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ABSTRACT

The lattice-Boltzmann method was used for three-dimensional simulation of droplet
breakup and coalescence in flow fields representative of those encountered in compounding
of immiscible polymer blends. Quantitative confirmation of droplet deformation in simple
shear was conducted using this method, and showed very good agreement with theoretical
results. Droplet breakup in simple shear was simulated quantitatively, and agreed very well
with both experimental and theoretical results. Capillary wave instability and end-pinching
were simulated, and showed semi-quantitative agreement with theory and experiments.
Breakup and coalescence of droplets in high-dispersed phase concentration was also
simulated qualitatively. Limitations inherent to the model and future modifications needed
for more accurate simulation of multiphase flow are discussed.
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1. Introduction

Characteristics exhibited by a single polymer are often insufficient to satisfy

requirements demanded by today's applications. In polymer processing, single-screw, and

twin screw extruders and batch mixers are used to blend different polymers to achieve

these optimal, desired product characteristics. The breakup and coalescence of fluid

droplets in processing is important since these processes often determine the product

morphology. For example, when a rubber is dispersed in a nylon matrix, the impact

strength of the blend jumps up nearly an order of magnitude as the rubber particle diameter

drops below 0.5 - 2 gtm [1].

Most experimental polymer blends are first created in lab-size batch mixers and

extruders. In commercial production, larger commercial-size extruders and batch mixers

are used for mixing. Since a larger extruder does not mix the materials in same way as a

smaller one does, the scalability of mixing becomes a crucial issue in production.

Currently, obtaining the same morphology achieved by a lab-sized extruder using a

commercial extruder is done on a trial-and-error basis. Even if it results in success, this

trial and error process is still very time-consuming, cost-inefficient and generates

significant waste.

To avoid such a time-consuming and wasteful process, an effective modeling

technique that can accurately simulate the breakup and coalescence of immiscible polymer

particles in a batch mixer and an extruder is required. Challenges associated with modeling

of these processes include simulation of: high-dispersed phase concentrations, complex



boundary conditions, moving phase boundaries, and non-Newtonian rheology of these

multiphase flows.

The simulation techniques most widely used for modeling polymer blending today

are the finite element method and its variations. However, these methods have difficulties

in answering the challenges described above.

In this thesis, the author looks into a computational fluid dynamics (CFD) model

called the lattice-Boltzmann method and evaluates whether this approach to CFD can

provide solutions to the challenges described above. The author will begin by describing

lattice-gas automata, a model that precedes the lattice-Boltzmann method, and then

describe, benchmark, and apply the lattice-Boltzmann method.



2. Cellular Automata

2.1 Lattice-gas Automata

A two-dimensional fluid model called the HPP model, using a square lattice and

fictitious particles of discrete mass, velocity and time step was first introduced in 1973 [2].

Because it is entirely discrete, and because the evolution at each site is determined by the

state of the site and its nearest neighbors, a model of this nature is defined as a cellular

automaton or lattice-gas automata [3]. This model, however, has serious omissions such

as lack of Galilean invariance and lack of isotropy, which are necessary for simulating fluid

dynamics [4].

In 1986, a new model that overcomes the above discrepancies and that simulates

the Navier-Stokes equation was introduced by Frisch, Hasslacher and Pomeau [5] and is

called the FHP model. In their model, at microscopic scale, particles of unit mass with unit

velocity propagate on a triangular lattice and meet at lattice sites, colliding with each other

such that mass and momentum are locally conserved, as shown in Figure 2-1.

Microdynamical equations of mass and momentum conservation for the lattice-gas model

are given below [6].

ni (X +ei,t+ 1)= Ini(t,t) (2-1)
i i

I cini(X + j,t + 1) = cini(x't) (2-2)
i i



Here ni (Y, t) =1 if a particle is present and is moving in i th direction at the lattice location

X at time t, and n,(x, t) =0 if a particle is absent. c- is the unit lattice vector in i th

direction. The equation of evolution is given by:

ni(i + Z,,t + 1) = n,(, t) + Ai[ii (,t)] (2-3)

where Ai is a collision operator with values of 1, 0 or -1, and ni = (n , ,n ,n4,n 5, n6) for

the 2-D FHP model as shown in Figure 2-2. The collision operators Ai are different for

each model. For example, the operator for the three-body collision shown in Figure 2-1 is

given by

A(3) (2-4)Ai3) =ni+lni+3ni+5nini+2ni+4 ni+1ni+3ni+5nini+2ni+4  (2-4)

where ni = 1- ni.

At the macroscopic scale, or when enough time or spatial averaging is used, the

collective behavior of the particles becomes analogous to that of incompressible Navier-

Stokes flow. Along with the Boltzmann approximation and the small velocity assumption,

the incompressible Navier-Stokes equation can be derived analytically starting from

equations (2-1), (2-2), and (2-3) [7]. The analytical derivation of the Navier-Stokes

equation from microscopic lattice-gas hydrodynamics is discussed in detail by Rothman

[6]. In the FHP model, the pressure of the fluid is decided by the density of the particles,

and the viscosity of the fluid is determined by the collision rules and the density. The

validity of the FHP model for simulating fluid dynamics has been tested by many authors

[6].

One of unique characteristics of the FHP model is its straight-forward

implementation of the no-slip boundary condition as shown in Figure 2-3. When a particle



arrives at a "solid wall" lattice point, it is simply bounced back to the direction it came.

When this so-called no-slip boundary condition is used, an effective boundary between the

fluid and the wall is created approximately halfway between the lattice point where the

average velocity is zero. This ease of boundary condition implementation allows the FHP

model to analyze complex boundary problems such as flow through porous media [8],

which are otherwise very difficult to simulate using conventional computational fluid

dynamics techniques.

(a)

.(c). .....Z..\
AP-:

Figure 2-1 In the figure, momentum of each particle is illustrated by an arrow [6]. Propagation is

illustrated by (a) and (b). Mass and momentum conserving collision is illustrated by (b) and (c).



Figure 2-2 Illustration for i = (1,1,0,1,0,0).

"non-wall" lattice points

"solid wall" lattice points

Figure 2-3 No slip boundary condition is created by a simple bounce back rule. On average, velocity

at approximately halfway between "wall" lattices and non-wall neighboring lattices becomes zero.



Lattice-gas automata became of practical interest in modeling multi-component fluid

dynamics when Rothman and Keller [9] introduced a two-phase immiscible model. In

their model, red and blue particles, which represent the two phases, are redistributed after

mass and momentum-conserving collisions so that red particles move toward red

concentrated directions and blue particles move towards blue concentrated directions as

shown in Figure 2-4. Due to inherent fluctuation in the model, spinodal decomposition is

exhibited naturally. Interfacial tension can be controlled by modifying the collision rule so

that more or less pressure is created normal to the interface as shown in Figure 2-5 [10].

Because phase separation and interfacial tension formulations remain true to physics at each

lattice site at each timestep, the macroscopic flows also exhibit correct physics even for

complex cases such as flows with moving and changing phase boundaries. Due to this

ability, immiscible lattice-gas automata has been applied to simulate many drop breakup

and coalescence experiments in binary mixtures [11, 12, 13]. It has also been modified to

simulate three-component systems with different interfacial tensions [14], and to simulate

the effect of a surfactant [15].

In spite of the above-described advantages and its ability to parallel process

computations rather quickly, the lattice-gas automata model also has some serious

disadvantages such as the high level of statistical noise in the model for many applications,

and the difficulty of extending the multiphase model from two to three dimensions [7].



(b)

Figure 2-4 In the figure, momentum of red and blue particles are illustrated by black and white arrows
[6]. At collisions, red particles go toward red-concentrated direction and blue particles go toward blue-
concentrated direction, all while conserving total mass and momentum as illustrated by (b) and (c).
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Figure 2-5 Interfacial tension is controlled by controlling the difference between the pressure (density)
normal to the interface and the pressure (density) along the interface. The figure below illustrates the
collision and redistribution of color when interfacial tension is enhanced.

2.2 Lattice-Boltzmann Method

Aiming to suppress the statistical noise of the lattice-gas model, McNamara and

Zanetti [16] introduced the lattice-Boltzmann method in 1988. In contrast to the lattice-gas

automata that yields Navier-Stokes hydrodynamics from collision rules and the Boltzmann

approximation [6], the lattice-Boltzmann method incorporates hydrodynamics directly since

it relaxes the propagated mass probability distribution toward the pseudo-equilibrium

distribution that represents the Boltzmann equation. Below is the equation of evolution for

the lattice-Boltzmann method:



Nj( + i,t +1) - Ni(x,t) = AN ,t),N)(,t) (2-5)

where Ni(p is a pseudo-equilibrium operator. The pseudo-equilibrium operator for the case

where no rest particle is used in the lattice is given by

N(P) =f 1 + Ca + GmQicapuau (2-6)

where
f = p/b (2-7)

c = c2/D (2-8)

2

Qjap = ciaS - s5 (2-9)

p is the density and is the sum of mass probabilities in all lattice directions at a lattice

point. b is the number of lattice directions and is 6 for the two-dimensional (2D) hexagonal

lattice shown in Figure 2-1 and is 24 for three-dimensional face-centered hyper-cubic

(FCHC) lattice geometry. f is called the reduced density and is an average mass probability

per lattice direction. c, is the speed of sound propagation within the medium. D represents

the number of dimensions and is 2 for a 2D lattice but is 4 for a 3D rendering of a FCHC

lattice since the FCHC lattice itself has a fourth dimension. The details of FCHC lattice

geometry are discussed by Rothman [6]. c = el is the propagation velocity, defined as

lattice length/timestep, and is 1 for a 2D lattice, and -/2 for the FCHC lattice. Gm is an

adjustable parameter.

