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Abstract

The controlled autoignition (CAI) engine is an engine concept that features very low soot and
NOx emissions while achieving diesel-like efficiency. The CAI combustion process is
characterized by a fast, volumetric burn of a premixed fuel and air mixture that is heavily diluted
with either excess air or burned gas. One problem that limits the engine's introduction into the
market is that the rate of combustion can be fast to the point that it is very loud and is destructive
to the mechanical components of the engine. The nature of this problem is akin to spark-ignition
knock and presents a high-load limit to the operating range. Misfire presents a second high-load
limit.

This work seeks to understand how various engine parameters affect the high-load knock limit
and the high-load misfire limit of a CAI engine operating in the negative-valve-overlap mode.
Valve timing, and therefore trapped residual gas fraction, turbocharging, intake air heating, and
exhaust gas recirculation (EGR) are all explored for their effects on the high load limit. A single-
cylinder research engine is used to assess each of these effects. 91 RON gasoline is used for all
tests.

The first part of the study explores the effects of boost, intake air temperature, and trapped
residual fraction on the rate of pressure rise, which was used as the metric for knock, and on
NIMEP. It was shown that if operation is constrained by maximum pressure rise rate (PRRmax),
the maximum load condition always lies at the misfire limit. The dependencies of misfire on
boost, intake air temperature, and residual fraction were also explored.

The second part of the study examined how the use of EGR affected the high-load limit. Again,
the high-load limit, constrained by maximum pressure rise rate, was maximized at the misfire
limit. Varying boost and intake temperature did not materially change the high load limit because
the misfire limit and the PRRmax changed simultaneously in such a way that the NIMEP at the
new limit point did not change appreciably from the original value. Correlations were developed
for the misfire limit, for the burn duration, and for combustion phasing.
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Nomenclature

SI- Spark Ignition
CAI - Controlled Auto-Ignition
HLL - High Load Limit
FTP - Federal Test Procedure
CFR - Cooperative Fuels Research
HCCI - Homogeneous Charge Compression Ignition

Engine Timing:
CAD - Crank Angle Degree
BDC - Bottom Dead Center
TDC - Top Dead Center
ABC - After Bottom Center
BBC - Before Bottom Center
ATC - After Top Center
BTC - Before Top Center

Combustion Metrics:
NIMEP - Net Indicated Mean Effective Pressure
BMEP - Brake Mean Effective Pressure
RPM - Revolutions per Minute
COV of NIMEP - Coefficient of Variation of NIMEP
PRRmax - Maximum Pressure Rise Rate
COV of PRRmax - Coefficient of Variation of PRRmax
ISFC - Indicated Specific Fuel Consumption
EGR - Exhaust Gas Recirculation

Burn Duration:
SOC - Start of Combustion
EOC - End of Combustion
CA10 - Crank Angle when 10% of the fuel mass has burned
CA50 - Crank Angle when 50% of the fuel mass has burned
CA90 - Crank Angle when 90% of the fuel mass has burned
BD10-90% - Duration from CA10 to CA90
LTHR - Low Temperature Heat Release (sometimes called the Cool Flame)
HTHR - High Temperature Heat Release

Experimental Techniques:
LDA - Laser Doppler Anemometry
LIF - Laser Induced Florescence
PLIF - Planar Laser Induced Florescence
RCM - Rapid Compression Machine



Chapter 1 Introduction

The controlled auto-ignition (CAI) engine has garnered much interest recently for its better

fuel economy and lower oxides of nitrogen (NOx) emissions compared to the spark-ignition (SI)

engine. In CAI combustion, the fuel and air are premixed and then compressed to the point of

auto-ignition, resulting in a fast, volumetric burn. The comparatively short burn, the ability to

operate unthrottled, and the use of a higher compression ratio contribute to efficiency gains. A

higher compression ratio may be possible because this combustion process is not limited by

spark-ignition knock although the limit is still constrained by the rate of pressure rise. The CAI

engine produces much less NOx because of low combustion temperatures since the charge is

either highly lean or dilute with exhaust.

1.1 Challenges

Two significant challenges slow this engine's path to market. First, to achieve the high

temperature necessary for auto-ignition, a great deal of residual gas is trapped, perhaps 60%,

from one cycle to the next. This means that the combustion characteristics of one cycle depends

heavily on the combustion characteristics of the previous two or three cycles, thus making

transient control difficult. Next, several factors limit the operating range of this combustion

process. The low-load limit is governed by a misfire limit. Fuel rate determines, in part, the

temperature of the residual gas. If the residual gas temperature is not hot enough, the charge will

not attain a high enough temperature for auto-ignition. As this misfire limit is approached, cyclic

torque variations and unburned hydrocarbon and CO emissions increase as well. A WAVE

simulation result from Morgan Andreae's Ph.D. thesis is reprinted in Figure 1.1 in which

compression temperature at 30* BTC is plotted against residual mass fraction. The result shows

that as residual fraction is increased past 57%, compression temperature drops eventually below

a critical temperature for auto-ignition [1].

The high-load limit (HLL) is governed by two phenomena. First, the heat release rate can be

fast to the point that pressure waves develop thus causing the engine structure to vibrate. This

results in unacceptable noise as well as conditions that might damage the engine. This engine

knock occurs because a burning kernel of gas expands faster than the rate at which the cylinder

volume can equilibrate pressure. Misfire can determine the HLL, as well. In this scenario, the



residual gas fraction is decreased to allow an increase in air and therefore fuel and load. As the

fraction of residual gas is decreased, the trapped energy in the charge can become insufficient to

initiate autoignition.
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Figure 1.1. Compression Temperature at 30' BTC vs. Residual Fraction. Compression temperature drops below a
critical temperature for auto-ignition both at high residual gas fraction levels and low residual gas fraction levels.

As shown in Figure 1.1, compression temperature 30" BTC drops as residual fraction is

decreased from 57%. Eventually, it drops below a critical threshold where the charge is not hot

enough to initiate combustion. Note that there is substantial uncertainty in this critical

temperature. This critical temperature would depend heavily on fuel chemistry. Also, the critical

temperature is a function of availability of oxygen, which is why it is curved. For turbocharged

and supercharged engines, usually the HLL is dominated by knock.

One strategy to use CAI combustion in an automobile application is for an engine to operate

as a dual mode SI-CAI engine, using the spark-ignition process during engine start and during

high load operation [2]. If controlled effectively, the engine could dynamically switch back and

forth seamlessly between combustion modes. The occurrence of a CAI high-load limit is

unfortunate because it limits the range of operation in the CAI mode; hence, the CAI benefit is

not fully utilized. Furthermore, if SI combustion is required for high-load operation, the

compression ratio must be kept low to avoid SI knock, which limits the efficiency benefits of



implementing CAI combustion. In Figure 1.2, a second-by-second load/speed map of the U.S.

Federal Test Procedure (FTP) Urban Fuel Economy Drive Cycle is plotted with a typical CAI

operating regime overlaid.
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Figure 1.2. Second-by-second operating points on the engine map for the FTP Urban Fuel Economy Drive Cycle
with a typical CAI domain overlaid. [3,4]

The CAI operating regime comprises approximately 40% of the operating points showing that

there is considerable room for expansion of the operating regime [3,4].

1.2 Project Focus
This project focuses on identifying and quantifying the factors that constrain the HLL of a

gasoline CAI engine under turbocharged conditions. The thesis features experimental work on a

single-cylinder research engine. Boost pressure, intake temperature, valve timing, and exhaust

gas recirculation (EGR) will each be varied to explore their effects on the high-load knock limit

and the high-load misfire limit. Phenomenological models incorporating the data will be

presented.
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1.3 Previous Research
Researchers have approached the high load limit issue from several directions. Groups have

attempted different methods to extend the high load limit. Other research efforts have centered

on understanding CAI knock phenomena. Researchers have also demonstrated considerable

success in simulating CAI combustion with detailed chemical kinetics models as well as with

empirical ignition delay models. Experimental work has been undertaken to detail the nature of

the charge before ignition as well.

1.3.1 Attempts to Abate CAI Knock
Turbocharging has been proposed by several groups as a means of extending the high load

limit of the engine. By boosting, the engine operates at a higher charge density which allows the

work output to be increased while maintaining the level of dilution or even increasing it. The

high dilution level is presumed to help retard the heat release process [5, 6].

Others view controlling the stratification of the mixture as a viable way to control the rate of

pressure rise. Sj6berg and Dec, for example, have focused recently on using direct injection to

develop a mild stratification in the charge so as to reduce the pressure rise rate at high load [7].

Urata et al., however, reported increased COV of IMEP, NOx emissions, and indicated specific

fuel consumption (ISFC) with their direct injection strategy versus their port fuel injected

strategy [8].

A few groups have used a combination of trapped residuals and exhaust gas recirculation to

mitigate knock. The latter lowers the mixture temperature because it acts as a low temperature

diluent. The level of trapped residuals depended on valve timing so the amount of trapped

residuals could be changed on a cycle-by-cycle basis despite the slower timescale of varying the

EGR level. Cairns and Blaxill studied combustion over a wide range of speeds and loads in a

multi cylinder engine with EGR and residual trapping. They found that EGR delayed ignition,

prolonged combustion, and extended the knock limit [9]. Sjiberg and Dec found that EGR, in

concert with varied boost and fuel chemistry, could be effectively used to foster consistently a

strong low-temperature heat release [10].

Researchers at Stanford University have pursued a strategy of "residual-effected" HCCI

combustion in which burned gas is exhausted from the engine and then drawn back into the

engine during the induction process. This allows the burned gas to cool some during its time



outside the cylinder and provides a way to reduce charge temperatures compared with a residual

gas trapping strategy via negative valve overlap with some success [11-13].

A number of groups have viewed the CAI combustion process as an alternative to the diesel

process with significantly less NOx emissions. They, therefore, simply tolerate the higher rates

of pressure rise, the higher maximum cylinder pressures, and the engine noise that are associated

with CAI engine knock [14, 15].

1.3.2 Efforts to Understand CAI Knock
A number of researchers have focused efforts directly on understanding the CAI knocking

phenomenon. They first drew on the large volume of research on spark-ignition engine knock

[16]. Especially pertinent was Draper's work of 1938 that related the audible knock to the in-

cylinder pressure oscillations. He determined theoretically which vibrational "drum" modes

described the oscillation frequency of the gas [17]. Eng noted in 2002 that while researchers had

mainly focused on the rate of pressure rise as a metric to determine knock intensity, they are not

proportional. He defined a ringing intensity I based on the gas composition, maximum cylinder

temperature, maximum cylinder pressure, and maximum rate of pressure rise, as in Equation 1.1.

dp )2

I ~ 1 dtmax (1.1)
2y Pm

Here, I denotes ringing intensity. dP/dtmax is the maximum pressure rise rate (PRRmax); Pmax is

the maximum cylinder pressure. y is the ratio of specific heats; Tmax is the maximum cylinder

temperature; R is the universal gas constant, and f relates the amplitude of the acoustic wave to

the pressure rise rate [18]. The following year at Lund University, Vressner et al. showed that

most of the oscillation energy comes from the first of the "drum" modes [19].

Andreae et al. studied the sound emanating from the engine to the in-cylinder pressure trace

with the purpose of developing a useful limit for engine knock based on engine parameters. They

noted that PRRmax could be used as a good metric to determine the knock threshold. By plotting

the audible wave power versus the PRRmax, they noticed a "knee" in the data at 5MPa/ms. They

concluded this would be an appropriate knock limit for the practical purpose of defining an upper

boundary to the engine operating range [20].



1.3.3 Combustion Simulation Efforts
Complementing experimental efforts on the subject, Aceves and collaborators developed a

multi-zone detailed chemical kinetics model for CAI combustion and emissions. They noted that

the effects of in-cylinder turbulence can be largely neglected during combustion allowing

considerable modeling success with less effort than for diesel or SI combustion. The Aceves

model predicted maximum pressure, burn duration, and indicated efficiency to within 10% but

yielded much greater error for HC and CO emissions predictions [21]. Yelvington and Green

built upon their progress to make a model that was computationally faster and that focused on

determining the limits to the operating range. Their knock limit was based on the criterion that in

a knocking cycle a burning parcel of gas expands faster than the speed of sound. Local high

pressures can develop, causing the parcel to expand faster than its pressure can equilibrate to the

pressure of the rest of the mixture. These result in resonant pressure waves that can become sonic

if the local pressure rise rate becomes very fast. They proposed the following criterion to

determine if a cycle will knock.

= L(Y-1) q <1 (1.2)
7 PUsound

If f is less than 1, knock is not predicted (not the same f as in Eng's work). L, is the

characteristic length scale of the charge inhomogeneities. y is the ratio of specific heats. p is the

gas pressure; Usound is the speed of sound for the mixture, and q is the rate of heat release of the

parcel of gas. They compared their model to experimental results from Oakley et al. and found

that they underpredicted the onset of knock. They note that their model is quite insensitive to

variations in charge temperature and pressure but more sensitive to fuel type and charge

composition. The most likely source of error was a conservative estimate of heat release rate [22,

23] Angelos et al. extended this work to simulate combustion during transients [24].

1.3.4 Combustion Phasing Modeling
Researchers have had success modeling the timing of auto-ignition reactions in rapid

compression machines, knock in SI engines, and autoignition in CAI engines by using global

reaction rate models. The basis for such a chemical kinetics model is briefly described. More

depth can be found in An Introduction to Combustion by Turns and in an Introduction to

Physical Gas Dynamics by Vincenti and Kruger [25, 26]. To start from collision theory for a



bimolecular reactions, the reaction rate for the reaction of Equation 1.3 would take the form of

Equation 1.4.

A + B -, C + D (1.3)

d[A]
d -k[A][B] (1.4)

dt

Here, k is determined by the probability of a collision ZAB, the energy required for a reaction to

take place, which is the exponential term, and a steric factor P taking into account the orientation

of the molecules taking part in the collision, as in Equation 1.5.

k=Z--P - Ex A (1.5)

Here, EA is the activation energy. The probability of a collision is dependent on the particle speed

C and the mean free path 2, as in Equation 1.6. Formulas for the particle speed and the mean free

path are given in Equations 1.7 and 1.8.

ZA = (1.6)

C- = (1.7)

1 = (1.8)

In Equations 1.7 and 1.8, k is the Boltzmann constant. T is temperature. m and d are the mass and

diameter of the particle. n/V is the number density of the particles. Combining Equations 1.4

through 1.8, the reaction rate for a bimolecular collision can be taken to be Equation 1.9.

d[A] -[A][B] exp - E A  (1.9)
dt JT RT

This sort of equation has been used to fit global reaction rates to experimental data, but the

equation's form must be modified for this use. Combustion reactions are not strictly bimolecular

so if Equation 1.9 was to be used as the form of a global reaction rate, then exponents would be

added to the concentration terms and the pressure term to fit this model to experimental data, as

in Equation 1.10.

d[fel] = -al [fuel]a2 [O2 ]a exp RT(1.10)
dt - e (1.10)



From this basis, researchers fit experimental data by defining an ignition delay r, as the time

from a reference point before combustion starts to the time when autoignition takes place as in

Equation 1.11. However when applied to a rapid compression machine experiment, this formula

was found to be only valid for narrow temperature ranges and pressures [27, 28].

oc al p2 exp A (1.11)
RT )

Livengood and Wu showed in 1955 that the ignition delay for an auto-ignition reaction could

be described by integrating this ignition delay from the starting time to the time of autoignition to

describe the phenomenon, as in Equation 1.12.

t=tC[X, ] fc 1
= dt = 1.0 (1.12)

[XPIC t=0

In Equation 1.12, [xp] is the concentration of products, and [xp]c is the critical concentration

of products required for autoignition. When the concentration of products reaches this critical

value, the integral evaluates to 1, and autoignition takes place. They successfully applied this

technique to auto-ignition data from a rapid compression machine experiment, to spark-ignition

knock, and to "motoring data" which was essentially CAI combustion [29].

The strategy for using the integral of Equation 1.12 is to find the constants in Equation 1.11

for a particular fuel using a rapid compression machine where the integral is not necessary since

P and T are constant after the initial compression. Then, once the constants are known, the

integral could be used to predict autoignition timing in a knocking spark-ignition engine or at

least to give comparisons between operating conditions.

