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Roberto Rigobon Thomas M. Stoker�
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Abstract

We show how using censored regressors leads to expansion bias, or estimated e¤ects that are
proportionally too large. We show the necessity of this e¤ect in bivariate regression and illustrate
the bias using results for normal regressors. We study the bias when there is a censored regressor
among many regressors, and we note how censoring can work to undo errors-in-variables bias. We
discuss several approaches to correcting expansion bias. We illustrate the concepts by considering
how censored regressors can arise in the analysis of wealth e¤ects on consumption, and on peer
e¤ects in productivity.

1. Introduction

When the values of the dependent variable of a linear regression model are censored, the OLS estimates
of the regression coe¢ cients are biased. This familiar fact is a standard lesson covered in textbooks
on econometrics. It has stimulated a great deal of work on consistent estimators of coe¢ cients when
there is a censored dependent variable.

In view of this, it seems surprising that very little attention has been paid to implications of
censoring of an independent variable, or regressor, in estimation of a linear model. Indeed, it would
seem that researchers encounter censored regressors as often or even more often than situations of
censored dependent variables. Consider how often variables are observed in ranges, including unlimited
top and bottom categories. For instance, observed household income is often recorded in increments
of one thousand or �ve thousand dollars, but would have a top-coded response of, say, �$100,000 and
above.�Here we are interested in what di¤erence it makes if we estimate a regression with the top-
coded income data when the correct speci�cation has income level (no top coding) as the appropriate
regressor.

We show that using a censored regressor results in expansion bias in OLS estimates of regression
coe¢ cients, namely, estimated e¤ects will be too large in absolute value.1 For instance, if income is

� Sloan School of Management, MIT, 50 Memorial Drive, Cambridge, MA 02142 USA. We have received valuable
comments from Vincent Hogan, Dale Jorgenson and Whitney Newey.

1Expansion bias is the opposite of attenuation bias, familiar from problems such as errors-in-variables or simple censored
dependent variable models.
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top-coded (or bottom-coded, or both), a positive income e¤ect will be overestimated. This fact is
straightforward to show, and several approaches for correcting it can be proposed.

When there are many regressors, the bias associated with using a censored regressor is more com-
plicated, but some useful understanding of it can be developed. We supplement general derivations
with exact formulae for the case when all regressors are normally distributed. We study an interesting
side issue, which is what bias occurs when a regressor that is measured with error is also censored.
In that case the two sources of bias work in opposite directions, and can cancel each other out. We
develop this relationship as well to show some useful trade-o¤s in these bias problems.

We note at least three approaches for correcting expansion bias in empirical work. When the form
of the distribution of the regressors is unknown, there is a semiparametric approach that appears to
be the most e¢ cient method.

We discuss how censored regressors can arise in two speci�c application areas; the estimation of
wealth e¤ects on consumption, and the estimation of peer group e¤ects on productivity. Our discussion
is intended to give concrete illustration to the ideas, and we plan to carry out applications of these
kinds as part of future research.

Expansion bias from censored regressors is a straightforward problem, but ignoring that problem
can lead to substantial mismeasurement of e¤ects. Section 2 shows how expansion bias arises, and
considers several related topics including what can be said when there are many regressors. Section 3
discusses corrections for expansion bias, Section 4 discusses the application areas, and Section 5 gives
some concluding remarks.

2. Censored Regressors and Expansion Bias

2.1. The Basic Problem

We start with bivariate regression to see the simplest form of expansion bias. Suppose that the true
model is

yi = �+ �xi + "i i = 1; :::; n (1)

where xi is the (uncensored) regressor and "i is the disturbance. We assume that the distribution of
(xi; "i) has �nite second moments and obeys E ("ijxi) = 0. Suppose that xceni denotes the censored
version of xi with bottom-coding and top-coding, as

xceni = xi � 1
�
�� � xi � �+

�
+ �� � 1

�
xi < �

��+ �+ � 1 ��+ < xi� (2)

where ��; �+ are scalars, �� < �+. In words, xceni is xi when in the range �� � xi � �+, but is equal to
the respective lower limit �� or upper limit �+ when xi falls out of that range. The question of interest
is what happens when we use xceni to estimate �; namely if we estimate the model

yi = a+ bx
cen
i + ui i = 1; :::; n; (3)

then what relation does the OLS coe¢ cient b̂ have to �?
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A picture makes the answer clear. Figure 1 shows a scatterplot of data without censoring of the
regressor. The small circles are the resulting data points when the regressor is censored at upper and
lower bounds. The estimated regression using the censored regressor clearly has a steeper slope that
the one using the uncensored regressor, because of the �pile-up�of observations at each limit. This is
what we call expansion bias. Moreover, it is clear that expansion bias would result if there was only
one-sided censoring (top-coding or bottom-coding only); that each censoring limit contributes to the
amount of expansion bias.

A more formal analysis re�ects these features as well. We begin by stating the conclusion as:

Proposition 1. Provided that 0 < Pr
�
x < ��

	
+ Pr

�
x > �+

	
< 1, we have

plim b̂ = � � (1 + �) (4)

where � > 0.