The lattice-Boltzmann derivative of lattice-gas automata still uses a discrete lattice,

discrete timesteps, and a discrete unit velocity. However, unit mass of lattice-gas automata



is replaced with floating point mass probabilities. An immiscible lattice-Boltzmann model

soon followed [7] using similar concepts for phase separation and interfacial tension

formulations as the lattice-gas automata did. In the immiscible lattice-Boltzmann method,

interfacial tension can be explicitly varied and analytically predicted, as opposed to lattice-

gas automata which does not have any analytical expression of interfacial tension [17].

Although it has a few disadvantages, primarily slower simulation speed due to its

floating point mass probabilities, the lattice-Boltzmann method successfully removes the

statistical noise of the lattice-gas automata while preserving significant advantages of the

lattice-gas method such as its ability to handle complex boundary conditions and its ability

to simulate moving boundaries in binary mixtures. Since the lattice-Boltzmann method

does not depend on discrete collision rules for viscosity and interfacial tension formulation

and does not require time or spatial averaging, it is superior in manipulating these two fluid

dynamical parameters as well. The speed of simulation was improved by the introduction

of the BGK lattice-Boltzmann method based on theory by Bhatnagar, Gross and Krook

[18], which closely approximates to Navier-Stokes hydrodynamics while using only one

relaxation parameter. Another major disadvantage of the lattice-gas automata, the difficulty

in extending it to three dimensions, as noted by Rothman, was also overcome using the

lattice-Boltzmann method. The FCHC lattice formulation [19], which computes in four

dimensions and projects back to three dimensions, is the most commonly used 3D lattice in

order to maintain the isotropy of the stress tensor.

Its flexibility in manipulating fluid dynamics parameters and its ability to simulate in

three dimensions has led to the lattice-Boltzmann method being verified and applied in

many applications by researchers in different fields. Among notable experiments from a

polymer processing perspective are; droplet deformation in simple shear [20], pressure



flow between parallel plates using power-law fluids [21], and observation of cavity flow

[22].



3. Quantitative Verification of the Lattice-Boltzmann Method

3.1 Simulation Setup

The author has conducted several lattice-Boltzmann simulations in order to

quantitatively verify the method's accuracy in exhibiting the fluid dynamic parameters that

are important in polymer processing. The lattice-Boltzmann method used is the BGK

lattice-Boltzmann method with a single relaxation parameter and no rest particle. The

equation of evolution [6] is given by:

Ni(I + i, t + 1) = (1 + 8)Ni(X,t) - &NP)'(X,t) (3-1)

where Ni(P' is given by the equation (2-6). 3 is the single relaxation parameter which is

related to the fluid's kinematic viscosity [6] by:

2

v =CD (3-2)
D+2 6 2

where v is the kinematic viscosity. c and D are defined in the previous section. The

present author reworked a single-relaxation single-phase 3D FCHC lattice-Boltzmann code

written by O. A. van Genabeek into a two-phase 3D simulation program by faithfully

implementing and expressing Rothman's [6] scheme for color separation and the

formulation of interfacial tension.
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Figure 3-1 Velocity profile of a drag flow between parallel plates with the right plate suddenly set in
motion in the x direction. The fluid is Newtonian and was initially at rest.

3.2 Drag Flow Between Parallel Plates with One Plate Suddenly Set in

Motion

The startup of drag flow between parallel plates simulation was performed to

confirm the velocity evolution with respect to time as well as to confirm the validity of the

shear viscosity in the simulation. Some existing simulations can simulate equilibrium states

of particular flows correctly, but are erroneous when used come to simulating transient

states. When simulating the complex, multiphase, moving boundary flows often seen in

polymer processing, this type of shortcoming is intolerable.



Initially, a fluid between parallel plates at z=0 and z=z0 is at rest. The velocity vx(z)

measured as the right plate at z=z0 is moved at constant velocity V in the x direction. The

analytical solution [23] for v,(z, t) is given by:

v(z,t)= V 1-z _ 2V 1exp _i2l2 Vt sin i7-z (3-3)
Zo 7i=1 i  Z Zo

In the lattice-Boltzmann simulation, bounce-back of mass distribution is biased so

that v,(z=zo) becomes V, making the wall appear to move. The same simulation using the

lattice-Boltzmann method with a 2D hexagonal lattice was previously conducted by

Sziligyi, Susan-Resiga and Sofonea [24]. Using the single phase 3D FCHC lattice-

Boltzmann method, the present author has also proven the agreement of the simulation

results with the theory as shown in Figure 3-1. The simulation was conducted using

100x2x50 lattices with periodic boundary in all directions and 7"=0. 1 and p= 1.

3.3 Pressure Flow Between Parallel Plates of a Newtonian Fluid

Many polymer processing flows are pressure driven flows. The simplest of

pressure flows is the flow between parallel plates. Left and right plates at z=0 and z=z0 are

rigid no-slip walls, and the pressure is exerted at one end (x=O) and the flow comes out at

another (x=xo). The pressure difference AP over distance xo is what forces the flow to

move in the x direction. The velocity of the fluid at the walls, vx(z=O) and vx(z=zo), is zero

and has its maximum vx,max at z=zd/2. In the case of a Newtonian fluid, the analytical

solution [25] for vx(z) is given by:

Z02AP 4z zx, 0  "= 1 - (3-4)
8 17x z ( z 0



z2AP
v = 084xo (3-5)

In the present lattice-Boltzmann simulations, the total bounce-back rule is applied at

both walls. Pressure is created by adding an extra mass distribution at one end (x=O) and

removing the same amount at the other end (x=x0). Pressure in the particular single-

relaxation lattice-Boltzmann model [6] used is given by:

p(p)= crp (3-6)

and is p12 for the 3D FCHC lattice-Boltzmann model with no rest particles. The

simulations were run until they reached the equilibrium and vx(z) was measured at x=zd2.

At equilibrium state, AP/zo can be obtained by measuring density at any two points of

different x.

* simulation
"=theory

5 10 15

Z [lattice]

Figure 3-2 Velocity profile of pressure flow between parallel plates. The fluid is Newtonian.
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This simulation has been conducted and validated previously [26]. The author has

also verified the simulation's shear viscosity and pressure by varying viscosity, lattice

dimensions, and pressure using a single-phase viscous fluid. As shown in Figure 3-2, the

simulation is in a good agreement with the theory when the kinematic viscosity v is

approximately 0.1 or less. A higher than expected vx,max is observed when v is set at

higher values. When v is assigned as 0.5 or higher, the velocity profile is no longer a

smooth parabola. This observation can be explained as follows: The relaxation parameter

8 is related to v by equation (3-2). The mean free path of the mass distribution is

approximately 1/161. Therefore, as v becomes larger, so does the mean free path. When

the mean free path becomes larger with respect to the unit lattice length, the correct

relaxation to a pseudo-equilibrium distribution cannot be achieved because gradual changes

in the distribution are prohibited. This was observed when v reached 0.5 (-6 =0.5).

Relative to the mean free path, the higher than expected vx,max comes from the assumption

that the zero velocity point or virtual wall lies halfway between the solid wall lattice point,

and the nearest neighboring non-wall lattice point as illustrated in Figure 3-3. The detailed

analysis of population density and velocity by Ginzbourg and Adler [27] suggests that the

assumption of the virtual wall at the halfway location becomes inaccurate when the mean

free path becomes longer. Their analysis of Poiseuille flow using the FCHC lattice-

Boltzmann method shows that the zero velocity location shifts toward the solid wall lattice

point as mean free path becomes longer. This is due to the density difference between the

solid wall lattice point and the neighboring non-wall lattice point created by the longer mean

free path. When the correct zero velocity boundary is applied, the simulation agrees with

the analytical solution as shown in Figure 3-3.
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Figure 3-3 Example of the deviation of vxmax,, at larger -1/ when the 'halfway' boundary condition is
applied. The simulation agreed with the analytic solution at the correct zero velocity location. A is a
distance between the first non-wall lattice point and the virtual wall boundary created by the bounce-back
rule.
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Figure 3-4 The linearity of the relationship between the pressure gradient and vx,max for Newtonian

pressure flow as expressed in equation (3-4) is confirmed.
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Figure 3-5 The linearity of the relationship between 1/77 and Vx,max for Newtonian pressure flow as

expressed in equation (3-4) is confirmed.

Linear relationships between vx,max and AP/xo, and between vx,max and 1/77 are also

confirmed by the simulations as shown in Figures 3-4 and 3-5.

3.4 Pressure Flow Between Parallel Plates of a Power-Law Fluid

Unlike fluids such as water and air, whose viscosities are independent of shear rate,

the viscosity of most polymers is affected by shear rate. This dependence is often

approximated by the power-law rule [25] as follows:

(3-7)10f) = ny-1



where m and n are the consistency and power law index, respectively. For many materials,

such as polystyrene, there can be both a "Newtonian plateau" at smaller shear rates and a

"power law" region at higher shear rates [28].

In the 3D lattice-Boltzmann simulation, shear rate is calculated locally at each lattice

point by

y= 1: -Y (3-8)

or, in expanded form:

x 2 "- 2 "2 " --y + OY + -Z) 22 x-/' "K- 2- 1/2

= +2C +(2 + + f '+dd + d +Z

(3-9)

where dvx/dx = vx(x + 1,x - 1)/22 and so on. The relaxation parameter is modified

according to equation (3-7) using the local shear rate given above.

