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Abstract

Thermoacoustic instability is frequently found in continuous combustion processes
in propulsion, power generation, and heating. Active control has been increasingly
pursued in recent years to suppress the pressure oscillations which result from this
instability, while maintaining performance objectives such as low NOx emission and
high efficiency. This thesis considers the physics behind the thermoacoustic instabil-
ity and utilizes a model based on the physics to understand the problem and design
an active controller to suppress the instability. A one-dimensional, laminar combus-
tor is modeled and a 1 kW bench-top combustor rig constructed for experimental
validation of simulation results. The model considers the linear acoustic and flame
dynamics, acoustic mode coupling, and actuator dynamics. Several model-based con-
trol designs including proportional, phase-lead, and LQG are presented and tested
on the bench-top combustor using a 0.2 W loudspeaker as an actuator. Results show
that the model-based controllers are effective in suppressing the instability, and that
the simulation results accurately predict the response of the real system. Using the
LQG controller, a settling time of as low as 23 milliseconds was obtained, significantly
faster than those reported on similar setups. The nonlinear dynamics which leads to
the limit-cycle behavior in real systems are investigated by looking at several "black-
box" type models of nonlinear behavior. The performance of the linear controllers on
the nonlinear models is investigated and an explanation for their success given.
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Chapter 1

Introduction

Thermoacoustic instability is a common problem in continuous combustion processes.

Applications in which it can be found include gas turbine engines, boilers, and waste

incinerators. This instability, which results from the interaction between the acoustic

process and the combustion process, appears as large amplitude pressure oscillations.

These pressure oscillations are detrimental to many of the systems in which they

occur, causing high levels of acoustic noise, high burn rates, and mechanical failures.

Efforts to combat the instability have increased in recent years as a result of the grow-

ing desire to lower NOx formation, decrease thermal output and improve efficiency.

Attempts to achieve these goals inevitably exacerbate the instability.

Thermoacoustic instability was first discovered in the 19 th century when several

independent studies revealed that sound could be generated by a flame placed inside

a large tube. This came to be known as the "dancing" or "singing" flame. The theory

that this growing pressure oscillation was caused by an interaction between the heat

release rate and the pressure was originally hypothesized by Rayleigh [1]. Rayleigh's

criterion is the basis for many explanations of thermoacoustic instability .

Most of the past attempts to suppress the oscillations involved the use of hard-

ware. Methods such as changing the fuel delivery system, changing the fuel injection

distribution pattern, modifications to the combustor or the geometry of the combus-

tor, acoustic damping liners, and baffles have all been attempted. These methods

are costly and time consuming, however, and there is no guarantee that they will



work under changing operating conditions. Recently, the focus has shifted towards

active control or the continuous perturbation of combustion parameters to interrupt

the pressure growth and eliminate the instability [2]. Active control has become

more feasible in recent years due to the fact that actuators and sensors which are

fast, accurate, reliable, and cost effective have become prevalent. Actuators including

acoustic drivers such as loudspeakers and air- or fuel- modulators for fuel injectors

that introduce secondary fuel streams are utilized. Microphones, flow meters, and

photomultipliers are used as sensors to collect information on the pressure, velocity,

and heat release [3]. An additional advantage of active control is that it consumes

only a small fraction of the power generated by the system. The control objectives

include pressure stabilization, high efficiency operation, increased thermal output,

and low NOx formation.

Active controllers generally fall into one of two categories: those based on ex-

perimental control strategies and those based on theoretical models. Examples of

the first category include [4]-[10], all of which successfully suppress the dominant

pressure instability. These approaches typically involve the use of an analog circuit

comprised of a filter and a phase-shifter. The parameters are tuned by trial and error

until the dominant instability is suppressed. This often results in the excitation of

other pressure instabilities at different frequencies. These secondary peaks are due

to the controller design, which considers only the dominant unstable mode in the

system, and occur at frequencies other than the natural modes of the system [19].

For example, in [7], two experimental controllers are used in an attempt to stabilize

the thermoacoustic instability in a one-dimensional premixed methane-air combus-

tor. The first controller consists of an amplifier, a phase-shifter, and an 8th order

butterworth filter. The second controller combines the first controller with a notch

filter and a lead compensater. Both result in a reduction of the dominant instability,

however, an instability is excited at two new frequencies. Another problem with these

controllers is that the dominant instability can only be reduced for flow rates in the

range of 200 to 330 milliliters per second.

Examples of the second category include [5, 9], [12]-[15]. For this category, the fun-



damental laws that govern the behavior of the thermal acoustics in the combustor are

utilized. Using this method, the combustor behavior can be analyzed and predicted

as parameters change. In [5], while a model-based controller is discussed, the analysis

was limited to only one frequency, the unstable one. In [12], an input-output system

identification approach is used to determine the model and the p-synthesis method is

employed for control. In [13] -[15], the authors have used physical law-based models

and a control design based on this model and drawn from modern control theory.

Until recently, a model which represents the combustion process and the inter-

action of all of the subsystems present did not exist. A physically-based finite-

dimensional model of a continuous combustion process has been developed at MIT in

[19],[16]-[11]. This model is based on one-dimensional laminar flow, an anchored flame

with a concentrated heat release zone, and a loudspeaker as an actuator. In [11], a

dynamic model is derived for the flame relating the unsteady heat release rate and

the unsteady velocity components. In [16], it is shown that the modal amplitudes of

the unforced wave equation become coupled when a heat source and an active control

source are present, and affect each other. This coupling is shown to have an impact

on a successful active control design in that when it is neglected in the model for

certain actuator-sensor locations, the controller fails to suppress the thermoacoustic

instability. In [19], an analytical explanation for the secondary peaks that occur in

the experimental investigations of active control is given. In particular, it is shown

that the peaks arise due to the interaction between subsystems in combustors and

controllers at frequencies other than the range where thermoacoustic resonance oc-

curs. In [18], the same dynamic model developed under nominal conditions is used

to design a model-based control using an LQG-strategy and leads to an improved

performance in simulation over existing experimental and model-based results. The

goal in this thesis is to not only develop a model which accurately represents the

combustion process, but also to show that using a model-based approach for control

design will lead to a more robust controller with superior performance and a wider

operating range than those designed using experimental control strategies. This will

be shown both theoretically through simulations and experimentally with a bench-top



combustor rig.

The MIT model for premixed laminar combustion considers only the linear

dynamics of the flame and the acoustics. Clearly, in real systems nonlineari-

ties are present, and these nonlinearities result in the limit-cycle behavior which is

observed. Mechanisms in the combustion process that may be responsible for the

nonlinear behavior are numerous, highly coupled, and difficult to model analytically

using low-order dynamic models. The flame dynamics appears to be the dominant

factor in producing the limit-cycle effect, although nonlinearities occur in the acoustic

subsystem as well. Even the nonlinearities in the heat-release dynamics are complex,

however, given the multiple scales of fluctuations due to the convective pressure and

velocity fields, vortex-shedding mechanisms, and the coupling present between the

acoustics and heat-release.

Nonlinear models of limit-cycles in thermoacoustic instability have been discussed

in [20]-[23]. In [20], the complete partial differential equations describing the acoustics

as well as the heat release dynamics with the flame anchored using a perforated

disk are shown to result in limit-cycles through numerical studies. In [21], nonlinear

acoustic components are included in the model, and are shown to lead to limit-cycles

using numerical studies of the time-averaged dynamics of the combustion dynamics.

In [22], limit-cycles are shown to occur by including a saturation-type nonlinearity

in the heat release dynamics. In [23], the linear heat release dynamic model from

[17] is expanded to include mixing dynamics and convective time-delay and is shown

numerically to exhibit limit-cycles.

In this thesis, a class of low-order, "black-box" finite dimensional nonlinear models

of thermoacoustic instability that are capable of exhibiting limit-cycles are developed

and their behavior verified through analytical, numerical, and experimental investi-

gations. The advantage of the approach taken here is that it results in a relatively

low-order, simple nonlinear model which not only predicts the limit-cycle behavior,

but allows straight-forward control design to be carried out. The class of nonlinear

models proposed in this thesis is constructed by the inclusion of a single nonlinearity

in the linear model suggested in [24]. This nonlinearity is incorporated in the heat re-



lease dynamics and can belong to one of three different types, (i) a phase change, (ii) a

gain-change, or (iii) a combination of phase and gain changes, between the input and

output. The resulting finite-dimensional nonlinear model is analyzed using describing

functions and show that all three types of nonlinearities result in limit-cycles. Class

(i) arises due to changes in the flame kinematics (as suggested in [20]), class (ii) may

occur due to saturation effects (as proposed in [22]), where as class (iii) may be due

to mixing and time-delay (as shown in [23]). The model predictions using a two-mode

acoustic model are shown to match experimental results of a bench-top combustor

rig, as well as simulations of the complete partial differential equation (PDE) model,

quite well.

It is also shown in this thesis that a linear controller designed based solely on the

linear dynamics can still be successful in suppressing the thermoacoustic instability

even in the presence of these nonlinearities, under certain conditions. Linear control

of pressure oscillations with limit-cycles has been addressed in [14], where numerical

studies of the time-averaged combustion dynamics are presented. The result in [14],

however, does not address whether the proposed linear controller will succeed or fail

in suppressing the limit-cycle behavior. In contrast, the stability properties of a linear

controller will be discussed in this thesis. The analysis presented is verified by the

linear-model based control design which is successfully implemented in simulations of

the nonlinear models and experimentally on a bench-top combustor rig.

In this work, the model-based approach of suppressing the thermoacoustic in-

stability will be verified. Chapter 2 describes the theory behind this model-based

approach. The model of the combustion process which was developed at MIT will

be outlined. The modern control theory which was utilized in the controller design

will also be discussed. In chapter 3 the experimental setup which is used to ver-

ify the model capabilities will be described. This includes a detailed description of

the combustor, the actuator, and the data aquisition system. Chapter 4 will out-

line the simulation results obtained using the model and the corresponding results of

the experiments on the bench-top combustor at MIT. The robustness of the model

to uncertainties will also be presented and the effect of considering multiple acoustic



modes and mode coupling in the model will be analyzed. Low-order "black-box" type

nonlinear models which give the limit-cycle behavior will be presented in Chapter 5.

These models will be used to show that a linear controller designed based on only

linear dynamics can still be successful in suppressing the thermoacoustic instability

in the presence of the nonlinearities which lead to the limit-cycle behavior and an

explanation for this will be given. A discussion of results, including the implications

of the results and a comparison to other work will be completed in Chapter 6.



Chapter 2

Theoretical Framework

2.1 A Finite-Dimension Model of the Combustor

A dynamic, finite dimensional model has been developed which represents the domi-

nant characteristics of the combustion instability. This model was used as the basis

for designing control strategies for the experimental combustor. A summary of the

model is given in this section. See References [11][16]-[19]. for details of the model

derivation.

Two subprocesses, acoustics and combustion, couple with each other through

feedback and result in the thermoacoustic instability. The total heat release rate

at the flame location affects the acoustic dynamics and thus the unsteady pressure.

At the same time, the flow velocity affects the flame dynamics and thus the heat

release rate, leading to coupling of the two subprocesses. The governing equations of

the system are partial differential equations.

The acoustic dynamics of the combustion system can be derived starting from the

conservation equations. Assuming negligible transport processes and one dimensional

flow, the conservation equations of the mass, momentum, and energy can be written

as

8p 8 (p )S+ =(p) 0 (2.1)
1t dX



O + pu O = 0 (2.2)
Ot Ox at

Op Op OuS+  +  p = (- - 1)q (2.3)at 8x ax

where p, u, p, and q refer to the density, velocity, pressure, and heat release rate,

respectively, and y is the specific heat ratio.

These conservation equations are further simplified by assuming that the gases on

both sides of the combustion zone behave as an ideal gas, separating the variables into

their mean and perturbed components, and assuming that the flame zone is localized

spatially at x = xf. Mean heat was considered in the model of the system, but the

average values of u, p, p, and M, the Mach number, were used in the calculations

for simplification. A side-mounted loudspeaker was considered as an actuator and

introduces a dynamic effect on the acoustic field. A schematic of the combustor

with a side-mounted loudspeaker is shown in Figure 2-1. Including the effect of

the loudspeaker with xa the location of the loudspeaker, and v, the velocity of the

diaphragm of the loudspeaker, the representation of the acoustic dynamics was the

following:

-2pa 2p _ 2 2p (Ov \

at2 + 2MEi- - x) = (- - 1)( ++ ) (2.4)a,- d,,, d-- ) + t a-x at

Op' - Op' Ou'
+ Me-- + -P = (y - 1)q'f + -JparVc. (2.5)

t Ox Ox

where p', u', and q' denote the unsteady components of the pressure, velocity, and

heat release rate, respectively, p is the mean pressure, ? is the average speed of sound

in air, y is the specific heat ratio, and ar is the ratio of cross-sectional areas of the

loudspeaker and the combustor (see [16, 19] for details).