In 1978, as a part of a spark-ignition knock study, Douaud and Eyzat used this Livengood-

Wu integral with their data set to solve for the three constants with a least squares technique

from the spark-ignition data directly [30]. This method appeared to obviate the need for a rapid

compression machine to estimate what the correlation constants should be.

More recently, the necessity of predicting combustion phasing in CAI operation has become

widely acknowledged, and various research groups have begun attacking the problem from

different angles. It became apparent that there was a paucity of ignition delay data for the fuels

and operating conditions found in CAI combustion. He et al., among others, conducted a rapid

compression machine experiment in 2005 to describe the ignition delay characteristics of iso-

octane at relevant conditions and published the empirical formula as stated in Equation 1.13.
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Here, (p is the equivalence ratio, and X02 is the oxygen mole fraction [31].

Shahbakhti, Lupul, and Kock in 2007 used a modified knock integral based on Livengood's

and Wu's work to predict combustion phasing for a CAI engine. They fit a model to simulation

results and to experimental data featuring varied EGR, varied intake temperature, varied

equivalence ratio, two speeds, and three fuels. They designed their model to use IVC data to

predict SOC timing, as in Equation 1.14.

9sov bPvC dO= 1.0 
(1.14)

0c Aoexp bT(Pcv2c)
cv nc-1

where vc ()- V( A= CEGR+C2

Here, co is engine speed, and C1, C2, b, n, n, and x are constants to be fit to the data. This model

features the advantage that it incorporates controllable engine parameters such as the EGR rate.

However, the predicted trend for SOC with the modified knock integral method does not match

the simulation result trend for SOC over the operating conditions explored, particularly at late

combustion phasing [32].

Yates and Viljoen extended the logic of the Livengood-Wu knock integral for combustion

phasing to two-stage ignition. They proposed simply adding two ignition delay integrals to

describe combustion as in Equation 1.15.

12
tI dt + dt = 1 (1.15)

to  h,i t 'h,CF

The low temperature heat release (LTHR) (termed cool flame in the paper) is described by the

first integral and the high temperature heat release (HTHR) is the second. Th,i is the initial

ignition delay, and Th,CF is the ignition delay starting at the LTHR. Although no experimental

data is presented in this work, the simple formulation and associated logic fit the detailed

chemical kinetics model well [33].



1.3.5 Energy Release Rate Modeling
In 1983, Najt and Foster studied CAI combustion in a cooperative fuels research (CFR)

engine with EGR and three different fuels, and they proposed a simple equation to describe the

average energy release rate during combustion. They considered combustion to happen in three

distinct but overlapping steps listed in Equation 1.16: 1.) the conversion of alkanes to alkenes, 2.)

the conversion of alkenes to carbon monoxide and water, and 3.) the conversion of CO to CO 2.

Fuel + 02 - alkene + H20 (1) (1.16)

Alkene + 02 - CO + H20 (2)

CO + 0 2 4 C0 2  (3)

Najt and Foster noted that fuel and fuel radicals compete successfully against CO for OH since

the second reaction in Equation 1.17 is much faster - possibly several orders of magnitude faster

- than the first reaction.

CO + OH - CO 2 + H (1.17)

F + OH - F + H20

They concluded that the reaction rate is limited by CO/H 20/O 2 kinetics rather than fuel

consumption reactions and cite the semi-global reaction rate for CO2 in Equation 1.18 from

Dryer and Glassman as the basis for an overall reaction rate model [34].

d[C0 2] = 1014.6 exp -40,000 [CO]1 .[02 ]0.25 [H 2 0]o0.5o (1.18)
dt RT

A CAI engine experiment by Sjaiberg and Dec in 2003 further supports the claim of the different

speeds of the reactions in Equation 1.17. They enleaned the mixture until the burn was

consistently quenched. Large amounts of CO were produced, thus illustrating the slowness of the

first reaction in Equation 1.17 [35]. Najt and Foster replaced the CO and H20 terms of Equation

1.18 with a fuel term assuming all of the CO and H20 participating in the reaction come from the

fuel. The convert the species terms to moles and then replace the resulting volume term with the

clearance volume VCL. They defined a Delivery Ratio DR as the amount of inducted air per cycle

divided by the possible amount of air to fit in the displaced volume at 311K and 1 atm. They then



reform the equation in terms of delivery ratio and equivalence ratio. Finally, they find constants,

C and Eave, based on a least-squares analysis from their experimental data, as in Equation 1.19.

1.5DR'. 75  -E
AERR = C 1DR75 ave (1.19)

CL.75 RTave

AERR is the Average Energy Release Rate defined in fuel mass per unit time as the average burn

rate from CA25 to CA75. The resulting fit describes the general trend of the experimental data of

all three fuels tested [36]. It should be noted that this relationship does not account for thermal

stratification effects so the resulting correlation should be interpreted as an empirical fit.

1.3.6 Charge Stratification
Early analysis of the behavior of CAI combustion concluded that the overall reaction rate

was much slower than predicted by chemical kinetics models for a single zone of well mixed

fuel, air, and diluent. It was evident that the charge was not well mixed, and that temperature

and/or concentration variations in the charge were substantial enough for a staged combustion

event to take place. Consequently, the simulation efforts of Aceves et al. and Yelvington and

Green have had considerable success modeling combustion by dividing the charge into 10 zones

with a predetermined temperature distribution. These zones burn in series according to their

individual temperatures [21, 22].

Temperature Gradients in the Bulk of the Charge

Several groups have made progress characterizing the nature of charge stratification and its

impact through experimental work. A particularly insightful study conducted by Rothamer et al.

illustrated the distribution of residual gas and temperature at the end of compression in a very

lean, low residuals scenario and in a lean, high trapped residuals scenario. The engine was

constructed so that wide two-dimensional optical access was possible through the piston, and a

planar laser induced fluorescence (PLIF) technique was used to gain information on the spatial

distribution of residuals and temperature in the plane parallel to the piston. Images for residuals

and for temperature taken at 1540 BBC compression, 1200 BBC compression, and 240 BTC

compression are reprinted for their low residuals operation condition in Figure 1.3 and for the

high residuals condition in Figure 1.4. In the low-residuals scenario in Figure 1.3, there are clear

pockets of residuals at the 1540 picture, as this is during the induction event. Temperature

variations reflect the location of residual gas.
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However, by the end of compression, in (c) and (f), the charge is homogeneous to within the

limits of visual inspection. Their data for high residuals operation paint a different picture.

Picture (a) in Figure 1.4 shows that most of the charge is residual gas since this occurs before
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IVO. Once the intake air has been inducted, a clear high residuals/hot zone is established in the

upper half of the pictures in (b) and (e). By the end of compression, in (c) and (f), there are still

zones of high and low residual and high and low temperature. The authors note that the

temperature variations do not correlate to residual gas concentrations at the end of compression

as their reprinted joint probability distribution function plots show in Figure 1.5 [37]. Adiabatic

mixing is apparently an inappropriate assumption for the compression process.
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Figure 1.5. Joint Probability Distribution Functions. (a) I = 0.29, low residual operation and for (b) P = 0.82, high
residual operation. Reprinted from Rothamer et al. [37].

In 2006, Lim et al. conducted a rapid compression machine experiment where they compared

autoignition of a thermally stratified charge to a more homogenous charge for air-fuel mixtures

using n-heptane and iso-octane. They used a series of thermocouples to measure the initial

temperature distribution, and they used a chemiluminescence technique to optically track

combustion both spatially and temporally. Their stratified charge exhibited a temperature

deviation of 25K, and their homogeneous charge exhibited a deviation of 10K before

compression. The average gas temperatures were held equal to one another. They observed the

stratified charge ignite earlier and burn slower. The hot zone of the stratified charge was hotter

than the warm zone of the homogeneous charge so ignited sooner, but the colder zone of the

stratified charge featured more of a delay than the cooler zone of the homogeneous charge. The

maximum rate of pressure rise was observed to decrease by 27% with this stratification.

Comparable series of chemiluminescence images are reprinted in Figure 1.6 to illustrate the



difference burn characteristics [38]. Lim et al.'s experiment shows how even a modest

temperature gradient can result in significantly different burn characteristics.

1 2 3 4 5 6 7 8
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Figure 1.6. RCM Chemiluminescence Images from Lim et al. The upper series features a spatial temperature
difference of 10K whereas the lower series features a difference of 25K [38].

Rothamer's work illustrated that for NVO operation, hot zones and zones of a high

concentration of residuals will persist until the end of compression. Lim' s work illustrated that if

there is a strong temperature stratification, it will advance combustion but slow down the burn in

an RCM. In 2006, Kakuho et al. combined both concepts in an engine experiment by establishing

a strong temperature gradient and illustrating its effects on combustion. Separate air intake lines,

each with an electric heater, fed the two intake ports, and the intake port temperatures were set to

be equal in a base case, to yield a difference of 150K in a second case, and to yield the opposite

temperature difference in a third case. Each condition featured the same average temperature.

The engine featured low swirl motion. PLIF was used to assess the charge temperature during

compression, and a high speed camera was employed to observe the progress of combustion. A

key observation about their established temperature distribution was that the charge remained

thermally stratified, retaining a AT of 50K at 100 BTC. Next, they observed that combustion of

the stratified charge started earlier and burned for a longer time than for the homogeneous case,

just as in Lim's RCM experiment. The photographs of combustion confirmed that the burn

started in the hot zone of the stratified charge and propagated to the cold zone [39].

Dec et al. conducted a chemiluminescence study to characterize charge stratification as well.

They concluded also that thermal charge stratification plays a significant role in combustion

phasing and burn duration. They noted also that most of the charge burns in the bulk so

stratification in the bulk was pivotal to burn duration [40].



Wall Temperature Effects

In 2001, Hultqvist et al. studied the velocity and thermal boundary layer with laser-doppler

anemometry (LDA), LIF, and numerical modeling. They operated a high compression ratio

engine with low residual trapping, burning natural gas. By observing spatially and temporally the

depletion of fuel during combustion, they observed combustion slow as it neared the wall. They

concluded that a thermal boundary layer existed with a thickness of 1-2mm during combustion

[41]. This thickness is consistent with the thickness estimated in a one-dimensional heat transfer

model reported by Borman and Nishiwaki [42].

Sjiberg et al. explored whether the wall temperature could be used to mitigate high heat

release rates in an experimental engine study in 2004. They compared conditions where the wall

temperature was set to 1000C and then to 50C to vary convective heat transfer and therefore the

temperature distribution in-cylinder. They also presented a third condition where the intake air

swirl ratio was significantly increased as another means of increasing heat transfer to the walls.

KIVA simulation results indicated that both reducing the wall temperature and increasing the

swirl should increase the maximum gas temperature and also increase the mass of gas at low

temperature, say below 900K. The effects on combustion are that the overall heat release rate

and maximum pressure are diminished significantly. Combustion retards, and the efficiency

drops. Although cold-wall operation may not be practical, this experiment demonstrated the

dependence of thermal distribution on wall temperature [43].

A team of researchers at the University of Michigan studied wall temperature effects for CAI

engines in a series of projects over the last few years. An especially noteworthy conclusion was

that existing heat transfer correlations for spark-ignition or diesel combustion were inappropriate

for CAI combustion. Chang et al. devised a new heat transfer correlation as in Equation 1.20 and

1.21 after a thorough experimental study. This was based on the often applied Woschnii

correlation [44].

hnew (t) = ascain L(t) -0.2 (t)0.8 T(t)-073 
tuned (t)0.8  (1.20)

Vtuned (t) = C,+ 2  rVdr (- Pmot) (1.21)
6 prV,

ascaling is a factor to be tuned to the system. L(t) is a characteristic length scale, taken to be the

chamber height. p(t) is cylinder pressure. T(t) is temperature, and vtued is the average cylinder

gas velocity. SP is the mean piston speed. Vd is the displaced volume. Tr, Pr, and Vr are



temperature, pressure, and volume taken at a reference point. Pmo, is the pressure for a motoring

trace. C1 and C2 are taken to be the same as in the Woschnii model. The modifications that Chang

made are changing the temperature exponent from -0.55 to -0.73, basing L on the chamber

height, and dividing C2 by 6 [45].

The Michigan team studied the wall temperature heat transfer effects on transients. The

general premise is that a condition that the time scale for the wall temperature to adjust to a

change in engine load or speed is much longer than for cyclic parameters such as fuel rate or

valve timing. Therefore, engine control must take into account wall temperatures from previous

conditions [46].

Fuel Distribution Effects

In 2000, Richter et al. used a PLIF imagining system with an acetone tracer to visualize the

OH distribution just after the beginning of combustion. They endeavored to show a well-mixed

case and a less-well mixed case by going to special effort to mix fuel and air in a mixing tank in

the intake. Interestingly, their two cases both showed a highly heterogeneous charge where

neither the location nor the size of the OH zones were repeatable. This engine was run with port-

fuel injection with low residual gas trapping in both cases [47].

Herold and collaborators conducted a thorough study in 2007 to explore the effects on

combustion of fuel unmixedness in the absence of thermal and residual gas unmixedness. They

devised a well-mixed case where iso-octane was vaporized and mixed well upstream of the

intake port. They also devised a means to inject fuel in the port but only after equilibrating its

temperature with that of the incoming air so as to ensure temperature uniformity. Injection

timing was varied to change the distribution of fuel in-cylinder. They recirculated exhaust gas

and operated lean in this experiment. PLIF data was acquired to show that injection timing

effectively varied the distribution of fuel and that the well-mixed case provided a homogeneous

charge. Combustion performance and emissions data acquired in a metal engine with the same

injection apparatuses yielded almost no difference in phasing, burn duration, or rate of pressure

rise between the different injection cases. This showed that fuel stratification does not play a

factor in burn rate and cannot be used as a means of control. Emissions data showed that NOx

emissions increase with the degree of unmixedness; local hot zones were more plentiful where

there are rich pockets of fuel [48].



1.4 A Summary of CAI Combustion Theory
A concise summary of CAI combustion theory will be presented here so that the reader can

gain some sense of what to expect in the data presented later in the work and why certain

decisions are consistently made here.

1.4.1 Bulk Characteristics of the Charge
To start with mixture preparation, the charge is composed of air, fuel, and exhaust from a

previous cycle. The equivalence ratio is chosen to be 1 with only the amount of air sufficient to

burn the fuel. The charge is diluted as much as possible with exhaust rather than air because the

availability of oxygen increases the reaction rates, and mitigating rate of pressure rise is a key

challenge. Second, the premise is assumed that a three-way catalyst requires this equivalence

ratio in the exhaust. The ratio of specific heats is also lower for CO2 and H20 than for 02 thus

retarding the bum rate, but this effect is expected to be minor.

Several factors control the exhaust fraction and temperature. The fractions of air versus

exhaust are dictated by valve timing and throttles in the exhaust and EGR loop. The EVC and

EVO timings drive the amount of trapped residuals. The pressure difference between intake and

exhaust as well as the flow restriction in the EGR loop drive the amount of EGR. The EGR

temperature is assumed to be at the same temperature as the intake air. The trapped residual

temperature is assumed to be a function of exhaust temperature of the previous cycle and IVO

timing. The exhaust energy can be approximated in terms of fuel energy, work, heat loss which

is a function of combustion phasing, as in Equation 1.22.

mLHV = W - Q+Uxha (1.22)

mf is fuel mass. LHV is the lower heating value of the fuel. W is the work done to the piston. QHL

is the heat loss, and Uexhawst is the exhaust energy. Next, fuel mass is written in terms of residual

fraction and equivalence ratio. c, is approximated as equal for exhaust and for air. A factor for

EGR will be added in later.

tot -(1- s)*Mair (FA) LHV = W - QHL +ntot, Texh (1.23)

(F/A)sT is the stoichiometric fuel-air ratio. ntot is the total number of moles. The equation is

rearranged to solve for exhaust temperature as in Equation 1.24.

M air . (FA) -LHV QHL W

Texh = - Xres) ) ST + (1.24)
Cp Cp ' ntot



The work term can be written in terms of efficiency, fuel mass, and the fuel heating value. These

terms are incorporated, and the work term appears as (1-r) in the exhaust temperature equation.

gair. A)s T LHV (1 - r) HL (1.25)Texh (1- Xres ) + (1.25)
Cp Cp * ntot

Some charge parameters are listed Table 1.1 so that a comparison of magnitudes can be done for

the terms and incorporated into 1.26

Table 1.1. Charge Parameters

(F/A)sT = 0.0688
c, = 30 J/(mol K)

Mair = 0.0288 kg/mol+ Q (1.26)
LHV=44*10J/kg Texh =890 (1-Xr ) HL (1.26)

i = 0.35 to

The temperature at IVC, Tvc, although a weak function of heat loss, can be written in terms of

intake temperature at IVO temperature, as in Equation 1.27.

