
6?)

Automatic Grammar Induction from Semantic

Parsing

by

Debajit Ghosh

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1998

© Debajit Ghosh, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part, and to grant others the right to do so.

Author,.....

Department of Electrical Engineering and Computer Science
May 21, 1998

Certified by:
Dr. James R. Glass

Principal Research Scientist
-. ~ T5hesis Sypervisor

Accepted by........--.. ...
Arthur C. Smith

Chairman, Department Committee on Graduate Students
J"UL 141899

LIBRARIES

Cn

/

Automatic Grammar Induction from Semantic Parsing

by

Debajit Ghosh

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1998, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we investigate an approach for grammar induction that relies on se-
mantics to drive the automatic learning of syntax rules. Specifically, we develop a
semantic parser, which parses utterances based on "meaning," rather than syntax, by
combining only words and phrases that satisfy a given set of semantic constraints. We
subsequently extract a syntactic grammar from the resulting semantic-level phrases,
trying various approaches to generalize this grammar. We evaluate the learned gram-
mar utilizing two sets of experiments, restricting our test sets to semantically valid
utterances. First, we use the grammar to parse new utterances from the same do-
main in which it was learned; the learned grammar covers 98% of the utterances
handled by the semantic constraints. Second, we parse utterances from a new do-
main, assessing the portability of the grammar. Here, the grammar covers 85% of
the semantically valid utterances. Semantic parsing proves to be a very powerful and
useful mechanism, independent of syntax, providing an utterance's "meaning repre-
sentation" directly. Furthermore, our experiments illustrate that this technique has
potential for automatically developing portable grammars, making the task of moving
an understanding system to a new domain easier.

Company Supervisor: Dr. David Goddeau
Title: Research Staff, DIGITAL Cambridge Research Laboratory

Thesis Supervisor: Dr. James R. Glass
Title: Principal Research Scientist

Acknowledgments

I am very grateful to the many people who have influenced this research and made

this thesis possible. First and foremost, I would like to thank my thesis supervisors,

Dr. David Goddeau and Dr. James Glass. DG provided me with an immeasurable

amount of help, ideas, and encouragement, and he patiently listened to countless

"quick questions" while I worked on this thesis. Jim provided invaluable guidance

and advice, making sure I concentrated on the important ideas and "big picture"

overall, as well as making sure I had the necessary resources and data. I cannot

thank either of them enough.

I also want to thank DIGITAL's Cambridge Research Laboratory for granting the

funding and support for this thesis research, as well as providing me with exciting

research projects during the past few summers. Dr. Robert lannucci, the director

of DEC CRL, always ensured that other interns and myself were always provided

with intellectually stimulating projects. Likewise, the administrative and system

staff furnished me with the necessary resources during each summer. I have also

thoroughly enjoyed interacting and conversing with the research scientists in this lab.

I would also like to thank MIT's Spoken Language Systems group for providing

me with the data I needed for my experiments. I enjoyed getting advice from and

conversing with the staff and students in that group.

During the past few years, my supervisors have helped me considerably. Chris

Weikart taught me many valuable skills regarding system design and development

during my first two summers. Dr. David Goddeau provided great supervision during

this past summer and while I worked on my thesis, introducing me to natural lan-

guage. Dr. William Goldenthal brought me into the VI-A program at DEC CRL and

opened my eyes to the fascinating field of speech recognition, while inspiring me to

challenge myself continually.

Finally, I want to thank my friends and family, in particular my parents, for all of

their support during the past five years at MIT, especially during this last year. The

continual support of my parents made everything I have done possible.

Contents

1 Introduction

1.1 Purpose and Motivation

1.2 Research Focus

1.2.1 G oals

1.2.2 Overview of Research . . .

2 Background

2.1 Grammar Induction

2.2 Semantics and Semantic Parsing .

2.3 Basic NLU System

2.3.1 Components and Stages

2.3.2 Parser Implementation

3 Semantic Parsing

3.1 Mechanism

3.2 Semantic Functions

3.3 Constraints

3.4 Sentence-Level Semantics

3.5 Log File

3.6 Implementation Details

3.7 Domains and Experiments

4 Grammar Induction

9

. 10

.... ... 12

.... ... 12

. 12

24

24

27

29

33

35

35

38

42

.

.

S

.

4.1 Unique Bracketings

4.1.1 Rule Extraction Phase . .

4.1.2 Merging Phase

4.2 Semantic-Head Driven Induction

4.3 Implementation Details

4.4 Results of Induction

5 Parsing and Portability

5.1 Modifications to the Syntactic Parser

5.2 Parsing Experiments

5.3 Portability Experiment

5.4 Examples of Parses

5.5 Overall Results

6 Conclusion

6.1 Summary

6.2 Contributions

6.3 Future Work

6.3.1 Statistical Parsing

6.3.2 Use of Syntax

6.3.3 Sentence-Level Rules

6.3.4 Automatic Learning of Semantic Constraints

6.3.5 Other Possible Improvements

I I I I --I

.

List of Figures

1-1 Major components of a speech recognition and understanding system. 10

2-1 Examples of context free grammar rules. 17

2-2 Syntactic parse tree for "cheapest flight from boston 17

2-3 Examples of semantic frames. 19

2-4 Example of CFG with associated semantic functions. 19

2-5 Examples of computing semantics (in a specified order) for parts of the

syntax tree. 20

2-6 Examples of semantic constraints. 21

2-7 Snapshot of the chart during parsing. 22

3-1 Semantic parsing ignores word order when combining two words or

phrases. 26

3-2 Semantic constraints for selected words. 32

3-3 Sample log file entries. 36

3-4 Screenshot of the semantic parsing system. 37

3-5 Overall semantic parsing results - coverage of sets. 40

3-6 Overall semantic parsing results - histogram of piece-counts. 41

4-1 Rules learned from unique bracketings in "cheapest flight from boston

to philadelphia."............................. 43

4-2 Example of merged rules.......................... 44

4-3 Overview of the induction process for the unique bracketings approach. 46

4-4 Rules learned in semantic-head driven induction from "cheapest flight

from boston to philadelphia."...

4-5 Examples of (unmerged) rules learned in unique bracketings

4-6 Number of utterances vs. number of rules learned in semantic-head

driven induction...............................

4-7 Examples of rules learned in semantic-head driven induction

5-1

5-2

5-3

5-4

5-5

5-6

Examples of edges with identical or similar semantics.....

ATIS syntactic parsing results - histogram of piece-counts.

Jupiter syntactic parsing results - histogram of piece-counts.

Examples of parses from ATIS

Examples of parses from Jupiter

Overall parsing coverage

. 56

. 58

. 59

. 61

. 62

.... . 63

List of Tables

3.1 "Phrasal" semantic functions. 29

3.2 "Special" semantic functions. 30

3.3 "Sentence-Level" semantic functions. 33

3.4 Illustration of piece-count measurement. 39

3.5 Overall semantic parsing results - coverage of sets. 39

5.1 ATIS syntactic parsing results - coverage of sets. 57

5.2 Jupiter syntactic parsing results - coverage of set. 59

Chapter 1

Introduction

Natural language processing represents a fundamental component of many speech

recognition and language understanding systems. As shown in Figure 1-1, the output

of a speech recognizer may serve as the input of the natural language unit. Given an

application domain or context and a corresponding grammar, this natural language

unit generates a meaning representation for its input text; the unit might also feed

back into the recognizer to provide constraints on what words are recognized. An

interpreter evaluates the output meaning representation and processes it accordingly

(i.e., retrieving requested data from a database). A dialog manager can use this

evaluation to generate output (such as generating a spoken response, presenting re-

quested data, or posing a query asking the user for more information if necessary);

it can also provide feedback to the system, changing the current context to improve

the recognition and understanding of words that make "sense" in this context.

This thesis investigates a novel approach for making it easier to define the natural

language component. Specifically, we examine a way to learn the grammar used in

natural language in an automatic fashion. After providing the purpose and motivation

for this research, this chapter describes our research focus, stating our goals and

outlining the various components and stages of our work.

Figure 1-1: Major components of a speech recognition and understanding system.
This figure displays the various components of a speech recognition and understanding
system. The grammar, as part of the natural language unit, can constrain the output of
the recognizer and generate meaning representations for input utterances, using the current
context. An interpreter and dialog manager can then generate the corresponding output,
perhaps retrieving requested information from a database.

1.1 Purpose and Motivation

Natural language processing has traditionally aspired to provide models for the way

humans communicate and has attempted to produce mechanisms for "understanding"

input sequences of words from a corpus of text or the output of a speech recognition

system. Of course, other uses exist for these models, such as providing constraints on

the output of a speech recognition engine. Thus, one can easily imagine the need for

robust, useful models and mechanisms in this field.

Syntactic grammars represent a central component of these systems, providing

useful constraints and structure. This structure can help guide the recognition search

or direct a parser in language understanding mechanisms. A parsing system may

utilize a hand-written grammar to generate a syntax tree and subsequently compute

some form of semantic, or meaning-based, representation of the nodes of the tree.

Interpreters can then use this representation in understanding the sentence and in

preparing responses to a query or command.

However, several problems exist with this syntax-centric approach to understand-

ing. First, writing a grammar for a language is by no means trivial. Indeed, writing a

grammar manually is rather time-consuming and laborious. Second, even a suppos-

edly "complete" grammar may not be able to parse all sentences, and this lack of a

complete parse for a sentence may prevent the system from computing its semantics,

effectively causing it to lose information and understanding of its input. Indeed, quite

often input, such as that from a spoken language system, strays from grammatical

rules, making it difficult for syntax-based systems to parse and subsequently compute

semantics for those sentences.

The field of grammar induction attempts to address some of these problems. By

learning grammars automatically, grammar induction mechanisms can alleviate the

tediousness of writing grammars by hand. In addition, many techniques entail a

data-driven approach and can learn grammars based on the way people speak, rather

than adhering to strict or formal rules of grammar.

However, many grammar induction techniques suffer from a variety of criticisms.

They can involve a high degree of complexity, depend on supervision for training and

learning, or lack portability across domains. Some techniques even generate illogical

or unusable grammar rules.

Additionally, one must consider that language serves to convey "meaning," not

syntax. Typically, syntax is at most of intermediate interest, as a guide for further

analysis, such as semantic computation and interpretation. Humans can understand

many agrammatical sentences without much problem (other than perhaps raising an

eyebrow or correcting grammatical creativity). Accordingly, several techniques have

been developed and implemented that attempt to allow for robust parsing when gram-

mar rules fail to complete a syntactic parse. One can even imagine using semantics for

the parsing itself, in order to provide this desired increase in robustness to complex

or agrammatical inputs.

There has been some work in using semantics directly in accepting and under-

standing input utterances. However, this is a relatively new field, and thus, no truly

ubiquitous approaches exist. Certainly, room exists for new approaches or variations

in attempting to accept or parse utterances semantically.

One such variation could actually couple semantic parsing with grammar induc-

tion, forming a semantic parse tree that could be used to guide the induction process.

This could allow for the learning of more robust and logical grammar rules than an

unguided technique. This thesis will attempt to assess exactly this issue of whether

or not it is feasible to use semantic parsing to drive grammar induction techniques

and determine the usefulness of the resulting grammar.

1.2 Research Focus

1.2.1 Goals

This thesis will focus on investigating the feasibility and utility of semantic parsing

as a tool for grammar induction. Specifically, we will examine the questions of what

kind of syntactic rules can be learned from semantic parsing, as well as how well

these rules perform in syntactic parsing experiments. In addition, we will examine

and determine how useful these rules are in domains other than the one in which they

are derived. Some previous work in semiautomatic or automatic grammar learning

techniques seem to be restricted to their original domain, so this measurement of

portability should provide us with a further assessment of this grammar induction

technique and the resulting learned grammar.