A model of the premixed laminar flame was derived considering the flame as a

surface across which reactants are converted into products. The flame responds to

changes in velocity. If ((r, t) is the axial displacement of the flame surface, its dynamic
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Products
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Figure 2-1: Schematic of the combustor with a side-mounted loudspeaker.

response can be characterized as

Af = 27r r( ,r + 1 dr (2.6)= u- v- S, 2 +1,

where u and v are fluid velocities in the axial and radial directions, respectively,

Su is the laminar burning velocity with respect to reactants, and Af is the flame

surface area. Assuming that the heat release rate is proportional to the area of the

flame surface, a linearized form of (2.6) can be derived when the heat release zone is

localized at x = xf, as described in [11]

f = 4S,

qf = -wf(qf + gu)

and = ( nf puAqr,
D)

(2.7)

where q' and u' are the heat release rate and flow velocity at x = xf, respectively, Aq,

is the heat release rate per unit mass of the mixture, pu is the density of the premixed

reactants, D is the diameter of the flameholder, nf is the number of perforations

in the flameholder, and cdp is the diameter of the flame with dp representing the

diameter of the perforation and f representing the increase in the flame base from the

hole diameter due to entrainment from the neighboring holes.

The distributed system defined by Eqs. (2.4), (2.5), and (2.7) can be approximated



using a Rayleigh-Ritz modal expansion

n

p'(X, t) = W 77)(t (2.8)

where Oi(x) = sin(kxiz+io) and ki and jio are determined by the boundary conditions,

and correspond to the spatial mode shapes, and ki are the wave numbers.

The analysis of the combustion system leads to the following finite-dimensional

model for a side-mounted loudspeaker and a microphone as the actuator-sensor pair:

i + M(wi ii "i 7 bi q ' -biMwiRoq' + b, ir,
n

f = (ci 4 -cuiqj) + kaoarv,
i=1

q'f +bfq = wfgfuf,,
n

Y = _ ci rh
i=1

where by = wf(1 - Gaogf) is the effective flame bandwidth,

(2.9)

(2.10)

(2.11)

(2.12)

ya o  
O,

b; = E-Y(xi),

E = ]¢bdx, w = dp

7P

R = (zf)

1 d (

Cci = ),

gY = )"fPuAqr,

cui = d (x)(Ak)-k 1M
dx

1
Ro

kao = 1 if Xa < xf and 0 otherwise, x, and Xa are the location of the microphone and

loudspeaker, and y denotes the normalized unsteady pressure, i.e., y = p'(x,, t)/p. In

transfer function format, this system of equations can be written as

y = W(s) i, Sn(s)
W(s) = ()

d(s)

where W(s) is the open-loop transfer function which represents the complete com-

bf = Wf(1 - Oaogf),

(2.13)



bustor, including laminar flame kinematics and multiple acoustic modes.

An examination of W(s) reveals that it is a (2n + 1)th order system, where n

is the number of acoustic modes included in the model, and can be unstable and

nonminimum phase. The system responds over a wide range of frequencies, due to

the flame dynamics at low frequencies and due to the acoustics at higher frequencies.

The nature of the feedback interaction between acoustics and the heat release rate

results in a tight coupling between the flame dynamics and acoustics as well as among

the various acoustic modes themselves. The relative degree of W(s), for a side-

mounted loudspeaker, is two. The pole-zero locations depend on a number of system

parameters including the locations of the actuator, the sensor, as well as the flame.

This can be seen from the structure of d(s) and n(s) which are given below for n = 2:

n(s) = ccl {bcl [(s + bf)(s2 + 2
2) - 2s2] + c2i3128 + wlglkaokaArbi(S 2 + W2

2)

+cc2 bc2 [(s + bf)(s 2 + W,2) 1_ p182] + cl 212 + f gf kokaAr (S 2 + w1 2)1

d(s) = (s + bf)( 2  
1
2 2  

2
2) - 1

2( 2  22 ( W 22 - (2 + 1
2 ).

where

dx
k (x-fd(x (f)
02fL <g Pii

This model can be utilized to determine the stability of a given combustion system.

It also serves as the tool for using a model-based approach to the control design.

2.2 Actuator and Sensor Dynamics

One can characterize the dynamic relation between the voltage into the loudspeaker,

v, and the diaphragm acceleration as

k1s
2

V6 = G,S, G (s) 2 + b (2.14)
mis2 +bls + k
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Figure 2-2: A schematic of the input-output model.

where ml, b1, and kl represent the mass, friction, and stiffness properties, respectively,

of the loudspeaker, and kl is a calibration gain. Additional dynamics can arise from

the housing used to focus the acoustics of the loudspeaker onto the combustor, such

as a funnel or a waveguide [10]. This housing typically encloses some volume and can

act as a Helmholtz resonator with a certain damping and resonant frequency which

could overlap with the acoustic range of the combustor, making the task of designing

a controller more difficult. It may be important to design this housing so as to ensure

minimal attenuation and minimize the introduction of additional dynamics. If the

frequency of the loudspeaker dynamics is of the order of the acoustic modes, then the

dynamics are significant enough that they must be taken into account in the model.

If the frequency is not on the order of the acoustic modes, then the loudspeaker can

be modeled simply as a gain.

Including the effect of the actuator dynamics into the combustor model, the open-

loop transfer function is of the form

y = G(s)W(s)i (2.15)

which is of order 2n + 3, is unstable and possibly nonminimum phase, and needs to be

stabilized using an active controller. A schematic of the complete combustion system

is shown in Figure 2-2.

The microphone, which was used as a sensor, typically exhibits a linear output



over a large range of frequencies. For this reason, the microphone could be modeled

as a simple gain.

2.3 A Linear Quadratic Gaussian Controller

The linear quadratic gaussian (LQG) is a form of optimal control whose goal is to min-

imize some performance index. This controller determines the control input into the

finite-dimensional linear system while optimizing a cost function which is quadratic

in the system states and control inputs. The LQG control design has been analyzed

and successfully used in a range of applications for decades. A brief summary of this

optimal controller will be given below. For more details refer to [25]-[26].

The goal of the LQG is to determine the control input u into a system in state-

space format:

S= Ax+Bu, y = Cx

where x represents the states of the system and y represents the outputs of the system

that can be measured. LQG varies from a linear quadratic regulator (LQR) in that

no all states of the system can be measured, and the design of a state estimator of

the following form is required

x = A+Bu+H(y-C2)

u = K

with (A-BK) controllable and (A-HC) observable. Once the eigenvalues of A-BK

and A - HC of the closed-loop system are specified, K and H can be designed easily.

The LQG is an optimal control strategy which leads to a natural specification of K

and H. K can be determined using a cost function

j0 (yTQy + uTRu)dt (2.16)



where Q and R represent matrices that weight the various outputs and inputs appro-

priately. One choice is to set Q = I and R = AI so that A is a scaling factor that

determines the trade-off between fast transients and magnitude of the control input.

This yields a solution

K = R-1BTp

where P is the solution of the Riccati equation

ATP + PA + CTC - PBR-1BTP = 0.

The choice of H in (i) can also be made in a similar manner, by posing the problem

as the design of a Kalman filter which ensures that 2 converges to x as efficiently as

possible. By introducing a fictitious input noise with a variance I and an output noise

with a variance Rf, the solution is of the form [25, 26]

H = Rf-C TPf

where

PfA T + APf + BB -PfCTRf -C = 0.

One can use the MATLAB Control Systems Toolbox to compute G and H efficiently,

by choosing Rf = p1 and fine-tuning A and p to allow fast transients to be achieved

without unrealistic or undesirable cost. The added benefit of the LQG controller is

that it will not only suppress the oscillations at the unstable frequency, but is designed

to suppress oscillations over the entire range of frequencies which are considered in

the model.



Chapter 3

Experimental Setup

Given that a continuous combustion process is exceedingly complex and the result of

several interacting subprocesses, the experimental setup had to be carefully designed

so that it duplicated the specific combustion process which the model represents. At

the same time, the setup had to be complex enough to exhibit a sufficiently high degree

of instability for a number of operating conditions and also represent a premixed

laminar combustor with a concentrated heat release zone. First, the geometry had

to be selected so that the flow was predominantly one-dimensional and laminar. The

geometry was chosen similar to that of combustors tested by Poinsot [6] and Gulati

and Mani [8], so that comparisons could be made. Second, it had to be ensured that

a premixed flame with good mixing was present. To accomplish this, fuel and air

were mixed in a sudden expansion pipe before entering the combustion chamber and

a nozzle was used for enhancing mixing between fuel and air. A mechanism had to be

chosen for stabilizing the flame and to provide a range of operation where there is no

flame extinction or separation. The material for the combustion chamber had to be

appropriately chosen so that it could withstand heat and accommodate input/output

ports for monitoring and control. A cooling system had to be integrated into the

setup. The experimental design also needed to include supplies of air and fuel that

could be regulated.

Another factor that had to be addressed was the issue of safety. Given the use

of flammable liquids and an open flame, it had to be ensured that both ignition and



Figure 3-1: The Bench-top combustor rig.

extinction of the flame did not pose any hazards.

A bench-top combustor which met the above requirements was constructed to ver-

ify experimentally the simulation results for the combustion model. The experimental

setup consists of a test-rig for the combustion process, a calibrated microphone for

measuring the pressure, a 0.2 W Radio Shack loudspeaker driver to use as an actu-

ator, two type K Omega thermocouples, a Keithley MetraByte data acquisition and

control board, and a Pentium PC. A circuit that includes a spark plug and a bat-

tery is used to ensure automatic ignition and another which includes a photo-sensor

and a relay was designed to shut off fuel supply in the face of flame extinction. A

photograph and a schematic of the system are shown in Figures 3-1 and 3-2.

3.1 The Combustor

The combustion test-rig provides one-dimensional, laminar, premixed flow, as consid-

ered in the model. Air is supplied through a low-noise blower and is dehumidified by
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Figure 3-2: Schematic of the combustor test-rig, data-acquisition, and control.

passing it through a desiccant. This may be necessary in humid conditions to prevent

the failure of the microphone, depending on the type of microphone being used. The

air is then passed through a settling chamber and the flow rate is regulated using an

Omega flowmeter. Propane is utilized as a fuel and is supplied through a pressure

regulator and a rotameter used for adjusting the fuel flow rate. A nozzle enhances

mixing between the fuel and air. The combustion chamber is a 5.3-cm diameter, 47-

cm long tube closed at the upstream end and open at the downstream end. The flame

is anchored on a perforated disc with 80 holes fixed 26-cm from the upstream end.

A cooling jacket around the hot section of the combustor prevents the walls of the

combustor from increasing in temperature. Several ports are included for mounting

actuators and sensors.

3.2 The Measurement and Control System

The choice of the actuator and sensor for the measurement and control system proved

to be a challenging one. A microphone was chosen as a pressure sensor due to its

fast response and ability to accurately measure low pressures. This was desirable,

since the goal was to suppress the thermoacoustic instability. The microphone did

have several limitations, however. Initially, a Radio Shack condenser microphone ele-



ment was chosen as the sensor. This element had little protection from the humidity

in the air and from possible flame flash-back, leading to frequent failure and unre-

liable measurements. Instead, a protected PC microphone was used to measure the

pressure. Additionally, while the microphones could be used to accurately measure

low level pressures, at higher pressure levels their measurements became nonlinear.

This occurred at approximately ±160 Pa for the microphone chosen for testing. An-

other option for pressure measurement is a piezoelectric sensor. While these can be

used to accurately measure higher pressure levels, the sensitivity at low pressures is

compromised.

The microphone is placed in a selected port to measure the pressure at the de-

sired location in the combustor. It is then connected to an input channel on the

data acquisition board through a screw terminal accessory. The Keithly MetraByte

DAS1801-AO data acquisition board was chosen because of its speed and versatility.

The board is capable of sampling at up to 312 kHz on its input channels. This speed

was desirable in order to allow sampling to occur fast enough to prevent aliasing.

The board has 16 single-ended or 8 differential inputs and 2 waveform-quality analog

outputs. Experiments were conducted using differential inputs to minimize the effect

of noise, which is especially important when the voltage being measured is small. In

this case the input range was ±5 volts. The output range on the board was ±10

volts. The board was mounted in a 166 MHz Pentium PC.

In order to utilize the information about the pressure from the microphone to

determine the control input needed, it was necessary to write code to both send com-

mands to the data acquisition board and calculate the control input based on the

pressure signal and the controller to be implemented. This was one of the most im-

portant and challenging aspects of setting up the data acquisition system. The task

required that the user be able to specify the sampling rate and the number of samples

to be taken. Additionally, it was necessary that the sampling occur quickly and accu-

rately. This required that the execution of all code be fast and written in a way that

minimized the time delay between the reading of the pressure signal and the control

input signal being sent to the loudspeaker by the board. Pre-written functions for the



DAS1801-AO board could not be utilized because of their slow execution and inability

to allow the input value at each sampling instant to be accessed real-time. Therefore,

register-level programming was used to performed such tasks as setting the data ac-

quisition board to the desired setting (differential input, desired gain, input channels

and sampling order), programming the clock to sample at the sampling rate specified

by the user, collecting the information on the pressure amplitude at each sampling

instant, calculating the control effort based on a controller algorithm, outputting this

control input, and clearing the board at the end of each test. The sampling rate

was specified using timers on the data acquisition board. These timers were given

an initial count value based on the sampling rate desired and, once triggered, began

counting down to zero. When zero was reached, a flag was sent to the status register

and the program signaled for the board to take data. This timer was immediately

reset and began counting down to zero once again. This method of timing will be

accurate as long as the time required to complete calculations in the control loop

is less than the time between samples. The computer must also be dedicated to the

sampling and control processes so that other processes and commands do not interfere

with acquiring data. The data was stored in an array during the program execution

and saved to a file at the end of each test. Memory allocation had to be done in

a way that allowed a large number of data points to be stored during the program

execution. This required the variables which stored the pressure and control input to

be declared as global variables rather than local ones to prevent stack overflow from

occurring during data acquisition. The output of the data acquisition board was sent

through a potentiometer which allowed the amplitude of the voltage to be modified

before it reached the loudspeaker. An example of the C code used in the testing and

control can be found in Appendix A.