Simulation of pressure flow through parallel plates of a power-law fluid was

previously conducted by Rothman and Aharonov [21] and agreed with the theoretical

velocity profile [25] given by:

v- zo 0  1- 2z 1 (3-10)
x 2 (s + 1) ( 2mxo [Y Zo

where s=l/n. The author also simulated pressure flow of a single phase power-law fluid

with power law indices of 1.5 and 0.6, and observed a very good agreement with the

theory as shown in Figures 3-6 and 3-7. When conducting simulations, the same care with

v must be taken in order not to make the mean free particle path too long with respect to the

lattice.
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3.5 Steady State Sphere and Cylinder (Laplace's Law)

In a multiphase fluid, the interfacial tension is of great importance in breakup and

coalescence events. At steady state, the relationship between the curvature of an interface,

the interfacial tension, and pressure is given by Laplace's Law:

AP= + (3-11)
R, R2

where a is interfacial tension, AP is the pressure difference between the phases, and 1/R,

and 1/R2 are the principal radii of curvature. For cases of a circle in two dimensions or a

cylinder in three dimensions, the above equation becomes

AP = - (3-12)
R

where R is the radius of circle or cylinder. For the case of a sphere in three dimensions, it

becomes
20

AP = (3-13)
R

where R is the radius of sphere.

Interfacial tension in the lattice-Boltzmann method in three dimensions [6] is given

by:

4608Af
C = - (3-14)

where A is an adjustable parameter used to create pressure normal to interface, f is a

reduced density per lattice direction, and 8 is the relaxation parameter. The interfacial

tension used in the lattice-Boltzmann method has been confirmed by many researchers

using Laplace's Law and a spherical droplet in a quiescent matrix [17, 29]. Comparisons



of the expected interfacial tension a calculated from equation (3-11) and simulation output

of a calculated from equation (3-14) at various A, f, 6 are summarized in Figures 3-8, 3-

9, and 3-10 for the sphere (3-D Laplace's Law). Deviation from the analytical value is

observed when the value of -1/6 becomes larger than unity. This is easily explained. As

discussed previously, -1/8 is approximately the mean free path of the mass distribution.

At the interface, the path of a mass distribution can be changed even if the relaxation

parameter is set 0 (-l/d =oo) due to the color separation step at the collision. In other

words, at the interface, the actual mean free path (or -1/3) can be shorter than the input

value of 3 indicates. Figure 3-10 shows that the larger the value of -1/3, the more the

simulation results deviate from the analytical solution. The deviation starts at -1/-=0.9,

where the mean free path is becoming large with respect to the lattice. The fact that the

model's interfacial tension accurately follows its analytical expression has been confirmed

when -1/8 < 0.8 (v<0.1).
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Figure 3-8 A is a variable in the lattice-Boltzmann method that creates pressure normal to the
interface. The figure shows the linear relation between interfacial tension and A as expected from equation
(3-14).
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3.6 Deformation of a Droplet in Simple Shear Flow

A droplet deforms before it breaks. Deformation of a droplet involves multiple

hydrodynamic parameters such as interfacial tension, shear rate, viscosity, and so on.

Therefore, it is important for any simulation technique to exhibit the correct morphology of

the deformation. The small deformation of a droplet in shear flow, in the case in which

both the droplet phase and the matrix phase are Newtonian fluids, was first studied by

Taylor [30]. The deformation of such a droplet is given by the equation:

77YR 19r'//77 + 16Dd = 177'/77+ 16 (3-15)

where 7 is the viscosity of the matrix phase, y is the shear rate, R is the initial droplet

radius, a is the interfacial tension and 71'/7 is the ratio of the viscosities of the dispersed

phase and the matrix phase. The degree of deformation is described by the parameter Dd

which is given by

b-a
Dd = -a (3-16)

b+a

where b is the length and a is the breadth of the ellipsoid as shown in Figure 3-11.

Experimentally, deformation of the droplet follows Taylor's small deformation theory up to

around D-0.2 when 77'/77=1 [31].
Two-dimensional lattice-Boltzmann simulation of small droplet deformation has

been carried out by Halliday and Care at various shear rates and interfacial tensions [20].

Using the 3D lattice-Boltzmann method with no rest particles, the author has measured the

deformation of a droplet with respect to capillary number at varying shear rates, interfacial

tensions, and drop radii. The capillary number, a ratio of the viscous droplet breakup

forces to interfacial stabilization forces, is defined as:



(3-17)Ca = 7
cY

A typical deformation of a droplet in 3-D is shown in Figure 3-12. The present author has

successfully observed the linear relationship with a slope of (197'/77 + 16)/(1677'/77 + 16)

in the simulation as shown in Figure 3-13.
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Figure 3-11 Illustration of a 2D projection of a 3D droplet deformation in a simple shear flow. The
ellipsoid has the same breadth, a, in the third dimension.
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Figure 3-12 3D visualization of the deformation of a droplet simulated by 3D lattice-Boltzmann
method.
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Figure 3-13
Deformation of a droplet with respect to initial capillary number. For small amounts of deformation, a
linear relationship is predicted by Taylor's small deformation theory.
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4. Capillary Wave Instability

4-1 Introduction

Experimentally, a highly elongated droplet (which is almost like a long cylinder)

has been observed to breakup into many small, evenly sized droplets when the stress is

relaxed [32]. Although the quiescent state of a fluid is not of direct interest in simulating

polymer processing flows, Kang, et. al. have pointed out that this type of situation could

occur in cavity flow [33].

The breakup of a cylindrical thread was first analyzed by Rayleigh [34] for a fluid

cylinder in air. Tomotika [35] extended the theoretical analysis to the breakup of a viscous

fluid thread in a viscous matrix phase.

t=O t=450 t=550 t=600

i

t=800

Figure 4-1 A typical rendering of capillary wave instability simulated by 3D
simulation. A certain wavelength grows from random noise added to the simulation.
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Figure 4-2 Illustration and nomenclature of the capillary wave disturbance.
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Figure 4-3 The fastest growing disturbance wavelength as a function of viscosity ratio, based on

Tomotika's [35] data.
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Brownian motion introduces infinitesimal perturbations on the surface of the

cylinder. These perturbations are considered as a collection of disturbances of many wave

lengths. Stability analysis is applied to distinguish which disturbing wavelengths will

grow and which will decay away. It is found that any wavelength longer than the

circumference of the cylinder is unstable and grows. Among wavelengths longer than the

circumference, a particular wavelength determined by the initial diameter of a cylinder and

the viscosity ratio, has the largest exponential growth rate. It is primarily this wavelength

that breaks the cylinder into small evenly sized droplets as shown in Figure 4-1 and 4-2.

The fastest growing wavelength Am as a function of r7'/77 is shown in Figure 4-3. For

example, Am is 5.58 times the diameter of the cylinder at 77'/7= 1. The disturbance

amplitude a grows exponentially as

a = a0e qt  (4-1)

where a is the initial disturbance amplitude and q is the rate of growth [36] given by:

q = (4-2)

Q is a tabulated function of wavelength and the viscosity ratio given in Tomotika's [35]

paper. Figure 4-4 shows the relationship between the growth rate and its wavelength at

4'/1r7 =1. One can calculate the interfacial tension between any given two phases of fluid

by measuring the growth rate, q, using the above equation if the viscosity of both phases is

known. This method is often used for measuring interfacial tension between two polymers

[36]. Compared with other interfacial tension determination methods, such as the pendant

drop method [37], the spinning drop method [38], and the sessile drop method [39], all of

which require measurements in the equilibrium state, measurements in this breaking-thread



method are much faster since they are done under transient conditions. For interfacial

tension measurements of slowly evolving viscous fluids such as polymers, the breaking-

thread method allows more time efficient measurements.
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Figure 4-4 Growth rate (q) as a function of X at a viscosity ratio of one. X is defined as shown
above.

4-2 Perturbations in the Lattice-Boltzmann Method

Since simulation of an infinitely long cylinder is not possible, the author used a

35x35x300 lattice or similar dimensions with periodic boundaries in all directions, and an

initial cylinder radius of around 6 lattice units. For convenience, the interfacial tension was

chosen large enough so that breakup occurred within 500 - 2000 timesteps. In real life,

random disturbances are caused by Brownian motion. Unlike the lattice-gas automata,



which has intrinsic noise, the lattice-Boltzmann method itself does not have any built-in

noise. Therefore, no breakup would occur if a cylinder is left unperturbed in the regular

lattice-Boltzmann simulation environment. Hence, random disturbances must be externally

enforced in the simulation in order to imitate the effect of random perturbations. Several

methods for formulating random disturbances were investigated.

The initial method studied involved perturbing the momentum of each lattice

direction at each interface lattice point randomly. While yielding a nice thread breakup as

shown in Figure 4-1, and conserving mass and momentum when sufficient time or spatial

averaging is used, this method conserves neither mass nor momentum at each lattice point

at each timestep. The second method considered fluctuates the local density at each lattice

site. This also resulted in thread breakup, but does not conserve mass locally.

The direction of the interface in the lattice-Boltzmann method is defined by its

normal vector f. This vector, also known as the local color gradient, points to the

direction where the probability of finding red particles is the highest [6], and is given by:

f(x,t) = _,i_[Rj(X + i,t) - B( + i,t)] (4-3)
i I

where R,(x, t) and Bi( , t) are mass probability at the lattice site X at time t and in ith

direction. The third method investigated was to vary the direction of this local color

gradient. While this method conserves mass and momentum locally at each timestep, it

essentially weakens the effect of interfacial tension and does not have any physical

significance. The above three methods were attempted, focusing on thread breakup by

creating fluctuations in its radius indirectly through Laplace's relation, but had serious

deficiencies.



The method chosen for creating disturbances is a perturbation of momentum at each

lattice point while conserving mass and momentum. This was done by perturbing the same

amount of mass in pairs of opposite-facing lattice directions, and by making no net change

of mass and momentum at each lattice site at each timestep as described in Figure 4-5.

