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Abstract

A computer-based model for simulating cast-in-place (CIP) concrete construction is
developed and used to assess the impacts of innovations on the CIP concrete construction
process. Three alternative simulation approaches were considered: the queuing approach,
the graphical approach, and the dynamic process approach. The dynamic process
approach is selected as the basis for the simulation model. In order to develop a dynamic
process model, detailed information had to be gathered on the CIP concrete construction
process and on all the specific attributes affecting it. Literature, construction site visits,
and interviews with industry professionals were used as data sources. A general process
flow describing the CIP concrete construction process was established and it was
subsequently used to develop a computer-based dynamic process model of the CIP
concrete construction process. SIMPROCESS® is the environment in which the dynamic
process model operates. A prototype building was designed and project specific
information associated with its construction was incorporated within the model in order to
verify the model's reliability. It is then used to evaluate the anticipated impact of three
CIP concrete construction innovations on the CIP concrete construction process: the
Talon 2360 Rebar Crosstie System, High-Performance Self-Compacting Concrete, and
Precast Concrete Stay-In-Place Forms.
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Chapter 1 : Introduction

1.1 Background

The construction industry is often perceived as being rather slow when it comes to adopting new

innovations. This does not mean that innovation within construction does not occur; however, it

does indicate that the barriers to adopting new innovations in construction are substantial. One

such barrier is the risk associated with the uncertainty of trying something new and different in

construction, risk that in many instances outweighs any perceived rewards. Because construction

is such a complicated process, it is often very difficult to determine with any reasonable level of

certainty how an innovation might impact the construction process without actually putting it to the

test in the field. Therein lies the problem. Innovations are adopted when their perceived benefits

outweigh their perceived risks, but often this adoption only occurs in construction once an

innovation has been tested in the field. Good innovations often do not get adopted simply because

it is difficult to distinguish them from the bad ones prior to their use in the field. If there was some

way of being able to gauge the impacts of innovations on construction prior to their use in the field,

perhaps more innovations would be adopted.

Suppose for a moment that the construction process could be simulated with reasonable accuracy

on a computer. It follows that an innovation could be placed within the simulation environment

and many of its impacts on the construction process could be anticipated prior to its use in the

field. Its performance in the simulation model would be an indication of how it would perform in

the field, and, suddenly, the perceived benefits of a good innovation would make it a little more

appealing and a little less risky, despite the fact that it has never been tested in the field. Now,

imagine how the very same construction simulation model could be used to help anticipate the

impact of alternate designs on the construction process, or be used to find those aspects of the

construction process where the greatest potential savings in time, cost, and worker safety could be

achieved. Clearly, the benefits of such a tool would be far reaching. One question remains. Can

such a simulation model be created?

Ideally, this kind of simulation model would have to be responsive to the very same factors that

affect the construction process (e.g., design, site management strategies, resource availability). It



would have to map the construction process right down to the smallest level of detail and include

within it the alternative courses of action that exist within actual construction. It would have to

account for varying activity processing times and the variables of which these times are a function.

It would have to consider that required resources are shared among different activities and that this

resource sharing is often not cyclical in nature. It would have to track the flow of construction

activity deliverables (i.e., the pieces and elements created through construction) and account for

their transformation and assembly as they advance through the construction process. Finally, it

would have to be simple to use and easy to modify. This thesis describes the research involved in

developing one such model for simulating cast-in-place (CIP) concrete construction.

1.2 Research Objective

The purpose of this research was to develop a representative dynamic process model for simulating

cast-in-place (CIP) concrete construction to evaluate the impact of innovations and design changes

on the CIP concrete construction process. The objective was achieved in four steps. First,

research on the CIP concrete construction process was conducted, and information on specific

conditions [capable of affecting it] was gathered. Second, the framework for a general process

model capable of being used to simulate construction of any CIP concrete building was created

using all of the research information that had been gathered. Third, a prototype building was

designed, and specific information relating to it was added to the framework of the general process

model to establish a specific process model for simulating construction of the prototype building.

Finally, the model was tested by simulating construction of the prototype building with and without

innovations.

1.3 Thesis Organization

Chapter 2 is a detailed examination of the three basic types of modeling approaches that may be

used to simulate the construction environment: queuing models, graphically based models, and

dynamic process models. The advantages and limitations of each approach are described, and

references are made to the latest research developments in each area.



Chapter 3 is an overview of the research methodology. Data sources and data collection strategies

are reviewed, as are the techniques used to verify the reliability of all information that was

gathered.

Chapter 4 is an in-depth description of the CIP concrete construction process. It begins with an

overview of the general process, and then goes into considerable detail describing each of the

different activities and alternatives within the general process.

Chapter 5 is the description of the computer-based dynamic process model developed for

simulating CIP concrete construction. It includes an overview of the basic modeling strategy, an

outline of the model structure and a description of the prototype building used in testing the

model's reliability with simulation results.

Chapter 6 introduces and describes three innovations in CIP concrete construction that were

evaluated using the in CIP concrete construction simulation model. Four simulation runs were

conducted. The first three simulate each of the three innovations individually, and the fourth

simulates the use of two of the three innovations at once. The results of each simulation are

summarized and discussed.

Chapter 7 summarizes all of the research work performed in this thesis and outlines some of the

applications that the CIP concrete construction simulation model is particularly well suited for.

The chapter ends with a quick look ahead towards the future of dynamic process modeling in

construction.

1.4 Summary of Major Results

A computer-based dynamic process model capable of simulating cast-in-place (CIP) concrete

construction was successfully developed and was used to simulate construction of a prototype

building both with and without innovations. The model is representative of actual CIP concrete

construction, is easy to modify, and is responsive to the very same factors that affect the

construction process (e.g., design, site management strategies, resource availability). It accounts

for varying activity processing times (and the variables of which these are a function); it recognizes



that resources are shared among different activities (and that this resource sharing is usually not

cyclical in nature); and it considers the transformation and assembly of construction activity

deliverables (i.e., pieces and elements) as they advance through the construction process. As an

evaluation tool, the model is not only useful in assessing the impact of innovations and design

changes on the CIP concrete construction process, but it is also useful in finding those aspects of

the construction process where the greatest potential savings in time, cost, and worker safety can

be achieved.



Chapter 2 : Background on Construction Simulation

Modeling

This section focuses on the three basic types of computer-based models used to simulate the

construction environment: queuing models, graphically based models, and dynamic process models.

The purpose is to outline their aim, their characteristics, and the type of insight that they can

provide into the construction environment. Since the construction environment is characterized by

the interaction of numerous factors relating to resource usage, design, and construction process, a

simulation model seeking to be representative of this environment must also account for these

various factors and their interactions with one another. A trade-off exists, however, between a

model's level of complexity and the degree to which it is representative of the actual construction

environment.

2.1 Queuing Models

Perhaps the most established of the three types of computer models used to simulate the

construction environment are queuing models. Queuing models are particularly useful in modeling

standardized systems, where activity processing times follow some kind of standard distribution,

much like in the manufacturing environment. Each activity unit within a queuing model can be

thought of as a processing station, and the processing time for an entity passing through each

station is a function of a predetermined time distribution associated with that particular station.

Entities either wait in a queue or get processed in a station. They are, however, never modified or

changed at these stations. Entities are only delayed by station processing times. A key premise of

queuing models is that station processing times are not a direct function of the entities passing

through them but rather are based on predetermined distributions. The following example should

help to clarify the concept of queuing models.

Figure 2.1 is a schematic representation of a basic queuing model describing the loading and

unloading of dump trucks in a cut and fill operation. This model has two basic entities (trucks and

loaders), five activity processing stations (Fill Loader Bucket, Load Truck, Travel to Dump Site,

Empty Truck, and Travel to Load Site), and four queuing stations. There are two repeating cycles

in the model, the load/unload loader cycle, and the load/travellunload/travel truck cycle. Each of



Figure 2.1: Queuing Model of Cut and Fill Operation

the five activity processing stations has an associated processing time distribution, and

consequently, the time it takes for a particular truck to travel to the dump site, for instance, is

independent of the truck in question. All of the trucks within the model are identical to the others,

and the same can be said of all the loaders. None of the entities are transformed over the course of

the simulation.

This queuing model, as with all others, is primarily concerned with entity waiting and processing

times. The question it seeks to answer is, "What combination of loaders and trucks yields the

lowest cycle time?" The focus is on resource efficiency, and on how a process can be optimized

through proper resource allocation. For a given process, cycle time is just a function of resource

allocation and user specified activity processing time distributions. The process itself doesn't

change over the course of the simulation and nor do the attributes of the entities or the activities.

Perhaps two of the most commonly associated names with construction environment simulation

modeling are CYCLONE and MicroCYCLONE. Both are computer software packages. The

former is mainframe based, and the latter is for microcomputers. Both were developed by

Professor Daniel W. Halpin of Purdue University, and they have come to characterize queuing

model simulation in the construction industry.



The CYCLONE/MicroCYCLONE modeling system is made up of four basic elements: resource

entities which move around within the model, square activity state nodes which represent work

tasks (and which can be either constrained or unconstrained), circular idle state nodes which

represent waiting positions, and directional flow arrows which represent the path of resource entity

flow within the model. As with all other queuing models, the entities and the nodes are not altered

over the course of a simulation run, nor is the entity flow path which is predefined and cyclical in

nature. There are no decision branches, and if/then conditions only affect the starting times of the

work tasks within the flow. When an activity node is empty, for instance, it checks to see if all the

resource entities that it requires are available and if all of its predefined constraints are met. If

these conditions are met then the activity is allowed to proceed.

There are numerous examples of queuing based simulation models of the construction environment.

Alkoc and Erbatur (1997) used MicroCYCLONE to simulate the placing of slab, beam, and

column concrete. They considered two methods of concrete placement: (1) with cranes and

buckets; and (2) with pumps. Their models account for those activities occurring between when

the concrete is ready at the batch plant all the way through to when it is trowelled and ready for

curing. Moselhi and Hanson (1994) used MicroCYCLONE to simulate the placing and finishing

of concrete slabs on grade. Their models were used to compare semi-automated placing techniques

with conventional manual ones. Cheng and O'Connor (1993) used MicroCYCLONE to model the

process of pipe construction in order to identify critical tasks and factors that could be contributing

to piping construction inefficiencies. Shi and AbouRizk (1997) used CYCLONE for their resource

specific "atomic" models used in their resource-based modeling (RBM) system. Their RBM

system automatically generates project specific queuing models from a library of atomic models

once a project's required resources and specifics are input by a user. The example given to

demonstrate RBM was an earth moving project.

2.2 Graphically Based Models

A significantly different approach to construction environment simulation modeling involves the

use of computer graphics. Unlike queuing models, which are only concerned with resource usage

optimization, graphically based models are more concerned with the spatial feasibility of



constructing something in a particular way. Resource usage optimization is somewhat of a lower

order concern. Graphical models help to uncover time-space conflicts in construction projects,

usefully communicate construction methods to contractors, and identify how certain design and

construction decisions impact overall construction processes.

The interest in graphically based simulation models arose from the desire to link construction

experience and knowledge to project planning and design. Computer-aided-design (CAD) was

already quite prevalent in the industry, and as a result was quite naturally seen as a possible

interface between design and construction. Graphical simulation models such as 4D-CAD and

Interactive Visualizer ++ (IV++) stem from the combining of CAD drawings to a construction

schedule.

The concept behind graphically based simulation models is a fairly straightforward one. First, the

geometric information associated with each element involved in the construction process needs to

be defined. Since design inherently requires that all elements involved in a construction project be

defined geometrically, this step is generally taken care of during the design phase with a CAD

package.

Next, once the geometry of all the elements has been established, the sequence in which each

element will be erected during construction needs to be defined. This is probably the most difficult

aspect of graphically based simulation models, especially in construction, since the number of

individual elements is often very large. Usually simplifying assumptions are made to make this

task more manageable. Some additional information that may also be tagged to each element

include its original position prior to erection, its final position following erection, and the

equipment resources required for its erection (e.g., a crane).

Once all of the data associated with each of the elements have been defined, the same must also be

done with each of the equipment resources being used during construction. Pertinent information

include their geometry, their degrees of mobility, and their rates of productivity.

Graphically based simulation models are specifically tied to design. The question that they seek to

answer is, "Are there any spatial interferences that are likely to occur during construction as a



result of this design?" The underlying assumption here is that construction process remains fixed

over the course of the project. (Recall construction sequence is predetermined when a model is

initialized.) This is important to note. Construction process is not the object of graphically based

models, but rather it is an underlying assumption within them. For the sake of simplicity,

construction process is assumed to be independent of design.

Advances in three dimensional imaging are leading to several exciting developments in graphically

based simulation modeling. 4D-CAD work being done by Professor Martin Fisher at Stanford

University combines "Responsive Workbench", a state-of-the-art 3D interactive graphics system

that projects computer-generated stereoscopic images onto a tabletop, with the concepts of

graphically based simulation modeling. The result is a more visually realistic and a more

interactive modeling environment.

Other researchers have also worked on the concept of graphically based modeling. Vanegas and

Opdenbosch (1994) described the use of the graphically based modeling package Interactive

Visualizer ++ to simulate the construction of a simple building structural frame. They explained

how use of their method allows designers and builders to visualize construction operations in a

virtual environment while a project is still in its design phase and they also incorporated the

concept of "building objects" (BO) within it. (Building objects is a way of listing elements in a

hierarchical and sequential manner that simplifies the element sequencing task common to

graphically based models.) Stouffs et al. (1993) developed their own graphically based simulation

program named RUBICON, and used it to simulate the construction of a precast concrete

residential building. Two equipment resources were considered in their model, a robot crane for

handling heavy elements, and robot towmotor for handling palletized materials. The input for the

model consisted of both a file containing a description of the elements and their erection sequence,

and a file specifying the motional capabilities of each robot. The output was a 3D graphical

representation of the construction process that included a visual display of each robot's activities.

2.3 Dynamic Process Models

Dynamic process models take a significantly different approach to modeling construction projects.

Whereas queuing models follow the cyclical flow of resources from one construction activity to



another, dynamic process models follow the flow of pieces and elements (i.e., the entities on which

work is being done) from one activity to the next. The aim is to look at construction more from the

perspective of industry and see it as a series of deliverable producing activities rather than simply

as a cyclical flow of resources from one activity to another.

An important aspect of dynamic process modeling is that it seeks to address the dynamic nature of

processes like construction. First developed for use in designing chemical processing facilities

(Glasscock and Hale, 1994), dynamic process modeling considers the reality that work is

performed on entities as they pass though activities. The result is that entity attributes can change

over time. This is a key premise of dynamic process modeling, and a critical feature distinguishing

it from the other model types. An additional feature which also sets dynamic process modeling

apart from other modeling techniques is that entity attributes are capable of affecting activity

processing times and even entire processes. Output from earlier activities can have a direct impact

on later activities. The cyclical pattern commonly associated with queuing models and with the

sequencing of graphically based models is replaced with decision branches and alternative courses

of action. (Each entity only passes through the model once.) Dynamic process models therefore

consider actual cause and effect relationships that exist within a process.

A further point worth mentioning is that resources in dynamic process models are not handled in

quite the same fashion as they are handled in both queuing and graphically based models. In the

latter case they are considered to be entities doing work, in the former case they are only thought of

as conditions that must be met if work is to be done. In dynamic process models, each processing

activity has various resource requirements assigned to it. Once an entity, such as a piece, arrives

at a processing activity, before any work is done to that entity, the processing activity checks a

pool of resources to see if those it requires are available. If they are available, it tags them and

makes them unavailable to all of the activities until the one in question is complete. Once the

processing activity is complete and the entity has passed through it, the tagged resources are re-

released back into the pool for reuse by any other processing activity requiring them. Thus,

resources perform numerous activities (i.e., are not dedicated to any particular group of activities),

and are shared among these activities both spatially and temporally.



In this research, dynamic process models are made up of three key components: process flow,

project specifics and overall project progress. The process flow represents the general process

common to all projects of a particular type. For instance, one general process flow may represent

all aspects of cast-in-place concrete construction while another may represent all aspects of

structural steel erection. What is important is that all of the commonalities and construction

alternatives within one particular group of projects be represented by that group's process flow. In

addition, all of the entity attributes affecting the process or the duration of the individual activities

within the process must also be incorporated into the process flow. Once the general process flow

is established, it need not be significantly changed any further. Project specifics are used, rather, to

tailor it to a specific project.

Project specifics are the characteristics of a given project that change from one project to the next.

They include, but are not limited to, project design, resource availability, production rates, and site

conditions. Project specifics are used to assign actual values to the attributes previously identified

in the general process flow.

The overall project progress links the status of all sub-processes within a project temporally and

spatially across that project. It is concerned with logical progression, technical constraints,

regulatory constraints and shared resources. The combination of project flow, project specifics,

and overall project progress leads to the establishment of a dynamic process model for a specific

construction project.

The following example illustrates the concept of dynamic process modeling. The process that is

considered is the preparation and erection of formwork. Figure 2.2 shows the general process

flow. References are made to pieces and to elements. Here pieces make up elements, and elements

are the components that are put in place on the job site. For instance, a site-fabricated panel is a

form element made up of plywood and studs, which are form pieces.

In this example, two different entity types (form pieces, and pre-fabricated form elements) arrive

on the job site. Each enters the process at one of two different starting points (identified as the

thickly outlined boxes). The shading of each activity box identifies the type of entity that passes

through it. No shading indicates form pieces, light shading indicates form elements, and dark
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Figure 2.2: Dynamic Process Model of Formwork Preparation and Erection

shading indicates completed formwork. Over the course of the process, pieces are transformed into

elements which are subsequently transformed into formwork.

Each entity has its own set of attributes which define the process. In this example, the attributes of

a form piece are the number of cuts, holes, and connections it requires. The attributes of a form

element are the number of connections it requires, its size/weight (to determine whether or not a

crane is needed), and the number/type of pieces that make it up. Finally, the attribute of completed

formwork is simply the number/type of elements that make it up. Each attribute defines either the

process flow (e.g., to use a crane or not to use a crane) or the processing time of a particular

activity within the process flow (e.g., the cutting time of a form piece requiring 8 cuts is twice that

of a form piece requiring only 4).



Activity processing only proceeds on the condition that the required resources associated with a

given activity are available from a pre-defined pool of resources. Notice how different activities

require different resources and may even require combinations of resources.

Dynamic process modeling is a very new approach to modeling the construction environment. Up

until now, only two dynamic process models with specific application to construction have been

developed. Eraso (1995) developed the first of these which simulates the erection of structural

steel members, and Attai (1997) developed the second which simulates the erection of exterior

enclosure systems. The cast-in-place concrete construction model arising out of this thesis

research will be the third dynamic process model developed for construction.

2.4 Summary

Queuing models, graphically based models, and dynamic process models differ significantly not

only in terms of how simulation proceeds but also in terms of what is being simulated. Table 2.1

summarizes the basic differences that exist between queuing models, graphically based models and

dynamic process models.



