
Image Database Retrieval With

Multiple-Instance Learning Techniques

by

Cheng Yang

B.S. Computer Science
Yale University (1997)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements
for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1998

@ 1998 Massachusetts Institute of Technology
All rights reserved

A uthor -..
Department of Electrical Engineering and Computer Science

Auaust 27. 19NS

Certified by...............................
Tomas zano-P4z

Cecil H. Green Professor of Com uter Science a d Engineering

Accepted by
Arthur C. Smith

Chairtli~~A-l Q"iait ommittee on Graduate Students

"J.;J

Image Database Retrieval With

Multiple-Instance Learning Techniques

by

Cheng Yang

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 1998, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

In this thesis, we develop and test an approach to retrieving images from an im-
age database based on content similarity. First, each picture is divided into many
overlapping regions. For each region, the sub-picture is filtered and converted into
a feature vector. In this way, each picture is represented by a number of different
feature vectors. The user selects positive and negative image examples to train the
system. During the training, a multiple-instance learning method known as the Di-
verse Density algorithm is employed to determine which feature vector in each image
best represents the user's concept, and which dimensions of the feature vectors are
important. The system tries to retrieve images with similar feature vectors from the
remainder of the database. A variation of the weighted correlation statistic is used
to determine image similarity.

The approach is tested on a large database of natural scenes as well as single- and
multiple-object images. Comparisons are made against a previous approach, and the
effects of tuning various training parameters, as well as that of adjusting algorithmic
details, are also studied.

Thesis Supervisor: Tomas Lozano-Perez
Title: Cecil H. Green Professor of Computer Science and Engineering

to my parents
Zhuping Wu and Pengxin Yang

Acknowledgments

I would like to express my deepest gratitude to my thesis supervisor, Professor Tomas

Lozano-Perez, for giving me the opportunity and support to work on this thesis, for

providing me with crucial guidance and encouragement throughout the year, and for

serving as a model of an enthusiastic teacher and a dedicated scientist. This work

would not have been possible without his help and advice.

I am grateful to Professor Eric Grimson and Dr. Tom Knight for offering me the

opportunity to study and work at MIT AI lab and for providing me with Research As-

sistantships. I also thank Professor James Duncan at Yale University for introducing

me to the fields of image processing and computer vision.

Thanks go to Oded for teaching me the Diverse Density concept and implementa-

tion details, to Aparna, Kinh, Jeremy and Tianyun for the technical discussions and

inspirations, to Jacqui for the administrative help, and to all members of the AI lab

for making a fun and enjoyable environment to work in. I would also like to thank

Bikui, Gary, Haicheng, Huijing, Xiaojun, Yibing and all my friends at MIT, at Yale

and elsewhere for the great moments we have shared in the past years.

I am forever indebted to my parents, for their unconditional love, constant support

and confidence in me, and for making me the way I am. No words are adequate to

express my gratitude to them.

Finally, I would like to thank my dear friend Jie, for her love, encouragement and

commitment to our relationship which conquered the 3,000-mile distance between us.

Contents

1 Introduction

1.1 Overview and Previous Work

1.2 The Multiple-Instance Learning Approach

2 The Diverse Density Algorithm

2.1 Background

2.1.1 Machine Learning

2.1.2 The Multiple-Instance Learning Problem

2.2 Diverse Density

2.2.1 Framework

2.2.2 Finding the Maximum

3 Adapting Diverse Density

3.1 The Correlation Similarity Measure

3.1.1 Definitions

3.1.2 Image Smoothing and Sampling

3.2 Region Selection

3.3 Weighted Correlation Coefficient

3.4 Fitting the Similarity Measure into Euclidean Space

3.5 Bag Generation and Image Retrieval

3.6 Controlling Feature Weight Factors

3.6.1 Forcing All Weights to be the Same

3.6.2 "Hacking" with Partial Derivatives for Gradient Ascent

15

15

17

23

23

23

24

26

26

28

31

. . . . 31

.. .. 31

. . . . 32

... . 36

... . 37

. . . . 39

. . . . 41

... . 42

. . . . 44

. . . . 44

3.6.3 Adding Inequality Constraints on Sum of Weights

4 Results

4.1 Experimental Setup

4.2 Comparisons........

4.2.1 Using Different Weight Factor Controlling Methods

4.2.2 Choosing Different Number of Instances Per Bag

4.2.3 Changing Feature Vector Dimensions

4.2.4 Comparing with a Previous Approach

4.3 Speeding Up Minimization Processes

5 Conclusions and Future Work

51

. 51

.... . 57

. 57

. 59

. 71

. 71

. 71

List of Figures

1-1 A Sample Picture

1-2 A Multiple-Instance Learning Algorithm: Diverse Density.

1-3 Sample Precision-Recall Curve and Recall Curve

2-1 A 2-D Feature Vector Space in Multiple-Instance Learning

Correlation Coefficient for 1-D signals

Illustration of the Smoothing and Sampling Process

More Complex Images

Images with Regions Marked

20 Possible Regions to Consider

A Sample Run of the Image Retrieval System . . .

DD Output for the Task in Figure 3-6

DD Output with Identical Weights

DD Output with Inequality Constraint and / = 0.5

4-1 Sample Natural Scene Images

4-2 Sample Object Images

A Sample Run With 3 Rounds of Training: Retrieving Waterfalls

A Sample Run With 3 Rounds of Training: Retrieving Cars . . .

Recall Curve for Figure 4-3

Precision-Recall Curve for Figure 4-3

A Somewhat Misleading Precision-Recall Curve

Retrieving Waterfall Images

... 16

. . 18

. . . 21

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

. . . 33

. . . 34

.. . 36

. . . 37

. . . 38

. . . 43

. . . 45

. . . 46

. . . 49

. . . 52

. . . 53

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

Retrieving Field Images

Retrieving Sunset/Sunrise Images

Retrieving Car Images

Retrieving Pant Images

Retrieving Airplane Images

Retrieving Car Images (4 = 0.25)

Changing 3 in the Inequality Constraint

Changing 3 in the Inequality Constraint (continued)

Changing 3 in the Inequality Constraint (continued)

Choosing Different Number of Instances Per Bag . . .

Smoothing and Sampling at Different Resolutions . .

A Comparison with a Previous Approach

A Comparison with a Previous Approach (continued)

Start Minimization from a Subset of Positive Bags . .

.. 61

. 62

. 63

. 64

. 65

. 66

.. . . . 67

. 68

. 69

. 70

. 72

. 73

. 74

. 75

List of Tables

3.1 Correlation Coefficients of Sample Image Pairs 35

14

Chapter 1

Introduction

1.1 Overview and Previous Work

While searching for textual data on the World Wide Web and in other databases has

become common practice, search engines for pictorial data are still rare. This comes

as no surprise, since it is a much more difficult task to index, categorize and analyze

images automatically, compared with similar operations on text.

An easy way to make a searchable image database is to label each image with a

text description, and to perform the actual search on those text labels. However, a

huge amount of work is required in manually labelling every picture, and the system

would not be able to deal with any new pictures not labelled before. Furthermore,

it is difficult to give complete descriptions for most pictures. Consider the picture

in Figure 1-1. One might be tempted to describe it as "river, trees and stones", but

it would not be able to respond to user queries for "water", "waterfall", "clouds" or

"white blobs in background". To make a real content-based image retrieval system,

we need some mechanism to search on the images directly.

