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Submitted to the Department of Biology on May 14, 1998 in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy

ABSTRACT

Protein transport through the secretory pathway of eukaryotic cells consists of a
series of vesicle budding, targeting, and fusion steps that deliver protein cargo from one
membrane-bounded organelle to the next. Proper sorting of secretory proteins requires
that cargo molecules be segregated from resident proteins as transport vesicles form.
While significant progress had been made in discovering the mechanisms of protein
transport, less is known about how proteins are sorted. The characterization of the BST
genes and their role in protein sorting and COPII vesicle formation from the endoplasmic
reticulum of the yeast Saccharomyces cerevisiae is the subject of this doctoral thesis.

The BST genes (BST1, EMP24/BST2, and ERV25/BST3) were isolated as bypass
suppressors of mutations in the essential COPII gene SEC13. bst mutations also
partially suppress the temperature-sensitivity of all other COPII sec mutants but are
unable to suppress deletions in these genes. The suppression is specific, since bst
mutations exacerbate the temperature-sensitivity of other ER to Golgi sec mutants. In
vitro experiments demonstrate that Secl3p is not absolutely required for the budding of
COPII-coated vesicles and suggest a role for Secl3p in stabilizing the coat. This
stabilizing function is essential when BST genes are active (the wild-type situation),
indicating that BST protein functions may destabilize the coat.

bst mutants also show defects in discriminating between cargo proteins and resident
proteins during sorting into COPII vesicles: a subset of secretory proteins are transported
with reduced kinetics in bst mutants, and resident proteins leak more rapidly from the ER
in these strains. The transport of GPI-anchored proteins is particularly sensitive to
mutations in BST genes. BST1 encodes a resident ER membrane glycoprotein with a
motif characteristic of lipases. EMP24/BST2 and ERV25/BST3 encode ER membrane
proteins of the p24 family and are major constituents of COPII-coated vesicles.

These data suggest a model in which the BST proteins directly affect protein sorting
into COPII vesicles by altering the lipid environment in the vicinity of forming vesicles
and, as a consequence, indirectly influence the assembly of the COPII coat.

Thesis Supervisor: Chris A. Kaiser,
Title: Associate Professor of Biology



to my parents, Dr. Jon D. and Mary B. Erickson,
and to my wife Monicia Elrod-Erickson



ACKNOWLEDGDMENTS

A number of people have helped me in various ways during my tenure as a graduate
student and I would like to take this opportunity to thank them.

First, I would like to thank my advisor Chris Kaiser for his guidance. In particular,
he has helped me develop the skills necessary to think about and present my work in
(what I hope is) a clear and concise fashion, a gift for which I shall remain eternally
grateful.

I wish to thank the members of my thesis committee (Charlie Barlowe, Gerry Fink,
Monty Krieger and Frank Solomon) for their interest, time, helpful advice and support.

Every member of the Kaiser lab, past and present, deserves thanks for helping create
and maintain a working environment that was both fruitful and enjoyable. Thanks to
Steve Bickel, Esther Chen, Elizabeth Chitouras, Michelle Crotwell, John Cuazzo, Peter
Espenshade, Alison Frand, Pam Gannon, Ruth Gimeno, Masa Hirata, Elizabeth Hong,
Bill Payne, Rachna Ram, Kevin Roberg, Neil Rowley and David Shaywitz.

I would like to thank my classmates, especially those members of the class with
whom I've continued to interact: Peter Espenshade and David Shaywitz as labmates as
well as classmates; Mark (and Leila) Borowsky, Christopher Cilley, Sandy Gilbert, Adam
Grancell, Elizabeth Hong and Ann-Marie White for all the shared adventures; Mark
Metzstein and Gillian Stanfield for gatherings of the usual suspects; and Alok Shrivastava
for encouraging my philosophical side.

Thanks to my parents, sister, brother and other close friends for encouragement and
support. You are the people that matter most to me.

Thanks most of all to my wife Monicia Elrod-Erickson for being my classmate, my
friend and confidant, for sharing in all the daily joys and frustrations of the last six years.



TABLE OF CONTENTS

T itle P age ................................................................................................................ p . 1
A bstract .......................................... p. 2
D edication .................................... ........................................................ ... p . 3
A cknow ledgm ents ................................................................................................. p. 4
Table of Contents ........................................ p. 5

Chapter One: Secretory Protein Maturation, Sorting, and Transport at the
Endoplasmic Reticulum ..................................... p. 8

O verview .................................................. ............................................. . ..... p . 9
Protein maturation in the ER ..................................... p. 11

Signal peptidase and the requirement for signal sequence cleavage in
protein transport ......................................................... p. 11

Addition of N- and O-linked carbohydrates and their influence on
secretory protein transport ..................................... p. 12

Protein folding in the ER: the role of folding factors in the transport
of secretory proteins ...................................................................... p. 16

The addition of GPI-anchors and their effect on protein transport ........ . p. 18
Assembly of multi-protein complexes as a prerequisite for transport ........ p. 20

Protein sorting into transport vesicles at the ER ..................................... p. 21
Sorting functions in other parts of the secretory pathway: models for

sorting at the ER ........................................ p. 22
Evidence for active concentration of cargo molecules into transport

vesicles at the ER ....................................... p. 24
Retention mechanisms in sorting at the ER .................................... p. 25
The p24 family of proteins and their role in protein sorting .................... p. 26

COPII vesicle formation at the ER ..................................... p. 27
The GTPase cycle of Sarlp regulates assembly and disassembly of the

C O PII coat ........................................ p. 28
Sec 12p regulates the assembly of the COPII vesicle coat ....................... p. 28
Sec 16p may nucleate assembly of the COPII coat on the ER membrane .... p. 29
The Sec23p/Sec24p complex performs multiple functions in COPII

vesicle formation ....................................... p. 29
The Secl 3p/Sec3lp complex performs at least a structural function in

the COPII coat ........................................ p. 30
Sum m ary ................................................ ..................................................... p . 3 1

Model for the function of the BST proteins in protein sorting and vesicle
form ation ........................................ p. 32

References ........................................ p. 34

Chapter Two: Genes That Control the Fidelity of ER to Golgi Transport
Identified as Suppressors of Vesicle Budding Mutations ..... p. 45

P reface .............................................................................................................. p . 46
A bstract ........................................ p. 47
Introduction ........................................ p. 48
Materials and Methods ........................................ p. 51
R esu lts .............................................................................................................. p . 58

Isolation and complementation testing of bst secl3A mutant strains ......... p. 58



ER to Golgi transport is restored in bst secl3A mutants ........................ p. 60
ER to Golgi transport in bst mutant strains ..................................... p. 60
Cloning and analysis of BST1 ..................................... p. 61
Bstlp is an integral membrane glycoprotein that resides in the ER .......... p. 63
BST2 is identical to EMP24 ..................................................................... p. 65
bst mutations cause leakage of the resident ER proteins Kar2p and

Pdilp from the ER ...................................... p. 65
bst mutations also cause leakage of retained proteins from the ER ............ p. 68
Genetic interactions between bst mutants and sec mutants ...................... p. 69

D iscu ssion .................................................. ............................................. . ... p . 7 1
Acknowledgments ........................................ p. 77
References ........................................ p. 78
Tables and Figures ........................................ p. 82

Chapter Two - Appendix: Further Characterization of the BST genes ...... p. 106

P reface ................................................. ...................................................... p . 107
Materials and Methods ........................................ p. 108
R esults and D iscussion ................................................................................ p. 109
References ........................................ p. 112
F igures ................................................. ...................................................... p . 113

Chapter Three: COPII vesicle budding in vitro in the absence of Secl3p ..... p. 118

A b stract ............................................................................................................ p . 119
Introduction ........................................ p. 120
Materials and Methods ........................................... p. 122
R esults ........................................................ . ............................................... p . 125

Examination of secl3A bst and bst mutant strains by electron
microscopy ........................................ p. 125

Vesicle budding in vitro does not require Sec l3p ...................................... p. 125
Bstlp is not packaged into transport vesicles produced in vitro ................ p. 127

D iscussion ........................................ p. 128
Acknowledgments ........................................ p. 132
R eferences ........................................ p. 133
F igures .............................................................................................................. p . 134

Chapter Four: Characterization of ICWP as a reporter for secretory
defects ........................................ p. 144

A b stract ................................................ ...................................................... p . 145
Introduction ........................................ p. 146
Materials and Methods ........................................... p. 148
R esu lts .............................................................................................................. p , 15 1

Immunoblotting with BAP137 antibodies provides a simple and
sensitive assay for identifying mutants or treatments that perturb
secretory pathway function ..................................... p. 151

Purification and identification of p75 as Icwp ..................................... p. 153
bstl mutants have defects in the transport of Gaslp ............................... p. 155



Discussion ........................................ p. 157
Acknowledgments ....... ........................... p. 160
R eferences ................................................. ............................................ . .... p . 16 1
Tables and Figures ........................................ p. 163

Chapter Five: Future directions for the analysis of the role of the BST
proteins in cargo sorting and COPII vesicle formation ..... p. 178

Sum m ary and m odel ....................................................................................... p.179
Future directions ........................................ p. 181
R eferences ................................................ ............................................ ..... p . 185



Chapter One:

Secretory protein maturation, sorting, and transport at the endoplasmic

reticulum



Overview

Most eukaryotic cells contain multiple membrane-bounded organelles, each of which

houses a unique assortment of proteins required to carry out its specialized cellular

function. A complete understanding of the biogenesis and functions of each organelle, as

well as a complete description of the mechanisms by which proteins are transported from

their site of synthesis in the cytosol to their final address within these organelles, are

major goals in cell biology.

The sorting and transport of most organellar proteins occurs via the secretory

pathway. Proteins destined for secretion or for residence in the plasma membrane,

lysosome (the yeast vacuole), or endosomal compartments are first translocated into the

endoplasmic reticulum (ER) and then transported sequentially through the cis-, medial-,

and trans-Golgi before being sent to their final destination (Palade, 1975). Each transport

step is accomplished by the packaging of proteins into vesicles that bud from the donor

membrane and then fuse with the target organelle, thus delivering their contents (reviewed

in Rothman and Orci, 1992; Kaiser et al., 1997). Estimates from the yeast Saccharomyces

cerevisiae, for which a list of all potential cellular proteins exists, suggest that 10% - 20%

of yeast proteins transit at least some portion of the secretory pathway and are therefore

dependent upon its function for their localization (Kaiser et al., 1997). The overall

pathway and many of the proteins required for its function are highly conserved among

eukaryotes (Novick et al., 1981; Clary et al., 1990; d'Enfert et al., 1992; Bennett and

Scheller, 1993). In some cases the homologous proteins from different species have been

shown to be functionally interchangeable (Griff et al., 1992; Shaywitz et al., 1995),

suggesting that the underlying mechanisms of protein transport are also similar among

eukaryotes.

As the entry point to the secretory pathway, the ER is the site of several unique and

essential functions. Proteins are first translocated from the cytosol into the lumen or



membrane of the ER. Once within the ER, proteins must assume their functional

conformation. This folding and maturation process is aided by luminal chaperones and

can involve a variety of modifications, including signal sequence cleavage, attachment of

N-linked and/or O-linked carbohydrates, disulfide bond formation (and rearrangement),

and attachment of a glycosylphosphatidylinositol (GPI) anchor. Additionally, some

proteins must oligomerize or form multi-protein complexes before becoming fully

functional and competent for transport. Finally, mature proteins are sorted away from

resident ER proteins and packaged into transport vesicles destined for the cis-Golgi.

To ensure the proper localization of proteins -- and thus the unique identity of each

organelle and the viability of the organism -- proteins must be both transported and sorted

properly. There are two processes required for the correct sorting of secretory proteins:

first the appropriate cargo must be packaged into transport vesicles, and then these

vesicles must be fused to the correct target membrane. The latter process will not be

discussed in this introduction. A thorough discussion of protein sorting in the context of

ER vesicle formation will be conducted in a later section of this introduction.

A growing body of evidence suggests that the maturation of secretory proteins, their

sorting into transport vesicles, and the mechanism of vesicle formation at the ER are

coupled. Acquiring a better understanding of these processes and how they are connected

was the goal of the experiments described in this thesis. Therefore, a careful review of

what is known about secretory protein maturation, sorting, transport vesicle formation,

and related topics forms the remainder of this introduction. Because the experiments

described in this thesis were done in the budding yeast Saccharomyces cerevisiae, this

review will emphasize what is known in this organism. However, information from other

systems will be included to strengthen arguments made in yeast, to highlight differences

between systems, or to introduce ideas that currently have no counterpart in yeast.



Protein maturation in the ER

Regardless of whether a secretory protein is co-translationally or post-translationally

translocated into the ER, it enters as an unfolded polypeptide that must go through a

number of steps before it can be packaged into transport vesicles and moved through the

secretory pathway. Attributes such as conformation, presence of attached carbohydrates

(or GPI-anchors), and oligomeric state not only influence the activity of a protein but are

also critical determinants for its intracellular transport.

Signal peptidase and the requirement for signal sequence cleavage in protein transport

In both yeast and mammals a multiprotein, membrane-associated endopeptidase (termed

signal peptidase) is situated within the lumen of the ER and is responsible for the

proteolytic removal of the amino-terminal signal sequence from secreted proteins. The

yeast signal peptidase complex contains four polypeptides of 11, 17, 18, and 21 kDa.

Two of these proteins, Sec 11p (17 kDa) and Spc3p (21 kDa), have been shown to be

essential for both signal peptidase activity and cell viability (Bohni et al., 1988; Fang et

al., 1997). The remaining two yeast subunits, Spclp (11 kDa) and Spc2p(18 kDa), are

dispensable for both growth and enzyme activity but appear to increase the efficiency of

the enzyme (Fang et al., 1996; Mullins et al., 1996). The mammalian complex contains

five proteins related to those found in yeast, with two homologs of Sec1 lp (Shelness and

Blobel, 1990). Signal peptidase from hen oviduct contains only two subunits, homologs

of Sec 11p and Spc3p, further demonstrating that these two components are sufficient for

catalytic activity (Baker and Lively, 1987; Shelness et al., 1988; Newsome et al., 1992).

Eukaryotic signal sequences generally consist of a short region at the amino-terminus

of a protein that contains one or more positively charged residues followed by a

hydrophobic region of 7-15 residues and a polar region of 3-7 amino acids (von Heijne,

1990). Comparison of a large number of known cleavage sites within eukaryotic signal



sequences shows that signal peptidase cleaves within the polar region of the signal

sequence and requires small neutral or polar amino acids at positions -1 and -3 from the

cleavage site (von Heijne, 1983).

The removal of the signal sequence is an essential process in the maturation of

secretory proteins. Signal sequence cleavage is obviously necessary to release soluble

secretory proteins from the membrane. Interestingly, the removal of the signal peptide is

not required for the proper folding of all secretory proteins, although it may be in some

instances. An allele of the yeast SUC2 (invertase) gene that alters the signal peptidase

cleavage site -- and drastically reduces cleavage of the signal sequence -- produces a

functional enzyme (Schauer et al., 1985). However, this mutant invertase is significantly

delayed in its transport from the ER. This delay appears to be a general effect of failure

to remove the signal sequence, because similar transport defects were observed for many

invertase mutants with uncleaved signal sequences that were generated by randomizing

the amino acid sequence of the signal peptide (Kaiser et al., 1987). In addition, the

SEC] component of signal peptidase was first identified and classified as a gene

required for ER to Golgi transport in yeast (Novick et al., 1981). The transport defect

caused by an uncleaved signal sequence is not at all understood, but could be the result of

the uncleaved signal peptide resembling an unfolded region more than a transmembrane

domain, making it subject to the retention mechanisms that prevent the transport of

unfolded proteins. Thus, signal sequence cleavage is an essential prerequisite for the

efficient transport of secretory proteins from the ER.

Addition of N- and O-linked carbohydrates and their influence on secretory protein

transport

Two additional enzymatic activities act on nascent polypeptides emerging from the

translocation channel into the lumen of the ER: 1) oligosaccharyltransferase (OTase)



transfers GlcNAc2Man9Glc3 from Dol-PP to the amide group of the asparagine side

chain in the tripeptide motif Asn-X-Ser/Thr (Lehle and Bause, 1984), and 2) protein:O-

mannosyltransferase (PMTase) transfers a mannose from Dol-P-Man to serine and

threonine residues (Tanner and Lehle, 1987). Proteins required for the biosynthesis of the

oligosaccharide precursors also affect the glycosylation of secretory proteins (reviewed in

Orlean, 1997) but will not be discussed here. A role for N-linked oligosaccharides in

protein folding and multimerization, and therefore secretion competency, is now well

established. The role of O-linked sugars on proteins is less clear and will be discussed

first.

The addition of mannose residues to serine or threonine side chains of secretory

proteins in the yeast ER is carried out by one of seven protein:O-mannosyltransferases

encoded by the genes PMTI-7 (reviewed in Orlean, 1997). The PMTases are thought to

have different substrate specificities and therefore only partially overlapping function.

This idea is supported by two sets of results: 1) the O-mannosylation of chitinase is

greatly reduced in a pmtlA pmt2A strain, but is normal in a pmt4A mutant, whereas the

O-mannosylation of Gas p is affected only in a pmt4A mutant, and 2) the deletion of any

single PMT gene is not lethal, but strains containing deletions of three or more of the

genes are inviabile (Gentzche and Tanner, 1996). This inviability clearly demonstrates

that the process of O-mannosylation as a whole is essential for yeast cells, but so far only

a single yeast protein (the bud site selection protein Axl2p) has been observed to require

its O-linked sugars for proper function. In the absence of O-glycosylation Axl2p is

mislocalized and degraded (Sylvia Sanders, personal communication). Most O-

mannosylated proteins in yeast are structural components of the cell wall or are involved

in its formation. The proposed functions for O-mannosylation are to confer an extended

or "stiff" conformation to the heavily modified portions of cell wall proteins, and to

protect or stabilize the proteins (Jentoft, 1990; Stratford, 1994). In the case of rat

pancreatic bile salt-dependent lipase (BSDL), the addition of O-linked sugars is thought



to stabilize the protein by masking PEST sequences that otherwise target BSDL for rapid

degradation, thereby allowing the protein to be secreted (Bruneau et al., 1997). Thus, O-

linked oligosaccharides can be important for the proper localization and stability of

secretory proteins.

The addition of N-linked carbohydrates to yeast secretory proteins requires the

products of eight genes: WBP1, SWP], OST1, OST2, OST3, OST4, OST5, and STT3.

Only five of these genes are essential for viability, but mutations in any of them reduce

the number of oligosaccharide chains transferred to proteins in vivo and cause decreased

OTase activity in vitro (reviewed in Orlean, 1997). Each of the encoded proteins is

present in equimolar amounts in a purified complex (Karaoglu et al., 1997), although

catalytically active subcomplexes as small as four subunits have also been described

(Knauer and Lehle, 1994; Pathak et al., 1995). An intriguing role has been proposed for

the nonessential OST3 gene in positioning the OTase complex for N-glycosylation of

proteins that use the signal recognition particle (SRP)-dependent translocation pathway.

This idea is based on the findings that ost3 disruptants show a biased underglycosylation

of membrane proteins that use the SRP-dependent pathway as compared to soluble

secretory proteins (e.g. carboxypeptidase Y) that use the SRP-independent pathway

(Karaoglu et al., 1995). Thus, while only five of the eight OTase subunits are essential,

and catalytic activity may only require four or fewer subunits, each of the proteins in the

complex may play important roles in vivo to ensure proper N-glycosylation of secretory

proteins.

The mammalian OTase complex consists of four known subunits: ribophorin I

(homolog of Ostlp), ribophorin II (homolog of Swplp), OST48 (homolog of Wbplp) and

DAD1 (homolog of Ost2p) (Kelleher and Gilmore, 1997). Multiple subunit binding

interactions have been described (Fu et al., 1997), but, as with the yeast enzyme, little is

known about the function of any of the subunits within the complex.



N-glycosylation is an essential process. The addition of N-linked sugars to secretory

proteins is thought to help prevent misfolding and aggregation, to aid in multimerization,

and, as a result of these functions, to promote the secretion competence of secretory

proteins in the ER. Mutations in the WBPI subunit of OTase have been shown to

exacerbate the temperature sensitivity of conditional alleles of KAR2, which encodes an

ER chaperone (Te Heesen and Aebi, 1994). Thus, defects in chaperone-mediated folding

of secretory proteins are more extreme when there are lower levels of N-glycosylation.

Similarly, the addition of tunicamycin (an inhibitor of N-glycosylation) to yeast cultures

causes a rapid induction of the unfolded protein response, leading to increased levels of

ER chaperones, presumably in response to the folding problems that occur in the absence

of N-glycosylation (Shamu et al., 1994). In general, the sugar moieties are thought to

help keep the unfolded protein soluble and prevent aggregation, but they may also

directly aid in the folding process itself. Studies of glycopeptides from proteins of known

three-dimensional structure show that the modified peptides adopt a different profile of

conformations (often more compact and more closely resembling the conformation they

have in the folded protein) than do the corresponding unmodified peptides (Imperiali and

Rickert, 1995). Thus, in addition to preventing aggregation, N-oligosaccharides may

promote nucleation events that assist in protein folding. These properties of N-

glycosylation are important for increasing the secretion competency of proteins.

Numerous proteins have been observed to have reduced rates of transport in the absence

of N-glycosylation, including invertase, carboxypeptidase Y(CPY), Prclp, pro-a-factor,

and Pho5p (Trimble et al., 1983; Caplan et al., 1991; Riederer and Hinnen, 1991; Winther

et al., 1991).

N-linked oligosaccharides are also thought to be important for the multimerization of

several secretory proteins, including invertase, Mellp, and Pho3p (Chu et al., 1983;

Esmon et al., 1984; Schulke and Schmid, 1988). Invertase produced in the presence of

tunicamycin is not only delayed in its transport, but dimers, rather than the usual



octamers, are formed (Esmon et al., 1987). Exactly how the presence of N-linked sugars

promotes or stabilizes multimers of these proteins, and why multimerization leads to

more rapid secretion, are as yet unanswered questions.

N-glycosylation of secretory proteins in mammalian cells serves many of the same

functions as in yeast. In addition, a "quality control" system has been described that uses

the N-linked oligosaccharides as part of the mechanism that keeps partially folded or

misfolded proteins in the ER until they adopt their native conformation (Hammond and

Helenius, 1995). The mechanism involves the constant deglucosylation and

reglucosylation of the core oligosaccharide (GlcNAc2Man9Glc3). The enzyme

responsible for reglucosylation is only active on denatured substrates, and the resulting

mono-glucosylated (unfolded) glycoprotein is bound by the membrane-associated

chaperone calnexin and is retained in the ER for further attempts at folding (Hebert et al.,

1996). Once the protein is folded, it is no longer reglucosylated and can exit the ER. The

CNE1 gene encodes the yeast homolog of calnexin and has been implicated in the

retention of incorrectly folded proteins in the ER (Parlati et al., 1995), but since the

reglucosylation activity has not yet been detected in S. cerevisiae, the extent to which a

similar mechanism functions in yeast is currently unknown.

Protein folding in the ER: the role offolding factors in the transport of secretory proteins

As alluded to in the previous section, a secretory protein in the ER must become fully

folded to be efficiently transported. Folding is aided by luminal chaperones and by

factors involved in disulfide bond formation/rearrangement. Kar2p is the essential yeast

homolog of the mammalian immunoglobulin binding protein (BiP) and is probably the

major chaperone in the lumen of the ER (Normington et al., 1989; Rose et al., 1989). BiP

has been shown to associate with newly synthesized proteins, denatured protein

aggregates, unassembled subunits of multi-protein complexes, and ER retained proteins



(Jamsa et al., 1995; Beggah et al., 1996; Oda et al., 1996; Kuznetsov et al., 1997; Zhang

et al., 1997). The best evidence for Kar2p playing an active role in folding and transport

in yeast comes from experiments using conditional kar2 mutants. In order to bypass the

requirement for Kar2p in translocation, mutant strains are treated with DTT at permissive

temperatures to delay the folding and transport of CPY (which requires intramolecular

disulfide bond formation to fold). The cells are then shifted to nonpermissive

temperatures and washed to remove the DTT. In kar2 mutant strains CPY remains in the

ER and is found in large aggregates that also contain the mutant Kar2p, whereas in wild-

type strains CPY transport is rapidly restored (Simons et al., 1995). These results show

clearly that Kar2p is necessary to restore secretion competency to reduced CPY and

suggest that Kar2p normally acts as a chaperone in the maturation of ER proteins.