Table 2.1: Summary of Different Model Types

Dynamic Process Models Queuing Models Graphical Models

- Useful in modeling non-standard
systems where activity processing
times are a function of entity
attributes.

- Well suited for modeling non-cyclical
applications characterized by
decision branches and alternative
courses of action.

- Entities are the units being
assembled together.

- All entity attributes may be taken into
account and all are free to change
over the course of a simulation.

- Process is non-cyclical and
characterized by alternative courses
of action. It is function of entity
attributes and is free to change over
the course of a simulation. (Design
changes do influence construction
process.)

-Activity processing times are a
function of entity attributes and are
free to change over the course of a
simulation.

- Resources are not dedicated to any
particular group of activities but
rather are shared among all activities
both spatially and temporally.

- Useful in modeling standard systems
where activity processing times may
be treated as functions of
predetermined time distributions.

- Well suited for applications where
resource usage is cyclical and where
resource optimization is the primary
concern.

- Entities are the resources.

- Entity attributes are not taken into
account.

- Process is fixed, pre-determined and
cyclical. It is not a function of any
entity attributes except for changes in
quantities. (Design changes do not
influence construction process.)

- Activity processing times are a
function of pre-determined
distributions and are fixed over the
course of a simulation.

- Resources are dedicated to a
specific group of activities and are
fixed.

- Useful in modeling applications
where the spatial feasibility of
constructing something in a particular
way is the key concern.

- Well suited for communicating
construction methods to contractors
and allowing users to interact with
the simulated construction
environment.

- Entities are the units being
assembled together.

- Only design related entity attributes
are taken into account and these are
held fixed during simulation.

- Process is fixed, pre-determined and
cyclical. Entity attributes simply
define entity geometry and the order
of entity flow through the process.
(Design changes do not influence
construction process.)

- Activity processing times are a
function of pre-determined
distributions and are fixed over the
course of a simulation.

- Resources are dedicated to a
specific group of activities, are fixed,
and must be defined in terms of their
geometry and operational
characteristics.



Chapter 3 : Research Methodology

The purpose of researching cast-in-place (CIP) concrete construction was to develop a dynamic

process model capable of simulating the construction environment in order to be able to assess the

impact of innovations and design changes on CIP concrete construction. (The concept of dynamic

process modeling is introduced in Chapter 2.) Developing this dynamic process simulation model

required that information on construction practices, resources, production rates, and costs be

collected, analyzed and incorporated within the model.

3.1 Data Sources

Three data sources were used to conduct this research: literature, site observations, and interviews

with people directly involved in CIP concrete construction. The literature review portion of the

research involved the examination of engineering reference manuals, trade manuals, journal

articles, and conference proceedings. Some of the more helpful pieces of literature used in this

research are highlighted in Table 3.1.

Table 3.1: Some of the More Helpful Literature

The site observations portion of the research involved numerous construction sites visits in order to

observe actual CIP concrete construction activities in progress. All of the sites visited were located

in the Boston, MA metropolitan area, and several visits were often made to each of the sites in

order to be able to observe the different construction activities that occur over the life of a project

Title Authors
Formwork for Concrete (6th Edition, 1995) Hurd, M.K.

Placing Reinforcing Bars (1992) CRSI

Design and Control of Concrete Mixtures (5th Edition, 1991) Kosmatka, S.H., et al.

Concrete Formwork (1988) Koel, L.
Formwork A Guide to Good Practice (1986) Concrete Society

Steel Reinforcement (1984) Trevorrow, A.
Concrete Construction & Estimating (1980) Avery, C.
Construction Manual: Concrete & Formwork (1973) Love, T.W.

Concrete Construction Handbook (1968) Waddell, J.J.



Table 3.2: List of Construction Sites Visited for Data Collection

Project Name Location Description

Osco Drugstore

Doubletree Hotel
University Park

University Park
Garage

Seaport Hotel &
Parking Garage

Museum Towers

Logan Airport West
Garage

Suffolk Law School

Harvard University
Gymnasium

MIT - Building 16

Suffolk County
Courthouse

Cambridge, MA

Cambridge, MA

Cambridge, MA

Boston, MA

Cambridge, MA

Boston, MA

Boston, MA

Cambridge, MA

Cambridge, MA

Boston, MA

Single story steel structure with cast-in-place concrete
on grade (slabs and footings).

8 story steel framed hotel with concrete topping slabs
on each floor and cast-in-place concrete on grade
(slabs and footings).

8 story post-tensioned cast-in-place concrete parking
garage.

18 story steel framed hotel with concrete topping slabs
on each floor above and adjacent to a 6 story post-
tensioned cast-in-place concrete parking garage.

Two 25 story residential buildings made entirely of cast-
in-place concrete.

7 story post-tensioned cast-in-place concrete parking
garage with 2 stories housing office space.

7 story steel structure with cast-in-place concrete on
and below grade.

Steel framed gymnasium with cast-in-place concrete on
grade.

Renovation of existing building with construction of a
cast-in-place concrete utilities tunnel.

Steel framed building with concrete topping slabs on
each floor and high cast-in-place concrete structural
columns.

I I

(see Table 3.2). Additional sites were visited to obtain information on overall construction

management and construction processes.

The interview portion of the research involved talking with various people directly involved in CIP

concrete construction both in person and over the telephone. Interviews were conducted with

people in the Boston metropolitan area and nationally. Since much of the data required for this

research is tacit in nature and tied directly to the experience and knowledge of people involved in

CIP concrete construction, these interviews were an invaluable data collection tool. Table 3.3 lists

the names key people interviewed in conjunction with this research.



Table 3.3: List of Key Industry Contacts

Company Name Contact Name Contact's Location Type of Company

Capform Inc. Renaud, Jim Carrollton,TX (phone) Specialty Contractor

Cleveland Cement Contractors Inc. Simonetti, Ronald Cleveland, OH (phone) Specialty Contractor

CM & B Gallow, Tom Cambridge, MA (site) General Contractor

Colasanti Corp. Colasanti, Chris Macomb Twp, MI (phone) Specialty Contractor

Dimeo-O'Connor Joint Venture Oliver, Blair Boston, MA (site) General Contractor

Kent Companies Inc. Krueger, Craig Grand Rapids, MI (phone) Specialty Contractor

Miller & Long Company Inc. Cantrall, Mike Bethesda, MD (phone) Specialty Contractor

Morse Diesel International Favazzo, Chuck Boston, MA (site) Construction Manager

Morse Diesel International O'Brian, Gary Boston, MA (site) Construction Manager

S & F Concrete Contractors Inc. Barb, Patrick Hudson, MA (phone) Specialty Contractor

Shawmut Design and Construction Walfish, Joel Boston, MA (office) Construction Manager

Suffolk Construction Company Inc. Mckasku, Bob Cambridge, MA (site) General Contractor

Tishman Construction Corp. Chase, Joel Boston, MA (site) Construction Manager

Tishman Construction Corp. Jenkins, George Boston, MA (site) Construction Manager

Each of the three data sources complemented one another other and provided a means of data

verification. Talking to one individual about a certain aspect of the construction process and then

seeing it done on another unrelated project, for instance, was useful in verifying the data. In

addition, the appearance of discrepancies in data that was gathered from different sources helped to

identify areas requiring further research in order to gain a better understanding of exactly what was

going on. What is common to CIP concrete construction (as well as what varies) could be

established from the three different yet complementary data sources.

3.2 Research Process Characterization

The first step in the research process was a literature review. It served as a starting point and

provided insight into many of the common practices, resources, materials, and technologies

involved in CIP concrete construction. In many ways, the literature review set the foundation for

the remaining research work by defining the scope of CIP concrete construction.

Once a basic understanding of CIP concrete construction had been gleaned from the literature, the

next step was the beginning of site visits and on-site interviews with individuals directly involved in



construction activities. This stage served not only to provide real life examples of construction

activities that had previously only been seen in the literature, it also helped to identify many of the

variances that exist between construction theory and construction practice. Only through site visits

and on-site interviews could distinctions be made between those aspects of the construction process

that vary and those that do not, and, therefore, the real complexities involved in the CIP concrete

construction process could really be appreciated.

Work began on a process flow diagram to try and capture all of the data that was being collected,

and a list of various attributes and resources believed to be important in CIP concrete construction

operations was also compiled. The process was iterative and involved constant verification and

correction as more and more data was collected. For instance, when an inconsistency between

what was being observed on site and what was in the flow diagram would arise, the flow diagram

would be altered to account for the variance to reflect standard practice currently in use.

The process flow diagram and a comprehensive list of attributes and resources was sent out to

several different people in the CIP concrete construction industry for review. At this stage, an

effort was made to send out the package to some of the larger US cast-in-place concrete specialty

contractors. Follow-up telephone interviews were conducted with high level officials within these

companies to hear their responses and gain more insight into the CIP concrete construction process

across the U.S. The responses added insights, and helped to validate the research work that had

already been done. Any comments and insights offered were used to further modify and improve

upon the work already done.

Both site visits and on-site interviews continued, and the information collected from these activities

continued to be used to further enrich research findings. In addition, work also began in the

collection of production rate (i.e., time/unit) numbers for eventual use in the simulation model. It

should be noted at this stage, that the main objective of this research was not to establish a

statistically representative sample of production rate data but rather to develop a model of the CIP

concrete construction 'process' independent of specific production rates established. In fact, the

goal was to develop a process model where production rates and project specific information could

be easily modified so that the model could be used to simulate construction of any number of

different CIP concrete buildings.



Once the framework for the CIP concrete construction process model was established (i.e., the

process and the attributes affecting it were well defined), work began on the development of the

actual computer-based simulation model itself. A commercially available simulation software

package known as SIMPROCESS@ was used as the modeling environment. Developed by CACI

Products Company, SIMPROCESS® is a graphical interface tool used to simplify the creation

and management of computer-based dynamic process models. Chapter 5 introduces

SIMPROCESS@ in greater detail and explains how it was used to model the CIP concrete

construction process. All of the research findings were used to develop the computer-based

simulation model.

To test the accuracy of the computer-based model, a prototype CIP concrete building was

designed, and project specific information relating to its design and construction was put into the

model. People involved in CIP concrete construction were consulted to verify the validity of the

assumed project specific information, and they were also asked to estimate how long different

stages of construction of the prototype building should be expected to take.

Once all the project specific information relating to construction of the prototype building was put

into the model, its construction was simulated. The resulting simulated construction times were

compared with those that had been estimated by people involved in CIP concrete construction, and

these estimates were found to agree within 5%. This evidence demonstrates that computer-based

simulation model is a reasonably accurate representation of the CIP concrete construction process.

Having established the model as a reasonably good CIP concrete construction simulation tool, it

was subsequently used to assess the impact of several different innovations in construction of the

prototype building. By incorporating each innovation one at a time into the simulation model and

then comparing the results of each of the simulations runs with those obtained from the baseline

model (i.e., the standard methods case), insight was gained into the relative impact of the each of

the different innovations on CIP concrete construction for the prototype building. Chapter 6

discusses this portion of the research more thoroughly, and outlines the findings on each of the

innovations that were tested.



3.3 Validity and Reliability of Results

Construction is both a science and an art. It is affected by some factors that are well defined, such

as design, and by others which are far more nebulous, such as daily decisions made by project

managers. Because of its large human component, construction cannot be fully modeled for

simulation purposes. There will always be some degree of variance between simulation results and

reality. Fortunately, however, reasonably good approximations of reality can be obtained from

highly detailed and carefully designed models. The goal of this research was never to develop a

'perfect' CIP concrete construction simulation model, but rather one that could reasonably

approximate the actual construction process and be responsive to the factors that are reasonably

within the control of designers and planners such as the design elements, resources, and strategies

for overall progress. The research approach of collecting data from three different sources

(literature, site observations, and interviews), cross-checking the data from one source against that

of another, developing the model framework through an iterative process, and testing the results of

the simulation for construction of the prototype building against industry estimates provided an

effective means to address the issues of validity and reliability of the CIP concrete construction

simulation model as a reasonably good approximation of reality. The close results from the

simulation model and the industry estimates demonstrate that this objective was achieved.



Chapter 4 : Cast-in-Place Reinforced Concrete Construction

As alluded to in Chapter 2, dynamic process modeling requires that a process being modeled be

well understood and clearly defined. Activities must be known, alternative courses of action must

be recognized, and potential disruptions in the process must be accounted for. Without a clearly

defined process, dynamic process modeling is impossible. This section outlines the process of

cast-in-place (CIP) concrete construction and summarizes all of the activities and alternative

courses of action within it. Prior to introducing the CIP concrete construction process, however, a

brief discussion of a few of concrete's physical properties is in order since these will help to

explain why the CIP concrete construction process is the way it is.

First of all, in any CIP operation, concrete always arrives on site as a highly viscous fluid. It can

be molded into virtually any shape, but cannot maintain its given shape without being continuously

acted upon by outside forces. When it arrives, it cannot support its own weight nor can it bear any

structural loading. Time is required for it to harden and cure before either of these can be

accomplished. This has considerable impact on the CIP concrete construction process. It means

that: (1) some kind of forming system needs to be put into place in order to mold and support the

concrete while it is hardening; (2) concrete placement activities need to be specifically tailored for

the placing of a fluid and not a solid; (3) any exposed concrete surfaces requiring finishing must be

leveled and smoothed while the concrete is still wet; (4) any temporary forming systems used must

be removed once they are no longer needed; and (5) sanding and finishing of formed concrete

surfaces may be required following formwork stripping.

A second important property of concrete is that its tensile strength is but a fraction of its total

compressive strength, generally somewhere between 8% and 12% (Kosmatka et al., 1991). Since

most structural applications require both tensile and compressive resistance, concrete alone is often

not suitable as a construction material. It needs to be reinforced in some way so that tensile

strength can be achieved. This impacts the CIP concrete construction process in that concrete

reinforcing activities need to be included in the process.

Another very important property of concrete, and the final one to be presented here, is that concrete

is very sensitive to its environment during curing. Both the ambient temperature and humidity



during curing can greatly influence the quality of concrete not only in terms of its appearance but

also in terms of its strength. Since CIP concrete construction often occurs on an open job site

where fluctuations in ambient conditions are normal and expected, measures to minimize their

impact often have to be included in the CIP concrete construction process.

4.1 General Process Flow

Three key sets of activities make up CIP reinforced concrete construction. There are the activities

associated with the preparation, erection, and removal of forming systems; the activities associated

with the preparation and erection of concrete reinforcing systems; and the activities directly

associated with the placing, finishing, curing, and patching of the concrete.

Formwork Prep. & Erect.

Concrete Placement

Reinforcing Prep. & Erect.

Reinforcing
is Prepared

Reinforcing
is Erected

ile7 and Concrete Curing

Patching, Cleaning,
& Finishing

Figure 4.1: General Process Flow



A flow diagram that represents the general process of CIP concrete construction is illustrated in

Figure 4.1. It is not specific to any one project but rather represents what all CIP concrete projects

have in common. It seeks to capture not only all of the activities common to CIP concrete

construction, but also all of the different alternatives courses of action and potential disruptions

within the construction process.

The general process flow for CIP concrete construction starts off with formwork and reinforcing

being prepared and erected. Although both the forming and reinforcing activities appear to be

independent of each other, they are not. Sometimes formwork needs to be in place before

reinforcing can be erected and sometimes it is the reinforcing that needs to be in place before the

formwork can be erected. The circumstances under which each of the different alternatives can

occur are discussed in Section 4.3.3. For now, it is sufficient to say that both formwork and

reinforcing need to be in place before any concrete related activities can begin. Figure 4.2

illustrates what completed formwork and reinforcing for a beam awaiting concrete might look like.

Reinforcing

Formwork

Figure 4.2: Beam Formwork and Reinforcing

When all of the required formwork and reinforcing are in place, wet concrete is then delivered to

the site in trucks and is placed in the formwork around the reinforcing. Exposed concrete surfaces

requiring leveling and smoothing are finished, and curing begins. During curing, steps are taken to

control the temperature and moisture levels of the concrete, if deemed necessary, and then the

concrete is left undisturbed for a period of time. Usually within a few days, the concrete is strong

enough to support its design load and the formwork can be removed to be used elsewhere on the



project. Re-shoring is used to replace the formwork and continue to support the concrete while

construction loads are applied to it. Eventually additional loading from construction activities

ceases and re-shoring is removed. Any surface flaws in the concrete that could not be repaired

while the re-shoring was in place are subsequently patched and repaired.

4.2 Description of Entities

Before getting into the specifics of the CIP concrete construction process, this section describes the

various entities used in the process. Entities are goods or deliverables that are, for the most part,

produced by activities in a process. In this research, ten different entity categories were used to

describe the CIP concrete construction process: buildings, floors, bays, members, pours, trucks,

buckets, sections, elements, and pieces (see Figure 4.3).

Buildings are the highest order entity. They are made up of a number of floors, and each floor is

made up of a number of bays. Bays are defined as structurally stable units consisting of vertical

Figure 4.3: Entities Involved in CIP Concrete Construction
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and horizontal load bearing members. There are 5 types of CIP concrete load bearing members:

footings, columns, walls, beams, and slabs. Footings are structural units used in the foundation of

buildings to transfer loads from the structure above to the soil and foundation piles below.

Columns are slender structural units designed to transfer a building's vertical loads down its

footings. Walls, much like columns, also transfer vertical loads to the footings, however, in

addition, they are often also designed to provide a building with lateral stability. Beams are slender

structural units which span horizontally between columns and/or walls and are designed to resist

bending. Finally, slabs are the structural units which make up the floors of a building and span

horizontally over the beams.

Concrete members arise from combining a concrete pour with sets of formwork and reinforcing

sections. A concrete pour is defined as all of the concrete that is deposited during one placement

operation, and is made up of a number of concrete truck loads which, depending on the selected

placement technique, may be further reduced into a number bucket loads (see Section 4.3.4). A

section is a set of elements which are placed sequentially in an uninterrupted manner. Formwork

sections are made up of formwork elements and reinforcing sections are made up of reinforcing

elements.

Elements are units of formwork or reinforcing which are placed directly into their final position on

the construction site. They may be either pre-fabricated or site-fabricated. Pre-fabricated elements

arrive on the job site all ready to be hoisted into position, whereas site-fabricated elements require

on-site assembly and/or preparation before they can be hoisted into their final position. There are

therefore four types of elements which define the CIP concrete construction process: pre-fabricated

formwork elements, pre-fabricated reinforcing elements, site-fabricated formwork elements, and

site-fabricated reinforcing elements.