Early approaches to the content-based image retrieval problem include the IBM

QBIC (Query-By-Image-Content) System [3], where users can query an image database

by average color, histogram, texture, shape, sketch, etc. The image database is pre-

processed with some human assistance to facilitate the search. However, image queries

along these lines are not powerful enough, and more complex queries (such as "all

Figure 1-1: A Sample Picture

pictures that contain waterfalls") are hard to formulate. Lipson et al. [8] used hand-

crafted templates to classify natural scene images. While it has been successful in

this domain, the process is difficult to automate. Recent research has paid more

attention to query by examples [1, 11, 15]. In these systems, user queries are given

in terms of positive and negative examples, and sometimes salient regions are also

manually indicated. The system then proceeds to retrieve images "similar" to the

positive examples and "dissimilar" to the negative ones.

For images, however, "similarity" is not well-defined. Many algorithms have been

proposed to compute image similarities. They typically do so by converting images

into feature vectors and using feature vector distances as a similarity measure. Grosky

and Mehrotra [4] experimented with a representation using object boundaries' local

structural features, and they used string edit-distance as a distance measure. Mehro-

tra and Gary [12] used relative positions of "interest points" along object boundaries

to represent shape, and used Euclidean distance as a distance measure. These meth-

ods are based on object recognition techniques. However, they are quite sensitive to

noise in the images, and cannot handle images where there are no distinct objects,

as in natural scenes. De Bonet and Viola [1] proposed an algorithm where images

are passed through a tree of nonlinear filters to obtain feature vectors that represent

"texture-of-texture" of the original images. It works well with natural scenes and

single-object test sets. Maron and Lakshmi Ratan [11] used simple features like a

row's mean color, color differences and color distributions among neighbors, etc, and

it works well for color images of natural scenes.

More detailed reviews of previous literature in image classification and retrieval

can be found in [7, 11].

1.2 The Multiple-Instance Learning Approach

Since the picture in Figure 1-1 can be viewed differently as "river", "waterfall",

"trees", "clouds", etc, and multiple-object images are more common than single-

object images, it is natural to have one image correspond to more than one feature

vector, each one describing one particular view (or object). In this way, each positive

or negative example translates into multiple feature vectors. After Maron [9], we call

each of these feature vectors an instance, and we call the collection of instances for

the same example image a bag.

For a positive example, at least one of the instances in the bag is a close match

to the concept the user had in mind when he or she chose the examples, but we do

not know which one. The rest of the instances in the bag are irrelevant and should

be regarded as noise. For a negative example, we know for sure that none of the

instances in the bag corresponds to the user's concept. Given the large collection of

instances from positive and negative examples, our task is to find the "ideal" feature

vector that accounts for the user's concept.

This kind of problem is known as a Multiple-Instance Learning problem [2, 9, 10].

One way to solve this type of problem is to examine the distribution of these instance

vectors, and to look for a feature vector that is close to a lot of instances from different

positive bags and far from all the instances from negative bags. Such a vector is

likely to represent the concept we are trying to learn. This is the basic idea behind

the Diverse Density algorithm, proposed by Maron and Lozano-Perez [9, 10, 11], and

is illustrated in Figure 1-2. In Figure 1-2, there are five positive examples (bags)

labelled 1 to 5 and three negative examples (bags) labelled 6 to 8. Each bag has

several instances. The feature vector space is 2-dimensional. The "ideal" feature

vector is where there is a high concentration of positive instances from different bags.

Feature Vector Space
Feature 2

0 .0
8 8

08 5

o 0
4 8

0 60

6 ° 7 7 0

08 05
0 1

0 6
9 6

04
1 0

0 1 2 1
00

3 °6

Feature 1
"Ideal" feature vector

0 Positive Examples

* Negative Examples

Figure 1-2: A Multiple-Instance Learning Algorithm: Diverse Density

Maron and Lakshmi Ratan [11] have applied the Diverse Density technique to

image retrieval problems by using image features such as color statistics and color

distribution patterns. In this thesis, we develop a new approach to solving the prob-

lem of content-based image retrieval by using Diverse Density learning techniques.

We define an image similarity measure as the correlation coefficient of correspond-

ing regions after smoothing and sampling, and further refine it by allowing different

weight factors for different locations when comparing for similarity. Based on this,

we develop a feature vector representation for images where we can use weighted Eu-

clidean distance to reflect the distance defined by our weighted similarity measure.

Multiple instances for each example image are obtained by choosing different sub-

regions of the image and generating a feature vector for each region. We show that

this approach is effective in content-based retrieval of images.

Specifically, each image in our database is preprocessed as follows:

1. If it is a color image, convert it into a gray-scale image.

2. Select some regions from the image. This will be discussed in Section 3.2.

3. Extract two sub-pictures from each region: one as the image itself in the re-

gion, and the other as its left-right mirror image. For each sub-picture, per-

form smoothing and sampling to get an h x h matrix, and treat this as an

h2-dimensional feature vector. This will be discussed in Section 3.1.2.

4. Transform each feature vector into a new one by subtracting its mean from it

and dividing it by its standard deviation. This transformation enables us to

use weighted Euclidean distance rather than weighted correlation coefficient to

determine image similarity. This will be discussed in Section 3.4.

5. For each image in our database, we have obtained a number of feature vectors

(after the transformation). Treat each one as an instance and put them together

to form a bag for the image.

In response to user selections of positive and negative example images, our system

puts together the corresponding image bags and feeds them into the Diverse Density

(DD) algorithm. The DD algorithm returns an "ideal" point in the feature space as

well as a corresponding set of feature weight values. Then the system goes to the image

database and ranks all images based on their weighted Euclidean distances to the ideal

point. (To find the distance from an image to the ideal point, it computes the distances

of all of its instances to the point, and then picks the smallest one.) It then retrieves

images in the ranked order. If the retrieval results are not satisfactory, the user may

obtain better performance by picking out false positives and/or false negatives, adding

them to the examples and training the system again. During evaluation, this part of

user feedback can also be simulated by the computer automatically.

The treatment of feature weight values in the DD algorithm affects the system

performance significantly. The original DD algorithm described in [9] tends to push

most of weight values towards zero, leaving only a few large values. This is not ideal

for the image retrieval tasks. In Section 3.6, we will discuss some modifications of the

DD algorithm aimed at controlling feature weight values.

The algorithm is tested on a large image database, and performance is evaluated

using precision-recall curves and recall curves such as the ones shown in Figure 1-

3. Precision is the ratio of the number of correctly retrieved images to the number

of all images retrieved so far. Recall is the number of correctly retrieved images

to the total number of correct images in the test database. In Section 4.2, we will

make comparisons among different schemes of controlling feature weight factors, and

will study the effects of choosing different number of instances per bag, as well as

changing resolutions for smoothing and sampling. Comparisons will also be made

with a previous approach to using DD in example-based image retrieval by Maron

and Lakshmi Ratan [11].

Chapter 2 of this thesis introduces the Diverse Density algorithm in greater de-

tail. Chapter 3 discusses our correlation similarity measure, its corresponding feature

representation and weight factor controlling methods. Chapter 4 gives experimental

details, shows the effects of modifying various parts of the algorithm, and discusses a

way to reduce training time to speed up the system.

A Recall Curve:

100 150 200 250 300 350 400
Number of Images Retrieved

A Precision-Recall Curve:

1" 0.5

0.4

0.3 -

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Figure 1-3: Sample Precision-Recall Curve and Recall Curve

22

Chapter 2

The Diverse Density Algorithm

2.1 Background

2.1.1 Machine Learning

Machine learning algorithms provide ways for computer programs to improve auto-

matically with experience [13]. This is a step further from traditional programming

approaches where the programmer has to give step-by-step instructions to carry out

computation. Sometimes the instructions for a computation can be very complex and

not easily defined. For example, what kind of credit card transactions are likely to be

fraudulent? It is hard to give a formula to determine "good" versus "bad" transaction

patterns; even if we found one, it might change over time. However, we do have a

large database of historical data of good and bad transaction records, from which the

computers can learn. Sometimes we just do not know how to give explicit instructions

to computers. For example, how do we recognize human speech and handwriting?

