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ABSTRACT

The Training for Remote Sensing and Manipulation (TRANSoM) group has developed a
virtual environment (VE) system for training ROV operators. Currently, the training
system does not contain a model for tether interaction with objects in the VE. This paper
describes a part-task trainer that has been developed for training tether awareness. The
part-task trainer can also be used for testing tether models. A proposed algorithm for a
tether model that handles collisions with the environment is also discussed.
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1 INTRODUCTION

Simulation-based training is becoming an increasingly attractive alternative to

traditional training methods. Motivations for this shifting paradigm include decreasing

budgets for training and increasing needs to train personnel for increasingly complex

tasks. The Training for Remote Sensing and Manipulation (TRANSoM) program was

initiated to research, design, develop and evaluate the use of virtual environment (VE)

systems for training operators of remotely operated underwater vehicles (ROV). The

prime contractor for this effort is Imetrix, Inc. As part of this effort, a system is currently

being developed to train operators in shallow water mine countermeasures (MCM) and

uses incorporates Intelligent Tutoring System (ITS) techniques.

At present, the MCM training system does not contain a method for modeling the

interaction of the ROV's tether with the environment. This paper discusses the design of

a part-task trainer program that can be used both as a tool for training operators in

cognitive skills related to tether awareness and for interactive testing of dynamic models

for underwater tethers. Tether awareness is an important cognitive skill for ROV

operators that allows them to mentally track the position and shape of the tether with

respect to objects in the environment. The next chapter covers an overview of the part-

task trainer and its requirements. Chapter 3 discusses the design and implementation of

the part-task trainer. Chapter 4 describes a set of proposed algorithms for managing

tether model behavior in an interactive environment. Chapter 5 outlines some tests that

that could be performed with the part-task trainer for measuring tether awareness.

Finally, Chapter 6 discusses a number of possible extensions that could be added to the

part-task trainer program. Appendix A defines a list of terms relevant to the paper's

discussion.
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2 PART-TASK TRAINER OVERVIEW

This Chapter describes the parts of the part-task trainer, gives an overview of the

functional operation of the software design, and delineates the requirements for the

current software implementation. For implementation overviews of each of the

components, see Chapter 3.

2.1 Description

The part-task trainer is designed to satisfy two purposes. First, it serves as a tool

for performing isolated tests involving tether-awareness training, a very important

cognitive skill for ROV operators that allows them to mentally track the position and

shape of the tether in relation to other objects in the environment. Second, it serves as a

simplified test bed for verifying the new tether model designs. The part-task trainer's

also design allows for extending its functionality to include other conceivable aspects of

the underwater ROV training environment with very little difficulty. Possible extensions

include providing auditory feedback about the ROV's motor status and modeling tether

drag.

The part-task trainer is designed as a two-dimensional representation of an

underwater environment. Figure 2-1 shows the part-task trainer window in a typical

simulation run using the 'V'-shape tether model (discussed later in section 4.2.2). The

main display depicts overhead view of the underwater environment. It appears as flat

grid representing the underwater environment with horizontal, but no vertical,

maneuverability. The third dimension intentionally was omitted to simplify the

simulation. The generality of the trainer, however, remains - allowing the user to focus

on the tests relevant to tether-awareness. Analysis thus will not be complicated by a

three-dimensional environment, which greatly eases use. Models developed and tested in

the part-task trainer can be converted to three-dimensional models without much

difficulty.
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Figure 2-1 The part-task trainer view window

An ROV and a variable number of obstacles can be placed in the underwater

environment. Colored polygons portray the ROV and obstacles. The default polygon for

the ROV is a red isosceles triangle. The vertex connecting the two longer sides of the

triangle denotes the front of the ROV and indicates the ROV's current heading. The

default polygon symbol for an obstacle is a yellow square.

The tether connects the ROV to its home base. In practice, the tether would be

connected to either a ship or a platform. The home base is shown in the trainer by a small

black square. The tether is drawn as a series of connected white line segments running

between the home base and the ROV. Figure 2-2 shows a close-up view of the ROV,

obstacles, tether (rendered using the 'V'-shape model, discussed later in section 4.2.2),

and tether base in the trainer.



Figure 2-2 Close-up views of the ROV, obstacles, tether, and tether base

Several displays are provided to give the user ancillary information about the

environment. These displays are the water current display, tracers, and the tether

information display. Figure 2-3 shows details of the displays.