The model for the combustion system was developed in continuous time and thus

all controllers were designed in continuous time. Implementation on the data acquisi-

tion board required that these controller transfer functions be converted to algorithms

in discrete time. This was done using two methods: (1) the backward difference

method [27], and (2) Matlab's Control System Toolbox continuous to discrete time



conversion assuming a zero order hold.

Two type K Omega thermocouples were used to measure the temperature in the

cold (upstream from the flame) and hot (downstream from the flame) sections of

the combustor. These thermocouples were connected to the data acquisition board

through a screw terminal panel with a built in cold junction, which served as a

reference point.

3.3 Experimental Conditions

To develop an accurate model of the experimental system, it was necessary not only

to use the geometry of the combustor itself in the model, but also the operating

conditions for the tests. Most experiments were conducted with an equivalence ratio

between 0.68 and 0.74 and an air flow rate of 333 mL/s (0.38 g/s), which corresponded

to an unstable operating condition without control (Equivalence ratios of less than

0.67 corresponded to a stable operating point). The flow rate was varied between

267 mL/s and 400 mL/s and the power of the combustor was approximately 1 kW.

A sampling rate of 10 kHz was found to be more than sufficient to prevent aliasing.



Chapter 4

Validation of Model-Based Active

Controllers

The first step in validating the model-based approach to designing controllers for the

suppression of a thermoacoustic instability was to develop a model to represent the

bench-top combustor. Controllers were then designed based on this model and their

ability to suppress the instability simulated. Control design and simulations were

conducted considering two different actuator/sensor configurations. The first case

was for the actuator and sensor collocated at D. See Figure 4-1 for the actuator-

sensor-flame locations in the combustor. For the second case, the actuator remained

at D, but the sensor was moved to C. The performance of these simulated controllers

could be compared to controllers implemented on other similar combustion systems.

Once the model had been developed and the model-based controllers designed and

simulated, the controllers were implemented on the actual bench-top combustor rig.

This allowed the performance of the control strategy in simulation and experiment

to be compared.

4.1 The Uncontrolled Combustor Model

The combustor model as in Eqs. (2.9) - (2.12) was simulated using the following

parameters: L = 0.62m, y = 1.4, = latinm, Cl = 347m/s, c2 = 485m/s,M =
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Figure 4-1: Mode shapes for closed-open combustor boundary conditions and
actuator-sensor-flame locations.

3.612 x 10-4, p, = 1.163kg/m 3, Leff = 0.535, Aqr = 2.26 x 106 J/kg based on

an equivalence ratio of 0.74, S, - 0.3m/s, 0 = 0.5, e = 2.0, d, = 1.5 x 10-3m,

D = 0.053m, and nf = 80. These were chosen to match the geometry and fuel

properties of the combustor as closely as possible. For example, S. was chosen based

on the burning velocity for propane and accounting for heat losses at the walls of the

combustor. The heat of reaction Aqr was found using the following equation:

Aqr C , (4.1)+ 15.6'

where C, is the calorific value of propane, and 15.6 is the stoichiometric ratio between

air and the fuel. 0 and E, which also affect the flame parameters, were lumped

approximations to account for the effect of the velocity behind and ahead of the flame

and the increase in flame diameter beyond the perforation diameter, respectively. The

length of the combustor required two corrections from the actual geometric length.

The length, L, under consideration was the acoustic length which was effected by



the unsteady pressure oscillations. An end-correction was required to account for the

fact that a column of air beyond the exit of the combustion chamber was a part of

the acoustic system. The length of this end correction could be found by locating

the pressure null (where the oscillation amplitude became zero) with a microphone.

and was found to be 0.09 m. For the bench-top combustor chosen, the length of the

air/fuel feed tube, which was 0.06 m, also affected the acoustics of the combustor and

was added to the total acoustic length. The effect of mean heat, which results in a

significant change in the velocity, density, and temperature of the hot gases in the

combustor, was to shrink the effective length of the combustor. The acoustic mode

shapes are sinusoidal in this effective combustor, thus Leff was utilized to calculate

the frequency of the first and second acoustic modes. Leff could be found using the

following equation:

Leff = L - (1 - 01)(L - o) , (4.2)

where 0 = T1/T2 and is less than one. A damping ratio ( = 0.0033 was added at all

frequencies to account for passive damping in the system, the effects of which were

not included in the model. The choice of ( was therefore arbitrary, and was selected

so as to match the experimental growth rates over as wide a range of equivalence

ratios as possible. A closed-open boundary condition was chosen due to the structure

of the flow conditions, and the fact that the loudspeaker to be used for control was

side-mounted. The first two acoustic modes were considered in the model. The

corresponding mode shapes, ki, were computed using Leff, and wi was found to be

162 Hz and 488 Hz for i = 1, 2. The mode shapes for the entire length of the

combustor,L, are shown in Figure 4-1 and are not perfectly sinusoidal. There is a

slight discontinuity at xf due to mean heat effects. Denoting WC/D (s) as a transfer

function with the sensor at C and the actuator at D, the resulting plant transfer

functions are of the form

(s + 440) (s 2 - 83s + 7.70 x 106)
(s + 14.9) (s2 + 407s + 1.03 x 106) (s2 - 63s + 9.41 x 106)'
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Figure 4-2: Root locus of combustion system with (i) D/D actuator-sensor configu-
ration and (ii) C/D actuator-sensor configuration - without actuator dynamics.

W/D() 8.38 x 104(s + 589) (s2 - 26s + 1.47 x 107)
(s + 14.9) (s2 + 407s + 1.03 x 106) ( 2 - 63s + 9.41 x 106)'

assuming that only the first two modes are present. The root loci showing the pole

and zero locations for each actuator-sensor location are shown in Figure 4-2. For both

the D/D and C/D cases, the system has an unstable pair of poles and zeros. The

zeros for the C/D case, however, move farther away from the origin. The fact that

they are no longer interlaced between the stable and unstable poles implies that a

low-order phase-lead controller will not be sufficient to stabilize the system. This is

due to the fact that the centroid of the root locus no longer lies in the left-half plane.

The performance of the uncontrolled combustor for both the simulation and ex-

periment with the D/D configuration is shown in Figure 4-3. Over the first 100

milliseconds the simulation and experimental growth rates match closely (approx-

imately 32 milliseconds). Beyond this point, the pressure level continues to grow

in the linear model, as expected, while nonlinearities begin to dominate in the ex-
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Figure 4-3: Pressure oscillations for uncontrolled combustor (i) Simulation results
using the two mode model and (ii) Experimental results.

perimental combustor and a limit-cycle is reached. The experimental and predicted

behavior of the combustor differ more drastically for ¢ < 0.67. The former led to a

stable system while the latter yielded an unstable system with a smaller growth rate.

This may be due to the modeling error in the passive damping mechanism, which

may in fact be nonlinear and depend on q. The unstable frequency predicted by the

simulation of 488 Hz was close to that observed experimentally at 470 Hz.

4.2 The Complete Combustor Model

To complete the model of the experimental system, the actuator and sensor dynamics

also had to be explicitly taken into account before designing the controllers. Using

a function generator and a photo sensor for measuring the displacement of the loud-

speaker diaphragm, a frequency analysis was carried out. This analysis was used

to determine the transfer function relating the voltage into the loudspeaker to the



acceleration of the loudspeaker diaphragm. The approach taken was to obtain an ex-

perimental frequency response of the loudspeaker by exciting it at various frequencies

and calculating the gain and phase. A curve was then fit to this data by comparing

the experimental gain and phase information to the Bode plot of a transfer function

of the form of Eq. (2.14) with varying ki, ml, and b1. It was found that the dynamics

of the 0.2W loudspeaker used in experimental investigations could best be expressed

as:
35.5s 2

G,(s) = (4.3)
82 + 364s + 3.320 x 106

The Bode plot of this transfer function along with the experimental data points

are shown in Figure 4-4. The natural frequency of the loudspeaker, which was 290

Hz, is on the order of the first acoustic mode, indicating the necessity of including

the actuator dynamics in the control design process. To complete the model of the

experimental system, a sensor gain of 45.3 Pa/Volt was included in the simulation.

This gain was calculated using a Rriual-Kejar piston phone. The code used to develop

a complete model of the uncontrolled combustor in MATLAB, which was then utilized

for control design is shown in Appendix B. The root loci of the complete system,

including the actuator and sensor dynamics is shown in Figure 4-5 (i) and (ii) for

the D/D and C/D actuator-sensor configurations, respectively. A schematic of the

system components included in the model is shown in Figure 4-6.

In addition to the combustion dynamics, loudspeaker dynamics, and sensor gain,

the limitations of the loudspeaker were considered when designing a controller. Be-

yond a known input voltage, the diaphragm motion of the loudspeaker became non-

linear. To ensure that this region was avoided, the potentiometer in the loudspeaker

circuit was adjusted so that with a maximum voltage of +10 volts into it (the limit

of the data acquisition board's output), the voltage signal sent to the loudspeaker

would remain within the loudspeaker's linear range. The maximum acceleration the

loudspeaker could provide in the linear range at the unstable frequency was 600m/s 2.

This limitation on the maximum control effort was taken into account when designing

the controllers, the details of which are described below.
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4.3 Active Control of the Instability

4.3.1 The D/D Actuator-Sensor Configuration

Low-order controllers were designed first using the combustor model. The D/D

actuator-sensor configuration exemplified the importance the loudspeaker dynamics

could play in the system. As can seen by to root locus shown in Figure 4-5(i) for

the D/D configuration, the addition of the actuator dynamics implies that a propor-

tional controller will be sufficient to suppress the instability. The model indicated

that a proportional controller with a gain Kp between 8.5 and 54.0 could stabilize the

system. Higher gains would lead to the excitation of a new frequency. A first-order

phase-lead controller of the form

Gc(s) = kcs +  (4.4)
s + pc
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could also be utilized to stabilize the system with this configuration. A phase-lead

controller with z, = 1400 and Pc = 1900 was designed and found to stabilize the two-

mode model of the system for kc between 6.6 and 77.0. The gain that was implemented

experimentally was chosen so that the corresponding control effort did not exceed the

maximum allowable limit, considering the limitations of the loudspeaker. The gain

values which led to the smallest settling time for the two controllers and still met the

control effort limitation are given by Kp = 13.0 and kc = 12.0. The power limitations

also reduced the range of equivalence ratios for the success of both of these controllers

to (0.68, 0.7). If the equivalence ratio was increased beyond this region, the unsteady

pressure level increased to a point which required more control effort than could be

provided by the system.

Once the low-order controllers had been chosen, the LQG controller was designed

with the system model as in WD/D(s)GI(s). The two design parameters p and p were

chosen so that the maximum loudspeaker acceleration was close to 600m/s 2 , and were

given by p = 0.001, and p = 0.01. The code used to design the LQG controller in

MATLAB is shown in Appendix C. The resulting LQG controller was evaluated using

MATLAB's Control Systems Toolbox as

GD/D (S)

where ni

n2

n3

n4

n5

n6

dl

d2

d3

d4

3.68 x 104 (s - n) (s + n2) (s2 - n38 + n 4) (s2 + n5 + n6)
(s + di) (s2 + d2 s + d3) (s2 + d4s + d5) ( 2 + d6s + d7)

- 525

= 14.9

= 212

= 7.66 x 106

= 665

= 1.68 x 10"

= 14.9

= 3695

= 1.26 x 107

= 210
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d5 = 7.78 x 106

d6 = 746

d7 = 3.27 x 105

The three controllers designed based on the two mode model were implemented on

the bench-top combustor discussed in Chapter 3 to test their performance experimen-

tally. Although simulation results indicated that the controllers could be successfully

used to suppress the thermoacoustic instability, to gain confidence in the model and

method used to design the controllers, it was clearly necessary to test them on the

actual system. The first verification of the model was to test the unstable mode shape

in the combustor. This was done by measuring the pressure amplitude at each of the

four ports along the combustor (see Figure 3-2) and at the exit of the combustor.

Results closely corresponded with the pressure amplitude calculated theoretically at

these points as shown in Figure 4-7.

The simulated controllers were implemented directly in the experiment using the



discretization of the controller by the backward-difference method for the phase-lead

controller and using the MATLAB Control Systems Toolbox and a zero-order-hold

method for the LQG controller. The experimental and simulation results for the

pressure response and control effort are shown in Figures 4-8, 4-9, and 4-10 for pro-

portional control, phase-lead control and LQG control, respectively. The proportional

and phase-lead results correspond to an equivalence ratio of 0.70, while the LQG con-

troller had an equivalence ratio of 0.72. The initial conditions were chosen for the

simulation assuming that they corresponded to a case when only the second mode

(the unstable one) was excited. As the complexity of the controller increased, the

settling time and control effort required decreased. The settling time for the pro-

portional controller was 161 milliseconds in the simulation and 179 milliseconds ex-

perimentally. For the phase-lead controller, the corresponding settling times were 99

milliseconds and 154 milliseconds respectively. If the equivalence ratio was increased

beyond 0.70, the proportional and phase-lead controllers were not able to suppress the

thermoacoustic instability, indicating that the control effort required had exceeded

the system's limits, as predicted by the simulations. The discrepancy between the

theoretical and experimental control efforts may be explained by passive damping in

the experimental system, which aided more in the suppression of the instability at

lower equivalence ratios.