Another key aspect of protein folding in the ER is the formation of native disulfide

bonds. As described above, carboxypeptidase Y is a good example of a yeast protein

whose folding -- and therefore transport from the ER -- is dependent upon disulfide bond

formation. Two essential activities are required for the proper formation of disulfide

bonds in ER protein folding: 1) maintenance of an oxidizing environment in the ER,

which is necessary for the formation of disulfides, and 2) the catalyzed rearrangement of

nonnative disulfides. The ER01 gene of yeast encodes an essential ER glycoprotein

involved in maintaining the oxidizing potential of the ER. The levels of Ero p appear to

determine the oxidizing capacity of cells, since deletion of ER01 causes hypersensitivity

to reducing agents like DTT, while overexpression of the gene confers resistance to DTT.

In addition, CPY transport is abolished in conditional erol mutants at nonpermissive

temperatures because of a failure to form disulfide bonds (Frand and Kaiser, 1998).

Homologs of Erolp are found in other fungi, insects, plants, and animals, suggesting that

the mechanism of ER oxidation is conserved among all eukaryotes.

The best characterized factor known to catalyze the rearrangement of disulfide bonds

is protein disulfide isomerase (PDI). PDI can bind peptides and catalyze the in vitro



refolding of reduced substrates like ribonuclease A or bovine pancreatic trypsin inhibitor

(BPTI) under oxidizing conditions (LaMantia et al., 1991; Lyles and Gilbert, 1991). The

yeast PDI (encoded by the PDI1 gene) shows both sequence and functional homology to

mammalian PDI (LaMantia et al., 1991; Scherens et al., 1991). PDI1 is an essential gene,

and depletion of Pdilp from yeast cells by regulated repression of the gene causes CPY to

accumulate in the ER (Tachibana and Stevens, 1992). The essential function of PDI is

catalyzing the rearrangement of nonnative disulfide bonds, since mutations that render

the protein inactive for dithiol oxidation but do not affect its ability to catalyze

reshuffling do not affect cell viability (LaMantia and Lennarz, 1993; Laboissiere et al.,

1995). There are two other yeast genes known to encode proteins with protein disulfide

isomerase activity. Both EUG1 and MPD1 show sequence homology to PDI1 and can

suppress the lethality of a PDI1 deletion when they are overexpressed (Tachibana and

Stevens, 1992; Tachikawa et al., 1995). However, the rate of CPY transport under these

conditions is slower than in wild-type cells, indicating that each of these proteins is likely

to perform slightly different functions or have different substrate specificities.

The addition of GPI-anchors and their effect on protein transport

Another modification that occurs within the ER and is found on a subset of secretory

proteins is the addition of a GPI-anchor. GPI-anchored proteins are found in all

eukaryotes and serve diverse cellular functions, including cell adhesion, transmembrane

signalling, and cell wall synthesis (Lisanti et al., 1990; Klis, 1994). Proteins destined for

GPI-anchor attachment contain a C-terminal signal similar in structure to the N-terminal

signal sequence (Yan et al., 1998). The glycolipid anchor is preassembled in the ER

membrane starting from phosphotidylinositol and is attached en mass through a

transamidation reaction that displaces the C-terminal signal peptide (Maxwell et al.,

1995). Seven mutants (sec53, sec59, dpml, gpil, gpi2, gpi3/spt14, and gpi7) have been



isolated in yeast that are known to disrupt the assembly of the glycolipid anchor precusor,

thus affecting the modification and transport of GPI-proteins. These genes will not be

discussed further in this introduction, but are reviewed in Orleans, 1997. Two yeast

genes, GAA1 and GPI8, are known to be essential for the transamidation reaction that

attaches the glycolipid anchor to proteins. Conditional mutations in either of these genes

cause a defect in anchor attachment and an accumulation of the complete GPI-anchor

precursor at restrictive temperatures (Hamburger et al., 1995; Benghezal et al., 1996).

After attachment, the fatty acid portion of the anchor generally undergoes one of three

types of remodeling: 1) the diacylglycerol portion of the anchor can be remodeled in the

ER to ceramide; 2) the diacylglycerol can be remodeled in the ER to a more hydrophobic

diacylglycerol, containing a long-chain (C26:0) fatty acid in the sn-2 position of glycerol;

or 3) the diacylglycerol can be remodeled in the Golgi to a more polar ceramide (Sipos et

al., 1997). The role of remodeling is not yet understood, but it may be important for

partitioning GPI-anchored proteins into sphingolipid rich domains within the membrane,

and may therefore have a role in the sorting of these proteins (see below).

The attachment of the GPI-anchor is necessary for the efficient sorting and transport

of GPI-proteins. In yeast, blocking attachment of the anchor to the model GPI-protein

Gas p causes a defect in the transport of the protein from the ER to Golgi, whereas

removal of the C-terminal signal for anchor attachment causes the truncated protein to be

secreted into the medium (Nuoffer et al., 1991; Hamburger et al., 1995). Interestingly,

such a block can be imposed not only by using conditional gpi8 or gaal mutants or by

altering the GPI attachment site on a protein, but can also be achieved by starving inositol

auxotrophs for inositol. Apparently, the biosynthesis of the GPI precursor is particularly

sensitive to low levels of inositol (Doering and Schekman, 1996).

In polarized epithelial cells, GPI-anchors are thought to be involved in the sorting of

the proteins that contain them in the trans-Golgi. GPI-anchored proteins and

glycosphingolipids are preferentially sorted to the apical surface (Simons and van Meer,



1988; Lisanti et al., 1990). In addition, converting a basolaterally targeted membrane

protein into a GPI-anchored form redirects this protein to the apical surface in MDCK

cells (Brown et al., 1989). The GPI-proteins and sphingolipids are thought to associate in

the Golgi, forming microdomains or "rafts", which are then recruited into vesicles bound

for the apical surface (Simons and Wandinger-Ness, 1990). Evidence supporting such a

model comes from the observation that detergent insoluble complexes form in the Golgi

that contain both GPI-anchored proteins and glycosphingolipids but lack basolaterally

sorted proteins (Brown and Rose, 1992).

The transport of GPI-proteins from the yeast ER may also involve association with

sphingolipids. Gas lp transport is blocked in cells treated with myriocin, a drug that

blocks ceramide synthesis in yeast (Horvath et al., 1994). Similarly, mutant strains

lacking sphingolipids (but viable because of suppressor mutations that allow production

of glycerophospholipids capable of mimicking sphingolipid structures), also show defects

in the transport of GPI-anchored proteins (Skrzypek et al., 1997). In both cases anchor

attachment to Gaslp is normal, but remodelling does not occur. Since the anchor

normally found on mature Gas1p does not contain ceramide (Frankhauser et al., 1993),

these results suggest that Gaslp may need to cluster with other GPI-anchored proteins in

sphingolipid enriched subdomains of the ER membrane in order to be efficiently

packaged into transport vesicles. Remodelling of the anchor may also be important in

this process.

Assembly of multi-protein complexes as a prerequisite for transport

Some secretory proteins are not secretion competent until they multimerize or are

incorporated into a multi-protein complex. In mammalian cells, influenza hemagglutinin

and vesicular stomatitis virus glycoprotein, for example, must trimerize before leaving

the ER. Similarly, multi-subunit membrane protein complexes (e.g. T-cell receptor
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complexes, immunoglobulins, and class I major histocompatability complexes) are

usually assembled in the ER and require complete assembly of the complex to exit the ER

(reviewed in Rose and Doms, 1988). In some cases assembly into multimeric complexes

involves disulfide bond formation. The unassembled subunits of these complexes

therefore have exposed thiols that can cause retention of the proteins by making

reversible disulfide bonds with resident ER folding factors (Isidoro et al., 1996; Reddy et

al., 1996). This quality control mechanism thereby ensures that only subunits that have

assembled into complexes are capable of leaving the ER.

In yeast, the iron permease complex and the vacuolar ATPase (V-ATPase) complex

require assembly in the ER for transport (Bauerle et al., 1993; Stearman et al., 1996). In

the case of the V-ATPase, at least three proteins (Vmal2p, Vma2p, and Vma22p) are

required for the stable assembly (and thus transport) of the complex, but are not

themselves part of the V-ATPase (Hill and Stevens, 1995). The existence of the VMA

genes suggests that there may be other cofactors involved in the assembly of multiprotein

complexes or the maturation of membrane proteins in the ER. The SHR3 gene product

may act analogously as a cofactor for the folding/maturation of amino acid permeases

(Ljungdahl et al., 1992). Alternatively, Shr3p may act to sort permeases into ER-derived

transport vesicles and will be discussed in that context in the next section.

Protein sorting into transport vesicles at the ER

Secretory proteins that have been modified, folded, and assembled into their mature,

secretion competent form in the ER must next be sorted into transport vesicles if they are

to be moved forward through the secretory pathway. A key aspect of sorting is the

segregation of secretory (cargo) molecules from resident proteins, such that cargo is

efficiently transported to the Golgi while resident proteins remain in the ER. Two models

have dominated the thinking about how proteins are sorted and trafficked through the



secretory pathway. In the first, the pathway behaves like a river with a strong current.

Cargo proteins are passively carried forward into transport vesicles. Resident proteins

must be actively kept out of vesicles to resist the flow and remain within an organelle,

and (later in the pathway) cargo must be actively sorted into a different set or class of

vesicles to change course. The other model likens the pathway to a series of connected

trains. If cargo proteins are to be moved forward to the next stop/compartment, they must

be actively packaged into transport vesicles headed in the direction of their destination.

Resident proteins are not packaged and remain behind. The emerging picture of sorting

at the ER has elements of both models, with data suggesting active mechanisms during

vesicle formation for both the concentration of at least some cargo proteins and the

exclusion of resident proteins. These data will be presented below.

Sorting functions in other parts of the secretory pathway: models for sorting at the ER

A number of sorting mechanisms that have been described for other steps in the secretory

pathway may provide insight and help direct investigations into the sorting mechanisms

at the ER. The current view of cargo sorting into clathrin-coated endocytic vesicles in

mammalian cells has been highly influential in shaping ideas about sorting in the ER. In

this system, cargo is selected by the assembling coat, which forms an affinity matrix that

partitions receptors and receptor bound molecules into the budding vesicle (coated pit)

according to their affinity for the coat (reviewed in Pearse and Robinson, 1990). The

very different environments found in the lumen of the ER and the extracellular space,

however, make it likely that sorting in the ER will have novel components, even if some

elements of the mechanisms turn out to be similar.

Another idea from work on sorting at the cell surface and the trans-Golgi that has

been adopted (and may apply) to the ER is the notion of receptors for sorting soluble

cargo molecules. At the cell surface, soluble factors interact with membrane receptors
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and are subsequently clustered in coated pits and internalized (Pearse and Robinson,

1990). Similarly, binding of the mannose-6-phosphate/insulin-like growth factor 2

receptor (LGF2/MPR) to lysosomal enzymes in the trans-Golgi is required to direct the

transport of the enzymes to the late endosome (Griffiths et al., 1988). In yeast, the Vpsl0

protein plays an analogous role in the targeting and transport of CPY and misfolded

proteins from the Golgi to the vacuole (Marcusson et al., 1994; Hong et al., 1996). The

p24 family of transmembrane proteins has been proposed to act as receptors for soluble

cargo in the earlier steps of the secretory pathway, but direct evidence of such a function

is still lacking. This family of proteins will be discussed in more detail later in this

section because of its relevance to the data presented in this thesis.

A further idea that may prove useful in thinking about sorting at the ER is the notion

that the lipids in the membrane may play a role in the sorting of membrane proteins. The

role of sphingolipids in the sorting of GPI-linked proteins was discussed previously in the

section on GPI-anchor addition. More recent results implicate the rare, highly

hydrophobic, acidic phospholipid lysobisphosphatidic acid (LBPA) -- found in the

internal membranes of multilamellar late endosomes -- in the trafficking of LGF2/MPR

(Kornfeld, 1992; Kobayashi et al., 1998). The importance of the membrane in the sorting

of transmembrane proteins is further implicated by the growing number of recent reports

in both yeast and mammals of domain swapping experiments that show transmembrane

domains are often both necessary and sufficient to determine localization of a protein to

the ER or other organelles (Raynor and Pelham, 1997; Yang et al., 1997; Cocquerel et al.,

1998). Determining which, if any, of the mechanisms discussed in this section have

counterparts in the ER and whether novel sorting functions exist are key questions in the

analysis of protein transport between the ER and Golgi.
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Evidence for active concentration of cargo molecules into transport vesicles at the ER

A large body of evidence is accumulating that clearly shows at least some secretory

proteins are actively packaged and concentrated into ER-derived transport vesicles.

Quantitative immuno-electron microscopy studies in mammalian cells show that some

soluble and integral membrane proteins are concentrated approximately 5-fold within

regions of vesicle budding in the ER (Mizuno and Singer, 1993; Balch et al., 1994).

Similarly in yeast, comparing the composition of vesicles produced in vitro with that of

the ER microsomes from which they are derived shows that cargo molecules are enriched

5 to 10-fold in vesicles (Rexach et al., 1994). Transport vesicles can also be formed in

vitro using either of two types of vesicle coats (COPI or COPII) to drive vesicle budding

from the ER/nuclear envelope of isolated yeast nuclei. In this system, the soluble

secretory protein a-factor is selectively packaged into COPII vesicles but not COPI

vesicles, demonstrating that vesicle budding is not sufficient to capture this cargo

molecule (Bednarek et al., 1995). Further in vivo evidence in yeast comes from the

examination of mutants that show defects in the transport of only a subset of secretory

proteins. The bstl, emp24/bst2, and erv25/bst3 mutants transport most secretory proteins

(e.g., CPY, a-factor, and acid phosphatase) at normal rates, but show a significant delay

in the transport of some cargo, including invertase, and Gas p and other GPI-linked

proteins (Schimmiller et al., 1995; Elrod-Erickson and Kaiser, 1996 [Chapter 2]; Belden

and Barlowe, 1996; and Chapter 4 of this thesis). The invertase in these mutants is

active, glycosylated, and forms multimers at normal rates, indicating that the defect is in

the packaging of the protein into vesicles (Schimmiller et al., 1995). Similarly,

mutations in SHR3 cause selective defects in the transport of amino acid permeases and

in their incorporation into in vitro generated COPII vesicles (Ljungdahl et al., 1992;

Kuehn et al., 1996). However, in this case a role in the folding of the permeases is much

harder to rule out (as mentioned above). Certain alleles of SEC21 can also cause



selective defects in transport from the ER to Golgi (Gaynor and Emr, 1997). Finally,

recent in vitro work implicates COPII coat subunits in the selective packaging of subsets

of cargo molecules into vesicles (Campbell and Schekman, 1997; Kuehn et al., 1998; see

the review of the Sec23/24 complex below for a more thorough discussion of these

results). Collectively these data make a strong case for the active sorting of cargo

molecules into budding vesicles at the ER.

Retention mechanisms in sorting at the ER

Active mechanisms involved in the retention of immature secretory proteins in the ER are

well documented and involve interactions with resident ER proteins (see the discussion of

quality control mechanisms in the sections above on N-linked glycosylation and assembly

of multiprotein complexes). The mechanisms that in turn act to retain resident proteins

have been more difficult to uncover, but some evidence suggests that such mechanisms

do exist. Short peptide sequences on resident ER proteins act as retrieval signals,

directing their capture in the Golgi and return transport of the small fraction of these

molecules that escape the ER (reviewed in Pelham, 1995). These signals are not

sufficient, however, to explain retention, because resident proteins from which the signal

has been removed are still largely retained in the ER (Nilsson et al., 1989; Hardwick et

al., 1990). As discussed in the previous paragraph, transport vesicles produced in vitro

lack resident proteins and are enriched in cargo. However, this data is also consistent

with an absence of active sorting of resident proteins into vesicles. The best evidence

suggesting that retention is an active process comes from experiments described in this

thesis on yeast mutants that cause defects in the retention of resident ER proteins in a

manner that is independent of known retrieval pathways. Deletion of BST1,

EMP24/BST2, or ERV25/BST3 not only slows the transport of a subset of secretory

proteins (see above), but also increases the leakage of resident and retained proteins from
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the ER (Elrod-Erickson and Kaiser, 1996 [Chapter 2 of this thesis]). The affect of bst

mutants on both forward transport and retention suggests that the BST proteins are part of

a mechanism that allows discrimination between cargo molecules and resident proteins

during sorting. The function of the BST proteins also influences the requirements for

vesicle assembly itself, indicating that sorting processes and the coat assembly that drives

vesicle budding are coupled. These ideas will be elaborated in the following chapters.

The p24 family of proteins and their role in protein sorting

The EMP24/BST2 and ERV25/BST3 genes described in this thesis encode members of the

p24 protein family. All members of this family are predicted based on their primary

sequence to be type I membrane proteins of approximately 24 kDa with the bulk of the

protein in the lumen and a short cytosolic C-terminus (Stamnes et al., 1995). The region

of highest homology among p24 proteins begins within the luminal domain near the

transmembrane segment and extends through the membrane to include the short cytosolic

tail. On the luminal side of the membrane is a region containing heptad repeats of

hydrophobic amino acids that are characteristic of coiled-coil structures and that may

mediate association of family members (Stamnes et al., 1995; Belden and Barlowe, 1996;

Dominguez et al., 1998). The function of p24 proteins has yet to be demonstrated, but

these proteins are currently of great interest because they are major constituents of both

COPI and COPII vesicles (Stamnes et al., 1995; Belden and Barlowe, 1996). (It should

be noted, however, that the yeast p24 proteins that have been characterized to date are

nonessential.) The cytosolic tail of p24 proteins governs their binding to vesicle coat

proteins and therefore their incorporation into transport vesicles (Fielder et al., 1996;

Sohn et al., 1996; Dominguez et al., 1998). As mentioned above, deleting Emp24p/Bst2p

and/or Erv25p/Bst3p (two of the yeast members of the p24 family) slows the transport of

a subset of secretory proteins from the ER. This observation, and the fact that these
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proteins are major components of transport vesicles, has led to the idea that p24 proteins

may act as receptors for soluble secretory proteins, but so far no interaction has been

observed between the p24 proteins and the cargo they are thought to concentrate

(Schimmiller et al., 1995; Belden and Barlowe, 1996). The data presented in this thesis,

along with the observations outlined above, appear to support a different view of the role

of the p24 proteins in protein transport. A model summarizing this view will be put

forward at the end of this chapter.

COPII vesicle formation at the ER

The budding of transport vesicles from the ER is a regulated process driven by the

assembly of a proteinacious coat (termed COPII) on the cytosolic surface of the

membrane. Seven key proteins (Secl2p, Secl3p, Secl6p, Sec23p, Sec24p, Sec3lp, and

Sarlp) are known to be essential for vesicle formation in yeast, and all but Secl2p are

components of the vesicle coat (reviewed in Kaiser et al., 1997). SEC12, SEC13, SEC16,

and SEC23 were among the 23 genes identified in the original screen for sec mutants

(Novick et al., 1980). Examination of the maturation of marker proteins in these mutants

and careful genetic and morphological analyses demonstrated that each was involved in

the formation of transport vesicles from the ER (Novick et al., 1981; Kaiser and

Schekman, 1990). Sec24p and Sec3lp were identified because they copurify with

Sec23p and Secl3p, respectively, and these two complexes were subsequently shown to

be essential for vesicle budding (Hicke et al., 1992; Pryer et al., 1993; Salama et al.,

1993). Sarlp was identified as a high copy suppressor of mutations in SEC12 and SEC16

and was later also shown to be essential for vesicle formation (Nakano and Muramatsu,

1989; Oka et al., 1991; Barlowe et al., 1993). The development of an in vitro assay

(Baker et al., 1988; Ruohola et al., 1988) that reconsitutes vesicle budding from ER

membranes has allowed further dissection of the role of each of these proteins.
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The GTPase cycle of Sarlp regulates assembly and disassembly of the COPII coat

The assembly and disassembly of the COPII coat is thought to be regulated by the

GTPase cycle of Sarlp. SARi is essential for ER to Golgi transport and encodes a small

GTP-binding protein related to ARF, which regulates the assembly of the coatamer

(COPI) coat of Golgi-derived vesicles (Oka et al., 1991; Barlowe et al., 1993). Sarlp is

required for vesicle formation in vitro and is a component of the COPII coat (Barlowe et

al., 1994). In the reconstituted budding reaction, Sarlp is required in its GTP-bound

form, but hydrolysis of GTP is not required during budding (Oka et al., 1991; Rexach and

Schekman, 1991; Barlowe et al., 1993). However, GTP hydrolysis by Sarlp is required

for the vesicle fusion step of the complete ER to Golgi transport reaction (Barlowe et al.,

1994; Oka and Nakano, 1994). The current model is that Sarlp in its GTP-bound form

stimulates assembly of the COPII coat, and the later hydrolysis of GTP by Sarlp triggers

disassembly of the coat, a prerequisite for vesicle fusion.

Sec12p regulates the assembly of the COPII vesicle coat

Secl2p has a unique function in the budding of transport vesicles. It is a type II integral

ER membrane protein and the only known essential protein in vesicle budding that is not

incorporated into the vesicle (Nakano et al., 1988; Barlowe et al., 1994). The cytosolic

N-terminus of the protein stimulates guanine nucleotide exchange by Sarlp, and thereby

recruits Sarlp to the membrane (d'Enfert et al., 1991a; d'Enfert et al., 1991b; Barlowe and

Schekman, 1993). Secl2p can bind to the C-terminus of Secl6p in vitro and this binding

interaction may function to localize the exchange activity of Secl2p to sites of vesicle

assembly (P. Espenshade, Ph.D. dissertation, 1997). Thus, the role of Secl2p may be --

through its localization and effect on Sarlp -- to restrict the initiation of COPII coat

assembly to the ER membrane.



Secl6p may nucleate assembly of the COPII coat on the ER membrane

Sec 16p is a large (240 kDa), hydrophilic, multidomain protein essential for vesicle

formation in vivo (Kaiser and Schekman, 1990; Espenshade et al., 1995). The protein is

tightly associated with the cytosolic face of the ER membrane and is incorporated into

transport vesicles produced in vitro (Espenshade et al., 1995). The inability to extract

Sec 16p from the ER by urea washing may explain why this protein is not considered one

of the essential cytosolic components required for vesicle budding from ER membranes

in vitro (Espenshade et al., 1995). SEC16 exhibits genetic interactions with each of the

five other COPII genes, and the protein can physically interact with Secl2p, Sec23p,

Sec24p, and Sec3lp (Nakano and Muramatsu, 1989; Kaiser and Schekman, 1990;

Espenshade et al., 1995; Gimeno et al., 1996; Shaywitz et al., 1997). These collective

data suggest that Secl6p on the membrane may localize or nucleate COPII coat

assembly, possibly as a scaffold around which the remaining coat components assemble.

The Sec23p/Sec24p complex performs multiple functions in COPII vesicle formation

The Sec23p/Sec24p complex is thought to serve both structural and catalytic functions in

the formation of COPII-coated vesicles. The complex can be purified from yeast as a

300-400 kDa species of unknown stoichiometry that is a major component of the COPII

coat and is required for its formation (Hicke et al., 1992; Barlowe et al., 1994). Sec23p

and Sec24p can bind independently to adjacent but different sites on Secl6p (Gimeno et

al., 1996). Sec23p can also function as a GTPase activating protein (GAP) for Sarlp, and

this activity is not influenced by Sec24p (Yoshihisa et al., 1993). Finally, recent exciting

results show that the Sec23p/Sec24p complex, along with Sarlp in its GTP bound state,

can form complexes with cargo molecules in the ER membrane (Kuehn et al., 1998).