The water current display resides in the upper left corner of the trainer view

window. It is a white circle with an arrow and resembles the look of a compass. The

arrow shows the direction of the water current flow, and the length of the arrow indicates

the magnitude of the current's flow.

A tracer is a line segment indicating the position and heading of the ROV at a

specific point in time. A new tracer is plotted at specified uniform time intervals. The

tracers give the driver information about the history of the positions and headings of the

ROV by tracing a path history. The trainer is set to keep track of a default number of 100

tracers, and the default tracer recording time interval is one second.

The tether information display serves both as a debugging tool for the tether

models and an information source for the driver. Examples of information the tether

information display can provide are the length of the tether, the status of tether

entanglement, and a running count of the number of times the tether has collided with an

object. The tether information display occupies the right side of the trainer view window

and the information is displayed as text.
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Figure 2-3 Close-ups of the different information displays in the part-task trainer

The display of each component can be turned on or off. Each component is

mapped to a keyboard key that toggles the display status. A table of the displays and

their associated toggle keys is shown in Figure 2-4 below.

Component Toggle Key

Obstacles 'O'

ROV 'R'

Tether 'T'

Tether Base 'B'

Tether Info Display 'I'

Tracers 'X'

Water Current Display 'C'

Figure 2-4 Table of Displays and their associated toggle keys

The ROV can be controlled either with a joystick or the keyboard. The intended

interface is the joystick because it more closely simulates the operating environment for

remote control of an underwater vehicle. The joystick used for this project is the

Microsoft Sidewinder 3D Pro. A picture of the joystick is shown in Figure 2-5. It was

chosen because, in addition to the two degrees of freedom that a traditional joystick

." U 11, W1 -



possesses, the joystick also has a third degree of freedom called rudder control. Rotating

the joystick handle operates the rudder control, and controls the rotation of the ROV.

Figure 2-5 Microsoft Sidewinder 3D Pro joystick

Figure 2-6 Diagram of the Talon ROV

The trainer's ROV dynamics were loosely modeled after the Imetrix's ROV, the

Talon. A simple block model of the Talon is shown in Figure 2-6. Talon has four bi-

directional thrusters mounted at approximately 45-degree angles at each of the four

corners of the ROV. The dashed arrows indicate the direction of thrust delivered by each

of the motors. These four motors control the horizontal movement and rotation of the



ROV. A fifth motor is positioned vertically in the center of the ROV and controls

vertical movement.

The trainer also has the ability to record a simulation scenario to a log file or to playback

log files of previously recorded simulation scenarios.

2.2 Requirements

The part-task trainer requires a minimum configuration of a 60-MHz Pentium

computer or equivalent running Microsoft Windows 95 or Windows NT 4.0.



3 PART-TASK TRAINER IMPLEMENTATION OVERVIEW

This Chapter outlines the implementation of the part-task trainer program. It

discusses the various object classes and provides reasons for the choices in division of the

classes.

The program was developed in C++ using the Microsoft Developers Studio and

uses version 4.2 of the Microsoft Foundation Classes (MFC) libraries. Figure 3-1 depicts

the module dependency diagram of the program. The module dependency diagram

illustrates the implementation design breakdown as well as the dependencies of each of

the objects. Solid arrows indicate the dependency of one module upon another. Dashed

arrows indicate the sub-classing of modules from their respective super-class modules.

3.1 TVec2D

The TVec2D object was developed as the basic two-dimensional vector

representation. It can be used to represent either points or vectors. TVec2D is used

primarily in the part-task trainer implementation to represent object vertices, water

current direction and magnitude, and force vectors. It has the following mathematical

properties and methods for two-dimensional vectors:

Properties:

* X- and Y-coordinates

* Magnitude

Methods:

* Scaling

* Vector addition

* Vector dot product

* Vector cross product

* Angle between two vectors



Figure 3-1 Part-Task Trainer Module Dependency Diagram.



3.2 TMatrix2D

The TMatrix2D object is a typical 2-by-2 matrix. The object is mainly used to

store rotation matrices for transforming object points and vectors between coordinate

spaces, such as transforming objects from object-space to world-space. The matrix is

represented internally as a pair of TVec2D vectors. Figure 3-2 shows the mapping of the

internal vectors to the elements of the 2-by-2 matrix.

Yx y Yx _y

In TMatrix2D, the Right vector represents the vector pair (xx, y,) and
the Up vector represents the vector pair (xy, yy).