The most dramatic pressure suppression was seen with the LQG controller as

shown in Figure 4-10. For the D/D actuator-sensor configuration, the LQG con-

troller had a settling time of 35 milliseconds in the simulation and 36 milliseconds

experimentally. It can be observed from Figure 4-10 that both the settling time and

control effort predicted by the simulation match that from the experiment quite well.

Higher equivalence ratios could be controlled using the LQG controller than with the

low-order controllers due to the fact that less control effort was required. For example,

simulation results using the proportional and phase-lead controller for an equivalence

ratio of 0.72 showed that the maximum control effort required was approximately

2500m/s 2 and 1800m/s 2, respectively. While the low-order controllers could only

suppress the instability up to q = 0.70 in the experiments, the LQG controller could
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Figure 4-10: Pressure response and control input for a side-mounted loudspeaker with
D/D configuration and LQG control: Simulation results using the two-mode model
and experimental results.

successfully suppress the instability for all O's up to 0.74. As 0 increased, however,

a slight increase in settling time occurred, as shown in Figure 4-11, which gives the

settling time versus equivalence ratio for the LQG controller. The increase in settling

time with 0 is due to the fact that the pressure levels and therefore the required

control effort increase with q whereas the loudspeaker has limited control authority.

Interestingly, the average settling time obtained using the LQG controller is more

than twice as fast as that reported in [4], which was for a similar combustor with the

same power and pressure levels.

Using the LQG controller, the pressure level was suppressed from a level of 210

Pa (at B) to an ambient noise level of 1.5 Pa, which corresponds to a reduction of

44 dB. The residual noise is mostly due to the blower, which accounts for the small

amplitude of the pressure oscillations in steady-state that can be seen in Figure 4-10.

A power spectrum of the combustor with and without control is shown in Figure

4-12 along with the power spectrum of the system with no combustion for reference.

Changes in the flow rate while maintaining the same equivalence ratio did not affect



50

40

E

20

10

0.695 0.7 0.705 0.71 0.715 0.72 0.725 0.73
Equivalence Ratio

Figure 4-11: 2%-settling time achieved using the LQG controller as a function of the
equivalence ratio for D/D configuration.

the ability of the controller to stabilize the thermoacoustic instability, in contrast to

Ref. [8].

4.3.2 The C/D Actuator-Sensor Configuration

For the C/D case, a proportional or phase-lead controller was not sufficient to suppress

the thermoacoustic instability, due to the fact that the unstable zeros are not longer

interlaced between the stable and unstable poles, as discussed in Section 4.1. The

root locus of the combustion system, including the loudspeaker dynamics, with the

C/D configuration is shown in Figure 4-5(ii). An LQG controller was designed using

MATLAB's Control System Toolbox, for comparison to the D/D configuration. The

transfer function was evaluated as

1.13 x 10o (s - ni) (s + n 2) (s2 - 23S 4) ( 2 r5S + n 6)
(s + d() (s2 + d2 s d3 ) (s 2 + d4 S d5 ) (8 2 + d6 S+ d7 )

where nl = 3945

n2 = 14.9

n3 = 1341



10
6

10 - 104

102 Without Control -- 102

10-2 10

-10 10

10 - 10
- e -

With C ntrol

10 - 10
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a) With Combustion - Freq. (Hz) (b) Without Combustion - Freq. (Hz)
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n4 = 77.86 x 106

n5 = 436

n 6 = 1.43 x 106

dl = 15

d2 = 584

d3 = 1.15 x 107

d4 = 3329

d5 = 7.79 x 106

d6 = 781

d7 = 3.59 x10

Simulation and experimental results are shown in Figure 4-13. The settling time

for this controller was 31 milliseconds theoretically and 23 milliseconds experimentally.

Once again, the settling time and control effort in the simulation and the experiment

were in close agreement. As expected, the pressure amplitude was higher at the C/D
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sensor is closer to the anti-node when placed at C. The instability once again could

be suppressed for equivalence between 0.68 and 0.74. Increasing 0 beyond this point

resulted in two problems with the C/D configuration. The first problem was that

the pressure measurements by the microphone became nonlinear, while the second

was that pressure levels and therefore the required control effort increased to a point

which exceeded that which could be provided by the system. A plot of settling time

versus 0 for the C/D configuration is shown in Figure 4-14 and exhibits a similar

trend to that observed for the D/D configuration.

The model-based LQG controller with the C/D configuration proved to be the

most successful in suppressing the thermoacoustic instability both in simulation and

experiment. The experimental settling time of 23 milliseconds is almost four times

faster than that reported in [4], and the controller was successful for all flow rates

tested.
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4.3.3 Effect of Model Changes on LQG Control Design

An LQG control design was chosen because of the ability to optimize the controller

based on a weighting of the performance of the controller versus the control effort

required using p and p. Even with the use of these two parameters, however, numerous

controllers could be chosen. The following paragraphs will discuss how the choice of p

and p were made and also how changes in the model affected the LQG's performance.

In Section 4.2 the limitations of the loudspeaker which was used as an actuator

for the bench-top combustor were discussed. These limitations placed a restriction

on the values of p and p that could be chosen. As their values were decreased, the

settling time of the controlled system also decreased, but the control effort required to

suppress the instability increased. If p and p were chosen in the LQG control design

such that the control effort required was significantly larger than that which could

be achieved by the experimental system, the simulations indicated a fast settling

time, but the experimental controller was not able to achieve the same performance

due to loudspeaker saturation, and the actual settling time was much larger. At

the same time, as p and p were increased, the settling time in both simulation and



experiment increased and the control effort required decreased. The goal, therefore,

was to optimize the controller by having p and pt small enough to achieve as fast a

settling time as possible while considering the limitation on the control effort and

avoiding actuator saturation.

Several iterations on the model were made in developing the model-based control

strategy. "Model a" considered the physical length of the combustor as the acoustic

length, neglected mean heat, contained an incorrect definition of Aqr, and ignored

the increase in diameter of each flamelet over the perforation diameter of the plate.

"Model b" corrected the definition of Aqr and the values of several parameters, includ-

ing the addition of E to account for the increase in the flamelet diameter beyond the

perforation diameter, a phenomena which had been observed experimentally. "Model

c" was developed based on a detailed study of the acoustics in the combustor. Length

corrections were made to both the hot and cold sections of the combustor. The aver-

age temperature in the hot section was adjusted to reflect the fact that the acoustic

hot section extended beyond the physical exit of the combustor. In addition, mean

heat was included in this model. In summary, "Model a" is an "incorrect" model

(the reason for its inclusion will become apparent below), "Model b" is an approxi-

mate model, while "Model c" is the most accurate finite-dimensional model, derived

entirely using calculations based on acoustical properties, geometry, and boundary

conditions. The parameters for each model are given in Table 4.1.

The variation of the model had an interesting effect in the LQG control design

and the resulting settling time for the experimental system. The pole-zero plots for

each of the three controllers is shown in Figure 4-15(i), (ii), and (iii) for "Models a, b,

and c," respectively, for the D/D configuration and in Figure 4-16(i), (ii), and (iii) for

the C/D configuration. Note the locations of the zeros in each case. For each model,

the controller was designed considering the limitation imposed by the loudspeaker.

When the controllers were tested on the combustor for the D/D configuration, a

settling time of 20 milliseconds was obtained for "Model a" as shown in Figure 4-17,

41 milliseconds for "Model b" (see Figure 4-18), and 36 milliseconds for "Model c"

as shown previously in Figure 4-10. For the C/D configuration, the settling times



"Model a" "Model b" "Model c"

Thot 600 K 600 K 550 K
L 0.495 0.487 0.62
df 0.0015 0.003 0.003
D 0.0382 0.053 0.053

S, 0.28 0.3 0.3
Aqr 4.3 x 106 2.26 x 106 2.26 x 106

bl 747 400 400
b2 90.2 14.8 14.8
b3 90.2 65.1 65.1
f2 526 535 487

Growth Rate 114 65.1 31.3

Table 4.1: Summary of parameters for "Model a", "Model b", and "Model c".

were 32 milliseconds, 42 milliseconds, and 23 milliseconds for "Models a, b, and c,"

respectively as shown in Figures 4-19, 4-20, and in Section 4.3.2 in Figure 4-13. The

performance for the C/D configuration indicates that the better the model accuracy,

the better the control performance. The question that arises is why at D/D, the

inaccurate model ("Model a") resulted in the fastest settling time (20 milliseconds)

while the most accurate model ("Model c") led to a slower performance.

There appears to be two factors which affect the performance of the LQG con-

trollers developed using these three models and may lead to an explanation for the

performance of each controller. The first factor is the accurateness of the model in

representing the actual combustion system, and the second is the location of the

right-most zero pair for the controller. For the C/D actuator and sensor configura-

tion the controller is quite sensitive to modeling errors, as seen in Section 4.4. The

LQG controller designed based on "Model c", where the unstable frequency in the

model is the closest to that observed experimentally, has the fastest settling time.

The location of the controller zeros will have some effect on performance, but is not

as critical as the accurateness of the model. The trend is for the performance to

improve with model accuracy. The question that remains is why the performance

of the LQG controller based on "Model a" is the fastest for the D/D configuration.
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with C/D configuration and LQG control: Simulation and experimental results for
controller designed using "Model a"
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Figure 4-20: Pressure response and control input for a side-mounted loudspeaker
with C/D configuration and LQG control: Simulation and experimental results for
controller designed using "Model b"
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Perhaps an explanation is that when the actuator and sensor are collocated at D/D,

the controller is robust to modeling errors, an observation which is further verified

in Section 4.4, and the dominant influence comes from the location of this zero pair.

As this zero pair becomes less nonminimum phase, the settling time becomes faster.

The best performance occurs for "Model a", where this zero pair is actually minimum

phase.

The location of the actuator and sensor plays a critical roll in the performance of

the controllers for various models. When the actuator and sensor are both at D, the

controllers are much more robust to modeling errors than if the sensor were placed at

C. I speculate that the reason for this is two-fold. The first factor is if the actuator

and sensor are collocated or not. When the actuator and sensor are not collocated,

modeling errors are compounded by the fact that control is not applied at the same

location where the pressure is measured. The second factor is how nonminimum phase

the zero pair for the uncontrolled combustion system is. For configurations where

this zero pair is more nonminimum phase (such as C/D), the task of controlling the

system become more challanging and dependent on the accurateness of the model.

These factors explain why the performance of the controller for the C/D configuration

is a function of model accurateness, while for the D/D configuration it is dependent

on the location of the controller zeros.

4.4 Robustness of the LQG Controller

4.4.1 One Acoustic Mode Model

For the combustion system under consideration, it is the second acoustic mode which

is the unstable one. One question which should be asked is how important is the

consideration of other acoustic modes in the model. The flame dynamics are such

that the flame acts like a low pass filter, reducing the importance of acoustic modes

higher than the unstable one. The importance of including the first mode may be

significant, however. The goal is to eliminate the thermoacoustic instability in the



combustion system. This implies that not only should the unstable frequency be

stabilized, but the controller should be such that no new frequencies are excited. The

LQG control design requires accurate information about the system to accomplish

this task.

The effect of neglecting the first mode was studied for both the C/D and D/D

configurations. The approach taken was to design an LQG controller as before, but

with a model considering only the unstable mode. This controller was then simulation

on the one-mode model, the two-model model, and tested experimentally on the

bench-top combustor rig.

For the D/D configuration, the LQG controller designed based on the one mode

model with p = 0.01 and p = 0.001 suppressed the instability on this model with a

settling time of 28 milliseconds as shown in Figure 4-21(i). When simulated on the

two mode model, the settling time was approximately the same, but the control effort

required increased slightly as shown in Figure 4-21(ii). The results of this controller

on the experimental combustor are shown in Figure 4-21(iii), which indicates that

the settling time increases to 65 milliseconds This increase in settling time is due to

the fact that the control effort required exceeds the limitations of the system (observe

the saturation of the control effort at 600m/s 2 for the first 20 milliseconds in Figure

4-21(iii)). Simulations were also done by decreasing p and I with similar results.

The one mode LQG controller resulted in a similar settling time on both the one

mode model and the two mode model, but the control effort required increased for

the two mode model. These controllers were not be tested experimentally because of

the amount of control effort which they required.

The inclusion of the first acoustic mode proved to be more significant for the

non-collocated actuator a sensor configuration, C/D. The LQG controller designed

based on the one mode model with p = 0.01 and p = 0.001 predicted a settling time

of 23 milliseconds when simulated on the one mode model as shown in Figure 4-

22(i). Figure 4-22(ii) shows that when the controller was simulated on the two mode

model, the settling time increased to 65 milliseconds Experimentally the controller

resulted in a settling time of 79 milliseconds as shown in Figure 4-22(iii). Simulations
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completed with the LQG controller designed using smaller p and p indicated that the

discrepancy between the settling times on the one and two mode models increased

as the values of p and 1u decreased. While the controller on the one mode model

became faster, on the two mode model the settling time increased until the controller

was unable to suppress the instability. Figures 4-23(i) and 4-23(ii) show simulation

results of an LQG controller designed based on the one mode model with p = 0.002

and p = 0.0002 on the one mode and two mode models, respectively. While the

settling time is 10 milliseconds for the one-mode model, the pressure oscillations blow

up on the two mode model, with a new frequency of 130 Hz being excited. This

controller could not be tested experimentally because of the amount of control effort

required. Close agreement between the two mode model and the experiment in other

tests, however, builds confidence in its ability to predict the experimental results.