The proof of Proposition 1 is direct, and given in the following subsection (it may be skipped in a
quick reading). It shows that the relative bias is

� = �� + �+; (5)

where �� and �+ are positive terms that arise from censoring at the bottom limit and the top limit
respectively, exactly in line with Figure 1. This is the main result on censoring with bivariate regression.
After the proof, we show the size of the bias when the uncensored regressor is normally distributed,
and then we develop the bias in the context of many regressors in Section 2.2.

2.1.1. Proof of Proposition 1

Begin by de�ning the parts of xi that are omitted by censoring.

x�i =
�
xi � ��

�
� 1
�
xi < �

�� and x+i =
�
xi � �+

�
� 1
�
�+ < xi

�
; (6)

so that the true model (1) appears as

yi = �+ �x
cen
i + �x�i + �x

+
i + "i i = 1; :::; n (7)

The omitted variable bias formula then gives

plim b̂ = � �
�
1 + �� + �+

�
(8)

where ��, �+ are the auxiliary coe¢ cients from omitting x�i , x
+
i respectively, namely

�� =
Cov (x�; xcen)

V ar (xcen)
and �+ =

Cov (x+; xcen)

V ar (xcen)
: (9)
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Consider �� �rst, and assume that Pr
�
x < ��

	
> 0 (since if Pr

�
x < ��

	
= 0, then �� = 0). We

have
Cov (x�; xcen) = E (x� � xcen)� E (x�)E (xcen)

= E
�
��
�
x� ��

�
1
��
x� ��

�
< 0
��
� E (x�)E (xcen)

=
�
�� � E (xcen)

�
� E (x�)

= E
�
�� � xcen

�
� E (x�)

(10)

Each of the expectations E
�
�� � xcen

�
and E (x�) is an integral with nonpositive integrand, and each

integrand is strictly negative over a range of positive probability. Therefore, each of the expectations
is strictly negative, and their product Cov (x�; xcen) is strictly positive. We conclude that

�� =
Cov (x�; xcen)

V ar (xcen)
> 0 (11)

so that omitting x�i results in expansion bias.

Similarly for �+, we assume Pr
�
x > �+

	
> 0, and derive

Cov
�
x+; xcen

�
= E

�
�+ � xcen

�
� E
�
x+
�

(12)

Here, each of the two expectations is an integral with nonnegative integrand, and each integrand is
strictly positive over a range of positive probability. Therefore, each of these expectations is strictly
positive, as is their product Cov (x+; xcen), and we conclude that

�+ =
Cov (x+; xcen)

V ar (xcen)
> 0 (13)

so that omitting x+i also results in expansion bias. This shows Proposition 1, where � = �
� + �+.2

2.1.2. Expansion Bias with a Normal Regressor

The expansion bias � depends on various expectations over truncated distributions. Assuming a
particular distributional form will often allow the bias to be computed directly. In econometrics, the
most familiar formulae for truncated and censored expectations are from a normal distribution. In this
section we illustrate the bias assuming that the uncensored regressor x is normally distributed with
mean �x and variance �

2
x. To examine the bias at di¤erent levels of censoring, we can parametrize

using the censoring limits ��, �+, or equivalently, the probabilities of censoring p� = Pr
�
x < ��

�
,

p+ = Pr
�
x > �+

�
. We choose the latter, because of a sort of �scale free�intuition.

2 It should be noted that �� (or �+) is slightly larger than the bias term that would arise if there was only censoring
of low values (or high values). That bias term is in the form (11) (or (13) respectively) with the same numerator but
slightly larger denominator (since xcen is only censored on one side). More on this in the discussion of Figure 2.

4



The bias formulae themselves are complicated and do not admit to obvious interpretation. Because
of that, we give a brief derivation and show the formulae in Appendix A. Here we illustrate the bias
graphically.

Figure 2 gives two depictions of expansion bias. The solid line displays the two-sided bias � of (5)
under the assumption of symmetric censoring, with the same probability p� = p+ � p of censoring in
the high and low region, and is plotted against the total probability of censoring 2p. The dashed line
is the expansion bias from one-sided censoring, or top-coded data, which is plotted with the same total
censoring probability. For instance, plotted over 2p = :2 is the two-sided bias from censoring 10% in
each tail, and the one-sided bias from censoring 20% in the upper tail. For comparison, the diagonal
(2p; 2p) is included as the dotted line.

We see that the bias is roughly linear in 2p for low censoring levels, up to around 30% of the data
censored. After that the bias rises nonlinearly, but a bias that doubles the coe¢ cient value involves a
lot of censoring; 60% or more of the data.

The two-sided bias is greater than the one-sided bias over the whole range of probabilities. So, in
this sense, censoring on both sides induces more than twice the bias of censoring on one side only. This
is likely due to the fact that with two-sided censoring, the censored points are in two separated groups
and therefore have more in�uence on the estimated regression.

2.2. Expansion Bias and Several Regressors

We now study expansion bias when there are one or more regressors. We extend the model (1) to
include a k-vector or regressors zi as

yi = �+ �xi + 
0
zi + "i i = 1; :::; n (14)

where we assume that the distribution of
�
xi; z

0
i; "i

�
is nonsingular, has �nite second moments and

obeys E ("ijxi; zi) = 0. Again, we are interested in what happens when xceni is used instead of xi; so if
we estimate the model

yi = a+ bx
cen
i + c

0
zi + ui i = 1; :::; n; (15)

then how are the OLS coe¢ cients â; b̂; ĉ biased as estimators of �; �; ?