Figure 3-2 TMatrix2D mapping of a 2-by-2 matrix

The TMatrix2D class has the following properties and methods:

Properties:

* The up and right vectors

* The individual elements of the matrix

* The determinant of the matrix

Methods:

* Matrix addition

* Matrix multiplication

* Multiplication of matrix by a vector

* Scaling

* Taking the inverse of the matrix



3.3 TObject2D

The TObject2D class is the generic object super-class. All two-dimensional

objects in the trainer environment (with the exception of the tether, which is described in

Chapter 3.7) are sub-classed from the class TObject2D. It was developed so that most of

the objects in the environment would have a common interface for performing common

operations, such as collision detection between objects and drawing objects to the screen.

It has the following properties and methods common to all generic two-

dimensional objects:

Properties:

* Name

* Type (i.e., ROV, obstacle, etc.)

* Color

* Position

* Vertex list

* Bounding radius (for collision detection)

* Bound point list (for collision detection with tether)

* Maneuverability (i.e., mobile or static)

Methods:

* Draw the object

* Update the object's status, given the next time step of the simulation

* Resolve collisions with other objects



3.4 TRov2D

The TRov2D class is sub-classed from the TObject2D super-class and handles the

ROV dynamics in the part-task trainer simulation environment. It has the following

properties and methods in addition to the TObject2D super-class:

Properties:

* Heading

* Present velocity

* Maximum velocity

* Tether hook point

Methods:

* Apply thrust impulses forward, backward, left, or right

* Apply rotational thrust impulses

3.5 TObstacle2D

The TObstacle2D class is sub-classed from the TObject2D super-class. It is used

to represent obstacles in the part-task trainer simulation environment.

3.6 TBoundPoint2D

The TBoundPoint2D class is sub-classed from the TVec2D super-class. It is used

to the bounding points of objects. Bounding points are used in detecting collisions

between the tether and objects. Currently, obstacles are the only objects that have

bounding points. Figure 3-3 shows a sample of where bounding points could be placed

on an object. The bounding points create an imaginary hull around the object. Typically,

the bounding points line up with the vertices of the object, as shown by the left object in

the figure. For irregularly shaped objects, such as the object on the right in the figure,

bounding points are placed only on the protruding points.



Figure 3-3 Sample placement of bounding points on objects

3.7 TTether2D, TTetherSegment2D, and TTetherSegment2DListItem

TTether2D and TTetherSegment2D describe the tether object shape and behavior

in the part-task trainer. The TTetherSegment2D class handles the static shape of the

tether model between two defined points. The TTether2D class manages the tether's

interaction with the environment. It checks for collisions with obstacles in the

environment and manages the internal segments of the tether appropriately. The

TTether2D class uses the TTetherSegment2DListItem class to manage the

TTetherSegment2D objects as a linked list. A more detailed description of the tether

algorithm is described in Chapter 4.

3.8 TCurrentDisplay2D

The TCurrentDisplay2D class is responsible for keeping track of the water current

direction. The TCurrentDisplay2D class takes a vector representing the water current

direction. The TCurrentDisplay2D class draws itself as a circle in the upper left corner of

the view window. It also draws an arrow inside the circle indicating the direction of the

water current flow. The display looks similar to a magnetic compass.

Bounding Points are
represented by the
black dots.



3.9 TTracerList2D

The TTracerList2D keeps track of the list of tracers that facilitate tracking the

ROV's movement history. When a specified number of simulation time steps elapse, the

TTracerList2D generates a line segment (tracer) aligned with the ROV's heading at the

ROV's position. The TTracerList2D manages the tracers in a ring buffer array. The

TracerList2D stores the newest tracer in the oldest tracer's position and updates the ring

buffer pointer appropriately.

3.10 TTetherlnfoDisplay2D

The TTetherInfoDisplay2D object displays information about the tether in the

view window. The TTetherInfoDisplay2D object queries information from the

TTether2D object and draws the information on the right side of the view window in the

form of text. The displayed information currently consists of the tether length, tether

collision status, and total number of times the tether has collided with an object.

3.11 CTrainerMFCView

The CTrainerMFCView class manages all events related to the view window.

The CTrainerMFCView class is also responsible for the running the simulation and

handling input from the keyboard and joystick.