Simulation and experimental results indicate the importance of including both

the first acoustic mode as well as the unstable one in the combustion system model.

Implications of neglecting the first acoustic mode will vary from decreased controller

performance (longer settling time or larger control effort) to the excitation of a new

resonant frequency in the system, depending on the actuator and sensor configuration.

Including the first two acoustic modes in the model allows the LQG controller to

be optimized to achieve higher performance at less cost than if the first mode was

neglected.

4.4.2 Acoustic Mode Coupling

One advantage of the MIT model is that it includes the linear coupling between the

acoustic modes. Traditional analysis of combustion instability has been based on

the assumption that this coupling is insignificant. In [16] it is shown theoretically

that neglecting linear coupling in active control design can lead to serious errors,

depending on the actuator and sensor location. The effect of the linear coupling on

the control design for the two actuator sensor configurations used in testing on the

bench-top combustor is illustrated in this Section.

An LQG controller was designed based on a model which neglected linear coupling
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and simulated on the model without coupling, the model with coupling, and tested

on the bench-top combustor. For the D/D configuration, an LQG controller with

p = 0.01 and p = 0.001 resulted in a settling time of 27 milliseconds on the model

without coupling, as shown in Figure 4-24(i). When this controller was simulated

on the model with linear coupling, the settling time increased to 36 milliseconds and

the control effort required also increased as seen in Figure 4-24(ii). Experimentally,

however, it was observed that the settling time for this controller increased to 72

milliseconds, as seen in Figure 4-24(iii). This additional increase in settling time is

due to the limitation on the control effort in the experimental system as the saturation

of the control effort over the first 20 milliseconds in Figure 4-24(iii) illustrates.

The effect of mode coupling on the control design with the C/D configuration was

also analyzed. An LQG controller was designed based on the combustion model which

neglected coupling with p = 0.015 and p = 0.0015. Simulation on the model with no

coupling predicted a settling time of 30 milliseconds as seen in Figure 4-25(i). When

the controller was simulated on the model with linear mode coupling, the settling
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time increased to 108 milliseconds (see Figure 4-25(ii)). Experimental results for

the controller, shown in Figure 4-25(iii), agreed closely with the simulation on the

model with coupling and resulted in a settling time of 95 milliseconds Simulations

were also completed with varying p and p for the LQG control design. For the

C/D configuration, decreasing p and p below a certain value resulted in a controller

that stabilized the system modeled without coupling, but was unable to stabilize the

system with coupling. Figures 4-26(i) and (ii) show simulation results on the model

without coupling and with coupling, respectively, for an LQG controller designed

neglecting coupling with p = 0.002 and i = 0.0002.
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Figure 4-26: Pressure response and control input for LQG controller designed based

on model with no coupling and C/D configuration, p = 0.002 and p = 0.0002: (i)

Simulation results on model with no coupling and (ii) Simulation results on model

with coupling

These results indicate that the inclusion of acoustic mode coupling is important

in model development and control design. While neglecting this coupling may have

minimal impact on the model of the uncontrolled system, it can have a significant

effect on the LQG control design. For certain actuator-sensor configurations, the

ability of the LQG controller designed using a model which neglects mode coupling

to suppress the unstable frequency cannot be guaranteed. Even for actuator-sensor

configurations in which the controller designed based on the model neglecting cou-

pling suppresses the instability, such as for D/D, the performance of the controller is

decreased over that predicted by the simulation.

4.4.3 Parameter Perturbation

Several assumptions were made in developing the model of the continuous combustion

process. In addition, parameters such as 0, which accounts for the effect of the

velocity behind and ahead of the flame, e, which accounts for the increase in the

flame diameter beyond the perforation diameter, S., the laminar burning velocity,



Th, the temperature in the hot section which effected the effective length of the

combustor, C, used to account for passive damping in the combustion system, and

even the acoustic length, L, are uncertain. For this reason, a parametric study which

perturbed these parameters was conducted in order to determine the effect on the

model-based LQG controller. Perturbations of these parameters by 20% were made

and the effect on the ability of the model-based LQG controller to suppress the

instability experimentally studied. The most critical parameter appears to be Th, the

temperature in the hot section. When this value was increased by 20%, the settling

time for the LQG controller with C/D configuration increased to 120 milliseconds

Changing Th had a more significant effect than changing L directly. Changing Th has

a direct effect on both the unstable frequency and also on the growth rate because the

position of the flame relative to the length of the combustor shifts. Changing L would

have a similar, but not as dramatic an effect because the variation is in the entirely

length, not just the hot section, and the shift in the flame position is smaller. Cases

in which Th cannot be measured with reasonable accuracy may call for an adaptive

control strategy. All other parameter perturbations led to a settling time of between

23 and 36 milliseconds, close to that observed with the original model.

The robustness of the LQG controller to the equivalence ratio was tested by chang-

ing € on-line in the experiment by varying the fuel flow rate. The controller provides

a robust performance over all values of q E [0.55, 0.74] even though the uncontrolled

model and the experiment differed in the stability behavior for ¢ < 0.68.
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Chapter 5

Nonlinearities in Thermoacoustic

Instabilities and Linear Control

5.1 A Low-order Nonlinear Model of Thermoa-

coustic Instability

Experimental observations of thermoacoustic instability clearly indicate the strong

presence of nonlinearities, whose effect is a stabilizing one. The dynamic behavior

in these problems are typically of the form of exponentially diverging oscillations

which transition to a limit-cycle behavior. The linear model of Chapter 2 has been

shown to capture the divergent aspects, and obviously not the latter effect. In this

section, extensions to this linear model that capture nonlinear mechanisms that may

be responsible for the limit-cycle are proposed.

Nonlinearities can occur in both the acoustic and heat release subsystems of the

combustion process. The dominant nonlinearities which lead to the limit-cycle be-

havior, however, occur in the heat release dynamics. The focus, therefore, is on the

heat release dynamic model in Eq. (2.12) which implies that the heat release rate

changes linearly with velocity. In actual flames, however, as the velocity increases

there appears to be different mechanisms that introduce a nonlinear effect on the

heat release [22, 29, 20]. Three different, hypothetical, low-order nonlinear models



Heat Release Dynamics

Figure 5-1: Low Order Nonlinear Model of Thermoacoustic Instability

are presented in this chapter that capture these mechanisms. In each of these models,

a nonlinear component is added between the unsteady velocity component and the

unsteady heat release rate as shown in Figure 5-1.

The complete nonlinear model can be described by the equations

ii + 2(~wi i +27,i = bi q' +b ,,ia
n

f = (ci i) + arVa (5.1)
i=1

q'1 +bf q = wf gf(u)

and more compactly, in operator form, as

? = G(s)[u'
(5.2)

U n = -

where b1 = wf(1 - Oaogf), and if = uf with 0 = 0 and can be considered as the

equivalent flow velocity at xf. The goal is to evaluate the conditions on f under

which the nonlinear model in (5.2) generates limit-cycles.

Broadly speaking, the limit-cycle behavior can occur in a feedback system as in

(5.2) due to one of two mechanisms. The first concerns a change in the phase between

ii and q', while the second is a change in the gain between these two quantities. Of



the three models presented in the sections to follow, the first and the second pertain

to limit-cycle dynamics due to the change in the phase and in the gain, respectively.

The third model shows the limit-cycle behavior that ensues from a combination of

both gain and phase change. All three models are analyzed using the describing

function method and are shown to result in a limit-cycle behavior.

In order to verify the predictive ability of limit-cycles in the numerical studies of

the proposed models, the 1 kW bench-top combustor rig used for the experimental

work in Chapter 4 is chosen as a basis for the model. The linear model was simulated

using information from the bench-top combustor rig considering the first two acoustic

modes and the following parameters:

L = 0.62m, 'y = 1.4, p = latm, Cl = 347m/s, c2 = 485, M = 3.612 x 10- 4

Pu = 1.163kg/m 3, Aqr = 2.26 x 106 J/kg, q = 0.74, Su = 0.3m/s (5.3)

0 = 0.5, e = 2.0, dp = 1.5 x 10-3m, D = 0.053m, n1 = 80.

The choice of these values follows directly from the geometry and fuel properties.

The goal is to carry out a comparison with the nonlinear model in (5.1) and

the experimental results. As shall be shown in the following sections, the model in

(5.1) with different nonlinear mechanisms in f is capable of producing limit-cycles.

Numerical simulations are also carried out by replacing the linear finite-dimensional

acoustic model in (2.9) and (2.10) with the linear PDE model of the combustor

acoustics as in (2.4) and (2.5) and the flame model in (2.6).

5.1.1 Nonlinear Model 1: Phase Change Mechanisms

Suppose the nonlinearity f = fl where

f i (u) = Cl U - C2 u 3  (5.4)

where cl and c2 are positive. The describing function method can be used as an

approximate tool for analyzing the resulting feedback system in (5.2) [28]. For fi in



(5.4), the describing function is of the form

Nf, (A) = c1 - 3 c2A 2  (5.5)

where A is the amplitude of the sine wave entering the nonlinear block. Noting

that the describing function analysis predicts the limit-cycle behavior when G (jw) =

-1/(N(A)), where G (jw) is the linear plant transfer function, the form of (5.5)

suggests that for any unstable G, if c1 < 1, then there is always an amplitude A at

which the limit-cycle will occur. This is because the Nyquist plot of G (jw) intersects

the negative real axis to the left of (-1, 0). Numerical simulations of the nonlinear

model in (5.4) with the linear parameters as in (5.3), and setting ( = 0.008, cl = 1,

and c2 = 10, led to a Nyquist diagram and describing function as shown in Figure 5-2

and a limit-cycle in the pressure oscillations as shown in Figure 5-3, which is similar

to the response obtained experimentally shown in Figure 4-3(ii). As can be observed

in these two figures, the growth rate and amplitude of the pressure at the limit-cycle

were similar, although the time taken to reach the limit-cycle was slightly longer in

simulation than that observed experimentally. It was observed that the limit-cycle

occurred for all values of (, cl _ 1, and c2 . For example, increasing ( resulted in

a decrease in the amplitude of the pressure at the limit-cycle and an increased time

to reach the limit-cycle, decreasing cl led to a decreased amplitude at the limit-

cycle and an increased time to reach the limit-cycle, and increases in c2 led to a

decreased amplitude at the limit-cycle and a decrease in the time required to reach

the limit-cycle. It is interesting to note that the describing function analysis is quite

accurate in predicting the amplitude of the limit-cycle. The limit-cycle amplitude

of the signal entering the nonlinear block can be computed from the value where

the Nyquist plot and describing function intersect and was found to be 0.225 for the

chosen nonlinearity. The actual amplitude of this signal at the limit-cycle in the

simulations was 0.255.

A qualitative explanation for the generation of limit-cycle behavior with f can be

given using the "gain" and "phase" characteristics of f near the unstable frequency
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Figure 5-2: Nyquist diagram and describing function of combustor with fi (thin-line,
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wu. Denoting y (f (u)) and o (f (u)) as the "gain" and "phase" of f for u = sin (wt),

and defining

Y0 (f (u)) = and 0, (f (u)) = _ 1800 (5.6)

The plot of y, (fi (u)) and qo (fi (u)) are shown in Figure 5-4. Suppose f in (5.2)

is such that -y is a constant for all u and 0o = 00 for lul < uo and o, = -1800

for lul > u.. Then, for all velocities with amplitudes less than uo, the nonlinear

transformation reduces to a positive constant cl. That is, for amplitudes less than

u0 , the model in (5.1) is linear and has unstable solutions, with the pressure p' and

q' such that

ST p'qqfdt > 0 (5.7)

For velocities with amplitudes greater than u0o, the value of o, (fl) changes by -180'

implying that at the same frequency, the heat release q' is equal and opposite to the

values at small amplitudes of u'. That is, the Rayleigh criterion changes to

- T p'qqdt < 0 (5.8)

leading to "stability" of the closed-loop system thereby tending to reduce the ampli-

tudes of all variables in the feedback loop. As the amplitude decreases, since 0 (fi)

increases again to 00, the overall system continues to toggle between an unstable and

a stable mode, which can manifest as a limit-cycle. The above conclusions can be

drawn even when 7y (fl) changes slightly as a function of the amplitude of the input

to fl. Noting that the yo - k0 characteristics of fi are as shown in Figure 5-4(i), it

can be argued that it is the phase change mechanism in fi that is responsible for a

limit-cycle behavior.

Other nonlinear functions exist which are similar to fi in that the limit-cycle



200

150

100

50

0

-50

-100

-150

-200
0 50 100 150 200 250 300 350

Time (msec.)

Figure 5-5: Pressure response for the simulation of the system with nonlinear com-
ponent fib-

behavior is due to a change in phase. One such example is the nonlinearity fib where

fib(u) = k l u if Iul < u0

= (ki + k2 ) 0 - k2u if u > UO

where k, k2 , and uo are positive. An analysis similar to that for fi can be carried out

for this nonlinearity. The resulting pressure response with ( = 0.01 and kl = 1, k2 = 1

and u, = 0.18 is shown in Figure 5-5. The limit-cycle amplitude agrees with that

observed experimentally, but the growth rate is somewhat smaller and hence it takes

a longer time for the limit-cycle to be reached. The functions , (fib) and 0 (fib)

can be calculated as in (5.6) and shown in Figure 5-4(ii). The change in 0o (fib) from

0O to -180' again occurs when the velocity reaches a certain level. As the velocity

increases and decreases, 0o (fib) will toggle between 0' and -180o, resulting in the

limit-cycle. Once again, perturbations in (, k and k2 resulted in the limit-cycle with

similar trends to that for fi.