Since mass and momentum are conserved locally, the physics of incompressible fluids still

applies. In the theory of capillary wave instability, it is only the thread radius that is being

fluctuated. However, in real life, the radius is fluctuated since Brownian motion creates

local fluctuations of density, which in turn creates a curvature on the interface and thus

radius fluctuations. From this stand point, this method of fluctuation formulation is loyal

to real life Brownian motion disturbances since the velocity (momentum) directions are the

ones that change every timestep.

5 6 Mass probability

Before purturbation =

After purturbation

4 1

Gain at 2, 5

3 2 Loss at 3, 6

Figure 4-5 Illustration of the random perturbation that conserves mass and momentum in 2D.
Lengths of the arrows represent the sizes of mass moving in each direction. Random sizes of mass are
added or subtracted to the pair of the opposite facing directions. The random perturbations are added so that
there is no net change of the mass at each lattice site, at every timestep.



Average ,m [lattice] Growth Rate, q

theory 62.5 0.0098

1st method 50 0.0050

theory 62.5 0.0150

2nd method 56 0.0066

theory 62.5 0.0057

3rd method 50 0.0022

theory 60 0.0077

4th method 43 0.0046

Table 4-1 Selected simulation results using four different perturbation methods are compared with
respective theoretical results. Theoretical growth rates are calculated using the theoretical values of A2 s.
Results by all perturbation methods resulted in shorter than expected wavelengths and smaller than expected
growth rate. Shown results are not for use in comparing accuracy of the perturbation methods.

In simulations of capillary wave instability using any of the above four disturbance

techniques, breakup of the cylinder was observed but at slower growth rate and with a

shorter than predicted wavelength as shown in Table 4-1. In searching for the causes of

these deviations from the theory, many simulation modifications including changes in the

lattice size, boundary conditions at top and bottom (z=0 and z=z0), diameter of the cylinder,

viscosity ratio of cylinder/matrix, and interfacial tensions were made. However, no

obvious improvement was observed from any of the above modifications.

Since the growth rate is a sensitive function of A, as shown in Figure 4-4 and

equation (4-2), attention was first focused on obtaining the correct A from the simulation.



In an attempt to observe a thread breakup with Am, the author chose to force a standing

wave fluctuation rather than random disturbances.

4-3 Forced Perturbation

In real life, the fastest growing wavelength results from a collection of random

noise. Since the noise fluctuates over time, such a wave cannot be a sum of time-

independent spatially periodic transverse waves. Rather, it is the sum of transverse waves

that change over time. At the same time, the fastest growing wave that makes the thread

break has fixed nodes where no growth occurs, as observed on the thread. A standing

wave is the only transverse wave that has fixed nodes. Based on these two observations,

small random fluctuations are considered as the sum of fluctuating standing waves of

various wavelengths and periods. A standing wave is created when two propagating

transverse waves r = (a/2)sin(kz - ot) and r2 = (a/2)sin(kz + ot) are superimposed [40],

and is given by:

R(z,t) = a sin kz cos cot (4-4)

where k = 21r/A and co = kv. v is the propagation speed of a transverse wave.

Since the only mode of wave propagation in a single phase fluid is longitudinal, the

propagation speed of a transverse wave at the interface of two fluids can be obtained

indirectly from the wave propagation velocities of longitudinal waves as follow. Because a

longitudinal wave travels in an elastic media by the compression and decompression of the

local media, it can be considered as a propagation of pressure with its amplitude PM.

When a longitudinal wave travels in one medium at velocity v, a local pressure difference

AP also travels at velocity v as shown in Figure 4-6. When two longitudinal waves in



phase or at different wavelengths travel in two media at the same velocity, the local

pressure difference AP also travels at velocity v. When the two longitudinal waves travel in

two media at different velocities v, and v2, these waves can be expressed in terms of

pressure, and are given by P = P'+ P, sin[2K(z - vt)/A] and

P2  P2'+ Pm sin[21r(z - v2 t)/ ] . The expression for the pressure difference AP=P 2-P 1 is

simplified as

AP(z,t) = 2P. cos 27  - V,2 (4-5)
A 2 ]2

where (v,+v 2)/2 is AP's propagation speed. The Laplace relation given by equation (3-11)

shows that AP(z,t) creates a transverse wave AR(z,t) whose propagating velocity is the

same as that of AP(z,t). In the lattice-Boltzmann simulation, the propagation of a

longitudinal wave, which is the speed of sound, is given by equation (2-8). It is 1/- 2

lattice unit per timestep for the FCHC model. Therefore, the propagation velocity of any

transverse wave in a 3D lattice-Boltzmann simulation is also 1/,/2 as described in the

above case.

Knowing v and AL, a standing wave AR(z,t) is defined. In the lattice-Boltzmann

method, however, it is very difficult, if not impossible, to directly create any AR while

locally conserving mass and momentum. Therefore, AR(z,t) has to be created indirectly

from Laplace's relation. Since creating AP(z,t) while conserving mass and momentum is

also a very difficult task, the author chose to fluctuate the interfacial tension. Provided that

AP is constant, Aa(z,t) can be obtained from R,(z,t) and R2(z,t) as defined in Figure 4-2.

They are given by:
R, = R + a sin kz cos wt (4-6)



(1 + a 2 k2 cos 2 kz cos 2 t) 3/2

ak 2 sin kz cos wt
(4-7)

By substituting equations (4-6) and (4-7) into equation (3-11), the following expression for

Ao(z,t) is obtained.

Ac(z, t) = -AP -
(1 +a 2k2 cos 2 kzcos2 ot'3/2 (R + a sin kz cosot)

ak2 sin kz cos ct -
(1+ a 2 k 2 

COS2 kz cos2 wt) 2

ak2 sin kz cos cot

+ Ro + asinkzcos t y

+1k + asinkzcoscotj

(4-7)

This is the interfacial tension fluctuation forced on the simulation.
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P = P' + Pm sin[27(z - vt)/A]

Figure 4-6 Propagation of a longitudinal wave creates a traveling pressure difference AP at the
interface. The traveling AP creates a curvature which is essentially a traveling standing wave. Therefore, a
transverse wave propagates in the same order of speed as a longitudinal waves propagates.
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Approx.tb [timestep] Average Am [lattice]

theory n/a 62.5 0.0029

simulation A 2200 50 0.0021

theory n/a 62.5 0.00037

simulation B 10000 55 0.00032

Table 4-2 Typical results of capillary wave instability using the forced-perturbation scheme is

compared with theoretical results. Theoretical growth rates are calculated using theoretical Am. The results

show that the longer the tb, the closer the growth rate and Am become to the theoretically predicted values.

Even with the forced standing wave disturbance scheme above, however, the

fastest growing wave lengths obtained from simulations were shorter than the expected Am

More importantly, it was observed that the longer the time for thread break (tb), the closer

was the value of / to the theoretical prediction as shown in Table 4-2.

4-4 Examination of Limitations of the Lattice-Boltzmann Method

From the above observations concerning the deviations of Am and the growth rate,

the author first evaluated the viability of time scaling in the lattice-Boltzmann method for

simulating capillary wave instability. Then the analysis was extended for some deficiencies

caused by the discrete nature of the lattice.

Growth Rate, q



In a real polymer, a sound wave propagates on the order of 103 m/sec [41]. A

typical experimental thread breakup using polymers is conducted with diameters of 10-7 -

10-4 m and breakup times of 1 - 103 sec [36]. This suggests that approximately 10'0

oscillations of standing waves of wavelength Am have taken place before the breakup

occurs.

In the lattice-Boltzmann simulation, however, sound propagates on the order of 1

lattice per timestep. Therefore, for a thread of 10 lattice units in radius to break up after

1010 oscillations of standing wave Am, 1012 timesteps are required. Unfortunately, this

requirement is not feasible for simulation with current computing capabilities. In a typical

capillary wave instability simulation, tb was set between 500 and 2000 timesteps which

implies there were only on the order of 101 oscillations of the standing wave before the

breakup of the thread occurs. This poses a severe problem as shown in the example

below.

Let Ro be 6 lattice units, i'/7= 1, and the interfacial tension be such that tb is

approximately 2000 timesteps. Am is expected to be 67 lattice units from theory. Since the

speed of sound in 3D FCHC lattice-Boltzmann is approximately 0.7 lattice per timestep, the

period of standing wave, Toc = lm/v, is approximately 95 timesteps. The amplitude of the

oscillation standing wave fluctuation a is given by equation (4-1), and is 6 lattice units

when the thread breakup occurs (t=tb). As shown in Figure 4-7, a0 is approximately 0.8,

and thus q=lxl10 -3timestep 1.
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Figure 4-7 The minimum unit of ao on a discrete lattice is between 1/42 and 1.

In real life, millions of oscillations of the fastest growing standing waves take place

before the thread breaks so that the growth of the this standing wave is considered a

continuous process. In the simulation with the above-described setting, however, there are

only around 20 oscillations due to the long wave period with respect to tb.

The linear perturbation theory predicts the growth of a wave's amplitude when the

wave shape is applied to a cylinder [35]. However, when an oscillating standing wave

occurs as a result of random noise, the growth of the wave's amplitude is achieved only

when a is positive with respect to the wave shape created on the thread, as illustrated in

Figure 4-8. Therefore, the growth of the wave's amplitude can be discretized per

oscillation of the standing wave. The discretized growth rate, qd, is defined by:

qd-= ln( j oscillations) (4-8)
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Figure 4-8 A, hidden in random forced perturbations oscillates at period T. Only when ao is positive
with respect to the outline of the fastest growing wavelength (RI), a grows due to instability.
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Figure 4-9 In order for the wave shape to be recognized in discrete space, the amplitude of the wave
must become discretely larger than the amplitude of random noise. The drawing below illustrates the case
when the amplitude of the wave becomes twice as large as the amplitude of the random noise.
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In the given example, qd is either 0.0959 or 0.0916 oscillation - respectively since

there can possibly be either 21 or 22 oscillations (with a 0>0) depending on the initial phase

of the standing wave.