1.2.2 Overview of Research

This thesis will begin by providing the relevant background information in Chapter

2. Chapter 3 presents the overall mechanism of semantic parsing and provides the

details of our actual implementation. Next, Chapter 4 describes two related grammar

induction techniques which we investigate. Chapter 5 discusses our experiments in

syntactic parsing and portability, as well as the results of those experiments. Finally,

Chapter 6 provides the conclusions we have drawn and suggests future work that can

improve or extend the results of our research.

Chapter 2

Background

Our research investigates the development of a new grammar induction technique

using semantics and semantic parsing as its basis. This chapter provides an overview

of related research as well as other relevant background information. We first discuss

several grammar induction techniques. Next, we loosely define semantics and re-

view other works aimed at extracting semantics directly from an utterance. Finally,

we conclude this chapter by describing how some existing systems parse sentences

syntactically and subsequently compute semantics from the corresponding parse tree.

2.1 Grammar Induction

Grammar induction is an extensively researched field that attempts to derive and

generalize the rules necessary to accept utterances from a specified language. Nu-

merous techniques have been used with varying degrees of success in this field, many

of which are examples of pattern recognition and learning. These include clustering-

based techniques [4], domain-specific heuristic methods [14], artificial neural networks

(ANNs) [5, 13], hidden Markov models (HMMs) [14], and Bayesian networks [11].

Much development and effort revolves around clustering-based approaches. These

approaches begin with a simple, overly specific grammar (to a training set), which

is iteratively improved through means of merging syntactic units based on a given

distance metric. Indeed, some inference techniques begin with a grammar containing

all sentences in the training set and then cluster the syntactic units together until

they obtain a satisfactory, generalized structure and grammar [4, 12].

One possible distance metric involves computing distributional similarity, which

measures the divergence of the probability distributions of two word or phrasal

units [3]. One technique uses this metric to derive a relatively uncomplicated grammar

and subsequently acquires phrase structure automatically by using entropy or other

metrics to guess which pairs of units can form a phrase [3]. Another metric uses error

statistics (differences between learned models and training data) to achieve iterative

improvement of the acquired grammar [14]. As one can imagine, many other met-

rics and variants exist; finding a good distance metric represents another interesting

research problem.

Recently, researchers have begun to use artificial neural networks as the basis for

some grammar induction approaches [5, 13]. While some of these depend on super-

vision in order to train the weights in the network, others are mostly or completely

unsupervised. In one such unsupervised system, the networks are supplied with sim-

ple input sentences, words, and phrases, and after training, the system extracts a

grammar from the weights connecting the nodes of the network [5]. However, the

researchers behind that work admit that this grammar contains some illogical and

unusable rules.

Some of these techniques depend on pre-tagged lexicons (denoting the parts of

speech for each word), while others attempt to learn classes for words automatically [2,

12]. Unfortunately, while aesthetic and desirable, the latter, more automatic approach

does not always produce results which port to new or different domains, as the learned

word classes may only apply to words in one domain but not another. Also, since many

grammar-learning and structure-acquisition techniques rely strictly on co-occurrence

and distributional statistics, not linguistic cues and properties, these techniques can

potentially acquire unportable or even illogical rules. Therefore, to overcome some of

these criticisms, we consider using semantics to guide the grammar induction process,

as we will describe shortly.

2.2 Semantics and Semantic Parsing

Semantics refer to any level of meaning representation, from a simple argument-

structure to intricate and complex models of the world (or models of a specific do-

main). The actual level of detail contained in this representation depends on the

implementation and the boundaries drawn between this intermediate language and

the duties of the interpreter which evaluates it and generates a response. There are

few standards for this intermediate representation; semantic representation is typ-

ically system and implementation-specific. Additionally, semantics themselves are

inherently domain-specific, as some words often have different meanings in different

contexts. Thus, performing any absolute comparison of semantics can be rather diffi-

cult. Nevertheless, we will describe some prior works that use some form of semantics

directly in accepting a sentence.

Some work has been done in using transducers [14], a broad abstraction for a device

which translates input from one language into output in another one (here, a semantic

representation language); HMMs or ANNs can be used in the implementation of this

abstract device. One HMM-based approach is trained using the utterances as input

and pre-defined "meaning frames" as output; the resulting system can then fairly

accurately create meaning frames for new test sentences [10].

An interesting ANN-based approach consists of a system which is simply supplied

with the words in an input sentence and a semantic category into which the sentence

falls [6]. The system then automatically computes associations (the weights) between

various words and categories. The simple, one-layer version of this network actually

has no dependencies on word order and only computes whether enough words which

are associated with a certain class are present in the input utterance. The more com-

plicated two-layer network does contain some type of phrase structure [7]; however,

the meaning or utility of this type of semantic phrase is not entirely straightforward

or apparent other than for use in performing simple semantic classification.

Therefore, neither of these approaches provides any semantic units or phrases

which seem like they would be useful for driving grammatical inference techniques.

Other related approaches, however, stray from using semantics alone and instead

use semantics to complement syntactic parsing. This allows for the simplification

of some otherwise complex rules (i.e., rules with many different forms or optional

components) and makes the system more robust to agrammatical inputs [1]. It is even

suggested (though not tried or implemented) that this technique allows for learning of

syntax from the semantics used to complete a parse. Accordingly, our thesis research

attempts to develop a different technique for semantic parsing - one which can provide

useful information for driving grammar induction systems.

2.3 Basic NLU System

2.3.1 Components and Stages

To extract the semantics of an utterance, many systems first perform a syntactic parse

and generate a syntax tree for the utterance. Next, they compute the semantics of

the different components of the syntax tree, working up to the root of the tree to

generate its overall semantics. This section will describe each of the various aspects

of such a system in more detail.

Syntactic Parsing A syntactic parsing system typically uses a set of context free

grammar (CFG) rules, as shown in Figure 2-1, and through a series of rewrites,

transforms a sentence into its syntactic structure. For example, suppose a domain

consists of utterances such as "cheapest flight from boston. " If the parts of speech for

the component words in an utterance are supplied in a lexicon, or dictionary, the listed

rules can be used to generate the parse tree shown in Figure 2-2. In this figure, one

can observe "cheapest" combining with "flight" into a noun phrase, "from" combining

with "boston" into a prepositional phrase, and those two phrases combining with each

other into another noun phrase.

Semantics For understanding, a parsing system utilizes more than just parts of

speech and syntactic rules. The system also needs an input set of semantics for words

Left-hand Side Right-hand Side
NP -4 Adj N
PP P Name
NP -- + NP PP

Figure 2-1: Examples of context free grammar rules.

Listing of the CFG rules necessary to parse "cheapest flight from boston."

Figure 2-2: Syntactic parse tree for "cheapest flight from boston."
An illustration of the syntactic parse tree obtained using the CFG rules in Figure 2-1 for
the utterance "cheapest flight from boston." "cheapest" and "flight" combine into a noun
phrase, "from" and "boston" combine into a prepositional phrase, and those phrases combine
into another noun phrase.

in the lexicon as well as a set of semantic functions associated with each syntactic

rule. The semantics of most words and phrases can be represented by simple semantic

frames; each frame consists of a head, denoting the main concept, and possibly a set

of key-value pair modifiers further describing this concept, as shown in Figure 2-3. In

addition, integers and strings can be used for simpler concepts. For example, numbers

(or parts of the representation of numbers) can contain raw integers, like 42. Also,

very simple concepts, such as "o_clock," may be represented by a string rather than

a frame (since there is no need for further information or modification). Typically,

we define most words to have frame-based semantics, and sometimes those frames

contain integer or string-based semantics within them.

In order to combine the semantics of each component in the parse tree, the system

also needs a set of semantic functions. These functions are associated with specific

syntactic rules, as shown in Figure 2-4. Each function takes a set of argument se-

mantics and outputs a new set of semantics produced by combining these inputs.

Specifically, it takes the semantics of each token of the associated syntax rule and

considers them in the specified order. For example, f (0 1) dictates that the first

token, at index 0, should be the first argument to the function f, and the second

token, at index 1, should be the second argument; similarly, f (1 0) dictates that

the second token, at index 1, should be the first argument, and the first token, at

index 0, should be the second argument. Using this ordering, it generates a new set

of semantics for the overall syntactic unit.

For example, we might associate the semantic function addtopic (0 1) with the

syntax rule PP - P Name. Accordingly, to compute the semantics for the resulting

prepositional phrase, the system needs to evaluate add_topic with the arguments of

the semantics of the preposition (at index 0 in the rule) and the name (index 1), as

shown in Figure 2-5. This evaluation results in adding the semantics of the name

under the key of "topic" in the semantic frame for the preposition. Similarly, the

function addpred, associated with NP - Adj N, computes the semantics of the

resulting noun phrase by combining the semantics of the noun (index 1) with those

of the adjective (index 0), adding the semantics of the adjective as a predicate of the

Word/Phrase Semantic Frame Representation
boston {city :name "boston''}
flight {flight}
cheapest flight from boston {flight

:from { city :name "'boston''}
:pred { cheap :type ''superlative''}

}

Figure 2-3: Examples of semantic frames.
This figure displays several examples of meaning representations, in the form of semantic
frames, for various words and phrases. Specifically, it shows the frames for the words
"boston" and "flight," as well as the phrase "cheapest flight from boston," which would be

computed during parsing. The semantics for "boston" represents a classic semantic frame,
consisting of a head (i.e., "city") and key-value modifiers (i.e., the string "boston" under
the key of "name").

Left-hand Side Right-hand Side Semantic Function
NP -- Adj N add_pred (1 0)
PP - P Name add_topic (0 1)
NP - NP PP add_marked (0 1)

Figure 2-4: Example of CFG with associated semantic functions.
The CFG rules that cover "cheapest flight from boston, " augmented with semantic functions.
These functions are used by the parser to compute the semantics of each resulting non-
terminal.

semantics of the noun. Finally, the overall semantics of the top level unit, another

noun phrase, can be generated by evaluating add_marked with arguments of the

semantics of the embedded noun phrase and prepositional phrase, respectively.

Constraints When computing meaning by combining the semantics of input syn-

tactic tokens, such as adjectives, nouns, and phrases, one must consider that not all

units can and should be combined. Only certain combinations "make sense"; thus,

it is highly desirable to define a set of constraints that restrict which units can be

combined meaningfully. A semantic function can check these constraints in order to

determine if its arguments can combine, or if the function should instead not produce

any semantics at all for a specific combination. For instance, while it is meaningful

from) (city :name "boston")

addmarked (01)

P P

0 addpred (10

Adj N

(cheap :type "superlative") (\flight)

Figure 2-5: Examples of computing semantics (in a specified order) for parts of the
syntax tree.
This figure displays how the parser uses semantic functions to compute the semantics of
each non-terminal. For the prepositional phrase, the system combines the semantics of
"from" and "boston" using the function add_topic, in that order. Likewise, the system

combines the semantics of "flight" and "cheapest" using add_pred. Finally, the top-level
noun phrase's semantics are computed by combining the semantics of the embedded noun
phrase and the prepositional phrase, respectively, via add_marked.

Figure 2-6: Examples of semantic constraints.
Some constraints used for utterances like "cheapest flight from boston. " These constraints
allow "flight" to accept arguments of a source, a destination, and a cost.

to combine the adjective "cheapest" with the noun "flight, " it may not be meaningful

to combine "soft" with 'flight." Semantic constraints can ensure that all computed

semantics are reasonable and can be evaluated, rather than being nonsensical or un-

interpretable, such as a "soft flight. " These constraints can be denoted simply by a

list of words and valid arguments that can modify those words. Figure 2-6 shows an

example of possible constraints, stating that a flight can take arguments describing

its source and its destination. In addition, other constraints can be used to denote

that a cost can serve as a predicate (another type of argument) of flight.