We can develop a deeper understanding of expansion bias by viewing the OLS estimation in (15)
as a pooled regression. As discussed further in Section 3, no bias is generated by observations that
are not censored, or �truncated�observations. To use this fact, it is valuable to de�ne the following
approximation device:

x
(�)
i =

8<:
�xi + (1� �) �� if xi < ��

xi if �� � xi � �+
�xi + (1� �) �+ if �+ < xi

(16)

where � transforms between the uncensored and censored regressor, as x(1)i = xi and x
(0)
i = xceni .
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We write the true model (14) in terms of x(�)i , and approximate the estimation of (15) as a pooled
regression of the three samples, the �low censored�with xi < ��, the �truncated�with �� � xi � �+,
and the �high censored�with �+ < xi. For �low censored�observations, we have

yi =

�
�+ ���

�
1� 1

�

��
+

�
� + �

�
1

�
� 1
��
x
(�)
i + 

0
zi + "i ; if xi < ��; (17)

for �truncated�observations we have

yi = �+ �x
(�)
i + 

0
zi + "i ; if �� � xi � �+ (18)

and for �high censored�observations we have

yi =

�
�+ ��+

�
1� 1

�

��
+

�
� + �

�
1

�
� 1
��
x
(�)
i + 

0
zi + "i ; if �+ < xi (19)

Denote the OLS coe¢ cients from regression yi on a constant, x
(�)
i and zi as â(�); b̂(�); ĉ(�). The

bias in those estimates is given as

plim

0@ â(�)

b̂(�)

ĉ(�)

1A�
0@ �
�


1A = [
�]
�1

2664p�
��
0BB@
���

�
1� 1

�

�
�
�
1
� � 1

�
0

1CCA+ p+
+�
0BB@
��+

�
1� 1

�

�
�
�
1
� � 1

�
0

1CCA
3775 (20)

where p� = Pr
�
x < ��

	
is the probability of �low censoring,�p+ = Pr

�
x > �+

	
is the probability of

�high censoring,�and


� = E

��
1; x(�); z

0
�0 �

1; x(�); z
0
��
=
�
p�
�� + (1� p� � p+)
trun� + p+
+�

�
; (21)

where 
�� ; 

trun
� ; 
+� are the conditional second moment matrices over the �low censoring� region

x < ��, the truncated region �� � xi � �+, and the �high censoring� region x > �+, respectively.
The bias (20) is a matrix-weighted average of the biases in the low and high censoring regions; with

expansion bias terms �
�
1
� � 1

�
from each region. As � ! 0, these bias terms explode, and so for the

approximation device to be useful, we must verify that the weights 
�� ; 

+
� shrink at the same rate.

This is easy to do. By spelling out the moments as � ! 0, it is immediately clear that

E

��
y; 1; x(�); z

0
�0 �

y; 1; x(�); z
0
��
! E

��
y; 1; xcen; z

0
�0 �

y; 1; xcen; z
0
��

(22)

so that 0@ â(�)

b̂(�)

ĉ(�)

1A!

0@ â

b̂
ĉ

1A (23)
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and


� ! E

��
1; xcen; z

0
�0 �

1; xcen; z
0
��
� 
: (24)

The bias components can be computed directly, for instance

p+
+�

0BB@
��+

�
1� 1

�

�
�
�
1
� � 1

�
0

1CCA = p+� (1� �)

0@ �+x � �+
�
�
M+
xx � �+x �+

�
+ (1� �) �+

�
�+x � �+

�
M+
xz � �+z �+

1A

! p+�

0@ �+x � �+
�+
�
�+x � �+

�
M+
xz � �+z �+

1A � 
B+ (25)

where �+ �indicates expectation over the �high censoring region�; namely �+x = E
�
x j x > �+

�
, �+z =

E
�
z j x > �+

�
, M+

xx = E
�
x2 j x > �+

�
, M+

z = E
�
zz

0 j x > �+
�
; and the weight 
+� shrinks to 0

because the variance of x(�) shrinks to 0 over that region. By the symmetries in the formulae, we have

p�
��

0BB@
���

�
1� 1

�

�
�
�
1
� � 1

�
0

1CCA = p�� (1� �)

0@ ��x � ��
�
�
M�
xx � ��x ��

�
+ (1� �) ��

�
��x � ��

�
M�
xz � ��z ��

1A

! p��

0@ ��x � ��
��
�
��x � ��

�
M�
xz � ��z ��

1A � 
B� (26)

So, as above, the overall bias in
�
â; b̂; ĉ

0
�
is the sum of biases generated by the low and high censoring

region,

plim

0@ â

b̂
ĉ

1A�
0@ �
�


1A = � � 
�1
0@ p�

�
��x � ��

�
+ p+

�
�+x � �+

�
p���

�
��x � ��

�
+ p+�+

�
�+x � �+

�
p�
�
M�
xz � ��z ��

�
+ p+

�
M+
xz � �+z �+

�
1A = B� +B+: (27)

where B� and B+ are de�ned in (25) and (26).