These results have been interpreted to suggest that such interactions direct cargo sorting
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into the budding vesicle. However, it should be noted that none of the reported

experiments rule out the possibility that cargo molecules are concentrated by some other

means to sites of vesicle budding and that the Sec23p/Sec24p-Sarlp(GTP) complex is

itself recruited to these sites by its affinity for cargo or other vesicle components.

Nonetheless, these results do make the model of protein sorting into budding ER vesicles

via an affinity for the coat -- either directly (for membrane proteins) or indirectly through

membrane protein receptors (for soluble cargo) -- an attractive possibility.

The Secl3p/Sec31p complex performs at least a structural function in the COPII coat

The Secl3p/Sec3lp complex has the least understood function in vesicle formation. The

complex can be purified from yeast as an approximately 700 kDa complex of unknown

stiochiometry that, like the Sec23p/Sec24p complex, is a major component of the COPII

coat and is required for its formation (Pryer et al., 1993; Salama et al., 1993; Barlowe et

al., 1994). Both SEC13 and SEC31 are essential genes that show genetic interactions

with the other COPII genes (Kaiser and Schekman, 1990; A. Frand and C. Kaiser,

unpublished observations). Secl3p is composed almost entirely of six WD40 repeats, a

motif specifying a P-propeller structure (Sondek et al., 1996), and appears to bind to

Sec3 lp via the WD40-containing domain of Sec3 lp. Through separate regions of the

protein, Sec3 Ip can also bind to Secl6p, Sec23p, and Sec24p (Shaywitz et al., 1997).

Besides such binding data, little is known about the function of this complex. These two

proteins may simply play a structural role as part of the coat. In fact, data presented in

this thesis suggests that Sec 13p is not absolutely essential for the budding of COPII

vesicles and may only be required to stabilize the coat at high temperatures or other

conditions where the structural integrity of the coat is critical.

Other data suggests that Sec 13p may have additional functions. Sec 13p has recently

been shown to also be involved in sorting and transport at the trans-Golgi of two
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coordinately regulated permeases, Gaplp (the general amino acid permease) and Put4p

(the proline permease). Secl3p may function at the Golgi, directly affecting the sorting

and transport of these proteins, or Sec 13p may be specifically required for the transport of

a cofactor of these permeases that is necessary for their proper localization (Roberg et al.,

1997). Furthermore, Secl3p (but not Sec3lp) has been found in a subcomplex of the

nuclear pore along with a Secl3p homolog, Sehlp (Siniossoglou et al., 1996). However,

sec13 mutants show no defects in nuclear pore function, whereas sehl mutants do appear

to affect pore function. Thus, Sec 13p may simply be structurally similar enough to its

nuclear pore homolog that it can be integrated into this subcomplex of nucleoporins.

Nonetheless, these data illustrate the need for further clarification and examination of the

functions of Secl 13p.

Summary

Numerous processing and sorting steps are required to prepare secretory proteins for

efficient transport from the ER to the Golgi. In many cases, the modification of a protein

is essential for its proper sorting and transport. Furthermore, recent results suggest that

sorting is coupled to the assembly of the vesicle coat that drives vesicle formation at the

ER. The following chapters of this thesis describe the isolation and characterization of

the BST genes of Saccharomyces cerevisiae. These analyses allow several general

conclusions to be drawn that are relevant to many of the topics discussed in this

introduction. These conclusions will be summarized here, while leaving their

justification for later chapters.

* Secl3p is not absolutely required for COPII vesicle formation, but is essential under

conditions where coat stability is challenged and is important for sorting/transport

late in the secretory pathway.



* The BST1, EMP24/BST2, and ERV25/BST3 genes encode nonessential proteins

whose functions restrict COPII-coated vesicle formation from the ER.

* The functions of the BST proteins enable efficient discrimination between cargo

molecules and resident ER (or ER retained) proteins during sorting into COPII-

coated vesicles.

In addition to these conclusions, several further observations are important for thinking

about the role of the BST genes in protein sorting and transport.

* Removing BST gene functions allows COPII vesicle formation both in the absence

of Sec 13p and when other COPII coat proteins are crippled by conditional

mutations.

* Emp24p/Bst2p and Erv25p/Bst3p are ER membrane proteins that form a complex

and are incorporated into COPII vesicles (Belden and Barlowe, 1996), whereas

Bstlp is a permanent resident of the ER membrane and is excluded from vesicles.

* The sorting of GPI-anchored proteins appears to be particularly sensitive to

mutations in BST genes (especially mutations in BST1).

* Mutations in the lipase motif of Bstlp (which is highly conserved between Bstlp

and its C. elegans homolog) disrupt function, suggesting a possible role for Bstlp

in lipid modification.

Model for the function of the BST proteins in protein sorting and vesicle formation

A model can be derived that incorporates all of the above general conclusions and

observations, as well as additional data described in this introduction. This model is

presented now in order to provide a framework for the interpretation of the results

described in the remainder of this thesis. The function of the BST proteins in this model
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is to modify the lipid composition of the membrane in regions of vesicle assembly, which

then facilitates the sorting of resident proteins from cargo molecules.

Vesicle formation is triggered by the recruitment and assembly of the COPII vesicle

coat proteins on the ER membrane. Integral membrane components of the vesicle,

including v-SNARES (required for fusion of the vesicle) and p24 proteins

(Emp24p/Bst2p and Erv25p/Bst3p) are recruited to sites of coat assembly -- or recruit the

coat to regions of the membrane where they reside -- by the binding of their cytosolically

exposed domains to components of the vesicle coat. A putative complex containing

Bstlp, Emp24p/Bst2p and Erv25p/Bst3p is thereby positioned at sites of vesicle

assembly. The interaction of the complex with coat components releases Bstlp, which

can then locally modify lipids in membrane. This local change in lipid composition

facilitates the partitioning of membrane protein cargo into the region of vesicle budding

and of resident membrane proteins (including Bstlp itself) out of these regions.

Interactions between cargo proteins and coat proteins may also play a role in this process.

Soluble cargo is concentrated by binding interactions with sorting receptors (potentially a

further function of the p24 proteins) or membrane protein cargo, and resident proteins are

excluded through interactions with resident membrane proteins. A further consequence

of the local change in lipid composition and subsequent sorting is an increased

requirement for a stable coat.

Thus, in the absence of any of the BST proteins the localized change in lipid

composition does not occur. Sorting is less efficient, resulting in a decreased rate of

transport for cargo molecules sensitive to the change in lipid composition and an

increased rate of transport of resident proteins. Without the local change in lipid

composition there is less need for stability in the coat, allowing COPII vesicles to form in

the absence of Secl3p or at higher temperatures in strains with conditional mutations in

other COPII coat proteins.
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Chapter Two:

Genes that control the fidelity of ER to Golgi transport identified as

suppressors of vesicle budding mutations



PREFACE

This chapter has been published in Molecular Biology of the Cell as:

Elrod-Erickson, M. J. and C. A. Kaiser (1996). Genes that control the fidelity of
endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding
mutations. Mol. Biol. of the Cell 7, 1043-1058.
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ABSTRACT

While convergent evidence suggests that proteins destined for export from the

endoplasmic reticulum (ER) are separated from resident ER proteins and are concentrated

into transport vesicles, the proteins that regulate this process have remained largely

unknown. In a screen for suppressors of mutations in the essential COPII gene SEC13,

we identified three genes (BST1, BST2/EMP24 and BST3) that negatively regulate COPII

vesicle formation, preventing the production of vesicles with defective or missing

subunits. Mutations in these genes slow the secretion of some secretory proteins and

cause the resident ER proteins Kar2p and Pdilp to leak more rapidly from the ER,

indicating that these genes are also required for proper discrimination between resident

ER proteins and Golgi-bound cargo molecules. The BST1 and BST2/EMP24 genes code

for integral membrane proteins that reside predominantly in the ER. Our data suggest

that the BST gene products represent a novel class of ER proteins that link the regulation

of vesicle coat assembly to cargo sorting.
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INTRODUCTION

Protein transport through the secretory pathway of eukaryotic cells consists of a series of

vesicle budding, targeting and fusion steps that move protein cargo from one membrane-

bounded organelle to the next (Palade, 1975). These processes have been studied mainly

by biochemical dissection of the cytosolic components required for mammalian and yeast

cell-free transport assays and by the analysis of yeast mutants that completely block the

flow of cargo through the secretory pathway (reviewed in Pryer et al., 1992; Rothman

and Orci, 1992). Such approaches have identified many of the essential structural

components of vesicles, but much less is known about how cargo molecules are

segregated into vesicles. Cargo that is to be carried forward must be packaged into

vesicles while permanent residents of an organelle must, to at least some degree, be kept

out of the transport vesicles in order to maintain the integrity of individual organelles

(reviewed in Pfeffer and Rothman, 1987).

The first known sorting step occurs as proteins exit the endoplasmic reticulum (ER).

Short peptide sequences carried by resident ER proteins act as signals for the retrieval to

the ER of the small fraction of these proteins that have escaped to the Golgi (reviewed in

Pelham, 1995). However, when the known retrieval signals are removed from ER

resident proteins, secretion to the cell surface is still much slower than for actual

secretory proteins, implying that additional retention mechanisms exist (Nilsson et al.,

1989; Hardwick et al., 1990). Additionally, the concentration of at least some secretory

proteins into regions of vesicle budding (Mizuno and Singer, 1993; Balch et al., 1994)

and the selective packaging of x-factor into COPII-coated but not COPI-coated vesicles

that bud from the ER (Bednarek et al., 1995) argue that sorting functions may act not

only to restrict the progression of resident proteins but also to concentrate some cargo

molecules into vesicles.
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Cargo selectivity and the fidelity of vesicle assembly have been difficult to study

since biochemical assays for these processes have not yet been developed. Furthermore,

informative mutations that reduce the fidelity of transport vesicle function have not yet

been isolated, presumably because the phenotype of such mutants would be too subtle to

have been recognized in screens for secretory mutants. An opportunity to identify genes

that control the accuracy of vesicle formation presented itself when we found that

recessive mutations in three genes can efficiently bypass the secretion block that results

from null mutations of the essential vesicle coat protein gene SEC13. We reasoned that a

negative regulatory mechanism may prevent the completion of defective vesicles,

resulting in the block in vesicle transport exhibited by secl3 mutants. The bypass

suppressors could then represent mutations that inactivate this vesicle quality control

system, allowing vesicles to form without Secl3p.

Bypass suppressors of secl3A were unexpected since Secl3p is one of the seven key

proteins (Secl2p, Secl3p, Secl6p, Sec23p, Sec24p, Sec3lp and Sarlp) required for

budding of transport vesicles from the ER in Saccharomyces cerevisiae (Nakano et al.,

1988; Nakano and Muramatsu, 1989; Kaiser and Schekman, 1990; Hicke et al., 1992;

Pryer et al., 1993; Salama et al., 1993; Espenshade et al., 1995). For six of these

proteins, involvement in vesicle formation has been demonstrated for ER to Golgi

transport reconstituted in vitro (d'Enfert et al., 1991; Oka et al., 1991; Hicke et al., 1992;

Salama et al., 1993), and all but Secl2p are found as components of the protein coat of

vesicles produced in vitro (Barlowe et al., 1994; Espenshade et al., 1995). The elements

of this coat are collectively known as COPII, and the assembly of this structure is thought

to drive vesicle formation (Barlowe et al., 1994). An analogous structure exists in

mammalian cells, since homologs of Secl3p and Sec23p are localized to the transitional

ER of mammalian cells (Orci et al., 1991; Shaywitz et al., 1995). These results

demonstrate the central and evolutionarily conserved role played by Sec l3p in the

process of vesicle formation.
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This report describes the suppressors of secl3A mutations which lie in three genes

called BST for bypass of SEC13. The BST1 gene was cloned and encodes a membrane

protein situated in the ER. The BST2 gene was also cloned and found to be identical to

EMP24, whose product was previously shown to be an ER protein and a membrane

component of COPII vesicles (Schimm6ller et al., 1995). In addition to bypassing the

need for Sec 1l3p in ER to Golgi transport, the bst mutations were found to increase the

rate by which resident ER proteins (Kar2p and Pdilp) and retained proteins (sl 1-

invertase) leave the ER and to decrease the rate by which the secretory protein invertase

is transported from the ER. These genes therefore define a new type of ER function that

specifies both the fidelity of cargo sorting and the cytosolic protein requirements for

vesicle assembly. A simple explanation for the phenotypes of the bst mutants is that the

processes of vesicle assembly and cargo loading are coupled. The loss of a quality

control mechanism for vesicle assembly could allow inappropriate or premature

formation of vesicles that have not yet properly segregated cargo away from ER resident

proteins.
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MATERIALS AND METHODS

Media and Yeast Strains

Growth and maintenance of strains, preparation of standard media (Difco, Detroit, MI),

crosses and other genetic manipulations were performed as described in Kaiser et al.,

1994. Saccharomyces cerevisiae strains used in this study are listed in Table 1. The

secl3A1 allele is a deletion of the entire coding sequence of SEC13 (R. Gimeno, this

laboratory) and the secl3A2::LEU2 allele is a deletion/disruption as described in Pryer et

al., 1993. The SUC2-s11 allele is an Ala to Ile substitution at position -1 of the signal

peptidase cleavage site that blocks peptidase cleavage (Bohni et al., 1987). In strain

construction, the suc2A allele was scored by invertase assay and the KAR2AHDEL allele

was followed by the dominant Kar2p secretion phenotype it confers. bst alleles were

scored by assaying suppression of sec13A and Kar2p secretion. The former trait was

often examined by testing our ability to generate viable transformants of a strain with the

SEC13 knockout construct pCK1316 (Pryer et al., 1993). This assay was used in addition

to crosses to bst sec13A because the low viability (between 50 and 70%) of bst sec13A

ascospores often rendered test-crosses alone inconclusive. Isogenic KAR2AHDEL, bstlA

KAR2AHDEL and bst2A KAR2AHDEL strains were constructed from CKY190 by

disruption of the BST genes using the plasmids pME1165 and pME262 respectively.

Isogenic suc2A and bstlA suc2A strains were similarly constructed from CKY343.

Plasmids and DNA Manipulations

DNA manipulations were performed as described in Sambrook et al., 1989. pRS306-2g

is an episomal derivative of pRS306 (Sikorski and Hieter, 1989; Miller and Fink,

unpublished). pCK1390 is a GAL]-promoted SEC13 plasmid as described in Shaywitz et

al., 1995. pCK1391 is SEC13 in pRS306-2g (C. Kaiser, unpublished). pEHB29 is

SUC2-s11 in pRS316 (Sikorski and Hieter, 1989; E. Hong, unpublished). pME11 is a



YCp50 library (Rose et al., 1987) plasmid containing BST1. pME1113 was constructed

by recircularization of SalIl digested pME11. pME1101 was constructed by ligating the

3.8 kb ClaI - KpnI fragment from pME11 into the ClaI - KpnI sites of pRS316.

pME 1120 and pME1 121 are two plasmids from a series of nested deletions generated

from pME1101 according to the method of Henikoff, 1984. These plasmids have

deletions of approximately 700 bp and 900 bp respectively (see Figure 5A). pME1108 is

the 3.5 kb ClaI - XhoI fragment of pME11 in pRS316. pME1165 was constructed by

ligating the 1.3 kb Spel - XhoI fragment of pME1101 into the SpeI - XhoI sites of

pRS305 (Sikorski and Hieter, 1989). pME1170 was constructed in two steps. First, a

NotI site was inserted at a position between codons 86 and 88 of BST1 by site directed

mutagenesis according to Kunkel et al., 1987. The sequence of the oligonucleotide used

was 5'-GAT GGA AAC ATA TAG ATG CGG CCG CTT TCA CAC TGA GGA GCA

TCT GC-3'. A 117 bp NotI fragment from pGTEPI (Tyers et al., 1993) containing three

tandem repeats of the hemagglutinin (HA) epitope (Kolodziej and Young, 1991) was then

ligated into the newly created NotI site to give pME1170. pME21 is a YCp50 library

(Rose et al., 1987) plasmid containing BST2/EMP24. pME253 was constructed by

ligating the 3.7 kb HindIII fragment of pME21 into the HindIII site of pRS316. pME262

was constructed by first ligating the 0.5 kb EcoRI - SacI fragment from pME253 into the

EcoRI - SacI sites of pRS306 to generate pME260. The 1.4 kb EcoRI - SalI fragment

from pME253 was then ligated into the EcoRI - SalIl sites of pME260.

Isolation and Complementation Testing of bst Mutants

One hundred colonies of CKY321 were cultured for 3 days in liquid YEP (2% galactose).

For each culture, 8x10 6 viable cells were plated onto an SC (2% glucose) 5-FOA plate at

24 0C. After 3 days of growth, a single 5-FOA resistant colony from each plate was

chosen for further analysis.
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Initially, complementation tests were done by crossing a bst secl3A mutant isolate to

several other outcrossed bst secl3A mutant strains of the opposite mating type and with

complementary auxotrophies. Mating mixtures were grown on rich medium (YPD)

overnight, then replica plated to minimal medium (SD) selective for the growth of

diploids. Growth of the secl3A/secl3A bst/bst diploids indicated failure of the recessive

bst mutations to complement. Once initial testing indicated three complementation

groups, test strains representing each group (CKY325, CKY326 or CKY327) were used

to classify the remaining mutants.

Protein Gels, Immunoblotting and Quantitation

Protein extracts were prepared from 1-5 OD600 units of cells by boiling and lysis with

glass beads in 30gl1 of sample buffer (80 mM Tris, pH 6.8, 2% SDS, 10% glycerol, 100

mM DTT, 10% bromophenol blue). Proteins from the culture medium were precipitated

by adding 100% TCA to a final concentration of 10% and incubating at OoC for 30 min.

The precipitates were pelleted in a microfuge, washed with 100% acetone (-200 C for 30

min) and resuspended in sample buffer. Samples were heated at 950C for 3 min before

being resolved by SDS-PAGE. Proteins were transferred to nitrocellulose in a semi-dry

transfer apparatus (Owl Scientific Plastics, Inc., Cambridge, MA) at 500 mV for 45 min.

Blots were blocked and then incubated for 1 h with primary antibody in TBS-T (20 mM

Tris pH 7.5, 150 mM NaC1, 0.05% Tween 20), 2% milk at the following dilutions:

affinity purified rabbit anti-Secl3p antibody was used at 1:1,000 dilution, affinity

purified rabbit anti-KAR2p antibody (a kind gift from M. Rose, Princeton University)

was used at 1:10,000 dilution, anti-Pdilp antibody (a kind gift from C. Shamu) was used

at 1:2,000 dilution and anti-HA antibody (12cA5 ascitic fluid; BABCO, Richmond, CA)

was used at 1:1,000 dilution. Blots were then washed three times for 10 min each in

TBS-T, incubated with a 1:10,000 dilution of either goat anti-rabbit IgG-HRP or sheep

anti-mouse IgG-HRP (both Amersham Corp., Arlington Heights, IL) in TBS-T, 1% BSA
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for 1 h, washed 3 times for 10 min each in TBS-T, developed for chemiluminescence

using the ECL system (Amersham) and exposed to film.

For quantitation of Western blots, a serial dilution of sample was first immunoblotted

as described above and quantitated on an LKB 2202 Ultroscan laser densitometer (LKB,

Bromma, Sweden) to determine the range in which a linear response was observed.

Working within this range, samples were loaded in duplicate and all values reported are

the average of the duplicate samples scanned three times each.

An immunoblotting assay was used to score Kar2p secretion for the cloning of BSTJ

and BST2/EMP24 (Figure 4A). Colonies on solid medium were covered with a wetted

nitrocellulose filter (S&S BA85 0.45gm circles, Keene, NH) and grown for 16-24 hours

(YPD) or 40-48 hours (synthetic medium). Cells were washed from the filter with 10mM

Tris-HC1 (pH 7.5), 0.5M NaCl and the filters were processed by immunoblotting as

described above.

Radiolabeling and Immunoprecipitation

Radiolabeling and immunoprecipitations were carried out essentially as described in

Gimeno et al., 1995. The IP buffer used was 50 mM Tris-HCl (pH 7.4), 150 mM NaC1,

1% Triton X-100. lgl of anti-CPY or 2gl of anti-invertase antibody was used per OD600

unit of labeled cell extract. For the reimmunoprecipitation of s 11-invertase with anti-

aOl,6 antibody, the precipitated primary immune complexes were disrupted by boiling in

30 l of sample buffer (as above). 20gl were removed and diluted in Iml of IP buffer.

0.5g1 of anti-al,6 antibody was then used to reimmunoprecipitate the al1,6 modified

protein. 10gl of each sample was separated by SDS-PAGE. Gels were soaked in 1 M

sodium salicylate for 30 min before being dried and exposed to a phosphorimaging

screen. Images were analyzed using a 445si PhosphorImager and ImageQuant software

(Molecular Dynamics, Sunnyvale, CA).
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Cloning of BST1 and BST2/EMP24

BST1 and BST2 were cloned by complementation of the Kar2p secretion phenotype.

Plasmids were rescued and shown to complement both the Kar2p secretion phenotype of

the corresponding bst mutant strain and the suppression of secl3A mutations. The latter

was tested in transformation experiments where our inability to generate viable

transformants of the corresponding secl3A bst mutant strain was scored as

complementation of the suppression phenotype. Controls for these experiments included

showing that the secl3A bst mutant strain could be transformed with a control plasmid,

and that the clone being tested could transform a control strain.

Once clones were obtained, they were subcloned into pRS316 (Sikorski and Hieter,

1989), and the minimal complementing region was identified using the transformation

assay described above. For BST1, a series of nested deletions were generated from both

directions as described in Henikoff, 1984. These clones were used to sequence both

strands by the dideoxy method following the Sequenase protocol (USB, Cleveland, OH).

Sequence generated in this manner was used to search both DNA and protein databases

for homologies. The BST1 gene sequence is found on Chromosome VI as YFL025C

(The Saccharomyces Genomic Information Resource [http://genome-

www.stanford.edu/]). For BST2, sequence analysis identified the complementing region

as the previously identified EMP24 locus (Schimmller et al., 1995).

Bstlp Localization

To analyze the subcellular distribution of Bstlp, cells (CKY10) expressing either (HA)

epitope tagged BST1 (pME1170) or untagged BST1 (pME1101) were examined by

Western analysis using anti-HA antibody, which detected a single diffuse band that was

only present in strains containing the epitope tagged BST1. This protein migrated with an

apparent molecular mass of 142-146 kDa (Figure 5). Cell fractionation was carried out on

these strains as described in Espenshade et al., 1995. EndoHf treatments were performed
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by diluting 3.5 fold into 20mM sodium citrate (pH 5.5), adding 8 units of EndoHf (New

England Biolabs, Beverly, MA) and incubating at 37°C for 3 hours. Indirect

immunofluorescence of Bstlp-HA was carried out essentially as described in Espenshade

et al., 1995. A yeast strain (CKY10) expressing BST1-HA (pME1170) was grown

selectively and then transferred to YPD for 2 hours before fixation. The fixed cells were

washed once in 0. 1% SDS for 5 minutes prior to application to the slide in order to

enhance the detection of the protein. Bstlp-HA was visualized using a 1:200 dilution of

anti-HA antibody (12cA5 ascitic fluid; BABCO, Richmond, CA) and a 1:200 dilution of

fluorescein-conjugated sheep anti-mouse secondary antibody (Amersham). Kar2p was

visualized using a 1:5,000 dilution of affinity purified anti-Kar2p antibody (a kind gift

from M. Rose, Princeton University) and a 1:200 dilution of rhodamine-conjugated goat

anti-rabbit secondary antibody (Boehringer Mannheim, Indianapolis, IN). For the double-

label immunofluorescence experiments an additional blue excitation filter (Zeiss,

#467974) was used to eliminate crossover fluorescence.

Genetic Interaction between bst and sec Mutations

To minimize the possible variation due to genetic background, sec13A bst mutant isolates

were outcrossed and the bst mutant spore clones were sequentially backcrossed four

times to either CKY8, CKY10, CKY13 or CKY14. These strains are members of a set of

isogenic strains derived from S288C (D. Botstein, Stanford). In the final backcrosses, the

Kar2p secretion and suppression phenotyes cosegregated 2:2 in the tetrads analyzed.