2.3.2 Parser Implementation

We use an all-parses bottom-up chart parser for our various parsing experiments. This

type of parser maintains a data structure called a chart [9] to perform book-keeping

of partial results and keep track of matches between the input words and phrases and

the defined syntactic rules. In addition, the parser also records its current position

in each rule (usually denoted by a "dot" in output; the dot sits in front of the next

component it tries to match). The chart stores matches as edges, which span zero or

more words and contain the parts of speech of constituent words as well as a label

denoting the represented rule. As each word in an utterance is being considered, the

system looks up the part of speech for the word from its lexical entry, creates an edge

containing just that word, and adds that edge to the chart. The parser also creates

Constraints for flight
{ flight

:args ({ :type loc :role from }
{ :type loc :role to })

:parent "obj''

}
{ cost :args ({ :type flight :role subj }) }

active (not completed) NP-4Adj . N
inactive (completed) Adj (cheapest)

active (not completed) NP-+Adj . N
NP--NP . PP

inactive (completed) Adj (cheapest)
N (flight)

NP--Adj N.
0 cheapest 1 flight 2

Figure 2-7: Snapshot of the chart during parsing.
This figure displays the state of the chart during two stages of the parsing process for the
phrase "cheapest flight. " This data structure records the parser's current position in each
rule with a "." and separately maintains lists of complete and incomplete (rule-based)
edges. The top chart shows the state after the parser accepts the word "cheapest." This
adds an Adj to the list of complete edges as well as a partially formed NP containing this
initial Adj component. Each of these edges begin at position 0 of the utterance and end at
position 1, since only the initial word has been processed. The bottom chart shows the state
after the parser accepts the word 'flight. " This adds a N from position 1 to position 2 of the
utterance. The addition of the N also completes the noun phrase rule, which spans position
0 to position 2. The newly created NP instantiates a new, incomplete edge consisting of
the matched NP and a PP which it may match in the future (if the utterance were longer).
Notice that the original edges from the top chart remain, allowing for alternate matches
using those components.

edges for any rules that begin with the desired part of speech, placing those in the

chart as well. The parser then attempts to combine each of these edges with others

in order to advance or complete any existing edges that need that part of speech, as

shown in Figure 2-7.

For example, when the word 'flight" is being considered (after "cheapest" has

already been considered and added to the chart), an edge for NP (added because

"cheapest" is an adjective) can be completed, since the last component for NP -+ Adj

N has been encountered. In addition, any rules beginning with N can be added as

edges to the chart. The chart maintains separate lists of created edges (NP -4 Adj

N) and completed edges (NP -- Adj N .).

Edges need not be restricted to contain just syntactic components and rules,

however. One can imagine making edges more generalized, allowing them to contain

items other than rules. Indeed, in our implementation, edges simply contain a state,

which allows the edge to contain words (items defined in the lexicon), rules, or other

pieces of information, as described later in this thesis. This provides us with the

flexibility we need to parse utterances without using syntax, while still utilizing the

simplicity and power of the chart parsing mechanism.

Chapter 3

Semantic Parsing

Semantic parsing can effectively be summarized as parsing utterances based on mean-

ing, only combining those words and phrases which are "meaningful" to combine. In-

stead of relying on a grammar to dictate which semantic functions should be applied,

the grammar is eliminated altogether, and all semantic functions are tried, resulting

in whatever combinations are allowed by the pre-defined semantic constraints. This

chapter describes the exact mechanism that we employ to perform semantic parsing,

as well as the component semantic functions and semantic constraints we define and

use in this thesis. We also consider and discuss the semantics of sentence-level queries

and statements. Finally, this chapter describes the domains we use for our semantic

parsing experiments as well as the results of those experiments.

3.1 Mechanism

We can implement semantic parsing in a simple bottom-up chart parser, employing

the same general mechanisms used for syntactic parsing. However, instead of deter-

mining whether or not rule-based edges can combine based on syntax, the system

needs to make semantic edges which allow for edge combinations based on meaning.

In other words, we modify edges so they contain semantics, not syntactic rules; this

is fairly straightforward given the implementation described in the previous chapter.

Next, when attempting to combine two edges, instead of checking if those edges can

combine to advance or complete a rule, the parser can attempt to combine them se-

mantically, by trying all defined semantic functions with arguments of the semantics

stored in the edges. Any combinations that result in valid semantics being computed

by the semantic functions and constraints can be considered a successful combination,

and the parser can add a new edge to the chart as normal.

In order to avoid the influence of syntax on semantic parsing, this method of pars-

ing should be word order independent. When considering combining the semantics of

two words or phrases, the order of those components should be ignored. Alternatively,

one can be more efficient and approximate word order independence by maintaining

adjacency constraints and trying to combine two edges two different ways: one with

the semantics of the first edge as the first argument to a semantic function, and one

with the semantics of the second edge as the first argument, as shown in Figure 3-1.

In other words, the parser attempts combining two edges, A and B, by trying to com-

pute f (sem(A), sem(B)) as well as f (sem(B), sem(A)), for all semantic functions f.

This effectively allows the system to ignore word order within adjacent words and

phrases.

Because no grammar is used to restrict which semantic functions are tried, the

defined constraints become very important and central to semantic parsing. In fact,

writing these constraints becomes another engineering task. However, producing

these constraints manually tends to be more simple and straightforward than pro-

ducing syntax rules manually. More significantly, in order to do any kind of language

understanding, one has to write these constraints anyway; thus, this involves no extra

work.

One can also make use of hierarchy and inheritance to simplify the process of

writing these constraints. By declaring certain semantic concepts to be "children" of

other concepts, any valid arguments of the ancestors of a word can be considered valid

arguments of the word itself. For example, if "flight" is declared to be a child of

"object," then any valid arguments of "object" are automatically valid arguments

of "flight." This drastically reduces the number of constraints that need to be

written.

,ston "}

add_topic(O 1) addtopic(1 0)

city :name "boston"}}
(from :topic (city :name "boston"}}

I
NULL

(not a valid
combination)

Figure 3-1: Semantic parsing ignores word order when combining two words or
phrases.
When the semantic parser attempts to combine two words or phrases with semantic function
f (for all f), it attempts to combine its inputs in both orders. For example, when trying to
combine "from" and "boston" using add_topic, the system computes add_topic (0 1) as
well as add_topic (1 0) for those inputs. Here, only one of these combinations results in
valid output semantics.

3.2 Semantic Functions

Many different semantic functions can be used to create, represent, and combine

the various concepts in a natural language system. Our system consists of functions

primarily grouped into "phrasal" and "special" categories. The "phrasal" functions

capture and help compute common concepts, such as the notion of certain words

containing topics, agents, and other attributes. In addition, "special" functions span

one or more domains and handle semantic concepts, such as dates and times, which

are unique to those domains. Given the semantics of each of its inputs, each function

verifies that it can combine its input semantics according to the defined constraints

and subsequently attempts to create a single, new set of semantics based on their com-

bination. If no meaningful combination is possible, the function accordingly returns

"null" semantics.

The "phrasal" category of semantic functions consist of add_topic, addtopic2,

add_agent, add_marked, add_pred, add_name, and addnnrel. We will now

describe each of the major functions in detail.

add_topic takes two frames as input and attempts to create a new frame with the

second input added as the "topic" of the first. add_topic2 is related, using the

"topic2" field, for capturing the notion of an indirect topic or object. Examples

include "boston" serving as a topic for "from, " or "me" serving as the indirect object

("topic2") for "show."

add_agent adds its second input under the "agent" field of its first input. The

utterance "I want a flight" provides a good example of an agent, with the word "I"

serving as the agent of "want. "

add_marked simplifies the format of its input somewhat, searching its second in-

put for a "topic" field and its corresponding value. If it finds such a field, it adds

the corresponding value directly to the first argument, using the name of the second

argument's head as the new key. This is useful for simplifying frame combinations

for common concepts, such as that of a source and destination ("from", "to"), with

flights. For example, when addmarked combines {flight} with {from :topic

{city :name ''boston' '}}, it removes the city from the "topic" field and places it

under the new "from" field of flight, resulting in the elegant meaning representation

of{flight :from {city :name boston}}.

add_pred adds the semantics of its second input as a predicate ("functions" that

can be applied to other words or concepts, such as a cost description being applied

to a flight) of the first input. The relationship between words like "cheapest" and

"flight" provides a good example of this notion.

addname adds the second argument under the "name" field of the first; this is

typically used for adding specific names for otherwise generic concepts. For example,

we treat "american airlines" as an "airline" further modified by the name "american."

addnnrel handles combinations of objects, such as "butter knife, " where two words,

which can serve as objects independently, can combine to form a new or different con-

cept. It adds the second argument under the "nnrel" field of the first.

Of course, each of these combinations is restricted by the constraints which dictate

whether or not one word can serve as a topic for another word, and so forth. Table

3.1 lists and summarizes all of the "phrasal" functions we used in our research.

The "special" functions compute less routine types of semantics. This category

includes functions for making numbers, years, dates, and times. The makenumber

function takes two numbers and attempts to combine them into a larger number,

semantically. The makeyear function examines whether or not a combination of two

numbers can form a reasonable number representing a year. makedate attempts

to form a frame for the concept of a date in several different forms, by checking

and combining numbers, years, days, and months. Similarly, make_time checks for

Semantic Function Example Inputs Output Semantics

add_topic {a},{b} {a :topic {b}}
addtopic2 {a},{b} {a :topic2 {b}}
add_agent {a},{b} {a :agent {b}}

add_marked {a},{b :topic {c}} {a :b {c}}
add_pred {a},{b} {a :pred {b}}
add_name {a},{b} {a :name {b}}
add_nnrel {a},{b} {a :nnrel {b}}

Table 3.1: "Phrasal" semantic functions.

This table lists all of the "phrasal" semantic functions we used in our experiments. These
functions handle concepts of adding topics, agents, predicates, and so forth, to other words
and phrases.

certain types of numbers, as well as a possible "a_m" or "p_m" modifier, and attempts

to create semantics for a time. Table 3.2 lists all of these functions and gives examples

of how they work.

3.3 Constraints

As mentioned, the semantic constraints represent a critical component of semantic

parsing. These constraints provide restrictions on the output of semantic parsing,

dictating which combinations are meaningful and preventing illogical meaning rep-

resentations from being considered or created. The structure of the constraints are

tightly coupled with the form of the semantic functions themselves, denoting whether

or not a certain concept can serve as a topic or as an agent (for use by add_topic

and add_agent, respectively) of another concept, and so forth. The constraints are

specified in a file which lists each of the major concepts in a given domain. Under

each of these concepts, the constraints list a set of valid arguments, specifying the

type of the argument, as well as the possible keys under which the argument may be

attached.

The constraints typically specify this through the type and role arguments. The

type argument ensures that only arguments of the specified type (or children of the

Semantic Function Example Inputs Output Semantics
make_number (num :value 30 {num :value 31

:type ''cardinal''}, :type ''cardinal''}
(num :value 1

:type "cardinal''}

{num :value 30 (num :value 31
:type ''cardinal'}, :type ''ordinal''}

(num :value 1
:type "ordinal"'}

makeyear (num :value 19 (year :value 1998 }
:type ''cardinal"},

(num :value 98
:type ''cardinal''}

make_date (date :month ''may''}, (date :month "may''

(num :value 31 :monthday 31}
:type ''ordinal''}

(date :month ''may'' {date :month ''may''
:monthday 31}, :monthday 31

(year :value 1998 } :year 1998}
make_clocknum (num :value 11 (clocknum :hour 11

:type ''cardinal''}, :minute 30 }
(num :value 30

:type "cardinal''}
maketime (num :value 3 (time :hour 3 }

:type ''cardinal''},
"o_clock''
(clocknum :hour 11 (time :hour 11

:minute 30 }, :minute 30
S"an" :merid "'an''}

Table 3.2: "Special" semantic functions.