Pre-fabricated elements are not made up of any smaller units; however, site-fabricated elements are

made up of pieces. Pieces are the smallest order entities used in this research to define the CIP

concrete construction process. Site-fabricated formwork elements are made up of formwork pieces

and site-fabricated reinforcing elements are made up of reinforcing pieces. Pieces are thus defined

as those units involved in the on-site assembly of site-fabricated elements. An example is provided

in Figure 4.4 to better illustrate the different entities categories described above.
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Figure 4.4: Example of Entity Hierarchy

4.3 Specific Processes

4.3.1 Formwork Preparation and Erection

Forms are structural units designed to support and mold freshly placed concrete while it cures and

strengthens. They are generally temporary, requiring removal following usage; however, they are

occasionally designed to be left permanently in place within a structure as stay-in-place formwork

(Hurd, 1995).

When forming materials arrive onsite, they may or may not require some preparation before they

are ready to be erected into place. Those materials requiring preparation (i.e., the formwork

pieces) are prepared and eventually transformed into site-fabricated formwork elements. Those

materials not requiring preparation (i.e., the pre-fabricated formwork elements) are simply stored

until they are required for erection. Since timber studs and plywood sheathing make up the bulk of

all formwork pieces, formwork preparation activities are largely performed by carpenters.

Carpenters measure, cut, and drill into the formwork pieces, appropriately sizing them for their

intended use, and then a number of them are assembled into site-fabricated formwork elements. A

variety of hand held power and pneumatic tools including saws, drills, and nail guns are use by the

carpenters to help maximize productivity.

"~



Following formwork preparation is formwork erection. Formwork erection only occurs once a

required formwork element is ready to be placed. By definition, pre-fabricated formwork elements

are ready to be placed upon their arrival to the site whereas site-fabricated formwork elements are

only ready after they have been prepared.

There are many different types of formwork elements. Some make up the concrete contact surface,

the rest make up the bracing required to support those which make up the concrete contact surface.

Table 4.1 lists some of the common types of formwork elements. Recall that elements are

specifically those units that are placed directly into their final position on the construction site.

Table 4.1: List of Common Formwork Elements

Sheathing Ties
Studs Spreaders
Wales Shoring
Strongbacks Stakes
Panels Inserts
Braces Tension Cables
Brackets

Formwork erection is a fairly straight forward process. First a formwork element is selected for

placement and then, depending on its size and weight, it is either lifted into position and aligned by

hand or with the help of a mechanical lifting device such as a crane (Koel, 1988). Stabilizing the

element with preliminary connections then becomes the next concern. Sometimes, simply

connecting the element to the existing formwork in place is sufficient. Other times, additional

formwork elements are required for bracing. Whatever the scenario, the resources (such as

workers and equipment) involved in the placing of the original formwork element cannot be

released until that element is stable. If additional formwork elements are required to help stabilize

it, then these elements must also be lifted into position and aligned before bracing of the original

formwork element can proceed. It is quite common to see several formwork elements being lifted

into position and aligned all at once before any bracing occurs. Once a formwork element is

stabilized, the resources that were involved in its placement can be released, and any remaining

connections, required not for the stability of the element but rather for the soundness of the

formwork system, can be made.



Carpenters are generally used to erect wooden formwork elements, especially those that are

site-fabricated, since these elements require special care if they are to be reused several times over.

With pre-fabricated formwork elements, however, general laborers are usually sufficient (provided

it is allowed by local labor rules) since these elements are typically more rugged and specifically

designed for a large number of reuses.

On a final note, sometime during the formwork preparation and erection process, prior to the

placement of reinforcing, those elements which make up the concrete contact surface generally

need to be treated with a release agent. The purpose of the release agent is to ensure that the

eventual removal of the formwork will proceed smoothly and will not damage the formed concrete

surfaces or the formwork.

4.3.2 Reinforcing Preparation and Erection

Virtually all structural members are subjected to some degree of tension. Columns, for example,

must resist buckling, and beams must resist bending. Since concrete has very poor tensile strength,

it must be reinforced if it is to be useful in applications involving tension. Concrete is generally

reinforced by embedding steel bars within it. These bars are assembled into cages or mats and

placed into formwork where they are left to await the placing of concrete. They essentially make

up the skeletal structure of reinforced concrete members and are the single reason why such

members can be used in applications involving tension.

The process of preparation and erection of reinforcing steel is very similar to that of formwork

preparation and erection. When reinforcing materials arrive on site, they may or may not require

preparation before they are ready to be erected into place. If they do require preparation, then they

are considered to be reinforcing pieces, and if they do not require any preparation, then they are

considered to be pre-fabricated reinforcing elements.

Generally, individual reinforcing bars are delivered to a site already cut and bent into their required

shapes (Trevorrow, 1984). If for some reason, however, some of the delivered bars are not

properly shaped, on-site bar cutting and bending may occur in order to avert any construction



schedule delays. These activities are considered to be part of the reinforcing preparation.

Additional reinforcing preparation activities include the assembly of site-fabricated reinforcing

elements, such as cages and mats, that are to be lifted into their final position during erection.

Assembly of site-fabricated reinforcing elements involves lifting the reinforcing pieces into place

and connecting these pieces together with tie wire. Site-fabrication is often done simply to allow

some of the reinforcing work to proceed independently of the forming work. Ironworkers, typically

working in crews of two people (Favazzo, 1997), are responsible for all reinforcing preparation

activities. Their tools include cutting torches, rebar bending machines, hydraulic coupling clamps

and plier-like devices known as nips which are used for twisting and cutting tie wire.

As with formwork erection, reinforcing erection can only proceed once a required reinforcing

element is ready to be placed. Table 4.2 lists some of the common types of reinforcing elements.

Once again, elements are specifically those units that are placed directly into their final position on

the construction site and they can be either pre-fabricated or site-fabricated.

Table 4.2: List of Common Reinforcing Elements

Steel Reinforcing Bars (Rebar)
Stirrups
Spacers
Chairs
Rebar Cages
Rebar Mats
Wire Mesh Reinforcement

The process of erection of reinforcing steel is identical to that of formwork erection. A reinforcing

element is first selected for placement and then lifted into position either by hand or with the help of

a crane, depending on its size and weight. Occasionally wooden templates are used to assist in the

placement (Hurd, 1995). The element is then stabilized with preliminary connections before any of

the resources that were involved in its placement are released, and then finally any connections that

are required, not for the stability of the element but rather for the soundness of the reinforcing

system, are made. Typically all reinforcing erection activities are handled by ironworkers.

It is interesting to note that often during reinforcing erection, elements may be stabilized without

any preliminary connections. This is especially apparent during the erection of reinforcing for a



slab, where the simple act of placing a bar down on top of the other bars already in place is often

enough for that bar to be stabilized. Obviously, connections are required between the bars for the

soundness of the entire reinforcing system; however, no preliminary connections are required to

stabilize the bar that has just been placed. It is therefore possible for numerous bars to be placed

all at once before any connections need to be made. Of course, when the elements in question are

not bars but are rather site-fabricated reinforcing cages, preliminary connections are essential if

stability is to be achieved.

4.3.3 Interdependence of Formwork and Reinforcing Activities

Given that the activities involved in the preparation and erection of both formwork and reinforcing

have been outlined, a brief discussion on the interdependence of formwork and reinforcing

activities is in order. As mentioned earlier, on some occasions formwork needs to be in place

before reinforcing can be erected and on other occasions, the reverse is true. Beams and elevated

slabs, for instance, generally require their formwork to be in place before the erection of

reinforcing can proceed, since this reinforcing typically sits on top of the formwork. In the case of

columns, however, the reverse is often observed. Erection of reinforcing often precedes erection of

formwork since access to the reinforcing steel at the base of the column is often required during

erection of the reinforcing, which can be constrained by the presence of formwork (O'Brian, 1997).

In the case of walls, reinforcing may be erected first and then followed by formwork, or sometimes

one side of the formwork may go up first, followed by the reinforcing, and subsequently followed

by the other side of the formwork. Depending on the member being constructed and, in some

instances, on the preferences of the contractor, the precise sequence of formwork and reinforcing

erection varies.

The conclusion that can be drawn is that although the preparation activities for formwork are

largely independent of those for reinforcing, their erection activities are not. There are two reasons

why the erection of formwork and reinforcing are not independent of each other. The first reason is

that erection of an element cannot proceed if its placement hinders the erection of another element,

and the second is that an element that relies on other elements for stability cannot be erected prior

to the erection of those elements.



4.3.4 Concrete Placement Operations

When concrete is deposited around steel reinforcing bars within formwork, reinforced concrete

members are the result. Section 4.2 defines reinforced concrete members as the combination of a

concrete pour with sets of formwork and reinforcing sections. Up to this point in the general

process of CIP concrete construction, only the preparation and erection of the formwork and

reinforcing sections have been addressed. During concrete placement operations, however, a

concrete pour is added, and reinforced concrete members are the result. Recall that a pour is

defined as all of the concrete that is deposited during one placement operation.

There are two stages of concrete placement operations: (1) site preparation and inspection, and (2)

concrete placement. The first stage cannot proceed until all of the formwork and reinforcing

sections involved in the coming pour are in place, and the second stage cannot proceed prior to the

first stage's completion. The stage of site preparation and inspection is specifically focused on

helping to ensure that concrete placement will proceed smoothly and that it will result in an

acceptable final product. Concrete placement, however, is mainly focused on getting concrete into

the awaiting formwork and ensuring that it sets into its desired shape without voids.

4.3.4.1 Site Preparation and Inspection

Numerous activities occur during site preparation and inspection. For one thing, scaffolding is

erected around column and wall forms to provide concrete placement workers with a workspace on

which they can stand during concrete placement, if no such workspace already exists. Instances

when such workspaces already exist, and no scaffolding is required, arise when the column and

wall formwork sections are already outfitted with their own workspace platforms. Whether these

workspaces come as platforms that are pre-attached to formwork, or are the result of erected

scaffolding, elevated workspaces must be provided whenever concrete placement workers need to

be elevated to do their job.

Another activity that can occur during site preparation and inspection is the erection of a temporary

enclosure system. Recall that one of the properties of concrete is that it is very sensitive to its

environment during its placement and curing. Because of this sensitivity, enclosures are often used

to help protect the concrete placement site when weather is expected to be a problem. Enclosures



are probably most frequently used when temperatures are expected to drop below what is

considered optimum for concrete placing operations. Section 4.3.5 outlines in a little more detail

exactly what the optimum concrete placing and curing conditions are. For now, however, it is

sufficient to say that in instances when protection from the environment is required, enclosures are

often used.

Perhaps one of the more important activities that occurs during site preparation and inspection is

the cleaning of formwork and reinforcing with compressed air. Any debris, such as nails, sawdust,

or pieces of tie wire, left behind at the bottom of formwork could completely ruin the finish of an

otherwise perfect concrete member if it is not removed prior to concrete placement (Hurd, 1995).

Consequently, the final activity just before inspection is the cleaning of the formwork and

reinforcing. Not only is all the debris removed at this stage, but so are all the wooden spreaders

and blocks that were used earlier as bracing during the erection of the formwork and reinforcing

sections.

The last remaining activity of the site preparation and inspection stage is final inspection. Final

inspection by no means represents the very first time that the formwork and reinforcing sections to

be included in the coming pour are inspected for their workmanship. It does, however, represent the

very last time that these will be inspected. It is a final check to make sure that all of the required

reinforcing is where it is supposed to be, and that all of the formwork is clean, sound and ready to

receive concrete. Following concrete placement, it is too late to revisit or rework any of the

formwork or reinforcing that is included in the pour.

4.3.4.2 Concrete Placement

Following site preparation and inspection is the concrete placement stage. One single concrete

placement event typically gives rise to numerous reinforced concrete members. Sometimes

concrete is deposited in the formwork of each member individually, as with columns, but often it is

deposited monolithically in the formwork of several members at the same time, as with beams and

slabs. Monolithic concrete placement is when concrete is deposited in one large formwork system

which is made up of several smaller formwork systems each corresponding to a different concrete

member. Figure 4.5 illustrates a typical slab/beam formwork system awaiting monolithic concrete
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Figure 4.5: Typical Slab/Beam Formwork System Awaiting Monolithic Concrete Placement

placement. Since all of the connections between each of the concrete members involved in a

monolithic pour are seamless, the result bears the likeness of a huge concrete structural unit.

The process of concrete placement begins with the arrival of concrete trucks transporting freshly

batched concrete to the construction site. A truck load typically consists of approximately 10

cubic yards of wet concrete (McKasku, 1997). When a concrete truck arrives on site, a sample of

the concrete it is carrying is taken by a field engineer for testing. A slump test is performed on the

sample to verify that the concrete's consistency meets the job specifications, and then several small

concrete test cylinders are cast for use later in determining the concrete's strength. Samples are

generally drawn from every 50 cubic yards of concrete delivered to the site, which essentially

means every fifth truck. If the field engineer is satisfied with the consistency of the concrete being

delivered, the concrete trucks are allowed to proceed to concrete placement.

A concrete truck is typically unloaded via a chute located at its rear. In instances where this chute

can reach the formwork involved in a pour, concrete placement proceeds directly from the rear of

the truck (Waddell, 1997). Footings and on-grade slabs are occasionally poured in this manner.

When the chute at the rear of a truck cannot reach the formwork involved in a pour, however, an

intermediary on-site concrete distribution system is required to get the concrete from the truck to



the formwork. Several different systems exist, and they may be thought of as being either

continuous or discontinuous in nature. The continuous systems are characterized by the

uninterrupted placement of one truckload of concrete within the awaiting formwork, whereas the

discontinuous systems are characterized by interruptions in the exact same process. Conveyor

belts and concrete pumps are examples of continuous concrete distribution systems. Power carts

and crane hoisted buckets are examples of discontinuous concrete distribution systems.

The most common continuous distribution system encountered in CIP concrete construction in the

U.S. involves concrete pumps. A concrete pump is typically mounted on a concrete pump truck

which is outfitted with both an intake hopper for receiving concrete and a placement boom for

distributing concrete (see Figure 4.6). When the placement boom mounted on the truck is not long

enough to reach the formwork, hoses are attached. Sometimes concrete may need to be pumped up

several stories above the reach of the placement boom. In these instances, the placement boom is

connected to standpipes that have been specifically erected within a building for concrete

distribution.

Placement Boom

Intake Hopper

Concrete Truck Pump Truck

Figure 4.6: Transfer of Concrete to Pump Truck

In a typical concrete pumping operation, two concrete trucks are placed behind a concrete pump

truck (O'Brian, 1997). One concrete truck unloads its concrete into the intake hopper of the pump

truck, while the other awaits its turn. When the first truck is empty, the second one then begins to

unload into the hopper while the first load is pumped to the final location. During this time the first

truck pulls away and it is immediately replaced by another concrete truck. This other truck

prepares to unload its concrete into the intake hopper once its turn arrives and the second truck is



empty. The cycle repeats itself over and over again until all the concrete required for the pour is

placed.

On the distribution end of a typical concrete pumping operation, concrete is deposited within the

formwork by way of a hose which is handled by one or two concrete placement workers. The

concrete is deposited as near as possible to its final position within the formwork as a means of

preventing segregation of the aggregate from the rest of the concrete mix. Once the concrete is in

place, other placement workers, operating hand held vibration tools, vibrate the concrete in order to

release any air pockets that may be entrapped within the concrete. Vibration is not used to

transport the concrete within formwork, but rather it is simply used to consolidate it. Over

vibration leads to segregation of the concrete mix, whereas under vibration results in a

honeycombed concrete matrix (see Section 4.3.6).

Unlike continuous concrete distribution systems, discontinuous ones include an interruption in the

actual placement of concrete within the formwork. The most common discontinuous distribution

system encountered in CIP concrete construction in the U.S. involves the use of crane hoisted

buckets (see Figure 4.7). Crane hoisted bucket placement operations begin with the arrival of a

concrete truck at its unloading site. The concrete truck deposits a portion of its load into an

awaiting bucket, and this bucket is subsequently hoisted by crane to the formwork. Buckets

typically have a capacity of either I or 2 cubic yards. Once the bucket is in the vicinity of the

Tower Crane

Concrete Bucket

Figure 4.7: Crane Hoisted Concrete Bucket



required placement site, concrete placement workers align it above the formwork and then release

its contents within the formwork through an opening in the bottom of the bucket. Again, the

concrete is deposited as near as possible to its final position in order to prevent segregation. The

bucket is then subsequently returned back to the concrete truck unloading site with the crane and

the cycle starts all over again. Vibration of the freshly placed concrete in the formwork occurs

while the bucket is being reloaded with concrete.

Regardless of whether a continuous or discontinuous distributions system was used, following

concrete vibration is concrete leveling. Leveling of freshly placed concrete may be done for all

member types, however, it is generally only a critical aspect of slab and footing concrete

placement. Smaller areas are typically leveled with a hand trowel, whereas larger ones, such as

those associated with slabs, are typically done with screeds. Screeds are long straightedges used to

strike-off excess concrete. In regions where the problem is not an excess of concrete but rather a

shortage of it, concrete placement workers redistribute concrete with the use of shovels. Figure 4.8

illustrates a typical concrete placement operation for a slab.

Finally, after the concrete is leveled it is finished. There are two types of finishing operations:

those associated with formed concrete surfaces and those associated with non-formed concrete

surfaces. The finishing discussed here is solely of non-formed concrete surfaces (i.e., slabs).

Vibrating Concrete

Placing Concrete

Leveling Concrete o

Figure 4.8: Concrete Placement Operation
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Finishing of formed concrete surfaces is addressed in Section 4.3.6, and is not done until later on

since it requires the prior removal of formwork.

There are two stages of non-formed concrete surface finishing. The first occurs just after leveling

while the concrete is still wet and typically involves running a float over the surface of the concrete.

This activity is performed to remove slight imperfections from the surface and to embed any

exposed aggregate just below the surface of the concrete. The second stage is performed once the

concrete is hard enough to support foot traffic, but soft enough to leave footprints (usually within a

couple of hours of placement). It involves smoothing and polishing the concrete surface with

power trowels, or, in instances where a rough slip-resistant surface is desired instead, scoring the

concrete surface with fiber bristle brooms.

4.3.5 Concrete Curing

The period of time directly following concrete placement, during which freshly placed concrete

strengthens and hardens, is perhaps the most critical stage of the entire CIP concrete construction

process. Many of the properties of hardened concrete are at stake, including strength, resistance to

abrasion, durability, volume stability, impermeability, and resistance to freeze and thaw

(Kosmatka et al., 1991). During this time, a chemical reaction between the water and the Portland

cement within the concrete occurs. The chemical reaction is known as hydration, and the extent to

which it is completed effects the properties outlined above. The internal temperature and moisture

of concrete greatly influence hydration, both in terms of the extent to which it is completed and the

rate at which it occurs.

The optimum internal concrete temperature for hydration is between 50 OF and 70 OF. All things

being equal, when the internal temperature of the concrete is outside this range (i.e., either too hot

or too cold), the actual ultimate strength of the concrete suffers. In the same way, lower actual

strength concrete will result if insufficient moisture is available to drive the hydration reaction to

completion. Pre-mature concrete shrinkage leading to surface cracking is also another possible

outcome of insufficient moisture (Kosmatka et al., 1991).