Two such bst mutant strains (CKY330 and CKY332) were then crossed to the sec mutant

strains listed in Table 1. Tetrads were tested for growth at 24, 28, 30, 33, 36 and 38C.

Genetic interactions (either partial suppression or synthetic enhancement of the

temperature sensitivity) were observed in crosses where 2:2, 3:1 and 4:0 ascospore

viability patterns were seen at temperatures above or below the "cutoff temperature" for a

given sec mutant. The suppression or synthetic effects (seen when in combination with a
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sec mutation) completely cosegregated with the Kar2p secretion phenotype of the bst

mutation in the cross, as assayed by the immunoblotting filter assay described above. In

crosses where the sec mutant involved also secretes Kar2p (secl7 and secl8; Semenza et

al., 1990), only NPD tetrads were considered. In representative tetrads the segregation of

the bst mutation in the cross was then confirmed by scoring the secl3A suppression

phenotype. Isogenic sec and sec bst strains were constructed by transforming the sec bst

double mutant strains from Table 1 with the corresponding BST gene on a CEN plasmid

(pME1101 or pME253) or with a CEN vector (pRS316) control plasmid. The growth of

these isogenic pairs of strains was compared on synthetic complete medium lacking

uracil.

Invertase Assays

Invertase assays were performed on either whole cells (external) or cell lysates (total)

prepared in the following manner. Exponentially growing cultures in either YPD or SD +

casamino acids (2% glucose) were pelleted and resuspended at a density of 1 OD600

unit/ml in medium with 0.1% glucose. Cells were then incubated for 2 hours. 1 OD600

unit of cells was removed to an equal volume of 20 mM Tris (pH 7.5), 20 mM NaN3 at

O0C, washed twice in ice cold 10 mM Tris (pH 7.5) and resuspended in either 1 ml of 10

mM Tris (pH 7.5) for assaying external invertase or 30 gl of 10 mM Tris (pH 7.5), 1%

Triton for assaying total invertase activity. For assay of total activity, the cells were lysed

by vigorous vortexing with glass beads for 3-5 min and then diluted to 1 ml in 10 mM

Tris (pH 7.5). Invertase was assayed as described in Gasc6n et al., 1968 in duplicate for

each strain tested.
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RESULTS

Isolation and Complementation Testing of bst secl3A Mutant Strains

SEC13 is an essential gene, since the conditional allele secl3-1 is inviable above 30"C

and spores bearing a deletion of the gene (secl3A) never germinate on rich medium

(Pryer et al., 1993). To examine the phenotype of cells lacking Secl3p, we constructed a

strain with secl3A on the chromosome and a plasmid-borne copy of SEC13 under GAL]

promoter control. Under conditions where Sec 13p expression is repressed by growth on

glucose, this strain does not grow, yet rare revertant colonies arise on glucose plates. To

explore the genetic basis of this reversion, a collection of revertants was isolated as

follows. The strain CKY321 has a chromosomal deletion of the SEC13 coding sequence

and was therefore dependent on the GALl-promoted SEC13-URA3-containing plasmid

pCK1390 for viability. (This strain was designed to minimize the likelihood of reversion

by plasmid integration or gene conversion: the plasmid carries a centromere and only

shares homology with the chromosome in the 3' region of the SEC13 locus.) Cultures of

CKY321 were plated on medium containing 5-FOA to select for cells that had lost the

SEC13-URA3 plasmid. Robust colonies arose on these plates after three days of growth

at 24"C at an average frequency of 2x10 -6 colonies per viable cell. After longer

incubations (up to seven days), additional colonies arose at a 10-fold higher frequency.

These additional colonies comprise a second class of suppressors, weaker than those

discussed in this report, that are currently under investigation. After three days of

growth, 100 independent revertants were chosen for further analysis.

Preliminary experiments suggested that most of the revertants contained unlinked

suppressor mutations that segregated as single genes on backcrossing. To distinguish

suppressor containing strains from other possible types of revertants, a number of

independent tests were performed. Transformation with URA3-containing plasmids

restored 98 of the isolates to Ura+, indicating that in these cases 5-FOA resistance was
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probably due to plasmid loss, as expected. The two isolates that remained Ura- in this

test were not considered further since they still contained Secl3p detected by Western

blotting and probably resulted from ural mutation. Southern analysis on representatives

of the 98 isolates confirmed that the deletion at the SEC13 locus was still intact. Finally,

cell extracts from representative isolates did not contain Sec 13p by Western blotting.

Figure 1A shows the absence of Secl3p in three such representatives that were

subsequently identified as isolates from the three major complementation groups (see

below). Together these findings show that reversion had occurred because of suppressor

mutations that allowed growth in the absence of Sec 13p. We therefore called these bst

mutants (for bypass of sec thirteen).

To determine the number of genes represented by this collection of mutants, bst

sec13A strains that were appropriate for complementation testing were constructed by

backcrossing. The test strains were mated to the 98 isolates and diploids were selected by

use of complementary auxotrophic mutations. For all 98 isolates, the resulting diploids

were found to be inviable for many of the test crosses. This showed that the suppressor

mutations were recessive and could be organized into complementation groups as follows.

In crosses where the parental bst mutations are in different genes, complementation in the

diploid should prevent suppression of the homozygous sec13A mutation, giving an inviable

diploid; viable diploids should be recovered in crosses where both suppressor mutations are

in the same gene. This analysis allowed the mutants to be organized into three major

complementation groups, designated BST1 (52 isolates), BST2 (24 isolates) and BST3 (19

isolates). The remaining three isolates grew poorly and mated inefficiently, and therefore

gave ambiguous results in the complementation test. An example of complementation tests

among the three groups is shown in Figure lB.
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ER to Golgi Transport is Restored in bst secl3A Mutants

The strains with suppressed secl3A grow almost as well as wild-type: the doubling times

in rich medium at 24"C for bstl secl3A, bst2 secl3A, and bst3 secl3A are 170 min, 165

min, and 155 min, as compared to 150 min for wild-type. The ability of bst secl3A strains

to grow well indicated a functional secretory pathway. To examine secretion more

closely, the maturation of the vacuolar protease carboxypeptidase Y (CPY) was followed

as a marker for early events in the secretory pathway. CPY is found in three distinct

forms, P1, P2 and mature, that represent progression to the ER, Golgi and vacuole,

respectively (Stevens et al., 1982). In the bst secl3A strains CPY was targeted and

transported normally at 24'C (Figure 2A), although somewhat more slowly than in the

wild-type control (Figure 2C).

The transport of secreted invertase in bst secl3A strains was also examined. These

strains showed normal levels of extracellular invertase activity, indicating that there was

no block to invertase secretion. A more detailed examination of the kinetics of invertase

secretion was performed by pulse-chase analysis. As with CPY, secreted invertase

matured normally in bst secl3A strains at 24'C, although more slowly than in the wild-

type control (Figures 2B and 2C); this kinetic defect was more pronounced in bst2

secl3A and bst3 secl3A mutants than in bstl secl3A. The acquisition by invertase of

extensive outer-chain addition at later times showed that transport through the Golgi

occurred normally in the mutant strains. Thus, the bypass that occurs in bst secl3A

strains does not completely circumvent any of the normal transport steps to the cell

surface or vacuole.

ER to Golgi Transport in bst Mutant Strains

In order to understand better the role of the BST genes in the secretory process, the bst

mutations were introduced into an otherwise wild-type genetic background. To construct

these strains, bst mutant segregation was followed in crosses to wild-type by subsequent
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test crosses to bst secl3A strains and by transformation experiments to test whether

individual segregants could be transformed with an integrating plasmid that knocks out

the SEC13 gene. The growth characteristics and secretion phenotypes of these bst mutant

strains were then analyzed. The bstl, bst2 and bst3 strains (CKY330, CKY332 and

CKY334, respectively) grew as well as wild-type at all temperatures. All of the parental

bst sec13A strains were unable to grow at temperatures above 30"C. This temperature

sensitivity can be ascribed to a temperature dependence of the bypass process since the

bst mutations themselves do not cause temperature sensitivity.

The transport of CPY and invertase in bst strains was analyzed by pulse-chase

experiments at 30"C. Invertase matured normally in the bstl strain, but showed a

significant delay in transport in bst2 and bst3 mutants (Figures 3B and 3C). CPY

matured normally in all three mutants (Figures 3A and 3C). Thus, bst2 and bst3

mutations slowed invertase transport from the ER, but otherwise the bst mutations did not

have a marked effect on secretory protein transport.

Cloning and Analysis of BST1

We also examined the effect of bst mutations on the retention of the resident ER protein

Kar2p. The test was conducted by growing strains in contact with a nitrocellulose filter

and then probing the filters with antibody to detect Kar2p released into the extracellular

space. Both bst sec13A and bst strains showed a dramatic increase in the amount of

Kar2p detectable by this assay compared to the wild-type control (Figure 4A). In tests of

diploids, Kar2p secretion was recessive for bstl, bst2, and bst3 mutations and therefore

provided a plate assay for cloning the genes by complementation.

The BST1 gene was cloned by transforming the bstl-1 strain CKY331 with a

genomic library in YCp50 and screening 6,000 transformants for those that no longer

secreted excess Kar2p. Three independent isolates of the same library clone were

identified, and the minimum complementing region within this plasmid was determined



by subcloning (Figure 5A). The 3.8 kb ClaI - KpnI fragment of pME1 101 was shown to

be sufficient to complement both the Kar2p secretion (see Figure 4A) and secl3A

suppression phenotypes of bstl mutant strains (our unpublished results). The latter

property was tested in transformation experiments where complementation of bst] was

scored by the failure of a plasmid carrying the complementing gene to form viable

transformants of a bst] sec13A strain. The nucleotide sequence at the Clal site was found

to lie within the STE2 locus, which is adjacent to the complementing region of the clone

(Figure 5A). This observation places the BST1 locus on the left arm of Chromosome VI.

The 3.3 kb of pME1101 adjacent to the STE2 locus was sequenced and contains a

single open reading frame predicted to encode a protein of 118 kDa. Analysis of the

hydrophobicity of this sequence, using the algorithm of Kyte and Doolittle (1982),

predicts multiple potential membrane spanning domains in the C-terminus and a single

transmembrane domain near the N-terminus. Additional features are 14 potential N-

linked glycosylation sites throughout the protein sequence and a double-arginine motif at

the fourth and fifth amino acids from the N-terminus. These aspects of the sequence are

diagrammed in Figure 5B.

To confirm that this open reading frame corresponds to the BSTJ gene, a disruption

of the gene was generated by subcloning the 1 kb SpeI - XhoI fragment that lies within

the coding sequence into the LEU2-marked integrating vector pRS305 (Sikorski and

Hieter, 1989). The resulting plasmid, pME1165, was linearized within the insert at the

PstI site and integrated into the wild-type diploid CKY348 by transformation. Integration

results in two truncated copies of the gene separated by plasmid sequences, and neither

truncated copy should be functional according to the complementation behavior of

subclones. The resulting heterozygous diploid was sporulated and all tetrads examined

had four viable ascospores (n=30), demonstrating that BST1 is not essential. In each

tetrad the LEU2 marker segregated 2:2 and showed complete linkage to excess Kar2p

secretion as determined by the immunoblotting filter assay. The Leu+ spore clones also
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exhibited the ability to suppress secl3A both in crosses to bstl sec13A strains and in

transformation experiments where the SEC13 gene was disrupted directly. Finally, in

crosses between the Leu+ spore clones and bst] mutant strains, complete linkage was

demonstrated by 4:0 segregation of the Kar2p secretion phenotype (n=36). We therefore

refer to this gene as BST1. This analysis also demonstrated that the alleles of bstl

isolated as suppressors of sec13A have the same phenotype as the disrupted allele.

Bstlp is an Integral Membrane Glycoprotein that Resides in the ER

The predicted amino acid sequence of Bstlp indicated an integral membrane

glycoprotein. To examine the protein, a 30 amino acid epitope was inserted near the N-

terminus of the protein (see Figure 5) to produce a tagged version of the gene, BST1-HA.

A centromere plasmid carrying BSTI-HA (pME1170) complemented all of the

phenotypes of bstl mutant strains, showing that insertion of the epitope did not disrupt

function. Cells expressing BSTI-HA were converted to spheroplasts, lysed gently, and

fractionated by differential centrifugation. Bstlp-HA detected by immunoblotting was

found exclusively in the 500g and 10,000g pellets, suggesting membrane association

(Figure 6A). Cytosolic invertase in these samples was found almost entirely in the

150,000g supernatant, demonstrating that the cells were efficiently lysed. After cell

lysates were incubated in 1% Triton X-100 and centrifuged at 150,000g, much of the

Bstlp-HA became soluble (Figure 6B), consistent with the behavior expected of an

integral membrane protein. Treatment of cell lysates with 0.5 M NaC1, 2.5 M urea or

carbonate buffer, pH 11.5, did not solubilize Bstlp (our unpublished results).

To determine whether Bstlp is a glycoprotein, cell extracts were treated with EndoHf

to remove N-linked oligosaccharide chains. Treatment with EndoHf resulted in an

increase in the mobility of Bstlp-HA consistent with the removal of six or seven core

oligosaccharide chains from the protein (Figure 6B). This result demonstrated that Bstlp

is a glycoprotein and indicated that the large domain of the protein between the single N-
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terminal and multiple C-terminal transmembrane sequences resides in the lumen of the

ER (diagrammed in Figure 5B).

The demonstration that Bstlp is an integral membrane glycoprotein limited its

subcellular distribution to the organelles of the secretory pathway. Additionally, the

predicted sequence of the protein shows an N-terminal double arginine motif at positions

4 and 5, which has been shown to be an ER retention signal for type II integral membrane

proteins in mammalian cells (Schutze et al., 1994). To determine whether Bstlp-HA

progresses beyond the ER, we examined the extent of glycosylation of the protein in a

sec18-1 mutant blocked for ER to Golgi transport. Western blots of extracts from this

strain grown either under permissive conditions or shifted to nonpermissive temperatures

for 2 hours showed no detectable difference in the amount or mobility of the Bstlp-HA.

Most of the protein, therefore, is not subject to post-ER glycosylation and presumably

resides in the ER (Figure 6B). As a control to demonstrate the efficacy of the secl8

block, CPY was shown to remain in the P1 form in the secl8 strain at the restrictive

temperature.

The localization of Bstlp was further examined by indirect immunofluorescence

microscopy. In order to enhance the detection of the protein in cells expressing BST1-HA

(from the centromere plasmid pME1170), fixed cells were treated with SDS in a manner

similar to that described for the optimal detection of Sec62p (Deshaies and Schekman,

1990). Cells treated in this manner and stained with anti-HA antibody showed a

continuous band of concentrated staining surrounding the DAPI-stained nucleus. This

staining pattern is characteristic of ER proteins (Rose et al., 1989; Deshaies and

Schekman, 1990), and was not seen in cells expressing untagged BST1. In double

staining experiments the Bstlp staining was coincident with that of the luminal ER

protein Kar2p (Figure 7), consistent with an ER localization for Bstlp.



BST2 is Identical to EMP24

The BST2 gene was cloned using the same strategy as that used to isolate BST1.

Approximately 10,000 YCp50 library transformants of a bst2-1 mutant were screened to

find two overlapping clones that were shown to complement both the Kar2p secretion and

sec13A suppression phenotypes of bst2 mutant strains. Subclones were tested to find the

minimal complementing region, and the sequence of this region showed it to be the

EMP24 locus. EMP24 encodes a 24 kDa integral membrane protein that resides in the

ER and in COPII vesicles that bud from the ER (Schimmiller et al., 1995). A

mammalian homolog of EMP24 was found to be enriched in COPI vesicles (Stamnes et

al., 1995). Disruption of EMP24 was shown to decrease the transport of invertase and

Gas 1 p from the ER, consistent with the transport defect of the bst2 mutants described

here (Schimm6ller et al., 1995).

To confirm that BST2 and EMP24 are identical, a disruption of the EMP24 coding

sequence was constructed by replacing an internal SacI-SalI fragment of EMP24 with the

URA3-marked integrative plasmid pRS306 in the wild-type diploid CKY348.

Sporulation of the resulting diploid gave four viable spores in which the URA3 marker

segregated 2:2 (n=29), confirming that EMP24 is a nonessential gene. The disrupted

allele was shown to confer the Kar2p secretion and sec13A suppression phenotypes of

bst2 mutant strains and to be linked to the isolated bst2 mutations (n=40), as described

above for BST1. The bst2 null alleles behaved identically to the bst2 mutations isolated as

suppressors of sec13A .

bst Mutations Cause Leakage of the Resident ER Proteins Kar2p and Pdilp from the

ER

The most striking phenotype of bst mutants is their defect in the retention of Kar2p. To

investigate the nature and magnitude of this defect, we assayed the quantity of Kar2p

released from cells by TCA precipitation of the growth medium and quantitation of
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Kar2p by Western blotting. Comparison of the amount of Kar2p in the medium to the

amount in the corresponding cell extracts gave the fraction of Kar2p secreted. Both bst

sec13A and bst mutant strains secreted about 17% of the total Kar2p in 3 hr after transfer

to fresh culture medium, whereas the wild-type strain secreted less than 1% of the total

Kar2p (Figure 4B). Probing the medium for the presence of CPY (with anti-CPY

antibody) showed that the bst sec13A and bst mutant strains had the same low levels of

CPY in the medium as the wild type control (P2 form only), ruling out the possibility that

the Kar2p in the medium was from cell lysis (our unpublished results).

Excessive secretion of Kar2p into the culture medium is a hallmark of erd mutants,

which are defective in the retrieval from the Golgi of resident ER proteins that, like

Kar2p, have the motif HDEL at their C-terminus (Hardwick et al., 1990; Semenza et al.,

1990). Mutants of erd2 secrete as much Kar2p into the medium as do strains bearing an

allele of KAR2 that lacks the HDEL retention signal (KAR2AHDEL) (Semenza et al.,

1990). In both cases, the rate of Kar2p secretion is slow compared to the rate of secretion

for actual secretory proteins such as invertase. The slow secretion of Kar2pAHDEL

implies that mechanisms independent of HDEL-dependent recycling contribute to

retention of Kar2p in the ER.

The amount of Kar2p secreted by bst mutants was equivalent to that secreted by

strains expressing the KAR2AHDEL allele (Figure 4B), suggesting that the bst mutations

might affect the HDEL-dependent retrieval of Kar2p. Alternatively, the mutations could

affect an HDEL-independent retention mechanism (i.e. the rate at which Kar2p exits the

ER). To distinguish between these possibilities, we examined the extent of Kar2pAHDEL

secretion in bst KAR2AHDEL double mutant strains to determine whether the effect of bst

mutations on Kar2p secretion depended on HDEL. Removal of HDEL from Kar2p

should completely eliminate the ERD2-dependent retrieval of this protein; if a bst

mutation affects a retention mechanism that does not depend on HDEL, then a bst

KAR2AHDEL double mutant should secrete more Kar2pAHDEL than should either single
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mutant alone. Quantitative Western blotting of Kar2pAHDEL from both the culture

medium and cell extracts revealed that while all the mutants maintained wild-type levels

of internal Kar2p (through increased production of the protein, presumably as a result of

the unfolded protein response), the bstlA KAR2AHDEL and bst3-2 KAR2AHDEL mutants

consistently secreted approximately twice as much Kar2pAHDEL into the culture medium

(in a fixed amount of time) as did the single mutant strains (Figure 4C), suggesting that

bstl and bst3 mutations affect a retention mechanism that is independent of the HDEL-

dependent retrieval pathway.

The similarity of the phenotypes of bstl, bst2 and bst3 mutants suggested these genes

might perform similar functions. To address the degree to which the functions of the BST

genes overlap, the effect of double mutants on the extent of Kar2p secretion was

examined. Neither the bstlA bst2A nor bst2A bst3-2 double mutants showed a significant

increase in Kar2p secretion over that of the single mutants, indicating that loss of BST2

does not exacerbate the defect already present in either bstl or bst3 mutants. In contrast,

the bstlA bst3-2 double mutant secreted three to four times more Kar2p into the culture

medium than did either single mutant (Figure 4C). The additive effects of these

mutations show that even when Bst3p is absent the BST1 gene product performs a

function that contributes to the retention of Kar2p.

The effect of bstl and bst3 mutations on the retention of Kar2pAHDEL suggested that

the bst mutations might affect the escape of other resident proteins from the ER. We

therefore examined the retention of the luminal resident ER protein Pdilp in bst mutants

by TCA precipitation of the culture medium and quantitative Western analysis as was

done for Kar2p. All three bst mutants secreted approximately 50% of the total Pdilp into

the culture medium during a 3 hour incubation, whereas the wild-type strain secreted no

detectable Pdilp (Figure 8). Pdilp, like Kar2p, contains a C-terminal HDEL retrieval

signal, and removal of this sequence results in the secretion of a large fraction of the

protein (LaMantia and Lennarz, 1993 and Figure 8). Because such a large fraction of the
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Pdilp that lacks the HDEL was secreted from the cells, the double mutant test that we

applied to Kar2p was not feasible. The secretion of both Kar2p and Pdilp in bst mutants

indicates a general defect in the retention of ER resident proteins.

bst Mutations also Cause Leakage of Retained Proteins from the ER

As an independent test for a defect in the proper retention of proteins in the ER, we

examined fate of invertase that is retained in the ER because of the presence of an

uncleaved signal sequence. The SUC2-s11 allele of invertase is an Ala to Ile substitution

at the signal peptide cleavage site that blocks cleavage by signal peptidase and

dramatically slows the exit of s 11-invertase from the ER, presumably because the protein

has the qualities of a misfolded protein and is recognized by the ER quality control

system (Bohni et al., 1987). s 11-invertase is retained in the ER in an enzymatically

active state, and the small fraction that is secreted acquires carbohydrate modifications

that allow the progression of the protein through the secretory pathway to be monitored.

The effect of bst mutations on the secretion of s 11-invertase was examined by assaying

the fraction of active invertase at the cell surface. The ratio of external to total invertase

activity two hours after induction of SUC2-s11 showed that a bstl::LEU2 mutant

secreted 1.7 times and a bst3-2 mutant secreted 1.4 times the amount of sl 1-invertase as

did the wild-type control (Table 2). The bst2-1 mutant did not significantly increase

secretion of s 11-invertase. These data were consistent with the effects of bst mutations

on retention of Kar2pAHDEL and demonstrated the generality of the retention defect of

bstl and bst3 mutants.

The rate of s 11-invertase transport from the ER to the Golgi was measured directly in

bstl::LEU2, bst2-1, bst3-2 and BST+ strains. Pulse-chase experiments were performed

by shifting cultures to low-glucose medium for 30 min to induce the expression of s 11-

invertase, labeling the cells for 20 min with [35 S]-methionine and then chasing with

unlabeled methionine. s 11-invertase was first immunoprecipitated with anti-invertase
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antibody, and then a portion of each sample was re-immunoprecipitated with antibodies

directed against the Golgi-specific modification xl,6 mannose in order to determine the

fraction of the protein that had reached the Golgi. The rate at which s 11-invertase

acquired cxl,6 mannose modifications in the bstl::LEU2 mutant was approximately twice

that of the isogenic BST+ control (Figure 9). Thus, an increase in the rate of exit from

the ER accounts for the increased secretion of s 11-invertase in the bstl mutant.

Similarly, for the bst3-2 mutant the rate was approximately 1.5 times that of wild-type,

while that of the bst2-1 mutant was indistinguishable from wild-type. Because the rate of

transport for wild-type invertase from the ER in bst2 and bst3 mutants is 3 fold slower

than it is in a wild-type strain (Figure 3B and 3C), the rates observed for s 11-invertase

transport in the bst2 and bst3 mutants probably understate the effect these mutants have

on the escape of s 11-invertase from the ER.