TV c = (1Xrs ) - T + Xres -Tiv (1.27)

IVO temperature is approximated as exhaust temperature next.

TIo = Texh (1.28)

Equation 1.26 is incorporated into 1.27and 1.28 for an approximation for Tjvc in Equation 1.29.

Tw c = (1 - Xres ) (T + 1890 Xres, ) + Xres* QHL (1.29)
Cp * ntot

If the intake temperature is set to 400K (127oC) and if the residual fraction is 50%, then Ti, will

be approximately 42% of the residual fraction term next to it. The terms are about the same size.

The heat loss term matters but is hard to determine simply. If we were to assume it to be zero, the

behavior of Trvc would be as in Figure 1.7. Accounting for EGR modifies Equation 1.29 such

that it is convenient to put it in terms of total burned gas fraction xb and EGR fraction XEGR where

burned gas fraction is composed of EGR and residual gas.

b = Xres + XEGR (1.30)

The modified formula for Tvc is shown in 1.32, and Tjvc is plotted for four settings of EGR in

Figure 1.8. EGR has a strong effect on temperature.

Tc = (1-b).[Tin +1890 (Xb _XEGR).+ XEGRTi, +(Xb XEGR) QHL (1.32)
Cp * ntot
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During compression, the charge is first heated by the wall and then transfers heat to the wall

as the bulk temperature exceeds the wall temperature. The volume change is non-linear such that

the charge spends a disproportionate amount of time in the small volume near TDC so an

isentropic compression estimate over-estimates the bulk temperature at the end of compression.



1.4.2 Charge Stratification and Combustion
From the spectroscopy work done by other research groups, several claims can be made

about the charge before combustion. In the center of the chamber, there are temperature gradients

and concentration gradients of residual gas, but these two gradients do not correlation because

heat transfer during compression has warmed the air and any EGR. There is also a thermal

boundary layer perhaps 1.5mm thick on the piston, head, and wall because these surfaces are

significantly colder than the average gas temperature at the end of compression. Gradients in fuel

and oxygen concentration form as well.

Near the end of compression, low temperature reactions begin to take place, and

concentrations of radicals begin to build. The charge can be thought of as discretized into parcels

of gas. The parcel of gas that is hottest with sufficient oxygen and the suitable radicals undergoes

high temperature heat release first. A steeper gradient in temperature will result in an earlier burn

of the first parcel since the hottest parcel will be hotter than the hottest parcel in a more thermally

homogeneous charge. This has been shown in more than one spectroscopy study as well as

described in modeling work. To the author's knowledge, no study has shown effects of diluent

versus oxygen concentration stratification under equal thermal distributions. The distribution of

fuel apparently plays a very minor role.

The first parcel's burn causes it to heat and expand thus causing a global pressure rise and

catalyzing reactions in the rest of the charge. The volume heats via compression, and the next

hottest parcels of gas with radicals and sufficient oxygen release heat and expand. Parcels bum in

the order of descending temperature. The rate of parcels burning increases as the temperature of

the parcels approaches the mode temperature of the parcels, as depicted in Figure 1.9. The zones

with the mode temperature, at a reference time before ignition, are the zones that burn at the

point of maximum pressure rise rate. The burn rate depends on charge temperature stratification

because the ignition delay of a given parcel of gas will be longer if this parcel starts at a

comparatively lower temperature than the first parcel to ignite. If the burn is temperature-

stratification limited, it will slow down near the end of the burn as fewer and fewer parcels are

brought to their ignition temperature. At some point during the burn, the pressure will rise faster

in the volume that is burning than the chamber volume can equilibrate. Pressure waves will

result. Strong pressure waves may dominate the deceleration-by-temperature-stratification effect.



0.0% .... I
800 820 840 860 880 900 920 940

Temperature (K)

Figure 1.9. Fictitious (Gaussian) charge temperature distribution for a time shortly before ignition.

A fuel molecule's or radical's accessibility to oxygen affects the burn rate as well. For equal

temperature distributions, the burn will progress faster if there is excess oxygen in the mixture

than if there is instead inert diluent such as nitrogen or carbon dioxide. This effect implies that

EGR will result in a slower burn than dilution by excess air.

Accessibility to oxygen also means that simply higher concentrations of air and fuel will

accelerate the burn. Boosting the engine or increasing the compression ratio results in higher

concentrations during the burn. Combustion phasing also dictates concentration. If the burn is

initiated after top center, the cylinder volume will be slightly larger during the burn than if the

bum took place at TDC. As the burn is retarded more, the cylinder volume increases at a higher

rate as determined by the slider-crank equation. As the volume increases, the concentrations, as

well as the temperature, fall correspondingly. The effect on phasing is expected to be minor but

not insignificant.



Chapter 2 Experimental Apparatus

The theme of the experimental apparatus was for a test engine to be similar to a passenger

vehicle engine yet flexible enough for ease of experimentation, maintenance, and modification.

The principal capabilities required of it were as follows:

* Varying the residual gas fraction on a cycle-by-cycle basis via valve timing

* Mimicking turbocharged and supercharged operation while independently varying the

intake air temperature

* Yielding data that could serve as useful metrics for load and for knocking intensity

* Yielding data to reflect the operating condition of the engine

* Varying the amount of exhaust gas recirculation (EGR)

Pictured in Figure 2.1, a single-cylinder test engine system located in the Sloan Automotive

Laboratory at MIT was used for all experiments.

Figure 2.1. Single-Cylinder Experimental Engine System.



2.1 Test Engine

A single-cylinder Ricardo Hydra served as the CAI test engine with specifications shown

in Table 2.1 and pictured in Figure 2.2.

Table 2.1. Test Engine Specifications
Bore 80.26mm

Stroke 88.9mm
Connecting Rod Length 158mm

Displaced Volume 450cm3

Clearance Volume 49.45cm3

Compression Ratio 10.1

Figure 2.2. CAI Test Engine. A Ricardo
Hydra with an Audi TDI head served as the
test engine.

A Volkswagen TDI head with two valves per cylinder was installed on a custom-made cylinder

block which was mounted on the Ricardo crankcase. The combustion chamber geometry

featured a flat piston and a flat head with a spark plug installed in the fuel injector hole of the

head. This head, shown in Figure 2.3, was chosen because it was built to withstand high, diesel-

level cylinder pressures and because the valves were compatible with the electromagnetic valve

actuation (EVA) device. The combustion chamber size and the compression ratio were typical

for a passenger car engine, although the pancake combustion chamber geometry is not reflective

of state of the art engines. It allowed easy adaptation of the EVA system and simplicity. A port

fuel injection (PFI) system was added to allow typical PFI SI operation. The engine was coupled

to a Dynamatic dynamometer, type DR model 2U, rated for 75hp and 3400rpm.
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Figure 2.3. The Volkswagen TDI head.

2.1.1 Electromagnetic Valve Actuation (EVA) System

Upper spring

Magnets

Bearings

Armature

----- Valve button
and adjuster

- Valve spring

The electromagnetic valve actuation (EVA)

system was originally designed and built by Aura

Systems Inc. in 1995 for Chrysler Corp. In 2001,

the system was donated to MIT. The device

consists of electromagnets above and below an

armature. The magnets pull the armature up and

down, respectively, as diagrammed in Figure 2.4.

The armature pushes down on the Volkswagen

stock button and valve assembly in the head.

Each magnet is only strong enough to pull the

armature when it is halfway between the magnets

or closer to itself. A spring is mounted above the

upper magnet to return the armature to center

from the top position, and the stock valve spring

is used to return the armature to center from the

bottom position.

Valve

Figure 2.4. Diagram of the EVA system
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The order of operation for opening a valve is as follows:

1. The armature is at rest against the upper magnet

2. The top magnet is turned off

3. The top spring pushes the armature to the center position

4. The lower magnet is energized and pulls the armature against itself to a resting position

5. The magnet current is reduced to a lower level since the magnetic field is much stronger

near the magnet than far away from it

To perfect the EVA system operation, the device was mounted on an engine head section

with the valves exposed below for initial tests. An eddy-current position sensor (Kaman 6C) was

mounted under the valve so that the timing and speed of valve movements could be studied.

Figure 2.5 shows the bench-level apparatus and a close-up photograph on the mounted position

sensor.

Figure 2.5. EVA System Test Apparatus (left), Close-Up of the Position Sensor (right)

Data collected using this apparatus are featured in Figure 2.6 and Figure 2.7. As shown in

Figure 2.6, the voltage command starts at a high value when the armature is far from the magnet.

Once the armature is touching the magnet, the command voltage is dropped to a lower value to

hold it there. The current allowed to a magnet was 6.89 times the signal voltage so the maximum

current draw was about 24A, and the voltage driving the magnets was held at 50V.
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Figure 2.6. Bench-level position data from the EVA test apparatus. The valve position is plotted along with the
command signals for the top and bottom magnets. The average of 300 cycles of intake valve operation are plotted at
the equivalent of 1515rpm.
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Figure 2.7. The valve position and valve velocity are plotted versus time for 300 cycles of intake valve operation at
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From the plot in Figure 2.6, it was possible to estimate when the valve would start and finish

moving with respect to the valve command. This unfortunately could be only used as a rough

calibration for engine operation since gas exchange processes would retard or hasten the valve

movements depending on the operating conditions. Figure 2.7 shows the valve velocity as well

as the position. Here, it is evident that the valve moves at a maximum speed of about 1.2 m/s.

Once mounted on the engine, position sensor data was not available so another way to

measure the valve timing was necessary. An accelerometer, a Bosch knock sensor, was mounted

on the side of the EVA system to observe the vibrations resulting from the armature landing on a

magnet. While crude, this method was effective at sensing the finishing time of the valve

movements. The valve durations were estimated from the bench level position data.

2.1.2 Air Intake and Exhaust Systems
The experimental engine system was designed so that the intake air temperature and pressure

could be varied independently and so that the exhaust pressure could be increased. In particular,

the system needed to be capable of assessing affects of turbocharging. As diagrammed in Figure

2.8, an electric motor was used to drive an Eaton supercharger to boost the intake pressure.

EGR Heat Exchanger

C02 EGR
Air in mea ure ents

S Damping Damping Exhaust
Tank Tank Heater

Controll Tin st

Intercooler Valve
timing/

MiniCooper injection/

compressor Bypass Heater spark
throttle control control
control Exhaust

throttle
control

Controller

Figure 2.8. Diagram of the air intake and exhaust systems.

This supercharger was designed for a four-cylinder engine so delivered far more air than was

necessary. Most of this air was recirculated, and an electric throttle valve was used to restrict

recirculation and therefore force air into the engine. An intercooler was installed downstream of



the supercharger to allow low-temperature, boosted intake air. A volumetric flow sensor was

installed at the furthest point upstream of the system. Two damping tanks were installed to

ensure smooth flow through the flow sensor and to reduce any pulsation effects of the

compressor on the cylinder pressure during the induction process. A photograph of the intake is

shown in Figure 2.9.
SThrottle

Figure 2.9. The Intake Air System.

A 6kW electric heater from Osram-Sylvania was installed between the second damping tank

and the engine to heat the intake air. Heating the intake air was necessary to achieve auto-

ignition since the compression ratio was low at 10. 1:1. Changing the degree of heating was far

easier than changing the compression ratio so this configuration allowed for more flexibility.

Typical intake air temperatures ranged from 35°C to 120°C.

The exhaust pressure was increased via an electrically controlled throttle. The exhaust

pressure was increased to match the intake pressure to simulated ideal turbocharged operation.

This system was used instead of a turbocharger because the ideal turbocharger characteristics



were not known and because acquiring a turbocharger sized for a single-cylinder engine was not

feasible.

An EGR loop, as pictured in Figure 2.1, was installed to flow cooled exhaust gas to the

intake. A gate valve on the loop and the exhaust throttle valve were used to control the flow. For

all EGR data, the exhaust pressure was set to be 30mbar above the intake pressure to drive the

EGR flow. A Horiba Automotive Emission Analyzer (MEXA-554JU) was used to sample gas

from the intake to asses the fraction of the gas that was CO2. The EGR flow rate was derived

from this measurement.

2.2 Data Acquisition
The data acquisition system was designed to characterize the engine operating condition as

well as to assess the degree of engine knocking. The system was also designed so that as many

signals as possible were acquired by computer to minimize human error. The system comprised

five subsystems: pressure measurements in the intake and exhaust lines, measurements for intake

air flow, fuel flow, and oxygen fraction in the exhaust, in-cylinder pressure measurements,

accelerometer measurements, and temperature measurements.

2.2.1 Intake and Exhaust Pressure Measurements
The gas pressure was measured in the intake and exhaust systems since a primary goal of the

experiment was to assess turbocharging. The intake pressure was measured in the damping tank

just upstream of the heater. The exhaust pressure was measured in the exhaust damping tank.

Average values were used from each measurement as wave dynamics in the lines make

determining the pressure more difficult. They also make deriving meaning from an accurate

measurement far more difficult. An Omega PX 209-060A5V transducer was used for each

application with a ceramic filter piece to dampen pressure spikes and keep the transducer clean

of particulate matter in the exhaust.

2.2.2 In-Cylinder Pressure Measurements
The in-cylinder pressure measurements formed the basis for most of the combustion metrics.

Indicated load, efficiency, burn duration, combustion phasing, and pressure and temperature

during compression all depended on a fast pressure measurement in-cylinder.

A Kistler 6125A piezoelectric pressure transducer was mounted in the head of the engine, as

noted in Figure 2.3. A Kistler 5010 charge amplifier was used to amplify the signal. Since the



transducer yielded a differential measurement, the data acquisition script calibrated the in-

cylinder pressure against the intake pressure at BDC on a cycle-by-cycle basis.

2.2.3 Air Flow, Fuel Flow, and Equivalence Ratio
As noted in Figure 2.8 and pictured in Figure 2.9, the air volume flow was measured via a

flow meter. The device was a Kurz 505 Series Flow meter. While the instrument was recently

calibrated and accurate, the intake system with its many connections suffered small leaks. A

wide-band Bosch 02 sensor and Etas Lambda meter measured and calculated the air-fuel ratio

from the exhaust chemistry. The fuel mass flow rate was estimated in two ways. First, the

injector was calibrated with a volumetric measurement. Also, during many of the data

acquisition runs, the mass flow of the fuel was measured via a pale-on-scale strategy. A flask of

fuel was placed on a balance, and the change in mass of the fuel flask was recorded thus yielding

the rate of depletion of fuel. An Ohaus Scout Pro balance was used. Minor differences emerged

between the injector calibration and the mass measurement strategy, and the final estimation was

a calibration based on the mass measurement. The air mass flow was estimated based on the fuel

flow and the air-fuel ratio estimate since leaks led the flow meter measurement to be inaccurate

at high boost pressures.

These measurements were necessary for developing several key metrics. First, knowing the

mass fuel was required for calculating the efficiency of the engine. Also, estimating the residual

gas fraction and the temperature and pressure during compression required knowing the number

of moles in the charge which required knowing the air and fuel flows.

UTG-91 gasoline was used for all tests. It was chosen to typify pump fuel found in the

United States. The specifications for this fuel are detailed in Appendix Al.

2.2.4 Accelerometer Measurements
As previously noted, an accelerometer was mounted on the side of the EVA system to sense

the vibrations of the structure resulting from the landing of the armature on a magnet. From this

signal, the timing of the end of the valve movement could be precisely determined. A sample

accelerometer signal is shown in Figure 2.10. Incidentally, the accelerometer also manages to

observe vibrations in the structure resulting from engine knock.
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Figure 2.10. A Typical Accelerometer Signal vs. Crank Angle. Strong vibrations at 188', 278", 493', and 561'
indicate valve landing for EVO, EVC, IVO, and IVC respectively. The vibrations near O' indicate engine knock.