The question that arises is whether phase change mechanisms similar to those

exhibited in fi exist in premixed combustors. In [20], a physically-based nonlinear

I



PDE model of premixed laminar combustors was presented and was shown to result

in a limit-cycle behavior. It was observed that this was achievable even with a linear

acoustic model, and the nonlinearity, which was associated with the heat release

dynamics, was such that the phase between u' and q' changed from 0O to -180' for

large amplitudes of q'. This change in phase is due to the fact that at small amplitudes

the low velocity levels result in heat release which is dominated by propagation, while

at higher amplitudes, the high velocity leads to a heat release which is dominated

by advection. This suggests that such phase change mechanisms could represent one

class of nonlinearities that generates a limit-cycle.

5.1.2 Nonlinear Model 2: Gain Change Mechanisms

Consider a nonlinearity of the form f = f2 where

f2(u) = u if ul _ U (5.9)

= u0 if lul>uo

which introduces a saturation in the velocity. The describing function for this case is

of the form

2 2
N (A) = A sin 1  + (5.10)

For similar reasons to those described for fl, the nonlinearity in (5.9) can also be

shown to lead to a limit-cycle for the model in (5.2) because for any value of uo,

-1/N(A) intersects G(jw) for some A. Numerical simulations of the nonlinear model

in (5.9) with the linear parameters as in (5.3), ( = 0.008 and u, = 0.1 led to a

Nyquist diagram and describing function which was similar to that shown in Figure

5-2 and a limit-cycle in the pressure oscillations as shown in Figure 5-6. The growth

rate for f2 is less than that observed experimentally, and the time taken to reach the

limit-cycle increases somewhat. Decreasing passive damping in f2, however, led to an

even larger discrepancy between simulation and experiment. It should be noted that



-- 50

-100-

-150-

-200
0 50 100 150 0 2 250 300 350 400

Time (msec.)

Figure 5-6: Pressure response for the simulation of the system with nonlinear com-
ponent f2.

the limit-cycle occurred for all values of ( and uo. Increasing ( resulted in a decrease

in the amplitude at the limit-cycle and an increase in the time taken to reach the

limit-cycle. Decreasing ( below a certain value, however, also resulted in a longer

time to reach the limit-cycle, although the amplitude increased. Increasing u, led to

an increase in the amplitude of the limit-cycle and a slight increase in the time taken

to reach the limit-cycle. Asymmetric saturation in f2 was also observed to lead to

limit-cycles.

Qualitatively, the limit-cycle can be explained using y, (fh) and o, (f2) as in Sec-

tion 5.1.1. For amplitudes smaller than u0 , the behavior of the nonlinear system (5.1)

is identical to that of the linear system. At amplitudes larger than u0 , the fact that

y7 (f2) is smaller than unity implies that the nonlinear mechanism attenuates the sig-

nal; as u0 increases, the attenuation becomes even stronger. This implies that at some

amplitude larger than u0 , the amplification due to the linear instability mechanism

is offset by the attenuation by a sufficient amount so as to prevent any further in-

crease in the system variables. In particular, y (f2) = 1.0 for Jul uo, but decreases

towards zero as Jul becomes larger than u,. It is this gain that results in the change



in the Raleigh criterion from a positive value to a negative value as in Section 5.1.1

and leads to the limit-cycle. The value of 0o, on the other hand, remains constant at

00 for all values of u. The values of y, and 0 for f2 are shown in Figure 5-4(iii).

The physical basis for the presence of such a gain changing mechanism has been

presented in [22] by Dowling, where the limit-cycle is attributed to a "saturation"

effect in the heat release. In particular, it is argued that the lower saturation limit

may occur due to the fact that the heat release rate is constrained to remain positive

as the velocity becomes more negative; the upper saturation limit may be due to

entrainment effects on the flame area. As mentioned earlier, the actual values of

these two limits could differ and yet produce limit-cycles.

5.1.3 Nonlinear Model 3: Gain and Phase Change Mecha-

nisms

Suppose that the nonlinear mechanism is such that both the gain and the phase of f

changed with the amplitude of u, for example, for f = f3, where

U (t - T)
f 3 (u(t)) = (t(5.11)

1 + E|U (t - 7) I

The corresponding describing function is such that the curve -1/N(A) still intersects

G(jw) from right to left, and hence leads to the conclusion that there is a stable

limit-cycle. Numerical simulations of the resulting nonlinear model in (5.11) with

linear parameters as in (5.3), ( = 0.008, c = 5.5 and 7 = 1.0 x 10- 5, resulted once

again in a limit-cycle in the pressure oscillations as shown in Figure 5-7, which is

again similar to the response in Figure 4-3(ii). Increasing ( for f3 had a similar effect

as for fl. Increasing e decreased the amplitude of the pressure at the limit-cycle and

resulted in a slight increase in the time taken to reach the limit-cycle. Modifying T

changed the amplitude of the limit-cycle and the time taken to reach the limit-cycle

in some cases, while for other values it did not result in the limit-cycle behavior.

A combined set of arguments presented in Sections 5.1.1 and 5.1.2 can be given to

justify the generation of limit-cycles. For this model, while the definition of y, (f3 (u))
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Figure 5-7: Pressure response for the simulation of the system with nonlinear com-
ponent f3.

remains the same as in (5.6), 0o (f3 (u)) is defined as

Oo (f (u))= - (-3600) (5.12)

to account for the presence of the time delay. For this model, both the value of qo (f3)

and the attenuation of oy (f3) introduce a stabilizing component at large amplitudes

of the velocity. These changes can be seen in Figure 5-4(iv). As with fi and f2, a

qualitative explanation of why f3 causes a limit-cycle to occur can be given in terms

of the Raleigh criterion, which switches from positive to negative value when IuI > u0 .

The physical basis for this type of nonlinearity has been proposed in [29] in the

context of a lean premixed gas turbine, where the nonlinearity is attributed to the

mixing effects at the injection nozzle and the time-delay to convection. The alge-

braic nonlinearity in u introduces a smooth saturation effect whereas the time-delay

introduces a phase change mechanism. It is well known that this type of nonlinearity

will produce bands of T's for which the limit-cycle occurs. In the simulation of f3
it was found that the first and second bands of T which gave the limit-cycle were

7 E (0, 4.3 x 10- 4 ) and - E (1.32 x 10-3, 5.64 x 10-3), respectively. These bands
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Figure 5-8: Pressure response for the PDE simulation of the system with nonlinear
component fi.

would continue as T increased. Whether or not this type of nonlinear mechanism is

responsible for the limit-cycle depends on if such a sensitivity to T is supported by

the experimental observations as well. It is also worth noting that such a sensitivity

to 7 implies that f3 is not as robust as fi, fib, and f2, which produced a limit-cycle

for all parameter perturbations.

Finally, it was noted that all of the above three nonlinearities gave rise to a

similar limit-cycle behavior in simulation studies with the acoustic relations in (2.9)

and (2.10) replaced by their linear PDE counterparts. The pressure plots for the

PDE models including the nonlinearities fl, f2, and f3 are shown in Figures 5-8-5-10,

respectively.

5.2 Impact of Nonlinearities on Linear Model-

Based Control

The motivation behind developing a dynamic model to represent the continuous com-

bustion process was not only to understand thermoacoustic instability, but also to
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Figure 5-10: Pressure response for the PDE simulation of the system with nonlinearcomponent f3.
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obtain an optimal active controller based on this model to suppress the instability. In

Sections 5.1.1 - 5.1.3 a nonlinear model was developed by adding a nonlinear compo-

nent f to the linear model proposed in [24]. Three different types of nonlinearities in f

that correspond to a change in phase, gain, and a combination of phase and gain, were

shown to result in limit-cycles. It was also shown in these sections that combustion

processes can possess mechanisms that exhibit more than one such nonlinearity. In

practice, therefore, the nonlinear phenomenon responsible for the limit-cycle behavior

may be uncertain. This implies that if a controller design relies on the structure of

f, then the accuracy of the controller and the resulting closed-loop performance can

be directly compromised by the lack of fidelity in the model. In such cases, it may be

more advantageous to use a linear controller which is designed by entirely neglecting

the nonlinearity and using the linear model only.

In Chapter 4 the ability of the linear model-based LQG controller to suppress the

thermoacoustic instability was demonstrated. Figure (5-11) shows the thermoacoustic

instability growing to the limit-cycle and the LQG controller being turned on at

300 milliseconds for the experiment. The controller suppresses the instability in 23

milliseconds, similar to linear model simulation predictions, despite the nonlinearities.

In addition to the above result, almost all of the experimental results pertaining

to active control of thermoacoustic instability reported are essentially based on linear

control strategies. That is, the phase added by the controller (whether at a particular

frequency or over a large range), does not change with the amplitudes of the system

variables. This brings up the question of why such linear strategies are successful and

what their limitations are. An answer to this question in the context of the premixed

laminar combustors using the nonlinear model will be proposed in this section.

To evaluate the performance of the linear strategies in the presence of nonlineari-

ties in the combustor dynamics, the behavior of such an LQG controller in conjunc-

tion with the nonlinear model in (5.1) in a closed-loop is evaluated. Expressing the

nonlinear function f as

f(u) = n - g(u),
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Figure 5-11: Pressure response and control input for a side-mounted loudspeaker with

D/D configuration from initial stable operating point to limit-cycle and stabilization
by the model-based LQG controller turned on at 300 milliseconds: Experimental
results with controller designed using the two-mode model.

setting b3 to zero (since b3 is much smaller than the acoustic frequencies for premixed

laminar flows), and assuming that the unsteady pressure is a function of the unstable

mode only (since the contribution of the unstable mode is significantly more than

that of the first acoustic mode), the resulting closed-loop system with two acoustic

modes can be described as (see Figure 5-12)

iif Wez (S) - g (wl'f (5.13)

where

-12 si* -- 0i=O 1i

(s) = i3 + ( se12 (5.14)

Wi (s) prpresents the stabilized closed-loop system with the linear controller, whereas

g (.) represents the deviation in f from linearity.

Under certain conditions on W (s) and g (-), it can be shown that the closed-loop

system will be stable. The following theorem summarizes these conditions:
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Figure 5-12: Stable nonlinear feedback systems

Theorem 1: If the components in the closed-loop system in Figure 5-12 are such

that

(i) WC, (s) is strictly positive real,

(ii) g(x) x > 0 for all x # 0

g (0) = 0

Then the closed-loop system is globally asymptotically stable.

Proof: The closed-loop system stability follows in a straightforward manner by show-

ing that V = xTPx is a Lyapunov function where x is the state vector of the linear

system corresponding to Wci (s), i.e.

x = Ax + bu,

y = cT x

where cT (sI - A)- 1 b = Wc1 (s) and P is the solution of the equations

ATP + PA = -Q

Pb = c



where Q is a positive-definite symmetric matrix.

When the nonlinear models of thermoacoustic instability together with a linear

controller are expressed in the form of (5.13), conditions (i) and (ii) in Theorem 1

are indeed met for the given system for all actuator and sensor locations, which is

discussed below. As seen in Eq. (5.14), Wj (s) has a relative degree of 1, with stable

poles. We, was found to be minimum-phase for all actuator and sensor locations as

well. The locations of the poles and zeros are shown in Figure 5-13 with the pa-

rameters in the model chosen as in (5.3), and the C/D actuator-sensor configuration.

The frequency response of Wj1 (s) (shown in Figure 5-14) is such that the phase is

between -90' and 900 (or -450' and -270') for all frequencies except 940 rad/sec to

1400 rad/sec. Since near the unstable frequency (3066 rad/sec) the phase is between

-90' and 900, this implies that condition (i) is satisfied. The frequency response was

similar to that shown in Figure 5-14 for all actuator-sensor configurations. It was, in

fact, observed that condition (i) holds even when the parameters were perturbed by

20% from their values chosen in (5.3). It is easily shown that for all nonlinearities in

f discussed in Section 5.1, the corresponding nonlinear functions g lie in the first and

third quadrant, implying that (ii) is also true. Therefore, it follows from Theorem

1 that the closed-loop nonlinear system in (5.13) is asymptotically stable. That is,

the nonlinear model in (5.1) can be globally stabilized by the linear controller when

f = fl, fib, f2, or f3.

To verify Theorem 1 numerically, the performance of the closed-loop system with

the LQG controller and each of the nonlinear models was evaluated through simula-

tions. The result is shown in Figure 5-15 for fl, showing the similarities between the

simulation of the linear controller on the nonlinear model and the experimental results

of the same linear controller on the combustor rig. In the simulation, the controller

was turned on at 300 milliseconds, and the linear controller is able to suppress the

thermoacoustic instability in 30 milliseconds Simulations corresponding to models fib

and f2 showed similar results as seen in Figures 5-16-5-17, where the controller was

turned on at 400 milliseconds, as well as for f3, where the controller was turned on at

500 milliseconds The controller could be turned on at any time and still successfully
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Figure 5-15: Pressure response and control input for a side-mounted loudspeaker with
D/D configuration from initial stable operating point to limit-cycle and stabilization
by the model-based LQG controller turned on at 300 milliseconds: Simulation results
using the two-mode nonlinear model fi.

suppress the instability. For example, in Models 2 and 3, the controller could be

turned on at 250 milliseconds, even though the limit-cycle had not been reached, or

at a later time after the limit-cycle was present, and still eliminate the instability.