During initialization of the view window, the CTrainerMFCView class sets up the

configuration of the simulation and sets a timer to the interval specified for the simulation

time steps. When the timer elapses, it sends an event to the CTrainerMFCView class and

resets itself. Upon receiving the event, the CTrainerMFCView class performs the

following tasks:

1. Gets the user input state (either from the joystick, keyboard, or log file)

2. Updates the ROV based on the user input

3. Checks for and resolves collisions between the ROV and the walls of the window

and between the ROV and the obstacles



4. Updates the tether model

5. Checks for and resolves collisions between the tether and the obstacles

6. Draws the displays that are currently turned on

The CTrainerMFCView also receives keyboard input for toggling the displays or

controlling the ROV.

3.12 Other Classes

The other classes included in the project are perform peripheral functions. A

discussion of these classes is not part of the main thrust of the project, but the are

mentioned here for completeness.

1. CMainFrame - the MFC wrapper for the view window (CTrainerMFCView),

toolbar, and menu bar

2. CTrainerMFCApp -the MFC wrapper for the whole windows application

3. CTrainerMFCDoc - the MFC wrapper for documents (not used)

4. CAboutDlg - the typical "about..." dialog box, which has been edited to

provide version and copyright information, joystick and keyboard control

information, and display toggle key mappings



4 TETHER MODELING PROBLEM

Many factors influence the behavior of the tether such as gravity, water current,

and ROV dynamics. Other significant influences include the physical properties of the

tether itself. Tethers come in a variety of lengths, thicknesses, and materials. The

material of which a tether is made affects its flexibility and buoyancy. The behavior of a

thick, inflexible, dense tether rarely matches the behavior of a thin, highly flexible,

neutrally buoyant tether. This Chapter proposes a model that handles interaction between

a tether and objects in the environment. Although only flexible, neutrally buoyant tethers

were observed (namely, the tether for the Talon ROV), the model can be adjusted to take

into account the properties of various tethers.

The model developed in this thesis separates the tether modeling problem into two

distinct parts in order to make the problem more manageable. One part deals solely with

the tether's shape between two endpoints. The other part detects and resolves collisions

between the tether and other objects in the environment. Chapter 4.2 discusses the part of

the model that determines the tether's static shape and covers the tether shapes that have

been implemented. Chapter 4.3 discusses the algorithm developed for handling tether-

object collisions and collision resolution.

4.1 Definitions

For purposes of discussion the following terms must be defined. Refer to Figure

4-1 for an illustration of the terms.

1. Tether segment - a section of tether with a defined start point, end point, and

length. The shape models discussed in section 4.2 are applied to each tether

segment of a tether.

2. Segment link - a section of a tether segment represented as a line segment.

3. Tether - the entire tether entity with a defined base point (where the tether

enters the water) and end point attached at the ROV. It is represented as an

ordered list of one or more tether segments. The list is in order starting from

the base point. The end point of the first tether segment is the start point for

the next segment, and so on.



base point and end point of first segment and
start point of start point of second segment
first segment

ROV

Segment
Links

Tether Segment Tether Segment

Tether

Figure 4-1 Illustration of tether terms

4.2 Segment Models

When a tether-segment model is rendered, it is represented as a series of line

segments that are referred to as tether segment links, like the links of a chain. There are

many different shapes a tether segment can take given the length the tether segment,

water current and gravity. The following models from Matt Esch's thesis, "Determining

the Position of Underwater Tethers in Real-Time", have been implemented in the part-

task trainer. These models are meant to be approximations that capture some

characteristics of the free-form shape of the tether.

4.2.1 Rubber Band Model

The first model is dubbed the rubber band model. In this model the tether is

depicted as a straight line between the two end points regardless of the distance between

the two end points. Figure 4-2a shows a sample rendering of a tether segment using the

rubber band model. The rubber band model serves as a first-order approximation of the

tether's position. It traces a direct path between two end points and shows the tether's

whereabouts relative to other objects in the environment. The rubber band model also

has the benefit that it is not very calculation-intensive. The model does, however, have



the severe limitation that it yields no visual information about the actual length or shape

of the tether segment unless the tether is stretched to the limit.

4.2.2 'V'-Shape Model

The 'V'-shape model is modeled as two segments. The 'V'-shape model has an

advantage over the rubber band model in that it gives visual information about the length

and shape of the tether segment between the two end points. Figure 4-2b shows a sample

rendering of the tether segment between the same two end points as Figure 4-2a using the

'V'-shape segment model.