In order to prevent moisture loss and maintain the optimum temperature required for hydration,

concrete curing operations are performed. These operations are most critical during the first few

days following concrete placement, since hydration proceeds at its highest rate during this time.

There are three basic types of curing operations, or strategies (Kosmatka et al., 1991). The first

involves saturating a finished concrete surface with water. This may be done by ponding water on

the concrete surface, by spraying or fogging it with a water mist, or by covering it with a water

saturated material such as burlap. The presence of moisture on the concrete surface not only helps

to reduce cracking, but also helps to maintain sufficient moisture within the concrete for the

hydration reaction. The strategy may also be used to help maintain concrete in its optimum

temperature range. Steam can be used if heating is required while cold water and simple

evaporation may be relied upon for cooling.

The second strategy involves preventing the evaporation of water that already exists within freshly

placed concrete. This is achieved either by covering a finished concrete surface with an impervious

membrane, such as a plastic sheet, or by spraying it with a membrane-forming curing compound.

In both cases, the impervious membrane strives to retain the concrete's existing moisture without

supplying any additional moisture to the concrete surface. It works best at lower temperatures,

where evaporation is already at a minimum. Unlike the water saturation strategy, the impervious

membrane strategy is little help in maintaining concrete in its optimum temperature range.

The third strategy focuses not on moisture control but rather on temperature control. It involves

maintaining the internal temperature of concrete within its optimum range despite cold weather

conditions. Section 4.3.4 already discussed one way, the use of enclosures. Another way is by

covering the concrete with insulating blankets and covers. One important feature of hydration is

that it is an exothermic reaction (i.e., releases heat). In an effort to maintain an optimum internal

temperature despite cold weather conditions, insulating blankets and covers may be used to trap the

heat of hydration within the concrete. Formwork that is left in place also provides insulation

against cold weather, although to a lesser extent than blankets.

The concrete curing process continues until all of the concrete members within a pour have gained

sufficient strength to bear their anticipated loads. Temporary structural systems are used

throughout the entire curing process to support each of the members, and although many of the



curing strategies outlined above are discontinued part way through the curing process, hydration

and concrete strength gain proceed throughout.

Early in the curing process, support for each of the members is provided by the formwork.

Section 4.3.1 discusses the role of the formwork. In order to minimize construction costs,

formwork reuse is desirable. The greater the number of reuses, the lower the cost per concrete

member. Evidently, there is considerable pressure to have formwork removed prior to the end of

the curing process (i.e., prior to the concrete being able to go on unsupported), and as a result,

some other means of concrete support is needed. Re-shoring provides this means of support.

Vertical members such as walls and columns typically do not require re-shoring; however,

horizontal members such as beams and slabs typically do (McKasku, 1997).

Formwork may generally be removed, or stripped, within a few days of concrete placement

(Jenkins, 1997). The exact time of removal is specified by the engineer and is a function of the

strength test results from the concrete test cylinders that were taken by the field engineer during

concrete placement (see Section 4.3.4). As formwork is stripped, re-shoring is erected. Figure 4.9

illustrates a slab formwork system being replaced by a re-shoring. Carpenters typically handle the

Formwork Being Stripped

Re-Shoring Being Erected

Figure 4.9: Stripping of Formwork & Erection of Re-Shoring



removal of wooden formwork that is to be reused, while laborers handle the stripping of all other

formwork as well as the erection of re-shoring (Favazzo, 1997). Once formwork is removed, it is

cleaned, repaired, and then stored on site for reuse elsewhere on the project.

Eventually, all of the concrete members within a pour gain sufficient strength to be able to support

all remaining anticipated loads on their own, and re-shoring is no longer required. Laborers

proceed to remove the re-shoring, and the concrete curing stage of the CIP concrete construction

process comes to an end.

4.3.6 Patching, Cleaning, and Finishing of Formed Concrete Surfaces

The final stage of the CIP concrete construction process involves the patching, cleaning, and

finishing of all the formed concrete surfaces. It may proceed only once formwork has been

removed, and is intended to correct any surface flaws in the concrete that may arise during the

concrete placement and curing stages (Love, 1973). Typical surface flaws include: bulges and fins

which arise from concrete seepage through formwork joints; embedded nails, bolts, and tie-wire

which arise from improper formwork cleaning; honeycombed areas which arise from insufficient

concrete vibration; tie-rod holes which arise from the use of tie-rods for formwork bracing; and

discoloration (e.g., mortar stains, rust stains, and staining from left over release agent).

The repair of surface flaws involves a number of different activities. Bulges and fins are removed

through chipping, rubbing, and grinding of the concrete surface. Embedded material protrusions

are dealt with either by completely extracting them, or by cutting them back a specified depth from

the concrete surface. Cavities such as honeycombed areas or tie-bar hole are often cleaned using

abrasive measures (e.g., sandblasting or waterblasting) to ensure that the surrounding concrete is

clean and sound, and then mortar or concrete patches are applied. Rubbing and grinding of these

patches occurs following their hardening. Finally discoloration is removed either with water,

chemicals or mechanical abrasion, and, in some instances, a finishing coat may be applied to the

concrete for its protection (Kosmatka et al., 1991).



4.4 Progression Through Structure

Up until now, the general process involved in CIP concrete construction has only been defined in

terms of the activities involved in the preparation and execution of individual concrete pours. CIP

concrete buildings, however, are made up of numerous individual concrete pours. It follows,

therefore, that CIP concrete construction is not only concerned with interactions that exist between

activities in a single pour, but also with those interactions that exist between activities in different

pours. Just as there are constraints that govern and define the relationships between activities in a

single concrete pour (as discussed in Section 4.3), so too are there constraints that govern and

define the relationships that exist between activities in different pours. These latter constraints

define the progression of CIP concrete construction through a building as a whole.

Construction of a CIP concrete building typically starts with the preparation of a foundation.

Before erection of any vertical members (i.e., walls and columns) can proceed, the foundation

members on which these are to rest (i.e., strip footings and column footings) must be in place.

Similarly, erection of elevated horizontal members (i.e., beams and elevated slabs) can only

proceed once the vertical members on which they are to rest are in place, and erection of elevated

vertical members can only proceed after the slab beneath them is complete. It follows that

construction of any members requiring support from other members can only proceed once these

other members are in place.

Sometimes simply having these 'supporting' members in place, however, is still not a sufficient

condition for allowing construction of higher level members to proceed. Another important issue is

access to the working surface. Construction of higher level members cannot proceed if it is going

to end up cutting off access that is still required by some aspect of the process associated with

construction of supporting members. If, for instance, column formwork cannot be stripped once

erection of beam and slab formwork begins, then even though, following concrete placement and

curing, a column 'exists', construction of the beam/slab system that column is to support cannot

proceed until its formwork is stripped. Essentially, construction activities associated with one pour

cannot proceed if they cut off any access required by activities which still need to be done in

another pour.



There are also other constraints that define the progression of CIP concrete construction through a

building as a whole. Resource based constraints are one example. With resource based

constraints, activities that are seemingly completely unrelated can impact one another if they share

a resource in common. A crane, for instance, cannot simultaneously be involved in the erection of

a column reinforcing cage and in the hoisting of a concrete bucket. One activity will have to be put

on hold while the other one is being performed. Although both activities may be associated with

two completely different and unrelated concrete pours, performance of one activity is nevertheless

impacted by performance of the other since they both share the same resource.

Additional constraints also arise from safety regulations. In CIP concrete construction, for

instance, regulations require that formwork must be able to support all vertical and horizontal

loads that may be reasonably be anticipated. Reinforcing steel for vertical members is required to

be adequately supported to prevent overturning and collapse. All protruding reinforcing steel into

which any worker could fall is required to be guarded or capped to eliminate the hazard of

impalement. Fall protection is required for workers placing or tying reinforcing steel more than six

feet above an adjacent working surface. Routing of concrete bucket hoisting is set to expose the

fewest possible number of workers to overhead danger. Formwork and shoring cannot be removed

until a concrete's actual strength is equal to or greater than its design strength. Re-shoring cannot

be removed until concrete has gained sufficient strength to support its weight and all remaining

anticipated loads (OSHA, 1991). These regulations constrain the progression of CIP concrete

construction through a building as a whole.



Chapter 5 : Modeling Cast-In-Place Concrete Construction

As mentioned earlier, the purpose of this research was to develop a dynamic process simulation

model of cast-in-place (CIP) concrete construction to assess the impact of innovations and design

changes on this type of construction through simulation. Recall from that dynamic process models

consider the flow of entities through non-cyclic processes characterized by decision branches and

alternative courses of action. The entities flowing through these processes are not resources, but

are rather the units of production arising out of these processes (i.e., the pieces or elements being

produced), and their attributes, which can be altered by these processes, are also capable of

modifying these same processes. The end result is that processes are free to change dynamically

over the course of a simulation in response to events that occur during the simulation.

To develop a dynamic process model of CIP concrete construction, the first step was to understand

and define both the general process associated with CIP concrete construction as well as all of the

project specific attributes that could alter it. The findings from this step are summarized in

Chapter 4. Once the general process associated with CIP concrete construction was understood

and all of the project specific attributes that could alter it were defined, the next step was to convert

the research findings into a computer-based dynamic process simulation model and then test the

model by having it simulate the construction of a prototype CIP concrete building.

SIMPROCESS@ was used to help convert the research findings into a computer-based dynamic

process simulation model of CIP concrete construction.

5.1 Fundamentals of SIMPROCESS@

SIMPROCESS@ can be thought of as a computer simulation programming environment. It has a

variety of built in modeling functions, known as activities, and these make up the building blocks

of any SIMPROCESS® based simulation model. In all there are 18 different SIMPROCESS®

modeling activities: Assemble, Assign, Batch, Branch, Copy, Delay, Dispose, Free Resources,

Gate, Generate, Get Resources, Join, Merge, Replenish, Split, Synchronize, Transform, and

Unbatch. If the need arises, each of these activities may be altered to some extent through the

programming of expressions. SIMPROCESS® activities are represented with graphical icons, as

illustrated in Figure 5.1.
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Figure 5.1: SIMPROCESS® Activity Icons

In SIMPROCESS®, a sequence of activities connected with a series of connectors creates a

network referred to as a process. Processes may themselves may be used to make up higher order

processes, and hence are hierarchical in nature. Information, people, or goods that flow through

processes are referred to as entities, and the characteristics of each of these various entities are

referred to as attributes. Attributes may be used to change activity processing times, regulate

entity flows, and even alter processes. During a simulation run, when an entity arrives at an

activity for processing, that activity may have resource requirements which must be met prior to

the processing of the entity. When a resource is required by an activity, it is removed from a pool

of available resources and is made unavailable to all other activities while it is in use. Any other



activity also requiring that resource for the processing of an entity must wait until the resource is

released back into the pool (upon completion of the original activity) and made available for reuse.

5.2 Model Development

The CIP concrete construction computer simulation model was developed with two fundamental

objectives in mind. The first was that it be as representative of actual CIP concrete construction as

possible, and the second was that it be easy to modify so that it could be used to model a wide

variety of different CIP concrete building projects simply through changing the project specifics.

The following section outlines how the model was developed with these two objectives in mind.

5.2.1 Modeling High Levels of Detail

In an effort to make the CIP concrete construction model as representative as possible, high levels

of detail were incorporated into it. Activities, such as the cutting of individual formwork pieces

and the connecting of individual steel reinforcing bars, for instance, were included, and every effort

was made to have the model represent the entire process outlined in Chapter 4. The integration of

this high level of detail into the model, however, translated into large numbers of entities and

activities requiring significant effort to manage and sequence. Complicating matters even further

was the fact that these numbers vary significantly from one project to another. A challenge

therefore lay in finding not only a way of handling large numbers of entities and activities, but also

a way of doing so that could be universally applied to a wide spectrum of CIP concrete

construction projects.

5.2.1.1 Organizing Entities

At first, all of the various entities were considered to see if anything could be done to reduce their

total number and thereby reduce the complexity involved in managing them. It was determined that

lower level entities (i.e., pieces and elements) could be assembled into groups of pieces and groups

of elements, all belonging to a single section, without significant model representativeness being

lost. The reasoning used to justify this simplification was that, although significant differences

exist between different sections, differences that exist between elements within a single section are



far less pronounced, and those differences that exist between pieces within the elements of a single

section are even less apparent. It was determined that knowing the precise sequence in which

pieces (or elements) are assembled within a single section adds little value to the model since the

basic steps involved in assembly are the same regardless of the piece (or element) in question. All

that was really deemed to be important at this level was that the basic assembly process of pieces

into elements into sections be represented, and that the total time involved in each level of assembly

be known. Figure 5.2 illustrates how the various entities introduced in Section 4.2 are organized in

the CIP concrete construction model.

FSectionGrp = Form Section Group
FormSection = Form Section
FElementGrp = Form Element Group

FElementGrpPF = Form Element Group (pre-fab)
FElementGrpSF = Form Element Group (site-fab)

FPieceGrp = Form Piece Group

RSectionGrp = Rebar Section Group

RebarSection = Rebar Section

RElementGrp = Rebar Element Group

RElementGrpPF = Rebar Element Group (pre-fab)

RElementGrpSF = Rebar Element Group (site-fab)

RPieceGrp = Rebar Piece Group

Figure 5.2: Entity Hierarchy



5.2.1.2 Organizing Activities

Once a system was in place to organize all of the different entities involved in CIP concrete

construction, finding a way to organize all of the different activities involved became the next

priority. A solution was found, whereby all of the construction activities were arranged into a

series of repeatable standard process modules for use as the building blocks of the entire model.

These modules were organized in a hierarchical fashion, with higher order modules being made up

of a series of lower order ones, and each module was made general enough to represent any

permutation of the process it corresponded to. Hence, the process module corresponding to the

preparation of formwork, for instance, can be used in the preparation of column formwork just as

easily as it can be used in the preparation of elevated slab formwork.

Differences between various process modules of a given type were established simply by making

each of the process modules responsive to the attributes of the entities flowing through them (see

Appendix A). Since by their very nature entity attributes tie directly into project specifics, each

process module automatically became responsive to varying project specifics. Thus, in the

preparation of formwork, since the activities involved include cutting, drilling, placing, and

connecting of pieces, the time required for a group of pieces to be prepared is a function of the

number of cuts required, the number of holes required, the number of pieces to place, and the

number of connection to be made. Since the attributes of column formwork differ from those of

beam formwork, and since the process module corresponding to the preparation of formwork is

responsive to these attributes, the time required to prepare column formwork ends up differing

from the time required to prepare beam formwork even though the same process module is used in

both instances.

An example of the modular structure used to organize the processes involved in CIP concrete

construction is shown in Figure 5.3. The figure illustrates the relationship that exists between each

of the five highest order processes involved in the construction of concrete columns. Each process

is represented by a process module, and each process module is made up of lower order modules.

Figure 5.4 illustrates the hierarchical relationship between modules within the 'Prepare/Erect

FSectionGrp' process module. It should be noted that each of the five highest order process

modules (i.e., Prepare/Erect FSectionGrp, Prepare/Erect RSectionGrp, Place Concrete, Cure

Concrete, and Patch/Clean/Finish Concrete) correspond to each of the five specific CIP concrete



Bay Out

Patch/Clean/Finish "..
Unbatch into Bays Get Output Pour Done

Figure 5.3: SIMPROCESS® CIP Concrete Model: Column Construction

Figure 5.4: Process Module Hierarchy for 'Prepare/Erect FSectionGrp'



construction process outlined in Section 4.3. (A summary of all of the process modules

incorporated within the CIP concrete construction simulation model is provided in Appendix B.)

5.2.1.3 Sequencing Entities Through Activities

Having established logical systems for organizing all of the entities and activities within CIP

concrete construction, finding a way of sequencing the flow of entities through these activities

remained a challenge. Two levels of sequencing had to be addressed by the model: micro-level

sequencing (i.e., the sequencing of events involved in the construction of individual concrete

members), and macro-level sequencing (i.e., the sequencing of the construction of concrete

members relative to one another within the context of an entire building). Addressing each level of

sequencing required different strategies.

Micro-level sequencing was addressed simply by arranging all of the process modules in an order

consistent with the general CIP concrete construction process outlined in Section 4.3. Macro-level

sequencing, on the other hand, was much more difficult to address since it required that the flow of

every single entity through the entire process be regulated and tracked.

Every single entity has its own unique set of attributes and is part of its own entity hierarchy.

Mixing up entities (e.g., using a column FElementGrp instead of a beam FElementGrp) could not

be allowed and had to be guarded against. A strategy for tracking entities and having them called

upon only when required was therefore developed.

The strategy involved the use of 'bay' entities. Recall from Section 4.2 that bays are defined as

structurally stable units consisting of vertical and horizontal load bearing members. By

subdividing an entire building into bays and assuming that construction activities proceed

progressively from one bay to the next contiguous bay, macro-level sequencing could be achieved.

In the CIP concrete construction model, every bay is assigned attributes that identify, among other

things, the type and number of formwork and reinforcing sections that make it up. Each bay entity

uses these attributes to select the process modules corresponding to the preparation and erection of

the particular formwork and reinforcing sections it requires. Selection of one of the process



modules triggers its activation and leads to the erection of one of the required sections. Once all of

the sections that make up a bay are complete, that bay proceeds on to concrete placement where it

awaits the arrival of a specified number of other completed bays before triggering the start of a

concrete pour.

Thus, if a bay is made up of four column reinforcing sections and four column formwork sections,

for example, the corresponding bay entity first proceeds to the 'Prep/Erect R-Elements for

Column' process module, where it triggers the erection of four column reinforcing sections, and

then, upon completion of the reinforcing, it proceeds to the 'Prep/Erect F-Elements for Column'

process module where it triggers the erection of four column formwork sections. In the end, when

all of required sections are in place, the bay entity is allowed to proceed onto the next process

module (i.e., 'Place Concrete') since columns are poured before the next floor's slab.

5.2.2 Incorporating Model Responsiveness to Resource Availability

In addition to sequencing the flow of entities through the model and making each of the activities

within it responsive to the attribute of these entities, a strategy had to be developed to make each

activity responsive to resource availability. Hence, an activity requiring a predetermined amount

of time for a single worker to perform had to be set up so that less time would be required if more

workers were available to perform it.

Recall from Section 5.1 that in SIMPROCESS® resource availability is a condition of an activity

being performed. If, for example, performance of the activity 'Cut Formwork Pieces' required that

one carpenter be available, then, when a group of formwork pieces (i.e. an FPieceGrp) would

arrive to be cut, it would only be cut if a carpenter was available. Even if two carpenters were

available, still only one would be involved in the cutting of the pieces within the FPieceGrp, and the

second carpenter would simply wait idly by until another FPieceGrp arrived for cutting. The result

would be that the time required to make all of the cuts in a single FPieceGrp would be the same

regardless of the number of carpenters available to do the cutting. This was not an acceptable

result since in reality one would expect any available carpenters (up to a feasible maximum

number) to work simultaneously on one FPieceGrp together before proceeding together onto

another. Consequently, measures had to be taken to make activity processing times a function of



resource availability, and a method to model the simultaneous use of available resources by an

activity had to be established. To this end, several steps were taken.