We can easily interpret these formulae in the �no correlation�case. Suppose �z = 0 and that z
is mean independent of x. Then ��z = �+z = M�

xz = M+
xz = 0, and 
 is block diagonal (partitioned

according to (1; xcen); z). Consequently, there is 0 bias in the z coe¢ cient ĉ, and
�
â; b̂
�
behave as

though z were not in the equation for estimation. If further, E (xcen) = 0 (which implies �� < 0 < �+),
then we have

plim â� � = � �
�
p�
�
��x � ��

�
+ p+

�
�+x � �+

��
; (28)
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and

plim b̂� � = � �
�
p���

�
��x � ��

�
+ p+�+

�
�+x � �+

��
V ar (xcen)

: (29)

The bias in the intercept â consists of a negative �low censoring�term and and a positive �high censoring�
term. For b̂ there is positive expansion bias term from both low and high censoring (as consistent with
Proposition 1). In a �symmetric censoring� case with p� = p+; ��� = �+, and ���x = �+x , the
intercept bias is exactly o¤set, plim â� � = 0. The slope b̂ contains equal expansion bias terms from
low and high censoring; plim b̂� � = � � 2 � p+ �+

�
�+x � �+

��
V ar (xcen).

For the case with correlation, the exact bias formulae are too complex to admit clear interpretation.
However, we can learn from expanding the bias in terms of the censoring probabilities, as follows. Here
we examine the �high censoring bias�B+, and an analogous development can be carried out for B�.
Suppose there is a single variable z with �z = 0, and we now take �x = 0. Now, through a very tedious
calculation, the bias B+ can be written as terms linear in p+ and terms of higher polynomial order in
p+. Dropping the higher order terms, we have

B+ �= � �
p+

MzzMxx � (Mxz)
2

0B@
�
MzzMxx � (Mxz)

2
� �
�+x � �+

�
Mzz�

+
�
�+x � �+

�
�Mxz

�
M+
xz � �+�+z

�
Mxx

�
M+
xz � �+�+z

�
�Mxz�

+
�
�+x � �+

�
1CA (30)

where Mxx = E
�
x2
�
;Mxz = E (xz) and Mzz = E

�
z2
�
are unconditional (and uncensored) second

moments. For p+ small, this should be a very good approximation (since (p+)k, k � 2 is much smaller
than p+). Let �x =

p
Mxx; �z =

p
Mzz denote the unconditional standard deviations of x and z and

let �xz denote their correlation coe¢ cient.

The approximate bias term for the intercept â is �p+
�
�+x � �+

�
,which is the same form as in (28).

For b̂ and ĉ, the biases are:

plim b̂� � _ �p+
�
�+
�
�+x � �+

�
� �xz

�x
�z

�
M+
xz � �+�+z

��
(31)

and

plim ĉ�  _ �p+
�
�x
�z

�
M+
xz � �+�+z

�
� �xz�+

�
�+x � �+

��
(32)

where the positive proportions are from (30) and are therefore approximate.

To interpret these terms, suppose that x and z are positively correlated overall (�xz > 0), positively
correlated within the �high censored�region (within covariance C+xz > 0), and that �

+ > 0. Given this,
we have �+

�
�+x � �+

�
> 0 and M+

xz � �+�+z = C+xz +
�
�+x � �+

�
�+z > 0. So, the approximate biases

are each di¤erences of positive terms. They can be interpreted as follows. Since x and z are positively
correlated, in OLS estimation z will proxy some of the role of the censored values of x. Therefore, for
b̂, we see that (31) consists of the positive expansion bias term of (29), less a positive term due to z�s
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Bias of: Correlation
Truncation -90% -50% 0% 50% 90%ba 0.1% 0.1% 0.1% 0.1% 0.1%

1% bb -0.4% 0.7% 0.8% 0.7% -0.4%bc -0.4% -0.1% 0.0% 0.1% 0.4%ba 3.3% 4.2% 4.3% 4.2% 3.3%
20% bb -11.5% 12.3% 14.5% 12.7% -10.3%bc -8.0% -2.6% -0.2% 2.3% 7.7%ba 7.2% 11.9% 12.5% 12.0% 7.4%
40% bb -23.2% 26.1% 32.2% 27.2% -21.4%bc -14.9% -6.5% -0.5% 5.6% 14.5%ba 14.2% 29.7% 32.3% 30.1% 14.3%
60% bb -27.2% 52.2% 65.9% 54.2% -25.6%bc -20.2% -11.7% -0.9% 10.3% 19.9%

Table 1: Coe¢ cient Biases: Two Regressors with One Censored.

role as a proxy for the censored values of x: Similar terms arise for ĉ in (32) in the reverse positions; a
positive bias arises because z proxies the censored values of x, less a term arising from the expansion
bias of the coe¢ cient for the uncensored x values.

It is interesting to note that the net biases can go either way depending on the correlation between
x and z. For a small correlation, the expansion bias in b̂ will be evident, and a negative bias in ĉ arises
in response to that. For a large correlation, the positive expansion bias in b̂ can be wholly reversed,
and with a positive bias arising for ĉ. In that case, it appears that z is doing a better job of proxying
for x than the censored xcen is.