The motivation behind the 'V'-shape model comes from the observation that

water current tends to drag the tether into a natural funicular curve shape. The 'V'-shape

is used as a simple approximation to this shape. The kink between the two tether

segment links in the 'V'-shape is found with very simple geometry calculations. The

'V'-shape gives an impression of the bending direction and the general shape of the

tether.

a.) Rubber band model b.) 'V'-shape model c.) Funicular curve model

Figure 4-2 Three tether-segment models



4.2.3 Funicular Curve

The funicular curve model is the natural shape that a cable takes when acted upon

by a force. Figure 4-2c shows a sample rendering of the tether segment using the

funicular curve model. It is rendered with the same two end points as the models in

Figure 4-2a and Figure 4-2b. The funicular curve model is the most physically accurate

of the three models. It closely resembles the shape of a real tether in water with a strong

current.

4.3 Proposed Interactive Model Description

This Chapter describes the algorithm developed for managing the tether's

interaction with the environment. First, the assumptions upon which the model is based

are described. Next, the algorithm is described. Finally, the current implementation of

the algorithm in the part-task trainer is described.

4.3.1 Assumptions

The following assumptions were made in the development of the algorithm:

1. The time step of the simulation is small enough that the tether model's shape and

position will not vary significantly between each time step.

2. The model for each tether segment generates a list of connected line segment

links representing the tether.

3. Each object in the environment that can collide with the tether has one or more

bounding points associated with it.

4. Only immovable objects can collide with the tether.

Assumption 1 allows for continuity in the simulation of the tether model. For

instance, if the time step were too large, the quantum of movement accounted for during

in the time steps would also be large, causing significant movement in the ROV's

position. If the ROV moves too far in a time step, the recalculation of the tether model



could cause the tether to appear to go through an obstacle. Assumptions 2 and 3 provide

the method to detect collisions with objects. The tether-segment links are the geometric

model used in testing for collisions with object bounding points. Assumption 4 simplifies

the algorithm further by allowing only static objects to impact the tether. Collisions with

movable objects create a host of additional problems, such as having to track additional

dynamic forces acting on the tether and the moving points of contact between the mobile

objects and the tether.

4.3.2 Tether-Environment Interaction Algorithms

The tether is composed of a chain of tether segments that must be managed.

When the dealing with the tether segments in the environment, the tether management

system must detect collisions between the any of the tether segments and objects in the

environment. Once collisions are detected, the system must do the bookkeeping

necessary to keep track of the collision. The system must also recalculate the tether

segment models using the tether's end points and the tether's contact with the object.

Second, the tether management system must constantly monitor the places where the

tether is in contact with an object and determine whether the collision is affecting the

shape of the tether. The following sections describe algorithms that have been developed

to handle both of the operations in this system.

4.3.2.1 Collision Detection and Resolution Algorithm

Figure 4-3 shows the pseudo-code for the tether collision detection and resolution

algorithm. The algorithm checks for collisions between the tether segments and the

bounding points of objects in the environment and adjusts the tether appropriately. It

iterates through each object in the environment and checks for a collision between the

object's bounding points and any of the links of each tether segment.



CheckCollisions(tether_segment_list, object_list)

1 For each object in object_list do

2 For each bound_point of object do

3 For each tether_segment of tethersegment_list do

4 If Collision(tether_segment, bound_point) then

Break tether_segment into tether_segment_a and

tether_segment_b at bound_point;

6 Insert tethersegmenta and tether segment_b into tether segment_list

in place of tether_segment;

7 Record direction vector of collision junction;

8 RunModel(tether_segment_a);

9 RunModel(tether_segment_b):

10 End % if collision

11 End % for each tether_segment

12 End % for each bound_point

13 End % for each object

Figure 4-3 Tether collision detection and resolution algorithm

If a collision between the tether segment and a bounding point is found, lines 5-10

handle the collision management. Line 5 breaks the tether segment into two tether

segments at the location of bounding point. The bounding point becomes the end point

and junction of the two new tether segments. One of the new tether segments is assigned

length of the tether between the old segment's start point and the bounding point. The

other new segment is assigned the rest of the old segment length. Line 6 removes the old

tether segment from the tether segment list and inserts the two new segments in its place.