In continuous space, the fastest growing wavelength outgrows the rest and

establishes its wave shape gradually. Therefore, the amplitude of the wave's growth still

counts when it is larger than that of the perturbation by marginal amount. In a discrete

simulation, however, a has to become larger than the random noise level a by at least 1

lattice unit to be recognized as a wave shape on the thread as illustrated in Figure 4-9.

Suppose that a has to be twice as large as the noise amplitude, a , in order to capitalize its

wave shape on the thread (ac), and define the time it takes for a to become 2 a0 as the

shape capitalization time, or t,. Since qd can take either 1 or 2 values and the oscillation can

start either at a 0>0 or a 0<0, there exists a gap between the earliest and the latest possible

time for the shape capitalization. Such tc,min and tc,m are given by:

tm = ln(2) T (4-10)
qd,max

tc,max ln(2) + 0.5 T (4-11)
( qd,mm

where T is the period of A. One half is added or subtracted to take the initial phase of the

wave into account. Natural log of 2 reflects the fact that a c / a o is taken to be 2. In case for

Am,, =67 lattice units, t,,min becomes 637 timesteps and t,ma. becomes 764 timesteps.

Figure 4-10 shows t,,min and t,ma at different As. The latest possible time any

wavelength capitalizes its shape on the thread is around 740 timesteps. However, by 740

timesteps any wavelengths between 52 and around 100 lattice units have a chance to

capitalize their shapes on the thread.
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Figure 4-10 The time for wave shape capitalization for the case tb= 2 ,000 timesteps is shown with

respect to various wavelengths. Any wavelengths between 52 and around 100 lattice units (not shown in

the figure) have a chance to capitalize their wave shapes, since t=740 is the latest possible time wavelengths
of 66 and 68 can capitalize their shape. A gradual increase in t, between A =72 and 76 lattice units is due to

the same discretized growth rate, but the longer period of oscillation. A sudden jump of tc between A,=76
and 77 lattice units is due to a sudden increase in the discretized growth rate. This is because the increase in
the standing wave period enables one less oscillation before the thread breaks.

The possibility of too many wavelengths having chance to capitalize their shape can

be reduced, but at a cost of computing time. Figure 4-11 shows the case when tb is set at

20,000 timesteps while lattice dimensions, cylinder radius, viscosity ratio are kept the

same. At this growth rate, potential wavelengths that can capitalize their shapes are

narrowed down to between 61 and 74 lattice units. As shown in Figure 4-12, when

growth rate is decreased so that tb= 20 0 ,000 timesteps, the range is further narrowed down

between 65 and 69 lattice units with the fastest growing wavelength predicted at 67 lattice

units, as forecasted by the theory.
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Figure 4-11 The time required for wave shape capitalization for the case tb= 2 0,000 timesteps is shown
with respect to various wavelengths. The range of wavelengths that can potentially capitalize their wave
shapes is narrowed down to between 61 and 74 lattice units.
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Figure 4-12 The time required for wave shape capitalization for the case tb= 2 0 0 ,000 timesteps is

shown with respect to various wavelengths. The range of wavelengths that can potentially capitalize their
wave shapes is further narrowed down to between 65 and 69 lattice units.
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Increasing tb is essentially an attempt to smooth the discretized effect of the growth

rate and to decrease the ratio of the oscillation period to tb. It is, in fact, an attempt to make

the simulation closer to the real life situation.

In real life, a can also be taken to be arbitrarily small and there is no such a thing

as a shape-establishing amplitude because the space is continuous. Since the effort to

extend the simulation size in time domain increased the accuracy of the simulation, one may

consider extending the simulation in the spatial dimension in order to make the relative size

of a small with respect to a,. However, extending the simulation in the spatial domain

does not improve the situation readily because the period of a oscillating standing wave is

directly proportional to the radius of the cylinder as shown in equation (4-12) and (4-13)

below:

ToSC = - (4-12)

Am = DoD(ri1'/Il) (4-13)

where Q(rl'/r,) is a function plotted in Figure 4-3. Figure 4-13 shows the case for Ro=60

lattice units and tb= 2 0 0 ,000 timesteps. In addition to the fact that the time and memory

requirements for running a simulation of this size and length are prohibitively expensive,

the selectivity of the fastest growing wavelength is not improved at all. This is one of the

limitations of the lattice-Boltzmann method, originating from its inflexible wave

propagation speed.

In a continuous system, a standing wave of the wavelength A,, simply grows

continuously gradually until the thread breaks. In discrete systems such as the lattice-

Boltzmann simulation, however, the growth of a is also discrete, as discussed above.

This causes another potential defect in the simulation. Even if any wavelength has



successfully capitalized its wave shape according to the previously given definition,

disturbances as large as half of its established wave amplitude a, will continuously

influence the capitalized shape. The relative size of the large random disturbance ao can be

decreased only after a discretely increases its size further. Until then, the capitalized wave

shape is prone to disturbances of other wavelengths that could slow down the growth of

the capitalized wave shape by obscuring its shape, or even destroy the shape altogether.

From this stand point, increasing Ro will decrease the relative size of a0 and allow longer

growth time when a0<< a. Although increasing R0 will multiply the cost of simulation in

terms of both memory requirement and computation time very quickly, the effect of

destructive disturbances by the other wavelengths may be reduced and the wave may

achieve a growth rate very close to the theoretical value if the simulation is indeed

conducted. Unfortunately, this predicted trend has not yet been confirmed.
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Figure 4-13 The time required for the wave shape capitalization for the case tb= 2 0 0 ,000 timesteps and

Ro=60 lattice units is shown with respect to various wavelengths. When compared to Figure 4-9, the

spatial dimension was increased by 10 order of magnitude (and simulation length by 100-fold), but the

accuracy of the fastest growing wave length obtained from the simulation does not improve. Increase in the

initial radius of the cylinder just costs more computational time and memory.
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Figure 4-14 Since wavelengths longer than the circumference are unstable and grow, the longer the
wavelength, the more obstructing disturbances they encounter from shorter wavelengths. The degree of

obstructing disturbances a wavelength receives (modified wavelength) is approximated by the wavelength
minus the circumference. In simulations, the shorter the wavelength, the less obstructing disturbance it
receives on a discrete lattice so that it can grow near its natural growth rate. Data for this figure comes
from plural numbers of capillary instability experiments with tb=1,000 timesteps and Ro=5.5. The rest of

the parameters for the simulations may vary.

In the simulations, the growth rate is generally found to be smaller than the

expected value for the given wavelength observed. Although further investigation is

required, it is observed that the shorter the thread-breaking wavelength, the closer its

growth rate is to the expected value as shown in Figure 4-14. This observation implies

that longer wavelengths are more prone to the growth obscuring disturbances and are

therefore harder to grow. Figure 4-14 is created from various capillary wave instability

experiments with tb= 1000 timesteps and Ro=5.5 lattice units. The data spread in A - 27R o

is expected to converge to Am - 2rR as tb becomes larger.



The expected t, was recalculated for each wavelength using the adjusted growth

rate, qadj = qtheory/1.25 log(A - 2R 0). Figure 4-15 shows the recalculated time for the

wave capitalization for the case of tb= 2 ,000 timestep. The figure shows the shift of the

quickest capitalization wavelength from 67 to 55. Wavelengths of around 55 were

observed for breakup in the simulations. No correlation between the deviation of growth

rate and breakup time has been confirmed.

Simulation of capillary wave instability elucidates some limitations of the lattice-

Boltzmann method in both the time and physical dimensions.
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Figure 4-15 The case for Figure 4-7 is re-plotted using the new expected simulation growth rates

based on the fitted line shown in Figure 4-10. Note that the wavelength for the shortest tc shifted from 67
to 55 [lattice]. tc increased over all due to the effect of destructively interfering disturbances of competing
wavelengths.



5. Applications

5.1 Introduction

The ultimate goal of this research is to faithfully reproduce complex flow situations,

such as breakup and coalescence of moving phase domains, observed in polymer

processing using computational simulations, (In this thesis, the term "breakup" refers to

the actual breakup of a droplet into two separate domains unless otherwise noted.) For

experimental investigation, previous researchers have used the four roller device shown in

Figure 5-1 to produce various droplet-breaking flows. The analytical expression for flows

created by the four-roller device [42] is given by:

v=L.r (5-1)

where

S--1+e 2 -- E 0 (5-2)l 0 0 0
e takes values between -1 and 1. Since a droplet tends to rotate without breaking up when

E<O, experiments are usually conducted with e20. The locations where the most

breakups are believed to occur in processing equipment is at the tip of rotor blades of a

batch mixer or the tip of the kneading blocks in a twin-screw extruder. At these locations,

flows are neither purely extensional (E=1) nor simple shear (E=O) , but rather a

combination of both. However, for analytical and experimental convenience, simple shear

and pure extensional flows are commonly investigated.



Extensional Flow at Center Simple Shear Flow at Center
(e=l) (E=O)

Figure 5-1 Four-roller device.