There must exist functions which map sound signals or handwriting image pixels to

words or letters, but we are not yet able to write them down. However, as humans,

we know how to do these things without being aware of the exact rules. And children

learn them easily not from rules, but from examples. So why not let computers learn

from us, also from examples?

In a typical machine learning problem, the task is to learn a function

In our previous examples, input values x 1, 2 , ..., Xn can be the fields in credit card

transaction records, digitized sound signals or handwriting image pixel values, while

the output y can be a boolean value (indicating "good" or "bad"), a word or a letter.

f is the function which we would like the computer to learn, so that it can be applied

to new input values. A lot of examples need to be provided to "train" the machine

learning algorithm.

In Supervised Learning, the examples are given in terms of (yi, xi, Xi2, ... X in)

tuples, where i is the index of examples: i = 1, 2, 3, ... That is, each set of input

values (xil, i 2 , X , in) is tagged with the correct label yi. In Unsupervised Learning,

however, only the tuples (xil, X 2, .i2, Xin) are given in the training examples, without

any information on yi. Between these two extremes, there are many other possible

scenarios. For example, only part of the inputs are labelled with y values; the labels

yj may be noisy, unreliable or not immediately available, etc. We are going to focus

on one of these scenarios: Multiple-Instance Learning [2, 9, 10, 11].

2.1.2 The Multiple-Instance Learning Problem

In the Multiple-Instance Learning framework that we are going to consider, all input

values are n-dimensional vectors in the form of (xil,xi2, ... , xin) and the output value

y is a real number between 0 and 1 to indicate possibility (0 for FALSE, 1 for TRUE).

In the training examples, input vectors (called instances) are not individually labelled

with its corresponding Yi value; rather, one or more instances are grouped together to

form a bag, and they are collectively labelled with a y value TRUE or FALSE. If the

label is TRUE, it means that at least one of the instances in the bag must correspond

to yi=TRUE, while others may correspond to either TRUE or FALSE. If the label is

FALSE, it means that all of the instances in the bag must correspond to FALSE.

In terms of the image retrieval problem, each positive example selected by the

user corresponds to a bag labelled TRUE, and each negative example selected by the

user corresponds to a bag labelled FALSE. A feature vector consists of n numbers

(features), each of which partially describes the image in some way, for example,

pixel values, color statistics, edge locations, etc. Redundant or irrelevant features

are allowed. Since the pictures are inherently ambiguous, we generate more than one

feature vector (instance) to describe each picture. We expect that one of these feature

vectors for each positive example would account for the concept the user had in mind

when picking the examples, and that none of them in the negative examples would

coincide with the user's concept.

We would like to train the system so that it can make predictions for new examples:

given a new example image (a bag of instance vectors), it should determine whether

it correspond to TRUE or FALSE. To allow for uncertainty, the system may give a

real value between 0 (FALSE) and 1 (TRUE).

We make a simplifying assumption that the user's concept can be represented by

a single "ideal" point in the n-dimensional feature space. A bag is labelled TRUE if

one of its instances is close to the ideal point. A bag is labelled FALSE if none of its

instances is close to the ideal point. This is illustrated in Figure 2-1. In Figure 2-1,

there are five positive examples (bags) labelled 1 to 5 and three negative examples

(bags) labelled 6 to 8. Each bag has several instances. The feature vector space is

2-dimensional. The "ideal" feature vector is where there is a high concentration of

positive instances from different bags. The probability of a bag being TRUE can be

measured by the distance from the ideal point to the closest instance vector in the

bag. [9, 10] developed an algorithm called Diverse Density, which is able to find such

a point. Not all dimensions of feature vectors are equally important, so the distance

here is not restricted to normal Euclidean distance, but may be defined as a weighted

Euclidean distance where important dimensions have larger weights. The Diverse

Density algorithm is capable of determining these weight factors as well.

Feature Vector Space
Feature 2 7

2 7
o 0

*8 8 0
08 5

o 0
4 8

18 1
67 7 o

o8 05
0 1

o 6
o 6

04
1 0

0 1 2 1
0 3

3 06

Feature 1
"Ideal" feature vector

o Positive Examples

* Negative Examples

Figure 2-1: A 2-D Feature Vector Space in Multiple-Instance Learning

2.2 Diverse Density

2.2.1 Framework

In this section, we give a brief introduction to the theory behind the Diverse Density

algorithm. A more elaborate treatment can be found in [9, 10, 11].

Following the same notations as in [9, 10, 11], we denote the positive bags as

) B+ B...,

and the negative bags as

B1 , B2, ..., B;

The jth instance of bag B' is written as B + , while the jth instance of bag B - is

written as Bj. Each bag may contain any number of instances, but every instance

must be a k-dimensional vector where k is a constant.

Ideally, the point we are looking for should be the intersection of all positive bags

minus the union of all negative bags. This is not true in reality, because of the

presence of noise and inaccuracies. Therefore, our task is to look for a point in the

k-dimensional space near which there is a high concentration of positive instances

from different bags. It is important that they are from different bags, since a high

concentration of instances from the same bag is effectively the same as one instance

at that point. In other words, we are looking for a point where there is a high Diverse

Density of positive instances.

For any point t in the feature space, the probability of it being our target point,

given all the positive and negative bags, is: Pr(t B + , ..., B+, B-, ... , B). So the point

we are looking for is the one that maximizes this probability, that is

arg max Pr(tIB+ , ..., B +, B, ..., Bi)t

According to Bayes' rule, this is equal to

Pr(Bf , ..., Bn+, Bi, ... 7 B; It) Pr(t)arg max
t Pr(B + , ... , B+, B, ... , B;)

Assuming a uniform prior over the concept location Pr(t), and since the denominator

is a constant (probability of data), the above is equivalent to:

arg max Pr(B., ... , B + , B{, ..., B; It)t

Assuming conditional independence of the bags given the target concept t, this can

be decomposed as

arg mtax Pr(B+ 't) H Pr(B- It)
i i

Again, with Bayes' rule and the assumption of a uniform prior over the concept

location, and factoring constant data probability, this becomes

arg mtax II Pr(tlB +) I Pr(tlB;)

This is a formal definition of maximizing Diverse Density. We use the "noisy-or"

assumption (see Maron [9] for motivation and discussions) that

Pr(tlB +) = 1 -II(1 - Pr(B = t))

Pr(tIB-) = II(1 - Pr(B -= t))

and make the following assumption:

Pr(Bij = t) = exp(-IBij - t 12)

where IIBij - tl is the distance between the two vectors. This is a Gaussian bump

centered on the feature vector. As we mentioned before, not all dimensions are equally

important, so we define the distance to be a weighted Euclidean distance:

IIB - t 2 = Z wk(Bijk - tk)
k

where Bijk is the kth dimension in the vector Bij. wk is a non-negative weight. (We

use w2 rather than Wk in order to force the weights to be non-negative.) Now we need

to maximize Diverse Density over both t and w. By introducing weights, we have

actually doubled the number of dimensions over which we are trying to maximize

Diverse Density.

2.2.2 Finding the Maximum

The problem of finding the global maximum Diverse Density (DD) is difficult, es-

pecially when the number of dimensions is large. The original DD algorithm makes

use of a gradient ascent method with multiple starting points. It starts from every

instance from every positive bag and performs gradient ascent from each one to find

the maximum. The idea is that, at least one of the positive instances is likely to be

close to the maximum. So if we do hill-climbing from every positive instance, it is

very likely that we will hit the maximum DD point.