2.2.5 Temperature Measurements

Various temperature measurements were made about the apparatus to help the operator keep

components from over-heating, to keep the operating conditions consistent from one test to the

next, and to use temperature as independent or dependent variable. The engine oil temperature,

fuel filter temperature, and engine coolant temperature were all taken to keep operating

conditions consistent. The intake air temperature, measured at the opening of the intake port, was

used as an independent variable. The exhaust temperature, measured at the exit of the exhaust

port, and the head temperature, measured at the surface of the head, were both used as dependent

variables. The former was used to estimate residual gas fraction as will be discussed later. The

head temperature measurement gave a sense for how wall temperature was varying at various

operating conditions. The location of the head thermocouple is noted in Figure 2.3. The

dynamometer coolant temperature was measured as a check to make sure it was not overheating.

K-type thermocouples were used in all measurements.



2.2.6 Data Acquisition Hardware and Software
A desktop computer with an Intel Pentium IV processor and Windows XP operating system

severed as the data acquisition computer. A National Instruments PCI-6023E data acquisition

card was used to acquire pressure data, accelerometer data, and valve timing command data. The

card featured 8 differential inputs, 12 bit resolution, and 200kS/s maximum sampling rate. An NI

USB-9211A was used to acquire coolant temperature, intake temperature, head temperature, and

exhaust temperature. At 12S/s, the device was adequate for showing slowly changing

temperature measurement trends. The balance for fuel mass measurements communicated data to

the computer via a USB port and virtual serial port connection.

National Instruments Labview was used to monitor the operating parameters of the

experiment and to record data. The script calculated metrics, such as NIMEP, valve timing, and

average A, on a cycle-by-cycle basis to help the operator properly set the apparatus at a given test

condition.

2.2.7 Residual Fraction Estimation
Estimating accurately the amount of trapped residual gas is essential to quantifying the

contents of the cylinder and therefore to estimating the bulk temperature in-cylinder. The method

proposed to estimate the number of moles of trapped residuals was to use the Ideal Gas Law to

find the number of moles at EVC by estimating the pressure and temperature in-cylinder at this

point as in Equation 2.1.

PvVv PX VEvc
apped = PEVC VC PE C (2.1)

trapped  RT c  RTxH

Here, the volume at EVC can be found via the slider-crank equation, and PEXH was measured

with the exhaust pressure transducer. TEVC is estimated to be the average exhaust temperature.

Next, the total number of moles is found in Equation 2.2.

ntot = n fuel + nair + ntrapped (2.2)

The recompressed gas is assumed to become the residual gas. The residual gas fraction is the

residual gas divided by the total number of moles.

ntrapped
Xresidual = trapped (2.3)

ntot



In-cylinder CO 2 measurements were conducted to assess the accuracy of these methods for

estimating residual fraction. An NDIR spectroscopy system (NDIR500 from Cambustion) was

used with the sample probe mounted in the place of the cylinder head thermocouple pictured in

Figure 2.3. This absorption spectroscopy technique had been used effectively to estimate residual

fraction by other groups in this manner in the past [49, 50]. A second sample probe was mounted

in the exhaust as a check on the in-cylinder measurement. Typical CO2 fraction traces for in-

cylinder and for exhaust measurements are presented in Figure 2.11.
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Figure 2.11. CO 2 Traces for In-Cylinder and Exhaust Measurements.

The instrument's response time was approximately 8ms which corresponds to 72 CAD at

1500rpm. This means that one point during compression and one point during expansion should

be expected. The low point of the in-cylinder measurement is the point during the compression

stroke. From stoichiometry, the residual fraction can be found from this gas fraction

measurement point alone. The accumulation of oil, soot, or other non-gaseous substance in the

NDIR sample chamber can cause error or a fault. These foreign substances act to absorb light

broadly and so add noise to the signal. Although calibration and signal processing built into the

instrument software address this issue in part, even a short period of in-cylinder sampling can

add significant error to the calibration via contamination. Misfires appeared especially taxing



thus emphasizing the need for a robust engine start routine. In one test session, the CO 2

calibration gas (13% CO 2, 87% N2) was measured in sample mode before testing and after

testing. After testing for 3 hours involving one engine start, the reading went from 13.1% just

after calibration to 12.57% after testing. Considering the possibility in signal drift, we concluded

the most accurate way to estimate residual fraction using this equipment was to use the CO 2

value during compression divided by the CO2 value during expansion. This way, any variation in

the in-cylinder sensor is normalized out. This is also the way advocated by Cambustion in the

equipment manual.

The in-cylinder CO 2 measurements confirmed that the exhaust state method of estimating

residual fraction was accurate. Figure 2.12 features residual fraction vs. EVC timing for an NVO

sweep where the intake and exhaust pressure was 1.lbar and the intake temperature was 120'C.

55%

50%

. 45%
) *Exhaust State

u. e In-Cylinder C02
S40% -

35% 4

30%

65 75 85 95 105

EVC Timing (CAD BTC)

Figure 2.12. Residual Fraction vs. EVC Timing, Pin = 1. lbar. The exhaust gas state method estimates residual
fraction approximately 1-2% lower than the in-cylinder CO 2 measurement method.

The exhaust state method estimates consistently estimates residual fraction to be 1-2% higher

than the in-cylinder CO 2 measurement. Figure 2.13 shows a similar plot except that these data

feature intake and exhaust pressure at 1.3bar. The agreement here was better than in the 1. lbar

data. Figure 2.14 features an EVO Timing sweep at 1.1bar intake pressure. The data show good

agreement at 30' BBC.
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Figure 2.13. Residual Fraction vs. EVC Timing. Pin = 1.3bar. The exhaust state estimate method matches the in-
cylinder measurement well.
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Figure 2.14. Residual Fraction vs. EVO Timing. Pin = 1. 1bar. The exhaust state estimate features good agreement
at 300 BBC but over-estimates the residual fraction at very late EVO Timing.

The exhaust state method estimates residual fraction to be increasingly higher than the CO2

measurement method at EVO timing is retarded. This is potentially because EVO timing affects

the temperature of the trapped residual and therefore increases the error between exhaust

temperature and EVC temperature. All of the data where EVO timing is held constant features an
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EVO timing of 300 BBC so the bulk of the data should yield accurate residual fraction data. The

residual fraction estimate is less reliable for the EVO sweep data.

The CO2 measurements confirmed that this exhaust state method can be used effectively to

estimate the quantity of trapped residuals. The in-cylinder gas measurements required great care

and considerable effort so they were only used for verification purposes rather than as the

primary method for all of the data.



Chapter 3 Effects of Intake Temperature, Boost, and Valve Timing
Three primary ways to control combustion are to vary the intake temperature, to vary the

level of boost taken to mean changing intake and exhaust pressure together, and varying the

valve timing. This chapter will explore the effects of these control parameters on maximum rate

of pressure rise, load, efficiency, combustion phasing, and the misfire limit. Particular focus will

be given to how the operating region, constrained by maximum rate of pressure rise, shifts with

boost.

3.1 Sample Combustion Data
Before presenting results, sample combustion data is shown to familiarize the reader with the

data to be presented. Figure 3.1 shows an example pressure trace of a single cycle.
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Figure 3.1. A Sample Pressure Trace of One Cycle.

As time advances from BDC (0°), the intake valve finishes closing at 200 ABC. The pressure

rises due to compression until shortly after TDC when ignition occurs. The pressure rises very

sharply until it peaks above 40bar. The jaggedness of the traces shortly after combustion



indicates pressure oscillations in-cylinder akin to the phenomenon of spark-ignition knock.

Combustion is very short, taking perhaps only 150 from start to finish. At just before BDC, the

exhaust valve opens, and the exhaust pressure equilibrates to the exhaust line pressure. The

exhaust valve closes at approximately 850 BTC, and the residual gas is trapped in-cylinder and

recompressed. Trapping hot residual gas from one cycle to the next is the principle characteristic

of the negative valve overlap strategy. It is re-expanded until the intake valve begins to open at

approximately 850 ATC. This is deliberately symmetric to the EVC timing about TDC so that as

much as possible of the work done compressing the residual gas is extracted during the re-

expansion stroke. If the pressure in-cylinder is not at the intake pressure, they equilibrate, and the

intake process begins. The apparent pressure oscillations at IVC and EVC are noise. The

transducer is recording vibrations in the head caused by the valves striking the head when they

close.

Another perspective of the pressure history is shown in Figure 3.2 where the natural

logarithm of the pressure is plotted against the natural logarithm of volume.
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Figure 3.2. Log(P) vs. Log(V) Plot of an Example Cycle. Combustion start and finish are marked by stars.

The beginning and end of combustion are denoted with stars. Ignoring noise in the signal from

valve strikes and electrical noise from the signal ground, one can clearly see the nearly straight



lines during compression and expansion as well as during the recompression and re-expansion

processes. The speed of combustion is also clearer here, as it happens in nearly a constant

volume.

3.2 Intake Temperature and Intake Pressure Effects
The reaction rate of fuel and air is strongly dependent on the temperature of the gas so a

natural parameter to study is the temperature of the intake air. The following data show the effect

of varying the intake air temperature and the level of boost. Exhaust pressure is held equal to the

intake pressure. Valve timing was set such that a considerable amount of residual gas would be

trapped but not so much that the residual temperature would be cold from lack of fuel. The valve

timing is listed in Table 3.1 and depicted in Figure 3.3.

TDC

Table 3.1. Intake Temperature I E V C

Study Valve Timing

Valve Timing
Operation

IVC 180 ABC
EVO 300 BBC
EVC 830 BTC
IVO 830 ATC

Iv I BDC E O

Figure 3.3. Diagram of Intake Temperature Study
Valve Timing

The first effect to note is that increasing the intake temperature results in a linear increase of

the bulk charge temperature at 150 BTC as shown in Figure 3.4. Five levels of boost ranging

from 1.Obar to 1.4bar are plotted for an intake temperature range of 40"C to 1200C. 400C was the

lowest temperature the equipment would produce. The exhaust was throttled so that the exhaust

pressure was held equal to the intake pressure. The 1.1bar and 1.0bar data feature limited

temperature ranges because misfire occurred when the temperature was reduced sufficiently. The

misfire limits are circled. Note that an increase in intake temperature results in a significantly

lower increase in average charge temperature. For example at 1.2bar, an intake temperature

increase of 70'C results in an increase of charge temperature of 40oC. This is because the charge



is composed of approximately 40% trapped residual which is not directly affected by intake air

temperature. An increase in boost pressure also resulted in an increase in charge temperature.

This is because heat transfer to and from the walls increased and because the residual gas

fraction increased. The effect on residual gas fraction is shown in Figure 3.5, and since the

residual gas was hot, this caused an increase in charge temperature.

950
O

940
0

S930 - O o 
+ Pin = 1.0bar

O920 A A Pin = 1.1bar

- 910 0 A A Pin = 1.2bar

900 a e Pin = 1.3bar

A A U * o Pin = 1.4bar
- 890 -

880 -

870 .

30 50 70 90 110 130

Intake Temperature (C)

Figure 3.4. Average Charge Temperature at 150 BTC vs. Intake Temperature for Five Boost Pressures. Valve timing
was fixed as depicted in Figure 3.3. Two points at the misfire limit are circled.
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Figure 3.5. Residual Fraction vs. Intake Temperature for Five Boost Pressures. Valve timing was fixed as depicted
in Figure 3.3. Two points at the misfire limit are circled.



The effect of boost on residual fraction appears to be simply a characteristic of the flow

dynamics of the engine. A short amount of time was available for the exhaust process, and the

valve lift was small at 4.7mm. The exhaust process was likely constrained by this. Residual

fraction decreased as intake temperature was decreased, as shown in Figure 3.5. As the density of

the air increased with decreased temperature, it accounted for proportionally more of the charge

mass.

Combustion phasing, as indicated by the crank angle of 10% mass fraction burned (CA10), is

plotted against intake temperature in Figure 3.6. Combustion is shown to occur earlier at higher

intake temperature and later at lower temperature. The hottest part of the charge achieves a

temperature favorable for fast reaction rates earlier in the cycle at higher intake temperatures.

Note that at Pin, = 1.Obar and Pin, = 1. bar, as temperature is reduced the rate of retard increases as

the misfire limit is approached.

Combustion phases earlier with increased boost pressure. This could be because charge

temperature increases with boost as was shown in Figure 3.4. It could also be because the density

of fuel and oxygen molecules increases with pressure. Equations 1.4 and 1.5 show that reaction

rate is a function of concentration, of pressure directly, and of temperature. Boost increases all of

these factors.
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Figure 3.6. CA10 vs. Intake Temperature for Five Boost Pressures. Valve timing was fixed as depicted in Figure
3.3. Two points at the misfire limit are circled.



Decreasing intake air temperature increases indicated efficiency, as shown in Figure 3.7. A

decrease in intake temperature of 70'C at Pin = 1.4bar results in an increase of 2.5%, indicating a

clear advantage of operation with cool intake air.

The effect of boost pressure on efficiency is less clear than temperature. At 110'C intake

temperature, efficiency is highest at 1.Obar, then 1.3bar, then 1.2bar, then 1. lbar, and finally at

1.4bar. Combustion phasing, residual fraction, and burn duration all affect the indicated

efficiency.
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Figure 3.7. Indicated Efficiency vs. Intake Temperature for Five Boost Pressures. Valve timing was fixed as
depicted in Figure 3.3. Two points at the misfire limit are circled.

The effects of intake pressure and boost on maximum pressure rise rate are shown in Figure

3.8. First, as boost is increased, the rate of pressure rise increases. Next, as intake temperature is

decreased, the rate of pressure rise reduces. This effect is strongest at low boost and diminishes

as boost increases to the point that no decrease in rate of pressure rise is observed at Pin, = 1.4bar.

What causes the pressure dependence of the intake temperature effect is not clear.

Temperature has a strong, indirect effect via combustion phasing. As previously shown in Figure

3.6, reducing intake temperature causes combustion phasing to retard regardless of intake

pressure. However, the resulting volume in which combustion occurs varies non-linearly with

combustion phasing. A good comparison is the 1.1bar curve from 120'C to 70'C and the 1.4bar

curve over the same pressure range. At 1.1bar, CA10 varies from 180.80 to 188.40 across this

intake temperature range. Across this crank angle range, the cylinder volume expands by 5%.



For a theoretical motored pressure trace, this leads to a corresponding 6% decrease in pressure

and a 2% decrease in temperature. The rate of expansion increases as timing phases later as well.

At 1.4bar, CA10 occurs at 175.60 so a corresponding 7' delay would cause the volume to

increase by only 0.05% since it reaches its minimum between these two points. This delay would

not cause pressure or temperature to drop via isentropic expansion. In reality, at 1.4bar, the

decrease in intake temperature by 50'C results in a delay of only 2.70, not 70, and so allows

isentropic compression to increase pressure and temperature thus slightly counteracting any bulk

temperature cooling effects.
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Figure 3.8. Maximum Pressure Rise Rate vs. Intake Temperature for Five Boost Pressures. Valve timing was fixed
as depicted in Figure 3.3. Two points at the misfire limit are circled.

Another possible explanation for the pressure dependence of temperature effects is that the

temperature stratification varies with level of boost. Maximum rate of pressure rise can be

understood to be related to the duration of the burn, or rather, related to how soon a parcel of gas

late in the burn reacts after a parcel early in the burn reacts. Of the three factors that affect the

local reaction rate, concentration, temperature, and pressure, temperature is the most stratified

and pressure is the most spatially uniform so variations in burn rate ought to be related to

temperature variations and with a lesser likelihood to concentration gradients.

The charge is approximately 60% air and 40% trapped residual where the residual gas is

approximately 600'C and the intake air is approximately 70oC when they begin to mix at IVO.

During the intake and compression processes the gases mix and exchange heat; however, there



remains a temperature stratification among the fuel and air molecules at the beginning of

combustion due to imperfect mixing. As the fraction of residual gas increases, which it does with

increased boost, the charge may become more thermally uniform. The residual fraction does not

increase very much however, perhaps 4% from 1.0bar to 1.4bar.

It is also possible that mixing is enhanced with increased boost. Boost results in a higher

charge density so the Reynolds number should increase roughly proportionally with intake

pressure. It also follows that the dissipation of turbulent kinetic energy would be lower as charge

density increases as in Equation 3.1 so turbulence would be more intense at higher levels of

boost.