The capillary number, a ratio of the viscous droplet breakup forces to interfacial

stabilization forces, is used as a measuring stick for breakup. The critical capillary number,

Cacri, is defined as the capillary number beyond which a droplet begins transient elongation

[43]. Although transient elongation does not directly imply the breakup of a droplet,

breakup of the elongated droplet has been observed to occur near this Cacrt value by several

mechanisms, depending on the viscosity ratios and type of flow. The critical capillary

number is analytically predicted by Barthes-Biesel and Acrivos [44] with their O(Ca2)

theory and by Bentley and Leal [45] with their slender body theory for very small values of

the viscosity ratios. Experiments by Stone using the four roller device show good

agreement with theory at various viscosity ratios and for various flow types signified by

various E s, as illustrated in Figure 5-2. As shown in the figure, extensional flow (E = 1) is

more effective in breaking up droplets than simple shear flow ( E =0) since it does not allow

the droplet to rotate. In simple shear flow, the O(Ca 2) theory predicts that no breakup of a

droplet will occur when the viscosity ratio exceeds 3.6. Experimentally, no breakup was



observed above a viscosity ratio of 3.5 [46] and 6.0 [31] in work performed by two

different experiments.
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Figure 5-2 Effect of the type of flow on the critical capillary number for droplet breakup. The solid

line is O(Ca2) theory [44] and the data points are experimental data generated by Stone [43].

In polymer processing, irregularly shaped blades or kneading blocks are rotated to

Naturally, the stress exerted on a droplet is not

-I I I

create various droplet breaking flows.



constant, whether extensional or shear in nature. For example, the stress around a droplet

increases when a blade is approaching and decreases when the blade is receding. In single-

screw extruder, the flow circulates between a high shear region near the barrel and a low or

no shear region in the middle or bottom of the channel of the screw [33]. Droplet breakups

also occur, sometimes more effectively, at these transient locations where the stress exerted

on a droplet is not at its maxima. When a highly elongated droplet is suddenly placed in a

no-stress condition, both ends of this elongated cylinder form a bulbous shape. Depending

on the initial elongated shapes and the viscosity ratios of the dispersed and matrix phases,

either the neck of the bulbous ends pinch-off or the bulbous ends coalesce. A series of

comprehensive experiments, computational simulations and intuitive analysis for this type

of breakup was done by Stone, Bentley and Leal [32, 47].

While some droplets are broken into smaller ones, many smaller droplets meet and

coalesce with each other, especially when the volume ratio of the droplet phase becomes

sufficiently high. After a long enough mixing time, a steady-state average droplet size will

be reached which is representative of equilibrium between breakup and coalescence. When

two droplets coalesce in an head-on collision, flattening of the moving fronts of the

droplets occurs first. As the flattened circular plates of the droplet fronts approach each

other, a sheet of the fluid in between is drained and becomes thinner. Once the thickness of

the film reaches a critical thickness, the film ruptures and droplet coalescence takes place

[48]. Understanding the details of the mechanism of thin film rupture is of major interest

because of its role in the coalescence phenomena at the mixing equilibrium. Unfortunately,

most theoretical and experimental investigations have been conducted for the coalescence of

a droplet approaching a horizontal interface due to gravity [49], rather than head-on

collisions of two droplets due to flow. Since most polymers are highly viscous, gravity is

not an important factor in their blending. Unlike a droplet colliding with a flat interface due



to gravity, droplet collisions induced by a flow may not always result in coalescence.

Either bouncing back or rotation may occur, if the film in between them does not drain fast

enough as illustrated in Figure 5-3. Due to the complexity of the coalescence mechanism,

no single analytical model accurately illustrates the thinning of the film between the

droplets. However, these models offer approximate relationship between hydrodynamic

parameters and the film thinning. For example, the larger the radius of a droplet, the

smaller the rate of film thinning [50]. Among the few experiments of coalescence by head-

on collision, Scheele and Leng [48] found that the phase of the droplets oscillations, rather

than their approaching velocity, was the factor which controlled of whether the injected

droplets coalesce or bounce. Their observation was confirmed by Jeelani and Hartland's

[51] analytical model.

coalescence bounce rotate

0 00 =O O =O O

Figure 5-3 Three modes of collisions when two droplets of equal size approach each other.

Understanding the macroscopic effects of coalescence is also important in polymer

processing. The average radius of a droplet is expected to increase as the concentration of

dispersed phase increases due to coalescence. Prediction of the increase of the equilibrium

droplet size requires an understanding of collision and coalescence probabilities upon



collisions. Collision probability has been modeled satisfactory using the idea of population

balance [52]. However, the coalescence probability upon collision is not well understood,

even for a Newtonian fluids, due to the complexity involved in the film thinning process

[53]. Sundararaj and Macosko [54] have experimented with the effect of the concentration

in polymer blend coalescence using twin-screw extruders and a batch mixer. They found

that the average droplet diameter increased as the concentration of the dispersed phase

increased.

In this thesis, breakup and coalescence events are simulated using the 3D lattice-

Boltzmann method, and are compared with analytical models and experimental results.

5.2 Breakup in Simple Shear Flow vs. Capillary Number

Breakup of a droplet in shear flow using the 2D lattice-gas automata was first

simulated by Rothman [12]. In spite of its difficulty of implementation, droplet breakup in

shear flow was also observed using the 3D lattice-gas automata [55]. In the lattice-

Boltzmann simulation, however, it is harder to observe physical breakup because the

method does not have the implicit noise or disturbance that help its lattice-gas counterpart to

break. To produce real-life situation, an appropriate level of noise can be added by the

methods described in the capillary wave instability section of this thesis, however.

While there is not yet a clear-cut analytical model to describe the mechanism of

physical droplet breakup in a stress field, analytical work has been done to predict the point

at which the droplet shape is no longer in equilibrium. According to Barth6s-Biesel and

Acrivos [44] who use linear stability theory to analyze droplet breakup, a droplet starts

elongating, then it breaks once the point where no steady analytical solution exists is

passed. This point is called the analytical breakup point. This turns out to be a function of



the capillary number and the ratio of the viscosity of the dispersed and the matrix phase,

Figure 5-4 When the capillary number reaches its critical value, a droplet begins its continuous

elongation.

Continuous elongation of a droplet, followed by its physical breakup, is observed

in the lattice-Boltzmann simulations, once the capillary number is reaches a critical value as

shown in Figure 5-4. The capillary number at this state is defined as the critical capillary

number, Carit.

In simulations, the capillary number was manipulated by changing the interfacial

tension rather than the shear rate. Since the theory and experimental results of droplet

breakup are expressed as a relation between Cac t and 77'/77, this method does not obscure

the accuracy of results obtained from the simulation. The interfacial tension was initially

set high, and was then gradually decreased until the elongation of the droplet was observed

near Cacrit. At each modification of the interfacial tension, the simulation was run long

enough time so that the droplet reached its equilibrium shape at any given capillary number

and 7' /77.

Simulations of droplet breakup in simple shear using the lattice-Boltzmann method

were conducted with a 100 (or 150)x40x40 lattice and a droplet radius of 7 lattice units.



The viscosity ratios of I and 0.01 were used to observe the breakup shape and qualitatively

compared with the experimental breakup shape seen by Torza, Cox and Mason [56]. The

same perturbation method chosen for capillary wave instability simulations were applied.

As shown in Figure 5-5, the lattice-Boltzmann simulation results and the experimental

results roughly agree.

7'/ = 1 7'/7 = 0.01

The lattice-
Boltzmann
simulations

Experiments * -

Figure 5-5 Shapes of the droplet at breakup in simple shear flow using the 3-D lattice-Boltzmann
method are compared with the shape observed in experiment by Torza, Cox and Mason [56]. The drawings
for the experiment are sketched by the present author from the published pictures.

As a semi-quantitative test, 7'/17 = 10, 3, 1, 0.3, 0.1, and 0.01 were used to find

Cacrit and were compared with Barth6s-Biesel and Acrivos's [44] theoretical results and

experimental results by Torza, Cox and Mason [56] and also by Grace [46]. These

experimental results were reproduced from the author's reading of published figures. As

shown in Figure 5-6, results from the simulations agree well with experimental results at

7'/17 = 0.1, 0.3, and 1, considering the wide distribution of experimental results. They
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Figure 5-6 Critical capillary numbers measured at different viscosity ratios are plotted. *, +, x, and -

indicate results from the lattice-Boltzmann simulations, Grace's [46] experiments, Torza, Cox and Mason's

[56] experiments and Barth6s-Biesel and Acrivos's [44] analytical work, respectively.

also agree well with the theoretical results at those viscosity ratios and also at r4'/77 = 3.

No breakup was observed at 7'/7 = 10 as predicted by theory and experiments. At this

viscosity ratio, a droplet simply keeps rotating and does not stretch, as shown in Figure 5-

7. A large deviation between theory and experimental results is observed at 77'/f7 = 0.01.

This deviation is believed to be caused by limitations of the lattice dimensions used for the

simulations. A stable droplet shape in a simple shear flow is maintained due to a circulating

flow within the droplet. However, when the breadth of the elongated droplet becomes

approximately 2 lattice units, this circulatory flow becomes impossible and the droplet

becomes unstable. The predicted shape of the droplet before it breaks at 77'/77 = 0.01 is

much narrower than that of higher viscosity ratios and hence, has a greater chance of



reaching this limit. Therefore, at r'/77 = 0.01 the absence of this internal flow allows a

droplet to be dragged by the shear flow and enhances the droplet elongation, causing

premature rupture even if the droplet has not reached its true Cac6t. Further investigation is

required using a larger lattice size for more accurate measurements of the Ca t in the lattice-

Boltzmann method.

75 row 25

38

Figure 5-7 A 2D slice of a droplet's velocity profile. The figure is drawn at viscosity ratio of 10 and a

capillary number of 7. The droplet simply rotates instead of breaking up.