To clarify the intuition of the previous derivation we performed a Monte Carlo exercise. We assumed
that x; z and " are normally distributed,3 and computed OLS estimates for di¤erent degrees of (top-
coding) censoring and di¤erent correlations between x and z. Summary results are given in Table 14

and the full results are displayed in Figures 3 to 5.

As can be seen in the Figure 3 and Table 1, the bias on the intercept â is always positive (for top-
coding) and it is sizeable. For example, if 20 percent of the observations are censored there is a bias of
roughly 4 percent. For the coe¢ cient b̂ of the censored regressor xcen, the results are in line with the
intuition we developed before. Namely, at low and moderate levels of correlation between x and z, there
is a clear expansion bias, but as the correlation becomes high, the bias turns negative. The highest bias
occurs at zero correlation, and it decreases with as absolute value of the correlation increases. For the
coe¢ cient ĉ of the other regressor z, bias and correlation have a monotone relationship. Positive bias
arises for positive correlation and negative bias for negative correlations, with larger levels of censoring
implying larger biases in absolute terms. This also is in line with the intuition above. In any case, we
feel these results suggest that the biases introduced by the censoring of a regressor can be large and

3We set � = 1, � = 0:5, and  = 0:75, took the variances of x and z to be the same and equal to half the value of the
variance of ".

4 In line with (15), â is the estimated intercept, b̂ is the estimated coe¢ cient on the censored variable x and ĉ is the
estimated coe¢ cient of the other variable z.
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economically signi�cant.

2.3. Expansion Bias and Errors-in-Variables

We close this section with a curiosity about censoring regressors that are measured with error. Errors-
in-variables cause attenuation bias whereas censoring regressors causes expansion bias, the opposite.
So it is natural to consider correcting for errors-in-variables by censoring the variable measured with
error.

Consider the bivariate model

yi = �+ �wi + "i; i = 1; :::; n (33)

where
xi = wi + �i (34)

and "i, �i and wi are mutually uncorrelated: If we estimate

yi = a+ b
�xi + �i i = 1; :::; n; (35)

then we have the standard result that

plim b̂� = � (1� �) ; � =
Var (�)
Var (x)

: (36)

However, if we further censor x as above, and estimate

yi = a+ bx
cen
i + ui i = 1; :::; n; (37)

then we have
plim b̂ = � (1� �) (1 + �) (38)

Provided (1� �) (1� �) = 1, or
� =

�

1� � (39)

then the errors-in-variables bias will have been corrected by the censoring.

It is not clear how practically useful this fact is, since to know how much to censor would require
knowing how much error variance there is (and then it could be corrected directly). But we �nd it
an interesting connection, and it suggests some other questions. Does correcting a certain attenuation
bias require a great deal of censoring or very little? Is one of these bias problems of a di¤erent order
of magnitude than the other?

Figure 6 sheds light on these questions for a normal regressor. It shows the level of censoring required
to correct each level of attenuation bias. Speci�cally, it is assumed that there is two-side symmetric
censoring (p low and p high censoring), and it plots the total censoring probability 2p against the
relative error variance � underlying the zero bias condition (39). It shows that the probability of
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censoring 2p needs to be a larger than the error variance � but not a great deal larger. For instance,
slightly less than 40% total censoring would be needed to correct the bias implied by 30% relative error
variance. In any case, the impact of censoring a certain percentage of the data can be thought of a
slightly smaller than the impact of an error variance of the same level, in the opposite direction.

In any case, it is clear that errors-in-variables bias can be counteracted by the censoring the regres-
sor. This does raise questions about survey design. Suppose that a variable is measured with error and
that error is likely higher for the top range of the variable - for example, hours spent in tra¢ c, gallons
of beer consumed, etc. In this circumstance it is possible some degree of top-coding would make sense
as part of survey design. In any case, there may be some practical impact to the interplay of censoring
with errors-in-variables.

3. Correcting Expansion Bias

There are at least three broad approaches to correcting expansion bias that are useful to discuss. The
�rst approach is to focus on the distribution of the regressors, assuming a speci�c form that allows
the bias terms to be identi�ed. The bias terms could then be estimated (or simulated), and the OLS
coe¢ cients adjusted by the bias estimates. This approach has the usual proviso about distributional
assumptions in econometric work �namely there is usually not a great deal of guidance as to what
structure should be assumed, especially in multivariate settings. However, it is worthwhile to note
that since the regressors are observed, assumptions on their distributional structure are (potentially)
testable. For instance, to validate the assumption that the regressors are multivariate normal, one
could apply goodness-of-�t tests to check whether the censored regressor is distributed as a censored
univariate normal.

The second approach is to eliminate the problematic data. That is, estimation can be done on the
truncated sample with �� < xceni < �+, where all observations with censored data have been deleted
from the sample. As we noted in Section 2.2, the OLS estimators from the truncated sample will be
unbiased and consistent estimators of the true coe¢ cients. Because the censored data is informative,
one would expect an e¢ ciency loss from this approach, but it is so simple to do that it is probably good
empirical practice to always compute the estimates from the truncated sample for comparison. This
approach also illustrates an important di¤erence between the censoring of a regressor and the more
familiar problem of censoring a dependent variable. Dropping all censored observations of a dependent
variable does not avoid the bias in OLS coe¢ cients.