Genetic Interactions Between bst Mutants and sec Mutants

The bypass of the cellular requirement for Sec 13p by bst mutations suggested that these

mutations might also bypass the requirement for other SEC genes. We tested the ability

of the bst mutations to suppress null alleles of other SEC genes in crosses segregating

both a bst mutation and a null SEC gene allele. Null alleles of SEC12, SEC23 and SEC31

were tested and none were suppressed by bstl, bst2 or bst3 mutations. In addition,

selections for suppressors similar to the one used to isolate the bst mutations were tried

with null alleles of SEC12, SEC23 and SEC16 and all failed to yield extragenic

suppressor mutations (R. Gimeno and P. Espenshade, personal communications). Thus,

bst mutations do not bypass the need for other essential ER vesicle proteins.

Suppression of temperature-sensitive alleles of SEC13 was also examined. A secl3-1

strain was inviable at temperatures above 30"C, whereas isogenic bstl secl3-1 and bst2

secl3-1 double mutants grew at temperatures up to 360C (Figure 10). Thus, bst mutants

can partially suppress sec13-1, and the inability to suppress at temperatures above 36"C
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was presumably due to the failure of suppression at high temperatures that was observed

for suppression of secl3A.

The ability to detect suppression of temperature-sensitive alleles allowed us to extend

our evaluation of suppression to other SEC genes that are involved in ER to Golgi

transport. The bstl and bst2 mutant strains CKY330 and CKY332 were crossed to each of

the sec mutant strains listed in Table 1. Tests of the temperature sensitivity of double-

mutant segregants showed that both bst mutations could suppress to at least some degree

the temperature sensitivity of all of the COPII vesicle formation mutants (sec12, sec13,

secl6 and sec23). In contrast, an exacerbation of the temperature sensitivity of vesicle

fusion mutants (secl 7 and secl8) and COPI mutants (sec21 and sec27) occurred when

these mutations were combined with either bstl or bst2 mutations.

To avoid possible effects of genetic background in tetrad analysis, sec bst strains

were transformed with either the corresponding BST gene on a centromere plasmid or

with a control plasmid. The growth of these isogenic pairs at different temperatures

confirmed the suppression and synthetic interactions observed by tetrad analysis (Figure

10). Similar results were also seen with the bst3 mutation in crosses to representative sec

mutants, but a more rigorous confirmation of these results using truly isogenic strains

must await cloning of the BST3 gene. CPY pulse-chase experiments on isogenic pairs of

sec and sec bst mutant strains confirmed that the temperature sensitive growth was

always accompanied by a corresponding ER to Golgi transport defect (our unpublished

results). Thus, the bst mutations cause ER to Golgi transport to becomes less dependent

on the COPII vesicle formation genes and more dependent on vesicle fusion genes and

COPI genes.
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DISCUSSION

In this report, we describe the identification of three genes, BST1, BST2/EMP24 and

BST3, that when mutated suppress the lethal secretion defect caused by deletion of the

SEC13 gene. Secl3p is known to be essential for formation of transport vesicles both in

vivo, where secl3 mutations cause a defect in ER vesicle formation (Kaiser and

Schekman, 1990) and in vitro, where Secl3p is one of the five cytosolic COPII proteins

that are necessary and sufficient for vesicle formation from ER membranes that have

been depleted of peripheral proteins (Kaiser and Schekman, 1990; Pryer et al., 1993;

Salama et al., 1993). It was therefore surprising to find that the cellular requirement for

Secl3p could be bypassed by second-site mutations. A key observation concerning the

mechanism of suppression is that the suppressor mutations are genetically recessive. We

show that null alleles of BST1 and BST2/EMP24 are suppressors. Because loss of BST

gene function gives suppression, we deduce that the BST proteins act negatively to

prevent transport from the ER to the Golgi. Furthermore, Secl3p is apparently needed to

overcome the transport block caused by the BST gene products, perhaps in a late step in

vesicle assembly. Thus the function of the BST genes in vesicular transport is formally

like the inhibitory checkpoints that block the progression of the mitotic cell cycle in

response to the incomplete assembly of the mitotic spindle or the incomplete replication

of chromosomes.

There are two prominent possibilities for processes that could be inhibited by the

BST gene products (diagrammed in Figure 10). One possibility is that the BST gene

products directly block completion of incorrectly assembled COPII vesicles. Thus, when

Sec 13p is absent, the observed secretory block would result from the action of the BST

proteins. In addition, under semi-permissive conditions mutations in other COPII genes

would also bring about a BST dependent block, since loss of BST gene function renders

less restrictive mutations in all COPII genes tested. The purpose of such a negative



regulatory mechanism could be to improve the fidelity of vesicle assembly by preventing

the pinching off of vesicles that have not been completely assembled.

An alternative possibility is that the BST proteins perform an organizational function

to maintain a distinct subcompartment within the ER from which vesicle formation can

take place. Disruption of this organization by a bst mutation might then either allow

COPII-driven vesicle formation in the absence of Sec 13p or give access to a new

pathway out of the ER, perhaps utilizing COPI rather than COPII coat proteins (Bednarek

et al., 1995). A predicted consequence of the opening of a COPII-independent process

for transport from the ER is that complete elimination of other COPII proteins would also

be bypassed by bst mutations. Because bst mutations do not bypass null alleles of the

COPII genes SEC12, SEC31 or SEC23, complete bypass of the COPII step is unlikely.

We can not rule out, however, the possibility that the COPII proteins other than SEC13

are required for an essential process, in addition to ER to Golgi transport, that cannot be

suppressed by bst mutations.

Cargo Segregation in bst Mutant Strains

When bst mutations are placed in a wild-type strain background, the most

pronounced effect of the mutations is to cause secretion of the resident ER proteins Kar2p

and Pdilp into the extracellular space. It was by complementation of the recessive Kar2p

secretion trait that we cloned the BST1 and BST2 genes. For bstl and bst3 mutations, an

increase in the rate of Kar2p secretion, even when HDEL-dependent retrieval of Kar2p

from the Golgi has been inactivated, indicates that the increased Kar2p secretion is the

result of an increased flux of Kar2p out of the ER. Further, invertase that in a wild-type

background is retained because of an uncleaved signal sequence more readily escapes the

ER in bstl and bst3 mutants. Thus, these mutants cause the ER to exhibit a general

reduction in the ability to retain proteins, and this property suggests that these genes may

have general utility for overriding the normal inhibitions for the secretion of misfolded
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proteins. The magnitude of these effects can be considerable: Kar2p secretion for all

three mutants is the same as that for a derivative of Kar2p lacking the C-terminal HDEL

retrieval sequence and roughly half of the total Pdilp is secreted from these mutants in 3

hours of growth. In bstl bst3 double mutants the Kar2p secretion phenotype is even

more pronounced: about 35% of the total Kar2p is secreted into the medium during 3

hours of growth, which is the most pronounced, non-lethal ER retention defect yet

documented.

Not only do bst mutations increase the leakage of resident proteins from the ER, but

they also decrease the rate of transport of a subset of secretory cargo. This effect can be

seen in the selective effects of bst2/emp24 and bst3 mutations on the rate of invertase

transport shown here and previously reported for bst2/emp24 mutant strains

(Schimm6iller et al., 1995). Taken together, the effect of disruption of the BST genes on

the sorting of luminal proteins is generally to decrease the rate of secretion of proteins

that are normally secreted (invertase) and to increase the rate of export of proteins that are

normally retained in the ER (Kar2p, Pdilp and invertase with an uncleaved signal

sequence). Thus, loss of BST gene function reduces the capacity of the ER to

discriminate between secreted and retained proteins, thereby causing secretion in bst

mutants to resemble a condition known as bulk flow where cargo leaves the ER at a rate

corresponding to its concentration in the vicinity of the forming vesicle.

The existence of mutations with the properties of the bst mutations suggests a general

model for how cargo sorting could be coupled to vesicle coat assembly. The prevailing

view of how cargo is selected by vesicles is that the vesicle coat forms an affinity matrix,

and that a given type of cargo molecule is partitioned into the budding vesicle according

to its affinity for the coat (in the case of membrane proteins) or for coat associated

receptors (in the case of luminal proteins). To accomplish this partitioning, the coat must

exist for a time in a partially assembled state similar to the clathrin-coated pits that are

thought to be the precursors of clathrin-coated endocytic vesicles (reviewed in Pearse and
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Robinson, 1990). The negative effect of BST proteins on the formation of transport

vesicles could simply provide a delay in the pinching off of vesicles that would give time

for sorting to take place. In the absence of the restriction imposed by the BST checkpoint,

vesicles could form prematurely before cargo sorting is completed. The cargo content of

the vesicles thus formed would reflect reduced discrimination between resident proteins

and secretory proteins. This putative BST checkpoint on vesicle completion may also be

imposed in response to incomplete or improper assembly of the vesicle coat, so that in the

absence of BST quality control crippled but functional vesicles could form when the coat

structure is compromised by mutation of COPII proteins.

Molecular analysis of the BST1 and BST2/EMP24 genes show that these proteins

reside primarily in the ER membrane, a location consistent with their proposed role in

regulating the fidelity of vesicle assembly and cargo loading. The double-arginine motif

at the N-terminus in the predicted sequence of Bstlp may function to govern the retrieval

of this protein in a manner similar to that observed for KKXX-containing membrane

proteins (Gaynor et al., 1994; Schutze et al., 1994).

It is also noteworthy that Bst2p/Emp24p is a member of a family of proteins that

have been found in COPII-coated vesicles (Schimmi5ller et al., 1995) and COPI-coated

vesicles (Stamnes et al., 1995). An appreciation of the reduced rate of invertase and

Gaslp transport in emp24 mutants led to the suggestion that these proteins are cargo

receptors for a subset of proteins (Schimmi5ller et al., 1995). However, this suggestion

does not explain the effects of these mutations on Kar2p release from the ER and

suppression of secl3 mutations that we describe here.

Interaction Between BST Genes and Other SEC Genes.

While the bst mutations fully or partially suppress mutations in COPII genes, they

exacerbate mutations in COPI genes and vesicle fusion genes. These interactions can be

explained in light of the proposed participation of BST genes in ensuring the fidelity of



vesicle assembly. The exacerbation of the temperature sensitive defects of secl7-1 and

secl8-1 mutants may reflect structural defects in the vesicles formed in the absence of

BST function: if proteins required for stability or for the targeting and fusion of the

vesicles (V-SNARES) are not assembled as efficiently into the budding vesicles, this

could cause the enhancement of the defect seen in secl 7-1 and secl8-1 mutants.

Additionally, the greatly increased flux of Kar2p and possibly other resident proteins

from the ER in bst mutants may produce an unusually great load on the systems that

retrieve ER proteins from the Golgi. The COPI vesicle proteins Sec2lp, Sec27p and

Retlp are required for the retrieval of type I ER membrane proteins bearing the retention

signal KKXX at their cytosolic C-termini (Letourner et al., 1994). If COPI coated

vesicles are needed to retrieve from the Golgi a variety of ER-resident proteins, then the

increased load on the retrieval system in bst mutants may be lethal when combined with

the COPI sec mutants that reduce the capacity of the retrieval system.

Relationship to Other Genes Involved in the Retention of Resident ER Proteins

A number of genes have been reported to influence the retention and retrieval of resident

ER proteins in yeast. The rer mutants were identified in screens for mutants that

mislocalize hybrid transmembrane proteins normally retained in the ER (Nishikawa and

Nakano, 1993; Boehm et al., 1994). The defect in rerl and rer3 mutants is for

transmembrane proteins only, since both show normal retention of the soluble Kar2p

(Boehm et al., 1994). The rer2 mutant is defective in the retention of Kar2p and may,

like the bst mutants, perform a more general retention function (Nishikawa and Nakano,

1993). A more general retention defect has been observed for strains in which the CNE1

gene has been deleted (Parlati et al., 1995), but secretion of Kar2p was not examined for

this mutant, nor was the capacity to suppress COPII mutations tested, so the relationship

of CNE1 to the bst mutants is not known.
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The isolation of the bst mutants has given us a new insight into how cargo sorting

could be related to the assembly of vesicle coats. The key questions now are how the

BST proteins operate at a molecular level: how they negatively regulate vesicle transport,

and what the inputs are that trigger this regulation. The isolation of the BST genes and

their products provides a way to address these questions by studying the structure of the

BST proteins, their possible association with one another, and their proximity to proteins

of the vesicle coat and to cargo molecules.
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Table 1. Strain List
Strain Genotype Source
CKY8
CKY10
CKY13
CKY14
CKY40
CKY46
CKY53
CKY55
CKY59
CKY69
CKY79
CKY100
CKY190
CKY321
CKY322
CKY323
CKY324
CKY325
CKY326
CKY327
CKY330
CKY331
CKY332
CKY333
CKY334
CKY335
CKY336
CKY337
CKY339
CKY340
CKY341
CKY343
CKY344
CKY345
CKY346
CKY348
CKY349
CKY352
CKY355
CKY358
CKY361
CKY364
CKY367
CKY370
CKY373
CKY376
CKY379
CKY382
CKY385
CKY388
CKY391
CKY394
CKY395

MATa ura3-52 leu2-3,112
MATa ura3-52 leu2-3,112
MATa his4-619 lys2-801
MATa his4-619 lys2-801
MATa sec12-4 ura3-52
MATa secl3-1 ura3-52 his4-619
MATa secl6-1 ura3-52 leu2-3,112
MATa secl7-1 ura3-52 his4-619
MATa secl8-1 ura3-52 his4-619
MATa sec21-1 ura3-52 his4-619
MATa sec23-1 ura3-52 leu2-3,112
MATa sec27-1 ura3-52 leu2-3,112
MATa KAR2AHDEL ura3 leu2 his4 suc2
MATa secl3Al ade2 ade3 ura3-52 leu2-3,112 (pCK1390)
MATa secl3Al bstl-2 ade2 ade3 ura3-52 leu2-3,112
MATa secl3A1 bst2-2 ade2 ade3 ura3-52 leu2-3,112
MATa secl3A1 bst3-2 ade2 ade3 ura3-52 leu2-3,112
MATa secl3A2::LEU2 bstl-1 ura3-52 leu2-3,112 his4-619
MATa secl3A2::LEU2 bst2-1 ura3-52 leu2-3,112 his4-619
MATa secl3A2::LEU2 bst3-1 ura3-52 leu2-3,112 his4-619
MATabstl-1 ura3-52 leu2-3,112
MATa bstl::LEU2 ura3-52 leu2-3,112
MATa bst2-1 ura3-52 leu2-3,112
MATa bst2::URA3 ura3-52 leu2-3,112
MATa bst3-2 ura3-52 leu2-3112 ade2 ade3
MATa bstl::LEU2 KAR2AHDEL ura3 leu2 his4 suc2
MATa bst2:: URA3 KAR2AHDEL ura3 leu2 his4 suc2
MATa bst3-2 KAR2AHDEL ura3 leu2 his4
MATa bstl::LEU2 bst2:: URA3 ura3-52 leu2-3,112
MATa bstl::LEU2 bst3-2 ura3-52 leu2-3,112 ade2 ade3
MATa bst2:: URA3 bst3-2 ura3-52 leu2-3,112 ade2 ade3
MATa suc2A9 ura3-52 leu2-3,112 (pEHB29)
MATa bstl::LEU2 suc2A9 ura3-52 leu2-3,112 (pEHB29)
MATa bst2-1 suc2A9 ura3-52 leu2-3,112 (pEHB29)
MATa bst3-2 suc2A9 ura3-52 (pEHB29)
MATa/MATa ura3-52/ura3-52 leu2-3,112/leu2-3,112
MATabstl-1 secl2-1 ura3-52 leu2-3,112
MATa bst2-1 sec12-1 ura3-52
MATa bstl-1 secl3-1 ura3-52 leu2-3,112
MATabst2-1 secl3-1 ura3-52 leu2-3,112
MATa bstl-1 secl6-1 ura3-52 leu2-3,112
MATa bst2-1 secl6-1 ura3-52 leu2-3,112
MATa bstl-1 secl7-1 ura3-52 leu2-3,112
MATa bst2-1 sec17-1 ura3-52 leu2-3,112
MATa bstl-1 secl8-1 ura3-52 leu2-3,112
MATabst2-1 sec18-1 ura3-52 his4-619
MATa bstl-1 sec21-1 ura3-52 his4-619
MATa bst2-1 sec21-1 ura3-52 leu2-3,,12
MATabstl-1 sec23-1 ura3-52 leu2-3,112
MATabst2-1 sec23-1 ura3-52 leu2-3,112
MATabstl-1 sec27-1 ura3-52 leu2-3,112
MATa bst2-1 sec27-1 ura3-52 leu2-3,112
MATa ura3-1 leu2-3,112 his3-11,15 trpl-1 ade2-1 pdil::TRP1 PDIAHDEL

Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
M. Rose (Princeton)
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
This study
C. Shamu (UCSF)



Table 2. Secretion of s 11-invertase in bst mutants

Strain Relevant genotype External activity *

CKY343 suc2A [suc2-sll] 13.9 ± 0.5%

CKY344 bstl::LEU2 suc2A [suc2-sll] 24.0 ± 1.0%

CKY345 bst2::URA3 suc2A [suc2-sll] 15.8 ± 0.2%

CKY346 bst3-2 suc2A [suc2-sll] 19.3 ± 0.6%

* Intact cells and cell lysates were assayed to determine the fraction of total
invertase activity that was extracellular. Three determinations on each of two
independent transformants were averaged and standard deviations are shown.



Figure 1. Analysis of secl3A revertants.

(A) A wild-type strain CKY10, carrying either the empty vector pRS306-2gt (lanel) or

the SEC13-containing high copy plasmid pCK1391 (lane2), and three secl3A revertant

strains (CKY322, CKY323 and CKY324) carrying pRS306-2g (lanes 3-5), were grown

in selective medium at 24C. Secl3p was detected by immunoblotting using affinity

purified anti-Secl3p antibody. (B) Complementation analysis of bst secl3A mutant

isolates. Strains of the indicated genotype (CKY322, CKY323, CKY324, CKY 325,

CKY326 and CKY327) were patch mated, and diploids were selected.
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Figure 2. ER to Golgi transport in bst secl3A mutant strains.

A wild-type strain (CKY10) and three bst secl3A mutant strains (CKY322, CKY323 and

CKY324) were grown in supplemented minimal medium at 24"C. (A) Cultures were

pulse-labeled with 35S trans-label for 5 min and chased for the times indicated. CPY was

immunoprecipitated from the labeled extracts, resolved by SDS-PAGE and imaged on a

Phosphorlmager (for quantitation) and by autoradiagrapy. (B) Cultures were shifted to

supplemented minimal medium containing 0.1% glucose to induce the expression of

invertase, labeled and chased as in (A). Invertase was immunoprecipitated from the

labeled extracts and treated as in (A). (C) The individual forms of CPY and invertase

were quantitated and expressed as a percentage of the total counts for each timepoint.

Shown graphically are the average values for the appearance of the mature, fully

processed form of each protein from two experiments, which varied by less than 10%.
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Figure 3. ER to Golgi transport in bst mutant strains.

A wild-type strain (CKY10) and three bst mutant strains (CKY330, CKY332 and

CKY334) grown in supplemented minimal medium at 30'C were shifted to medium with

0.1% glucose to induce the expression of invertase, pulse-labeled with 35 S trans-label for

5 min, and chased for the times indicated. (A) Immunoprecipitated CPY. (B)

Immunoprecipitated invertase. (C) The individual forms of CPY and invertase were

quantitated and expressed as a percentage of the total counts for each timepoint. Shown

graphically are the average values for the appearance of the mature, fully processed form

of each protein from two experiments, which varied by less than 10%.
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Figure 4. bst mutations cause defects in Kar2p retention that are independent of the

HDEL retrieval pathway.

Strains of the indicated genotype used were CKY10, CKY190, CKY322 - CKY324,

CKY330 - CKY337 and CKY339 - CKY341. (A) A wild-type strain, a KAR2AHDEL

strain, three bst secl3A strains and three bst strains carrying the empty vector pRS316, a

bstl strain carrying the BST-containing plasmid pME1101 and a bst2 strain carrying the

BST2-containing plasmid pME253 were spotted onto selective medium, covered with a

nitrocellulose filter and grown for 48 h at 24°C. Kar2p secreted onto the filter was

detected by immunoblotting using anti-Kar2p Ab. (B) Exponentially growing cultures

were washed, suspended in fresh medium, incubated for 3 h at 24°C and split into cell

and medium samples. Extracts from 0.5 OD600 units of cells and medium samples from

2.5 OD600 unit equivalents were resolved by SDS-PAGE. Kar2p was detected by

Western analysis with anti-Kar2p Ab. (C) Samples from experiments as described in (B)

were quantitated by densitometry. The value for the KAR2AHDEL control in each

experiment was the baseline for comparison and shown are the average values from three

experiments for the relative amounts of Kar2p detected in the culture medium. Error bars

represent one standard deviation. The inlay is a Western blot showing a sample of the

data used to generate these values for the correspondingly numbered strain in the graphic

below.
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Figure 5. Physical map of BST1

(A) The plasmid subclones of the BST1 locus are shown along with their ability to

complement the bstl-1 mutation. The large solid arrow represents the predicted open

reading frame. (B) Schematic representation of Bstlp. The shaded regions represent

potential membrane spanning regions, and (*) represents the location of potential N-

linked glycosylation sites. The first five amino acids are shown to highlight the double

arginine motif. The location of the epitope tag in BSTI-HA is indicated. The predicted

topology shown is based on the number of glycosylation sites that are apparently utilized

(see text).
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Figure 6. Bstlp is an integral membrane glycoprotein.

(A) A cell lysate of a wild-type strain (CKY10) expressing Bstlp-HA from a CEN

plasmid (pME1170) was subjected to a series of centrifugation steps resulting in 500g,

10,000g and 150,000g pellets (P) and a 150,000g supernatant (S). An equal number of

cell equivalents were loaded in each lane. (B) Lanes 1 and 2: cell lysates of a wild-type

strain (CKY 10) carrying the BSTI-HA-containing plasmid pME1170 (as in A) or the

BST]-containing plasmid pME1101 respectively. Lanes 3 - 6: a cell lysate from the

BST1-HA- containing strain in (A) was incubated in 1% Triton at 4°C for 1 h and

centrifuged at 150,000g to give pellet (P) and supernatant (S) fractions (Lanes 3 and 4),

or was treated (or mock treated) with endoHf (Lanes 5 and 6). Lanes 7 and 8: cell lysates

from a secl8-1 mutant strain (CKY59) containing BSTI-HA (pME1170) grown

continuously at 24°C or shifted to 37°C for 2 h. An equal number of cell equivalents was

used for each treatment. Bstlp-HA was detected by SDS-PAGE and Western analysis

with the 12cA5 monoclonal antibody.
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Figure 7. Bstlp colocalizes with the luminal ER protein Kar2p. Cells (CKY10)

expressing BSTI-HA from the centromere plasmid pME1170 were fixed, spheroplasted,

washed with 0.1% SDS and processed for double-label indirect immunofluorescence. (A)

Indirect immunofluorescence of Bstlp-HA. (B) Indirect immunofluorescence of Kar2p.

(C) DAPI stained nuclear DNA. (D) Cell bodies visualized using Nomarski optics. All

panels are 1250X magnification.
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Figure 8. bst mutants secrete the luminal ER protein Pdilp. Samples from a wild-type

strain (CKY10), a PDIAHDEL strain (CKY395), bstl-1, bst2-1 and bst3-2 mutant strains

(CKY330, CKY332 and CKY334) were made as described for Figure 4B. Pdilp was

detected by Western analysis with anti-Pdilp antibody. (*) represents the glycosylated form

of Pdilp that is secreted from cells.
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Figure 9. bst mutants increase the rate at which s 11-invertase leaks from the ER.

Isogenic suc2A (CKY343) and bstlA suc2A (CKY344) strains, a bst2-1 suc2A

(CKY345) and a bst3-2 suc2A (CKY346) expressing s 11-invertase from a plasmid

(pEHB29) were grown in supplemented minimal medium at 30'C, pulse-labeled with 35S

trans-label for 20 min and chased for the times indicated. s 11-invertase was

immunoprecipitated and then boiled in SDS to disrupt the immune complexes, and a

fraction was reimmunoprecipitated with al,6-specific Ab. Samples were treated with

endoHf, resolved by SDS-PAGE, visualized and quantitated on a PhosphorImager.