We are trying to maximize over both t (feature values) and w (weight values). In

the presence of few negative instances, the original DD algorithm tends to push most

of the weights towards zero, leaving only a few large weight values. This is a form of

overfitting, and is not desirable in our problem domain. In chapters 3 and 4 we will

discuss alternate approaches, including adding constraints on the weight factors.

30

Chapter 3

Adapting Diverse Density

3.1 The Correlation Similarity Measure

3.1.1 Definitions

Given two series of sampled signals f, (t) and f 2 (t), t = 1, 2, ..., n, there is a standard

way to find out how correlated they are with respect to each other: we can compute

their correlation coefficient [16]. In its simplest form, the correlation coefficient r is

defined by

SEn 1 (fj (t) -) (f2(t - 2)

afl ah

where fi, f2 are the average values of fi (t) and f2(t), and af, afi are the standard

deviations of fl (t) and f2(t), respectively:

nn 1 f2 (t)

In

t=

af2=
n

Strictly speaking [14], in the definitions for af, af2 and r above, should be

replaced by n . But it does not matter to us. Both definitions work the same way

in the derivations of this chapter, and we choose to use I which is more convenient.n

When r = 1, the two signals are perfectly correlated (Figure 3-1(a)). When r . 0,

there is little or no correlation between the two (Figure 3-1(b)). When r = -1, the

two signals are perfectly inversely correlated (Figure 3-1(c)). If we only count positive

correlations as "similar", then r can be used as a direct measurement of similarity:

as r increases, similarity increases.

The same idea applies to two-dimensional signals, such as images, as well. The

correlation coefficient r of fi(x, y) and f 2 (x, y) (x = 1, 2, ..., n, y = 1, 2, ..., m) is

defined by:

nm xl ym i(fi(x, y) - f)(f2(x,) - 2)

af0 If 2

where

El - E yl fi(x, y)
nm

n m
E- = lEyl (f2(x, y)

nm

1 T (f(x,y) fl)2

x=1 y=l

I nm
2 ((X (f2 y) - 2))2

x=1 y=

Basically, we are just treating the m x n matrix as one big mn-dimensional vector.

For images, this is often used to measure similarities between two regions [5].

3.1.2 Image Smoothing and Sampling

In this thesis, we deal with gray-scale information only. All color images are converted

into gray-scale images first.

If we apply the correlation formula to the original images directly, on a pixel-by-

pixel basis, a shift in the image by one pixel would cause a relatively big change in the

correlation value, which is not desirable. To avoid this effect, we smooth and sample

the m x n image down to a low-resolution h x h matrix. In most of the experiments

(a) Correlation Coefficient = 1

(b) Correlation Coefficient 0

(c) Correlation Coefficient = -1

Figure 3-1: Correlation Coefficient for 1-D signals

Take average value of the block
_.

1 Ox 10 matrix after
smoothing and sampling

Figure 3-2: Illustration of the Smoothing and Sampling Process

in this thesis, we choose h = 10. Specifically, we smooth the m x n image with a

i x 2 averaging kernel and then sub-sample it to get an h x h matrix. In other

words, each entry in the resulting h x h matrix is the average gray-scale value of

a corresponding block region in the original image, as illustrated in Figure 3-2. In

Figure 3-2, the average value of block AEGC goes into the 1st entry of the 10 x 10

matrix, the average value of block BFHD goes into the 2nd entry (1st row, 2nd

column) of the matrix, and so on. Each block has a 50% overlap with any of its

neighbors. The large overlap is intended to reduce sensitivity to the choice of block

border locations.

With the above smoothing and sampling scheme and h = 10, Table 3.1 shows the

correlation coefficients of some sample object images. It can be seen that, correlation

coefficients are quite effective in measuring image similarities.

Correlation
Picture 1 Picture 2 Coefficient

0.838

0.670

0.783

0.652

0.110

0.224

Table 3.1: Correlation Coefficients of Sample Image Pairs

r

N-O Worvl -

Picture 1 Picture 2

The correlation coefficient of these two images is 0.118.

Figure 3-3: More Complex Images

3.2 Region Selection

So far we have only been concerned with single-object images, where the correlation

coefficient works well to determine similarity. This would not generalize to more

complex cases such as multiple-object images, where the object (or feature) of interest

may not be at the same position in all pictures.

In a more complex image, the object (or feature) of interest does not occupy

the whole image, but only a sub-region of the image. We would not be able to get

satisfactory results if we compared the two entire images in Figure 3-3 using the

correlation similarity measure, but we may have better luck if we compare a region

in one image against a region in the other. For example, the correlation coefficient

of the two entire images in Figure 3-3 is 0.118, while the correlation coefficient of the

two marked regions in Figure 3-4 is 0.674, indicating similarity.

Now the question is, how do we choose the regions? In fact, we do not know which

regions we should pick, since the pictures are inherently ambiguous, and any region

might become the region of interest, depending on the user's concept. This is exactly

where multiple-instance learning can help us: we can simply pick all possible regions

and let the learning algorithm take care of finding the "right" region for us.

Figure 3-5 shows 20 possible regions (as shaded areas). Conceptually, there is an

unlimited number of possible regions. When deciding the actual number of regions

to consider, there is a trade-off between the chance of hitting the "right" region and

I-iI

Picture 1 Picture 2

The correlation coefficient of the two marked regions is 0.674.

Figure 3-4: Images with Regions Marked

the amount of noise introduced. This will be discussed further in Section 4.2.2.

In most of this thesis, we only consider the 20 possible regions shown in Figure

3-5. For each region, we consider both the original image in that region and the

left-right mirror image of that region. This is because left-right mirror images occur

very frequently in image databases and we would like to regard them as the same.

Therefore, there are a total of 40 sub-pictures to consider. This translates into 40

instances per bag in the multiple-instance learning framework. Here, we do a little

optimization to throw out regions whose variances are below a certain threshold, since

low-variance regions are not likely to be interesting. Therefore, there may be fewer

than 40 instances per bag, depending on the image. For each sub-picture, we process

it with smoothing and sampling as described in Section 3.1.2, to get an h x h matrix

which we treat as an h2-dimensional feature vector.

3.3 Weighted Correlation Coefficient

Not all dimensions in the feature vector are equally important. For example, some

of them may correspond to the background in the image, and we do not want them

to carry the same weights as other dimensions. Therefore, we extend our correlation

similarity measure to allow different dimensions to have different weight factors. We

define a weighted correlation coefficient for two n-dimensional feature vectors fi and

f2 as:

:- -

Figure 3-5: 20 Possible Regions to Consider

38

£ E~ =1 w(fi(k) - fi)(f 2 (k) - f2)
1 f2

where wk is the non-negative weight for the kth dimension, fl, f2 are the average

values of f (k) and f 2(k), and a'l, a2 are the "weighted" standard deviations of

fl (k) and f 2 (k), respectively:

n
E"=1 f1 (k)

n- E1 w(f(k) - f) 2

l -- " n k=1

k=1
Of2 k=l1

3.4 Fitting the Similarity Measure into Euclidean

Space

Our similarity measure is defined as the weighted correlation coefficient on feature

vectors, rather than Euclidean distance. This is not very convenient. However, there

is a simple way to transform the vectors, so that we can use weighted Euclidean

distance directly to reflect the weighted correlation coefficients of the original feature

vectors.