The direction of the collision is recorded in line 7 for validating the collision. The

collision validation is done in the tether collision validation and consolidation algorithm

discussed in the next section. Finally, lines 8 and 9 calculate the shapes of the new tether

segments. Figure 4-4 provides an illustration of a step-by-step execution of the

algorithm.
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Figure 4-4 Step-by-step execution of the collision detection and resolution algorithm

Links

a.) To test for a collision, check whether
the distance between the bounding point
and the segment link is smaller than the
radius of the tether, indicated by the
dashed lines.

b.) When a collision is detected, the
direction vector of the collision is
recorded. The lengths, lengthl and
length2, between the ends of the segment
and the collision point are found.

c.) The segment is broken into two
separate segments with their respective
lengths. The bounding point becomes the
junction point of the two new segments.

d.) The shapes for the two new segments
are now recalculated. The new segments
are inserted into the segment list for the
tether in place of the old segment.



4.3.2.2 Collision Validation and Consolidation Algorithm

ValidateCollisions(tether_segment_list)

1 tether_segment <- first segment in tethersegment_list;

2 While tether_segment # last segment in tether_segment_list do

3 tether_segment_next - next segment after tethersegment in tether_segmentlist;

4 direction_vector <- DirectionVector(tethersegment, tether_segment_next);

5 link_a f LastLink(tether_segment);

6 link_b <- FirstLink(tethersegmentnext);

7 If Angle(link_a, direction_vector) + Angle(link_b, direction_vector) < 1800 then

8 EndPoint(tether segment) - EndPoint(tethersegment_next);

9 Length(tether_segment) <- Length(tether_segment) + Length(tether_segment_next);

10 Remove tether_segmentnext from list;

11 tethersegment - next segment after tethersegment in tether_segment_list;

12 Else % collision still valid

13 tether_segment <- tether_segmentnext;

14 End % if angle between the two links < 180'

15 End % while tether segment not equal to last segment in list

Figure 4-5 Tether collision validation and consolidation algorithm

Figure 4-5 shows the pseudo-code for the tether collision validation and

consolidation algorithm. The algorithm inspects each of the tether segment junctions.

Lines 4 through 6 extract the two segment links connecting the two tether segments at the

junction and the direction vector. Line 7 measures the angle between the two links at the

junction. The direction vector is used as a reference to determine which angle to

measure. If the angle between the two links is less than 180 degrees, lines 8 through 11

consolidate the two tether segments. The end point of first tether segment is set to the

end point of the second tether segment. The length of the first segment is set to the

combined length of the two segments. Finally, the second segment is removed from the

list. Figure 4-6 provides an illustration of a step-by-step execution of the algorithm.
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a.) To test whether a collision is still valid,
check whether the tether is still impinged
on the object. This can be done by
checking whether the outside angle, 0,
between the links of the two adjacent
segments is less than 180 degrees.
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c.) When 01 + 02 is less than 180 degrees,
the tether is no longer impinging on the
object and the collision is invalid. The
length of segment 1 is set to the sum of the
two segment lengths.

Figure 4-6 Step-by-step execution of the collision validation and consolidation algorithm

b.) The direction vector is used as a
reference to determine which angle to
measure between the two links (the
"outside" angle as opposed to the "inside"
angle from the previous diagram).

d.) The end point of Segment 1 is changed
from the bounding point to the end point
of segment 2. Segment 2 is removed from
the segment list for the tether. Finally, the
model for the shape of Segment 1 is
recalculated.
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5 PROPOSED EXPERIMENTS

This Chapter describes two proposed experiments that can be performed using the

part-task trainer.

5.1 Tether Awareness

Tether awareness is an important cognitive skill for ROV operators. The

operators must have an idea of where the tether is relative to objects in the environment

while navigating the ROV in order to prevent the tether from getting snagged on any of

the objects.

In this test, the operator's goal is to navigate the ROV through a series of

obstacles or to a defined destination and then to return to base within a specified time

limit. The control group will perform the test while the tether is not visible but will see a

visible base point and the tether length displayed in the tether information display. The

second group will perform the test first with the tether visible and again with the tether

not visible.

The scoring for the test can be based on the amount of time the operator takes to

complete the task and the total number of tether collisions during the course of the test.

The test will provide insight on whether training with the visible tether model teaches

operators tether awareness.

5.2 Tether Location Prediction

Tether location prediction is a valuable cognitive skill for ROV operators to

possess while navigating. An operator can perform navigation tasks more effectively if

he has a mental image of the shape of the tether at any specific point in time.