5.3 End-pinching

Stone, Bentley and Leal used the four-roller device shown in Figure 5-1 to

extensionally elongate droplets to study end-pinching in their experiments. When the

capillary number reached its critical value due to increases in the shear rate, the droplet

began its continuous elongation. The flow was halted when the elongation reached a

certain extension ratio, L/a, defined in Figure 5-8. Shapes of the elongated droplet when

the flow is stopped depend on the viscosity ratios and are shown in Figure 5-9. They



observed that the droplet either relaxes back to a spherical shape or the droplet breaks up at

both ends, depending on the degree of initial elongation and r'/77. The breakup/no-

breakup relation is plotted as the elongation ratio versus 77'/77 and is shown in Figure 5-10.

Just as with breakup in strong shear, breakups of this nature occur most easily in the range

0.1< 77'/rl <1.

elongation

Figure 5-8 Definition of degree of elongation, L/a. The initial sphere of radius elongates and becomes

a spheroid with a length L.

're > 0.05 rl r

7'/77 < 0.01 m

Figure 5-9 Elongated droplet shape at different viscosity ratios.
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Figure 5-10 Experimental results of end-pinching/coalescing-back of the droplet at various elongation
ratios and viscosity ratios are plotted [32]. + indicates the conditions at which end-pinching occurred and o
indicates the conditions at which the coalescence of two bulbous ends occurred.

Although droplets in these experiments are highly elongated and have a cylindrical

shape except at the ends, the breakup mechanism observed from Stone, Bentley and Leal's

[32] experiment is entirely different from that of capillary wave instability. In their

experiments, the inflated ends of the elongated sphere break off from the rest of the body

due to capillary pressure variations, rather than due to the growth of small random

disturbances which occurs in capillary wave instability. Stone, Bentley and Leal call this

breakup phenomenon "end-pinching."



The time it takes for end-pinching is usually much shorter than that for the growth

of capillary waves. Unless the elongation ratio L/a was very large, no capillary wave

instability was observed in their experiment because of this time difference.

Experimentally, the time it takes for the cessation of the flow after the rollers are halted is

much shorter than the time it takes for end-pinching. Using this fact, Stone, Bentley and

Leal [32] placed a stress-free elongated droplet of a shape similar to what is shown in

Figure 5-9 into a quiescent matrix for their computational simulation in order to analyze the

mechanism of end-pinching. Using the boundary-integral method, they have quantitatively

reproduced earlier experimental results of end-pinching.

The reason for end-pinching's dependence on 77'/77 is has also been analyzed by

Stone, Bentley and Leal. At low 77'/77, internal flows in the droplet phase move from the

narrow cylindrical mid-section to the bulbous ends due to the pressure gradient. The

bulbous ends too move toward each other due to interfacial tension, but do so slowly due

to the viscosity of the matrix phase. The flows near the bulb move quickly into the ends,

making their original location scarce of fluid and creating necks at these locations. These

necks are then broken due to a capillary pinch-off. At high 77'/77, however, the flows

within the cylindrical part move slowly while the bulbous ends approach each other more

quickly due to the lower relative matrix viscosity. Therefore, at high 7'/77, there is a

greater chance for the two ends to coalesce back into one piece.
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Figure 5-11 3D renderings of the lattice-Boltzmann simulations and the times it takes to form each

respective shape are shown in the first two columns. The author compared the published experimental and
the simulation (the boundary integral method) results [32, 45] to the figures in the first column, and

estimated the time evolution of their results in the third and fourth columns.

In the lattice-Boltzmann method, a 200x28x28 lattice was used to simulate the end-

pinching phenomenon. The simulations were focused in the range of 0.1< 77'/77<10 so that

the initial shape of the stress-free elongated droplet had bulbous ends whose breadths were

twice as large as that of the middle section. Figure 5-11 illustrates an opaque gray

elongated droplet in a box of clear matrix phase. The elongation ratio L/a was chosen as

approximately 8.6, the same ratio as Stone and Leal's simulation. The viscosity ratios of
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0.1, 1, and 10 were used to compare these simulations with the previous experimental and

computational results.

In four-roller experiments, the time it takes for the cessation of the flow is

approximately 1/5 the time it takes for end-pinching, and 1/50 the time it takes to recover to

its spherical shape in cases where no breakup occurs. In these lattice-Boltzmann

simulations, the cessation of the flow for the lattice size used occurs around 500 timesteps

for the matrix viscosity used. Therefore, the interfacial tension was chosen so that the time

for end-pinching occurs around 5,000 timesteps. Since the expected time for the breakup

due to growth of capillary waves at this interfacial tension is on the order of 50,000

timestep, only the breakup/no-breakup due to end-pinching was observed during the

simulation.
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Figure 5-12 2D projection of the velocity vector plots of 3D lattice-Boltzmann simulations at two

viscosity ratios are shown. Arrows represent velocity vectors in the flow.
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Typical end-pinching breakup and coalescence of two bulbous ends were simulated

by the lattice-Boltzmann method and are shown in Figures 5-11 (3D rendering) and 5-12

(velocity vector rendering). In the simulations, breakup by end-pinching was observed at

r7'/i7=0.1 and 1, while the elongated droplet shrank back to a spherical shape when

77'/7= 10. These results agree with the previous experimental and computational results.

The evolution of the droplet shape in time also agrees fairly well with the previous

experimental and computational results, as shown in Figure 5-11. However, further

investigation using intermediate 7/7 s and different initial elongation ratios is being pursued

to ensure the simulation's quantitative accuracy in reproducing end-pinching.

5.4 Coalescence of a Doublet

In the standard lattice-Boltzmann simulation and the lattice-fluid automata

implementation, the local color gradient f is given by the equation (4-3). This vector

points in the direction where the probability of finding red particles is the highest and the

probability of finding blue particles is the lowest. This implementation, however, assumes

that only one interfacial boundary exists at a single lattice point, and does not correctly

reflect the case where two interfaces are approaching each other within the lattice point, as

illustrated in Figure 5-13.
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Figure 5-13 With the conventional color separation scheme for the lattice-Boltzmann method, the
direction of the interface cannot be correctly defined when two phase boundaries approach within a single
lattice unit.

Coalescence is an event where two interfaces approach and merge into a single

interface when the distance between the interfaces reaches a critical thickness [49]. In

lattice-Boltzmann simulations using the standard color separation scheme based on equation

(4-3), this critical thickness is expected to be approximately 1 lattice unit because the

simulation technique cannot correctly recognize the direction of the interface and separate

colors, and therefore a continuous phase becomes discontinuous as two interfaces approach

within a single lattice. This inscalable critical thickness of the simulation poses a serious

limitation when simulating a coalescence event.

In real-life situations, the critical thickness of a film before it breaks is on the order

of 500 A [57]. Therefore, this thickness should be set equal to 1 lattice unit to correctly

scale the coalescence phenomena when using the lattice-Boltzmann method. If this scaling

rule is used, however, a simple simulation case such as a doublet collision requires at least



a 450x120x120 lattice since the typical equilibrium size of droplets in a polymer blend is on

the order of 1 jim. A 450x120x120 lattice requires computational memory on the order of

Giga-bytes and prohibitively long computational times per single time evolution even with

the fastest current computers. Therefore, with the existing color separation scheme and the

current computational power, it is impossible to correctly simulate a complex

hydrodynamics case such as multiple droplet breakup and coalescence, at which the lattice-

Boltzmann method is supposed to excel.

To examine the quantitative accuracy of the lattice-Boltzmann simulation of

coalescence, Scheele and Leng's [48] experiment is chosen as a benchmark. In their

experiment, they injected two equal size droplets of anisole simultaneously toward each

other at the same velocity in water. They found that the probability of coalescence is not an

obvious function of the drops' impact velocity, but is sensitive to the phase of oscillations

of the droplets at the point of contact. The phase angle used here is defined in the Figure 5-

14. They observed coalescence in the experiment only when the droplets have a phase

angle between 0' and 1350. Their observation is supported theoretically by Jeelani and

Hartland [51].

A lattice of 150x40x40 or similar size was used in the lattice-Boltzmann simulation.

Two droplets of opposing velocity were placed at ends of the lattice in a quiescent matrix

and were allow to collide with each other. The interfacial tension, viscosity and initial

approaching velocity were carefully chosen to scale Scheele and Leng's experimental

setting. The initial distance between the two droplets was also varied in order to create

various phase angles. Although dozens of simulations were conducted, all of them resulted

in complete coalescence and no bounce back was observed as summarized in Figure 5-14.

The author concluded that this observation was due to limitations of how the lattice-

Boltzmann method handles the color separation at the phase domain.
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Figure 5-14 Results of coalesce/bounce for experiments by Scheele and Leng and of the same

experiment simulated the lattice-Boltzmann method are summarized. Two simultaneously injected droplets
move toward each other as their shapes oscillate as shown below. Whether a droplet bounces or coalesces
correlates to the range of phase angles in the oscillations. The droplet moves in horizontal direction.

To improve the lattice-Boltzmann simulation in case of coalescence, a modification

to the standard lattice-Boltzmann color-separation scheme was introduced. This

modification theoretically improves the handling of the phase domains at the lattice points.

The concept and its implementation are first described, followed by descriptions of the

qualitative testing of the simulation using the modified code.