Suppose that Aij is the n-dimensional feature vector we have obtained for the it h

bag, jth instance. w2 is the weight factor for the kth dimension. Define

ABij - Aj

where Aij is the average of Aij entries, and a is the "weighted" standard deviation

of A2i entries:

n=1 Aijk
'3n

L = -n Ew(Aijk - A__)2
k=1

With this definition, we are going to show that, comparing or ranking Aij vec-

tors based on weighted correlation coefficients is the same as comparing or ranking

Bij vectors based on weighted Euclidean distances in reverse order. The smaller the

weighted Euclidean distance is between Bij vectors, the higher the weighted correla-

tion coefficient is between the corresponding Aij vectors. This is formally stated as

follows:

Claim For any i, j, 1, m, p, q, u, v and weight factors {w2},

1. Corr(Aj, Aim) > Corr(Apq, A,,) if and only if IIBij - BimlI < IIBpq - B,,II

2. Corr(Aij, Aim) = Corr(Apq, A,,) if and only if IIBj - BmlI = IIBpq - BuII

3. Corr(Aj, Alm) < Corr(Apq, A,,) if and only if jIBij - Bimll > IIBpq - BuvII

where Corr(a, 0) means the weighted correlation coefficient of a and 3, and I la- I

means the weighted Euclidean distance between a and /.

Lemma For any i, j,
n

WkBijk "- n
k=1

Proof of Lemma

n
WBijk

k=1

n Aik - Ai 2

-ZW(ijk 23)
k=1 Aj

k=1 wk(Aijk -

12

Aij

=n

Proof of Claim

I Bij - Bimll
n

= w(Bijk Blmk) 2

k=1

(2 B W2 2 2
= k(w Bijk w mk

k=1

WkBijkBmk= n+n-2
k=l

n Aijk- Aij
= 2n - 2 w(ij)(

k=1 Aij

2 n w (Aij - Aij= 2n-
=Aij O-Al

= 2n - 2nCorr(Aij, Alm)

Similarly,

IIBpq - BU I = 2n - 2nCorr(Apq, Av)

and the Claim follows.

3.5 Bag Generation and Image Retrieval

Now we are ready to put everything together. For every image in our database, we

do the following pre-processing:

1. If it is a color image, convert it into a gray-scale image.

2. Select some regions from the image, according to Section 3.2. Throw out regions

whose variances are below a certain threshold.

3. Extract two sub-pictures from each region: one as the image itself in the region,

and the other as its left-right mirror image. For each sub-picture, perform

smoothing and sampling as described in Section 3.1.2 to get an h x h matrix.

Treat this as an h2-dimensional feature vector.

- 2wBijkBmk)

Almk - Alm
S m)

)(Almk - Alm)

m

4. Transform each feature vector into a new one according to Section 3.4, i.e.

subtract its mean from it and then divide it by its standard deviation. (All

weights are 1 to start with.)

5. For each image in our database, we have obtained a number of feature vectors

(after the transformation). Treat each one as an instance and put them together

to form a bag for the image.

After these steps, our image database is ready to respond to user queries. The user

is asked to select several positive and negative examples. The system puts together the

corresponding image bags of multiple-instance data and feeds them into the Diverse

Density (DD) algorithm. The DD algorithm returns an "ideal" point in the feature

space as well as a set of feature weight values which maximize Diverse Density. Then

the system goes to the image database and ranks all images based on their weighted

Euclidean distances to the ideal point. (To find the distance from an image to the

ideal point, it computes the distances of all of its instances to the point, and then

picks the smallest one.) It then retrieves images in the ranked order. If the retrieval

results are not satisfactory, the user may obtain better performance by picking out

false positives and/or false negatives, adding them to the examples and training the

system again.

Figure 3-6 shows a sample run of the system, to retrieve images that contain

waterfalls.

3.6 Controlling Feature Weight Factors

The DD algorithm finds an "ideal" feature vector t and a set of weights w to maximize

Diverse Density. For the task in Figure 3-6, we have shown the resulting t and w

values (as 10 x 10 matrices) in Figure 3-7. It can be seen that, most of the weight

factors are very close to zero, leaving only a few large weight values, which means

that we are only using a small fraction of pixels to classify and retrieve images. Since

we have very little training data, a too-simple concept based on a few pixels is likely

Positive examples

Negative examples

Top 20 retrieved images

Figure 3-6: A Sample Run of the Image Retrieval System

to work well on the training set. However, it is not likely to generalize well, especially

for complex image concepts. Although the performance in this example is reasonable,

it is just a lucky case; the system does much worse on most other cases.

To address this issue, we have tried a number of alternate approaches, which will

be discussed below.

3.6.1 Forcing All Weights to be the Same

This is the easiest modification to make. We simply force all weights to be 1 and

maximize Diverse Density over the choice of feature point t only. Figure 3-8 shows

its output on the same set of input data as used for Figure 3-7. As will be discussed

in Section 4.2.1, this approach works well on the object image database, but not very

well on the natural scene database.

3.6.2 "Hacking" with Partial Derivatives for Gradient As-

cent

When the DD algorithm looks for maximum Diverse Density in a high-dimensional

space, it uses a gradient ascent algorithm, which involves computing derivatives of the

weighted Euclidean distance function d(t, Bij) = k (tk- Bijk)2 along all directions:

Od
Ok = 2wk(tk - Bijk)

Od
= 2Wk(tk- Bijk) 2

Owk

We experimented with a small "hack" to define das

Od 1
wd = 2wk(tk - Bijk) 2 1

&Wk a

As we pick bigger and bigger a values, the gradient ascent process becomes more and

more reluctant to move along wk directions, effectively making fewer changes to the

weights. The original DD algorithm corresponds to a = 1; forcing all weights to be

Feature Vector t:

1 2 3 4 5 6 7 8 9 10

Weight Factors w:
.. .'.
S-

......
..... ' ! i.......... i

...

.......

'': "' ' -............

.......................

10 10

Figure 3-7: DD Output for the Task in Figure 3-6

Feature Vector t:

2 3 4 0 0

Weight Factors w:

2- 1.6 .

. "

1.4

1.2

1-

0.8-

0.6

0.4 -

2 ': ".... 6
02

0........0> .

10 10

Figure 3-8: DD Output with Identical Weights

the same corresponds to a = oo. If we pick a somewhere in between, such as 50, the

performance is occasionally better than both.

A problem with this method is that, it is hard to justify. We have modified -daWk

but left -d intact, and now there is no simple target function that corresponds to

these partial derivatives. Therefore, we do not know which function we are trying to

maximize. Although it sometimes works better than the original DD algorithm, we

can only say that it is just a hack, with little theoretical support.

3.6.3 Adding Inequality Constraints on Sum of Weights

Now we consider the option of constraining weight factors during the optimization

process. Without loss of generality, we require that all weight factors be between 0

and 1: 0 < wk < 1, k = 1, 2, ..., h2. (h2 is the number of dimensions in the feature

vectors.) We can limit the change in weight factors Wk by imposing the following

constraint, which sets a lower bound for the sum of weights:

h
2

Z w k > /3 f 2

k=1

where 0 is a constant between 0 and 1. When 0 = 0, there is no restriction on the

weights, and we are back to the original DD algorithm. When 0 = 1, we are forcing

all weight factors wk to be equal to 1. The restrictions on weight factors are easily

controlled by changing 3 values. For example, when 0 = 0.5, the average of weight

factors must be greater than 0.5, so no more than half of the weight factors can be

close to zero.

The simple unconstrained minimization algorithmi used in the original DD method

would no longer work to find the maximum with this new constraint. We switch to

a more powerful algorithm called CFSQP (C code for Feasible Sequential Quadratic

Programming) [6], which is capable of handling minimization problems with con-

straints. As will be shown in Section 4.2.1, this approach works well on a wide

1We often use the terms "maximization" and "minimization" interchangeably, since we maximize
DD by minimizing -log(DD).

variety of situations.