This table lists all of the "special" semantic functions we used in our experiments. These
functions handle creating the semantics for numbers, dates, and times.

specified type) can be bound under the appropriate key. Similarly, the role argument

determines what key (and hence what semantic function) can be used to combine a

pair of semantics. For example, when add_topic tries to combine a pair of semantics,

it checks the constraints of the first argument to see if it has an entry with a role of

"topic" and a type of the same type as the second argument. Likewise, add_agent

checks its first argument's constraints for an entry with a role of "agent." Most

of the other types of functions and constraints follow a similar pattern, with a few

exceptions. In particular, add_marked checks the constraints of its first argument

for an entry with a role of the head of its second argument and a type corresponding

to the semantics bound under the key of "topic" in the second argument. add_pred

searches the constraints of the second argument, checking if it has an entry with a

role of "subj" and a type corresponding to the first argument (checking if the second

argument can serve as a predicate for a subject of the specific type).

In addition to listing these argument entries, the constraints can also include

lists of nn-modifiers. These nn-modifiers refer to words describing objects which can

modify a target object, forming a new object or concept. The nn-modifiers for a

word declare which other semantic concepts can be combined to form an object-

object pair, such as "butter" and "knife" combining into "butter knife." Accordingly,

the function add_nnrel checks its first argument's constraints to see if the second

argument is listed as a possible nn-modifier. Finally, the constraints for a word can

also list a possible parent of the word to allow for hierarchical lookup in determining

the validity of predicates and arguments. Examples of constraints for selected words

are shown in Figure 3-2.

Thus, the constraints for "flight" allow addmarked to place a location under the

key of "from" or "to" and allow add_nnrel to modify the flight with airline or class

objects (i.e., "american airlines flight," "first class flight"). Similarly, the constraints

for "from" allow add_topic to give it a topic of a location. Finally, the constraints

for "cost" allow addpred to apply it to a flight, and the constraints for "desire"

allow addagent to give it a speaker as its agent (the one who desires something, as

compared to the item being desired).

{ flight
:args ({ :type loc :role from }

{ :type loc :role to })
:nmods ("airline", "class")
:parent ''showable_obj"'

}
{ cost

:args ({ :type flight :role subj })

}
{ from

:args ({ :type loc :role topic })

}
{ show

:args ({ :type showableobj :role topic }
{ :type speaker :role topic2 })

:parent ''action"

}
{ desire

:args ({ :type showable_obj :role topic }
{ :type action :role topic }
{ :type speaker :role agent })

:parent "action"

}
{ quant

:args ({ :role :type obj :role subj })

}
{ showable_obj

:parent ''obj"'

}
{ city

:parent ''loc''

}
{ cheap

:parent ''cost''

Figure 3-2: Semantic constraints for selected words.
The basic constraints needed for handling utterances like "cheapest flight from boston" or
"show me all flights from boston. " The arguments that each word in those utterances can
accept are listed here. Also shown are examples of inheritance; for example, "flight" is
listed as having a parent of "obj," allowing any argument of "obj" to modify "flight."

Semantic Function Example Inputs Output Semantics

whques which flights from boston
{ WhObj { whques

:pred :topic { WhObj ...}

{ quant :wh ''which''} :comp { flight ...

}, }
{ flight ... }

make_command please show flights from boston
{ please }, { show
{ show :topic { flight ...}

:topic { flight ... } }

makestatement i want flights from boston
{ desire { statement

:agent :topic { flight ...}
{ speaker :who "me''} :pred { desire ...}

}, }
{ flight ... }

Table 3.3: "Sentence-Level" semantic functions.

Sentence-level functions try to combine the semantics of their input words and phrases to
determine if the overall utterance refers to a query, statement, or command. This table lists
all of the sentence-level functions we used in our experiments.

3.4 Sentence-Level Semantics

Sentence-level functions represent another class of functions, independent of the

"phrasal" and "special" ones. These functions capture "sentence-level" semantic con-

cepts, such as commands, queries, and statements. An interpreter or evaluator then

handles each of these with the appropriate type of response for the given sentence-level

category. Table 3.3 displays all of the sentence-level functions we use and provides

examples of how they work.

Specifically, the wh_ques function examines its inputs, checks if one consists of or

contains a "who," "what," "when," "where," "why," or "how" concept, and sees if the

other is compatible or can be an argument, as defined by the constraints (typically,

it checks to see if the other argument is a type of object). If these requirements

are satisfied, the function creates a new set of semantics with the head "wh_ques,"

indicating the utterance refers to a query. Similarly, the make_command function

checks its argument to see if it consists of or contains a type of "action" (i.e., the

argument is a subclass of "action"), but does not contain an "agent" field, when

creating its output semantics. Finally, the make_statement function checks its

arguments to see if one is an "action" with an "agent" field and the other is a

compatible argument of the action. If this is the case, then the function creates

output semantics with the head of "statement," containing the topic and the action.

Often, the sentence-level functions can use the number and type of arguments

to determine if its inputs compose a query, command, or statement. Indeed, the

make_command function looks for a single argument of type "action" (without an

"agent") to determine if its input is an utterance representing a command. However,

relying solely on this criteria will not work in all cases; some functions take the same

number and similar types of arguments, and so other criteria, such as the presence

of specific concepts or arguments, must also be used. Further, it is impossible to

distinguish most "yes/no question" utterances from a statement; the system needs

contextual information to make this distinction. Because we do not supply this con-

textual information and actually are not even interested in the exact distinction, given

the scope and nature of our research, we do not include a function that captures the

notion of a "yes/no question"; it would simply duplicate the work and effort of the

existing make_statement function.

These sentence-level functions need to be able to capture basic or similar meaning

of different utterances. For example, a user might pose one of the three equivalent

queries, "show me flights from boston," "please show me flights from boston," or "could

you show me flights from boston, " to retrieve the same information. At the sentence-

level, the parser often encounters words which contribute nothing to the semantics of

a command, query, or statement. The word "please" in the command "please show me

flights from boston" makes the command more polite but actually contributes nothing

to the overall meaning representation extracted from that utterance. An interesting

aspect of semantic parsing is being able to define these words as "filler words." More

precisely, these words can be defined to be subclasses (children) of "filler," so that

they still have their own semantics but can also be considered filler words for other

purposes.

The parsing system can therefore attempt to compute sentence-level semantics by

skipping over the fillers and passing the non-filler semantics of an utterance to the

sentence-level functions, which then decide into which sentence category, if any, that

utterance falls.

3.5 Log File

In addition to recording the generated meaning representation as it parses utterances,

this system also computes and logs other information that may be of use in later

processing. Specifically, it logs the parts of speech of the words that combine as well

as the semantic function that allows for their combination.

Thus, the semantic parse of "cheapest flight from boston to philadelphia" contains

the information displayed in Figure 3-3. One can see that "cheapest" (an adjective)

and "flight" (a noun) combine together by the addpred semantic function, and

"from" (a preposition) and "boston" (a name) combine together by the add_topic

function. In turn, these two units get bracketed together by addmarked, and that

unit combines with "to philadelphia" by the same function.

The information recorded in semantic parsing also illustrates how the system

ignores filler words. For example, the parse of "please show me flights from boston

to philadelphia" computes its final semantics by skipping over "please" and using the

computed semantics of "show me flights from boston to philadelphia" as the sentence's

overall semantics.

3.6 Implementation Details

We implemented the program used for semantic parsing (shown in Figure 3-4) in C++

for the WIN32 platform. In fact, we used the same program for syntactic parsing

experiments; the parsing mode can be set by a menu option. We chose the WIN32

cheapest flight from boston to philadelphia

meaning representation: {flight
:from { city :name "boston"}
:to { city :name "philadelphia"}
:pred { cheap :type "superlative"}

}

parts of speech: [addmarked (0 1):
[addmarked (0 1):

[add_pred (1 0): Adj N]
[addtopic (0 1): P Name]

[addtopic (0 1): P Name]

utterance: which are flights from boston to philadelphia

meaning representation: {wh_ques ...}

parts of speech: [wh_ques (0 2): WhObj Cop [...]]
utterance: please show me flights from boston to philadelphia

meaning representation: {show ...}

parts of speech: [makecommand (1): Please [...]]

Figure 3-3: Sample log file entries.
Examples of entries in the log file generated by the semantic parser. The parser records the
utterance, the computed meaning representation, and the parts of speech of the words that
combine during parsing. The listed entries include examples of sentences and sentence-level
computations.

utterance:

Figure 3-4: Screenshot of the semantic parsing system.
A screenshot of the actual program we use for our experiments. This program allows us
to view the state of the parser, including the semantic parse tree and all of the computed
meaning representations (if the system computes multiple parses). This program also serves
as a syntactic parser and contains network server code, allowing for the remote execution
of parsing experiments.

environment to allow us to create a GUI around the parser more easily, letting us

view the parser state and step through parsing during the development stages of the

research. To allow for other programs to control the parser remotely and interact

across environments, we embedded a network server in the parser. This allowed for

a user or a script to run parsing experiments remotely, get the results, and process

them without having to interact through the GUI at all.

3.7 Domains and Experiments

The experiments in this thesis made use of two domains. Primarily, most of the testing

and development utilized the ATIS [8] domain, a set of utterances involving airline

travel queries and statements. In addition, some subsequent portability experiments

utilized the Jupiter [15] domain, a set of utterances regarding information about the

weather.

We divided these domains into different sets of utterances. From ATIS, we only

used the "A" and "D" sets of utterances from the ATIS II and ATIS III collections.

Speakers from these data were chosen at random, and all the utterances for a speaker

were placed either into a training set, one of three development sets, or a test set. Out

of a total of 7424 utterances, 3764 were placed into the ATIS TRAIN set and 1033

were placed in the ATIS TEST set; the remaining utterances were evenly divided

into the ATIS DEV sets. From Jupiter, 1000 utterances were chosen at random

and placed into a test set for the portability experiment. The grammar induction

mechanism learned a grammar from the ATIS TRAIN set, refined the grammar on

the ATIS DEV sets, and tested the final results on each of the TEST sets.

We defined a lexicon and set of semantic constraints for each of these domains and

used them for our semantic parsing experiments. However, writing these constraints

entailed defining an initial set of constraints, parsing a set of utterances, seeing what

concepts were not handled, adding more constraints, reparsing the utterances, and so

forth. As one can imagine, writing these constraints encompassed an engineering task

in and of itself, so we chose to allocate some of our time and energy for subsequent

Utterance Parse Piece-count

ABC [AB] 2
ABC [[A B] C] 1

Table 3.4: Illustration of piece-count measurement.
When the parser processes an utterance consisting of the words A, B, and C by combining
just A and B, that utterance has a piece-count of two. If the parser also combines C with
A and B, then the utterance is completely parsed and has a piece-count of one.

Set Number of Utterances Total Piece-count Number of
Complete Parses

ATIS TRAIN 3764 13515 1503

ATIS TEST 1033 3704 434

Jupiter TEST 1000 2436 636

Table 3.5: Overall semantic parsing results - coverage of sets.

The overall semantic parsing results for the TRAIN and TEST sets of ATIS as well as the
TEST set of Jupiter. The experiments measured the piece-counts and coverage (number of
complete parses) of the utterances in these sets.

experiments and portions of the thesis research, rather than just this engineering task.

Therefore, the results of semantic parsing were by no means optimal. Rather, they

served as a threshold and upper boundary against which results from later parsing

experiments could be measured, as discussed later in this thesis. Overall, our ATIS

lexicon and constraints contained 600 and 175 entries, respectively, including a list of

46 filler words. Similarly, our Jupiter lexicon and constraints contained 829 and 126

entries, respectively.