Shown is the average value from three experiments for the fraction of the total s 11-

invertase that was recovered in the a 1,6 precipitation. Error bars represent one standard

deviation.
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Figure 10. Genetic interactions between bst mutants and sec mutants.

Each of the bst sec double mutant strains listed in Table 1 carrying either the vector

pRS316 or the corresponding BST gene-containing plasmid (pME1101 or pME253) was

assayed in streakouts on selective medium for growth at temperatures over the range

indicated. Shown is a graphic summary of the data.

102



1 - wild-type growth
- moderate to poor growth

secl2-4 secl3-1 secl6-1 sec23-1 secl7-1 secl8-1 sec21-1 sec27-1
BST1 +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
BST2 + +- + +-++- + +- + +- + +- ++- ++-

360C-

330"C

30"C-

280"C

24 0"C



Figure 11. Models for the function of the BST genes.

(A) Regulatory model in which the BST genes inhibit the completion of transport vesicle

formation, allowing cargo sorting to occur. (B) Organizational model in which the BST

genes maintain distinct subcompartments in the ER from which vesicle formation occurs.

Resident proteins are excluded from these regions and vesicle budding is inhibited

outside these regions.
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Chapter Two - Appendix

Further characterization of the BST genes
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PREFACE

Since the publication of Chapter 2, a few additional pieces of data have been generated

that fit best as part of that body of work and are therefore included here as an appendix to

Chapter 2. These results include an extension of the genetic analysis to incorporate the

COPII mutants sec31 and sec24, the recent appearance in the database of a C. elegans

homolog of BST1, and the identification of BST3 as ERV25 (in collaboration with C.

Barlowe, Dartmouth).
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MATERIALS AND METHODS

Genetic interactions between bst mutants and sec mutants

Crosses and tetrad analysis were conducted as described in Chapter 2. The strains used

were CKY496 (MATa ura3-52 leu2-3,112 sec24), CKY507 (MATa ura3-52 sec31-1),

CKY331, CKY333 (both described in Chapter 2), and MEY529 (MATa ura3-52 leu2-

3,112 bst3-2).

Determination of identity between BST3 and ERV25

The erv25A strain CBY114 (MATa his3A200 ura3-52 leu2A1 lys2A202 trplA63

erv25::HIS3; from C. Barlowe, Dartmouth) was crossed to both wild-type (CKY10) and

bst3-2 (MEY529 - see above) mutant strains. Diploids from these crosses were analyzed

for Kar2p secretion using the immunoblotting filter assay (see Methods from Chapter 2)

to test for complementation. Diploids were then sporulated and the resulting tetrads were

also tested for Kar2p secretion by this assay to assess linkage.
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RESULTS AND DISCUSSION

bst mutations partially suppress the temperature sensitivity of sec24-1 and sec31-1

bst mutations can partially suppress temperature-sensitivity of secl2-4, secl3-1, secl6-1,

and sec23-1 mutant strains (as described in Chapter 2). The recent isolation of

temperature-sensitive alleles of the two remaining COPII genes, SEC24 and SEC31 (A.

Frand and C. Kaiser, unpublished), allowed the analysis of suppression by bst mutations

to be extended to include these genes. The bstl, bst2, and bst3 mutant strains CKY330,

CKY332, and MEY529 were crossed to the sec24-1 and sec31-1 mutant strains CKY496

and CKY507, and diploids were isolated. Diploids were then sporulated and segregants

from the resulting tetrads were analyzed for temperature-sensitivity and Kar2p secretion

to determine their genotype. The results of these tests showed that all three bst mutations

could partially suppress the temperature-sensitivity of both sec24-1 and sec31-1 mutant

strains. Although bst mutations partially suppress conditional mutations in all the SEC

genes involved in COPII vesicle formation, the suppression is nonetheless specific since

bst mutations exacerbate the temperature-sensitivity of sec mutants involved in vesicle

fusion or COPI vesicle formation. A summary of all genetic interactions between bst

mutants and ER to Golgi sec mutants is shown in Figure 1 of this appendix. These results

further demonstrate that deleting BST gene function removes a restriction to COPII

vesicle formation.

BST1 and a C. elegans homolog share a motif characteristic of triglyceride lipases

Since the publication of Chapter 2, a C. elegans ORF (T19B 10.8) predicted to encode a

protein with significant homology to Bstlp has been identified(Figure 2A). Both proteins

have a similar overall structure, consisting of a large luminal domain at the N-terminus

and multiple membrane spanning regions at the C-terminus (Figure 2B). In addition,

both proteins contain a motif characteristic of the active site of triglyceride lipases that is
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situated in the presumptive luminal domain where the two proteins show the highest

degree of homology (-30% identity and 62% similarity; Figures 2B, and 2C). The

consensus pattern for this motif is [LIV]-X-[LIVFY]-[LIVMST]-G-[HYWV]-S-X-G-

[GSTAC] (Prosite PS00120; LIPASE_SER; Figure 2C). The highlighted serine has been

shown in characterized lipases to participate, with an aspartic acid and a histidine, in a

charge relay system similar to that of serine proteases (Blow, 1990). This motif is also

found in prokaryotic lipases and in lecithin-cholesterol acyltransferase, which catalyzes

the transfer of fatty acids between phosphatidylcholine and cholesterol (McLean et al.,

1986). Thus, the motif appears to be suggestive of esterase activity capable of removing

(or transferring) fatty acids from triglycerides or, in some cases, phospholipids. The

relevance of this motif in Bstlp will be addressed in Chapter 5.

BST3 is identical to ERV25

Erv25p is a member of the p24 protein family and a major component of COPII-coated

vesicles. The protein forms a complex with Emp24p/Bst2p, and erv25A mutants show

selective transport defects identical to those of an emp24/bst2 mutant (Belden and

Barlowe, 1996). In addition, erv25A mutants show defects in Kar2p retention that are

identical to those described for bstl, emp24/bst2, and bst3 mutants (C. Barlowe, personal

communication). Because of the similarity in phenotypes between erv25 and bst3

mutants, as well as the association of Erv25p with Emp24p/Bst2p, we (in collaboration

with C. Barlowe, Dartmouth) tested directly whether ERV25 and BST3 are identical. The

erv25A strain CBY114 was crossed to both wild-type (CKY10) and bst3-2 mutant

(MEY529) strains and the resulting diploids were tested for Kar2p secretion. The erv25A

and bst3-2 mutations failed to complement, as the diploid from this cross still secreted

excess Kar2p, whereas the diploid from the control cross showed normal low levels of

Kar2p secretion. Diploids from each cross were then sporulated and the resulting tetrads

were examined for Kar2p secretion. In the cross between erv25A and bst3-2, complete
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linkage of these mutations was demonstrated by 4:0 segregation of the Kar2p secretion

phenotype (n= 11), whereas the control cross showed the expected 2:2 segregation of this

phenotype (n= 10). On the basis of the linkage and noncomplementation of erv25 and

bst3 mutations, we conclude that ERV25 and BST3 are identical.

The identity of ERV25 and BST3 places two of the BST proteins as major

constituents of COPII-coated vesicles. This observation, along with the specificity of

bypass suppression shown by bst mutations, suggests that the model in which the BST

proteins regulate or influence COPII-coated vesicle formation (rather than an alternative

pathway from the ER to the Golgi) is more likely. Further, and more direct, experiments

aimed at distinguishing between these two possibilities are the subject of Chapter 3.
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Figure 1. Summary of genetic interactions between bst mutants and sec mutants. A

graphic representation of growth comparisons over the indicated temperature range is

shown. The data for BST1 and BST2 involve comparison of isogenic single and double

mutants as described in Figure 10 of Chapter 2. The data for BST3 are comparisons of

several bst3 sec double mutants with the sec mutant parent and sec mutant segregants in

the cross.
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Figure 2. Comparisons of Bstlp and a C. elegans homolog. (A) Comparison of the

protein sequences of Bstlp and the C. elegans ORF T19B 10.8. Boxed regions indicate

identical amino acids, and shaded regions indicate similar amino acids. Amino acids 48

to 404 of T19B 10.8 and 78 to 498 of Bstlp (the majority of the luminal domains of each

protein) share 30% identical and 62% similar amino acids. (B) Schematic diagram

comparing the overall structure of both proteins. Dark shaded regions represent potential

membrane spanning segments, and the light shaded areas represent the region of highest

homology. (*) indicates the location of the lipase motif in each protein. (C) Comparison

of the lipase motifs of Bstlp and T19B 10.8 with the consensus sequence.
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Chapter Three:

COPII vesicle budding in vitro in the absence of Secl3p

Evidence supporting a role for the BST proteins in regulating COPII vesicle formation
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ABSTRACT

The budding of transport vesicles from the endoplasmic reticulum (ER) is driven by the

assembly of a proteinacious coat (termed COPII) on the cytosolic surface of the

membrane. SEC13 is an essential gene required for this process and encodes a major

component of the COPII coat. Mutations in any one of three genes (BST1, EMP24/BST2,

or ERV25/BST3), however, enable growth and ER to Golgi transport in the absence of

Secl3p. This report describes experiments investigating whether the transport observed

in secl3A bst mutants occurs via COPII vesicles (lacking Secl3p) or via an alternative

transport pathway. Examination of bst and sec13A bst mutants by electron microscopy

shows that secretory organelles in these mutants have essentially normal morphology. In

vitro experiments demonstrate that the budding of COPII vesicle markers from

microsomal membranes does not require Sec 1l3p, suggesting that COPII vesicles can

form without Secl3p and that this is the likely mechanism of transport in sec13A bst

strains. In addition, using the in vitro budding assay, we demonstrate that Bstlp (unlike

Emp24p/Bst2p and Erv25p/Bst3p) is not incorporated into transport vesicles. The

relevance of these results to models for the function of the BST genes is discussed.
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INTRODUCTION

The movement of secretory proteins from the endoplasmic reticulum (ER) to the Golgi is

mediated by transport vesicles that are formed by the assembly of cytosolic coat proteins

on the ER membrane (Schekman and Orci, 1996). In the yeast Saccharomyces

cerevisiae, six proteins (Secl6p, Sarlp, Secl3p, Sec23p, Sec24p, and Sec3lp) are known

to be components of the COPII coat (Barlowe et al., 1994; Espenshade et al., 1995). The

current view of the function of each of these proteins was reviewed in Chapter 1.

SEC13 is an essential gene required for ER vesicle formation in vivo. Conditional

mutants exhibit complete blocks in the transport of marker proteins from the ER and

accumulate ER membranes at restrictive temperatures (Kaiser and Schekman, 1990), and

spores carrying deletions of SEC13 fail to germinate on rich medium (Pryer et al., 1993).

In addition, sec13 mutants show genetic interactions with each of the five other vesicle

formation sec mutants (Kaiser and Schekman, 1990).

The importance of Sec 13p in COPII vesicle formation has also been examined in

cell-free assays that reconstitute vesicle budding using microsomal membranes and

cytosol (or purified cytosolic proteins). Antibodies to Secl3p block vesicle release in

these assays, and this block can be overcome by the addition of purified Secl3p/Sec3 lp

complex (Salama et al., 1993). In addition, the Secl3p/Sec3lp complex is one of the

three purified factors (Sarlp and the Sec23p/Sec24p complex being the others) that are

both necessary and sufficient to satisfy the cytosolic protein requirement in an assay

using urea washed membranes (Salama et al., 1993; Barlowe et al., 1994). Cytosol from

conditional secl3 mutants is not, however, defective in vitro, although this could be due

to the fact that the assay itself is temperature sensitive and the temperatures required to

see a defect with secl3 cytosol may be above those at which the assay functions (Pryer et

al., 1993). These results demonstrate that the Secl3p/Sec3lp complex is essential for

COPII vesicle budding in vitro, but fail to address directly the requirement for Secl3p.
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The essential nature of Sec 13p in COPII vesicle formation (suggested by the results

outlined above) is challenged by the observation that mutations in any one of three genes

(BST1, EMP24/BST2, or ERV25/BST3) enable growth and ER to Golgi transport in the

absence of Sec 13p (Elrod-Erickson and Kaiser, 1996). This bypass of the requirement

for Sec 13p could be explained by either of two models. In the first model, the BST

proteins impose a restriction on COPII vesicle formation, and Secl3p is required to

overcome this restriction. Eliminating the BST restriction (by mutation) allows COPII

vesicles to form without Sec 1l3p. In the second model, the BST proteins inhibit an

alternative pathway for transport between the ER and Golgi that is revealed by mutations

in BST genes. In this model, Secl3p would be essential for COPII vesicle formation.

Several lines of evidence suggest that the first model is correct. The inability of bst

mutations to suppress the deletion of other COPII genes (Elrod-Erickson and Kaiser,

1996) makes the complete bypass of COPII-mediated transport unlikely. In addition, the

finding that Emp24p/Bst2p and Erv25p/Bst3p are major constituents of COPII-coated

vesicles (Schimm6ller et al., 1995; Belden and Barlowe, 1996) is also more consistent

with a role for these proteins in the assembly of COPII vesicles. Here we describe further

experiments that show COPII vesicles can form in vitro without Sec I 3p. Collectively,

these data argue strongly that the BST proteins restrict the formation of COPII-coated

vesicles and help focus future experiments on the nature of this restriction and why it

exists.
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MATERIALS AND METHODS

Electron microscopy

The yeast strains CKY10, CKY325, CKY326, CKY330 and CKY332 were used for this

study (see Table 1, Chapter 1 for their complete genotype). Cultures (100 ml) grown

exponentially in YPD at 25C for 18 hrs were collected at an OD 600 of 0.5, concentrated

to a volume of 5 ml, and fixed by the addition of fresh glutaraldehyde to a final

concentration of 2%. Cells were immediately pelleted and washed twice with 2 ml of

dH20. The cells were then incubated for 4 hours at 4"C in 1 ml fresh 4% KMnO4 with

shaking, washed 5 times with dH 20, and moved to fresh tubes where they were incubated

in 2% uranyl acetate for 18 hrs at 4"C in the dark. The cells were again washed 5 times

with dH20 and dehydrated in a graded series of ethanol washes : 70% ethanol for 3 min,

80% ethanol for 3 min, 95% ethanol for 5 min, and 100% ethanol (fresh bottle) 4 x 5 min.

The fixed, dehydrated cells were embedded in Spurr's resin and sectioned to a thickness

of 70-90nm. Sections were stained with a 1:5 dilution of Reynolds' lead citrate

(Reynolds, 1963) for 2.5 min to enhance membrane profiles and were visualized on a

JOEL 1200CX electron microscope at 80 kV.

In vitro assay for vesicle formation

Cytosol was prepared from cultures grown in YPD 5% glucose to an OD600 of 4.0. Cells

were harvested, washed twice in WB (20 mM HEPES-KOH, pH 6.8, 150 mM KOAc, 5

mM MgOAc, 250 mM sorbitol), and lysed by vortexing with glass beads in 2 ml per L

starting culture of RB (WB containing 1 mM DTT, 1 mM ATP, 0.5 mM PMSF, 0.7tg/ml

leupeptin and 0.5 pgg/ml pepstatin A). The lysate was collected and the beads were

washed 4x with 2 ml per L starting culture RB. Lysate and washes were mixed and

cleared of all insoluble material by centrifugation for 10 min /40C /32,000 rpm in a

TLA100.3 rotor, and then for 1 h /4"C /100,000 rpm in a TLA100.3 rotor (Beckman).

The soluble protein concentration was generally -10 mg/ml by Lowry assay using
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lysozyme as a standard. The cytosol was aliquoted, frozen in liquid nitrogen, and stored

at -80C until needed.

Membranes for in vitro assays were prepared from cultures grown in YPD 4%

glucose to an OD 600 of 2.0. Cells were harvested, incubated in 10 ml per L starting

culture of 100 mM Tris-S04, pH 9.4, 100 mM n-ME for 10 min, and spheroplasted using

40 U/ OD cells of bacterially expressed lyticase in SB (10 mM Tris-HC1, pH 7.5, 0.7 M

sorbitol, 1.5% (w/v) Bactopeptone, 0.75% (w/v) yeast extract, 0.5% glucose).

Spheroplasts were collected after being spun through a sucrose/Ficoll cushion (20 mM

HEPES-KOH, pH 7.4, 0.8 M sucrose, 1.5% (w/v) Ficoll 400) and then gently lysed with

glass beads in lysis buffer (20 mM HEPES-KOH, pH 7.4, 0.1 M sorbitol, 50 mM

KOAc, 2 mM EDTA, 1 mM DTT, 1 mM PMSF, 0.7gg/ml leupeptin, 0.5Sg/ml

pepstatin A). The lysate was collected and the beads were washed 4x with 2 ml per L

starting culture lysis buffer. The lysate and washes were combined and cleared of

unlysed cells by centrifugation at 500g /4C /2 min. Membranes from the cleared lysate

were then collected by pelleting at 13,000g /4"C /2 min in a microfuge. These

membranes were resuspended in lysis buffer, and 0.5 ml aliquots were layered on top of

sucrose step gradients (2.25 ml 1.2 M sucrose in lysis buffer carefully layered on top of

1.5 M sucrose in lysis buffer in 5 ml Beckman ultraclear ultracentrifuge tubes).

Gradients were centrifuged at 32,500 rpm /4°C /1 hr in an SW 50 Ti rotor (Beckman).

The microsomal membranes banded at the interface of the sucrose steps and were

collected, diluted 5-fold in RB, pelleted at 13,000g /4°C / 2 min in a microfuge, and

washed 2x with RB. The membranes were then resuspended in -3001l of RB per 1000

OD units of cells, frozen in aliquots in liquid nitrogen, and stored at -80"C. The protein

concentration was generally -2 mg/ml by modified lowry assay (DC protein assay kit,

BioRad) using lysozyme as a standard.

Reactions were performed using 50gg of microsomal membranes and 1 mg of

cytosol in a final volume of 500tl. The reactions also contained (final conc.) 1 mM ATP,
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40 mM creatine phosphate (CP; disodium salt, Sigma), 0.2 mg/ml creatine phosphokinase

(CPK; type 1 from rabbit muscle, Sigma), 1 mM GDP-mannose (type 1 sodium salt,

Sigma), 0.1 mM GTP, and 1 mM PMSF in RB. Reaction mixtures were assembled on

ice, with membranes being added last, and then the reactions were incubated for 1 hr at

20"C. Control reactions were as follows: (4°C) - was kept on ice during 1 hr incubation,

(+ apy) - 10U/ml apyrase (grade VII, Sigma) was substituted for ATP, CP and CPK, and

(- cyt) - RB was substituted for cytosol. After incubation, reactions were placed on ice

for 5 min, the donor membranes were pelleted at 13,000g /4"C /2 min, and vesicles were

collected from the supernatants by centrifugation at 150,000g /40C /30 min in a

TLA100.3 rotor. The vesicle fractions, as well as 2.5 jg and 5gg of microsomal

membranes, were analyzed by SDS-PAGE and Western blotting using antibodies against

the vesicle marker Sec22p (1:1000 dilution), the resident ER marker Sec61p (1:1000

dilution) and the COPII marker Sec 16p (1:1000 dilution). Western blots were developed

using the ECL system (Amersham) and quantitated using an LKB 2202 Ultroscan laser

densitometer (LKB, Bromma, Sweden).
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RESULTS

Examination of secl3A bst and bst mutant strains by electron microscopy

secl3A bst mutant strains grow almost as well as wild-type strains at 250C and show

normal (although slightly delayed) transport of secretory proteins (Elrod-Erickson and

Kaiser, 1996). To characterize these mutants more fully we examined the morphology of

the secretory organelles in both secl3A bst and bst mutant strains by electron microscopy.

The strains CKY10 (wild-type), CKY325 (secl3A bstl), CKY326 (secl3A bst2),

CKY330 (bstl), and CKY332 (bst2) were fixed and stained with permanganate to aid in

the visualization of membranes as described in Kaiser and Schekman (1990). Wild-type

cells show ER membrane around the nucleus (the nuclear envelope) and at the extreme

periphery of the cell, just under the plasma membrane (Figure lA). Both sec13A bst

mutant strains show a steady-state accumulation of ER membrane within the interior of

the cell that is similar to the phenotype observed for vesicle formation sec mutants that

have been held at restrictive temperatures for -30 min (Kaiser and Schekman, 1990;

Figures lB and 1C). This accumulation of ER was observed in greater than 90% of all

cells and is consistent with the delay in transport of secretory proteins observed in these

mutants. sec13A bst mutant strains did not show any other abnormal morphologies. The

bst mutant strains were virtually indistinguishable from the wild-type control (Figures ID

and 1E). Thus secl3A bst mutants show a steady state accumulation of ER membrane

that is consistent with slower kinetics of transport out of the ER, but are otherwise

morphologically normal, and bst mutant strains show no aberrant morphologies.

Vesicle budding in vitro does not require Secl3p

Depletion and antibody block experiments, as well as the reconstitution of vesicle

budding using purified cytosolic factors and washed membranes, have established the

Sec 13p/Sec3 lp complex as an essential component in the formation of COPII-coated
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vesicles in vitro (Pryer et al., 1993; Salama et al., 1993; Barlowe et al., 1994). Because

bst mutations can bypass the cellular requirement for Sec 13p in vivo, we wondered

whether Secl 3p itself was absolutely required for COPII vesicle formation. We therefore

used an in vitro vesicle budding assay (basically as described in Wuestehube and

Schekman, 1992) to assess the requirement for Sec 13p.

The assay uses ER-enriched membrane preparations and cytosol, and is outlined in

Figure 2. Basically, an easily sedimentable microsomal membrane fraction (donor

membranes) is mixed with cytosol, an ATP regeneration system, and GTP at 20"C for 1

hour. The donor membranes are then removed by a medium speed (13,000g) spin,

leaving any vesicles that have been produced in the supernatant. The vesicles can then be

collected from this supernatant by pelleting at high speed (150,000g). The reaction is

known to require an energy source (is inhibited by apyrase), cytosol, and incubation

temperatures of 20 - 250C (is inhibited at 40C; Wuestehube and Schekman, 1992).

Using this assay we compared the efficiency of vesicle budding when both

membranes and cytosol were prepared either from a wild-type strain (CKY10) or from a

secl3A bst] mutant strain (CKY325). The use of a sec13A bstl mutant as a source of

both membranes and cytosol ensured that these reactions were completely free of Secl3p.

As can be seen in Figure 3, the reactions using secl3A bstl components were

indistinguishable from those using wild-type components. Release of the vesicle marker,

Sec22p, and the COPII marker, Sec 16p, from the donor membranes into the vesicle

fraction was equally efficient in both cases and was dependent on an energy source, the

addition of cytosol, and incubation at 20"C. Furthermore, the resident ER marker protein,

Sec6lp, was not efficiently released from the donor membranes, demonstrating that the

reactions measure vesicle production (not fragmentation of the donor membranes) and

faithfully segregate resident proteins from vesicle proteins. These results demonstrate

that Secl3p is not required for the budding of COPII vesicle markers in the context of bst

mutant membranes.
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We also examined vesicle budding from wild-type membranes using either wild-type

(CKY10) or secl3A cytosol (prepared from the secl3A bstl mutant strain CKY25) to

address whether Secl3p is required in this context. As shown in Figure 4A, both cytosols

were able to promote vesicle budding from wild-type membranes to a similar extent.

Vesicle production required the addition of cytosol, indicating that the membranes do not

contain sufficient amounts of COPII proteins to effectively drive vesicle budding. We

could not, however, rule out the possibility that there was sufficient Secl3p on the

membranes to allow budding after the addition of cytosol. We therefore urea washed

wild-type membranes to remove peripheral proteins, and compared the efficacy of wild-

type and secl3A cytosol to promote vesicle budding from the washed membranes. The

overall efficiency of vesicle budding decreased with increasing stringency of the urea

wash, but under no conditions did we detect a difference between secl3A and wild-type

cytosols in their ability to promote vesicle budding from these membranes (Figure 4B).

We therefore conclude that Sec 13p is not required for COPII vesicle formation in vitro.