S= 2 (sisii  (3.1)

Here, e is the dissipation; p is the viscosity. p is the density, and sij is the fluctuating rate of strain

[51]. A higher degree of mixing would result in a more thermally uniform charge and so would

cause a parcel of gas that burns late to burn only slightly later than an early burning parcel and

thus shorten the burn duration.

The combustion chamber walls encourage a thermal boundary layer as another significant

temperature stratification. One-dimensional modeling work indicates that the boundary layers on

the head and piston should be on the order of Imm, which is significant since the height of the

clearance volume is 10mm. During the majority of the compression process, the wall is hotter

than the average charge temperature. Near the end of compression, the charge temperature

exceeds the wall temperature [42]. The temperature field near the wall is therefore a strong

function of average wall temperature which is driven by heat transfer. More fuel is burned as

boost is increased thus increasing heat dissipation. Also, in-cylinder pressure waves increase heat

transfer. For example, Woschnii and Fieger observed twice the heat transfer in the end-gas zone

of a knocking SI engine as under normal operation [44]. Figure 3.9 shows the head temperature

plotted against intake temperature for five boost pressures. The head temperature is measured by

an 1/8" diameter thermocouple mounted flush with the surface of the head. The plot shows how

head temperature drops slightly with intake temperature and increases substantially with boost

pressure. It is reasonable then to assume that the thermal boundary layer changes with boost.

While it can be insightful to speculate about variations in the thermal distribution of the

charge, this experiment features no method of showing or measuring them. Analysis of such



effects will be kept to speculation in this work with the hopes that future studies will address the

topic.
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Figure 3.9. Head Temperature vs. Intake Temperature for
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Five Boost Pressures. Valve timing was fixed as depicted

NIMEP is plotted against PRRmax in Figure 3.10 to illustrate the effects of intake

temperature and boost.
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Figure 3.10. NIMEP vs. PRRmax for Five Boost Pressures. Valve timing was fixed as depicted in Figure 3.3. Two
points at the misfire limit are circled.

160 -

155 -

9 150 -

* 145-
I-
0.
E 140 -
I--

c 135 -

130 -

125-

a[ OO O
O O O

0 A

ooAAA~ AA aU U]
®"U



As intake temperature is decreased, load increases and the pressure rise rate decreases

showing that low intake temperature is favorable for abating knock. Misfire limits the maximum

load at low boost. The optimal condition to maximize IMEP appears to be boosting and heating

the intake only enough to avoid misfire.

3.3 Valve Timing Effects
The valve timings were varied in three different ways to affect combustion. First, the

negative valve overlap (NVO) defined as advancing EVC timing and retarding IVO timing

symmetric about TDC was varied to change the amount of trapped residual gas. Next, the IVC

timing was varied to vary the pressure at the end of compression. Third, the EVO timing was

varied, which appeared to vary both residual fraction and residual temperature. While there is a

wide variety of ways to vary the valve timing, these were selected because they are simple and

because it was anticipated that their effects would be simply understood.

3.3.1 Negative Valve Overlap (NVO) Effects
Data were acquired for negative valve overlap sweeps for three intake temperatures and four

boost pressures per intake temperature. The intake temperature was set to 600 C, 90°C, and 120°C,

and the pressure was incremented by 0. bar starting at the lowest pressure that would run stably

per intake temperature. The valve timing was set as noted in Table 3.2 and as depicted in Figure

3.11.

Table 3.2. NVO Sweep Valve Timings
Valve Timing

Operation
IVC 200 ABC
EVO 300 BBC
EVC 700 to 1080 BTC
IVO 700 to 1080 ATC

Figure 3.11. Diagram of valve timings for the NVO
Sweeps



The EVC retard was limited by severe engine knock, and EVC advance was limited by a

hardware constraint that limited the minimum valve duration time. Under particular conditions,

both advance and retard were limited by misfire.

The primary effect of varying the degree of negative valve overlap was varying residual fraction,

and this effect is shown in Figure 3.12 in which all of the NVO data is presented together. For all

sweeps, the residual fraction ranges from approximately 30% at an EVC timing of 700 BTC to

approximately 55% at 1080 BTC. This shows that NVO is an effective means of varying the

amount of trapped residual gas and therefore the residual gas fraction. It is also clear that while

boost does result in small changes in residual fraction, as shown clearly in Figure 3.5, varying

EVC timing has a considerably larger effect.

The first consequence of varying the trapped residual is that the amount of air inducted varies

inversely. Because the equivalence ratio is held stoichiometric, the amount of fuel varies with the

amount of air. Fuel mass per cycle is plotted against EVC timing with the intake temperature set

to 120C in Figure 3.13. Fueling decreases as EVC timing is advanced, and fueling increases as

boost pressure is increased. As EVC timing is advanced, more residual gas is trapped thus less

air and fuel are inducted.

A secondary effect of varying the valve timing is that by changing the fuel rate, the exhaust

temperature changes which leads to variations in the temperature of the residual gas. Figure 3.14

features the temperature of the trapped charge at IVO versus the residual gas fraction with the

intake temperature set to 1200 C. Misfire limit points are circled. As residual gas is increased by

advancing EVC timing, the temperature of the residual gas drops because the less fuel is burned

and the exhaust is cooled. More fuel is burned at higher boost pressures so the temperature of the

residual gas increases with boost.

This trade off is the reason for misfire limits both at high residual gas levels as well as at low

residual gas levels. The curve at Pin, = 1.0bar features both of these misfire limits. At high levels

of residual the charge temperature at the end of compression is low because the residual gas

temperature is low, and at low levels of residual gas, the fraction of residual is too low to

effectively heat the fuel and air to autoignition temperature.
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Figure 3.12. Residual Gas Fraction vs. EVC Timing. Tin = 60'C, 90oC, 120oC; Pin, = 1.0bar - 1.5bar.
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Figure 3.14. Temperature at IVO vs. Residual Gas Fraction. Ti,, = 120oC. Misfire limits are circled.

Figure 3.15 shows the temperature at the end of compression, 150 BTC, plotted against

residual gas fraction for 120'C intake air temperature data. The temperature features a maximum

at mid-range residual fractions and decreases at low and high residual fraction for Pin, = 1.0bar,

1. 1bar, and 1.2bar, illustrating the competing effects of residual gas temperature and residual gas

fraction. This is not observed at Pin = 1.3bar because this curve, along with Pin = 1.1bar and

1.2bar were limited by severe engine knock. Data was not generated for residual fractions lower

than those presented. Boost is shown again to increase charge temperature.

Figure 3.16 and Figure 3.17 also feature temperature at 15* BTC versus residual fraction but

show curves for Tin = 90'C and Tin = 60oC, respectively. First, note that the charge temperature

ranges spanned by the conditions presented are roughly the same for each of the three intake

temperatures. Next, the charge temperature curves at Tin = 60°C and 90'C also feature the

behavior where they peak at mid-range residual fraction and dip at high or low levels of residuals

unless limited by misfire or knock.
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Figure 3.16. Temperature at 150 BTC vs. Residual Fraction. Ti,, = 90oC.

55% 60%

* Pin = 1.0bar

* Pin= 1.1bar

A Pin = 1.2bar

e Pin = 1.3bar

35% 40% 45% 50%

Residual Fraction (%)

0

940

920

0 900

0I
880

860

, 840
E

S820

800

- Knock

M a
S 0 0r• • •A

/m •

I I -



920

910 Knock -

900 -I-

01 890 * *Pin = 1.2bar

S-~ lid m Pin = 1.3bar
*880 -
) 8A Pin = 1.4bar

870 - e Pin = 1.5bar

860 m

850

840 .

30% 35% 40% 45% 50% 55% 60%

Residual Fraction (%)

Figure 3.17. Temperature at 150 BTC vs. Residual Fraction. Ti, = 60'C. Misfire limits are circled.

Given how NVO and boost pressure affect the state and composition of the charge, these

properties can now be used to explore how the load, maximum rate of pressure rise, and

efficiency change within the operating regime. Figure 3.18 features NIMEP and PRRmax shown

in a contour map on a space of oxygen mole fraction and intake pressure. Oxygen mole fraction

is shown instead of residual gas fraction because oxygen concentration determines the reactivity

of the mixture more than the degree of dilution and because fuel is proportional to oxygen

concentration since the equivalence ratio is stoichiometric. Oxygen mole fraction varies with

residual fraction simply as in Equation 3.2. The equation is written as an approximation because

the mole fraction of fuel is neglected.

x 1 - residual (3.2)
o2 = 0.2

Figure 3.18 shows that both NIMEP and PRRmax increase as intake pressure is increased and as

oxygen mole fraction is increased. NIMEP ranges from 3.5bar to 5.0bar, and PRRma ranges

from less than 2MPa/ms to 11MPa/ms. Comparing one to the other, PRRmax increases more with

pressure than NIMEP does and less with oxygen concentration than NIMEP does. The high load

limit, defined as the highest NIMEP at a given PRRma, is achieved at high oxygen concentration

and at low pressure. This conclusion implies it is better to operate the engine with low or no

boost and low trapped residuals than at high boost with high trapped residuals. This is because



boosting causes charge temperatures to increase. This exacerbates knock but does not increase

load. It is observed that the contours of PRRmax are steeper than those of NIMEP. A significant

consequence of this observation is that the high load limit always occurs at the misfire limit.

0.1 . I. _
0.1 --- ------------I 4.0

Low Load 2 3.5 5
0.09

Limit 0.9 1 1.1 1.2 1.3 1.4
Intake Pressure (bar)

Figure 3.18. NIMEP and PRRmax Contoured on Oxygen Mole Fraction and Intake Pressure;
points are marked as diamonds.

Ti,, = 120C. Misfire

The misfire limit encompasses two behaviors. The red diamonds represent points in a

particular sweep just before the engine misfired. The point at (1.0bar, 0.12) forms a high-load

limit. Here, the engine is set to a particular intake temperature and boost, and the amount of

trapped residual gas is reduced via decreased NVO such that at some point, the charge is too cold

to initiate combustion. The temperature is the limiting factor since the pressure is constant and

the oxygen and fuel are increasing. This is termed a "high load limit" since fuel and therefore

NIMEP are increasing through the sweep. Note how the oxygen fraction limit increases

substantially with only a very modest increase in boost pressure. Boost is therefore an effective

means of avoiding misfire.

The low load limit is formed on the left by a minimum pressure and on the bottom of the plot

by a minimum oxygen fraction. If the fuel rate is reduced sufficiently, the temperature of the

trapped residuals drops to be too cold to initiate combustion, as illustrated in Figure 3.14. This is

the case for the red diamond at (1.0bar, 0.1).



The contour map in Figure 3.18, which shows data taken at Tin = 120'C, is reprinted with

similar maps showing data taken at Tin = 90'C and Tin = 60'C in Figure 3.19. The operating range

shifts to higher boost pressures to compensate for decreased intake temperatures. The high load

limit occurs at high oxygen concentration and low boost at the misfire limit in each contour map.

Comparison of one contour map to the other indicate that the highest load for a given PRRmax

occurs at the lowest intake temperature, consistent with the intake temperature sweep data shown

in Figure 3.10. This is because at low intake temperature, the reaction rates are slower,

mitigating pressure rise rate but the charge density is higher allowing more fuel and air.

The contour plots of CA10, presented in Figure 3.20, show that combustion phasing is

strongly affected by intake air temperature and boost pressure but not significantly by oxygen

fraction. The effect of intake temperature on phasing, noted in Section 3.2 and in Figure 3.6, is to

advance combustion with increased heating. The first charge to self-ignite reaches suitable

temperatures for fast reactions sooner in the engine cycle. Increasing boost pressure, as noted

earlier, directly increases reaction rates, increases concentrations of air and fuel, and causes an

increase in temperature. All three factors result in earlier combustion.

What is less intuitive is the weak dependence of phasing on oxygen fraction, except near the

high-load misfire limit. In the map of Tin = 120'C data, for example, there appears to be almost

no dependence on oxygen fraction. Figure 3.15, Figure 3.16, and Figure 3.17 show that,

especially at high intake air temperature, there is weak dependence of charge temperature on

EVC timing. The amount of residual fraction and the temperature of the residual gas do seem to

compensate for one another to keep the compression temperature relatively constant, and this

effect results in keeping combustion from phasing significantly with the degree of trapped

residual. At high and low residual fraction levels, Figure 3.15 does show that the compression

temperature drops off its plateau, and so combustion phases later allowing misfire to eventually

occur.

Indicated efficiency, shown in the contour maps in Figure 3.21, appears to be a strong

function of intake air temperature but less affected by oxygen concentration and boost. The

average efficiency on the maps are approximately 34% at Tin = 60'C, 32% at Tin = 90'C, and

29% at 120'C. On the 90'C and 120'C, variations across the map are limited to 1-2%. On the

60'C contour map, the efficiency ranges from 32% to 40% in one spot. Efficiency is, in part, a

function of combustion phasing, and this accounts for the local maximum in each map.
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Figure 3.20. CA10 Contoured on Oxygen Mole Fraction and Intake Pressure; Ti = 60'C (top), Ti, =
Ti, = 120°C (bottom)
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3.3.2 High-Load Misfire Limit with NVO and Without EGR
In Section 3.2 and Section 3.3.1, the effects of NVO, intake temperature, and boost pressure

were explored, and high load misfire limits were observed under various conditions. This section

will introduce new data varying these parameters but focused to describe the high-load misfire

boundary.

Two high-load misfire limits were observed: one associated with decreased trapped residuals

and the other with decreased intake temperature. The load increases as the amount of trapped

residuals is decreased, and this also reduces the charge temperature, which can lead to misfire.

Figure 3.13, reproduced here in Figure 3.22, shows fuel mass per cycle versus EVC timing for

NVO sweeps at four boost pressures. Pou, is held equal to Pin, as before. Intake temperature is set

to 120'C. For the Pin = 1.0bar sweep, as the residual fraction is decreased with retarded EVC

timing, the fuel mass increases until misfire. Pressure is almost constant. Equivalence ratio is

constant. Oxygen fraction is increasing, so the misfire is caused only by a temperature decrease

due to lower trapped residual gas fraction.
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Figure 3.22. Fuel Mass vs. EVC Timing. Ti = 120'C. Misfire points are circled. (Reproduced from Figure 3.13.)

The second observed high load limit occurs when intake temperature is reduced until charge

temperature is insufficient for ignition. At the same time, charge density is increased which

causes load to increase. Figure 3.23 shows NIMEP vs. intake temperature for five intake

temperature sweeps, and misfire is observed at the two lowest pressures.
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Figure 3.23. NIMEP vs. Intake Temperature for Five Intake Pressures. Misfire points are circled.

Data was acquired to explore the boundary of stable operation at the high load limit. The

intake pressure and temperature were set with a valve timing that yielded stable combustion. The

EVC timing was then retarded until trapped residuals provided insufficient thermal energy to

sustain combustion. Figure 3.24 shows the conditions for the data points of the set.
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Figure 3.24. EVC Timing vs. Intake Pressure for Four Intake Temperatures. Misfire points are marked in open
symbols.



EVC timing is plotted against intake pressure, and intake temperature is shown by colored

symbols. Note the sensitivity to intake pressure, which is incremented by 25mbar. Open symbols

indicate conditions where misfire occurred when EVC was retarded past this point. For each

temperature, when boost is increased past a certain threshold, misfire did not occur at all. Misfire

was defined as when the engine died. Figure 3.4 shows that compression temperature rises

significantly with boost, and Figure 3.5 shows that residual fraction also increases with boost.

This added thermal energy caused combustion to occur robustly even when EVC timing is highly

retarded. Another phenomenon was that under low residuals and high boost, the engine might

produce a very low NIMEP in a cycle but restart robustly on the next cycle.

Figure 3.25 features burned gas fraction versus pressure at 150 BTC. For a given intake

pressure and temperature, as burned gas fraction is reduced, the engine eventually misfires. As

pressure is reduced from a stable point, the engine also misfires.
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Figure 3.25. Residual Fraction vs. Pressure at 150 BTC. Misfire points marked in open symbols.

Another feature is that the sensitivity to residual fraction increases as intake temperature

decreases. At 120'C, residual fraction drops from 34% to 24% when intake pressure is increased

from 13.6bar to 14.4bar. However, when Tin = 35oC, residual fraction is reduced from 38% to

only 34% when pressure at 150 BTC is increased by 1.7bar. This is attributed to the effect that

boosting the engine causes the temperature of the residual gas to increase.