First, every activity within the entire CIP concrete construction process was reduced to its most

basic state and defined in terms of the least number of resources required to perform it. For

instance, the activity 'Cut Formwork Pieces' was reduced down to the making of a single cut, and

the making of that single cut was defined in terms of the minimum number of resources required

for it to occur (e.g., one carpenter with one power tool makes a single cut in 40 seconds). The

productivity numbers associated with each of these activities were then incorporated into the model

using model attributes in order to make changing them a very simple process. (Model attributes

are simply variables that can be used throughout an entire SIMPROCESS® based model.)

Once all of the basic activities were defined in terms of their minimum required resources, a special

module was developed to be used wherever activity processing times had to be set up as a function

of entity attributes and resource availability. The module is illustrated in Figure 5.5.

In this particular case, the module is set up for use in the cutting of plywood. When a FPieceGrp

entity arrives to be cut, it enters the module, and its attributes are immediately verified to see if it

does indeed require plywood cutting. If it does, it proceeds further into the module where it is

Time = 40 sec/cut
Resources = 1 carpenter, 1 power tool

Copies

Limit Work Done in Parallel Make One Cut Batch Dispose

Copies n
Original

No Copy Sync 1ronize

0p

MergeBypass?

Figure 5.5: Basic Module Used for Making Activity Processing Times
a Function of Resource Availability



copied as many times as there are cuts required, and these copies eventually make their way to the

'Make One Cut' activity (defined earlier in terms of its minimum number of required resources).

Each entity copy gets processed by the activity once, and the number of entity copies that are

processed simultaneously is solely a function of the total number of resources available in the

resource pool (in conjunction with a predetermined maximum feasible limit). Hence, assuming that

the FPieceGrp requires 10 plywood cuts, and assuming that each plywood cut takes one carpenter

with one power tool 40 seconds to make, then processing all of the required cuts would take one

carpenter with one power tool 400 seconds (i.e., (10 cuts) x (40 sec/cut/carpenter) / (1 carpenter)),

whereas it would take two carpenters with two power tools only 200 seconds (i.e., (10 cuts) x

(40 sec/cut/carpenter) / (2 carpenters)). In this way, activity processing times are responsive to

resource availability.

5.2.3 Representing Activity Interdependencies

Although much of the CIP concrete construction simulation model was represented in terms of

separate and distinct process modules to simplify sequencing, in reality, very few activities within

CIP concrete construction are actually completely independent of each other. The processing of

one activity is often a function of the processing of some other activities elsewhere in the process.

For example, formwork cannot be erected unless it is first prepared nor can it be reused unless it is

first stripped. Two methods were used to incorporate activity interdependencies within the model.

The first, already addressed in Section 5.2.1, involved regulating the flow of entities through the

model and transferring information between interdependent activities in the form of entity

attributes. One activity could be set up to modify an entity's attribute which could then be used to

affect the behavior of another activity elsewhere in the model. This approach was the most

common one used in representing activity interdependencies within the CIP concrete construction

model. Its limitation, however, lay in fact that entities and connectors had to be involved in the

transfer of information between the activities in question. In instances where this requirement was

deemed to make modeling too complicated (in terms of regulating the flow of the entities involved),

the second approach was used.



The second approach involved using model attributes (as opposed to entity attributes) to transfer

information from one activity another. It eliminated the need for entities to travel between

interdependent activities to pass information status, and thus simplified model layout. With the

second approach, when an entity passes through one activity that affects the behavior of another

activity elsewhere in the model, a model attribute is altered. By making the second activity a

function of that model attribute, its dependence on the first activity is accounted for. Figure 5.6

illustrates the differences that exist between the two methods used to account for activity

interdependencies.

In the CIP concrete construction model, the second approach is specifically used to identify when a

particular group of formwork elements is stripped and ready for reuse elsewhere on the site. When

an entity representing a group of formwork elements (i.e., an FElementGrp) is stripped, a model

attribute indicating the total number of these entities that are available for reuse is incremented up

by one. In the formwork erection portion of the model, this very same model attribute is checked at

regular intervals to see if any FElementGrp entities were stripped and are now ready for reuse.

When the model attribute indicates that there are indeed FElementGrp entities ready to be reused,

copies of the original FElementGrp entities are introduced back into the model for reuse in

formwork erection. The introduction of one entity back into the model reduces the value of its

corresponding model attribute by one.

Attribute is carried by Entity
I X=5

Oi A B B

Set Entity.X = 5 Let Delay = Entity.X

Attribute is globally set to the entire model

A

Set Model.X -

Let Delay = Model.X

Figure 5.6: Two Methods for Accounting of Activity Interdependencies



5.3 Simulating Construction of a Prototype CIP Concrete Building

Once the general process model for simulating CIP concrete construction was developed, the next

step was to incorporate within it the project specifics associated with construction of a prototype

building. The details of these project specifics are summarized in this section. (Recall from

Section 2.3 that project specifics are the characteristics of a particular project which are used to

tailor a general process model to a specific project.)

For CIP concrete systems, project specifics consist of design-related and construction-related

attributes. Design-related attributes are a direct function of project design and arise from decisions

made by designers (e.g., dimensions of building, number of columns per floor, layout of steel

reinforcing within each member), whereas construction-related attributes are a function of selected

construction methods and arise from decisions made by construction contractors (e.g., type of

formwork system used, type of concrete placement system used, number and type of resources

available on site). Both design-related and construction-related attributes together distinguish one

particular CIP concrete construction project from another.

5.3.1 Prototype Building Design

Design of the prototype building was done using CSA Standard A23.3-94, which provides the

requirements for designing reinforced concrete building structures in accordance with the National

Building Code of Canada. The Canadian Building Code was used for design of the prototype

building simply because it was the one with which this author was most familiar at the time that

this research was conducted. A schematic representation of the prototype building is shown in

Figure 5.7.

The prototype building is 5 stories high with a floor to floor height of 10 ft (3.05 m). Each floor is

made up of 20 bays (5 bays x 4 bays) and each bay spans 25 ft (7.62 m). Four columns are

positioned at each of the comers of every bay, and beams span from each of the columns in both

directions. Edge beams are located along the building's perimeter and center beams are located



5 @ 10'

5 @ 25'

Figure 5.7: Prototype Building Layout

within its interior. A two-way slab that is 8 in (200 mm) thick spans between all of the beams.

Table 5.1 summarizes the type and number of members within the prototype building.

The prototype building was designed to support a superimposed dead load of 27 psf (1.3 kPa) and

a live load of 50 psf (2.4 kPa). The design strength of the concrete was assumed to be 3,600 psi

(25 MPa) and that of the steel reinforcing was assumed to be 58,000 psi (400 MPa). Figure 5.8

illustrates both the cross-sectional dimensions and the reinforcing requirements of each of the

columns and beams within the prototype building.

Table 5.1: Members Within Prototype Building

Number per
Floor Building

Columns 30 150
Edge Beams 18 90

Center Beams 31 155
Slabs 20 100
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Figure 5.8: Column and Beam Cross-Sectional Dimensions

5.3.2 Prototype Building Bay Types

It is important to note that not all bays require erection of exactly the same type and number of

formwork and reinforcing sections. In the prototype building, for instance, although every bay is

required to have a column in each of its four corners, only construction of the very first bay

requires erection of formwork and reinforcing sections for four columns. Adjacent bays share

columns, and, as a result, all other bays only require erection of formwork and reinforcing sections

for one or two columns. The same phenomenon is observed when edge beams and center beams

are considered as well.

An analysis of the formwork and reinforcing section requirements of each bay was conducted and

revealed that some bays require exactly the same type and number of sections as others, while

other bays are unique and one of a kind. All bays were divided into various bay types, and bays



with similar requirements were grouped together into the same bay type. In all, nine different bay

types arose out of the exercise. Figure 5.9 illustrates these bay types.

Fortunately, a pattern in the bay type structure was discovered which enabled the development of

an algorithm capable of determining the bay type of every bay within a rectangular building of any

size. This algorithm was incorporated into the model, and its discovery meant that a bay's physical

location within a building floor plan could be easily tied into its formwork and reinforcing section

requirements. The algorithm only requires the dimensions of a building to be given in terms of

bays (e.g., 5 bays x 4 bays) in order to establish the bay types of every bay within the building.

Since every bay type is predefined in terms of the number of different formwork and reinforcing

sections that make it up, and since the algorithm automatically determines the bay types of each

bay within a rectangular building of any size, simply providing the model with the dimensions of a

building in terms of bays is sufficient to establish the type and number of all the different formwork

and reinforcing sections required within each bay of the entire building.

Comer 2 Comer 4

Interior Interior Interior

Interior Interior Interior

Comer 1 Comer 3

O Columns - Center Beams
- Edge Beams -- Flow of Work

Figure 5.9: Bay Type Pattern Within Prototype Building (Plan View)



5.3.3 Prototype Building Construction

Several assumptions were made in order to characterize the methods involved in construction of the

prototype building. These assumptions are for the most part based on construction practices that

were observed during visits to CIP concrete construction sites.

First, construction activities are assumed to proceed bay by contiguous bay, and, in each bay,

columns are assumed to be completely constructed before construction of any overhead beams and

slabs is allowed. Column construction involves erection of a site-fabricated steel reinforcing cage,

followed by erection of aluminum pre-fabricated formwork panels. The steel cages are hoisted into

place with a crane, whereas the formwork panels are placed by hand. Use of a crane hoisted

concrete bucket is assumed to be the means by which concrete is placed within column formwork.

(Table 5.2 summarizes the key resources and costs incorporated into the simulation model. The

costs are from a construction cost index and include hourly wages, worker's compensation (U.S.

averages) and Sub-Contractor's overhead and profit.)

Erection of beam and slab formwork follows the stripping of column formwork. In the prototype

building, beam and slab formwork is assumed to be made up of both pre-fabricated and

site-fabricated elements. The pre-fabricated elements are part of the "PERI SKYDECK"

formwork system, developed by PERI® Formwork Engineering, whereas the site-fabricated

elements are simply made of wood. (This prefabricated formwork system is functionally similar to

Table 5.2: Key Resources Incorporated within Model

Resource Quantity Cost
Carpenter 20 $ 41.65 /hr

Iron Worker 10 $ 51.15 /hr
Laborer 20 $ 32.50 /hr

Concrete 10 $ 37.90 /hr
Worker

Pump Truck & 1 $ 128.90 /hr
Operator
Crane & 1 $ 960.40 /day

Operators

Source: Means, 1998



other existing pre-fabricated formwork systems.) The use of site-fabricated elements is assumed to

be limited only to instances where pre-fabricated elements are unable to fully accommodate the

design of the prototype building on their own (e.g., in the forming of beam sides or in the forming

of connections between slabs and beams or slabs, beams, and columns). It is important to note that

with the "PERI SKYDECK" system, vertical shoring elements used during formwork erection do

not need to be removed prior to formwork stripping. Stripping may simply proceed while the

original vertical shores are left in place, thereby eliminating the need for re-shoring.

Once the beam and slab formwork within a bay is in place, erection of beam and slab reinforcing

may proceed. Erection of beam reinforcing precedes that of slab reinforcing. In construction of

the prototype building, both beam and slab reinforcing are assumed to be erected in place by hand

one reinforcing bar at a time. In instances where reinforcing bars are required to span across two

adjacent bays, both bays must be ready for reinforcing erection before any such bars may be

placed. Hence, erection of beam and slab formwork in two adjacent bays must be completed

before any beam reinforcing bars spanning across them may be placed, and erection of beam

reinforcing in two adjacent bays must be completed before any slab reinforcing bars spanning

across them may be placed. In construction of the prototype building, it is assumed that

reinforcing elements contained within just one bay may be placed as soon as that bay is ready.

Only those particular reinforcing elements spanning across two bays must wait until both bays are

ready.

In construction of the prototype building, concrete placement within the beam and slab formwork

of an entire floor is assumed to proceed upon completion of slab reinforcing erection. (It is

recognized that slab pours are often done by floor sections rather than by entire floors. In the

interest of simplifying the simulation, however, only one concrete pour is assumed to occur per

floor.) Use of a concrete pump truck is assumed to be the means by which beam and slab concrete

placement occurs. A curing compound is assumed to be applied to the concrete surface following

placement and finishing. All weather conditions are assumed to be optimal for concrete placement

and curing operations. The values assigned to all of the required user defined attributes associated

with construction of the prototype building are in Appendix A.



5.4 Prototype Building Construction Simulation

Once all of the project specifics associated with construction of the prototype building (outlined in

Section 5.3) were incorporated into the general process model for simulating CIP concrete

construction, a specific process model for simulating construction of the prototype building was the

outcome. This SIMPROCESS@ based simulation model was run and the results were captured for

analysis (see Table 5.3).

The model calculates the total time for construction of the prototype building to 55 eight-hour

workdays or about 11.0 weeks (this includes the time for curing, stripping of re-shoring, and

patching/rubbing of concrete). The last concrete pour occurs on the 45" day (i.e., 9.0 weeks into

the project), which means that the average time per floor for formwork, reinforcing and concrete

placement activities is 9 days (i.e., 1.8 weeks). The activity-based resource cost for construction of

the prototype building is $ 217,500. (Activity-based costing only considers the resource costs

associated with the actual performance of work and does not consider the cost of idle resources on

the job site.) The danger index for construction of the prototype building was calculated to 947.79.

(The danger index is a measure of worker exposure to dangerous conditions calculated from

sources of construction injury (OSHA, 1992) by work hours per task (see Appendix C). It is used

in this research to measure relative changes in worker safety for innovations.)

Figure 5.10 illustrates the progress of construction activities over the course of the simulation.

(Note that 20 bays make-up a floor, and hence bays 41-60 are on the 3 " floor.) The simulation

times for construction of the prototype building were compared to expected construction duration

times furnished by industry professionals and these values were found to be equivalent within 2

days over the 11 week duration.

Table 5.3: Summary of Prototype Building Simulation Results

Days until last concrete pour 45
Days until end of construction 55
Fixed Cost (crane) $ 38,416
Variable Cost (labor and $123,500
equipment rental)
Overhead & Profit (45% of $ 55,575
Variable Cost)
Total Activity-Based Cost $217,491
Danger Index 947.79
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Chapter 6 : Analysis of Innovations

Because cast-in-place (CIP) concrete construction is such an involved process made up of

significantly different sets of activities (see Section 4.1), there is ample opportunity within it to

innovate. A CIP concrete construction innovation, for instance, can affect some aspect of

formwork preparation, erection, or stripping; it can affect some aspect of reinforcing preparation

or erection; it can affect some aspect of concrete placement, finishing or curing; or it can affect

several of these at once. The diverse nature of the CIP concrete construction process means that

the types of innovations capable of affecting the construction process are diverse as well.

Three very different innovations were selected to demonstrate the use of the CIP concrete

construction model as a tool in evaluating the impact of innovations on the construction process:

the Talon 2360 Rebar Crosstie System, Self-Compacting High-Performance Concrete, and Precast

Concrete Stay-In-Place Forms. A description of each innovation is provided, the steps taken to

incorporate each of them within the simulation model are outlined, and the results of each

simulation are presented. In all, four different simulations runs were performed. The first three

simulate construction of the prototype building with each of the three innovations being used

individually, and the forth simulates construction of the prototype building with both the Talon and

stay-in-place form innovations being used at the same time.

6.1 Innovation 1: Talon 2360 Rebar Crosstie System

6.1.1 Description

The Talon 2360 Rebar Crosstie System is a hand held automatic rebar tying tool that was

developed by a small group of construction workers to eliminate the need for tying steel reinforcing

bars together by hand. It operates by spinning tie wire out around steel reinforcing bars, grabbing

this wire, twisting it, and then cutting it free once a reinforcing connection is made (see Figure 6.1).

The device is currently in the prototype stage of development and involved in field studies. It is

expected to cost around $5,000, and the special tie wire it requires is expected to cost

approximately four times as much as standard tie wire (Cone, 1997).



Handles

Figure 6.1: Talon 2360 Rebar Crosstie System

The Talon 2360 Rebar Crosstie System is capable of operating at a rate of 30 ties per minute, it

uses 16 Gauge semi-annealed PVC coated wire (rated at 85,000 psi), and can tie approximately

400 precision knots without reloading (Talon Industries, 1996). Each tie is made a standard 50 lb.

tight, and the amount of wire used per tie is significantly less than when the operation is done by

hand. Because the quality of each tie is standardized by the device, fewer ties are required to make

a reinforcing system sound. As a result, the Talon 2360 system could reduce the total number of

required reinforcing connections by as much as much as 50% (Talon Industries, 1996). In

addition, the ease with which the device may be operated means that general laborers could use it

to make all routine rebar connections required for the soundness of a reinforcing system while iron

workers could be used specifically for placing reinforcing and making any preliminary connections

required for bar stability (Cone, 1997). Finally, a harness feature is available for use in slab rebar

tying.

6.1.2 Modeling Implications

In order to simulate the use of the Talon 2360 Rebar Crosstie System in construction of the

prototype building , a few modifications were made to the simulation model. First, since the

Talon 2360 impacts the total time required to connect reinforcing steel pieces and elements together

(both in terms of the time per connection and in terms of the total number connections required),

the time per rebar connection used in the simulation model was changed from 10 seconds (observed

in the field) to 2 seconds (Talon Industries, 1996), and the total number of required connections



was assumed to be reduced by 10%. In addition the resources involved in the tying of one rebar

connection were changed from a single iron-worker, to one laborer and one Talon 2360 Rebar

Crosstie System. Use of the Talon 2360 system was assumed to eliminate worker exposure to

bodily reaction injuries during rebar tying, and five Talon 2360 systems were assumed to be on site.

No other changes were made to the model.

The results from the simulation run involving the use of the Talon 2360 Rebar Crosstie System in

construction of the prototype building are summarized in Figure 6.2. The total duration of

construction worked out to be 56 days (i.e., 11.2 work weeks), a 2% increase relative to the

construction duration of the baseline model; the total activity-based cost of all the resources (not

including the cost of the Talon 2360 systems) worked out to be $205,333, a 6% decrease relative to

the cost of the baseline model; and the danger index worked out to be 877.22, a 7% decrease in

worker exposure to construction hazards relative to the baseline model.