To simulate the droplet breakup and coalescence within a reasonable lattice size, the

critical thickness for the film breakup has to be smaller than 1 lattice unit. There are four

steps to set the critical thickness less than unity. The first two steps are to recognize when

two interfaces approaches within a single lattice point and to correctly calculate the direction

of the interface. Once the model distinguishes the case of the local lattice point having two

interfaces, the next step is to measure the thickness of the matrix, or continuous phase at

the lattice point. The final step is to separate the phases in the correct manner. When the



thickness of the matrix is thicker than the specified critical thickness, the phases are

separated so that two interfaces are preserved, and when the thickness is below it, only one

interface is created as a result of the color separation.

current lattice

red state

= red pair

Figure 5-15 Each lattice point is labeled as a red or blue state depending on which color dominates at
the lattice point. When the same two color states sandwich the current state as shown below, a 'state pair'
is defined. The figure below shows an example of a 'red pair'. Arrows indicate that the red density will
most-likely approach the current lattice from both sides.

The first step can be implemented using the idea of a "color pair." Each nearest

neighboring lattice point has a color state of either red or blue, assuming that the color of

the majority is selected when the lattice point has mixed colors. When two neighboring

lattice points facing the opposite direction have the same color state, it is called a color pair

as illustrated in Figure 5-15. When the current lattice point has the mass of both colors,

and there is at least one color pair of each color, there must be more than one interface

approaching the current lattice point, as shown in Figure 5-16. The information regarding

the continuous phase at each lattice can be stored in memory. To calculate the correct color



gradient, the sign of ci is inverted for one side of the non-continuous color state neighbors

in Figure 5-16.

current lattice

O red state
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Figure 5-16 Existence of more than one each of red and blue pairs with respect to the current lattice
indicates two (or unlikely, but more than three) interfaces are approaching the current state. When this
condition occurs, use of some modified code that handles the interface recognition and color separation
correctly is suggested.

Assuming the two interfaces are in parallel, the thickness of the continuous phase is

calculated simply as the ratio of continuous phase to the entire density. When the thickness

is above the critical value, the non-continuous phase is re-distributed in the order of

directions that have the largest If * i values to the ones that have the smallest values. Two

interfaces are preserved by this method. When the thickness drops below the pre-

determined critical value, the standard color gradient defined by equation (4-3) and the

standard color separation scheme are used. This results in the rupture a film of the

continuous phase (coalescence).



In 3D FCHC lattice-Boltzmann method, a lattice site is connected to 18 neighboring

lattice sites. Assuming two interfaces approach from z and -z directions as shown in

Figure 5-17, then there are only 10 lattice directions non-continuous phase (red) can flow

after redistribution of colors. Therefore, when color ratio of the red at the current lattice

site (black square) exceeds a half, there is a chance that some of reds flow into other 8

lattice directions. Since non-continuous phase flowing into the current blue lattice

directions results in immediate breaking of the thin film, the above-described redistribution

scheme can reduce the critical thickness only to about 0.5 lattice unit, unfortunately.

Red

a Blue

Red

Figure 5-17 When two interfaces approach from z and -z directions, there are only 10 lattice directions
non-continuous phase (red) can flow after redistribution of colors. Therefore, when color ratio of the red at
the current lattice site (black square) exceeds a half, there is a chance that some of reds flow into other 8
lattice directions.

Using this modification, the author conducted the same doublet collision

simulations. Figure 5-18 compares the unmodified simulation and the modified simulation.

Some delay in coalescence is observed because the new simulation program acknowledges

two phase boundaries approaching each other.
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Figure 5-18 The delay in coalescence due to modification of the
code relative to the conventional code is exhibited in the figure.

lattice-Boltzmann phase separation

A dozen more simulations of doublet collision were conducted with the modified

lattice-Boltzmann code. Although the coalescence was delayed to some extent, all still

coalesced. The author concludes that this fundamental discrepancy was the result of

limitations of the lattice and droplet size and the moving velocity of the doublet. Further

improvements in the method of dealing with the phase boundary are required in order to

correctly simulate the coalescence phenomena using the lattice-Boltzmann method.

With Modified Code
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5.5 Effect of Coalescence in Equilibrium Mixing

Droplet coalescence in mixing has a significant influence on the phase domain size

distribution which is measured. The higher the concentration of the dispersed phase, the

more frequently coalescence can occur. If the frequency of coalescence increases, the

average droplet diameter at any given time should also increase.

Sundararaj and Macosko [54] experimented with the relationship between the droplet phase

concentration and the droplet diameter, and confirmed this hypothesis. In their

experiments, a batch mixer and two types of twin screw extruders were used for blending.

At a given concentration of the droplet phase, the materials were mixed until the rate of

breakup and coalescence reached equilibrium, then the average droplet diameter was

measured using SEM.

2.5

0 Batch Mixer

2 A Conical Twin Screw

S[ Baker-Perkins Extruder

E
_L 1.5

E 1
ccE h Coalesc

0.5

0
0.1 1 10

Concentration of Dispersed Phase [wt%]

Figure 5-19 Sundararaj and Macosko's [54] experimental measurements of the average number
diameters of droplets plotted against log of the concentration of dispersed phase. The diameters of droplets
are measured at equilibrium of mixing.



They experimented with dispersed phase concentrations of between 0.1 to 10

percent. In most experiments, a visible increase in droplet diameter was observed starting

at around 1% concentration as shown in Figure 5-19. The average diameter of the droplets

observed at 10% concentration is two to three times larger than that at 1% concentration due

to the effect of coalescence.

A simple shear flow was used in the lattice-Boltzmann method to qualitatively

simulate the effect of coalescence in mixing at the macroscopic level. In the simulation, a

200x20x42 lattice was used. The interfacial tension was set so that the critical radius is

around 2. After a single-phase flow reached equilibrium, droplets of radius 2 lattice unit

were added randomly to increase the droplet phase concentration. The fluid was mixed in

simple shear flow until equilibrium is reached. Once sheared equilibrium was reached, the

number of droplets was counted, then counted again every 1000 timesteps for a total of

four measurements. From the number of droplets and the given mass and density of

droplet phase, the average radius was calculated at each time interval at each droplet phase

concentration. Figure 5-20 shows typical states of equilibrium of mixing simulated by the

lattice-Boltzmann method at different dispersed phase concentrations. Figure 5-21 shows

the plot number average radius of the dispersed droplet as a function of its concentration,

measured from the simulation results. The droplet radius begins increasing due to

coalescence at around 1% droplet-phase concentration. This result qualitatively agrees with

Sandararaj and Macosko's experimental results.
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Figure 5-20 Typical states of equilibrium of mixing simulated by the lattice-Boltzmann method at
different dispersed phase concentrations.
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Figure 5-21 The lattice-Boltzmann simulation results are shown. Average number radius of droplets
are plotted against the log of the concentration of the dispersed phase. Measurements are taken at
equilibrium of mixing.

One should note that this simulation using simple shear flow significantly deviates

from the complex flow situations produced in Sandararaj and Macosko's experiment. In

simple shear with periodic boundary condition used in lattice-Boltzmann simulations, a

droplet keeps traveling on a single path unless another droplet moving on a different, but

parallel path coalesces with it. This simulation setup will affect the collision probability of

the droplets. The probability of coalescence in the simulation also deviates from the real-

life situation, as discussed in the previous doublet section. Further simulations using more

true-to-life phase separation scheme and flow situations which truly model the complexity

observed in batch-mixers or twin-screw extruders are required for semi-quantitative



comparison. Nevertheless, the macroscopic effect of coalescence in mixing at higher

droplet phase concentrations is qualitatively confirmed in the lattice-Boltzmann simulations



6. Conclusion

The lattice-Boltzmann method was used for three-dimensional simulation of droplet

breakup and coalescence in flow fields representative of those encountered in compounding

of immiscible polymer blends.

First, the simulation method's capability in reproducing various hydrodynamic

parameters such as the viscosity and the interfacial tension was verified. Using the single

phase model, drag flow between parallel plates with one plate suddenly set in motion, and

pressure flows of a Newtonian and a power-law fluids between parallel plates, were

simulated. Using the two-phase model, a steady state sphere and a cylinder, and

deformation of a droplet in simple shear were simulated. Within a range of kinematic

viscosity which represent short mean free path with respect to the lattice size, quantitative

accuracy of the simulation method was confirmed by comparing the simulation results with

theory.

Capillary wave instability was simulated by applying the random perturbations in

the simulation. Breakup of a cylindrical thread in a quiescent matrix was quantified in

terms of the thread-breaking wavelength and the growth rate of the wave amplitude. The

simulation results agreed with theory only in semi-quantitative sense. Causes for the

deviations were investigated. Limitations of the simulation method rooted in its discrete

spatial and time constraint were identified.

Droplet breakup in simple shear was simulated. Droplet shapes at the time of

physical droplet breakup were compared with experimental results at different viscosity

ratios and was shown qualitative agreements. The critical capillary number was



quantitatively measured at different viscosity ratios. The simulation results showed very

good agreement with both experimental and theoretical results.

Phenomenon of end-pinching was simulated. As observed in experiment and

suggested by vector analysis, the simulation method showed end-pinching when the ratio

of droplet and matrix viscosities was small while it showed coalescence of two bulbous

ends when the viscosity ratio was high.

Coalescence phenomena were simulated by head-on collision of a doublet in

quiescent matrix and also by equilibrium of mixing at high-dispersed phase concentration in

simple shear. Effects of coalescence were qualitatively observed in both simulations.

However, the simulation method was observed to allow coalescence excessively in both

cases. Errors associated with limitations in discrete lattice and color separation scheme

were discussed.

The lattice-Boltzmann method showed significant potential in simulating complex

flow situations such as high-dispersed phase concentrations, moving phase boundaries,

and non-Newtonian rheology, which are essential in modeling polymer processing. While

it quantitative showed its capability in simulating droplet breakup in simple shear, it still

lacks quantitative accuracy in simulating coalescence phenomena. Droplet breakup in

different flow geometries and further improvements for overcoming discrete effects in

space and time, especially at phase domain boundaries, are required for its use in practical

applications in the field of polymer processing.
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