Trade-offs between intake temperature and residual fraction might imply that the charge

temperature takes into account both effects and serves as a critical factor determining misfire. As

shown in Figure 3.26, the temperature at 150 BTC is plotted against the pressure at 150 BTC.

Bulk temperature does not form a clear threshold with pressure. It cannot be used as a good

metric for ignition delay, at least for this data set. The reason why this might be is because

ignition depends on the temperature of the hottest parcel of gas in the charge, not the average

temperature of the gas. If the hottest and the average were to correlate, then the thermal

stratification of the charge would have to be consistent across the data set. This is unlikely since

the thermal stratification depends on the difference in temperature between the intake air and the

trapped residual and on the fraction of intake air versus the residual fraction. Increasing intake

pressure may also have the effect of increasing the Reynolds number and therefore increasing

mixing. Another reason why temperature is a difficult metric to use is because of its strong

pressure dependence. A modest pressure increase causes a significant temperature increase via

increased heat transfer between the charge and the walls. The correlation in Figure 3.26 implies a

degree of causation. The issue of the accuracy of the temperature estimate is also relevant. The

temperature at 15 o BTC variation across this data set is only 10%, and variations for a fixed

pressure are much smaller.
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Figure 3.26. Temperature at 150 BTC vs. Pressure at 150 BTC. Misfire Points are marked as open symbols.



Combustion phasing, CA10, depends strongly on when the first parcel of gas bums, and

whether or not combustion occurs at all depends on the first parcel of gas as well. It is intuitive

that there is a relationship between CA10 and the misfire limit. CA10 and pressure at the end of

compression for the misfire limit are shown in Figure 3.27.
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Figure 3.27. CA10 vs. Pressure at 150 BTC. Misfire points are marked in open triangles.

A clear trend emerges where the misfire limit occurs at the latest phasing for a given

pressure. A quadratic fit relates CA10 to pressure at 150 BTC with an R2 of 94% so this indicates

that they depend on the same phenomena. At the misfire curve, on the left side of Figure 3.27,

the pressure is low; the intake temperature is high, and the residual fraction is high. On the right

side of the misfire curve, the pressure is high; the intake temperature is low, and the residual

fraction is low. Ignition delay has been described as a function of pressure and temperature, and

they trade off to determine the combustion phasing just before misfire. The Livengood-Wu

knock integral is reprinted here to illustrate how delay depends on both pressure and

temperature. Showing CA10 vs. pressure tells only part of the story, but the understanding of the

system is limited since the temperature history of the hottest parcel of gas in the charge is not

known.
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The misfire criterion based on CA10 is revealed to be quite robust for the NVO data without

EGR, as shown in Figure 3.28. CA10 is plotted against pressure at the end of compression.
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Figure 3.28. CA10 vs. Pressure at 15 BTC for Misfire Data: Limit Points, Four Intake Temperatures near the Limit,
and NVO Data, IVO, and EVC data from 3.3.1, 3.3.4, and 3.3.5.

The data from this study is shown. The data presented also includes the data from Sections 3.3.1,

3.3.4, and 3.3.5 including full NVO sweeps at three intake temperatures and four pressures,

intake temperature sweeps, IVO sweeps, and EVC sweeps. The misfire curve is not passed by

any of the data from the previous set.

Ideally, a formula can be developed to predict misfire. Relationships between various

parameters will be explored here to understand the misfire behavior of the engine. Empirical

formulas will be presented to show engine behavior; however, they may not be accurate enough

to be predictive.

To start, a strong correlation was observed between CA10 and P15BTC. A non-linear

optimization technique was used to develop a correlation between them. For the misfire limit, the

relationship was as stated in Equation 3.3, and the correlation is shown in Figure 3.29.

Tig = 33.3 P5 BTC -0.93 (3.3)



Here, CA10 is written as an ignition delay after 1650 ABC divided by engine speed to put the

metric into milliseconds, as in Equation 3.4.

CA10 -165
ig CA - 165 [ms] (3.4)
" =(engine_ speed)
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Figure 3.29. Tig vs. 33.3*Pl5BTc0 93, which is the correlation in Equation 3.3. R2 = 93%.

A threshold parameter f is defined as a metric to indicate whether misfire will occur or not. The

left side of Equation 3.3 is divided by the right so that this new function, stated in Equation 3.5,

equals 1 at the misfire limit.
', = 0.03.- ig P15B, C 0.93 (3.5)

If f is larger than one, then misfire is likely, and if f is less then one, stable combustion is

expected. fl was then calculated for the misfire points, the points of this data set near the misfire

limit, and the earlier data set of NVO sweeps, and these are all shown in Figure 3.30. This plot

shows that f, serves as an effective threshold parameter.



1.2

1.1
00

1 0 0 0 + O0 +
r +++  +

0.9 x X + X

S0. x x XXo xX XX
0.8 x x x

COX xf x )% x x
X X x

0.7 0 xx x x x xx x
0.6 x

0.5 I
12 14 16 18 20 22

Pressure at 15 CAD BTC (bar)

Figure 3.30. Threshold Correlation Based on CA10 and P5IBTC.

Ideally, the misfire limit could be determined by parameters

compression rather than combustion phasing. A correlation is ex

residual fraction, TS1BTC, and P15BTC form a function that evaluat

form of Equation 3.6 as a new flTS.
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The correlation is optimized to find a, b, and c as in the method
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3.7, and the results are plotted in Figure 3.31.

fnl 5 = 0.16- xes - P 1  - ex 231 )15BTC

o Misfire Points
x Stable Condition
+ Previous NVO Sweeps

that describe the charge during

:plored where a function of

es to 1 at the misfire limit in the

(3.6)

previously described to minimize

correlation is stated in Equation

(3.7)



1.8

1.6

1.4

( 1.2

1

0.8

o Misfire Points
x Stable Condition
+ Previous NVO Sweeps

12 14 16 18 20 22
Pressure at 15 CAD BTC (bar)

Figure 3.31. Beta Parameter vs. Pressure at 150 BTC. Here, Beta is based on T5BTc, PISBTc, and xres.

The correlation shows that there is promise; however, it is considerably worse than the

correlation that incorporates phasing. Misfire, like combustion phasing, depends on charge

stratification, and this is not well represented by bulk temperature so the quality of the threshold

is inherently limited. Combustion phasing incorporates this effect, which is why the previous

correlation is significantly better.

To account for thermal stratification effects, bulk temperature is replaced with the intake

temperature. PlsBTc is replaced with Pin, so that the misfire limit can be overlaid on the xo2 vs. Pin

maps shown in the previous section. A correlation relating Pin to xo2 and Ti for the misfire points

was found, stated in Equation 3.8.

Pi = 3840 0 2  -1.26 (3.8)

This correlation yielded an R2 of 96.2%. Again, the correlation was reformed such that a f,

called PPi, here, was set to the left side divided by the right side, as shown in Equation 3.9.

8 = 2.60.10 - 4 P - 2 -0.35 T 1.26 (3.9)

The resulting plot showing the misfire points, the near misfire points, and the points from the

other NVO sweeps is shown in Figure 3.32. The threshold shown by this correlation indicates a

clear but not perfect boundary for the points near the misfire versus the misfire points.
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Figure 3.32. Correlation Result Based on Pi, Ti, and x0 2 vs. Pi,. Misfire points are shown in circles; points taken in
this data set are shown in x marks, and + marks denote points from the previous NVO sweeps.

This correlation is used to illustrate the high-load portion of the misfire limit on maps of

oxygen fraction and intake pressure in Figure 3.33. Three maps are shown, as in Figure 3.19,

featuring Ti, = 60°C, 90°C, and 120°C. The misfire curves appear to be located in approximately

the right place. The slope appears to fit the 90°C data the best; however, the true dependence on

x0 2 and Pin, appear to have a more complex trend then the curves do. It should be noted that the

misfire curves do not accurately predict misfire at low load and do not attempt to do so. These

maps show clearly that the high load limit, constrained by PRRmax, occurs at the misfire limit.
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3.3.3 Mechanisms for Misfire, NVO High Load Limit
The high-load misfire phenomenon is addressed in this section by exploring cycle-by-cycle

behavior and five-cycle averages. This section does not pursue an exhaustive study of the misfire

occurrence. The engine's instrumentation is not designed to study cycle-by-cycle behavior. The

electromagnetic valve system operates with some cycle-by-cycle variability, which cannot be

ruled out as a contributing factor for misfire as will be shown. In this section, two examples of

misfire will be explored to illustrate basic themes only. The two points are circled on the plot of

misfire points and near-misfire points from Figure 3.25 reprinted in Figure 3.34. The first point

features Tin = 120'C, Pin = 1.0bar, and Xres = 27%. The second point is located at a higher boost

condition where Ti = 35°C, Pin = 1.3bar, and xres = 36%.
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Figure 3.34. Residual Fraction vs. Pressure at 150 BTC for Misfire Points and Near-Misfire Points. The two misfire
cases are circled.

The first observation for Case #1 is that combustion phases earlier just before misfire. Figure

3.35 and Figure 3.36 show two different parts of the pressure trace for 5 consecutive cycles

where the fifth cycle is the one in which the engine dies. Figure 3.35 shows the combustion

event, and Figure 3.36 shows the peak of the recompression event. Note that the recompression

peak for cycle 4, say, follows the combustion peak shown for cycle 4 and leads into cycle 5.

Cycle 1 features a late combustion event. Then combustion phases 6' earlier and retains this

phasing for three cycles until the engine dies. The recompression event shows that peak

recompression pressure starts somewhat low then increases for two cycles before dropping low



again. The misfire cycle features a much higher peak, possibly because the exhaust valve open

timing shifted in the absence of combustion, but this is after the engine has died.
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Figure 3.35. Case #1: Pressure Traces for Five Individual Cycles where the Fifth
the combustion event.
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Figure 3.36. Case #1: Pressure Traces for Five Individual Cycles where the Fifth One Misfires. The traces feature
the recompression event. Cycles 1 through 5 correspond to the same cycles in Figure 3.35.

The peaks of the cycle 1 and cycle 4 recompression processes are of similar magnitude, but

combustion in cycle 4 is phased much earlier than in cycle 1. The earlier phasing of cycle 4

implies that the exhaust from cycle 4 is colder than from cycle 1. For the recompression peaks to

be similar, fewer moles of gas are trapped in cycle 1, but they are hotter than in cycle 4. Since

the trapped residual is colder in cycle 4, the hottest parcel of gas in the next cycle does not reach

ignition temperature.
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Figure 3.37 and Figure 3.38 show the cycle-by-cycle and 5-cycle averages of NIMEP, airflow, X,

and CA50. NIMEP and airflow are shown as the percent deviation from their respective stable

average values. X is shown as the percent deviation multiplied by 5 for clarity. CA50 is shown as

the deviation in CAD from the stable average value. These are noted in Equations 3.16, 3.17, and

3.18.

Point by Point

0 105 110 115 120 125 130 135 140 145 150
Cycle Number

Figure 3.37. Case #1. Cycle-by-Cycle Data Leading up to the Misfire. NIMEP, Airflow, X, and CA50 recorded. For
NIMEP and Airflow, the percent deviation from the stable value is plotted. For X, 5*the percent deviation is plotted.
For CA50, the number of CAD deviation from the stable value is plotted.

5 Point Average
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Figure 3.38. Case #1. Five-Point Averages of Cycle-by-Cycle Data Leading up to the Misfire. NIMEP, Airflow, X,
and CA50 recorded. For NIMEP and Airflow, the percent deviation from the stable value is plotted. For X, 5*the
percent deviation is plotted. For CA50, the number of CAD deviation from the stable value is plotted.
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Percent Deviation of NIMEP = 100 • 100% (3.16)
SNIMEP

i=1

100

100

Percent Deviation of = 5x 100 100 100% (3.17)

100100

ECA50i
Deviation of CA50 = CA50 i -1 (3.18)
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A first observation from the cycle-by-cycle data is that CA50 and NIMEP move together.

This is likely an efficiency effect where retarding combustion increases efficiency.

The plotted parameters vary considerably on a cycle-by-cycle basis, but the five-cycle

average plot shows that there are trends on the time scale of 10-20 cycles. Airflow drops below

average at cycle 110 and then drops again at cycle 137 to where it is almost 5% lower than

average. The air-fuel ratio peaks at cycle 107 and at cycle 120 before staying at a somewhat

constant value that is higher than average. The fuel injection rate can be assumed to stay constant

so if the air-fuel ratio and the airflow do not vary together, it implies that there is significant

variation in the fuel pooling rate. The assumption is that some amount of fuel pools in the intake

port so for a given cycle, some of the fuel comes from the injection and some of the fuel comes

from the pool. Some of the injected fuel is stored in the pool. This pooling phenomenon has been

shown to vary on a time scale of tens to hundreds of cycles, which is consistent with the

timescale of these variations. Scaringe and Cheng observed a short time scale, tens of cycles, for

pool depletion when injection was turned off. They attributed this depletion time scale to the

pool location near the valve [52]. The engine misfires just after the air flow drops the second

time at 137 cycles implying that this effect, in concert with air flow variations, is instrumental in

causing the misfire. Variation in pool size might be caused by variations in turbulence in the



intake or variations in the temperature of the gas in the intake. Residual gas may move into the

intake port during the intake process and affect evaporation.

Variations in residual fraction may also be relevant, but no evidence suggests this as a stand-

alone cause for misfire. A strong variation in residual fraction is observable at cycle 107. Here,

combustion phases later, likely causing the trapped residual gas to be hotter. The airflow and air-

fuel ratio both increase implying more air is entering the engine and therefore less residual is

being trapped. While this is observable, the engine does not misfire, implying that the engine can

withstand variations in residual fraction.

A final observation from Case #1 is the relationship between combustion phasing and EVO

timing. Increased pressure in the cylinder at EVO retards the opening process. The

electromagnetic valve system was weak to the point that the command timing had to be

advanced to hold the same valve movement timing if pressure during the expansion stroke were

increased. For a particular command setting, it is evident from Figure 3.39 that EVO timing

followed CA90 timing very closely.
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Figure 3.39. Cycle-by-Cycle Data for EVO, EVC, and CA90. Deviation from the stable average is plotted in CAD.

From Figure 3.54 in Section 3.3.5, it was also clear that residual fraction varied with EVO

timing. Cycle-by-cycle variability may play a factor in misfire phenomena in this engine.

However, it should be reiterated that longer time-scale phenomena appeared more responsible

for misfire in this case.

Case #2 was taken where Tin = 35°C, Pin = 1.3bar, and Xres = 36%. The average combustion

phasing before misfire was 187' ABC. The pressure traces leading up to misfire are shown in

Figure 3.40 and Figure 3.41 where the combustion event and the recompression event are

presented, respectively.



Cycle 1 features phasing at approximately 1870, the stable average, then combustion phases

later for cycle 2, then earlier, and then later again, and phases significantly earlier to 1830 for

cycle 5. The next cycle is the misfire. As in Case #1, the misfire is preceded by a very early

cycle. The recompression event for cycle 4 features an especially high pressure peak implying

that an above-average amount of energy is trapped for cycle 5. Cycle 5 consequently burns very

early. This leads to a low compression event which does not provide enough energy for the

combustion event to occur in cycle 6.
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Figure 3.40. Case #2: Pressure Traces for Six Individual Cycles where the Sixth One Misfires. The traces feature
the combustion event.
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Figure 3.41. Case #2: Pressure Traces for Six Individual Cycles where the Sixth One Misfires. The traces feature
the recompression event. Cycles 1 through 5 correspond to the same cycles in Figure 3.40.



Just as in Case #1, the several cycles before misfire are characterized by variations in combustion

phasing and recompression pressure. Strategies to extend the misfire limit might consider

controlling these symptoms.