In analyzing the results of semantic parsing, we utilized and measured two primary

criteria. First, we measured the coverage of the system, counting the number of

utterances that were handled completely by the defined semantic constraints. Second,

we quantified the fragmentation of the parses by counting the number of pieces in

each utterance. As illustrated in Table 3.4, an utterance consisting of three words, A,

B, and C, and generating a semantic parse in which just A and B combine, resulted

in a piece-count of two for the parse; a complete parse had a piece-count of one.

av

a, 0.4

E
0 .30

Semantic Parsing Coverage

Figure 3-5: Overall semantic parsing results - coverage of sets.
The overall coverage of semantic parsing on the three sets. Semantic parsing covered about
40% of each of the ATIS sets and 64% of the Jupiter set.

Table 3.5 and Figures 3-5 and 3-6 display the results of our semantic parsing

experiments as measured by the mentioned criteria. Semantic parsing covers about

40% of the utterances in two separate sets from the ATIS domain and 64% percent

of the utterances in a set from the Jupiter domain. Utterances in Jupiter tend to be

shorter than ones in ATIS; this observation likely represents the biggest contribution

to this difference in coverage between domains. Finally, each of the parsed utterances

has a low piece-count on average, and hence the total piece-count is also reasonably

low. Indeed, a histogram of the piece-count measurement shows that the majority

of utterances have a piece-count towards the low end of the spectrum, signifying an

overall small amount of fragmentation, or alternatively close to complete coverage of

the sets.

ATIS TEST Set: Piece-Count Histogram (Semantic Parsing)

pieces # pieces

a) b)

Jupiter TEST Set- Piece-Count Histogram (Semantic Parsing)
7-nn ...

600

2 4 6 8 10 12
pieces

14 16 18

c)

Figure 3-6: Overall semantic parsing results - histogram of piece-counts.
These graphs display histograms of the piece-counts for utterances in the a) ATIS TRAIN,
b) ATIS TEST, and c) Jupiter TEST sets. As shown, the piece-count for the majority of
these utterances is relatively low.

ATIS TRAIN Set Piece-Count Histogram (Semantic Parsing)

Chapter 4

Grammar Induction

The inputs to semantic parsing effectively define what words and phrases can combine.

Grammar induction mechanisms can use the output of semantic parsing and observe

how things actually combine, generating the corresponding grammar. We explore

two relatively simple techniques that interface with semantic parsing to generate a

grammar. The first technique generates a new rule from every unique bracketing seen

in the logs of the semantic parse of a training set and subsequently clusters these

syntactic units together based on co-occurrence. The second technique attempts to

make more use of the semantic phrasal information available in the logs in order

to improve the efficiency of the mechanism and to make the learned grammar more

compact. We now discuss each of these techniques in detail.

4.1 Unique Bracketings

4.1.1 Rule Extraction Phase

In this approach, the system generates a grammar by extracting one rule for every

unique bracketing encountered in the semantic parse logs; Figure 4-1 illustrates this

with an example. In the semantic parse shown (for "cheapest flight from boston to

philadelphia"), a rule would be extracted for the bracketing of Adj and N with se-

mantic function addpred (1 0) and given a fresh non-terminal Xo. Similarly, the

[addmarked (0 1):
[addmarked (0 1):

[add_pred (1 0): Adj N]
[addtopic (0 1): P Name]

(0 1): P Name][add_topic

Unique Bracketings

Figure 4-1: Rules learned from unique bracketings in "cheapest flight from boston to

philadelphia."
This figure shows the semantic parse of "cheapest flight from boston to philadelphia" and
the resulting syntactic rules learned via the unique bracketings approach. From the Adj N

combination, the system extracts the rule X0 -+ Adj N. Similarly, it extracts the X1 rule

for the P Name combination and the X2 rule for the combination of Xo and X1. Finally,
the system creates an X3 rule for the X2 Xi combination.

Left-hand Side Right-hand Side Semantic Function
Xo - Adj N add_pred (1 0)

X1 - P Name addtopic (0 1)

X2 -- Xo X 1 addmarked (0 1)

-X3 X 2 XI add_marked (0 1)

Left-hand Side Right-hand Side Semantic Function
Xo - Adj N add_pred (1 0)
X1 -- P Name add_topic (0 1)
Xo0 - X X 1 addmarked (0 1)

Figure 4-2: Example of merged rules.
The system merges Xo and X2 (from Figure 4-1) by replacing every instance of X2 with
X 0 and eliminating duplicate rules.

bracketing of P and Name would be extracted as another rule, X 1 , and the combina-

tion of those two syntactic units would be recognized as another unique bracketing

and extracted into another rule, X2 . Another instance of a P Name bracketing ("to

philadelphia") is encountered, but this is not unique, so no new rule needs to be

generated for this observation. However, that instance of X 1 combines with X2, and

thus a new rule X3 is extracted, completing the set of grammar rules that cover this

utterance. This process is continued for every utterance in the semantic parse logs.

4.1.2 Merging Phase

As one can imagine, extracting a new rule for every unique bracketing seen can result

in a very large grammar for all but the most trivial set of utterances. Furthermore,

this grammar is highly specific to the training set. Therefore, to make the grammar

more compact as well as more generalized, this system needs to perform clustering in

order to merge the extracted syntactic units and rules.

Clustering techniques rely on distance metrics for choosing which units to combine

at each iteration. However, as mentioned, developing this distance metric can easily

grow into an independent research project; therefore, our research utilizes a fairly

simple metric. Based on co-occurrence, our metric ranks every pair of possible merges

by their co-occurrence counts. Co-occurrence describes when two syntactic units exist

in the same context; in the previous example, X 0 and X2 have a co-occurrence of one

because they occur to the left of unit X 1 with the same semantic function add_topic

(0 1).

Each merge involves replacing every instance of one token with the companion

token with which it combines. For example, if we choose to merge Xo and X 2, we

would derive the grammar shown in Figure 4-2. However, instead of simply merging

the pair of tokens with the highest amount of co-occurrence, this system actually

ranks all pairs of tokens by this measurement and tries the top n merges in syntactic

parses of a development set. It then chooses the merge which results in the maximal

reduction of the piece-count as the optimal merge for that iteration of the induction

process. Essentially, this represents a greedy version of trying all possible merges

in syntactic parses by restricting the parsing experiments to those which are likely

to reduce the piece-count significantly (merging those pairs of units which display

similarity because of co-occurrence).

Therefore, this metric does not blindly rely on co-occurrence statistics alone be-

cause there is no guarantee that co-occurrence can be used in creating meaningful

and useful generalizations of a grammar. Instead, it tries to find the optimal merge

based on which one reduces the piece-count the most. Since the piece-count measures

fragmentation and captures how complete a set of rules are in terms of coverage, this

measurement is meaningful and quite reasonable.

Figure 4-3 displays an overview of the induction process. First, the system per-

forms a semantic parse of a training set of utterances. It extracts a syntactic grammar

Go from this parse based on the unique bracketings approach. Next, it tries this gram-

mar in a syntactic parse of a development set of utterances, counting the number of

pieces in the resulting parses. After ranking all pairs of units by their co-occurrence

counts in Go, the system tries the top n merges in independent syntactic parsing

experiments using the development set. The system chooses the merge which reduces

the piece-count the most, along with the resulting grammar G1, as the output of that

iteration.

The next iteration begins by ranking all pairs of units in G 1 by their co-occurrence,

trying the top n merges in syntactic parses, and again choosing the merge which re-

duces the piece-count the most to produce G2 . This process is repeated until the

piece-count converges. We can then use the final output grammar in parsing experi-

extract grammar G_0 from
semantic parse of training set

TRAINING
SET

t
dl

G_0

ry syntactic parse of
evelonment slt uisin C n

try syntactic parse using grammar Gi,
check piece-count

check piece-count of final
grammar on test set

Figure 4-3: Overview of the induction process for the unique bracketings approach.
This figure provides an overview for the induction process for unique bracketings. After
the system semantically parses a training set, it extracts a grammar Go for that set using
unique bracketings. It then tries using that grammar to perform a syntactic parse of a
development set and obtains the corresponding piece-count. Next, the system attempts to
create a grammar Gi by attempting n independent token merges of Gi- 1 and using the
resulting grammars in syntactic parsing experiments, choosing the merge which reduces the
piece-count the most. After each iteration, the system attempts to create a grammar Gi+1 ,
repeating the entire process until the piece-count of the syntactic parse of the development
set converges. The induction process concludes with a syntactic parsing experiment of a
test set using the final grammar.

ments on a separate test set of utterances.

4.2 Semantic-Head Driven Induction

One potential flaw in the previous approach is that it does not make much use of the

semantic-level information present in the semantic parse logs. The unique bracketings

approach uses just the bracketings provided by semantic parsing, essentially ignoring

the semantic phrasal information also embedded in the logs. Semantic-head driven

induction (SHDI) represents another approach to the grammar induction process

that does make use of this information. Essentially, SHDI builds on top of the unique

bracketings approach and improves it by making more use of the information available.

Because of the nature of language, and accordingly the way we define semantic

functions, the first argument to a function constitutes the head, or major concept,

of the resulting semantic frame. For example, when "cheapest" and "flight" combine,

"flight" is the first argument to add_pred, and the resulting semantic frame retains

'flight" as its head. This can provide very useful information for grammar induction.

Essentially, this observation recognizes how semantic-level phrases are constructed.

One can therefore use these semantic-level phrases to influence the learning of syn-

tactic structure. By using the part of speech of the first argument to a semantic

function, the extraction mechanism can create syntactic phrases based on semantics

and generate clean, readable rules directly from the parse logs, rather than assign-

ing arbitrary non-terminal labels. Further, the extracted rules are often recursive in

nature, eliminating the need for a subsequent merging phase; essentially, the learned

grammar is pre-merged.

The example in Figure 4-4 illustrates this mechanism. Given the semantic parse

for "cheapest flight from boston to philadelphia," SHDI begins by recognizing the noun

"flight" as the first argument to addpred and extracts a syntactic rule N_0 for the

Adj N combination. Similarly, it recognizes the preposition "from" as the head in the

combination of "from" with "boston" and creates the P_0 rule and phrase type for this

combination. Finally, upon encountering the combination of those two phrases, the

[add marked (0 1):
[addmarked (0 1):

[add_pred (1 0): Adj N]
[add_topic (0 1): P Name]

[addtopic (0 1): P Name]

Semantic-Head Driven Induction

Left-hand Side Right-hand Side Semantic Function
N_0 - Adj N add_pred (1 0)
P_0 - P Name addtopic (0 1)
N_0 - N_0 P_0 addmarked(0 1)

Figure 4-4: Rules learned in semantic-head driven induction from "cheapest flight
from boston to philadelphia."
This figure shows the semantic parse of "cheapest flight from boston to philadelphia " and the
resulting syntactic rules learned from the SHDI approach. From the Adj N combination,
the system extracts the rule N_0 -- Adj N. Similarly, it extracts the P_0 rule for the P
Name combination and another N_0 rule for the combination of N_0 and PO. Notice that
the last rule is recursive, eliminating the need for merging.

technique observes that "cheapest flight" is the first argument to add_marked and

therefore creates another instance of the N_0 (the derived part of speech for "cheapest

flight") rule corresponding to the N_0 P_0 combination. Interestingly enough, this last

rule is extracted as two rules under the unique bracketings approach and represents

a candidate for merging; SHDI learns the merged version directly.

4.3 Implementation Details

Because much of this grammar induction work involves parsing and scanning through

logs from the semantic parsing stage, we utilize Perl to perform this task. The gram-

mar induction code actually consists of a set of Perl scripts which read the semantic

parse logs and record which pairs of tokens are bracketed together and the function

that allows for their combination. These scripts subsequently generate a grammar

containing some left-hand side token (according to the grammar induction technique

used), the tokens for the right-hand side, the corresponding semantic function, and

the count of how many times each rule (bracketing) is encountered in the logs. The

scripts run on a DIGITAL UNIX system.

As previously mentioned, the first approach to induction requires tight coupling

and interaction between the grammar induction scripts and the syntactic parser,

since the induction process depends on the results of syntactic parsing experiments.