These results suggest that use of the Talon 2360 system improves worker safety and reduces total

construction resource costs. Although a slight increase in project duration is also observed, it is

believed to be the result of a shortage of Talon 2360 systems available for use on the construction

site. (Had more then 5 systems been defined within the model, it is conceivable that no increase in

overall project duration would have occurred.) Observed worker safety improvements arise from

the elimination of bodily reaction injuries from the rebar connecting process, and observed cost

reductions arise from both the use of unskilled laborers in the rebar connecting and the reduction in

time required to make a single rebar connection.
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Figure 6.2: Progress of Prototype Building Construction with Talon System



6.2 Innovation 2: Self-Compacting High Performance Concrete

6.2.1 Description

Developed in 1988 at the University of Tokyo, self-compacting concrete is a type of concrete

mixture that does not require any mechanical vibration for consolidation. It is made of the same

standard components found in conventional concrete (cement, fine aggregate, coarse aggregate,

water, and admixtures), and differs only in that the proportioning of these components yields a

concrete that is both flowable and viscous (Okamura, 1997). In order to achieve self-compacting

concrete, the quantity of coarse aggregate within a concrete mixture must be limited to no more

than 50% of the total volume of solids within that mixture, and a predetermined amount of

superplasticizer admixture (which is a function of the quantity of water and fines in the concrete)

must also be present in the concrete mixture (Okamura and Ozawa, 1996). Since the components

of self-compacting concrete are no different from those of conventional concrete (i.e., only their

proportions differ), the properties of hardened self-compacting concrete are comparable to those of

conventional concrete and can be estimated with the same techniques used to estimate the

properties of hardened conventional concrete (Ozawa, 1997).

Several implications arise out of the use of self-compacting concrete. Probably the most obvious is

the fact that concrete workers do not need to be trudging through freshly placed concrete or

standing on elevated platforms adjacent to vertical member formwork in order to vibrate concrete

since no vibration is needed. A further implication is that concrete placement within deep

formwork does not need to occur in lifts since vibration of lower level concrete does not have to

precede placement of upper level concrete. Finally, the design of formwork and reinforcing

systems does not need to be constrained by the condition that access be provided for mechanical

vibration during concrete placement since, once again, no mechanical vibration is required

(Okamura, 1997).

Self-compacting concrete has been used in construction of several actual structures, the most

notable being the Akashi Straights Bridge. At the time of its completion the Akashi Straights

Bridge was the longest suspension bridge (6530 ft [1990 m]) in the world. Self- compacting

concrete was used in construction of the two bridge anchorages (Okamura, 1997).



6.2.2 Modeling Implications

Two changes were made to the baseline model in order to simulate the use of Self-Compacting

High-Performance Concrete. The first was the removal of all concrete vibration activities from

within the baseline model to account for the fact that self-compacting concrete does not require any

vibration, and the second was the replacement of all concrete bucket placement activities with

concrete pumping activities to take full advantage of self-compacting concrete's highly flowable

nature. Everything else within the model was left unchanged. The rate of concrete placement with

a pump was assumed to be the same, the methods involved in concrete curing were assumed to be

the same, and the total amount of time required for concrete curing was assumed to be the same.

Formwork and reinforcing system designs were also assumed to remain unchanged, despite

removal of the design constraint which requires that access be provided for mechanical vibration

during concrete placement.

The results form the simulation involving the use of Self-Compacting High-Performance Concrete

in the construction of the prototype building are summarized in Figure 6.3. The total duration of

construction worked out to be 52 days (i.e., 10.3 work weeks), a 7% decrease relative to the

construction duration of the baseline model; the total activity-based cost of all the resources

worked out to be $211,428, a 3% decrease relative to the cost of the baseline model; and the

danger index worked out to be 877.72, a 7% decrease in worker exposure to construction hazards

relative to the baseline model.

These results suggest that the use of Self-Compacting High-Performance Concrete not only cuts

down on construction time and cost, but also improves worker safety. Time is saved since concrete

placement activities are not constrained by the need for vibration. Resource cost is reduced slightly

since the labor involved in concrete vibration is eliminated. Finally, safety is improved since

concrete buckets are not swinging around, since workers do not have to be up on elevated

platforms to vibrate concrete in column formwork, and since less work is involved overall in

concrete placement operations.
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6.3 Innovation 3: Precast Concrete Stay-In-Place Forms (Filigree)

6.3.1 Description

Precast concrete stay-in-place forms are reinforced concrete units that serve as permanent

formwork. The Filigree Wideslab System is a good example. Originally developed in

Great Britain under the name OMNIDEC, the Filigree system came to the United States in 1972,

and has been used in construction of both parking garages and multistory buildings (Prior et. al.,

1993).

With the Filigree system, precast concrete beam and slab forms are custom made at a plant and

then transported to a construction site, where they are hoisted into position with a crane. Slab

forms are cast with steel trusses projecting from one side to provide the forms with sufficient

rigidity for erection, and these steel trusses ensure composite behavior between the precast forms

and the cast-in-place concrete (see Figure 6.4). For the Filigree system, beam forms are typically

designed to span up to 25 ft. and slab forms are typically designed to span up to 70 ft. Slab form

widths are typically 8 ft across. It should be noted that sufficient reinforcing steel is typically cast

within each Filigree precast slab unit to eliminate the need for bottom steel erection during

construction operations (Prior et. al., 1993).

Precast Slab

Figure 6.4: Precast Stay-In-Place Slab Form



6.3.2 Modeling Implications

The Filigree system was used to simulate the use of precast concrete stay-in-place forms in

construction of the prototype building. Each of the custom made precast concrete forms were

assumed to be delivered to the construction site already appropriately sized for their use on the

project, and, as a result, all formwork site fabrication activities were eliminated from the

simulation model. Each beam was assumed to be made up of a single precast unit designed to span

between two columns, and each slab was assumed to be made up of three separate precast units

designed to span over an entire bay. All precast units were set to be hoisted into place with a

crane, and shoring was used wherever support for these units was required. Bottom steel erection

activities were eliminated from the model (since sufficient reinforcing already exists within each

precast slab unit to meet bottom steel requirements), and, of course, all formwork stripping

activities were also eliminated (since the Filigree forms are meant to be left in place).

The results from the simulation involving the use of the Filigree precast concrete stay-in-place

forms in construction of the prototype building are summarized in Figure 6.5. The total duration

of construction worked out to be 54 days (i.e., 10.7 work weeks), a 2% decrease relative to the

construction duration of the baseline model; the total activity-based cost of all the resources

worked out to be $132,173, a 39% decrease relative to the cost of the baseline model; and the

danger index worked out to be 547.98, a 42% decrease in worker exposure to construction hazards

relative to the baseline model.

These results suggest that use of the Filigree precast concrete stay-in-place forms has significant

impact on resource cost and worker safety (due to the fact that much of the formwork preparation

and erection activities were shifted off site to a precast plant), but limited impact on overall project

duration (in spite the fact that all formwork and preparation activities were eliminated from the

process). It is important to recognize that the simulation model does not account for material costs,

and that the observed reduction in cost is only a reduction in resource cost, not a reduction in total

cost.
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Figure 6.5: Progression of Prototype Building Construction with Filigree Precast Concrete Stay-In-Place Forms



6.4 Talon System & Stay-In-Place Forms Combined

The fourth simulation run was performed to see how combining two completely different

innovations in construction of the prototype building might impact the overall construction process.

Both the Talon 2360 Rebar Crosstie System and the Filigree precast concrete stay-in-place forms

were considered. The exact modifications that were made earlier for simulating each of the two

innovations individually were combined together for simulating their joint use in construction of the

prototype building.

The results from the simulation run involving the combined use of both the Talon and the Filigree

systems in construction of the prototype building are summarized in Figure 6.6. The total duration

of construction worked out to be 41 days (i.e., 8.2 work weeks), a 9% decrease relative to the

construction duration of the baseline model; the total activity-based cost of all the resources

worked out to be $122,122, a 44% decrease relative to the cost of the baseline model; and the

danger index worked out to be 481.3, a 49% decrease in worker exposure to construction hazards

relative to the baseline model.

When these results are considered in light of those obtained earlier from the simulations involving

the individual use of the Talon and Filigree systems, an interesting observation is made (see

Table 6.1). Although the impact on cost and safety, from combining both innovations, is

approximately equivalent to sum of the cost and safety impacts of each individual innovation, the

impact on project duration is far greater than the sum of duration impacts observed when each of

the innovations are considered individually.

Table 6.1: Summary of Innovation Results

Innov 1 Innov 3 Innov 1&3
% Savings in time relative to -2.2% 2.2% 8.9%

baseline simulation
% Decrease in cost relative to 5.6% 39.2% 43.8%

baseline simulation
% Increase in safety relative to 4% 42.2% 49.2%

7.4% 42.2% 49.2%baseline simulation
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6.5 Summary of Results

The results of all the simulation runs are summarized in Table 6.2. In the table, 'Innov 1' refers to

the Talon 2360 Rebar Crosstie System, 'Innov 2' refers to the Self-Compacting High-Performance

Concrete, and 'Innov 3' refers to the Filigree precast concrete stay-in-place formwork system.

Table 6.2: Summary of Innovation Results

Baseline Innov 1 Innov 2 Innov 3 Innov 1&3
Days until last concrete pour 45 46 42 44 41
Days until end of construction 55 56 52 54 51
Fixed Cost (crane) $ 38,416 $ 38,416 $ 38,416 $ 38,416 $ 38,416
Variable Cost (labor andVariable Cost(labor and $123,500 $115,115 $119,318 $ 64,660 $ 57,728
equipment rental)
Overhead & Profit (45% of $ 55,575 $ 51,802 $ 53,693 $ 29,097 $ 25,978
Variable Cost)
Total Activity-Based Cost $217,491 $205,333 $211,428 $132,173 $122,122
Danger Index 947.79 877.22 877.72 547.98 481.3

The Talon 2360 system improved worker safety, reduced resource costs, and slightly increased

project duration (although this increase is likely due to a shortage of Talon systems defined within

the simulation run). Self-compacting concrete reduced both the time and cost of construction, and

improved worker safety. The Filigree system slightly decreased project duration, improved worker

safety, and reduced resource cost (but this reduction in resource costs by no means indicates a

reduction in total construction costs since the material costs of the precast forms are not considered

in the simulation). Finally, the combined use of the Talon and Filigree systems improved worker

safety, reduced resource costs, and reduced project duration. Interestingly enough, this observed

reduction in project duration turned out to be far greater than the sum of the duration impacts

observed when both the Talon and Filigree systems were considered individually.
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Chapter 7 : Summary & Conclusions

7.1 Summary

The purpose of this thesis research was to develop a computer-based model for simulating

cast-in-place (CIP) concrete construction capable of assessing the impact of design changes and

innovations on the construction process. Three different simulation approaches for modeling

construction activities were found to exist: the queuing approach, the graphical approach, and the

dynamic process approach. Queuing models are useful in modeling cyclical and repetitive

processes where activity processing times can be represented using standard probability

distributions. Likewise, graphically based models are also useful in modeling cyclical and

repetitive processes, however, in addition, they are particularly well suited for uncovering

time-space conflicts within processes. Dynamic process models are unlike the other two in that

they are particularly useful in modeling non-cyclical processes characterized by decision branches

and alternative courses of action. Both process and activity processing times are free to change in

response to events that occur within dynamic process models. The details of each model approach

were presented in Chapter 2.

The dynamic process approach was selected for use in modeling the CIP concrete construction

environment. Developing a dynamic process model of CIP concrete construction required that

detailed information be gathered on the CIP concrete construction process and on all the specific

attributes affecting it. Data were gathered from three different sources: literature, construction site

visits, and interviews with industry professionals. The information from each source was

cross-checked and reviewed with the help of industry professionals to verify its validity, accuracy,

and reliability.

A general process flow describing the CIP concrete construction process was developed. The

process consist of five sets of activities: (1) the preparation and erection of formwork; (2) the

preparation and erection of reinforcing; (3) the placement of concrete; (4) the curing of concrete;

and (5) the patching, cleaning, and finishing of formed concrete surfaces. Formwork preparation

and erection activities focus on the fabrication and assembly of formwork which is required to

support and retain freshly placed concrete. Reinforcing preparation and erection activities focus on



the fabrication and assembly of steel reinforcing systems which are required to impart tensile

resistance to concrete members. Concrete placement activities focus on the placing, vibrating,

leveling and finishing of wet concrete. Concrete curing activities focus on maintaining adequate

temperature and moisture levels within freshly placed concrete to promote concrete strength, and

end with the stripping of formwork, the erection of re-shoring and the eventual stripping of re-

shoring once the concrete has sufficiently cured to support all remaining anticipated loads. Finally,

concrete patching, cleaning, and finishing activities focus on repairing and touching up any formed

concrete surfaces that may require some additional work. Details of the general process were

presented in Chapter 4.

With the general process established and well defined, work began on the development of an actual

computer-based dynamic process model for simulating CIP concrete construction. The model was

created with SIMPROCESS®, a computer-based dynamic process modeling tool. Two

fundamental objectives were sought during model development. The first was that the model be

made as representative of reality as possible, and the second was that it be made easy to modify so

that it could be used to simulate construction of a wide variety of different CIP concrete building

projects. Both of these objectives introduced a number of complicating factors into the model

development process. For instance, strategies had to be developed for organizing, managing, and

sequencing large numbers of entities and activities, a system had to be put in place for making the

model responsive to resource availability, and schemes had to be contrived for representing activity

interdependencies. In the end, however, a computer-based dynamic process simulation model of

CIP concrete construction was established.

A prototype building was designed, and project specific information associated with its

construction was incorporated within the CIP concrete construction model to verify the model's

reliability. For CIP concrete systems, project specifics consist of design-related and construction-

related attributes. Design-related attributes are a direct function of project design and arise from

decisions made by designers, whereas construction-related attributes are a function of selected

construction methods and arise from decisions made by construction contractors. Together,

design-related and construction-related attributes distinguish one particular CIP concrete

construction project from another.



Construction of the prototype building was simulated with the CIP concrete construction model,

and the resulting simulation times were found to agree with those that were estimated by CIP

concrete specialty contractors. An analysis of the activity-based cost and danger index associated

with construction of the prototype building was performed, and these values (along with the

construction duration time) were recorded for use later in evaluating the impact of innovations on

the construction process.

Finally, construction of the prototype building was simulated with innovations. Three innovations

were considered (Talon 2360 Rebar Crosstie System, High-Performance Self-Compacting

Concrete, and Filigree precast concrete stay-in-place forms), and four different simulation runs

were performed. The first three runs considered construction of the prototype building with each

of the three innovations individually, and the fourth run considered construction of the prototype

building with both the Talon 2360 system and the Filigree stay-in-place forms being used at the

same time.

7.2 Conclusion

A computer-based dynamic process model capable of simulating cast-in-place (CIP) concrete

construction was successfully developed. It is unlike any other model previously developed for

simulating the CIP concrete construction process in that it tracks the flow of pieces and elements

used in construction (rather than the resources that do the work), and these pieces and elements are

assembled and transformed over the course of a simulation run. Work is done to them as they pass

through activities in the model in the same manner that work is done to them on the construction

site. In addition, this work is a function of the individual characteristics of each different piece and

element, just as it is a function of the characteristics of each different piece or element on the

construction site. Thus the simulation model directly maps the actual activity/entity relationships

observed in construction. Activities transform entities and the attributes of these entities influence

the performance of future activities.

Because activities are a function of entity attributes and entity attributes can be changed by

activities, one single general process model representing all forms of CIP concrete building

construction could be created. The general process model need only to account for all of the



relationships that exist between activities, entities, and resources within CIP concrete construction

(which are common to all CIP concrete building projects). The project specifics can be used to

define the attributes of these activities, entities, and resources, thereby automatically tailoring the

general process for use in simulating the construction of a specific building. The result is a model

that is easy to modify and simple to use.

This thesis demonstrates the usefulness of the CIP concrete construction model in assessing the

potential impact of innovations on the CIP concrete construction process. The model has several

other applications as well. It can be used to determine the potential impact of design or site

management strategy changes on the actual CIP concrete construction process (e.g., how would

having two cranes on site as opposed to just one impact the construction process in terms of

schedule, cost, and worker safety?); it can be used to identify areas within the CIP concrete

construction process where 'bottlenecks' often occur and where the greatest potential savings in

time, cost, and worker safety can be achieved; and it can also be used to help innovators identify

where in the construction process innovation research should be focused in order to maximize its

impact.

The dynamic process simulation model developed in this research is expected to be combined with

others that have been or are currently being developed as part of ongoing research at MIT. The

construction processes having been modeled thus far include: structural steel erection; exterior

enclosure erection; and now, CIP concrete construction. Those currently being researched include:

plumbing installation; HVAC systems installation, electrical services installation, and interior

finishing. Incorporating all of these models into a single dynamic process meta-model will enable

the impacts from changes in one building system to be carried over to the others, and would clearly

be a remarkable achievement in construction process modeling.