In this test the operator is asked to navigate the ROV towards a destination. The

test can be performed with or without obstacles in the environment. The simulation is

paused after a fixed time limit and the operator is asked to plot the shape of the tether.

The control group will perform the test with the tether not visible and without prior



knowledge of the tether model. The second group will drive the ROV around while the

tether is visible in order to become familiar with the tether model and then perform the

test with the tether not visible.

The scoring can be based on the area between the plot of the operator's estimation

of the tether shape and the plot of the actual tether shape. A comparison of the scorings

in the groups will determine whether the second group is able to learn the tether

dynamics more effectively than the first group. The comparison will also give insight

into the differences in the ways that each group is able to learn aspects of the shape and

behavior of the tether.



6 SUGGESTED FURTHER WORK AND CONCLUSION

The part-task trainer is a simple self-contained tool providing a mechanism for

performing experiments related to tether awareness training, such as those described

previously in Chapter 5. However, there are many things can be done to improve or

extend aspects of the trainer. Some of these improvements are described below.

6.1 Tether Model Extensions

Many extensions can be made to the tether model in the part-task trainer. The

interactive tether model algorithm proposed in this paper specifies that the tether is

locked to an object after it collides with that object. The model could be extended to

include the tether forces at collision points and at the connection to the ROV. The model

can use forces on the tether at the collision points to model tether slippage around the

object at the point of collision. The simulation can use tether forces at the ROV

connection point to more accurately model the effects of tether drag on the ROV's

maneuverability. Each of these extensions will help in the creation of a more physically

accurate model of tether behavior and its effect on the ROV.

The tether collision model can also be extended to a three-dimensional model. A

set of bounding line segments could be generated to create a bounding cage for the three-

dimensional objects instead of bounding points. The bounding line segments of the

objects would then be used to detect for collisions between the tether segment links and

the objects. Collision resolution between the tether and object at the point of collision

would then proceed as previously described in section 4.3.

6.2 Automatic Generation of Object Bounding Points

Object bounding points must be defined manually for all objects in the simulation.

A method can be developed to automatically generate bounding points for the objects.

One such method to explore is running a convex hull algorithm on the object points to

find bounding point candidates.



6.3 Conclusion

This paper has described the design and implementation of a part-task trainer

computer program. The part-task trainer can serve as a tool for teaching ROV operators

the cognitive skills related to tether awareness. Using the part-task trainer operators can

learn to develop a mental picture of the tether's shape and learn to remember the tether

path back to the home base so that the tether will not get snagged on an object.

The part-task trainer can also be used as a tool for developing and testing

interactive tether model algorithms. The design of the part-task trainer allows for

flexibility in implementing tether models other than the ones described previously in

Chapter 4. The design of the trainer may also serve as the basis for the development of

other part-task trainers, such as one that incorporates auditory feedback on the status

ROV's motors.

It is hoped that the TRANSoM group and others researching in similar areas will

find the part-task trainer a useful addition to their efforts.
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8 APPENDIX A - DEFINED TERMS GLOSSARY

The following terms are defined as they relate to the interpretation of this thesis.
Most of the terms are generally accepted terms. Some terms, however, have been created
to have a language for communicating concepts within the tether algorithm design
paradigm.

ITS - Intelligent Tutoring System

MCM - Mine Countermeasures Mission

MFC - Microsoft Foundation Classes

Part-task trainer - a program that simplified version of a full-featured training system
whose design is focused on a specific aspect of the training simulation or
performing a specific task

ROV - Remote Operated Vehicle

Super-class - (in computer programming) a generic class with properties and methods
many similar classes have in common

Sub-class - (in computer programming) a class that inherited the properties and methods
of another class

Tether-awareness - a cognitive skill valuable to ROV operators, which involves having
a mental picture of the tether's shape and position relative to objects in the
environment during ROV operations

Tether - A tether is the cable that connects an ROV to the control base. Tethers contain
control lines for the ROV and sensor feedback lines. Sometimes tethers
also provide the power lines for the ROV.

Tether Link - A tether link is a section of a tether segment represented as a line
segment. Tether links are used in the tether model in collision detection
and visual representation of the tether.

Tether Segment - a section of the tether in free space between two objects in the
environment

Tracer - a line segment plotted at the current position and orientation of the ROV in the
part-task trainer



TRANSoM - (Traning for Remote Sensing and Manipulation) group whose goal is to
research, develop, and evaluate VE systems for training in the operation of
ROVs

VE - Virtual Environment
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