NIMEP, airflow, 2, and CA50 are plotted on a cycle-by-cycle basis and 5-cycle average basis

in Figure 3.42 and Figure 3.43. NIMEP and airflow are plotted as the percent deviation from the

stable average value. 2 is the same but multiplied by 5 for clarity. CA50 is plotted as the

deviation from the stable average in CAD.
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Figure 3.42. Case #2. Cycle-by-Cycle Data Leading up to the Misfire. NIMEP, Airflow, 2, and CA50 recorded. For
NIMEP and Airflow, the percent deviation from the stable value is plotted. For A, 5*the percent deviation is plotted.
For CA50, the number of CAD deviation from the stable value is plotted.
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Figure 3.43. Case #2. Five-Point Averages of Cycle-by-Cycle Data Leading up to the Misfire. NIMEP, Airflow, 2,
and CA50 recorded. For NIMEP and Airflow, the percent deviation from the stable value is plotted. For 2, 5*the
percent deviation is plotted. For CA50, the number of CAD deviation from the stable value is plotted.
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CA50, NIMEP and airflow show no significant variations just before misfire in the cycle-by-

cycle plot. The air-fuel ratio, however, peaks briefly at cycle 257 and then dips at cycle 276 just

before the engine dies. The 5-cycle average shows a more telling story with air-fuel ratio. L

indicates a shift to lean operation at cycle 232, and then consistently lean operation continues.

The engine air-fuel ratio peaks at an even more lean condition at cycle 257 before settling to the

previous setting. A dips to stoichiometric just before the engine dies. The air-fuel ratio varies on a

time scale of 10-20 cycles, and the air flow holds very steady. Injection rates are assumed

constant implying that variations in fuel pooling are present, as in Case #1.

In summary, two factors are suggested to contribute to misfire. Variations in fuel pooling in

the intake port vary on the time-scale of tens of cycles, and this leads to unstable conditions.

Variations on a cycle-by-cycle basis in combustion phasing and consequently the amount and

temperature of the trapped residuals contribute to misfire. Significantly variations in the latter are

observed without misfire which leads to the conclusion that the factor of fuel pooling variations

are necessary for misfire. An in-depth study is required to verify this suggestion and to

understand in detail how variations in relevant parameters affect one another.

3.3.4 IVC Timing Effects
Besides varying the degree of trapped residuals via the EVC and IVO timings, varying IVC

timing is another way to control combustion. In this study, the EVO timing, EVC timing, and

IVO timing were set to trap a mid-range amount of residual gas, and the IVC timing was varied

at four different boost pressures. Exhaust pressure was set to intake pressure for all data in this

section. Intake temperature was set to 1200 C. The valve timing settings are listed in Table 3.3

and diagrammed in Figure 3.44.

First, it should be observed that residual fraction does not change significantly by varying

IVC timing, as shown in Figure 3.45. Residual fraction is largely determined by the exhaust

valve behavior. By retarding the IVC timing, the piston pushes the charge back into the intake

port after inducting air which means that the inducted charge actually contains some residual gas

that had been pushed into the intake during the previous cycles. The two primary effects of

retarding IVC timing are reducing the effective compression ratio and reducing the number of

moles in-cylinder. Whereas the geometric compression ratio is defined in terms of the minimum

and maximum volumes, as in Equation 3.5, the effective compression ratio is a function of the

volume at IVC as in Equation 3.6.



Vmax - Vmin
CRGeometric - ax min (3.5)

Vmin

CREffective - - in (3.6)
Vmin

TDC

Table 3.3. IVC Sweep Valve Timings I EVC I F i7 IVO I
Valve Timing

Operation
IVC 200 to 670 ABC
EVO 300 BBC
EVC 810 BTC
IVO 810 ATC

BDC IEVOI

Figure 3.44. Diagram of Valve Timings for the IVC
Sweeps

Reducing the effective compression ratio results in lower pressures at the end of the compression

process, as shown in Figure 3.46. The pressure at 15° BTC drops with a slightly stronger-than-

linear dependence on IVC retard. Eventually, pressure drops sufficiently that misfire occurs as

shown for the Pin, = 1.1bar and 1.2bar cases.

Besides reducing the effective compression ratio, the number of inducted moles of air, fuel,

and residual gas decreases as IVC timing is retarded. Figure 3.47 shows the decrease in fuel mass

per cycle with IVC timing. The rate of decrease is stronger at higher boost likely because the

residual fraction increases slightly at high boost.

The temperature at the end of compression behaves similarly to pressure; it drops with IVC

retard as shown in Figure 3.48. Varying IVC timing by 250 results in a temperature decrease of

30°C at 150 BTC. The temperature reduction occurs in part because of decreased cylinder

pressure but also because the residual gas temperature is colder since less fuel is burned per

cycle.

Combustion phases later with retarded IVC timing as shown in Figure 3.49. Both

temperature and pressure are lower so the charge does not reach a state adequate for fast

90
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reactions until later in the cycle as IVC timing is retarded. This trend persists until the misfire

limit is encountered.

* Pin = 1.1 bar

* Pin = 1.2bar
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Figure 3.45. Residual Fraction vs. IVC Timing for Four Boost Pressures. Misfire limit points are circled.

U
n

*®
0

* Pin = 1.1bar

* Pin = 1.2bar

APin = 1.3bar

e Pin = 1.4bar

10 20 30 40 50 60 70

IVC Timing (CAD ABC)

Figure 3.46. Pressure at 150 BTC vs. IVC Timing for Four Boost Pressures. Misfire limit points are circled.
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Figure 3.47. Fuel Mass vs. IVC Timing for Four Boost Pressures. Misfire limit points are circled.
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Figure 3.48. Temperature at 150 BTC vs. IVC Timing for Four Boost Pressures. Misfire limit points are circled.
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Figure 3.49. Combustion Phasing vs. IVC Timing for Four Boost Pressures. Misfire limit points are circled.

Just as combustion retards, maximum pressure rise rate drops with retarded IVC timing as

shown in Figure 3.50. Dropping temperatures and fuel rates result is slower reaction rates

overall.
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Figure 3.50. PRRmax vs. IVC Timing for Four Boost Pressures. Misfire limit points are circled.
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Since fuel rate drops as temperature and pressure drop with IVC retard, the NIMEP and

PRRmax scale together with IVC timing as illustrated in Figure 3.51. IVC timing and boost both

serve as means to vary the NIMEP, and it appears that a combination of the two allows for the

highest increase of NIMEP for a given rate of pressure rise. A way to increase load constrained

by PRRmax appears to be to retard IVC timing while boosting the engine. Charge density can be

increased while the pressure at the end of compression can be managed. NIMEP and PRRmax are

contoured on the effective compression ratio and intake pressure in Figure 3.52. This contour

plot shows that a small increase in the high load limit can be achieved by moving to a low

effective compression ratio and high boost.
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Figure 3.51. NIMEP vs. PRRmax for Four Boost Pressures. Misfire limit points are circled. Red dashed lines
indicate constant IVC timing values.
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3.3.5 EVO Timing Effects
Another means of controlling combustion is by varying EVO timing. This study assessed the

effect of varying EVO across five intake pressures. Exhaust pressure was held equal to the intake

pressure. The intake temperature was set to 1200 C. EVO timing was varied from 650 BBC to 100

ABC. The other valve timings were fixed such that a mid-range amount of residual gas was

trapped as listed in Table 3.4 and diagrammed Figure 3.53.

TDC

Table 3.4. EVO Sweep Valve Timings
Valve Timing

Operation
IVC 200 ABC
EVO -10 to 650 BBC
EVC 810 BTC
IVO 81 0 ATC

Li~i1

~Z1 ~1/

BDC

Figure 3.53. EVO Sweep Valve Timings
The effects of varying the EVO timing are not simple, but varying EVO timing significantly

changes charge characteristics so the topic should not be neglected.

First, the effect of EVO timing on the residual gas fraction is illustrated in Figure 3.54.
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Figure 3.54. Residual Gas Fraction vs. EVO Timing. Pin = 1.Obar - 1.4bar; Tin = 120'C. Misfire limit points a
circled.
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Residual fraction increases with boost pressure as in the previous studies. Residual fraction

shows a parabolic dependence on EVO timing. It peaks where EVO is approximately 200 BBC

and diminishes as EVO is retarded or advanced from this timing.

The decrease in residual fraction as EVO timing is advanced can be explained simply by the

fact that the exhaust duration is increasing so the engine becomes more effective at expelling

burned gas. The number of moles of trapped residuals is plotted against EVO timing in Figure

3.55 and shows a consistent, slight decrease in trapped moles as EVO timing is advanced.
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Figure 3.55. Moles of Trapped Burned Gas vs. EVO Timing for Five Intake and Exhaust Pressures. Ti,, = 120°C.
Misfire points are circled.

The explanation for why very retarded EVO timing reduces the trapped residual fraction

requires inspection of the pressure trace. Figure 3.56 features the averaged in-cylinder pressure

trace for six EVO timings where Pin, = 1.2bar and Ti, = 120'C. The crank angle is referenced

here, and only here, so 0O is BDC exhaust for convenient reference for EVO timings. The close-

up below shows the pressure remaining high longest for the latest EVO timing, -3o BBC, and

retained shortest for the earliest EVO timing, 63' BBC. When EVO timing is late, at -3' BBC,

the blowdown event of the exhaust process occurs while the cylinder volume is decreasing after

TDC.
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Figure 3.56. Averaged In-Cylinder Pressure Traces for 5 EVO Timings. Top: Full averaged cycle. Bottom: Focused
on the exhaust event, circled in black in the top plot. Pi, = 1.2bar; Ti,, = 120oC.

This acts to enhance the blowdown process and to force more exhaust out of the cylinder.

The fuel mass per cycle varies inversely with residual fraction since the residual fraction

displaces air and since the air-fuel ratio is held at stoichiometric. Varying EVO can therefore be

used to vary the load. Fuel mass per cycle vs. EVO timing is shown in Figure 3.57.

It was shown in the discussion of NVO sweeps that varying the temperature of the charge can

keep PRRmax low as fueling is increased. EVO significantly affects the temperature of the

trapped residuals as shown as Tjo in Figure 3.58. Trvo varies parabolically with EVO timing.

Unlike in an NVO sweeps, Tjo moves with residual fraction and against fuel mass. In an NVO

sweep, it was presumed that burning more fuel resulted in hotter exhaust which translated to
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hotter residual gas. Here, while exhaust temperature may increase, this effect is dominated by

other processes.
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Figure 3.57. Fuel Mass per Cycle vs. EVO Timing. Pin = 1.0bar - 1.4bar; Tin = 1200 C. Misfire limit points are
circled.

Inspection of averaged pressure traces in Figure 3.56 suggests the timing of pressure waves

in the exhaust account for this residual gas temperature behavior. The exhaust blowdown event

generates a pressure rise in the exhaust line which causes a pressure wave to move back into the

engine shortly after the blowdown. The blowdown event causes the cylinder pressure to drop

from above 2.5bar to below 1.3bar. Following the yellow curve where EVO = 630 BBC, the

pressure rises to more than 1.5bar and then drops to about 1.4bar before rising again just before

the end of the EVC event (indicated by the vibrations in the pressure trace at 1000 ABC).

Note that the average exhaust pressure is 1.2bar, and the cylinder pressure drops to below this

value. There appears to be a pressure wave traveling out of the cylinder then back into it and then

out again. This wave behavior is evident in each of the curves however it phases later as EVO

timing is phased later. The cylinder pressure and the number of moles in cylinder at EVC are

prime drivers for IVO temperature. The pressure at EVC of each curve shown ranks from highest

to lowest the same as the temperature at IVO does for each condition. The difference between

pressures is significant, ranging from 1.4bar to 1.8bar, which is approximately a 25% difference.

The IVO temperature varies by approximately 15%. This makes sense that the difference is



lower since the number of moles is acting against the trend in pressure and since heat transfer

during recompression and re-expansion will reduce differences between cases.
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Figure 3.58. IVO Temperature vs. EVO Timing. Pi, = 1.Obar - 1.4bar; Ti, = 1200 C. Misfire limit points are circled.

Given that the residual gas temperature drops as EVO timing is advanced and that the

residual fraction also drops, it is understandable that the charge temperature would drop to the

point of misfire which it does for the lowest two pressures tested as denoted by the circles. The

temperature at the end of compression, shown in Figure 3.59, reflects changes in TNro and also

shows parabolic behavior. The IVO temperature of the residual gas reaches a maximum near the

timing where the residual fraction reaches a maximum, and these factors act together to increase

or decreases the charge temperature. It should be noted that resulting variations in temperature

across a given sweep are stronger than for the NVO sweeps.

Temperature effects are further confirmed with the observation of combustion phasing

denoted as CA10 in Figure 3.60. Combustion retards as EVO timing is advanced and also retards

slightly as EVO timing is retarded past the maximum residual gas fraction point.

The maximum rate of pressure rise is plotted against the EVO timing in Figure 3.61. The rate

of pressure rise does not show a strict correlation with fuel mass but instead holds flat where fuel

mass increases at advanced EVO. The low charge temperature resulting from the pressure waves

during the exhaust process prolong the burn duration even though fuel mass is increasing. Figure
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3.62 shows NIMEP plotted against PRRmax showing that there is opportunity to increase the high

load limit by advancing EVO timing because of the residual gas cooling effects.

It should be noted that this behavior may be specific to this engine and to 1500rpm. Tuning

effects will likely change from engine to engine and vary with engine speed. Nevertheless, the

concept may be employed to manage charge temperature if the pressure wave behavior is well

understood for a given speed and exhaust system configuration. This issue can alternatively be

thought of as a liability. If EVO timing is fixed, pressure wave effects may vary with engine

speed and cause the charge temperature to vary with engine speed. The operating range might be

unnecessarily constrained as a result.

NIMEP and PRRmax are contoured on EVO Timing and Intake Pressure in Figure 3.63. The

map shows that load increase constrained by PRRmx can be achieved by advancing EVO timing.

This results in reducing residual gas temperature and therefore the temperature at the end of

compression. This causes a reduction in PRRmx while at the same time, fuel rate is increased.

A potential concern for advancing EVO timing is that efficiency will be reduced because

pressurized burned gas will be exhausted before it can impart the maximum amount of work

upon the piston. This effect if present at all is subordinate to other effects as indicated efficiency

increases with EVO advance, as shown in Figure 3.64. The increase of efficiency may be caused

by retarded phasing or by improved volumetric efficiency from variations of the exhaust pressure

waves. Efficiency falls just before the misfire limit.

In this thesis, the EVO timing is set to 300 BBC, on one hand, to operate the engine away

from the misfire limit and on the other hand, to allow the EVC timing to be advanced as much as

possible. The latter motive is because the electromagnetic valve system requires a minimum

valve duration for stable operation. In a production CAI engine, the EVO timing would be varied

to optimize exhaust pressure wave effects to both avoid misfire and mitigate rate of pressure rise.
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Figure 3.59. Temperature at 150 BTC vs. EVO Timing. Pin, = 1.Obar - 1.4bar; Tin = 1200 C. Misfire limit points are
circled.
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Figure 3.60. CA10 vs. EVO Timing. Pin, = 1.Obar - 1.4bar; Ti, = 120' C. Misfire limit points are circled.

102

960

940

0 920I--

U 900

Q 880

. 860
E
1-

840

820 -

-20

192

190

188-

1Q6 -

< 184

' 182

o 180
S " A

0
0]

110

176

174-

I

O



16 -

14 -

12 -

10 -

8-

6-

4-

2

0 -
-20

* 1.0bar

S1.1 bar

A 1.2bar

e 1.3bar

o 1.4bar

EVO Timing (CAD BBC)

Figure 3.61. PRRmax vs. EVO Timing. Pin = 1.Obar - 1.4bar; Ti,, = 120 C. Misfire limit points are circled.
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Figure 3.62. NIMEP vs. PRRmax. Pi, = 1.Obar - 1.4bar; Ti, = 120' C. Misfire limit points are circled. The arrows
point in advancing EVO timing.
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Figure 3.63. NIMEP and PRRmax Contoured on EVO Timing and Intake Pressure; Tin = 120'C.
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Figure 3.64. Indicated Efficiency vs. EVO Timing. Pin, = 1.0bar - 1.4bar; Ti, = 120 C. Misfire limit points are
circled.
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Chapter 4 Trapped Residual Gas versus Recirculated Exhaust Gas
A central problem with a residual gas trapping strategy is that the residual gas may add more

thermal energy to the charge than desired, especially under boosted conditions. An alternative is

to use exhaust gas recirculation (EGR) where the EGR gas is cooled before introduction with the

intake air. The hypothesis is that the bulk gas temperature can be reduced thus reducing the

maximum rate of pressure rise for constant fueling.