Simulations were also carried out with the PDE of the combustion system and yielded

similar results.
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Chapter 6

Discussion and Conclusions

Active control of thermoacoustic instability will be a critical part of successful low-

emission continuous combustors in the future. A reliable method of control design is

needed to ensure that these instabilities can be suppressed over a variety of operating

conditions without the excitation of new frequencies and with minimal power from

the actuator.

Experimental studies outlined in this thesis illustrate the viability of model-based

active control for the elimination of thermoacoustic instabilities. A combustion system

model which includes the first two acoustic modes, a first order model of the heat

release dynamics, and the actuator and sensor dynamics has been successfully used

to develop control strategies which suppress the thermoacoustic instability on a 1 kW

bench-top combustor. The unstable frequency and growth rate predicted by the model

were both in close agreement with that observed experimentally. An optimal control

design, in this case an LQG controller, allows excellent performance to be achieved

with minimal control effort. Using the LQG controller, the unsteady pressure can be

reduced from 210 Pa to blower noise, a reduction of 44 dB.

Studies of the robustness of the model-based LQG controller to parametric un-

certainties and structural variations in the model indicate the degree of accurateness

required in the model for the controller to be successful. The LQG was robust to 20%

parameter perturbations, as discussed in Chapter 4.4.3. The most critical parameter

was the average temperature in the hot section, which can be measured with a fair



degree of accuracy by using a thermocouple to make measurements at a variety of

locations in the hot section and averaging them. In cases where this temperature

cannot be measured with a reasonable degree of accuracy, an adaptive control strat-

egy may be needed. Structurally, it was found that the inclusion of the unstable

acoustic mode and subharmonics as well as acoustic mode coupling were critical to

the success of the LQG controller. Neglecting the first acoustic mode in the model of

the bench-top combustor rig results in an LQG controller which has a significant de-

terioration in performance. For certain actuator-sensor configurations and controller

parameters, the LQG controller designed based on only the unstable mode results in

the excitation of a new frequency in the combustor. The absence of acoustic mode

coupling in the model has a similar effect. The LQG controller designed based on the

model which neglects this coupling has an increased settling time when tested experi-

mentally. Depending on the actuator-sensor configuration and controller parameters,

the LQG controller could result in a system which cannot suppress the unstable fre-

quency. Two factors may contribute to the performance of the LQG controller in

the face of modeling errors. These are (1) if the actuator and sensor are collocated

or not and (2) how nonminimum phase the uncontrolled combustor zeros are. The

robustness improves for a collocated actuator and sensor configuration and as the

uncontroller system zeros become less nonminimum phase.

The experimental results reported in this thesis represent the first of its kind

where a model-based controller was used for combustion control. Almost all earlier

experimental results have adopted an empirical approach where control parameters

were determined by trial and error. The results in Chapter 4 demonstrate that the

model-based approach is quite effective for a range of equivalence ratios (0.68-0.74)

and flow rates (267mL/s-400mL/s), and confirms model predictions. The inability

to suppress the instability beyond 0 = 0.74 is due to nonlinearities in both the

loudspeaker and microphone. By using an actuator and sensor with a larger linear

range, the equivalence ratios for which control is successful should easily be extended.

Combustor rigs of comparable power densities have been experimentally investigated

in [8] and [4]. The results in this thesis illustrate that a significantly faster settling



time of 23 milliseconds can be realized, which is almost a quarter of what was reported

in [4]. It is worth noting that the proposed control method does not generate any

secondary peaks while that in [8], the controller gave rise to resonances at 240Hz and

550Hz. This perhaps suggests that a model-based approach can be accomplished in

a more efficient manner and may lead to faster settling time and reduced controlled

effort. It should also be noted that the model-based control design enabled pressure

suppression from levels of 210 Pa with a 0.2W loudspeaker, compared to a 10W

loudspeaker used in [4] and a 30W loudspeaker used in [8].

A model which will be successful for control design will include enough detail

that good controller performance can be achieved, but not so much detail that model

development and control design become overly tedious tasks. It is also important that

the model and the controller designed based on this model be robust to parametric

uncertainties which will invariable exist in the system. The model proposed in this

thesis has the ability to meet all of these requirements for a one-dimensional, laminar,

premixed combustor. By modifying and refining the model, it can be easily extended

to combustion systems with more power, different actuators and sensors or more

complex combustion processes.

For the combustion system under consideration, linear controllers were successful

in suppressing the instability, despite the nonlinearities in the system. The low-order

nonlinear models described in Chapter 5 indicate that simple nonlinear components

can be added to the linear model between the velocity and the heat release rate to

create the limit-cycle behavior which is observed experimentally. Nonlinearities which

corresponded to changes in gain, phase, and a combination of the two were all shown

to result in a limit-cycle. For each of the nonlinearities proposed, the resulting system

with the inclusion of the LQG controller is asymptotically stable.

The nonlinear models proposed in this thesis have a simple structure (as shown

in Figure 5-1) with a single algebraic nonlinearity, which may not be justifiable by

actual heat release dynamics. It has been observed in [20], in fact, that multiple

dynamic nonlinearities are present in the heat release dynamics leading to a limit-

cycle behavior. Suppose one assumes that the nonlinearities are such that the closed-



loop system is of the form of (5.13), then Theorem 1 presents the set of conditions

that a combustion process has to satisfy under which a stabilizing linear controller

can be found. In practice, these conditions may not be satisfied or may not be easily

verifiable. In such cases, a nonlinear controller that can cope with the presence of

multiple dynamic nonlinearities may be required. The resulting controller may need

to include "smart" elements in that the structure of the nonlinearity may have to

be learned and adapted to on-line, which will lead to improved performance over the

linear controller for all possible models of the limit-cycle behavior.

All of the results presented in this thesis indicate the clear advantage of utilizing

a model-based control strategy for suppressing thermoacoustic instability. The next

step in developing this method is to expand the model to represent more complex flow

in the combustor. For higher power combustors, an actuator with more capability

than a loudspeaker will be needed. Modeling the effect of other actuators, such a

fuel injectors, on the combustion system and also developing a dynamic model for the

actuator itself will be necessary. The conditions under which the nonlinear dynamics

in the system are important in control design must also be studied. Careful expansion

of the model and method illustrated in this thesis will lead to the success of model-

based control design on commercial combustion systems in the future.



Appendix A

C Code for Implementing LQG

Control Experimentally

/* This program is used to acquire data using dasl800 board,

/* and is used to control the thermoacoustic instability in */

a model combustor.

/* - Compile using compact memeory model */

/* Edited in 1/12.

/* Edited 1/22 - Incorporate LQG Controller */

/* Edited 2/4 - Fixed Problems

/* Edited 2/13 - Incorporate multiple Sampling Rates */

/* Edited 8/25 - Modified for limited control input, C/D config., */

/* Edited 2/19/98 - add lh = .09, lc = .06m, Th = 550,

/* rho = .01, mu = .001

/* C INCLUDE FILES */



#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <string.h>

#include <math.h>

#include <alloc.h>

#include <process.h>

#include "dasio.h"

#define MAX 7500

/* DEFINE GLOBAL VARIABLES TO BE USED IN ISR */

int points,spoint; /* NUMBER OF DATA POINTS TO ACQUIRE */

float ADBitValue; /* A/D BIT VALUE */

float DABitValue; /* D/A BIT VALUE */

float SampRate; /* Sampling rate in KHz*/

unsigned contl, cont2; /* Variable used for setting clock */

/* Pressure measurement and output to loudspeaker */

float press[MAX], current[MAX];

/* LQG Control Algorithm Variables */

float Kl, xl, x2, x3, x4, x5, x6, x7;

float xl_n, x2_n, x3_n, x4_n, x5_n, x6_n, x7_n;

float all, a12, a13, a14, a15, a16, a17, a21, a22, a23, a24, a25;

float a26, a27, a31, a32, a33, a34, a35, a36, a37, a41, a42, a43;

float a44, a45, a46, a47, a51, a52, a53, a54, a55, a56, a57, a61;

float a62, a63, a64, a65, a66, a67, a71, a72, a73, a74, a75, a76;

float a77, bl, b2, b3, b4, b5, b6, b7;



float cl, c2, c3, c4, c5, c6, c7, d;

void main (void)

{

COUNTS Counts;

clrscr();

/* Calculate A/D and D/A Bit Values */

AD_BitValue = (float)(10.0/4096);

DA_BitValue = (float)(20.0/4096);

/* Prompt user for desired test conditions */

gotoxy (14,2);

printf("Control of Thermoacoustic Instability\n");

gotoxy (2,4);

printf("Please Enter The Sampling Rate in KHz -- > ");

scanf("%f", &Samp_Rate) ;

Counts.byte = long (500/Samp_Rate);

contl = Counts.bits.countl;

cont2 = Counts.bits.count2;

gotoxy (2,8);

printf("Enter The Number of Samples to be Taken -- > ");

scanf("%d", &points);

fflush(stdin);

set_time();

setup_AD();

set_up_DA();

GO();

reset() ;



void set_up_AD(void)

{

CONT_REG_C_REG cont_regcreg;

outp(AD_STATUS_REG, Ox00);

/* Initialization of QRAM

outp(AD_SELECT_REG,OX01);

outp(QRAM_ADDR, OXOO);

outpw(QRAM_DATA, OXOO00);

outp(QRAM_ADDR, OXOO);

for A/D reading(Ch0 and 1) */

/* Set Data Select to QRAM */

/* Initialize QRAM for CHO */

/* Set the CHO gain to 1 */

/* Reinitialize QRAM */

/* SET UP A/D CONVERSIONS IN INTERUPT MODE */

/* SET UP AS BIPOLAR, DIFFERENTIAL, DISABLE BURST MODE */

/* SET UP AS INTERNAL PACER CLOCK */

cont_reg_c_reg.bits.UB = 0;

cont_reg_c_reg.bits.SD = 0;

cont_reg_c_reg.bits.UQEN = 1;

cont_reg_c_reg.bits.CMEN = 0;

cont_reg_creg.bits.BMDE = 0;

cont_reg_c_reg.bits.SO = 0;

cont_reg_c_reg.bits.S1 = 0;

outp(CONT_REG_C, cont_reg_c_reg.byte);

/* Set Control Register B for interupt when FIFO Not Empty */

outp(CONT_REG_B, Ox40);

outp(CONT_REG_A,OX03); /* Enable A/D FIFO */
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outp(AD_SELECT_REG,OxOO);

outp(AD_STATUS_REG, 0x80);

outp(CONT_REG_B, OxcO);

outp(CONT_REGA,0X05);

I

void setupDA(void)

/* Enable A/D Conversions */

DA_CONT_C_REG da_cont_c_reg;

DA_SELECT_REGS da_select_regs;

/* Reset D/A */

outp(DA_CONT_A, Ox00);

/* Set up operation: Gain of 1, internal Software Clock */

da_cont_c_reg.bits.GNO = 1;

da_cont_c_reg.bits.Sl = 0;

da_cont_c_reg.bits.SO = 0;

outp(DA_CONT_C, da_cont_c_reg.byte);

/* Enable D/A FIFO */

outp(DA_CONT_A, 0x01);

/* Select DAC 0 for output */

da_select_regs.bits.DSL1 = 0;

da_select_regs.bits.DSLO = 0;
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outp(DA_SELECT_REG, da_select_regs.byte);

/* Enable D/A Conversions */

outp(DA_STATUS_REG, Ox80);

/* PRELOAD ZEROS TO CHANNEL 0 */

outp(DA_SELECT_REG, Ox00);

outpw(DA_OUT, Ox0000);

/* CHOOSE DA CHANNEL 0 */

/* LOAD ZEROS */

}

void set_time (void)

{

/* SET CLOCK FOR DESIRED SAMPLING RATE */

outp(CONTREG_A, Ox00);

outp(COUNTER_CLR, Oxb4);

outp(COUNTER_2, conti);

outp(COUNTER_2, cont2);

outp(COUNTER_CLR, 0x74);

outp(COUNTER_1, OxOa);

outp(COUNTER_1, Ox00);

outp(CONT_REG_A, Ox04);

outp(CONT_REG_B, Ox80);

}

void reset(void)

{
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/* RESET OUTPUT TO 0 */

outpw(DA_OUT, Ox0000);

outp(DA_STATUS_REG, Ox60);

outpw(DA_OUT, Ox0000);

outp(DA_STATUS_REG, Ox60);

outp(AD_STATUS_REG, Ox00);

outp(CONT_REG_A, Ox00);

outp(DA_STATUSREG, Ox00);

outp(DA_CONT_A, Ox00);

}

void GO (void)

{

int inpi, outda;

unsigned long i;

float time;

float pres, cur;

char string[20];

FILE *out_file;

AD_STATUS_REGS Ad_status_regs;

/* DISABLE A/D CONVERSION

/* DISABLE A/D FIFO */

/* DISABLE D/A CONVERSION

/* RESET D/A FIFO */

INITIALIZE CONTROLLER VARIABLES */

= .47;

= 0;

= 0;

= 0;

= 0;
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x5 = 0;

x6 = 0;

x7 = 0;