The third approach is to augment the speci�cation of the regression equation to remove the source
of the bias. Consider the case of many regressors. The true model is

yi = �+ �x
cen
i + 

0
zi + �x

�
i + �x

+
i + "i i = 1; :::; n (40)

where
x�i =

�
xi � ��

�
� 1
�
xi < �

�� and x+i =
�
xi � �+

�
� 1
�
�+ < xi

�
: (41)

Expansion bias arises from omitting x� and x+. For correction, we can add to the equation the parts
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of x� and x+ that are correlated with the included regressors; as in

yi = �+ �xceni + 
0
zi + �E

�
x�jxcen = xceni ; z = zi

�
(42)

+�E
�
x+jxcen = xceni ; z = zi

�
+ ei

where ei � "i��E (x�jxcen = xceni ; z = zi)��E (x+jxcen = xceni ; z = zi) is uncorrelated with xcen and
z.

Let�s examine these correction terms in a bit more detail. First, we have

E
�
x�jxcen = xceni ; z = zi

�
= 0 if xceni 6= �� (43)

� f� (zi) if xceni = ��

and

E
�
x+jxcen = xceni ; z = zi

�
= 0 if xceni 6= �+ (44)

� f+ (zi) if xceni = �+

So, the terms are nonzero only for the censored observations, but for those points, they are functions
of zi that are determined by the joint distribution of x and z. As before, if we assume a speci�c form
for the joint distribution of x and z, we could derive and/or estimate the functions f� (�) and f+ (�).

Treating those functions as unknown, we have a fully semiparametric model

yi = �+ �x
cen
i + 

0
zi + �f

� (zi) d
�
i + �f

+ (zi) d
+
i + ei, i = 1; ::; n (45)

where d�i � 1
�
xceni = ��

�
and d+i � 1

�
xceni = �+

�
indicate the censored points. As long as p� > 0,

p+ > 0, 1� p� � p+ > 0, the model is identi�ed. In heuristic terms, we can identify �, � and  with
the truncated data, the function f� (zi) from yi � �� ��� � 

0
zi for the low censored points, and the

function f+ (zi) from yi�����+�
0
zi for the high censored points. The model (45) is is very similar

to partially linear models as originally studied by Robinson(1988), and estimation can be approached
by series expansion, within-di¤erencing or a variety of other techniques. We do not go into the details
of these methods here, but we will analyze them in subsequent research.5

It is useful to consider whether there are �quick-�x�methods to recommend for empirical practice.
Since f� (zi) and f+ (zi) are unknown functions, an initial idea is to approximate them by linear
functions. This amounts to allowing the regression parameters to vary between the truncated data,
the low censored data and the high censored data. This is accomplished by adding d�i , d

�
i zi, d

+
i , d

+
i zi

to the list of regressors. This should help remove some of the bias in the coe¢ cients of 1; xceni and zi.

Are linear approximations likely to be good in this problem? The functions f� (zi) and f+ (zi) are
unknown and so there is no real substitute for a fully semiparametric approach to estimating them.
However, it is useful to return once again to the case of a multivariate normal distribution and see how

5Yatchew (2003) contains coverage of partially linear models and many references. Schmalensee and Stoker (1999)
analyzes U.S. gasoline demand using partially linear models, with bivariate nonparametric structure.
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�linear�f� (zi) and f+ (zi) are. Taking z to be a single variable for simplicity, under the assumption
that (x; z) are joint normal, f� (zi) and f+ (zi) are easily derived. We present the formulae in Appendix
A.

Figure 7 plots these functions assuming that x and z are standard normal, with a correlation of
.5. The function f� (zi) is based on 10% low censoring, and f+ (zi) is based on 20% high censoring.6

The functions are not wildly nonlinear over the substantive range of z density, but they are not linear
either. So here some nonlinear terms would be necessary for a good approximation. In general, a
semiparametric method would allow more arbitrary shapes to be captured, and one could perform
tests for the function shapes implied by joint normality.

4. Situations where Censored Regressors are Endemic

This paper is our �rst writing on censored regressors, and we are in the process of developing appli-
cations where censored regressors are prevalent and where empirical �ndings may have been greatly
impacted by their presence. We now describe some of the areas we plan to study as part of future
research, to give more concrete illustration to the issues we have been discussing.

4.1. The E¤ects of Wealth on Consumption

In recent years, many developed countries have witnessed tremendous expansions in consumption ex-
penditures at the same time as substantial increases in household wealth levels.7 This has fueled great
interest in the measurement of the e¤ects of wealth on consumption decisions.

Consider �rst the issues associated with studying how consumption reacts to changes in �nancial
wealth, say with a stylized model:

Ci = �+ � � INCi +  � FWi + "i i = 1; :::; n (46)

where Ci is consumption, INCi is income and FWi is a measure of �nancial wealth, such as the value
of stock and bond holdings. Now, it is very common that income is top-coded, producing the kind
of censored regressor bias that we have discussed. But also, measures of �nancial wealth are often
bottom-coded re�ections of actual wealth, because of problems in measuring or capturing debt levels.
That is, using only positive components of wealth, such as actual stock and bond holdings, generates
a censored regressor problem of the same style as that generated by top-coded income. Since income

6We choose di¤erent values to illustrate how the shapes of the functions can vary. It is easy to verify that the
same amount of low and high censoring (here ��� = �+) gives the functions as negative re�ections of one another,
�f� (�z) = f+ (z) :

7During the 1990�s there were multiyear expansions in consumption in the US and the UK (among others). During
the same time, the total wealth of Americans grew more than 15 trillion dollars, with a 262% increase in corporate equity
and a 14% increase in housing and other tangible assets (see Poterba (2000) for an excellent survey). Housing prices
increased in both countries as well.
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and measured wealth tend to be positively correlated, wealth (and income) e¤ects will tend to be
overestimated.