When this research began, the ultimate question was really whether or not a reasonably accurate

model of the cast-in-place concrete construction process could in fact be developed. Could a

computer model actually be made responsive to the very same factors that affect construction (i.e.,

design, site management strategies, and resource availability)? Could a complicated construction

process actually be mapped out in very fine detail to capture all of the various alternative courses

of action within it? Could the variables affecting activity processing times be defined and



accounted for in a model? Could the manner in which resources are shared on the construction site

be represented in a simulated environment? Could the transformation and assembly of pieces and

elements, which is common in construction, be duplicated on a computer? The evidence brought

forth by this research (i.e., the successful development of a cast-in-place concrete construction

dynamic process simulation model) suggests that the answer to all of these questions is yes.
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Appendix A: User Defined Attributes
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List of User Defined Entity Attributes
Name Description
NumRCuts Number of cuts to make within a reinforcing group

NumRBends Number of bend to make within a reinforcing group

GrpSize Total number of units within a formwork or reinforcing group

NumConnects Total number of connections to make within a formwork or reinforcing
group

MLGrpSize Number of units within a group that require mechanical leverage

MLNumConnects Number of connections within a group that need to made while
mechanical leverage is in use

NumFCutsPI Number of plywood cuts to make within a formwork group

NumFCutsSt Number of stud cuts to make within a formwork group

NumPerfs Number of holes to be drilled within a formwork group

NumStripLater Number of formwork elements that are only to be stripped during re-
shoring

NumSuppShores Number of supplemental shoring elements to be erected just prior to
formwork stripping

NumReShores Number of re-shoring elements to be erected following formwork
stripping

SizeOfEnclosure Size of any enclosure (in thousands of sqft) required prior to concrete
placement

MoistConType Type of moisture control to be used during curing

ThermConType Type of thermal control to be used during curing

List of User Defined Model Attributes
Name Description
Xmax Total number of bays spanning the x-direction

Ymax Total number of bays spanning the y-direction

XSpan Bay width in the x-direction (ft)
YSpan Bay width In the y-direction (ft)

FElementGrpReuses Total number of times the same forms can be reused on the project

TruckVol Volume of concrete in a concrete truck (cyds)

ColVol Volume of a column (cyds)

EdgeVol Volume of an edge beam (cyds)

CenterVol Volume of a center beam (cyds)

SlabVol Volume of a slab within a bay (cyds)

BucketVol Volume of bucket used in concrete placement (cyds)

(Production Rates) All production rates are set to default values but are free to change



Formwork Section Attributes:

Section Name: Column
Prep.=>Dummy17, Erect =>Dummyl8

Entity Attribute Value
FPieceGrp NumFCutsPI 0

NumFCutsSt 0
NumPerfs 0
GrpSize 0

NumConnects 0

FElementGrpSF GrpSize 0
MLGrpSize 0

FElementGrpPF GrpSize 4
MLGrpSize 0

NumStripLater 0

FElementGrp NumConnects 36
MLNumConnects 0

SurfaceArea 60
TagNum 51

FormSection NumSuppShores 0
NumReShores 0

Section Name: Center
Prep.=>Dummy21, Erect =>Dummy22

Entity Attribute Value
FPieceGrp NumFCutsPI 15

NumFCutsSt 58
NumPerfs 0
GrpSize 72

Num Connects 288

FElementGrpSF GrpSize 12
MLGrpSize 0

FElementGrpPF GrpSize 16
MLGrpSize 0

NumStripLater 10

FElementGrp NumConnects 44
MLNumConnects 0

SurfaceArea 62
TagNum 2

FormSection NumSuppShores 0
NumReShores 0

Section Name: Edge
Prep.=>Dummy19, Erect =>Dummy20

Entity Attribute Value
FPieceGrp NumFCutsPI 15

NumFCutsSt 58
Num Perfs 0
GrpSize 72

NumConnects 288

FElementGrpSF GrpSize 12
MLGrpSize 0

FElementGrpPF GrpSize 28
MLGrpSize 0

NumStripLater 10

FElementGrp Num Connects 60
MLNumConnects 0

SurfaceArea 84
TagNum 1

FormSection NumSuppShores 0
NumReShores 0

Section Name: Slab
Prep.=>Dummy23, Erect =>Dummy24

Entity Attribute Value
FPieceGrp NumFCutsPI 0

Num FCutsSt 0
NumPerfs 0
GrpSize 0

Num Connects 0

FElementGrpSF GrpSize 0
MLGrpSize 0

FElementGrpPF GrpSize 79
MLGrpSize 0

NumStripLater 25

FElementGrp NumConnects 44
MLNumConnects 0

SurfaceArea 416
TagNum 52

FormSection Num SuppShores 0
Num ReShores 0



Section Name: ColConnectl
Prep.=>Dummy25, Erect =>Dummy26

Entity Attribute Value
FPieceGrp NumFCutsPI 36

NumFCutsSt 40
NumPerfs 0
GrpSize 52

NumConnects 116

FElementGrpSF GrpSize 12
MLGrpSize 0

FElementGrpPF GrpSize 20
MLGrpSize 0

NumStripLater 12

FElementGrp NumConnects 36
MLNumConnects 0

SurfaceArea 38
TagNum 4

FormSection NumSuppShores 0
NumReShores 0

Section Name: ColConnectC
Prep.=>Dummy29, Erect =>Dummy30

Entity Attribute Value
FPieceGrp NumFCutsPI 14

NumFCutsSt 18
NumPerfs 0
GrpSize 23

NumConnects 53

FElementGrpSF GrpSize 5
MLGrpSize 0

FElementGrpPF GrpSize 15
MLGrpSize 0

NumStripLater 7

FElementGrp NumConnects 20
MLNumConnects 0

SurfaceArea 18
TagNum 6

FormSection NumSuppShores 0
NumReShores 0

Section Name: ColConnectE
Prep.=>Dummy27, Erect =>Dummy28

Entity Attribute Value
FPieceGrp NumFCutsPI 23

NumFCutsSt 28
NumPerfs 0
GrpSize 36

NumConnects 82

FElementGrpSF GrpSize 8
MLGrpSize 0

FElementGrpPF GrpSize 20
MLGrpSize 0

NumStripLater 10

FElementGrp NumConnects 28
MLNumConnects 0

SurfaceArea 28
TagNum 5

FormSection NumSuppShores 0
Num ReShores 0

Section Name: SBConnect
Prep.=>Dummy31, Erect =>Dummy32

Entity Attribute Value
FPieceGrp NumFCutsPI 6

NumFCutsSt 56
Num Perfs 0
GrpSize 68

NumConnects 288

FElementGrpSF GrpSize 8
MLGrpSize 0

FElementGrpPF GrpSize 0
MLGrpSize 0

NumStripLater 0

FElementGrp NumConnects 40
MLNumConnects 0

SurfaceArea 36
TagNum 3

FormSection NumSuppShores 0
Num ReShores 0



Reinforcing Section Attributes:

Section Name: ColumnA
Prep.=>Dummyl, Erect =>Dummy2

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 12

NumConnects 60

RElementGrpSF GrpSize 1
MLGrpSize 1

RElementGrpPF GrpSize 0
MLGrpSize 0

RElementGrp NumConnects 24
MLNumConnects 24

Section Name: Edge
Prep.=>Dummy5, Erect =>Dummy6

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

NumConnects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 7
MLGrpSize 0

RElementGrp NumConnects 20
MLNumConnects 0

Section Name: Edgel
Prep.=>Dummy9, Erect =>Dummy10

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

Num Connects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 11
MLGrpSize 0

RElementGrp NumConnects 52
MLNumConnects 0

Section Name: ColumnB
Prep.=>Dummy3, Erect =>Dummrny4

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 8

Num Connects 28

RElementGrpSF GrpSize 1
MLGrpSize 1

RElementGrpPF GrpSize 0
MLGrpSize 0

RElem entGrp Num Connects 12
MLNumConnects 12

Section Name: Center
Prep.=>Dummy7, Erect =>Dummy8

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

NumConnects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 11
MLGrpSize 0

RElementGrp NumConnects 60
M LNum Connects 0

Section Name: Centerl
Prep.=>Dummy11, Erect =>Dummyl2

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

NumConnects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 20
MLGrpSize 0

RElementGrp Num Connects 122
MLNumConnects 0
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Section Name: EdgeX
Prep.=>Dummyl3, Erect =>Dummyl4

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

Num Connects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 14
MLGrpSize 0

RElementGrp NumConnects 96
MLNumConnects 0

Section Name: SlabBottom
Prep.=>Dummy33, Erect =>Dummy34

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

NumConnects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 60
MLGrpSize 0

RElementGrp NumConnects 120
MLNumConnects 0

Section Name: CenterX
Prep.=>Dummy15, Erect =>Dummy16

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

NumConnects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 11
MLGrpSize 0

RElementGrp NumConnects 60
MLNumConnects 0

Section Name: SlabTop
Prep.=>Dummy35, Erect =>Dummy36

Entity Attribute Value
RPieceGrp NumRCuts 0

NumRBends 0
GrpSize 0

Num Connects 0

RElementGrpSF GrpSize 0
MLGrpSize 0

RElementGrpPF GrpSize 290
MLGrpSize 0

RElementGrp NumConnects 580
MLNumConnects 0

Model Attribute Values:

Attribute Name Value
Xmax 5
Ymax 4
XSpan 25
YSpan 25

TruckVol 10
ColVol 2.5

EdgeVol 1.3
CenterVol 1.0

SlabVol 15.4
BucketVol 1

FElementGrpReuses 4
(Production Rates) Vary

101



102



CIP Concrete Construction Model Layout
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Appendix B:
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Bay

Generate Bays Construct

In Out

Increment FloorNum

In ouo Yes In

Done?

Figure B.1: CIP Model
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End



Continue

:b. ,,;.,.,/, . ., ... / . ,

.Unbatch into Bays Get Output Pour Don.eUnbatch into Bays Get Output Pour Done

Figure B.2: CIP Model: Construct Columns
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Fr Ex (B) Fr Cx (B)

Bay Out Bay out
-a T "o) B) In

To x (B) To Cx (B)
In

Prepare/Erect "FSctionGrp" i Prepare/Erct "RSectionGrp"l i Prepf
(for beams)

Fr.P/BF .(B1 .- - ----...
To P/B R (B) BayIn

Ex Pool

. .. . . . . . . . . . .-------------

Fr P/ .F.(BJ ......... .

rTo PP C R (B) Continue Construction (B
Fw /BR ( Fr Place C (P) I RSh Stripped (P)

Cx Pool
Fr P/B F (FSO) I Fonns Stripped (P)

Cure Concrete

Fr Cure (P) Out

Patch/Clean/Finish

In

Unbatch into

Figure B.3: CIP Model: Construct Beams/Slabs
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Originael

Bay InCg.o i

Copy256

Copies gn

Assign

In y' a s

Gate Bypass

First

Bay Out

)riginal
In2 Bii,,y Out In Out

In ~~~~RSectionOrp Out Get Output
Synchronize275

out Dispose "RSectionGrp"

Hold

Wait Until "RSectionGrp" is Done

Make as many modules as there are types of
"RebarSectlons" within this "RSectlonOrp".

iBay In
BebarSection Out

RSectionGrpSize Prep/Erect R-Elements for ColumnA

i~n RebarSection Out

chronize2 44 Dispose245 Prep/Erect R-Elements for ColumnB

'out iut

Merge199 Branch wrt NextSection

Figure B.4: CIP Model: Construct Columns: Prepare/Erect "RSectionGrp"
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If RSectionGrp" is not for beams delete black dashed lines and connect appropriate pads

Fr Ex (B) Fr Cx(B)

V v Bay out

I Ex Ter In Cx Torie Ini

tM B Cn ayout Get Output

RSe ndonGrp x InRSctionGrp Out In

Add Ex and Cx R-Sections to "RSectionGrp" Dispose "RSectionGrp"

For rebar sections that do not include beam rebar, delete dashed line section

STo Ex (B)
Co" 29 al Assign ETag Assign Reqd Bay Ex
Copy293

T -n-- - - inOut I To Cx (B)

S; wo Assign CTag Assign Reqd Bay Cx
Copy294

Figure B.5: CIP Model: Construct Beams/Slabs: Prepare/Erect "RSectionGrp"l
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In Prepare/Erect "RSectionGrp"2a
(bottom steel)

t u OuItop

Batch into Rows of Bays First?

Set number of required top
steel sections per row of bays here

Bay In Out no ut

Prepare/Erect "RSectionGrp"2b Unbatch into Bays Get Output out
(top steel)

Figure B.6: CIP Model: Construct Beams/Slabs: Prepare/Erect "RSectionGrp"2
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I. - ~3 ~i-

Release Out

Gate757 Wait a Sec

No

In P a u

Pass?

Yes

Copy756

Figure B.7: CIP Model: Construct Beams/Slabs: Prepare/Erect "RSectionGrp"2: Re-Order
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Bay Out

10

Copy279

Copies ig ins i t

In2 Bay Out

In RSectionOr

In Synchronize275

out
L In

Dispose "RSectionGrp"

L~r~
Ho

Wait Until "RSectonGrp"

Bay Ori inal

In oties " Out

Copy256 Assign RSectionGrpSize

I I R
Gate Bypass Synchronize244 Dispose245

First

in e l B h NexOut Iniout

Mergel99 Branch wrt NextSection

ld

is Done
Make as many modules as there are types of

"RebarSectons" within this "RSectonOrp".

RebarSection Out
Bay Out

Prep/Erect R-Elements for SlabBottom

Figure B.8: CIP Model: Construct Beams/Slabs: Prepare/Erect "RSectionGrp"2: Prepare/Erect "RSectionGrp"2a
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Copy279

Copies ..... Original
In2 BayOut

.. .. .In RSectionOr p Out

in Synchronize275

Out

Bay Out

p

Dispose "RSectionGrp"

ia"Ret Hold

Wait Until "R iionGrp" is Done

I'[
Original

In'

Outt

Copy256 Assign RSectionGrpSize

In ' . ." 
'

Gate Bypass Synchronize244 Dispose245

First

Mergel99 Branch wrt NextSection

Make as many modules as there are types of
"RebarSections" within this "RSectionOrp".

Bay In
RebarSection Out

Bay -Out

Prep/Erect R-Elements for SlabTop

Figure B.9: CIP Model: Construct Beams/Slabs: Prepare/Erect "RSectionGrp"2: Prepare/Erect "RSectionGrp"2b

113

Bay
F

1



Ex Trrss In Cx Traer

Ex Tnrer In Ex R-ecton Out

Prep/Erect R-Elements for Ex R-Sections

RSectonrp In

Unbatch Incomplete "RSectionGrp"

In Out

Branch wrt Row Number

In

QC Trer n Cx R-Secton Out

Prep/Erect R-Elements for Cx R-Sections

Make as many modules as there are rows in the building
(ie. total number of modules should equal Ymax)

B h intRSeut onrp Out

Batch into Complete "RSectionGrp" (row 1)

Batch into Complete "RSectionGrp" (row 2)

Batch into Complete "RSectionGrp" (row 3)

Batch into Complete "RSectionGrp" (row 4)

Bay In

IR

RSeionorp
uy Out

Bayp Out
Wait to release Bay

Figure B.10: CIP Model: Construct Beams/Slabs: Prepare/Erect "RSectionGrp"1: Add Ex and Cx

R-Sections to "RSectionGrp"

114



In Out

in Set Pass to "No"

Ensures that only RebarSections In the current bay go on to be batched together.

- - - - - ----- -- --

Set Pass to "Dispose"

outYes Ot t Copies
Mee342 Pass? Batch Into "RSetionGrp" Copy340

77 7 7 OuOriginal

Merae342 Pass? Batch Into "RSectionGrp" Copy34O

Original

" Copies

Copy438

No
Release

S. Hold

Gate437 Dispose

Note: This R.SectlonGrp
Includes Ex and Cx

Dispose341

RSectionOrp Out

Figure B.11: CIP Model: Construct Beams/Slabs: Prepare/Erect "RSectionGrp"1: Add Ex and Cx R-Sections to "RSectionGrp"CIP: Batch into

complete "RSectionGrp"
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Prepare "RElementGrp" for ColumnA

Synchronize202

Bay In

Dispose224

Bay Out

Figure B.12: CIP Model: Typical: Prepare/Erect "RSectionGrp": Prepare/Erect R-Elements
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Erect "RElementGrp" for ColumnA RebarSection Out



If the section has no pre-fabricated rebar elements, remember to adjust the assemble activity

by removing the requirement for one "RElementGrpPF" so that assembly may proceed without It.

In the same way, If there are no site fabricated elements in the section, remove the requirement for one "RElementGrpSF".

RElementGrpSF Out

Prepare "RElementGrpSF" for ColumnA Assign Attributes Here

Trigger ~~
,IComponent RElementGrp OutComponent .

Assign Attributes Here Assemble into "RElementGrp"

RElementGrpPF Out

Generate "RElementGrpPF" for ColumnA

Figure B.13: CIP Model: Typical: Prepare/Erect "RSectionGrp": Prepare/Erect R-Elements: Prepare "RElementGrp"
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RPleceGrp = all rebar pieces required to make all the site fabricated rebar elements

for the given rebar section (i.e. rebar for columns on floors 1-3, rebar for columns on floors 4-6,

rebar In edge beams (E, El, Ex), rebar in center beams (C, C1, Cx),

bottom steel In each direction, top steel in each direction ...)

Assign Attributes Here

Connect

Assign Attributes Here

' Out In out

Free Dummy Transform to "RElementGrpSF"

RElementGrpSF Out

Figure B.14: CIP Model: Typical: Prepare/Erect "RSectionGrp": Prepare/Erect R-Elements: Prepare "RElementGrp": Prepare "RElementGrpSF"
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Original

Copy528

Set MaxAtOnce here
IAI,

Trigger In Out 1j
Limit work done in parallel Cut Batch491 Dispose495

In o Out
i Original In2 Out2

No Copy489 Synchronize490P , .,' .,, ,';-..,

Outini

in Bypass?

Yes
Merge494 Out

Figure B.15: CIP Model: Typical: Prepare/Erect "RSectionGrp": Prepare/Erect R-Elements: Prepare "RElementGrp": Prepare

"RElementGrpSF": Activity
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InS

Tn

No.

Set MaxAtOnce here

WN"I"Olix"

SBypass ut

Bypass?

Out2 Dispose525
iynchronize523

Yes

Figure B.16: CIP Model: Typical: Prepare/Erect "RSectionGrp": Prepare/Erect R-Elements: Prepare "RElementGrp": Prepare

"RElementGrpSF": Activity: Limit Work Done in Parallel
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RElementOrp In

Get Dummy

RebarSection Out

In, Out inOut

Connect/Brace Free Dummy Transform into "RebarSection"
(without crane)

Figure B.17: CIP Model: Typical: Prepare/Erect "RSectionGrp": Prepare/Erect R-Elements: Erect "RElementGrp"
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Copy279

Copies "Original
In Bay Out

Inli FSectionlrp Out
in Synchronize275

Outl

In =w out

Get Output

'l "Hold

Wait Until "FSectionGrp" is Done

Original
Bay In "1-1

In 'Il sil 9'73# Out

Copy256 Assign FSectionGrpSize

--In In
il Outi

Gate Bypass Synchronize244I Dispose245

First

in ut in':i Out

Mergel99 Branch wrt NextSection

Make as many modules as there are types of
"FormSections" within this "FSectionOrp".

Bay In
FormnnSection Out

Bay Out
Prep/Erect F-Elements for Column

Figure B.18: CIP Model: Construct Columns: Prepare/Erect "FSectionGrp"
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Bay Out

To Cure (FSO)

L
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For Column FSectonGrp delete dashed line section and
replace with a connection between Bay Out and Bay Out

Omnin 0A
Ba-- TOE o_-- I Get Output

To Ex Pool To Ex (B)
Prepare Triggers To Ex (B)

Bay out I
Prep/Erect F-Elements for SBConnect

Figure B.19: CIP Model: Construct Beams/Slabs: Prepare/Erect "FSectionGrp"
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Bay In

Copy256 Assign FSectionGrpSze



Dispose316

SCI

SCopies
in .. ....0 In . " Out

Bay In Copy3O5 Branch wrt Baytype

S j41Copies Assign CTag 1

Copy309 ow

SI To Cx Pool

Assign CTag 2 o To Cx Pool

Merge314 Assign Reqd Bay Cx

InCopies

- Original
Copy310

SC4 O To Ex Pool

SC4 W- IN,

Merge315 Assign Reqd Bay Ex

S Copies Assign ETag I

Copy311

Assig ETag 2 Bay Out
Bay Out

Figure B.20: CIP Model: Construct Beams/Slabs: Prepare/Erect "FSectionGrp": Prepare Triggers
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Hold "FElementGrp" Reuses

Edit "Expressions" prior to
reproducing activity.