/* DEPENDENT ON SAMPLING RATE */

if (Samp_Rate == 10) {

all = 9.9870e-001;

a12 = 1.4957e+001;

a13 = -6.6134e+003;

a14 = 1.3168e+004;

a15 = -3.8726e+005;

a16 = 3.6471e+003;

a17 = -1.2002e+006;

a21 = 3.4144e-006;

a22 = 1.3296e+000;

a23 = -1.7516e+002;

a24 = 2.1026e+002;

a25 = 2.5116e+004;

a26 = 6.8144e+000;

a27 = 2.8241e+005;

a31 = 8.3046e-009;

a32 = 1.3636e-003;

a33 = 4.9637e-001;

a34 = 4.5497e-001;

a35 = -5.2042e+002;

a36 = 8.9667e-002;

a37 = 1.0828e+003;

a41 = 3.5691e-009;

a42 = 1.7955e-004;

a43 = 5.6625e-003;

a44 = 8.8894e-001;
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a45 = -4.4186e+002;

a46 = 4.8798e-002;

a47 = 4.6997e+002;

a51 = 7.4821e-013;

a52 = 3.1312e-008;

a53 = -6.4371e-006;

a54 = 1.6885e-004;

a55 = 1.0379e+000;

a56 = -4.4281e-006;

a57 = -9.9438e-002;

a61 = 4.9344e-009;

a62 = 1.8677e-004;

a63 = -8.1219e-002;

a64 = 1.0819e-001;

a65 = 3.4780e+002;

a66 = 9.3023e-001;

a67 = -6.9300e+002;

a71 = 2.2379e-013;

a72 = 8.7952e-009;

a73 = -3.7907e-006;

a74 = 4.6095e-006;

a75 = 1.5863e-002;

a76 = 8.4509e-005;

a77 = 7.2210e-001;

bl = 1.2629e+001;

b2 = -3.0273e+000;

b3 = -8.4162e-003;

b4 = -2.2687e-003;

b5 = 7.5480e-007;

b6 = 3.0989e-003;
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b7 = 2.7590e-006;

cl = -5.4074e-005;

c2 = -2.2996e+000;

c3 = 9.6775e+002;

c4 = -9.4836e+002;

c5 = 6.5773e+005;

c6 = -2.1398e+002;

c7 = -5.5000e+004;

d = 0;

}

else {

printf("Invalid Sampling Rate.\n");

printf("Hit any key to quit program.\n");

getch();

exit(1);

/* SET UP LOOP TO TAKE DESIRED NUMBER OF SAMPLES */

gotoxy (2,12);

printf("To start control press any key

getch();

for (i = 0; i < points; i++) {

outpw(AD_IN,OX0000); /* Initiate A/D for CHO */

while(!(inp(AD_STATUS_REG)&0x40) ); /* Wait Till FIFO Not Empty */

inpl = inpw(AD_IN);

/* CONVERT SIGNAL TO VOLTS AND STORE IN ARRAY */

press[i] = float(inpl) * AD_BitValue;
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xl_n = all*xl+al2*x2+al3*x3+al4*x4+al5*x5+al6*x6+al7*x7+bl*press[i];

x2_n = a21*xl+a22*x2+a23*x3+a24*x4+a25*x5+a26*x6+a27*x7+b2*press[i];

x3_n = a31*xl+a32*x2+a33*x3+a34*x4+a35*x5+a36*x6+a37*x7+b3*press[i];

x4_n = a41*xl+a42*x2+a43*x3+a44*x4+a45*x5+a46*x6+a47*x7+b4*press[i];

x5_n = a51*xl+a52*x2+a53*x3+a54*x4+a55*x5+a56*x6+a57*x7+b5*press[i];

x6_n = a61*xl+a62*x2+a63*x3+a64*x4+a65*x5+a66*x6+a67*x7+b6*press[i];

x7_n = a71*xl+a72*x2+a73*x3+a74*x4+a75*x5+a76*x6+a77*x7+b7*press[i];

/* CALCULATE OUTPUT TO LOUDSPEAKER */

current[i] = Kl*(cl*xl+c2*x2+c3*x3+c4x4+c5x4+c*x5+c6*x6+c7*x7+d*press[i]);

xl = xl_n;

x2 = x2_n;

x3 = x3_n;

x4 = x4_n;

x5 = x5_n;

x6 = x6_n;

x7 = x7_n;

/* CONVERTS THE DESIRED OUTPUT TO COUNTS */

outda = (int)(current[i] / DA_BitValue);

/* CHECK LIMITS OF OUTPUT */

if (outda < -2048) {

outda = -2048;

}

else if (outda > 2047) {

outda = 2047;

}

current[i] = outda*DA_BitValue;

outpw(DAOUT, outda); /* OUTPUT CURRENT ,/
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/* Initiate D/A Conversion */

outp(DA_STATUSREG, Ox60);

while (!(inp(AD STATUSREG)&0x04) );

Ad_status_regs.bits.C2TC = 0;

outp(AD_STATUSREG, Adstatusregs.byte);

}

gotoxy (2,14);

printf("Do you want to save data (y/n) ?");

if (getch () == 'y') {

gotoxy (2,16);

printf("Enter the file name : ");

scanf("s", string);

gotoxy (2,18);

printf("Enter the number of samples to be saved: ");

scanf("%i", &spoint);

outfile = fopen(string,"w");

for(i = 0; i < spoint; i++)

{

pres = press[i];

cur = current [i] ;

time = (float (i))/float (SampRate);

fprintf(outfile, "%f Xf %f\n",time,pres,cur );

}

fclose(out_file);

}

}
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Appendix B

Matlab Code for Uncontrolled

Combustor

% Program to simulate 2 mode case of continuous combustion system

% Paramters model experimental system

% Loudspeaker included in model

% Mean flow, mean heat

% Acoustic parameters

gamma = 1.4;

Tc=300;

Th=550;

c=sqrt(gamma*287*Tc)

ch=sqrt(gamma*30);

pbar = 1E+05;

rho = gamma*pbar/c^2;

lh = 0.09;

Ic = 0.06;

Specific heat ratio

Temperature in the cold section

Temperature in the hot section

Speed of sound in cold section

Speed of sound in hot section

Static pressure

Density

Length correction for hot section

Length correction for cold section
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L = .47+lh+lc; % Total acoustic length

xO = 0.26+1c; % Flame location

Leff = (.47+lh+lc)-(1-c/ch)*(L-xO); % Effective length with mean heat

aO = (gamma-l)/(gamma*pbar); X Acoustic constant

% Flame parameters

eps2 = 2;

theta = 0.5;

phi = 0.74;

dhr = 50000*1000*phi/(phi+15.6)

su = .3;

D = .053;

df = eps2*1.5E-03;

nfl = 80;

X Correction factor for flame radius

% Correction factor for velocity

% equivalence ratio

; % Heat of reaction for Propane

% Laminar burning velocity

X Diameter of combustion tube

% Diameter of flame

% Number of holes in flame holder

% Constants to simplify flame equations

bl = 4*su/df;

b2 = bl*rho*dhr*nfl*df^2/(D-2);

b3 = bl-theta*aO*b2;

X Mach number - average of cold & hot section mach number

M1 = 4.727E-4;

M2 = 2.497E-4;

Mb = (Mi+M2)/2;

X Loudspeaker Parameters
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wl = 1822;

zeta = .1;

b = 2*zeta*wl;

kl = 35.6;

Ksen = 45.3;

kl = kl/Ksen;

ubar = .16404;

% Natural frequency

% Damping ratio

% Loudspeaker gain

% Sensor gain

% Average velocity

% Actuator sensor locations

X D/D Configuration

%disp('D/D')

%xs = .062+lc;

%xa = .062+lc;

% C/D Configuration

disp('D/C')

xs = .062+lc+.125;

xa = .062+lc;

Ar = .55; % Area ratio between loudspeaker/combustor

% Assumed modes solution - Close-Open Case

k1 = pi/(2*Leff);

wl = c*kl;

k2 = 3*pi/(2*Leff);

w2 = c*k2;

E = L*0.5;

% Wave number for 1st acoustic mode

% Frequency of 1st acoustic mode

% Wave number for 2nd acoustic mode

% Frequency of 2nd acoustic mode

% Energy in the modes
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X Passive damping in system

% Flame Feedback

btl = gamma*aO/E*cos(kl*xO);

bt2 = gamma*aO/E*cos(k2*xO);

ctl = (1/gamma)*(-sin(kl*xO)/kl);

ct2 = (1/gamma)*(-sin(k2*xO)/k2);

% Actuators and sensors

bctl = gamma*Ar/E*cos(kl*xa);

bct2 = gamma*Ar/E*cos(k2*xa);

cctl = cos(kl*xs);

cct2 = cos(k2*xs);

buti = gamma*aO/E*ubar*(-kl*sin(kl*xO));

but2 = gamma*aO/E*ubar*(-k2*sin(k2*xO));

cuti = 1/gamma*ubar*cos(kl*xO);

cut2 = 1/gamma*ubar*cos(k2*xO);

zl = ((cos(kl*Leff)^2) - (cos(kl*0)^2))/(kl*E);

z2 = ((cos(k2*Leff)^2) - (cos(k2*0)^2))/(k2*E);

% Write out in state-space format

X v## just used to write out each term before combining

o States are: xl - etal, x2 - eta2, x3 - etaldot, x4 - eta2dot,

% x5 - qfprime, x6 = va (loudspeaker velocity),

% x7 - y2 where y2 = vadot - Kl*w^2*i

% (i is input to loudspeaker)

vl = -(wl^2 + bti*b2*cutl);

v12 = -btl*b2*cut2;
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v13

v14

v15

v16

v21

v22

v23

v24

v25

v26

v31

v32

v33

v34

v35

v36

Ap = [ zeros(2,2) eye(2)

vii v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

zeros(1,6) 1;

zeros(1,5) -wl^2 -b];

Bp = [zeros(2,1);

kl*bctl;

kl*bct2;

zeros(2,1) zeros(2,1) zeros(2,1);

v15 v16 bctl

v25 v26 bct2

v35 v36 0;

0;

kl;

-kl*b];
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= btl*b2*ctl - Mb*zl*wl - 2*zetcl*wl;

= btl*b2*ct2;

= -(but + btl*b3);

= btl*b2*Ar;

= -bt2*b2*cutl;

= -(w2^2 + bt2*b2*cut2);

= bt2*b2*ctl;

= bt2*b2*ct2 - Mb*z2*w2 - 2*zetcl*w2;

= -(but2 + bt2*b3);

= bt2*b2*Ar;

= -b2*cutl;

= -b2*cut2;

= b2*ctl;

= b2*ct2;

= -b3;

= b2*Ar;



% Output in Pascals (Pressure)

Cp = pbar*[cctl cct2 zeros(1,5)];

Dp = 0;

% Get rid of unobservable mode (diaphram velocity)

[Apo,Bpo,Cpo,Dpo] = minreal(Ap,Bp,Cp,Dp,.0001);

% Set Initial Conditions

% Unstable mode only

disp('unst. mode only')

fil = pi/4;

etal = 0;

etald = 0;

eta2 = 10*sin(fil)/(pbar*cos(k2*xs));

eta2d = -10*w2*cos(fil)/(pbar*cos(k2*xs));

xpo = [etal eta2 etald eta2d 0 0 0];

eig(Ap)

% Simulate Uncompensated System

tu=[O:.00001:.21;

% Initial Condition Response, Convert output back to Pa

[y,x,tu]=initial(Ap,Bp,Cp,Dp,xpo/5,tu);

figure(1)

plot(tu*1000,y,'b:');

ylabel('Pressure (Pa)')

xlabel('Time (msec)')
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title('I.C. Response of System')

figure (2)

pzmap (Ap, Bp, Cp, Dp)
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Appendix C

Matlab Code for LQG Control

Design

% Program to calculate LQG Controller

% Observer design

mu=.001;

Qo=Bpo*Bpo';

Sigma=are(Apo',Cpo'*Cpo/mu,Qo);

H=l/mu*Sigma*Cpo';

% Controller Design

rho=.01;

Qo=Cpo'*Cpo;

P=are(Apo,1/rho*Bpo*Bpo',Qo);

G=l/rho*Bpo'*P;

% Model based compensator

Ac_lqg=Apo-Bpo*G-H*Cpo;

Bc_lqg=H;

Cc_lqg= G;
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Dc_lqg=O;

% Loop

Al_lqg=[Ap Bp*Cc_lqg;

zeros(length(Ac_lqg),length(Ap)) Ac_lqg];

Bllqg=[Bp*Dclqg; Bclqg];

Cllqg=[Cp zeros(1,length(Aclqg))];

% Complementary Sensitivity

Atlqg=Allqg-Bl_1qg*C1l1qg;

Btlqg=Bllqg;

Ctlqg=Cl_1qg;

% Time response

tstep=0.0017/50;

tlqg=0:tstep:0.1;

xpo = [0 .0016 0 3.62 0 0 0 0];

% Time for simulation

% Initial conditions

Cout_lqg=[Ct_lqg;

-Dc_lqg*Cp Cc_iqg];

% Initial Condition Response, Convert output back to Pa

[y2,x2,t2] =

initial(At_lqg,Bt_lqg,Cout_lqg,[0;0],[xpo zeros(1,length(Ac_lqg))],t lqg);

yp-lqg=y2(:,1);

figure(1)

% Plot pressure and control effort versus time

up_lqg=y2(:,2);
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subplot (2, 1, 1)

plot (t2*1000,yplqg, 'c:')

xlabel('Time (msec)')

ylabel('Pressure (Pa)')

axis([0 100 -150 150])

title ('LQG Controller')

subplot(2,1,2)

plot (t2*1000,up_lqg, 'c: ')

xlabel('Time (msec)')

ylabel('Control Effort (m/sec^2)')

axis([0 100 -1000 1000])

figure (2)

% Plot poles and zeros of controller

pzmap (Ac_lqg, Bc_lqg, Cc_lqg, Dc_lqg)
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