Figure 3-9 shows its output on the same set of input data as used for Figure 3-7.

Feature Vector t:

1 i 3 4 b5 6 8 9 10

Weight Factors w:

1-
0.9

0.8

0.6

0.6

0.4

0.7- .

0.

10 10

Figure 3-9: DD Output with Inequality Constraint and / = 0.5

49

. - ----l---.--C .- i- ----- lr.--- ----- -~t-- - ~-~Fr-;-l --r--s-r5--l--- ----- ~=-~?7~r~_~-~_~lr-a I~~ r- rCC--~; -- ---r~- ----

50

Chapter 4

Results

4.1 Experimental Setup

We have tested our system on two different image databases. One is a natural scene

image database, consisting of 500 pictures, 100 each for waterfalls, mountains, fields,

lakes/rivers, and sunsets/sunrises. These are taken from the COREL library, the same

database as used in [11]. Some examples are shown in Figure 4-1. The other one is an

object image database, consisting of 228 pictures from 19 different categories, such

as cars, airplanes, pants, hammers, cameras, etc. These are downloaded from the

websites of AVIS Car Rental (www.avis.com), Bicycle Online (www.bicycle.com), Con-

tinental Airlines (www.flycontinental.com), Delta Airlines (www.delta-air.com), J. Crew

(www.jcrew.com), JCPenney (www.jcpenney.com), Ritz Camera (www.ritzcamera.com),

Sears (www.sears.com) and Sony (www.sony.com). Some examples are shown in Figure

4-2.

To simulate user feedback while minimizing user intervention, we followed the

same experimental method as used in [11]:

The entire image database is split into a small potential training set and a large test

set. The correct classifications for all images in the potential training set are known to

the system. After the user selects positive and negative image examples, we generate

corresponding bags and run the DD algorithm once, and then use the results to rank

images from the potential training set. Since their correct classifications are already

Figure 4-1: Sample Natural Scene Images

52

_ __ I

aI
pf

I
Figure 4-2: Sample Object Images

known, the system can evaluate its own performance on these images without asking

the user. It can pick out some false positives and/or false negatives and add them

to the examples to train itself again. This process can be repeated more than once,

and it effectively simulates what a user might do to obtain better performance. In

most experiments in this thesis, the system picks out top 5 false positives from the

potential training set and adds them to the negative examples for a second round of

training, and then picks out another top 5 false positives and trains for a third time.

Finally it retrieves images from the larger test set.

The selection of the potential training set can be either random or pre-defined.

With random selection, a random seed allows the experiments to be repeatable. For

most experiments in this chapter, 20% of images from each category are placed in the

potential training set.

A sample run of the image retrieval system on the natural scene database is

shown in Figure 4-3, where the user wants to retrieve images that contain waterfalls.

A sample run on the object image database is shown in Figure 4-4, where the user

wants to retrieve images that contain cars.

One way to evaluate image retrieval performance is to use precision-recall curves

and recall curves. Precision is the ratio of the number of correctly retrieved images to

the number of all images retrieved so far. Recall is the number of correctly retrieved

images to the total number of correct images in the test database.

In a recall curve, we plot recall values against the number of images retrieved.

Figure 4-5 shows the recall curve for the final retrieval result in Figure 4-3. A com-

pletely random retrieval of images would result in a recall curve as a 45-degree line

from the lower-left corner to the upper-right corner. A better result is indicated by a

more convex recall curve.

In a precision-recall curve, we plot precision values against recall values. Figure

4-6 shows the precision-recall curve for the retrieval result in Figure 4-3. In this

graph, precision is 0.6 when recall is 0.15, which means: in order to obtain 15% of

all waterfalls, 40% of the images retrieved are not waterfalls. A completely random

retrieval of images would result in a precision-recall curve as a flat line at a level

User-selected positive examples

User-selected negative examples

First round - top 12 images from potential training set

(Now, 5 false positives are added to the set of negative examples.)

Second round - top 12 images from potential train set

(Again, 5 false positives are added to the set of negative examples.)

Final retrieval from test set (top 12 images)

Figure 4-3: A Sample Run With 3 Rounds of Training: Retrieving Waterfalls
Figure 4-3: A Sample Run With 3 Rounds of Training: Retrieving Waterfalls

User-selected positive examples

User-selected negative examples

First round - 12 images from potential training set

(Now, 5 false positives are added to the set of negative examples.)

Second round - top 12 images from potential training set

j

(Agai 5 false positives are added to the set of negative examples.)

Final retrieval from test set (top 18 images)

11a

Ir _Wm

Figure 4-4: A Sample Run With 3 Rounds of Training: Retrieving Cars

i
:

in,

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 -

0
0 50 100 150 200 250 300 350 400

Number of Images Retrieved

Figure 4-5: Recall Curve for Figure 4-3

indicating the percentage of correct images in the database. For our natural scene

database, it would be a flat line at 0.2. A better result is indicated by a higher

precision-recall curve. At the left end of a precision-recall curve, it is easy to see

whether the first few retrieved images are correct. The curve is flat at 1.0 until the

first incorrectly retrieved image brings it down.

If the first image retrieved is incorrect, followed by a few correct images, the

precision-recall curve would look like Figure 4-7. This sometimes gives a misleading

impression that the retrieval performance is bad, but it is not that bad after all. In

Figure 4-7, the first retrieved image is not correct, but the following 7 images are all

correct.

4.2 Comparisons

4.2.1 Using Different Weight Factor Controlling Methods

As we discussed in Section 3.6, there are different methods to control the feature

vector weight factors to prevent them from becoming too imbalanced. Using precision-

recall curves and recall curves, we compare the performance of 3 different approaches:

the original DD algorithm, DD with identical weights and DD with the inequality

0.5 -

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Figure 4-6: Precision-Recall Curve for Figure 4-3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

Figure 4-7: A Somewhat Misleading Precision-Recall Curve

constraint. Typical results for retrieving waterfalls, fields, sunsets/sunrises, cars,

pants and airplanes are shown in Figures 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, respectively.

For the inequality constraint, we choose , = 0.5. In Figure 4-11, the performance of

the inequality constraint method is not very good, but when we change , to 0.25, it

works very well (see Figure 4-14).

It can be seen that, although there is a lot of variation in the relative performance

in different experiments, the inequality constraint method works very well (best or

close to best) in a majority of test cases, especially for natural scenes. For the object

image database, sometimes forcing all weights to be the same gives the best result.

This is due to the fact that there is much less variation among objects in the object

image database, and that most of our object images have uniform backgrounds, while

the natural scenes have more variation and very noisy backgrounds.

The 3 value in the inequality constraint affects performance very much. For the

experiment shown in Figure 4-10, we vary the 3 value and show the results in Figures

4-15, 4-16 and 4-17. As , moves towards 0, the precision-recall curve tends to move

close to that of the original DD algorithm. As 3 moves towards 1, the precision-

recall curve tends to move close to that of forcing all weights to be identical. This is

consistent with our analysis in Section 3.6.3.1

4.2.2 Choosing Different Number of Instances Per Bag

Most of the experiments have been done with up to 40 instances per bag, by picking

20 different regions and taking mirror images. Figure 4-18 shows the effects of using

fewer and more instances per bag. In general, having more instances per bag means

a higher chance of hitting the "right" region. However, it also means introducing

more noise which affects DD performance. Therefore, more instances per bag do not

guarantee better performance. This is supported by Figure 4-18.