Erect "FElementGrp" for Column

Synchronize202

Bay InI

In g, iinan

Copy217 Dispose224

Bay Out

Figure B.21: CIP Model: Typical: Prepare/Erect "FSectionGrp": Prep/Erect F-Elements

125

Prepare

Copy461 FormSection Out



If the section has no pre-fabricated form elements, remember to adjust the assemble activity

by removing the requirement for one "FElementGrpPF" so that assembly may proceed without it.

In the same way, if there are no site fabricated elements in the section, remove the requirement for one "FElementGrpSF".

Prepare "FElementGrpSF" for Column Assign Attributes Here

Assign Attributes Here into "FElementGrp"

Apply Su fa e
OI t FElementGrp Out

Apply Surface Treatment

Generate "FElementGrpPF" for Column

TagNum = 51

Figure B.22: CIP Model: Typical: Prepare/Erect "FSectionGrp": Prep/Erect F-Elements: Prepare "FElementGrp"
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FPleceGrp u all form pieces required to make all the site fabricated form elements

for the given form section (i.e. edge beam forms, center beam forms, slab forms.

column connection forms (I,E,or C), beamlslab connection forms ...)

Assign Attributes Here

Generate "FPieceGrp" Get Dummy

FElementGrpSF Out

Connect Free Dummy Transform to "FElementGrpSF"

Figure B.23: CIP Model: Typical: Prepare/Erect "FSectionGrp": Prep/Erect F-Elements: Prepare "FElementGrp": Prepare "FElementGrpSF"
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1iOii1

Yes

AssiRelease 

In

I Assign671 No Out

Figure B.24: CIP Model: Typical: Prepare/Erect "FSectionGrp": Prep/Erect F-Elements: Hold "FElementGrp" Reuses
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FElementGrp In

Get Dummy

Assign Attributes Here
FornSection Out

Out In Out In Out

Connect/Brace Free Dummy Transform into "FormSection"
(without crane)

Figure B.25: CIP Model: Typical: Prepare/Erect "FSectionGrp": Prep/Erect F-Elements: Erect "FElementGrp"
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In In

Assign424 Merge
Fr P/E F (B)

_ Original .
Copy321 Assign326

' Copies
Out In vu in r OiiginalSynchronize702

Generate Trigger Copy421

In

Dispose327

Out - 1 '

In - C opiesGenerate Trigger2 n2tO Copy423
Synchronize703 opy423

in • -, Out

Fr P/E R (B) Copy322 Assign325

Assign425 Merge

___J-fr~ 4 ~ ~

:323

j

ut A '" ,$'out

Pass (A)? No

Release
T.... Hold

TriGate420ger Di
Gate42

Dispose2

SDispose742

sppse

Pool of Completed Forms 4
-;-

Wait a secA :

---.............................................
--e ---------------- ------- ------------------------------------

Wait a secB
Out

Pool of Ex Requests

Release
Gate422

328ut

328

To P/E R (B)

Dispuse

Hold

No N es

In 'out

Pass (B)? Dispose2 In V

Dispose743

Figure B.26: CIP Model: Construct Beams/Slabs: Ex Pool
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Assign424
Fr P/E F (B)

Copie
p In' J ii rOut

Original

Copy321 Assign326

Outn

Synchronize702 C
Generate TriggerlICo

Dispose327

""I ' Ot E/ . OutI In

Generate Trigger2 Ini Co
Synchronize703

I .n Out

Fr P/E R (B) Copy322 Assign325

Assign425

In o

Merge323

ut A O" out

Pass (A)? No

Release I

Gate420

Pool of Completed Forms

Dispose2

Dispose746

)isdlose

I Wait a secA "

- --------------------- -- - --

Wait a secB A t-.P l ax eOut

Pool of Cx Requests '
T r

Merge328

Release 4
Gate422

B

Disp
Told

No
.ii ! iij

Is

To PIE R (B)

Pass (B)? Dispose2 In

Dispose747

Figure B.27: CIP Model: Construct Beams/Slabs: Cx Pool
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Bay Out

To Cure (P)

Trigger opie
Continuous Placement Hold Originals Copy721

, O out In

Mergel119 Unbatch into Bays

oIn Hold In

Bucket Placement Wait Until Pour is Complete Get Output Dispose722

Figure B.28: CIP Model: Construct Columns: Place Concrete
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Bay Out

Level Concrete Finish Wet Concrete Wait for Initial Set Finish Hardened Concrete Wait Until Pour is Complete

'Level Concrete" through to "Finish Hardened Concrete" is only done for slab pours

Figure B.29: CIP Model: Construct Beams/Slabs: Place Concrete
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In Get Number of Bays in Col Pour Pass?

YesI

No (gn

opiesCopy665
Copy665n-

SYes2 AsiglAtObue
Original o Re-Order
Copies

Copy664 Merge663

Assign Attributes

Hold ~

Gate662 Wait Until Bays Are Ready out

Figure B.30: CIP Model: Construct Columns: Place Concrete: Wait Until Bays are Ready
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Erect Scaffolding (if reqd)

In Copy365

Erect Enclosure (if reqd)

Dispose367

Synchronize366 Perform Final Inspection Out

Clean Forms of Debris

Figure B.31: CIP Model: Typical: Place Concrete: Make Final Preparations
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Place Concrete Dispose373
(with pump)

Oiginal in2 Z'~f,

In Copy371 Synchronize372
Out

Vibrate Concrete

Figure B.32: CIP Model: Typical: Place Concrete: Continuous Placement
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Dispose381

Transport to P-Site

Copy504

Release

Hold C-Truck Out

Figure B.33: CIP Model: Typical: Place Concrete: Bucket Placement
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Fr Place C (P) I

Fr Place C (P) Cure

Unbatch into Bays Continue construction (B)

C.-------

wmp Kc-snonng I RSh Shipped (P)

Fr Cure (P) To Stip RSh (P)
Copies

Fr P/E F (FSO) To P/C/F (P) _' _
Original

Fr P/E F (FSG) Strip Forms / Re-shore Copy681 Sipped (P)
FormFigures SB.34: CPipped (P)

Figure B.34: CIP Model: Construct Columns: Cure Concrete
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Continue Construction (B)

RSh Stripped (P)

Fr P/E F (FSO) Strip Forms / Re-shore Forms Stripped (P)

Figure B.35: CIP Model: Construct Beams/Slabs: Cure Concrete
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ace C (P

Copes
In out In

Prepare for Curing Copy406

"in ' Out

Curing Time "B"

Figure B.36: CIP Model: Construct Columns: Cure Concrete: Cure
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Fr l

Strip Re-Shoring
Strip Re-Shoring

Strip Forms



ace C (P) -

101eVAre for Crnies

In Out In
Original

Prepare for Curing Copy4O6

Curing Time "A"

Curing Time "A"

(I 51 PO
Cung Time "Cut

Curing Time "C"

Continue Construction

Strip Re-Shoring

uIng i out

Curing Time "B"

Figure B.37: CIP Model: Construct Beams/Slabs: Cure Concrete: Cure
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M - outin Ell*

kA CAN 0 19nh~a rr~rt(
qaLWIl %UI J M UVILIUI R a.,III I ziat Al TV V ut, i ut

No Additional Measures n Out

Merge132

Cover with Blankets

Note: the erection of heated
S Out enclosures or shading structures is

provided for earlier In the model.
Means of Thermal Control?

No Additional Measures o.

Merge136

Figure B.38: CIP Model: Typical: Cure Concrete: Cure: Prepare for Curing
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To Strip RSh (P)

Hl Out2 Copies
Hold Out a

Ini Out! - riomi

Wait Until Stripping is Complete Synchronize417 Copy637 To P/C/F (P)

Dispose418

Figure B.39: CIP Model: Typical: Cure Concrete: Strip Forms / Re-Shore
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Dispose763

SIn h t 6utlL~k Oull.

Synchronize762ut2Synchronize762

Inut

Wait a Sec

S Copies

Original
Copy764

Figure B.40: CIP Model: Typical: Cure Concrete: Strip Forms / Re-Shore: Stagger Entities
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Out

Trigge First

R iin
Synchronize657 Dispose659

Bays to Strip

in o 'Copies Pool of FSectionGrps
__AaOut In oinl

Assign395 Copy441 : No
Trigger

Hold
Release " I "

Gate442

Copy658

FSectionGrp to Strip

Dispose403

in Out

Assign396

InO out

Merge397 Pass?

Dispose

Figure B.41: CIP Model: Typical: Cure Concrete: Strip Forms / Re-Shore: "FSectionGrp" Pool

145

FSectionGrp In

nio r
dllmlnl l ll - 'q 77.... [ I lllljF

b



Stripped FSectionGrp

Erect Re-Shoring Wait Until "FSectionGrp" is Stripped Copy458

Figure B.42: CIP Model: Typical: Cure Concrete: Strip Forms / Re-Shore: Strip "FSectionGrp" and Re-Shore
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FSectionGrp to Strip



In

Dispose628

SOuti

Fr Strip F (P)

Strip Re-shoring Out

Figure B.43: ClIP Model: Typical: Cure Concrete: Strip Re-Shoring
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Cure (P) Remove Protrusions Clean and Patch Voids Clean Concrete Surface Apply Protective Coating

Figure B.44: CIP Model: Typical: Patch/Clean/Finish
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Appendix C: Danger Index Calculations
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Table C.1: Incidence Rates of Causes of Injury in the Construction Industry

Cause of Injury in the Construction Industry Percentage

Struck against 8.0%
Struck by 21.0%
Caught in or between 4.1%
Rubbed, abraded, or penetrated 3.5%
Fall of person (different level) 14.9%
Fall of person (same level) 7.0%
Bodily reaction 31.6%
Other (contact with electic current, temperature 9.9%
extremes, radiation, caustics, etc.)
Total: 100.0%
Source: OSHA, 1992

The percentages in Table C. 1 are used to calculate the rate of injury incidence associated with the

performance of each activity within the CIP concrete construction process. The danger index of a

particular activity is simply the sum of all the incidence rates associated with that activity

multiplied by the total time workers spend performing the activity, and the danger index of the

entire CIP concrete construction process is simply the sum of all the danger indices associated with

each of the activities within the process.
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Baseline

Lift/Position Connect Lift/Position Cut Lift/Position & Connect / Clean / Oil Connect I/
rebar by Rebar Rebar with Formwork Strip Disconnect Formwork Disconnect

hand crane Formwork by Formwork Formwork
hand

Iron W. Iron W. Iron W. Carp. Carp. Carp. Laborer Laborer

Struck against
Struck by 21.0%

Caught in or 4.1% 4.1% 4.1% 4.1% 4.1% 4.1%
between
Rubbed, 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%

abraded or
penetrated

Fall of person 14.9%
(different level)
Fall of person 7.0% 7.0% 7.0%
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 46% 46% 60% 4% 39% 8% 11% 54%

x Exposed 432.33 186.39 57.50 136.84 303.08 209.29 795.30 19.72

Time (hr)
Index 199.74 86.11 34.62 4.79 118.81 15.91 83.51 10.67

Place / Load Transport Place Vibrate / Place Repair / Clean
Strip Bucket Bucket Concrete Power (pump), Concrete

anything (bucket) Trowel Level,
by hand Concrete Finish
Laborer Concr. W. Concr. W. Concr. W. Concr.W. W. Concr. W.

Struck against 8.0%
Struck by 21.0%

Caught in or 4.1%
between
Rubbed, 3.5% 3.5% 3.5%

abraded or
penetrated

Fall of person 14.9% 14.9% 14.9%
(different level)
Fall of person
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 54% 0% 76% 47% 35% 32% 4%

x Exposed 406.19 3.17 69.67 15.83 55.00 290.48 81.25
Time (hr)

Index 219.75 0.00 52.60 7.36 19.31 91.79 2.84

Danger Index = 947.79
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Innovation 1 (Talon)

Lift/Position Lift/Position Cut Formwork Lift/Position Connect / Clean / Oil
rebar by Rebar with & Strip Disconnect Formwork

hand crane Formwork by Formwork
hand

Iron W. Iron W. Carp. Carp. Carp. Laborer
Struck against

Struck by 21.0%
Caught in or 4.1% 4.1% 4.1% 4.1%

between
Rubbed, abraded 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%

or penetrated

Fall of person
(different level)
Fall of person 7.0% 7.0%
(same level)

Bodily reaction 31.6% 31.6% 31.6%
Other

Incidence Rate 46% 60% 4% 39% 8% 11%

x Exposed Time 432.33 57.50 136.84 303.08 209.29 795.30
(hr)

Index 199.74 34.62 4.79 118.81 15.91 83.51

Connect / Connect Place / Transport Place Vibrate / Place Repair /
Disconnect Rebar Strip Bucket Concrete Power (pump), Clean
Formwork anything (bucket) Trowel Level, Concrete

by hand Concrete Finish
Laborer Laborer Laborer Concr. W. Concr. W. Concr. W. Concr. W. Concr. W.

Struck against 8.0%
Struck by 21.0%

Caught in or 4.1% 4.1% 4.1%
between

Rubbed, abraded 3.5% 3.5% 3.5% 3.5% 3.5%
or penetrated

Fall of person 14.9% 14.9% 14.9% 14.9%
(different level)
Fall of person 7.0%
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 54% 46% 54% 76% 47% 35% 32% 4%

x Exposed Time 19.72 33.60 406.19 69.67 15.83 55.00 290.48 81.25
(hr) I I _IIII_

Index 10.67 15.52 219.75 52.60 7.36 19.31 91.79 2.84

Danger Index = 877.21
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Innovation 2 (Self-Compacting Concrete)

Lift/Position Connect Lift/Position Cut Lift/Position Connect /
rebar by Rebar Rebar with Formwork & Strip Disconnect

hand crane Formwork by Formwork
hand

Iron W. Iron W. Iron W. Carp. Carp. Carp.
Struck against

Struck by 21.0%
Caught in or 4.1% 4.1% 4.1% 4.1% 4.1%

between
Rubbed, abraded 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%

or penetrated

Fall of person
(different level)
Fall of person 7.0% 7.0%
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 46% 46% 60% 4% 39% 8%

x Exposed Time 432.33 186.39 57.50 136.84 303.08 209.29
(hr) III

Index 199.74 86.11 34.62 .4.79 118.81 15.91

Clean / Oil Connect/ Place / Vibrate I Place Repair/
Formwork Disconnect Strip Power (pump), Clean

Formwork anything Trowel Level, Concrete
by hand Concrete Finish

Laborer Laborer Laborer Concr. W. Concr. W. Concr. W.
Struck against

Struck by
Caught in or 4.1% 4.1%

between
Rubbed, abraded 3.5% 3.5% 3.5% 3.5% 3.5%

or penetrated

Fall of person 14.9% 14.9%
(different level)
Fall of person 7.0%
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 11% 54% 54% 35% 32% 4%
(%)

x Exposed Time 795.30 19.72 406.19 18.50 299.03 81.25
(hr)

Index 83.51 10.67 219.75 6.49 94.49 2.84

Danger Index = 877.72
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Innovation 3 (Stay-In-Place Forms)

Lift/Position Connect Lift/Position Lift/Position Connect Lift/Position Connect Clean / Oil
rebar by Rebar Rebar with Formwork Fornwork Formwork with Formwork Formwork

hand crane by hand (no crane crane (crane
involved) involved)

Iron W. Iron W. Iron W. Carp. Carp. Carp. Carp. Laborer
Struck against 8.0% 8.0%

Struck by 21.0% 21.0% 21.0%
Caught in or 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1%

between
Rubbed, 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%

abraded or
penetrated

Fall of person
(different level)
Fall of person 7.0% 7.0% '7.0%
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 46% 46% 60% 39% 8% 37% 37% 11%
(%)

x Exposed 299.00 153.06 57.50 33.89 14.31 24.50 3.40 145.50
Time (hr)

Index 138.14 70.71 34.62 13.28 1.09 8.97 1.25 15.28

Place Connect Lift/Position Connect Transport Place Vibrate / Place Repair I
Strip Formwork Formwork Formwork Bucket Concrete Power (pump), Clean

Forrrmwork (no crane with crane (crane (bucket) Trowel Level, Concrete
by hand involved) involved) Concrete Finish
Laborer Laborer Laborer Laborer Concr. W. Concr. W. Concr. W. Concr. W. Concr. W.

Struck against 8.0% 8.0% 8.0%
Struck by 21.0% 21.0% 21.0%

Caught in or 4.1% 4.1% 4.1% 4.1%
between
Rubbed, 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%

abraded or
penetrated

Fall of person 14.9% 14.9%
(different level)
Fall of person
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 39% 39% 37% 37% 76% 47% 35% 32% 4%

x Exposed Time 186.11 7.50 30.00 12.50 69.67 15.83 55.00 290.48 61.46
(hr)

Index 72.96 2.94 10.98 4.58 52.60 7.36 19.31 91.79 2.15

Danger Index = 547.98
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Innovation 1 & 3 (Talon & Stay-In-Place Forms)

Lift/Position Lift/Position Lift/Position Connect Lift/Position Connect Clean I Oil Connect
rebar by Rebar with Formwork Formwork Formwork Formwork Formwork Rebar

hand crane by hand (no crane with crane (crane
inled) involved)

Iron W. Iron W. Carp. Carp. Carp. Carp. Laborer Laborer
Struck against 8.0% 8.0%

Struck by 21.0% 21.0% 21.0%
Caught in or 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1%

between
Rubbed, 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%

abraded or
penetrated

Fall of person
(different level)
Fall of person 7.0% 7.0% 7.0%
(same level)

Bodily reaction 31.6% 31.6% 31.6%
Other

Incidence Rate 46% 60% 39% 8% 37% 37% 11% 15%
(%)

x Exposed Time 299.00 57.50 33.89 14.31 24.50 3.40 145.50 27.60
(hr)

Index 138.14 34.62 13.28 1.09 8.97 1.25 15.28 4.03

Place I Connect Lift/Position Connect Transport Place Vibrate / Place Repair I
Strip Formwork Formwork Formwork Bucket Concrete Power (pump), Clean

Formwork (no crane with crane (crane (bucket) Trowel Level, Concrete
by hand involved) involved) Concrete Finish
Laborer Laborer Laborer Laborer Concr. W. Concr. W. Concr. W. Concr. W. Concr. W.

Struck against 8.0% 8.0% 8.0%
Struck by 21.0% 21.0% 21.0%

Caught in or 4.1% 4.1% 4.1% 4.1%
between
Rubbed, 3.5% 3.5% 3.5% 3.5% 3.5% 3.5%

abraded or
penetrated

Fall of person 14.9% 14.9%
(different level)
Fall of person
(same level)

Bodily reaction 31.6% 31.6% 31.6% 31.6% 31.6% 31.6%
Other

Incidence Rate 39% 39% 37% 37% 76% 47% 35% 32% 4%

x Exposed 186.11 7.50 30.00 12.50 69.67 15.83 55.00 290.48 61.46
Time (hr)

Index 72.96 2.94 10.98 4.58 52.60 7.36 19.31 91.79 2.15

Danger Index = 481.30
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