Bstlp is not packaged into transport vesicles produced in vitro

Both Emp24p/Bst2p and Erv25p/Bst3p have been shown to be components of COPII-

coated vesicles (Schimmiller et al., 1995; Belden and Barlowe, 1996). In order to

address whether Bstlp is also incorporated into transport vesicles, we examined the

release of Bstlp-HA from donor membranes (prepared from the wild-type strain CKY10

expressing Bstlp-HA from the centromere-based plasmid pME1170 - see Chapter 2) in

the in vitro budding assay. Donor membranes and vesicle fractions were examined by

SDS-PAGE and immunoblotting, using antibodies against both Sec22p and the HA

epitope. The efficient release of the Sec22p marker demonstrated the production of

vesicles. Bstlp-HA, however, was not detected in the vesicle fractions at levels above

background, indicating Bstlp-HA is not incorporated into COPII-coated vesicles and is

instead a permanent resident of the ER membrane (Figure 5).
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DISCUSSION

The identification of the BST genes as bypass suppressors of secl3A raised a number of

questions about the role of Secl3p in COPII-coated vesicle formation and the function of

the BST genes in ER to Golgi transport. The experiments described here allow us to

address some of these questions. We have demonstrated that Secl3p is not absolutely

required for COPII vesicle formation in vitro, by showing that COPII vesicle markers are

efficiently released from donor membranes in cell-free assays using sec13A bst

components. Additional data suggests that Sec 13p is not required in vitro even in the

context of budding from wild-type membranes. Thus, explanations for the bypass of

Sec 13p do not require hypotheses of a novel transport mechanism between the ER and

Golgi, since COPII vesicles are capable of forming without Secl3p. The morphological

examination of sec13A bst and bst mutant strains by electron microscopy also provides no

evidence of novel structures or aberrant morphologies that might suggest a novel

transport pathway. The simplest explanation for these results is that the BST genes

impose a restriction on COPII vesicle formation and that Secl3p is required to overcome

this restriction. In the absence of the restriction, Sec 13p is no longer strictly required to

transport proteins via COPII vesicles. We have also provided evidence that Bstlp is not a

component of COPII vesicles, an observation that distinguishes it from Emp24p/Bst2p

and Erv25p/Bst3p and helps to further refine models for the function of the BST proteins.

COPII vesicle formation at the ER

Sec 1l3p is a component of the COPII coat whose assembly on the ER membrane drives

the formation of COPII vesicles. The results presented here indicate that Secl3p is not

strictly required for vesicle formation in cell free assays, and those of Chapter 2 show that

Sec 13p is dispensable in vivo if cells have a mutation in any one of the three BST genes.
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How can these results be reconciled with the body of evidence suggesting that Sec 13p

plays a central and essential role in COPII vesicle formation?

One possible unifying idea is that Secl 13p is required for maximal stability of the

COPII coat; thus, Sec 13p, while important for vesicle coat assembly, would only be

essential under conditions where stability is critical. This could explain why the bypass

of SEC13 is temperature dependent. If the absence of BST function stabilizes the coat (or

makes coat stability less important), then Sec 13p would not be essential at lower

temperatures but would still be essential at higher temperatures where coat stability is

perhaps more critical. The requirement for Secl3p in stabilizing the coat at high

temperatures might also account for the apparent lack of a requirement for Secl3p in

vitro, because our cell-free assays are carried out at 20"C. (Direct tests of this idea are

not possible, however, because the assay itself is extremely inefficient at temperatures

above 30"C.) The inviability of secl3A BST+ strains could be explained if the normal

function of the BST gene products destabilizes the coat during vesicle formation (see

below).

Previous results demonstrating a requirement for the Secl3p/Sec3lp complex in

vitro can now be understood to imply an essential requirement for Sec3lp. Our use of

sec13A bst mutants as the source of membranes and cytosol for in vitro budding reactions

not only ensured that the reactions were completely free of Sec 1l3p, but also allowed us to

address the question of the requirement for Sec 13p without having to devise a means of

purifying functional Sec3lp away from Sec 13p, a difficulty that is likely to be

responsible for this question having never been directly addressed.

Functions of the BSTproteins in COPII vesicle formation

Several lines of evidence, some of which are described in this chapter, strongly suggest a

role for the BST proteins during COPII vesicle formation. The inability of bst mutations

to suppress deletions in other COPII genes (Chapter 2) indicates that the suppression of
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secl3A is probably not due to a complete bypass of COPII vesicle-mediated transport.

The results presented in this chapter show that COPII vesicles can indeed form without

Secl3p, strengthening the idea that bst mutations allow the budding of COPII vesicles in

the absence of Sec 13p. Furthermore, the fact that two of the BST proteins

(Emp24p/Bst2p and Erv25p/Bst3p) are themselves components of COPII vesicles

(Schimmdller et al., 1995; Belden and Barlowe, 1996) argues that these proteins have a

function in COPII-coated vesicle formation. What, then, is the nature of this function?

The phenotypes of bst mutant strains indicate that the function of the BST proteins

affects both protein sorting and the assembly of the COPII coat. Either the regulation of

vesicle coat assembly by BST proteins allows efficient sorting to occur, or the BST sorting

function alters conditions for coat assembly such that there is a strict requirement for a

fully functional coat.

As suggested in Chapter 2, the BST proteins could, by restricting the completion of

vesicle assembly, keep the vesicle coat in a partially assembled state long enough to

allow sorting to occur. In this model, Sec l 3p would be required to progress beyond the

BST restriction. However, there are several problems with this model. sec13A bst

mutants have a slightly decreased rate of transport for all secretory proteins, suggesting a

decreased rate of vesicle release (Chapter 2). These mutants nonetheless show sorting

defects (leak resident proteins). If all the BST proteins do is provide sufficient time for

sorting to occur, one might expect the sec13A bst mutants to sort efficiently. In addition,

explaining rates of transport becomes difficult (although not insurmountable) in a model

where maximal rates are achieved by slowing vesicle release in order to increase the

concentration of a subset of cargo proteins. (Why aren't most proteins transported faster

in bst mutants than in wild-type if a restriction to vesicle release is removed?)

Furthermore, if Secl3p has a special role in overcoming the BST regulation, and can

therefore be bypassed by removing this regulation, why do bst mutations also partially

suppress mutations in all the other COPII subunits?
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Most of these problems are overcome by proposing that cells monitor both sorting

and vesicle assembly such that vesicle production is restricted by the BST proteins when

sorting is incomplete or when the coat is compromised by mutation. This BST

"checkpoint" would therefore ensure efficient sorting and vesicle assembly in a manner

similar to the checkpoints in the cell cycle that ensure efficient segregation of

chromosomes during mitosis. According to this model, one might expect to be able to

generate dominant mutations in BST genes that block or slow vesicle formation. We

explored this possibility extensively and were unable to find such mutants, but our

inability to generate dominant mutants in no way serves as a test of the model. Thus, the

checkpoint analogy still proves a plausible model for the function of the BST proteins if

they act primarily as regulators of vesicle assembly.

Alternatively, if we adopt the idea from the previous section that Sec 13p is only

required under conditions where coat stability is critical, the BST proteins could instead

perform a sorting function that indirectly affects coat assembly by changing the

physiology of the forming vesicle in a way that makes coat stability important. Thus,

when the BST sorting function is active, Sec l3p would be required. In the absence of the

sorting function, Sec 13p would not be required, except at high temperatures where coat

stability is again important. This idea is appealing because it easily explains why bst

mutations partially suppress temperature sensitive mutations in all COPII subunits

(Chapter 2 and its appendix); decreasing the requirement for a stable coat (by removing

the BST sorting function) would make coat assembly easier, even with mutant

components. This model also explains why the rate of transport of most proteins in bst

mutants is identical to that seen in wild-type strains. Vesicles form at similar rates with

or without the BST sorting function; it is only the requirement for stability in the coat

(and the sorting of some proteins) that is affected by BST protein activity. How a sorting

function might increase the need for stability in the vesicle coat is now the obvious

question and will be discussed in detail in Chapter 5.
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Figure 1. Analysis of secl3A bst and bst mutant strains by electron microscopy.

Representative micrographs are shown for (A) the wild-type strain CKY10, (B) the

secl3A bstl-1 strain CKY325, (C) the secl3A bst2-1 strain CKY326, (D) the bstl-1

strain CKY330, and (D) the bst2-1 strain CKY332. All strains were grown at 25C and

processed as described in the Materials and Methods. Arrows indicate ER membranes.

The size bars are 500nm.
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Figure 2. Schematic diagram outlining the in vitro assay for vesicle budding. ER-

enriched microsomal membranes are mixed with cytosol, an ATP regeneration system

and GTP at 20"C for 60 minutes as described in the Materials and Methods. Microsomal

membranes are then pelleted by centrifugation at 13,000g. Vesicles remain in the

supernatant and are collected by pelleting in a subsequent centrifugation step at 150,000g.

Samples are prepared and analyzed by SDS-PAGE and Western blotting using antibodies

to vesicle markers.
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Figure 3. Secl3p is not required for COPII vesicle budding in vitro. Vesicle budding

reactions were performed using either wild-type membranes and cytosol or secl3A bstl

membranes and cytosol as described in the Materials and Methods. Vesicle fractions

were analyzed by immunoblotting and quantitated densitometrically. Percent release was

calculated by comparing the amount of marker proteins detected in vesicle fractions with

the amount detected in the original donor membranes. Shown are the percentage of three

marker proteins released from donor membranes in total and control reactions.
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Figure 4. Secl3p is not required for vesicle budding from wild-type membranes. Vesicle

budding reactions were performed using wild-type membranes and either wild-type or

secl3A bstl mutant cytosol as described in the Materials and Methods. Vesicle fractions

were analyzed as described for Figure 3. (A) The percentage of Sec22p released into the

vesicle fraction in total and control reactions. (B) The percentage of Sec22p released

from the washed membranes in total budding reactions using either wild-type or secl3A

bstl mutant cytosols.
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Figure 5. Bstlp-HA is not incorporated into vesicles produced in vitro. Vesicle budding

reactions were performed using wild-type membranes (from a strain expressing Bstlp-

HA) and wild-type cytosol as described in the Materials and Methods. Vesicle fractions

were analyzed as described for Figure 3 and shown are the values for the percent release

of the vesicle marker Sec22p and Bstlp-HA in total and control reactions.
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Chapter Four:

Characterization of ICWP as a reporter for secretory defects

Evidence that the BST genes are important for efficient transport of GPI-anchored

proteins

144



ABSTRACT

As the study of the secretory pathway moves from the characterization of essential

components to the identification of factors required for efficiency and fidelity within the

pathway, the use of sensitive markers for perturbations in protein transport will become

increasingly important. In this report we describe the characterization of an inner cell

wall protein (Icwp) as an extremely sensitive reporter of secretory defects. Icwp is a

GPI-anchored membrane protein that is rapidly transported through the secretory

pathway. At the cell surface the protein is cross-linked to the glucan layer of the cell

wall, making it completely insoluble and immunologically undetectable unless the wall is

digested with glucanase. In wild-type cells, the steady state amounts of intracellular

(detectable) protein are extremely small. In mutant strains with perturbations in protein

transport, the protein accumulates intracellularly and is easily detected, thus providing a

simple and sensitive assay for identifying mutants with secretory defects. Icwp

accumulation identifies all sec mutants as well as additional mutants that show only

subtle kinetic defects when examined using current secretory marker proteins,

demonstrating the sensitivity of this assay. In addition, the steady state accumulation of

Icwp and Gaslp (both GPI-anchored proteins) observed in bst mutant strains suggests a

role for the BST genes in the efficient transport of GPI-anchored proteins.
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INTRODUCTION

The yeast cell wall is composed of glucans, mannoproteins, and chitin in a layered

structure. The inner layer is composed of P-1,3 and 3-1,6 glucans, small amounts of

chitin, and mannoproteins and is responsible for the mechanical strength of the cell wall

and for maintaining its shape. The outer layer is composed of mannoproteins and

determines the porosity of the wall, as well as the surface properties of the cell, such as

charge, flocculence, and sexual agglutinability (reviewed in Fleet, 1991).

Mannoproteins of the cell wall can be divided into three groups according to the

methods that are capable of extracting them: sodium dodecyl sulfate (SDS)-extractable

mannoproteins, reducing agent-extractable mannoproteins, and glucanase-extractable

mannoproteins (Valentin et al., 1984). The mechanism by which glucanase-extractable

mannoproteins are incorporated into the cell wall is thought to require that the proteins be

GPI-anchored during their transport to the plasma membrane. Once at the cell surface,

the mannoproteins (along with some of the sugar residues) are removed from the lipid

portion of their anchors and covalently attached to the cell wall glucans in a

transglycosylation reaction (De Nobel and Lipke, 1994). The incorporation into the

glucan layer of the cell wall renders such proteins completely insoluble and undetectable

by normal immunological means (Valentin et al., 1984).

Here we report the characterization of Icwp, a glucanase-extractable mannoprotein of

the inner cell wall (Moukadiri et al., 1997), as a new marker protein that provides a

simple but sensitive assay for detecting perturbations in secretory pathway function.

Fortuitous antibodies present in one of our polyclonal antisera recognize several protein

species from cell extracts of mutants with defects in protein transport, but not from cell

extracts of wild-type strains. One of these proteins was purified from yeast, sequenced,

and found to be Icwp. The detection of Icwp is dependent on its intracellular

accumulation, apparently because once it reaches the cell surface the protein is covalently
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attached to the glucan layer of the cell wall, rendering it insoluble and undetectable. Icwp

transport provides a particularly sensitive assay because the steady state amount of

intracellular (detectable) protein is very small. Only by causing the levels of

intracellular protein to increase can Icwp be easily detected. Thus, any mutation or

treatment of cells that blocks or sufficiently slows the transport of the protein through the

secretory pathway shows detectable levels of Icwp. All sec mutants, as well as additional

mutants with more subtle transport defects, show accumulation of detectable amounts of

Icwp, demonstrating the utility of the assay.

We also show that Gas p transport is defective in bstl-1 mutant strains. The fact that

Icwp and Gas lp (also GPI-anchored) are two of the three proteins known to be

transported inefficiently in bst mutant strains suggests that GPI-anchored proteins are

particularly sensitive to defects in the BST sorting function. The implications of this idea

are discussed briefly here and developed further in Chapter 5.
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MATERIALS AND METHODS

General techniques

Growth and maintenance of strains, preparation of standard media (Difco, Detroit, MI),

crosses and other genetic manipulations were performed as described in Kaiser et al.,

1994. Saccharomyces cerevisiae strains used in this study are listed in Table 1. DNA

manipulations were performed as described in Sambrook et al., 1989. pME702 was

generated by PCR amplification of the YRL391w-A ORF plus approximately 500

nucleotides of flanking DNA both upstream and downstream of the gene using the

primers: 5 '- CGGGATCCGTGGGAGTCTACACGGGCACGAG - 3' and 5 '-

GGACTAGTGAATTACGGTTAAAGGATCACCCC - 3 '. The underlined sequences

engineered a BamHI site upstream of the gene and a Spel site downstream of the gene.

This fragment was then cloned into the yeast episomal plasmid pRS306-2g (Miller and

Fink, see Chapter 2 for details) by replacing the BamHI - SpeI fragment of the polylinker.

Characterization of BAP137 antibodies

Immunoblotting with the polyclonal anti-invertase antiserum 137 unexpectedly revealed

the presence of several prominent protein species in sec mutant extracts. Analysis of sec

suc2A double mutants indicated that the bands were not encoded by the SUC2 (invertase)

gene. Using the bstl irelA strain RRY315, the cross-reacting antibodies were blot-

affinity purified as described (Tang, 1993) and called BAP137 antibodies. BAP137

antibodies were unable to detect invertase on immunoblots, further demonstrating that

these antibodies recognize an epitope (or epitopes) unrelated to invertase. All four

species observed on blots from extracts of RRY315 were detected by BAP137 antibodies

regardless of which band was used for the blot-affinity purification. (S. McGuire et al.,

UROP thesis 1995).
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Protein gels and immunoblotting

Protein extracts were prepared from 1-5 OD600 units of cells by boiling and disruption

with glass beads in 30gl of sample buffer (80 mM Tris, pH 6.8, 2% SDS, 10% glycerol,

100 mM DTT, 10% bromophenol blue). Extracts were diluted in sample buffer and

heated at 95oC for 3 min before being resolved by SDS-PAGE. Proteins were transferred

to nitrocellulose in a semi-dry transfer apparatus (Owl Scientific Plastics, Inc.,

Cambridge, MA) at 500 mV for 45 min. Blots were blocked and then incubated for 1 h

with primary antibody in TBS-T (20 mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween 20),

2% milk at the following dilutions: BAP137 antibodies were used at 1:500, and anti-

Gaslp antibody (a kind gift from H. Riezman) was used at 1:1,000 dilution. Blots were

then washed three times for 10 min each in TBS-T, incubated with a 1:10,000 dilution of

donkey anti-rabbit IgG-HRP (Amersham Corp., Arlington Heights, IL) in TBS-T, 1%

BSA for 1 h, washed 3 times for 10 min each in TBS-T, developed for

chemiluminescence using the ECL system (Amersham) and exposed to film.

Purification of Icwp

The purification of Icwp was as follows. Cultures (13.5L) of RRY315 were grown in

YPD 4% glucose to an OD 600 of 2.5, harvested, washed and resuspended in 50 ml of 100

mM Tris-S0 4, pH 9.4, 100 mM n-ME for 10 min at room temperature. The cells were

then spheroplasted using 40 U/OD of bacterially expressed lyticase in 150 ml SB (10 mM

Tris-HC1, pH 7.5, 0.7 M sorbitol, 1.5% (w/v) Bactopeptone, 0.75% (w/v) yeast extract,

0.5% glucose). Spheroplasts were spun through an equal volume of sucrose/Ficoll

cushion buffer (20 mM Tris-C1, pH 8.0, 0.8 M sucrose, 1.5% (w/v) Ficoll 400) and then

vigorously lysed with glass beads in lysis buffer P (20 mM Tris-Cl, pH 8.0, 100 mM

NaCl, 1 mM PMSF) on ice. The lysate was collected and the beads were washed 4x

with 10 ml of ice cold lysis buffer P . The lysate and washes were combined and cleared

of unlysed cells by centrifugation at 500g /4"C /2 min in a clinical centrifuge.
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Membranes from the cleared lysate were then collected by pelleting at 13,000g 1/4C /5

min in an SS34 rotor (DuPont-Sorvall), washed in cold lysis buffer P, resuspended in

lysis buffer P containing 2.5 M urea and placed on ice for 30 min. The ratio of buffer to

membranes from this point on was kept at approximately 2:1 (vol:vol of pelleted

membranes). The urea washed membranes were washed 2x in 20 mM Tris-C1, pH 8.0,

10 mM NaC1 and solubilized in 2 volumes of 20 mM Tris-C1, pH 8.0, 10 mM NaC1,

0.1% Triton X-100 on ice for one hour. The insoluble material was removed by

centrifugation at 200,000g 1/4C /1 hr in a SW41Ti rotor (Beckman) and the soluble

material was collected. The soluble protein was then subjected to a slow freeze/thaw

(placed at -20"C overnight and thawed on ice), cleared of precipitated material by

centrifugation at 200,000g, boiled for 5 min, and again cleared of precipitate by

centrifugation at 200,000g /4"C / 1 hr in a SW41Ti rotor. The soluble protein at this stage

was passed over a MonoQ column (Pharmacia) and eluted with a NaCl gradient.

Fractions were collected and analyzed by SDS-PAGE and immunoblotting using

BAP137 antibodies. Icwp eluted at approximately 150mM NaC1 in a fraction with only a

few minor contaminants (see Figure 4). This fraction was concentrated by TCA

precipitation and run on an 8% polyacrylamide SDS gel. The gel was Coomassie stained

and the -75 kDa band was excised and submitted for automated sequencing at the MIT

Biopolymers laboratory.
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RESULTS

Immunoblotting with BAP137 antibodies provides a simple and sensitive assay for

identifying mutants or treatments that perturb secretory pathway function

BAP137 antibodies were identified (as described in the Materials and Methods) because

they detect (on immunoblots) a protein species in extracts from bst mutant strains but not

from wild-type strains (Figure 1A). bst mutants have been shown to have subtle and

selective defects in protein transport (Chapter 2). To determine whether the presence of

the band detected with BAP137 antibodies was due to defects in protein transport (and

whether there was any specificity with respect to where in the pathway the block occurs),

we examined all of the sec mutant strains listed in Table 1. Cell extracts from cultures

that were either grown continuously at the permissive temperature of 24"C, or grown at

24 0C and then shifted for one hour to the restrictive temperature of 37C, were analyzed

by SDS-PAGE and immunoblotting, using BAP137 antibodies. One to four species were

detected in every sec mutant examined (the results from representative sec mutants are

shown in Figure 1B). For most of the mutants, the bands were observed exclusively in

the 37"C sample. The species of approximately 75 kDa was observed in every mutant,

although it sometimes appeared smeary and ran at almost 100 kD (as in secl2, Figure 1),

and additional bands appeared in some mutants (examined more carefully below). The

presence of BAP137-specific bands on these blots appeared to be due to the block in

protein transport induced at high temperatures in sec mutants, since no bands were

observed at 24" or 37C in extracts from either wild-type strains (Figure 1B) or randomly

chosen temperature sensitive mutants that have no sec defect (data not shown). For some

of the mutants (e.g. sec4-8, Figure 1B), less intense bands were present in the 24"C

samples, suggesting that these mutants show subtle defects in transport even at the

permissive temperature. Immunoblotting with BAP137 antibodies therefore appeared to
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be a sensitive and specific assay for identifying strains with defects in protein transport at

any step in the pathway between the ER and the cell surface.

To determine how sensitive this assay is compared to others currently employed, we

examined three additional mutants that show very subtle or selective defects in protein

transport. The deletion of SED4 in an S288C strain background causes a modest kinetic

defect in protein transport between the ER and Golgi: CPY maturation is slowed

approximately 1.6-fold in a sed4A strain compared to a wild-type strain (Gimeno et al.,

1995). This defect requires a careful pulse-chase analysis to be detected. Similarly, ISS1

encodes a nonessential homolog of SEC24 that shows genetic interactions with a subset

of ER to Golgi SEC genes, suggesting it may be important for efficient transport, but an

isslA strain has no detectable defect in the transport of commonly used marker proteins

(R. Gimeno, PhD dissertation, 1996). Finally, LST1 encodes another SEC24 homolog

and shows genetic interactions with the COPII vesicle formation SEC genes. 1stlA

mutants exhibit a kinetic defect in the transport of the plasma membrane ATPase from

the ER at 37C , but show no detectable defect in the transport of invertase or CPY at this

temperature (K. Roberg, PhD dissertation, 1997). We therefore examined extracts from

sed4A, isslA, and 1stlA strains by immunoblotting using BAP137 antibodies as

described above. All three mutants showed BAP137-detectable species at 37C,

indicating that this assay is extremely sensitive (Figure lC).

The presence of multiple species on immunoblots probed with BAP137 antibodies

correlated with two factors: 1) the step in the pathway where the mutant is defective, and

2) the length of time the mutant was kept at the restrictive temperature. Mutants affecting

early steps in protein transport were more likely to show multiple species than mutants

defective in later transport steps (compare the early acting mutants secl8-1 and sec21-1

with the late acting mutant sec4-8 in Figure 1B). In addition, the longer a mutant spent at

restrictive temperatures, the more likely it was to show multiple bands. Figure 2A shows

a kinetic analysis of the appearance of BAP137 detectable species in sec18-1 and secl-1
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mutant strains. Cultures grown at 24"C were filtered and resuspended in prewarmed

media at 37C to effect a rapid shift in incubation temperature. Samples taken at intervals

after the shift were analyzed by SDS-PAGE and immunoblotting with BAP137

antibodies. In both mutants, p75 is the first detectable species to appear and additional

bands become visible after longer incubation. (Figure 2A; secl-1 does eventually show

small amounts of p105, p120, and p160 after longer incubation times than those shown

here). Interestingly, a lag of approximately 20 minutes was observed in the secl-1

mutant before detectable increases in p75 were visible. A similar lag was observed for

another late acting mutant, sec6-4 (data not shown). Since kinetic experiments of this

kind have only been done for secl8-1, secl-1 and sec6-4, it is not known whether this lag

is a characteristic of all late acting sec mutants or is simply an indication that the block in

transport in the secl and sec6 mutants is not as rapid as in sec18-1.