To allow for this integration, this system utilizes network communication. The parser

contains an embedded server, and the scripts contain client code and subroutines,

allowing for communication with the parser server. In this manner, the scripts can

dictate which utterances and grammar the parser should use for an experiment. As

one script extracts a grammar and attempts a merge, it can obtain the piece-count

for the grammar by invoking other scripts. One of these scripts directs the parser

to run a syntactic parsing experiment, and another one computes the results (i.e.,

measures the piece-count for the parse using that grammar). Together, these scripts

allow the induction mechanism to pick a grammar Gi for each stage of the induction.

The second approach, semantic-head driven induction, utilizes a set of scripts

which are heavily based upon the original induction scripts. However, the newer

scripts do not use or need to use the network client code, since SHDI neither needs

to run any syntactic parsing experiments nor needs to undergo a merging phase.

Instead, these scripts simply use the semantic phrasal information to create or choose

the appropriate left-hand side token.

For both types of induction, we want to avoid letting the order in which utterances

appear in a set (typically alphabetical) influence the training process or misguide us

in our interpretation of how many rules are being learned as more and more data are

processed. To avoid this influence, the induction scripts randomize the order of the

utterances in the semantic parse logs before processing them. In that manner, the

scripts will not encounter all the utterances that start similarly (for example, "what

are the cheapest flights... ") at once, but rather process them in a random order.

Because of this randomization, the induction process is non-deterministic. Different

trials result in the induction of different rules (and number of rules). However, these

differences are slight; the fluctuation in the number of rules between trials is usually

on the order of five rules or fewer.

4.4 Results of Induction

Using unique bracketings, our system generates an unmerged grammar containing

3785 rules learned from the ATIS TRAIN semantic parse; Figure 4-5 displays some

examples of these rules. As this figure illustrates, several different rules correspond

to similar phrase types; for example, X 0 , X15 , X89, X90 , X9 9, X 146 , X 357 , and X 358 all

involve different types of noun phrases, and accordingly, several other groups of rules

involve each of these tokens. These tokens exemplify prime candidates for merging.

Unfortunately, the mechanism for choosing merges proves to be far too slow to

be usable. Each iteration requires n syntactic parsing experiments, and each of these

syntactic parsing experiments takes an unreasonable amount of time to complete,

especially given a grammar of this size. Therefore, we must rely on semantic-head

driven induction (and its ability to produce a pre-merged grammar) as our grammar

Left-hand Side Right-hand Side Semantic Function Count

Xo -- + Det N addpred (1 0) 1325

X15 - Adj N addpred (1 0) 276

X, - N N addnnrel (1 0) 121

X3 - P Name addtopic (0 1) 4325

X89 X0 X 3 add_marked (0 1) 298

X146 -- + X9 9 X 3 add_marked (0 1) 23

X357 -+ X15 X 3 add_marked (0 1) 36

X9o X89 X 3 add_marked (0 1) 265

X358 - X3 57 X 3 add_marked (0 1) 33

X2370 -- + Aux Pro X 167 makecommand (2) 3

X2371 Aux Pro X 171 make_command (2) 1

X2464 Please X1 028 make_command (1) 1

X2465 -- Please X 1072 makecommand (1) 1

X2672 - WhObj Cop Xo wh_ques (0 2) 12

X2773 - WhObj Cop X90 whques (0 2) 20

Figure 4-5: Examples of (unmerged) rules learned in unique bracketings.
This figure shows examples of rules learned in the unique bracketings approach. These rules
are unmerged; hence, several rules correspond to similar syntactic concepts. For example,
rules like Xo, X15, X89, and X99 all refer to noun phrases. Several other rules refer to each

of these tokens, resulting in the learning of duplicate versions of similar rules.

induction mechanism.

Semantic-head driven induction has a number of advantages over the unique brack-

etings approach. First, because there is no need for merging, using the scripts and

performing the actual grammar induction based on this approach is much quicker.

Second, SHDI produces a very compact grammar which is faster to use because the

syntactic parsing system can consider fewer rules when trying to parse an utterance.

Third, because the actual parts of speech of semantic phrases are used in labeling the

learned syntactic structure, the generated rules are actually quite readable, making

examining and reasoning about them much more straightforward than in the original

approach.

Figure 4-6 provides an interesting view of the learning process, plotting the number

of utterances against the number of rules learned. As shown in this figure, the graph

approaches an asymptote. Essentially, as the system parses more and more utterances,

Semantic-Head Dnven Induction: # Utts vs. # Rules

E 250

- 200
Cr

150

100

50

0

I

0 500 1000 1500 2000 2500 3000 3500 4000
Utts

Figure 4-6: Number of utterances vs. number of rules learned in semantic-head driven
induction.
This graph shows the number of utterances plotted against the number of rules learned in
our SHDI experiments. As the system encounters more utterances, it learns and extracts
fewer new rules, approaching an asymptote.

it encounters fewer previously unseen formations, and therefore does not need to

create as many new rules.

Using SHDI, the system extracts 401 grammar rules. Some examples of rules

actually learned by this process are shown in Figure 4-7. These rules are much more

readable than the ones learned under the unique bracketings approach, and a single

recursive rule can cover the same constructs that correspond to many distinct rules

in an unmerged grammar.

Qualitatively, many of the rules learned under SHDI are quite reasonable, such as

N_0 -+ N_0 P_0, or N_0 -+ N N. Other rules are a little more puzzling, such as P_0 -+

Name P in addition to the expected P_0 -+ P Name. Incomplete phrases and parses

heavily contribute to this phenomenon. For example, in "boston to philadelphia,"

both "boston" and "to" as well as "philadelphia" and "to" can combine. The system

does not have enough information available to complete the parse and resolve which

combination is correct, and thus the grammar induction script can encounter the

"boston to" combination and generate a N_0 -+ Name P rule.

Left-hand Side Right-hand Side Semantic Function Count
N0 --- N_0 P_0 add_marked (0 1) 2400

N_0 - N N add_nnrel (1 0) 150
N_0 - Number_0 N add_pred (1 0) 12

P0 -- Name P add_topic (1 0) 111

P_0 - P Name add_topic (0 1) 4241
Number_0 - Number Number makenumber (0 1) 137

Number_0 - Number Number make_number (1 0) 132

SENT_0 -- Aux Pro V_0 makecommand (2) 23

SENT_0 - Please V_0 makecommand (1) 98

SENT_0 - WhObj Cop N_0 whques (0 2) 223

Figure 4-7: Examples of rules learned in semantic-head driven induction.
Several of the rules our system learned using SHDI. Most rules are fairly readable and
reasonable. Other rules are more confusing, such as P_0 -+ Name P; however, the system
records how many times each rule appears in the data, demonstrating that this rule is not
very common. Other rules, such as ones for handling numbers, are not as reasonable or
dismissable from count information. Some sentence-level rules are also shown.

However, in addition to recording the rules that they learn and encounter, the

grammar induction scripts also record counts of how many times a rule occurs in the

training data. In examining these counts, one can see that the expected P Name

combination clearly dominates the Name P combination. Thus, a statistical parser

could assign that rule a lower probability, or just completely ignore it, and recover

from the existence of this otherwise confusing pair of rules.

On the other hand, some constructs do give the semantically-based induction

system some less avoidable or less recoverable problems. Specifically, it is difficult to

distinguish numbers based solely on semantics, while ignoring syntactic cues such as

order. For example, because the components of the number "fifty two" are considered

in both orders (fifty two, two fifty), the system cannot ascertain which number is

meant. Here, syntactic cues or pre-labeled examples are necessary, and thus numbers

represent an example of where semantic-based grammar induction can suffer.

Finally, the system can also extract sentence-level syntactic rules. As shown, the

rules for phrases like "can you show me flights...," "please show me flights...," and

"what are flights..." are among those learned.

Chapter 5

Parsing and Portability

The next stage in the research assesses how well the learned grammar performs in

syntactic parsing experiments. These experiments involve using the grammar in both

the original domain in which it was learned (ATIS) as well as a new domain (Jupiter).

This chapter describes the mechanisms used to conduct those experiments, the ex-

periments themselves, and the overall results.

5.1 Modifications to the Syntactic Parser

We utilized an all-parses bottom-up chart parser for our syntactic parsing experi-

ments. However, even using the grammar produced by semantic-head driven induc-

tion, the system performed too slowly for us to run (and re-run) all of our desired

experiments in a reasonable amount of time. To address these concerns about speed

and efficiency, we made some modifications and enhancements to the parser.

First, we added semantic filtering to the parsing mechanism. Instead of perform-

ing all semantic computation after completing a parse, the chart parser computed

semantics of edges as it created them, and immediately filtered out any semanti-

cally invalid edges. Thus, instead of keeping track of edges which cannot possibly

contribute to a semantically valid parse (because the edge itself had no meaning),

the system did not even consider or maintain that edge. Alternatively, one could

think of this enhancement as restricting our experiments to those utterances which

were semantically valid (and were handled completely by the defined semantics and

constraints).

Another enhancement made to the system involved relaxing the definition of

"equals" for two edges. Two syntactic edges often had slightly different structure

but contained the same computed semantics, as shown in the "cheapest flight from

boston" example in Figure 5-1. We therefore relaxed the notion of equals so that two

edges with the same semantics were considered equivalent, based on the justification

that an interpreter would perceive no difference in this set of potentially ambiguous

edges and parses (and therefore maintaining a difference was unnecessary and even

wasteful).

In addition, sometimes two edges would contain similar semantics with only slight

differences, such as the locations where embedded arguments might be bound, as

shown in the "from boston fare to philadelphia" example in Figure 5-1. Therefore, we

also relaxed the notion of equals for semantics themselves, so the contents, not the

locations of where arguments were bound, were considered. Again, we felt this was

perfectly reasonable, as the two alternative meaning representations would evaluate

to the same thing but slowed down the syntactic parsing, since the parser had to

maintain and consider essentially duplicate edges in the chart data structure.

With these enhancements, the syntactic parser proved to be fast enough to run

all of the desired experiments in a reasonable amount of time. Of course, because of

semantic filtering, the syntactic parser could do no better than the semantic parser.

If a phrase did not have valid semantics, the syntactic parser filtered it out, removing

it from consideration. Thus, the results of semantic parsing served as an upper bound

against which we could evaluate the results of our syntactic parsing experiments.

5.2 Parsing Experiments

The first set of parsing experiments involved assessing how well the learned grammar

performed in the original domain. After doing a semantic parse of the training set

of utterances from the ATIS domain and inducing the corresponding grammar, we

syntactic parse meaning representation
edge: cheapest flight from boston

[[Adj N] [P Name]] {flight
:from { city :name "boston"}
:pred { cheap :type "superlative"}

}

[Adj [N [P Name]]] {flight
:from { city :name "boston"}
:pred { cheap :type "superlative"}

}
edge: from boston fare to philadelphia

[[[P Name] N] [P Name]] {fare
:from { city :name "boston"}
:to { city :name "philadelphia"}

}

[[P Name] [N [P Name]]] {fare
:to { city :name "philadelphia"}
:from { city :name "boston"}

}

Figure 5-1: Examples of edges with identical or similar semantics.
Illustration of how the same edge might be parsed different ways, resulting in different
but similar (or even identical) meaning representations. Because an adjective can com-
bine with either a noun or a noun phrase, several syntactic parses of "cheapest flight from
boston" are possible; semantically, these parses are identical. Similarly, "from boston fare
to philadelphia" can be parsed two different ways. However, the meaning representations
are nearly identical, differing only in the location of where the "from" and "to" keys (and
corresponding values) are bound.

tried the grammar on two sets of utterances from ATIS. First, as an initial check,

we ran a syntactic parsing experiment in the original set of utterances in which the

grammar was learned (ATIS TRAIN) to ensure we got the same results as before. In

fact, we observed slightly improved results! The reason for this improvement related

to sentence-level rules. Because sentence-level functions required the pre-definition

of all filler words which it should ignore, a certain instance where a non-filler word

actually contributed nothing to an utterance could not be handled semantically; the

system could not combine the non-filler word with the rest of the utterance. However,

a syntactic sentence-level rule existed where the non-filler slot was ignored (because

that slot was typically occupied by a filler word), allowing the non-filler word to be

treated as a filler in order to compute the overall semantics for the utterance. Thus,

one extra utterance was completely covered that had not been covered in the semantic

parsing stage.

