-term solution.



6. CONCLUSIONS AND FUTURE RESEARCH

This thesis presented a successfully demonstrated method for implementing rapid, iterative

product development between an automotive customer, Visteon-Rawsonville, and a

component supplier, Michigan Spring. The demonstrated process integrated supplied

component design into assembly design in Ford's DIRECT ENGINEERING sM semi-

automatic product development process. A direct outcome of implementing the process was

an order-of-magnitude improvement in supplied-component design iteration speed. As a

result, the DESM vision for rapid product development was realized with a significant

component being designed outside the immediate organization and its DESM application.

Throughout the thesis, it was argued that systems engineering is at the core of the DEsm

process as well as the enhanced supplier process. Systems engineering demands a careful

decomposition of a product system into sub-systems and components, each with well-defined

interfaces and requirements. When decomposition is done properly, a supplied component's

specification can be dearly defined. But systems engineering skills aren't simply needed to

develop the process described in this thesis- Fine and Whitney (1996) assert that the skills of

decomposition and preparation of specifications comprise basic strategic skills for any product

development organization.

The process developed in the thesis was shown to apply to a specific class of supplied

components: variant components designed through iterative processes. Variant components

are unique variations drawn from an existing, defined set of design options. Iterative design

processes involve the repeated modification and communication of product requirements and

product design. A large fraction of the supplier-designed parts in an automobile fit the

variant, iterative classification.

Systems engineering and the use of variant parts were then combined by introducing the

concept of a variant component attribute structure. This attribute structure codifies the

supplied component's architecture, available design options, and component-to-surroundings

interfaces. It is developed jointly by the customer and supplier and is shared by both parties.

The attribute structure becomes a "background specification," and communicating



requirements and design during product development entails the simple exchange of attribute

values. For the demonstrated process, these attributes were exchanged using text emails.

A theme revisited numerous times throughout the thesis was the certainty of eventual product

evolution and the need to anticipate and manage it. Thus it was argued that the DIRECT

ENGINEERINGM process, which embodies the product's architecture at the time an

application is written, must be designed to accommodate architectural evolution. Currently,

Assembly Knowledge- the system model which captures how components interact with one

another- is embodied in the DESM application software. But the software tools available to

developers lead to large, cumbersome programs which become difficult to navigate and edit

just as they reach a useful level of functionality. Therefore, it was proposed that Assembly

Knowledge must be deliberately captured, maintained and updated by the DESM process. This

is a complex problem, and one not solved in this thesis, but ignoring it will lead to architectural

rigidity in the future as incorporating product changes becomes increasingly difficult.

Finally, an assessment of the organizational challenges facing the adoption and longevity of the

demonstrated process was presented. In short, the DEsm process, and the supplied-

component process, requires an environment that differs on many dimensions from the

product development environment observed today. As a result, organizational resistance to

change and innovation presents sizable barriers to the DEsM process. The DE sM management

team is aware of these challenges and is taking steps to address them- and realizes they face an

uphill battle. The DEM management team believes strongly in their idea- it represents "a step

out in front for Ford- a company who traditionally follows others' leads."

This writer agrees with DIRECT ENGINEERINGM process proponents that today's

product development environment, as observed, lacks discipline and is unnecessarily

inefficient- and needs to adopt a coherent design strategy such as systems engineering. While

taking this step doesn't in principle require a software-based approach like the DEsM process, it

is unlikely that any such change will endure without it: it is probably harder to get these

engineers to become disciplined users of design standards than reluctant embracers of

technology. Thus do design strategies (systems engineering) and design tools (the DIRECT

ENGINEERINGSM process) become inextricably entwined. If this is the case, the key



challenges for the DE organization are two: first to devise a plan for future applications to

incorporate systems engineering and support architectural evolution, and second to learn how

to overcome the multifaceted organization resistance to this dramatic change in Ford's

product development process.

6.1 DIRECTIONS OF FUTURE RESEARCH

The demonstrated process for integrating supplier-designed components into vehicle design

greatly enhanced design iteration speed. But it even more dramatically reduced the amount of

time required to produce and evaluate a new design. This is disguised by the measurements in

Table 4-1, which shows total elapsed time, a number that includes a fair degree of latent time.

The supplier engineer actually spent perhaps 10 minutes at most for each iteration- a

remarkable improvement in process speed.

At the same time, a comprehensive system model of the spring (in the Torsion Spring

Designer at Michigan Spring) and its location in and interaction with the Throttle Body system

model (in the Throttle Body DEsm Application) were both created. And the transfer of

information between these systems models was automated as well, reducing to nearly zero the

time required to introduce and evaluate a new spring design.

Taken together, these two developments could challenge traditional views of the product

development process by making new approaches to both optimization and total vehicle

integration possible.

Car-sized systems engineering tasks always have optimization challenges: after all the

decomposition has occurred, is it difficult to optimize the design as a whole before re-

integrating. At the same time, it has always been difficult to manage all the information for a

single design, let alone multiple designs. As a result, optimizing vehicles is commonly done

through a point-based approach in which the design process starts at a single point in the

"design space," defined by an initial estimate of top-level requirements. As these requirements

change and bottom-up designs are evaluated, this point in the "design space" is repeatedly

iterated until it is concluded to be optimal [Ward et al (1995)]. The number of iterations

possible within the time available has always limited this process. And design spaces tend to



be discontinuous and non-linear, so its hard to know when an optimum is reached.

By embodying the product's system model in code, automating the transfer of information up

and down the system decomposition, and significantly reducing the time needed to create a

new design, the process developed in this thesis makes it relatively easy for the supplier and

customer to support a collection of design alternatives simultaneously. This can support a new

product development approach: set-based design. In this process, the requirements begin as a

range rather than a single point. A design space- a set of designs- are evaluated in parallel and

gradually narrowed as the requirements converge and the product is optimized. To maximize

product flexibility, final design decisions are delayed and the design space is kept open as long

as possible. The end design benefits from rational exploration of the design space and is more

likely to approach a globally optimal design [Ward et al (1995)].

The complexity and information needed to conduct this process renders it impractical for

standard development methodologies. But it appears quite reasonable that DEsM applications

at both the supplier and customer could be designed to accommodate requirements and design

ranges, enabling the set-based approach to be utilized. The unique setting provided by the

DEM process enables an exploration of the benefits of set-based design.

A second challenge to traditional product development that is based on the DIRECT

ENGINEERINGm process and the work demonstrated in this thesis is a new approach to

total vehicle integration, one that borrows from processes developed in the software industry.

This is the "synch-and-stabilize" process for software development. Core to this process are

frequent synchronization steps where all contributors submit the current state of their

components, and periodic stabilization points where the overall architecture of the product is

incrementally defined [Cusumano and Selby (1996)]. This process has heretofore only been

possible in software development, where a complete prototype can be assembled and tested

daily. The introduction of a complete systems engineering process, full vehicle solid

modelling, and development processes such as those demonstrated in this thesis could make a

similar process feasible for cars. The result would be a dramatic shortening of development

cycle time and better total product integration. Applying "synch-and-stabilize" to cars is an

intriguing vision, but one that may take many years to achieve.



End Note:

DIRECT ENGINEERINGM and DESM are Service Marks of Ford Motor Company.
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