1When 0 = 0 or 3 = 1, the curve does not agree exactly with that of the original DD algorithm
or that of identical weights. This is due to the difference in the minimization algorithms used.

Recall Curve:
1

0.9

0.8

0.7

0.6

(0.5

0.4

-f

Origin

Ident

Inequ

o 50so 100 150 200 250 3
Number of Images Retrieved

Precision-Recall Curve:

00 350 400

0.5
Recall

Figure 4-8: Retrieving Waterfall Images

60

al DD

cal Weights

ality Constr.

"

II I I

Recall Curve:

Precision-Recall Curve:

0.5

0.4 -

0.3 - Ii

0.2 -

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

Figure 4-9: Retrieving Field Images

0.6

0 0.5
n.

Recall Curve:

Precision-Recall Curve:

0.4

0.3 1

0.2
.

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

Figure 4-10: Retrieving Sunset/Sunrise Images

Recall Curve:

Precision-Recall Curve:

S 0.1 0.2 0.3 0.4 0.50.5 0.6 0.7 0.8

Recall

Figure 4-11: Retrieving Car Images
Figure 4-11: Retrieving Car Images

Recall Curve:

0.5 -

0.4

0.3 Original DD

0.2 ----- Identical Weigh

0.1 . Inequality Cons

0
0 50 100

Number of Images Retrieved

Precision-Recall Curve:

0.9 Original DD

0.8 - - - - Identical Weig

0.7 Inequality Con

0.6

0.5 -

0.4

0.3

0.2 -

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

Figure 4-12: Retrieving Pant Images

Recall Curve:

1

7-

6-

5

4

S............. Original DD

24 ----- Identical Weights

1 Inequality Constr.

0
o 50 100

Number of Images Retrieved

Precision-Recall Curve:

0.3 0.4 0.5 0.6 0.7
Recall

Figure 4-13: Retrieving Airplane Images

0.5

0.4

0.3

0.2

0.1

Recall Curve:

Precision-Recall Curve:

0.4 0.5 0.6 0.7
Recall

Figure 4-14: Retrieving Car Images (o = 0.25)

cc
o0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0 .5

0.4

S= 0.0:

150 200 260 300 360
Numbero Images Rbieved

0 00 100 10S 200 250
Numnber of mages Relieved

300 350

400

0=

400

0=

0.1:

Recall

0.3:

0 100 1S0 200 2 0 300 360 400 0 0.1 0.2 0.3 0.4 0.S 0.6Nmbr of Image ebived Read

Figure 4-15: Changing P in the Inequality Constraint

67

......... Original DD

- - - - Identical Weights

Inequality 0=0.0

Original DD

- - - - Identical Weights

- Inequality 0=0.1

Original DD

-Identical Weights

- Inequality 3=0.3

r

,
r

.-

i ..- - _-tl ...

i

1, , . . .

11I ,

n I I I I

i,

"'

S= 0.4:

.9 Original DD

0. - - - - Identical Weights
I ,..

0.7 - Inequality |3=0.4

I

0.5

0.4

0 .2.

0 i ii i i i I

0

0.5:
0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9

Red

0 = 0.6:

Figure 4-16: Changing P in the Inequality Constraint (continued)

68

/

0 so 0 100 150 200 250
Number of Images Retrieved

300 350

K

Number of Images Retrieved

150 200 250 300 350
Numbr of Images Retrieved

= 0.7:
1

0.9

2

00.40i--400 0

= 0.9:

S= 1.0:

Figure 4-17: Changing 3 in the Inequality Constraint (continued)

69

r-1 1 a

SOriginal DD

- - - Identical Weights

FInequality P=0.7

11

I"v

An example of retrieving sunsets/sunrises:

0.9

0.8

0.7

0.6

- 0.5

0.4

84 instances 0o.3

---- 40 instances 0.2-

18 instances or
,0 100 10 200 200 300

so 100 150 200 250 300 350
Number of Images Retrieved

An example of

0 50 100 150 200 250 300 350
Number of Images Retrieved

An example

150 200 250 300
Numberol Images Retrieved

400 0 0.1 0.2 0.3 0.4

retrieving waterfalls:

400 0 0.1 0.2 0.3

of retrieving fields:

Figure 4-18: Choosing Different Number of Instances Per Bag

9 -

6 1

4-

.3 .. 84 instances

2 ---- 40 instances

1 18 instances

RecaHll

Recall

I

4.2.3 Changing Feature Vector Dimensions

In most experiments, we smoothed and subsampled each image region to a low-

resolution 10 x 10 matrix (a 100-dimensional feature vector) before comparing them

against each other. We can use other resolutions (i.e. feature vector dimensions)

as well. Figure 4-19 shows the effects of doing so. In many cases, as we increase

the resolution, performance first rises, then declines. The problem with a very low

resolution is that it does not give much information to compare for similarity. The

problem with a very high resolution is that it makes our correlation similarity measure

very sensitive to image shifts, and a higher resolution brings more noise. The "ideal"

resolution which gives the best performance is highly dependent on the actual images.

4.2.4 Comparing with a Previous Approach

Now we compare our system with a previous approach developed by Maron and

Lakshmi Ratan [11], which used the DD algorithm with image feature vectors of

color statistics and color distribution patterns. With the natural scene database, the

performance of our system (with either the original DD method or the inequality

constraint method) is very close to that of [11], as shown in Figures 4-20 and 4-21.

The approach in [11] has been specifically tuned to retrieving color natural scene

images, and would not work with object images. Our system makes use of only

gray-scale information from the images, and has obtained comparable results on the

natural scene database without much tuning. Furthermore, it works with a wider

range of image databases including object images.

4.3 Speeding Up Minimization Processes

The Diverse Density algorithm finds the maximum DD point by starting a minimiza-

tion process from every instance in every positive bag. However, since every positive

bag is supposed to contain an instance that is very close to the maximum DD point,

we might be able to reach the maximum by starting from only a subset of positive

An example of retrieving sunsets/sunrises:

0 50 100 150 200 250 300 30
Number of Images Retieved

An example of

0 -400 0 0.1 0.2 0.3 0.4

retrieving waterfalls:
05 0.6

Recal

50 100 150 200 250 300 350
Numberol Images Rebeve

An example
400 0 0.1 0.2 0.3

of retrieving fields:

Figure 4-19: Smoothing and Sampling at Different Resolutions

9-

I

.,8-- .9 at
.7 .

15x15 resolution

- -- 10x10 resolution

......... 6x6 resolution

,* 15x15 resolution

:, /---- 10x10 resolution
7- "......... 6x6 resolution

resolution

0 I
-I

.U,

0.7 0.8 0.9 1

.7 -

.6

.4

.3 15x15 resolution

---- 10x10 resolution

. 6x6 resolution

Recall Curve:

0.5

0.4

0.3

0.2 Our approach (original DD)

0.1 - - - Previous approach

0 50 100 150 200 250 300 350 400
Number of Images Retrieved

Precision-Recall Curve:

o.9 - Our approach (original DD)

0.85 - - - - Previous approach

0.7

0.6

0.4 -- * I

0.3-

0.2-

0.1

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Retrieving Waterfall Images
(Solid line is our original DD approach)

Figure 4-20: A Comparison with a Previous Approach

Recall Curve:

Precision-Recall Curve:

r-

0.5

0.4

0.3

0.2

0.1

0
0 0.1

(Solid line is our
Retrieving Waterfall Images
inequality constraint approach with /3 = 0.25)

Figure 4-21: A Comparison with a Previous Approach (continued)

0.5

Number of positive bags used in training (total=5 positive bags)

Figure 4-22: Start Minimization from a Subset of Positive Bags

bags. We have conducted a series of experiments in which the system picks a subset

of positive bags and starts the minimization process from all instances in those bags.