Also, because sentence-level semantic functions were only applied over an en-

tire parse, sentence fragments were never produced in semantic parsing, although an

utterance might contain several embedded fragments or sentences. Their correspond-

ing sentence-level syntactic counterparts, however, could be applied anywhere in the

parse, since the parser treated them like any other grammar rule. Therefore, the syn-

tactic parser handled sentence fragments and embedded sentences much more easily

than the semantic parser, resulting in a lower piece-count for the syntactic parser.

Overall, in the ATIS TRAIN domain, the syntactic coverage and piece-count results

were very similar to the semantic coverage and piece-count, as expected.

Set Number of Utterances Total Piece-count Number of
Complete parses

ATIS TRAIN 3764 12342 1504

ATIS TEST 1033 3428 420

Table 5.1: ATIS syntactic parsing results - coverage of sets.

The overall syntactic parsing results for the ATIS TRAIN and TEST sets. The experiments
measured the piece-counts and coverage (total number of complete parses) of the utterances
in these sets.

ATIS TEST Set: Piece-Count Histogram
ACV..

400

350

300

b 250

0 200

150

100

0

0 2 4 6 8 10 12 14 16 18 20
Pieces

Figure 5-2: ATIS syntactic parsing results - histogram of piece-counts.
This graph shows the histogram of piece-counts for the utterances in the ATIS TEST set.
As desired, the majority of utterances have a low piece-count.

Next, we ran the ATIS TRAIN-learned grammar on a separate set of test utter-

ances from ATIS and achieved very promising results. The induced grammar covered

98% of the utterances that were covered semantically (or 41% overall), and this gram-

mar reduced the piece-count for reasons similar to the ones already described. Thus,

the grammar performed extremely well in handling utterances from the same domain

in which it was learned. Table 5.1 shows the overall parsing results; in addition, Fig-

ure 5-2 shows a histogram of the piece-counts for the ATIS TEST set. The majority

of the distribution was towards the low end of the spectrum, signifying that most

utterances consisted of a small number of pieces and were close to being completely

covered.

5.3 Portability Experiment

The final parsing experiment involved assessing how well the ATIS-trained grammar

performed in a different domain altogether. We chose the Jupiter domain for this

portability experiment. Jupiter, a weather information domain, primarily consisted

of weather-related queries, such as "what is the weather forecast for boston. " For this

Set Number of Utterances Total piece-count Number of
Complete Parses

Jupiter TEST 1000 2529 541

Table 5.2: Jupiter syntactic parsing results - coverage of set.

The overall syntactic parsing results for the TEST set of Jupiter.
the piece-counts and coverage of this set.

Jupiter TEST Set: Piece-Count Histogram

500

400

a
300-

20

200-

2 4 6 8 10
Pieces

The experiments measured

12 14 16 18

Figure 5-3: Jupiter syntactic parsing results - histogram of piece-counts.
This graph shows the histogram of piece-counts for the utterances in the Jupiter TEST set.
Again, the majority of utterances have a low piece-count.

experiment, we defined a lexicon and set of semantics for Jupiter and attempted to

parse a set of utterances using the grammar learned in the ATIS TRAIN domain.

As shown in Table 5.2 and Figure 5-3, the grammar performs reasonably well.

It covers 85% of the semantically valid utterances (54% overall), so performance de-

grades somewhat compared to the in-domain parsing experiment. We have theories to

explain this degradation in performance, however, and will address this issue shortly.

Again, the piece-count histogram illustrates that the majority of utterances have a

low piece-count, as desired.

cM

| I-1 1 n~F. I

5.4 Examples of Parses

Figures 5-4 and 5-5 provide some examples of utterances from the test sets of both the

ATIS domain as well as the Jupiter domain. The induced grammar and corresponding

semantic computation (from the syntactic parse) cover many utterances completely,

resulting in useful semantic frame representations for those utterances.

However, even if the grammar cannot cover an entire utterance, all is not neces-

sarily lost. The system computes and records the semantics for each partially parsed

fragment of an utterance; one or more fragments may contain enough information to

allow an interpreter to produce the appropriate response. This is especially the case

when the unparsed portions of an utterance consist of irrelevant information.

Of course, the defined semantics and corresponding induced grammar do not han-

dle or cover all utterances. This sometimes occurs because an utterance contains

complex constructs, such as "and, " involves concepts outside the range of our defined

semantics, or are actually meaningless.

5.5 Overall Results

Our experiments in semantic parsing resulted in decent parsing coverage, with 40%

coverage of ATIS and 64% coverage of Jupiter. Had we spent more time and effort

on the engineering task of writing semantic constraints, we could have improved each

of these numbers. Instead, we allocated our resources towards developing grammar

induction mechanisms and evaluating the learned grammar through the syntactic

parsing experiments described earlier in this chapter.

Figure 5-6 summarizes these experiments by displaying two different views of their

results. The first plot compares the absolute coverage of semantic parsing to that of

syntactic parsing, displaying the identical results for the ATIS TRAIN set (trying a

grammar in the exact set from which it was learned) and the nearly identical results

in the separate ATIS TEST set, with about 40% coverage overall. It also displays the

divergence in results in the Jupiter TEST set, with 64% coverage in semantic parsing

utterance: show me flights on monday from philadelphia
to boston after seven am

syntactic parse: [[V Pro] [[[[N [P Name]] [P Name]] [P Name]]
[P [Number Clock]]]]

meaning representation: {show :topic2 {speaker :who "me" }
:topic {flight :from {city :name "philadelphia" }

:to {city :name "boston" }
:pred {on :topic

{weekday :name "monday" }}
:pred {after :topic
{time :hour 7 :merid "am" }}

}
}

utterance: could you please tell me the cheapest fare
from atlanta to boston

syntactic parse: Aux Pro [Please [[V Pro] [Det [Sup [[N [P Name]]
[P Name]]]]]]

meaning representation: ({can},{you},
{show :topic2 {speaker :who "me" }

:topic {fare :from {city :name "atlanta" }
:to {city :name "boston" }

})
utterance: show me roundtrip fares between sanfrancisco and

washington_d_c
syntactic parse: [[V Pro] [Adj N]] PComp Name Conj Name
meaning representation: ({show :topic2 {speaker :who "me" }

:topic {fare :pred { trip_type
:name "roundtrip" }

{between},
{city :name "san_francisco" }, {and},
{city :name "washington_d_c"})

Figure 5-4: Examples of parses from ATIS.
This displays examples of parses from ATIS. One parse is complete and contains a reasonable
and useful meaning representation. Another parse is incomplete but contains enough useful
information that would likely allow an interpreter to generate the appropriate response to
this utterance. Finally, the third parse is incomplete and fails to capture the basic meaning
of the sentence, due to the presence of "and, " which is not handled by our defined functions,
constraints, or learned rules.

utterance: what is the weather forecast for boston
syntactic parse: [WhObj Cop [Det [[N N] [P Name]]]]
meaning representation: {wh_ques :topic {WhObj :pred {quant :wh "what"}}

:comp {forecast :for {city :name "boston"}
:nnrel {weather}
:pred {quant :sp "the" }

}
}

utterance: i would like a weather forecast please
syntactic parse: Pro Aux [[V [[Det N] N]] Please]
meaning representation: ({speaker :who "me" }, {will},

{desire :topic {forecast :nnrel {weather}
:pred {quant :sp "a" }

})
utterance: is it raining in alaska
syntactic parse: Cop Pro [Ving [P Name]]
meaning representation: ({be},{it},

{rain :in {state :name "alaska" }})
utterance: can you give me the low and high temperatures

in antarctica
syntactic parse: [Aux Pro [V Pro]] Det Adj Conj [[Adj N] [P Name]]
meaning representation: ({show :topic2 {speaker :who "me"}},

{quant :sp "the"}, {low},{and},
{temperature :in {continent :name "antarctica"}

:pred {high}})
utterance: i would like to know the weather danny get

off the phone in wyoming
syntactic parse: Pro Aux V INF [V [Det N]] Unk V Unk Det

Unk [P Name]
meaning representation: (...)

Figure 5-5: Examples of parses from Jupiter.
This displays examples of parses from Jupiter. Again, one parse is complete and contains
a reasonable and useful meaning representation. Other parses are incomplete and contain
varying amounts of useful information. The final parse is completely meaningless, due to the
speaker's embedding an unrelated utterance within the original query (the parser utilizes
Unk for the part of speech for unknown words from this unrelated "domain").

Overall Parsing Coverage Relative Syntactic-Parsing Coverage
1.2

ATIS TRAIN
1 ATIS TEST

E Jupiter TEST

"0.8
E

S0.6

04-

02

O' 0
Set

Set

Figure 5-6: Overall parsing coverage.
These graphs display the overall parsing coverage of the ATIS TRAIN, ATIS TEST, and
Jupiter TEST sets. The graph on the left compares the absolute coverage of semantic
parsing and syntactic parsing. The system achieves 40% coverage of the ATIS sets for
both semantic and syntactic parsing; it achieves 64% semantic coverage and 54% syntactic
coverage of the Jupiter set. Because these experiments are effectively restricted to the
semantically valid subsets of each of the ATIS TRAIN, ATIS TEST, and Jupiter TEST
sets, syntactic parsing can do no better than semantic parsing. Accordingly, the graph on
the right displays the results of syntactic parsing relative to the semantic parsing upper
bound.

compared to 54% coverage in syntactic parsing. Because these results are restricted

by semantic filtering, imposing the results of semantic parsing as an upper bound,

the second plot displays the coverage of syntactic parsing relative to this semantic

parsing upper bound. As shown in this figure, of the utterances that are completely

handled by semantic parsing, the grammar covers 100% of those in ATIS TRAIN and

98% in ATIS TEST. Finally, it covers 85% of the utterances in Jupiter TEST that

are covered semantically.

Why does the performance of the grammar degrade in the portability experiment?

One must analyze the utterances and the types of utterances that were covered se-

mantically but not syntactically in order to answer that question. In our analysis,

we discovered that most of the degradation in performance occurred at the sentence-

level, with several types of sentences in Jupiter not being covered by the syntactic

rules learned in ATIS. Indeed, in analyzing the utterances in these two domains, one

can easily see that each domain tends to have different kinds of sentences and sentence

types.

For example, while both domains contain quite a few "what is ... " type queries,

Jupiter contains a large number of the more unique "is it ... " construct. It is quite

common for a speaker to inquire, "is it raining in boston?" However, no similar types

of queries exist in ATIS; the topics in ATIS simply do not compel users to pose those

types of queries.

Therefore, we believe that the difference in performance in these different domains

can be attributed to the different types of rules native to each domain. Because the

system never encounters any "is it ... " constructs in ATIS, no such rules are learned

in the grammar induction stage, and therefore the grammar loses coverage of those

types of utterances in ATIS. The system does not account for these different types of

sentences, preventing the sentence-level rules (and hence the overall grammar), from

being as portable as one would desire.

Chapter 6

Conclusion

This chapter discusses our findings and conclusions from our research. First, we

present a summary of our research and experiments. We then describe the achieve-

ments and contributions of this thesis work. Finally, we conclude with our ideas

for future work involving further research and experiments which can improve these

results and make the overall system more useful.