We also examined whether perturbing protein transport in a wild-type strain by

prolonged exposure to tunicamycin or DTT was sufficient to give rise to BAP137-

reactive species in the immunoblotting assay. Tunicamycin or DTT was added to

exponentially growing cultures of the wild-type strain CKY10 to give a final

concentration of 5gg/ml or 5mM, respectively. Samples removed at intervals over a two

hour period were analyzed by SDS-PAGE and immunoblotting with BAP137 antibodies.

As seen in Figure 2B, after a lag of approximately one hour, BAP137-reactive species

were detectable in samples from cultures treated with either compound, and the intensity

and number of bands increased with time. Thus, perturbing protein transport either by

mutation or by chemically treating cells causes the appearance of BAP137-detectable

proteins on Western blots.

Purification and identification of p75 as Icwp

To clarify many questions about the nature of the protein(s) recognized by BAP137

antibodies, we purified the -75 kDa species (p75) from a bstl-1 irelA strain and
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sequenced the protein. This double mutant showed higher steady state levels of the

protein by Western blot than did bst single mutants (Figure lA) and had comparable

amounts to that seen with sec mutants shifted to restrictive temperatures for 1.5 hours.

Cell fractionation studies showed that p75 (as well as the other BAP137-reactive species)

behaves like an integral membrane protein: the protein was readily solubilized by treating

extracts with detergent, but was not solubilized by treating with 0.5 M NaCl, 2.5 M urea,

or carbonate buffer at pH 11.5 (Figure 3). Additional fractionation and

immunofluoresence experiments suggest that the protein(s) localizes to the ER in bstl

mutant strains (data not shown). We therefore spheroplasted approximately 45,000

OD 600 units of cells, lysed them with glass beads, and collected 13,000g membranes.

The membranes were washed with urea and solubilized in 0.1% Triton X-100. The

Triton soluble material was then taken through several denaturation steps (as described in

the Materials and Methods) that caused 80 - 90% of the soluble protein to precipitate.

The material that remained soluble was then passed over an anion-exchange column. p75

bound to the column and eluted at approximately 150 mM NaCl in a fraction with two or

three minor contaminants of much different size (see Figure 4). The proteins in this

fraction were then separated by SDS-PAGE. p75 (approximately 30 gg) was cut out of

the gel and digested with Lys C, and the resulting peptides were HPLC purified for

automated sequencing (Biopolymers laboratory, MIT).

The sequence of two such peptides (the bold sequences in Figure 5) mapped into an

open reading frame (YLR391 w-A) that encodes a 238 amino acid protein recently

described as a mannoprotein of the inner cell wall called Icwp (Moukadiri et al., 1997).

The protein sequence shows potential signals for translocation, for GPI-anchor

attachment, and for addition of a single N-linked carbohydrate (Figure 5). In addition,

42% of the amino acids are either serine or threonine and results reported by Moukadiri et

al. suggest that the protein is highly O-glycosylated. We find that the protein binds the

lectin concanavalin A even after treatment with endo H (which removes N-linked
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carbohydrates), confirming that the protein is an O-linked mannoprotein (data not

shown).

To demonstrate that Icwp is indeed the protein (or one of the proteins) recognized by

BAP137 antibodies, we cloned the gene into a high copy plasmid and introduced this

construct (pME702) into both wild-type and bstl-1 mutant strains by transformation.

Extracts from these strains and from controls transformed with the vector alone were

analyzed by SDS-PAGE and immunoblotting with BAP-137 antibodies. As seen in

Figure 6, overexpression of Icwp from pME702 significantly increased the amount of the

BAP137-reactive band of -75 kDa, but not any of the other species, suggesting that this

gene does indeed encode one of several proteins recognized by BAP137 antibodies.

bstl mutants have defects in the transport of Gaslp

All three bst mutants show Kar2p and Pdilp retention defects and inefficient transport of

Icwp. emp24/bst2 and erv25/bst3 mutants have also been shown to have kinetic defects

in the transport of invertase and Gas 1p, but not a-factor, CPY, or acid phosphatase

(Schimm6ller et al., 1995; Belden and Barlowe, 1996; and Chapter 2). bst] mutants, on

the other hand, do not show an appreciable defect in invertase transport (Elrod-Erickson

and Kaiser, 1996 - Chapter 2; Gaslp was not examined). Because Icwp and Gaslp are

both GPI-anchored proteins, we reasoned that the transport of GPI-anchored proteins may

be particularly sensitive to loss of BST gene function. To determine if Gaslp transport is

affected in bstl mutants as it is in emp24/bst2 and erv25/bst3 mutants, we examined the

steady state distribution of the protein in bstl-1 mutant strains. Gaslp is produced in the

ER as a 105 kDa protein with both N- an O-linked carbohydrates. These

oligosaccharides are extended as the protein moves through the Golgi, giving rise to the

125 kDa mature form of Gaslp (Nuoffer et al., 1991). In wild-type cells the vast majority

of the protein is found in the mature form. As seen in Figure 7, a significant fraction of

the protein is found in the ER form in a bstl-1 mutant strain, demonstrating that Gaslp is
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inefficiently transported in this mutant. Thus, the only known secretory proteins whose

transport is impaired in bstl-1 mutant strains are Gaslp and Icwp, both of which are GPI-

anchored proteins.
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DISCUSSION

As the analysis of protein transport through the secretory pathway becomes more

detailed, it will become increasingly important to use a variety of marker proteins to

assess the role of new functions. To date, most of the tests of secretory pathway function

in the yeast Saccharomyces cerevisiae have utilized three soluble proteins -- the secreted

pheromone a-factor, the secreted enzyme invertase, and the vacuolar protease

carboxypeptidase Y (CPY) -- as markers for secretory protein transport. As soluble

proteins, these markers represent a minor class of secretory cargo molecules, the majority

of which are integral membrane proteins (Kaiser et al., 1997). Major differences in the

transport of membrane proteins and soluble proteins are known, indicating that the use of

soluble proteins as markers for protein transport is insufficient. For instance, transport to

the cell surface appears to be the default pathway for soluble proteins, whereas transport

to the vacuole seems to be the default pathway for membrane proteins in yeast (Nothwehr

and Stevens, 1994). Thus, while the current marker proteins have proven sufficient for

the identification and characterization of much of the basic machinery of the secretory

pathway, additional markers may prove to be crucial for the discovery and examination

of novel functions. In addition, increasingly sensitive assays for secretory defects are

likely to be needed for the investigation of factors involved in efficiency or fidelity

functions within the pathway, because mutants with defects in such processes may have

too subtle a phenotype for easy detection using current assays.

Another argument for increasing the number of proteins used to assess transport

through the secretory pathway is the fact that different classes or families of proteins

appear to have different requirements for efficient transport. For example, amino acid

permeases require Shr3p for efficient transport (Ljungdahl et al., 1992; Kuehn et al.,

1996), and GPI-anchored proteins seem to have special lipid requirements for efficient

transport from the ER in yeast (Horvath et al., 1994; Skrzypek et al., 1997). Unless the
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transport of a number of different marker proteins is assessed, it will be difficult to

generate an accurate picture of the role of a given protein in secretory protein transport.

In this report we describe an extremely sensitive assay for detecting perturbations in

secretory pathway function. Western analysis of whole cell extracts using BAP137

antibodies detects the intracellular form of Icwp, a glucanase-extractable mannoprotein of

the inner cell wall. Because this protein is rapidly incorporated into the wall, where it is

insoluble and undetectable, the steady-state detectable fraction of Icwp is very small

(wild-type in Figure 1). Mutants or treatments that perturb the transport of the protein to

the cell surface can therefore be identified because they show a dramatic increase in the

amount of detectable Icwp (Figures 1 and 2). We have demonstrated that this assay

identifies sec mutants that block at all transport steps between the ER and cell surface

(Figure 1), and that it is sensitive enough to reveal very subtle defects that are difficult to

detect using other common transport assays. Thus, Icwp should prove to be a valuable

tool for further exploration of the details of secretory pathway function.

Implications for the function of the BST genes

bst mutants have an obvious defect in the transport of Icwp. The steady-state levels of

detectable Icwp in bst mutant strains (at all temperatures) is comparable to the amount

that accumulates in a secl8-1 mutant that has been held at restrictive temperatures for 20-

30 minutes (our unpublished observations). This defect is clearly selective, because the

transport of CPY (and most other secretory proteins) is completely normal in these

mutants (Elrod-Erickson and Kaiser, 1996 - Chapter 2). Gaslp transport is also defective

in bst mutant strains (Schimoller et al., 1995; Belden and Barlowe, 1996; and Figure 7).

Thus, it appears that the transport of GPI-anchored proteins in general may be

particularly sensitive to loss of BST gene function. Several factors are already known to

be important for the transport of GPI-anchored proteins (as discussed in Chapter 1).

Mutants that affect the assembly or attachment of the GPI-anchor precursor cause the
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accumulation of unanchored proteins in the ER (reviewed in Orleans, 1997). bst mutants

are unlikely to affect either of these processes, since the Icwp that accumulates in (and

was purified from) a bstl mutant contains an intact anchor based on its Triton X-114

partitioning behavior (our unpublished observations). The transport of GPI-anchored

proteins from the ER is also dependent upon sphingolipid biosynthesis in a manner that is

not entirely understood (Horvath et al., 1994; Skrzypek et al., 1997). Although it is

unlikely that bst mutations affect the biosynthesis of sphingolipids, it is possible that the

BST proteins could locally affect the lipids in the ER membrane, since Bstlp contains a

motif characteristic of lipases and acyltransferases (Chapter 2 - Appendix). Although

clearly speculative, a function for the BST proteins in locally altering the lipid

composition of the membrane could help explain how these mutant show selective

defects in the transport of secretory proteins and defects in the retention of resident ER

proteins. The modification of lipids in the vicinity of a forming vesicle could be

important in helping to partition some proteins into the vesicle and resident proteins out

of the vesicle. If the lipid composition of the membrane (or the consequences of proper

sorting) also influenced the assembly or stability of the vesicle coat, such a function for

the BST proteins could also explain the effects of bst mutations on COPII vesicle

formation. (These ideas are elaborated in the next chapter.) We now have the tools in

hand that should allow us to test this model.
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Table 1. Strain List
Strain Genotype Source

MATa ura3-52 leu2-3,112
MATa secl2-4 ura3-52
MATa secl3-1 ura3-52 his4-619
MATa secl6-1 ura3-52 leu2-3,112
MATa secl7-1 ura3-52 his4-619
MATa secl8-1 ura3-52 his4-619
MATasecl9-1 ura3-52 his4-619
MATasec20-1 ura3-52 his4-619
MATa sec21-1 ura3-52 his4-619
MATa sec22-3 ura3-52 his4-619
MATa sec23-1 ura3-52 leu2-3,112
MATa sec27-1 ura3-52 leu2-3,112
MATa secl-1 ura3-52
MATa sec6-4 ura3-52
MATa secl0-2 ura3-52
MATa secl5-1 ura3-52
MATa sec4-8 ura3-52
MATa sec8-9 ura3-52
MATased4-Al ura3-52 leu2-3,112
MATabstl-1 ura3-52 leu2-3,112
MATabst2-1 ura3-52 leu2-3,112
MATa bst3-2 ura3-52 leu2-3112 ade2 ade3
MATa issl-Al::TRP1 ura3-52 leu2-A his3-d200 ade2-101 trpl-d63
MATa lstl::LEU2 leu2-3,112
MATa bstl-1 irelA:: URA3 ura3-52 leu2-3,112

Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
Kaiser lab collection
R. Ram, Kaiser lab

CKY10
CKY40
CKY46
CKY53
CKY55
CKY59
CKY62
CKY64
CKY69
CKY70
CKY79
CKY100
CKY162
CKY164
CKY165
CKY166
CKY169
CKY170
CKY251
CKY330
CKY332
CKY334
CKY499
CKY536
RRY315



Figure 1. Immunoblotting with BAP137 antibodies identifies mutants with defects in

protein transport. (A) Extracts from wild-type (CKY10), bstl-1 (CKY330), bst2-1

(CKY332), bst3-2 (CKY334), and bstl-1 irelA (RRY315) strains grown at 30"C. (B)

Extracts from wild-type (CKY10), sec12-4 (CKY40), secl8-1 (CKY59), sec21-1

(CKY69), and sec4-8 (CKY169) strains grown at 24"C, or at 24°C and then shifted to

37'C for 1.5 hours. (C) Extracts from secl8-1 (CKY59), isslA (CKY499), sed4A

(CKY251), and 1stlA (CKY536) strains grown at 24"C, or at 24"C and then shifted to

37C for 1.5 hours.
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Figure 2. Time course experiments. (A) Multiple BAP137-reactive species accumulate

upon prolonged incubation at restrictive temperatures. Extracts from sec]8-1 (CKY59)

and secl-1 (CKY162) were prepared at the indicated times after shifting the growth

temperature form 24" to 37°C and analyzed by immunoblotting with BAP137 antibodies.

(B) Extracts from the wild-type strain CKY10 were prepared at the indicated times after

addition of either tunicamycin or DTT and analyzed by immunoblotting with BAP137

antibodies.
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Figure 3. Cell fractionation of BAP137-reactive material. Fractionation was carried out

as described (Espenshade et al., 1995). (A) Differential centrifugation of cell lysates

from the bstl-1 mutant strain CKY330. (B) Cell lysates were incubated on ice in the

presence of 0.5M NaCl, 2.5M urea, carbonate buffer at pH 11, or 1% Triton for one hour

and then separated into pellet (P) and supernatant (S) fractions by centrifugation at

150,000g.
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Figure 4. p75/Icwp purification. Fractions from various steps in the purification were

analyzed by silver staining (A) and immunoblotting with BAP137 antibodies (B). Lanes

are as follows: 1) whole cell lysate, 2) spheroplast lysate, 3) 13,000g membranes, 4)

Triton soluble material from 13,000g membranes, 5) loaded on MonoQ column, 6) pure

Icwp from 150 mM NaCl fraction. Lanes 1-4 of the silver stained gel are at 1/8 the

concentration of the equivalent lanes from the Western blot.
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Figure 5. Analysis of the amino acid sequence of Icwp. (A) The predicted sequence of

Icwp. In bold are the peptide sequences from purified p75 that identified the protein as

Icwp. The open arrow marks the putative signal sequence cleavage site. The shaded

arrow marks the putative site for GPI-anchor attachment. (*) indicates the single potential

N-linked glycosylation site in the protein. (B) Hydropathy plot (Kyte - Doolittle

algorithm, with a window of 11 amino acids) showing the hydrophobic N- and C-

terminal regions that are the putative signals for translocation and GPI-anchor

attachment, respectively.
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Figure 6. ICWP encodes p75. Extracts from cultures of wild-type (CKY10) and bstl-1

(CKY330) strains containing either the empty vector pRS306-2g. or pME702 (2g-ICWP)

were analyzed by immunoblotting with BAP137 antibodies.
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Figure 7. bstl-1 is defective in the transport of Gaslp. Extracts from cultures of wild-

type (CKY10), bstl-1 (CKY330), bst2-1(CKY332), and bst3-2 (CKY334) mutant strains

grown at 30"C were analyzed by immunoblotting with anti-Gaslp antibodies.

176



bst3-2

bst2-1

bstl-1

wild-type 4

I I



Chapter Five:

Future directions for the analysis of the role of the BST proteins in cargo

sorting and COPII vesicle formation
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Summary and model

The focus of the work described in this thesis has been to characterize the role of the BST

genes in COPII vesicle formation and protein sorting. The isolation of the BST genes as

bypass suppressors of SEC13 (Chapter 2) and the demonstration that COPII vesicle

budding in vitro does not require Secl3p (Chapter 3), indicate that Secl3p is not

absolutely required for COPII vesicle formation. Sec 13p is, however, essential in vivo at

temperatures above 30*C and at lower temperatures when the BST genes are functional

(Chapter 2), suggesting that Secl3p may be necessary for maximal stability of the COPII

veisle coat and that both higher temperatures and the activity of the BST proteins

destabilize the coat.

Secl 3p has also been implicated in protein transport between the Golgi and the

plasma membrane (Roberg et al., 1997). secl3A bst mutants grow almost as well as

wild-type strains at 25C, suggesting either that the bst mutations also bypass the function

of Secl3p involved in transport later in the pathway or that this function is not essential

for vegetative growth. The latter model may be correct. Only about 50% of sec13A bst

mutant spores germinate, and suppressed null strains rapidly lose viability if allowed to

grow to saturation (our unpublished observations). bst mutant strains show neither of

these defects, suggesting that Secl3p is necessary for the significant "remodeling" of cell

surface proteins that occurs as cells enter and exit stationary phase and that the bst

mutations do not affect this function of Secl 3p.

The BST proteins are also clearly important for efficient discrimination between

cargo molecules and resident ER (or ER retained) proteins during sorting into COPII-

coated vesicles. bst mutations slow the transport of a subset of secretory proteins: the

transport of Gaslp and Icwp is affected in bstl mutants (Chapters 2 and 4), whereas the

transport of Gas p, Icwp, and invertase is affected in emp24/bst2 and erv25/bst3 mutants

(Chapter 2; Schimm6ller et al., 1995; Belden and Barlowe, 1996; and Chapter 4). The

179



fact that Gaslp and Icwp are both GPI-anchored proteins suggests that the BST proteins

are particularly important for the efficient transport of GPI-proteins. All three bst

mutants also show defects in the retention of resident ER and ER retained proteins

(Kar2p, Pdilp, an sl 1-invertase; Chapter 2). The selective transport defects of

emp24/bst2 and erv25/bst3 mutants and the observation that Emp24p/Bst2p and

Erv25p/Bst3p are major components of COPII vesicles (Schimm6ller et al., 1995; Belden

and Barlowe, 1996) have led to the idea that these two proteins (or perhaps all members

of the p24 protein family) act as sorting receptors. However, the fact that bst mutants

also show defects in retention of resident proteins and the observation that bstl mutants

show nearly identical sorting defects even though Bstlp is not a component of COPII

vesicles suggest that the BST proteins must play a more general role in protein sorting

during COPII vesicle formation.

Bstlp and its C. elegans homolog both have a motif that is characteristic of lipases.

Two observations make this fact potentially important. First, changing the active site

serine in this motif to alanine disrupts BST1 function as judged by the fact that the mutant

protein expressed from a plasmid no longer complements the sec13A suppression or the

Kar2p retention defect of a bstl-1 mutant strain (our unpublished observations). Second,

the transport of GPI-linked proteins appears to be particularly sensitive to mutations in

BST genes, and it is clear that lipids can influence the transport of GPI-anchored proteins.

A model incorporating all of the above general conclusions and observations can be

generated. The function of the BST proteins in this model is to modify the lipid

composition of the membrane in regions of vesicle assembly, which then facilitates the

sorting of resident proteins from cargo molecules and indirectly influences the assembly

of the COPII vesicle coat.

The recruitment and assembly of the COPII vesicle coat proteins on the ER

membrane drives the formation of transport vesicles. Integral membrane components of

the vesicle, including Emp24p/Bst2p and Erv25p/Bst3p, are recruited to sites of coat
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assembly -- or recruit the coat to regions of the membrane where they reside -- through

the interaction of their cytosolically exposed domains with vesicle coat proteins. This

interaction thereby localizes a complex containing Bstlp, Emp24p/Bst2p and

Erv25p/Bst3p to sites of vesicle assembly. As coat assembly begins, Bstlp is released

from the BST complex and can then locally modify membrane lipids. This local change

in lipid composition helps to partition membrane protein cargo into the region of vesicle

budding and resident membrane proteins out of these regions. Soluble cargo is

concentrated through interactions with sorting receptors or membrane protein cargo, and

resident proteins are excluded through interactions with resident membrane proteins. The

local change in lipid composition and subsequent sorting also increases the requirement

for stability in the assembling vesicle coat.

Thus, in the absence of any of the BST proteins the localized change in lipid

composition does not occur. Sorting is less efficient, resulting in a decreased rate of

transport for cargo molecules sensitive to the change in lipid composition and an

increased rate of transport of resident proteins. However, there is less need for stability in

the coat, allowing COPII vesicles to form in the absence of Sec 13p or at higher

temperatures in strains with conditional mutations in other COPII coat proteins.

Future directions

The work described in this thesis has allowed the model outlined above to be generated.

The task at hand is to test the various aspects of this model so that it can be refined.

Some aspects of the model are clearly more speculative than others and should therefore

be addressed first. The remainder of this chapter will be spent providing suggestions for

how to test the model.

The most important aspect of the model to address is whether Bstlp can indeed act to

modify lipids in the membrane. The fact that a serine to alanine change in the conserved

active site of the lipase motif in BST1 appears to disrupt function is promising, but a

181



direct demonstration of lipolytic activity would significantly strengthen arguments for

this part of our model. We have constructed (or are constructing) various GST-BST1

fusion constructs, containing either the wild-type BST1 gene or the serine to alanine

mutant, that should allow the purification of Bstlp for use in assaying lipolytic activity.

A variety of assays have been described, some of which may be general enough to prove

useful. The use of the serine to alanine mutant protein will enable us to correlate in vitro

activity and in vivo function.

An additional approach to addressing the role of lipids in protein sorting and COPII

vesicle formation would be to alter the lipid composition in cells by feeding them excess

lipids of various types or by using lipid biosynthesis mutants. Protein sorting could be

easily assessed using the Kar2p secretion assay described in Chapter 2. The growth of

sec13A bst mutant strains could be used to assess the effect on COPII vesicle formation.

Interestingly, one of the weak suppressors of sec13A alluded to in Chapter 2 was

identified as an ada5 mutant. In addition to a number of other phenotypes, ada5 mutants

are inositol auxotrophs due to a failure to transcribe the INOI gene. The ability of inol

mutants to suppress SEC13 is currently being investigated. Furthermore, acidic

phospholipids have been recently implicated in the binding of the COPII coat to ER

membranes in vitro (Matsuoka et al., 1998), supporting the idea that the lipid

environment influences coat assembly.

Another prediction of the model is that Bstlp should be localized in the vicinity of

budding vesicles and should physically interact with Emp24p/Bst2p and Erv25p/Bst3p.

While electron microscopy of intact cells rarely captures a budding vesicle in

Saccharomyces cerevisiae, the analysis of in vitro vesicle budding from isolated nuclei by

immuno-electron microscopy has been used to demonstrate that COPII proteins localize

to budding vesicles (Bednarek et al., 1995). A similar approach could be used to address

whether Bstlp is concentrated in the vicinity of budding vesicles in the ER membrane.

Two-hybrid experiments using the luminal domains of the BST proteins and/or co-
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immunoprecipitation experiments could be used to address whether Bstlp physically

interacts with either Emp24p/Bst2p or Erv25p/Bst3p.

The notion that bst mutations affect the transport of GPI-anchored proteins could be

strengthened by demonstrating that the transport of additional GPI-anchored proteins is

affected by bst mutations. One general approach to addressing this issue involves the

specific radiolabelling of GPI-anchored proteins using [H3] myo-inositol. After the

separation of proteins by SDS-PAGE, the amount of label in proteins of different sizes is

determined. Most GPI-anchored proteins are highly glycosylated species of very large

apparent molecular weight. Blocking the transport of GPI-proteins from the ER (using a

sec mutant) causes the bulk of the radiolabeled protein to shift from high molecular

weight fractions to lower molecular weight fractions (Horvath et al., 1994). This type of

analysis could reveal whether the bulk of GPI-proteins are delayed in the ER in bst

mutant strains. In addition, the transport of GPI-anchored proteins is particularly

sensitive to inositol starvation in an inolA background (Doering and Schekman, 1996).

Preliminary results suggest that bst] inol mutants are more sensitive to inositol starvation

than inol single mutants. bst] mutants also appear to be more sensitive to the cell wall

destabilizing compound calcofluor white. Both of these observations are consistent with

a role for Bstlp in the transport of GPI-anchored proteins.

These are just some of the interesting possibilities for the further investigation of the

role the BST proteins play in secretory protein transport and COPII vesicle formation.
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