Figure 4-22 shows the performance of picking different number of positive bags as

starting points, out of a total of 5 positive bags. The performance measure in this fig-

ure is somewhat arbitrarily defined as the average precision value for recall between

0.3 and 0.4 on precision-recall curves. Other performance measures are certainly

possible; they would have generated similar comparison results as well.

It can be seen that, if we start from 2 out of 5 positive bags, the average perfor-

mance is about 95% as good as the original approach. And if we start from 3 out of

5 positive bags, the results are indistinguishable from the original. Therefore, we can

speed up the minimization processes and cut the training time significantly, without

much sacrifice in performance.

76

Chapter 5

Conclusions and Future Work

We have presented a new approach to the problem of content-based image database

retrieval, using a weighted correlation similarity measure and the Diverse Density

multiple-instance learning techniques. We have built and tested a system which

allows users to select positive and negative example images and then automatically

retrieves similar pictures from a large database. As has been shown in the test results,

this approach performs reasonably well on both natural scenes and object images.

Compared with a previous approach in [11] which was specifically tuned to re-

trieving natural scenes, our approach performs very close to theirs. Furthermore, our

approach works very well on object image databases, which [11] was not designed to

handle.

The treatment of feature space weight factors in the Diverse Density algorithm

has significant effects on the performance of our system. The original Diverse Density

algorithm gives the minimization process too much freedom, which drives most of the

weight factors towards zero, leaving only a few large values. This is not desirable in

the image retrieval domain. We experimented with several alternate approaches, in-

cluding forcing all weights to be the same, modifying weight derivatives, and imposing

different inequality constraints on the sum of weights. The system is quite sensitive

to these changes. The inequality constraint approach usually works best or close to

best, especially with the natural scene database. With the object image database,

sometimes the best results are obtained by forcing all weights to be the same. This

is due to the fact that most object images in our database have uniform backgrounds

and little variation among objects, whereas the natural scene images have very noisy

backgrounds and more variation.

We have studied the effects of putting more or fewer instances in each bag (by

choosing more or fewer regions from each picture), and the effects of changing the

number of feature vector dimensions (by smoothing and sampling image regions at

different resolutions). Having more instances per bag does not guarantee better per-

formance. Although the chance of hitting the "right" region increases as we put more

instances into each bag, more irrelevant instances lead to more noise, which makes it

more difficult for the DD algorithm to find the ideal point. On the other hand, as we

increase the number of dimensions of each feature vector, performance first rises and

then drops down in many cases. This is because a very low resolution does not give

enough information to compare for similarity, while a very high resolution adds noise

and also makes our correlation similarity measure very sensitive to image shifts.

In the original Diverse Density algorithm, minimization processes start from every

point in every positive bag, trying to find the optimal answer. Our experiments have

shown that, we can start from every point in only a subset of positive bags, and still

get a near-optimal answer. If we start from points in only 2 bags out of 5 positive

bags, the performance is about 95% as good as that of the original approach; if we

start from points in 3 bags out of 5 positive bags, the results are indistinguishable

from the original approach. Therefore, we can cut the training time significantly,

without losing much accuracy.

In Figures 3-7, 3-8, and 3-9, we showed the output values of the DD algorithm

in test cases where the system performed well. However, we have not been able

to interpret those output values in an intuitive way. One possible future direction

would be to explore those values in more detail, either to come up with reasonable

interpretations, or to improve the algorithm so that it gives more intuitive output

values which human can understand.

In Section 4.2.1, we discussed the effects of changing the , value in the inequality

constraint. As another future direction, one might want to study how to choose 0

automatically to get optimal performance.

All experiments shown in this thesis have been done on gray-scale images. Some

attempts have been made to make use of color information in color natural scene

images. We used RGB values separately and used a similar approach as we did with

gray-scale images, tripling the number of dimensions of feature vectors. No significant

improvements have been observed in this case. One other possible future direction

would be to explore the effects of alternate color representation schemes, and to test

on a larger variety of color images.

Also, one might want to try to use different feature vector representations and/or

other similarity measures. We have attempted to preprocess the images with edge

detection, and to use line and corner features in the feature vectors. However, the

results we have got are not satisfactory.

Although our system is able to handle scaling changes across images, it is not

designed to handle rotations. The correlation similarity measure can tolerate small

rotations, but large rotations of the same object would be treated as dissimilar. One

way to handle rotations would be to add more instances to represent different angles

of view for each image region, although this would mean a significant increase in the

number of instances per bag. There may be better ways, and this is yet another

possible future direction.

The difficulty of content-based image retrieval problem is partly due to the am-

biguous nature of images. The process of understanding an image is so complex that

we cannot expect to write down explicit rules on how to achieve this. On the other

hand, machine learning algorithms allow computers to learn from human users, and

they are potentially capable of handling complex concepts without much low-level

human intervention. Multiple-instance learning algorithms are specifically designed

to learn from ambiguous data, and that is why it appears promising to open up a

new direction in image retrieval research.

80

Bibliography

[1] J. S. De Bonet and P. Viola, "Structure driven image database retrieval", in

Advances in Neural Information Processing, Vol. 10, 1997.

[2] T. G. Dietterich, R. H. Lathrop and T. Lozano-Perez, "Solving the multiple-

instance problem with axis-parallel rectangles", Artificial Intelligence Journal,

89, 1997, pp. 31-71.

[3] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,

J. Hafner, D. Lee, D. Petkovic, D. Steele and P. Yanker, "Query by image and

video content: the QBIC system", IEEE Computer, Sept. 1995, pp. 23-30.

[4] W. I. Grosky and R. Mehrotra, "Index-based object recognition in pictorial data

management", Computer Vision, Graphics, and Image Processing, Vol. 52, No.

3, 1990, pp. 416-436.

[5] R. Jain, R. Kasturi and B. G. Schunck, Machine Vision, McGraw-Hill, 1995.

[6] C. T. Lawrence, J. L. Zhou and A. L. Tits, User's Guide for CFSQP Version

2.5: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Opti-

mization Problems, Generating Iterates Satisfying All Inequality Constraints, In-

stitute for Systems Research TR-94-16rl, University of Maryland, College Park,

1997.

[7] P. Lipson, Context and Configuration Based Scene Classification, Ph.D. disser-

tation, Massachusetts Institute of Technology, 1996.

[8] P. Lipson, E. Grimson and P. Sinha, "Context and configuration based scene

classification", in Computer Vision and Pattern Recognition, 1997.

[9] 0. Maron, Learning from Ambiguity, Ph.D. dissertation, Massachusetts Institute

of Technology, 1998.

[10] 0. Maron and T. Lozano-Perez, "A framework for multiple-instance learning",

in Advances in Neural Information Processing Systems, Vol. 10, 1998.

[11] O. Maron and A. Lakshmi Ratan, "Multiple-instance learning for natural scene

classification", in Machine Learning: Proc. 15th International Conference, 1998.

[12] R. Mehrotra and J. E. Gary, "Similar-shape retrieval in shape data manage-

ment", IEEE Computer, Sept. 1995, pp. 57-62.

[13] T. M. Mitchell, Machine Learning, WCB/McGraw-Hill, 1997.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical

Recipes in C: the Art of Scientific Computing, 2nd Edition, Cambridge University

Press, 1992.

[15] S. Ravela, R. Manmatha and E. M. Riseman, "Scale-space matching and image

retrieval", Proc. Image Understanding Workshop, Vol. 2, 1996, pp. 1199-1207.

[16] A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd Edition, Vol. 1,

Academic Press, 1982.

Vt -