6.1 Summary

This thesis explored the feasibility of using semantics as a tool for learning grammars

automatically. We first developed a semantic parser for parsing utterances based on

meaning. Subsequently, we tried to learn a grammar from a semantic parse of a train-

ing set of utterances, using two techniques to extract grammar rules from bracketings

of parts of speech in the semantic parse logs. The first induction technique, unique

bracketings, attempted to learn a generalized grammar by clustering simple, specific

rules learned from each unique construct from semantic parsing, and the second tech-

nique, semantic-head driven induction, used the semantic phrasal information in these

logs to influence the learning and creation of the syntactic structure and rules. For

reasons mentioned in this thesis, we settled on using the SHDI-learned grammar for

our syntactic parsing experiments.

To assess the performance of this learned grammar, we conducted two parsing

experiments. We first measured the coverage of the grammar in new utterances from

the same domain in which it was learned, achieving 98% coverage of the semantically

valid subset of our test utterances. We then measured the coverage of this grammar

in a new domain to judge the portability of this grammar. The grammar covered

85% of the semantically valid subset of the utterances from the portability experi-

ment, making us optimistic that SHDI had potential for producing useful, portable

grammars.

6.2 Contributions

We feel that this thesis research effectively demonstrates that one can indeed use se-

mantics in the learning of syntactic grammar rules. The SHDI mechanism produces

a readable and usable grammar, as ascertained by the experiments described in the

previous chapter. Furthermore, we believe that our portability experiment illustrates

that this learned grammar is not overly domain specific and has potential for produc-

ing grammars that work well across domains, reducing the amount of time needed to

port a system to a new domain.

Our research contains two major contributions. First, semantic parsing proves to

be a surprisingly fast and efficient mechanism for computing semantics from utter-

ances directly. This simple technique admittedly has difficulty with certain concepts

- namely syntactic ones like numbers. However, for many utterances, semantic pars-

ing seems to be adequate for generating a meaning representation without relying on

any syntactic grammar whatsoever. One can therefore imagine using semantic pars-

ing or related techniques for natural language understanding (NLU); certainly, the

feasibility of using just semantic parsing for NLU warrants consideration and further

investigation.

Second, semantic-head driven induction also turns out to be an interesting gram-

mar induction technique. As mentioned, it can extract a readable, recursive (pre-

merged) grammar directly from the logs of semantic parsing; this grammar performs

well in syntactic parsing and portability experiments. The ability to learn a pre-

merged grammar eliminates the need for further, potentially time-consuming cluster-

ing, and unlike many other techniques, this one produces very readable rules, making

it easy to reason about the system and the rules themselves.

We feel that the developed mechanisms in this thesis can be of use in automatic

speech recognition (ASR) systems. Of course, one can integrate the grammar and

semantic computation with the natural language component of an ASR system. One

can also utilize the learned grammar in the language modeling used in the recognition

task itself, constraining the recognition search to syntactically and semantically valid

utterances. This can be accomplished by using the grammar to develop n-grams,

which are central to many speech recognition systems. In addition, this work might

be useful in recognizers that utilize parsing to prune its list of hypothesized words

and phrases. Perhaps semantic parsing itself can even be used in a recognizer for

helping constrain the recognition search.

6.3 Future Work

We would like to explore four primary issues for possible future work in this research.

First, we would like to improve the overall speed of the parsing mechanism through the

use of statistics. Second, we want to utilize syntax for semantically difficult concepts.

Third, we want to investigate the issue of portability by refining the sentence-level

rules and the mechanism through which they are learned. Fourth, we would like to

investigate whether or not one can apply the techniques and results of this thesis

towards the automatic learning of semantic constraints. We will now discuss each of

these issues in more detail.

6.3.1 Statistical Parsing

The biggest deficiency in this work involves the speed of using the grammar in the

syntactic parser; this parsing is simply too slow. The slowness of the parsing actu-

ally prevents us from running the desirable experiment of syntactic parsing without

semantic filtering, and we need to find a way to resolve this speed issue in order to

run those kinds of experiments and make further assessments about the power and

usability of the grammar.

The speed problem may not lie in the grammar itself, but rather in the type of

parser we use. Indeed, we could use a statistical parser which produces a best-first

parse of an input utterance (as opposed to the all-parses mechanism we currently

use, which computes all possible parses of an utterance) and improve the speed of

the system dramatically. With the rule count information present in the SHDI-

learned grammar, converting this grammar from a simple set of CFG rules to a set of

stochastic CFG rules would be relatively easy and straightforward. With this change,

running more and different kinds of syntactic parsing experiments would be more

feasible. Furthermore, with these statistics, we could utilize other measurements,

such as perplexity, to assess the usefulness of the grammar. Finally, we hope that the

anticipated speed improvement will lead to a syntactic parsing system which is faster

and more efficient than semantic parsing for extracting meaning representations from

an utterance, because of the guidance provided by syntactic structure.

6.3.2 Use of Syntax

During this thesis research, we heavily focus our efforts on eliminating syntax alto-

gether from the semantic-based system. Perhaps this approach is unnecessary and

even too extreme. While using semantics alone works well overall, this system clearly

cannot handle certain syntax-centric concepts such as numbers; numbers need a sense

of ordering imposed upon them in order to be interpreted. While it is relatively easy

to handle numbers syntactically, handling them semantically, while ignoring word

order, proves to be rather difficult. Therefore, a system that integrates syntax and

semantics, relying on seeded syntactic rules for handling semantically-difficult but

syntactically-straightforward concepts, can get better overall performance and results.

Such an integrated system may also be better for performing NLU as well, using syn-

tax for syntactically-biased concepts, and relying on semantics and constraints for

performing semantic parsing of other utterances as before.

6.3.3 Sentence-Level Rules

While the learned grammar performs quite well in covering new utterances from the

same domain in which it was learned, the performance degrades somewhat in a new

domain. Specifically, the major factor which keeps the learned grammar from being

as portable as we desired involves sentence-level rules. Because different domains

contain different types of sentences (such as the "is it..." construct), a grammar

trained solely in one domain cannot learn the sentence-level rules needed to cover

other domains. Therefore, we would like to improve the way these rules are learned.

We can accomplish this by providing the system with example sentences and pre-

labeled sentence types, allowing the system to learn sentence-level rules in a supervised

fashion. Alternatively, we can more simply learn a robust set of sentence-level rules

by training the system over several domains. By using a broader training set and

providing enough data and samples of many different kinds of sentences, the system

is less likely to encounter unseen sentence types and constructs in new test data from

different domains.

6.3.4 Automatic Learning of Semantic Constraints

It would be very interesting to try to mirror the results of this thesis in trying to learn

semantic constraints automatically. Porting a system to a new domain can be a rather

difficult and time-consuming task, involving the development of a new grammar and

the definition of a new set of semantics and constraints for the domain. This thesis

simplifies this task somewhat by attempting to learn the grammar automatically and

even demonstrates that this grammar can potentially be used in another domain

(especially if the sentence-level rules can be improved). However, the engineering

task of writing semantic constraints still remains. Therefore, it would be worthwhile

to try to learn these constraints automatically.

This thesis research begins by using semantics and constraints to perform a se-

mantic parse in one domain and learn a grammar from this parse. It then attempts to

perform a syntactic parse in another domain using this grammar. One can therefore

imagine trying to use the syntactic parse (using a statistical parser to avoid the need

for semantic filtering) in the new domain to deduce the correlation between different

words and determine how often they occur together. This could lead to the ability

to learn the semantic constraints for a domain automatically, much like the existing

system learns syntactic rules automatically. Hence, such a system could effectively

port itself across domains.

6.3.5 Other Possible Improvements

Of course, there are other improvements that we could make to the system. We could

remove the adjacency constraints and let the system ignore word order altogether,

letting it combine words and phrases regardless of where they appear in an utterance.

This would be computationally complex, however, so pursuing this goal of completely

ignoring word order requires investigation into finding a very efficient implementation.

Our research also indicates that the concept of ignoring filler words works well for

handling sentence-level semantics. We can expand this so that filler words are ignored

not just at the sentence-level, but also for any of the other semantic functions. This

can certainly improve results and make the system more robust to disfluencies in

speech.

However, we believe that the immediately useful and most significant improve-

ments involve the four mentioned areas. By improving the speed of the parser through

statistics and using syntax for semantically-difficult concepts, we hope to make se-

mantic parsing and the resulting SHDI-learned rules more powerful and more use-

ful. Finally, we are optimistic that broadening the training set to make the learned

sentence-level rules more robust and attempting to learn constraints automatically

can strengthen semantic parsing's and SHDI's potential for making the task of porting

a system to new domains easier.

Bibliography

[1] R. Bobrow, R. Ingria, and D. Stallard. Syntactic/semantic coupling in the BBN

DELPHI system. In Proceedings DARPA Speech and Natural Language Work-

shop, pages 311-315, Harriman, NY, February 1992.

[2] E. Brill, D. Magerman, M. Marcus, and B. Santorini. Deducing linguistic struc-

ture from the statistics of large corpora. In Proceedings DARPA Speech and

Natural Language Workshop, pages 275-281, Hidden Valley, PA, June 1990.

[3] E. Brill and M. Marcus. Automatically acquiring phrase structure using distribu-

tional analysis. In Proceedings DARPA Speech and Natural Language Workshop,

pages 155-159, Harriman, NY, February 1992.

[4] K-S Fu and T.L. Booth. Grammatical inference: Introduction and survey - Parts

I and II. IEEE Transactions on Systems, Man, and Cybernetics, SMC-5 No. 1

and No. 4, January and July 1975.

[5] C.L. Giles, C.B. Miller, D. Chen, G.Z. Sun, H.H. Chen, and Y.C. Lee. Extracting

and learning an unknown grammar with recurrent neural networks. Advances in

Neural Information Processing Systems, 4:317-324, 1992.

[6] A.L. Gorin, S.E. Levinson, and A.N. Gertner. Adaptive acquisition of spoken

language. In Proceedings ICASSP, pages 805-808, Toronto, Canada, April 1991.

[7] A.L. Gorin, S.E. Levinson, L.G. Miller, A.N. Gertner, A. Ljolje, and E.R. Gold-

man. On adaptive acquisition of language. In Proceedings ICASSP, pages 601-

604, Albuquerque, NM, April 1990.

[8] L. Hirschman et al. Multi-site data collection for a spoken language system.

In Proceedings DARPA Speech and Natural Language Workshop, pages 7-14,

Harriman, NY, February 1992.

[9] M. Kay. Algorithm schemata and data structures in syntactic processing. In

B. Grosz, K. Sparck Jones, and B. L. Webber, editors, Readings in Natural

Language Processing, pages 35-70. Morgan Kaufmann Publishers, Inc., 1986.

[10] E. Levin and R. Pieraccini. Concept-based spontaneous speech understanding

system. In Proceedings Eurospeech, pages 555-558, Madrid, Spain, September

1995.

[11] H. Lucke. Inference of stochastic context-free grammar rules from example data

using the theory of Bayesian belief propagation. In Proceedings Eurospeech, pages

1195-1198, Berlin, Germany, September 1993.

[12] M. McCandless. Automatic acquisition of language models for speech recogni-

tion. Master's thesis, Massachusetts Institute of Technology, May 1994.

[13] M. Negishi. Grammar learning by a self-organizing network. Advances in Neural

Information Processing Systems, 7:27-31, 1995.

[14] E. Vidal, F. Casacuberta, and P. Garcia. Grammatical inference and automatic

speech recognition. NATO ASI series. Series F, Computer and system sciences,

147:174-191, 1995.

[15] V. Zue, S. Seneff, J. Glass, L. Hetherington, E. Hurley, H. Meng, C. Pao, J. Po-

lifroni, R. Schloming, and P. Schmid. From interface to content: Translingual

access and delivery of on-line information. In Proceedings Eurospeech, pages

2227-2230, Rhodes, Greece, September 1997.