In fact, published estimates of the elasticity of consumption with regard to �nancial wealth seem
large. With aggregate data, estimates in the range of 4% but up to 10% can be found, varying with
the type of asset included and the time period under consideration.8 With individual data, estimates
tend to be larger,9 such as 8%. In any case, we plan to investigate whether the censored character of
income and �nancial wealth can help account for the magnitude of these estimates.

These issues are greatly exacerbated when one adds consideration of housing wealth, as in.

Ci = �+ � � INCi +  � FWi + � �HWi + "i i = 1; :::; n (47)

where HWi is housing wealth. Even when housing wealth is accurately measured, the censoring of
income and/or �nancial wealth will cause the e¤ect of housing wealth to be overestimated. In fact,
estimates of the marginal propensity to consume out of housing wealth elasticity are in the range of
18%, which again seems quite large.10 It would be interesting to understand how much of this e¤ect
could be due to censored regressor problems.

It is worth mentioning that estimates of wealth e¤ects are of substantial interest to economic policy.
A key issue of monetary policy is how much aggregate demand is a¤ected by changes in interest rates.
In addition to the direct e¤ects on consumption, it is obvious that interest rates will a¤ect housing
wealth as well as �nancial wealth. A substantial impact of wealth on consumption, either through
enhanced borrowing or cashing out of capital gains, will be a big part of whether interest rates are
e¤ective or not. In any case, understanding these connections is crucial for the design of e¤ective
monetary policy.11

4.2. Minimum Wage and Peer E¤ects

Here we consider how peer e¤ects in productivity are studied, as in Borjas (1994), Card et. al. (1998),
and others. In this work, it is typical to use the average wage of the peer group as a proxy for the ability
level of the peer group. This introduces error-in-variables structure in the standard way. However,
if minimum wage rules are binding for some groups, then there is a censored regressor problem. As

8Laurence Meyer and Associates (1994) �nd an elasticity of 4.2 percent, Brayton and Tinsley (1996) �nd 3 percent,
Ludvigson and Steindel (1999) estimate an overall elasticity of 4 percent (as well as some estimates as high as 10 percent).

9Using the PSID, Parker (1999) concludes that the elasticity of household expenditures to household net worth is
approximately 8 percent (although the PSID has few households with large �nancial wealth holdings). Juster, Lupton,
Smith and Sta¤ord (1999) and Starr-McCluer (1999) �nd slightly smaller coe¢ cient, but still larger than the ones obtained
from aggregate data.
10See Aoki, et. al. (2002a, 2002b) and Attanasio, et. al. (1994), among others. Somewhat smaller estimates are given

in Engelhardt (1996) and Skinner (1996).
11See Muellbauer and Murphy (1990), King (1990), Pagano (1990) Attanasio and Weber (1994) and Attanasio et. al.

(2003), for various arguments on the connection between consumption and housing prices. In terms of whether assets
prices should be targeted as part of monetary policy, see Bernanke and Gertler (1999,2001), Cecchetti et. al. (2000) and
Rigobon and Sack (2003).
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discussed in Section 2.3, the �censored regressor�bias will be in the opposite direction to the "errors-
in-variables�bias.

For concreteness, consider the model:

Yi = �+ �Hi + "i; i = 1; :::; n (48)

where Yi is the variable of interest12 and Hi stands for ability of the individual of the peer group.
Suppose Wi is the true wage of the peer group that is correlated with ability, as in

Wi = Hi + �i (49)

"i and �i are standard innovations, assumed to be uncorrelated.

Now, if true wage Wi is observed and used as a proxy for ability Hi, as in

Yi = �+ �
�Wi + �

�
i ; (50)

then there is a pure errors-in-variables problem. Proper instruments could be used to obtain consistent
estimates. However, suppose that there is a minimum wage constraint, so that observed wage is in
fact

W cen
i =W � 1 [Wi < W ] +Wi � 1 [Wi �W ] (51)

In this situation, the regression
Yi = �+ �W

cen
i + �i; (52)

has errors-in-variables and a censored regressor. As discussed in Section 2.3, the attenuation bias from
errors-in-variables can be counteracted by the expansion bias from the censored regressor.

5. Conclusion

The fact that censored regressors generate expansion bias was a big surprise to both authors. We
noticed the phenomena in some simulations, and were able to understand the source pretty easily.
In fact, it is a completely straightforward point, as Figure 1 can be explained to students with only
rudimentary knowledge of econometric methods. Nevertheless, we don�t feel that it is a minor problem
for practical applications. Quite the contrary, we feel that problems of censored regressors are likely
as prevalent or more prevalent than problems of censored dependent variables in typical econometric
applications.

We feel that we were able to make some progress in understanding the structure of expansion bias.
Sure, the �many regressor�formulae are complicated �in what problem are they easy? �but we were

12Examples of Yi include own wages, hours worked, decisions of �nancing, decisions of participation in �nancial markets
or labor markets, etc., or any decision that is a¤ected by peer considerations. As with out discussion of consumption,
applications would include control variables, which we abstract from for this discussion.
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able to see how the censoring issues transmit across regressors. We were able to get a sense of the
severity of the biases using formulae and simulations from normal distributions, and a side comparison
to the biases that arise from errors in variables.

But the real value of this material will be decided by how well expansion bias can be isolated in
actual applications. Here, we are quite hopeful. There is a correction method which is easy to
implement, understand and interpret �drop the censored points and see what happens. And, there
is a straightforward semiparametric approach for using all the data, including the censored points.
While we are not yet at the point of having a well tried "set of instructions" for implementing the
semiparametric approach, we expect to generate one as a byproduct of doing applications ourselves.
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A. Appendix: Formulae for Normal Regressors

We �rst present the formulae for expansion bias when the uncensored regressor is normally distributed,

namely x � N
�
�x; �

2
x

�
. These formulae follow from standard expressions for the mean and variance

of a truncated normal distribution (c.f. Green (2003), chapter 22, among many others), and we denote

the standard normal density as � (�) and the standard normal c.d.f. as � (�). It is clear that we can
parameterize the bias formulae equivalently in terms of the censoring points ��; �+ or the probabilities

p� = Pr
�
x < ��

	
; p+ = Pr

�
x > �+

	
; as

p� = �

�
�� � �x
�x

�
; 1� p+ = �

�
�+ � �x
�x

�
(53)

are fully invertible to

�� = �x�
�1 �p��+ �x; �+ = �x��1 �1� p+�+ �x (54)

We choose the p�; p+ parameterization to facilitate some points in the text.

Recall that

xceni = xi � 1
�
�� � xi � �+

�
+ �� � 1

�
xi < �

��+ �+ � 1 ��+ < xi� ; (55)

x�i =
�
xi � ��

�
� 1
�
xi < �

�� and x+i =
�
xi � �+

�
� 1
�
�+ < xi

�
: (56)

We some initial results

E
�
x�
�
= ��x�

�
��1

�
p�
��
� p��x��1

�
p�
�

(57)

E
�
x+
�
= �x�

�
��1

�
1� p+

��
� p+�x��1

�
1� p+

�
(58)

E
�
x�
�2

=

( 
1�

�
�
��1 (p�)

�
(p�)2

2

�
�
�
��1 (p�)

�
��1 (p�)

p�

!
(59)

 
�
�
�
��1 (p�)

�
p�

� ��1
�
p�
�!29=; � �2xp�

E
�
x+
�2

=

( 
1�

�
�
��1 (1� p+)

�
(p+)2

2

+
�
�
��1 (1� p+)

�
��1 (1� p+)

p+

!
(60)

 
�
�
��1 (1� p+)

�
p+

� ��1
�
1� p+

�!29=; � �2xp+
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E
�
xcenx�

�
=
�
�x�

�1 �p��+ �x� ���x� ���1 �p���� p��x��1 �p��	 (61)

E
�
xcenx+

�
=
�
�x�

�1 �1� p+�+ �x� ��x� ���1 �1� p+��� p+�x��1 �1� p+�	 (62)

The bias is computed by substituting (57)-(62) in the following:

E (xcen) = �� E
�
x�
�
� E

�
x+
�

(63)

Cov
�
x�; xcen

�
= E

�
xcenx�

�
� E (xcen)E

�
x�
�

(64)

Cov
�
x+; xcen

�
= E

�
xcenx+

�
� E (xcen)E

�
x+
�

(65)

V ar (xcen) = �2x + �
2
x � E

�
x�
�2 � E �x+�2 (66)

�2E
�
xcenx�

�
� 2E

�
xcenx+

�
� [E (xcen)]2

�� =
Cov (x�; xcen)

V ar (xcen)
and �+ =

Cov (x+; xcen)

V ar (xcen)
: (67)

with the expansion bias given as �� + �+.

For the regression correction terms of Section 3, assume that x and z are multivariate normal with

means �x, �z, variances �
2
x, �

2
z and covariance �xz. De�ne � = �xz =�

2
z and !

2 = �2x � �2�2z. Then it
is straightforward to show that

f� (z) =
�
�x � �� + � (z � �z)

��
�

�
�� � �x � � (z � �z)

!

��
(68)

�!�
�
�� � �x � � (z � �z)

!

�
and

f+ (z) =
�
�x � �+ + � (z � �z)

��
1� �

�
�+ � �x � � (z � �z)

!

��
(69)

+!�

�
�+ � �x � � (z � �z)

!

�
where � (�) is the normal density and � (�) is the normal c.d.f.
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Figure 1: Expansion Bias
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Figure 2: Expansion Bias by Probability Censored
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Figure 3: Bias: Intercept
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Figure 4: Bias: Coe¢ cient of Censored Regressor
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Figure 5: Bias: Coe¢ cient of Uncensored Regressor

25



Figure 6: Errors-in-Variables and Expansion Bias: Normal Regressor
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Figure 7: Regression Correction Terms: Normal Regressors
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