This study presents data and analysis comparing the effects of EGR under varied NVO valve

timing, boost pressure, and intake temperature. The valve timing settings are listed in Table 4.1

and diagrammed in Figure 4.1. The IVC timing and EVO timing were fixed, and the EVC timing

was varied in 50 increments from 650 to 1000 BTC. IVO timing was held symmetric about TDC

to EVC. For a given intake temperature and boost setting, the EVC timing and the EGR were

varied. The intake pressure was varied from 1.1bar to 1.7bar in 0.2bar increments with the intake

temperature set to 1200C to show pressure effects. In the second part of the study, the intake

pressure was set to 1.5bar, and the intake temperature set to 600C, 900C, and 1200C to show the

effect of EGR and residual trapping versus intake air temperature on bulk charge temperature

and on combustion.

EVCTable 4.1. EGR Study Valve Timings

Table 4.1. EGR Study Valve Timings
Valve Timing

Operation
IVC 300 ABC
EVO 300 BBC
EVC 650 to 1000 BTC
IVO 650 to 100 ATC

IVC BDC EVO

Figure 4.1. Diagram of Valve Timings for the EGR
Study

To vary the flow of gas through the EGR loop into the intake, the exhaust pressure was set to be

30mbar higher than the intake temperature for all data in this study. Note also that the EGR gas

and intake air mix upstream of the thermocouple measuring intake temperature so now the intake
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temperature represents the temperature of this mixture of EGR gas and air rather than simply

intake air.

EGR gas and trapped residual gas can be varied separately. The effect of EGR is assumed to

be dilution without increased temperature so the residual gas, not the EGR gas, is more relevant

to combustion since it adds thermal energy to the incoming charge. To discuss the effects of

trapping residual gas versus recirculating it, the term residual-burned fraction is introduced to be

the residual fraction divided by the EGR fraction as in Equation 4.1 where residual fraction and

EGR fraction are defined in Equation 4.2 and 4.3, respectively.

Xres-burned - res - res (4.1)
Xburned XEGR + Xres

ntrapped
Xres = (4.2)

ntrapped + nfuel + nair + nEGR

xEGR = nEGR (4.3)
ntrapped fuel air EGR

nEGR is the number of moles per cycle recirculated from the EGR loop. The EGR fraction xEGR is

the moles of gas in-cylinder from the EGR loop dived by the total number of moles.

4.1 Effects of EGR vs. Residuals
The effects of EGR are introduced by showing various metrics plotted on contour maps of

Xres-burned versus Xbum with intake temperature set to 1200C and intake pressure set to 1.7bar. In

this way, if Xres-burned is 1 then there is no EGR, and all of the burned gas is residual gas. If it is 0,

all of the burned gas has been recirculated versus trapped. The contour plots show the points at

the misfire limit in diamonds.

Fuel mass per cycle is shown to vary only with burned gas fraction in Figure 4.2. This

confirms the expectation that burned gas displaces air the same amount regardless of whether it

was trapped or recirculated. At high EGR near 53% burned gas fraction, there also appears to be

very slight dependence of fuel flow on xre,/Xbum, and this could be because the charge is cooler

with more EGR so the intake air is cooled upon entering the cylinder causing charge density to

increase.

Before exploring how the average charge temperature varies, the trapped residual

temperature at IVO is shown in Figure 4.3.
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Figure 4.2. Fuel Mass per Cycle vs. Xre/Xburn VS. Xburn. Tin = 1200C; Pin = 1.7bar.
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Figure 4.3. Temperature at IVO vs. Xre/X burn VS. Xburn. Tin = 120 0C; Pin = 1.7bar.
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Tvo decreases strongly with burned gas fraction and decreases less strongly with residual-burned

fraction. As previously noted, trapped residual temperature drops with increased trapped

residuals because less fuel is burned per cycle. Trapped residual temperature may decrease with

residual fraction also because decreasing trapped residuals reduces heat transfer during the

recompression process.

The bulk temperature at 150 BTC is determined by the trapped residual gas, which is hot, and

by the intake air and EGR gas, which is considerably colder. At constant residual-burned

fraction, varied burned gas fraction is simply an NVO sweep, and the temperature peaks at a

mid-range value and drops as residual fraction is high and low, as shown in Figure 3.16, for

example. The contour plot in Figure 4.4 shows temperature at 150 BTC peak as xbum is varied at

constant Xre/xburn, for example at 85%. As the residual-burned fraction is decreased, the

temperature decreases, and this reflects the increasing fraction of gas that is cooled and

reintroduced through the intake.

1

0.95--950

940
950

0.94 950 Tc

x 0.85 T ---
0x 0 Misfire Points

X 930

0.8 -- 920- -I- - - ---- ------ - -

0.7------ ---------- +
91910I 910 I

0.7 L .-- - --- ----
0.4 0.45 0.5 0.55 0.6 0.65

Xburn

Figure 4.4. Temperature at 150 BTC vs. xre/Xburn VS. Xburn. Tin, = 1200C; Pi, = 1.7bar.

The effect of temperature can be clearly seen in the combustion phasing behavior, shown in

Figure 4.5. For the range of residual-burned fraction plotted, CA10 retards from approximately
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1770 to 1830 where the misfire limit is. When the charge is colder, combustion phases later. Also,

moving along constant residual-burned fraction via varied valve timing causes the temperature to

drop at high xb,m fraction, which results in the misfire limit on the right side of the plot. This

forms a low-load misfire limit. A high-load misfire limit is not encountered on the left side of the

map because engine knock reached severe levels before the misfire limit was encountered.
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Figure 4.5. CA10 vs. Xre/Xburn VS. Xburn. Tin = 120 0C; Pin = 1.7bar.

The map of fuel mass in Figure 4.2 showed that fuel rate is constant where burned gas

fraction is constant so the lowest PRRmax for a given fuel rate occurs at the misfire limit, as

circled. Here, EGR gas is flowed as high as possible to cool down the charge as much as possible

just above the misfire limit. Under EGR operation, the high load limit will always occur at the

misfire limit, and the high load limit will be maximized with the maximum rate of EGR.

Indicated efficiency is mapped in Figure 4.7 and features a relatively flat map. Efficiency is

highest where residual-burned fraction is lowest. This could be because combustion is phased

later and is more optimally positioned.
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Figure 4.7. Indicated Efficiency vs. Xre/Xburn VS. Xburn. Tin = 1200C; Pin = 1.7bar.
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4.2 Boost Pressure and EGR
The contour maps presented in Section 4.1 feature Pin, = 1.7bar. Analogous maps were

generated for Pin = 1.1bar, 1.3bar, 1.5bar with Tin = 120'C, and these maps show similar trends to

those found at 1.7bar so are not shown. The trends of fuel mass, Two, Tl5BTc, CA10, PRRmax, and

efficiency were the same for the lower boost pressure settings as for 1.7bar with minor variation.

The location of the misfire limit on the map was significantly affected by boost level. In

Section 3.3.2, it was shown that increasing intake pressure allows the intake temperature or

trapped residual fraction to be reduced without misfire. In this section, the concept is extended

that boosting the engine allows a reduction in charge temperature via increased EGR. The

misfire points for four boost pressure levels are plotted on a map of residual-burned fraction and

total burned gas fraction in Figure 4.8.
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X 85% - M
" 8 e Pin = 1.7bar

80% 
A

75% 8

70% .

25% 35% 45% 55% 65% 75%

x burn

Figure 4.8. Misfire Points Plotted on Xre/Xburn VS. Xburn for Four Boost Pressures. Tin = 120oC.

As the boost level is increased, misfire occurs at a lower Xre/Xbur. The engine will tolerate more

EGR with increased boost. Boost is increased by 55% from 1. bar to 1.7bar, and at 50% burned

gas fraction, this allows the residual-burned fraction to reduce from 93% to 76%. It can also be

seen that the shape of each curve changes with boost pressure. Observing the 1.lbar, 1.3bar, and

1.7bar curves shows that at low burned gas fraction, the misfire limit is extended more with

boost than at high burned gas fraction. The 1.5bar curve features a different trend with repeatable
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data. Where xbu,, is high, each curve follows roughly the same trend. Where xbu,, is low, the

trends are not consistent between curves.

4.2.1 Load and Maximum Rate of Pressure Rise with Boost and EGR
There is clearly a trade-off between maximum rate of EGR and intake pressure at the misfire

limit, but one condition is not necessarily better considering the goal of extending the high load

limit. In Figure 4.9, fuel mass per cycle is plotted against total burned gas fraction for the misfire

points for the four boost pressures under consideration. Fuel mass increases with boost, and fuel

mass increases as the total burned gas fraction decreases.
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Figure 4.9. Fuel Mass per Cycle vs. Burned Gas Fraction for Misfire Points with EGR for Four Boost Pressures. Tin,
= 120°C.

Maximum rate of pressure rise also increases with boost, as illustrated in Figure 4.10, so it is

unclear whether or not boost helps increase load without increasing burn rate. Figure 4.11 shows

maximum rate of pressure rise plotted against fuel mass. All four curves collapse to one curve

showing there is neither benefit nor detriment to boosting. There does seem to be a small benefit

to boosting at high fuel rate, but a typical PRRmax limit is 5MPa/ms where the curves are quite

close together. The decision of whether or not to boost the engine must therefore be decide by

concerns other than the high-load limit.
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Figure 4.11. PRRmax vs. Fuel Mass at the EGR Misfire Limit for Four Pressures. Ti,, = 120'C.

The behavior of PRRmax and fuel mass in Figure 4.11 shows clearly the trade-off between

boost and EGR. Boost acts to increase charge density and thereby add fuel and to increase
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temperature at the end of compression. EGR acts primarily to reduce charge temperature. At the

misfire limit, the increase of charge temperature from increasing boost is cancelled out by an

increased amount of EGR. The thermal energy may be assumed to be at some critical threshold

characteristic of the misfire limit, implying that temperature effects dominate the effect of varied

oxygen fraction. If the temperature effects of boost are cancelled out by EGR, then the only other

effect is increased fuel. In this data set, PRRmax has been shown to be dependent on fuel rate and

temperature, as illustrated by Figure 4.6. If the temperature is held constant across conditions,

particularly at a misfire temperature, then there should be no variation between PRRmax values if

the fuel mass is also held constant.

The other way to extend the high load limit than increasing fueling is to increase efficiency.

Indicated efficiency is plotted against total burned gas fraction in Figure 4.12. The efficiency is

shown to increase with boost, although the 1.5bar curve somewhat clouds the conclusion.

Efficiency increases three percentage points from 1. lbar to 1.7bar so there is a modest load limit

gain for boosted operation with EGR.
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Figure 4.12. Indicated Efficiency vs. Burned Gas Fraction for Four Pressures. Tin = 120oC.

This efficiency increase with boost is likely due to increased volumetric efficiency. The pressure

difference between intake air and the cylinder pressure is a more significant positive impact that

the pressure difference between the cylinder and the exhaust during the exhaust event. The
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cylinder pressures are still considerably higher than the exhaust pressure. The variations of

efficiency with EGR-burned fraction are due to combustion phasing. Figure 4.13 indicates a

roughly linear dependence of efficiency on phasing up to 1860 ABC.
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Figure 4.13. Indicated Efficiency vs. CA10 for the Misfire Points at Four Intake Pressures. Ti, = 120oC.

4.2.2 Temperature, Phasing, and Cyclic Variability Under Boost and EGR

The misfire limit occurs at a higher level of EGR with increased boost, and this implies that

the boost is offsetting a drop in charge temperature at IVO. Temperature at 150 BTC, as shown in

Figure 4.14, indicates that there is a noticeable temperature difference between the 1. lbar

pressure curve condition and the 1.7bar pressure curve. Temperature increases with boost but not

very much. The situation between 1.lbar and 1.7bar is less clear. At 1.lbar, the temperature

peaks at a mid-range burned gas fraction and decreases at high and at low burned gas fraction.

This reflects the temperature variation with residual fraction of the NVO sweep. This behavior is

less clear for higher pressures because the burned gas fraction is composed of lower fraction of

residual gas since the EGR rate is higher.

The temperature curves at the misfire limit do not demonstrate clear trends or the same trends

for different pressures. There may be some error in the temperature estimate, or the misfire limit

does not strongly depend on bulk temperature. Whether or not ignition occurs should depend on

the hottest parcel of gas igniting, not the average parcel. Once the hottest parcel does ignite then

the remainder of the charge should be compressed to the point of autoignition. Variations in EGR
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rate, residual fraction, and boost level likely affect the thermal stratification characteristics. This

would decouple variations in the average temperature from variations in the maximum

temperature and compromise the bulk temperature as a metric for misfire.
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Figure 4.14. Temperature at 150 BTC vs. Total Burned Gas Fraction for the Misfire Points at Four Boost Pressures.
T,, = 120'C.

Combustion phasing is shown in Figure 4.15 against residual fraction for the EGR misfire

points at the four pressures. It is plotted against residual fraction instead of burned gas fraction

because there appear to be two regimes with a transition determined by residual fraction. When

the residual fraction is higher than approximately 43%, denoted by the dashed line, combustion

phasing retards linearly with decreased residual gas fraction. When residual fraction is lower

than 43%, the trend changes, and it changes differently for each pressure curve. It is also

observed that misfire occurs at a later CA10 for higher boost, consistent with the misfire data

without EGR.

The dependence on residual fraction, rather than total burned gas fraction or compression

temperature, indicates the influence of a stratification effect. At high residual fraction, the fuel

rate is low so the residual gas is comparatively not hot. Also, the incoming oxygen and fuel have

probable access to the hot residual gas since it occupies a majority of the cylinder volume. At

low residual fraction, the residual gas is comparatively much hotter since the fuel rate is higher,

especially at boosted operation. The incoming oxygen and fuel have considerably less probable
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access to the hot residual gas because a substantial fraction of the cylinder volume is occupied by

cooled EGR gas. The resulting comparison is that at low residual fraction, the heat transfer

between oxygen and hot residuals features a higher temperature difference and a lower

probability compared to the high residuals case. The interaction between residuals and fresh

oxygen will depend on fluid motion increasingly as the residual fraction is reduced. Since the

charge motion is turbulent, the low residuals case is far more susceptible to cycle-by-cycle

variability than the high residuals case.
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Figure 4.15. CA10 vs. Residual Gas Fraction for the Misfire Points at Four Boost Pressures.

The supposition that cyclic variability may account for different trends is supported by trends

of coefficient of variation of the maximum rate of pressure rise (COV of PRRmax) as defined as

in Equation 4.1. uPRRmax is the standard deviation, and xp . is the mean.

COVofPRRm = PRR 100% (4.1)
XPRR max

COV of PRRmax is mapped on contour plots of Xre/xburn vs. Xres in Figure 4.16, Figure 4.17,

Figure 4.18, and Figure 4.19 at Pin = 1.lbar, 1.3bar, 1.5bar, and 1.7bar, respectively. Each plot

shows low COV of PRRmax where residual fraction is high and then high COV of PRRmax where

residual fraction is low. Dashed lines are overlaid to mark the transition between these two
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regimes, and the transitions each appear to be at approximately 45% residual fraction, just as in

the combustion phasing plot of Figure 4.15.
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Figure 4.16. COV of PRRmax Contoured on XreXburn VS. Xresidual for Tin = 1200C, Pin 1. lbar.
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Figure 4.17. COV of PRRmax Contoured on Xre/Xburn VS. Xresidual for Tin = 1200C, Pin, = 1.3bar.
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Figure 4.19. COV of PRRm Contoured on Xre/xburn VS. Xresidual for Ti = 1200C, Pi, = 1.7bar.

The pivotal difference between these regimes is how COV of PRRmax changes as xrexbur. is

increased at a fixed residual gas fraction. At high residual fraction, COV of PRRmax is low across

most of the operating regime and then sharply increases at the misfire limit. At low residual
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fraction, COV of PRRmax is higher throughout the operating regime and increases more gradually

and more erratically both as residual fraction increases and as the misfire limit is approached.

These two behaviors of COV of PRRmax reflect the differences in thermal stratification

established by low-temperature, high-fraction residuals and high-temperature, low-fraction

residuals. Since COV of PRRmax is not strictly higher at the misfire limit than at stable points in

the low-residual fraction regime, it is unsuitable to serve as a metric for the misfire limit.

Nevertheless, it still can yield insight into the behavior of combustion.

Another salient feature of these two regimes is that fueling is low at high residual fraction

operation so the right side of the misfire limit forms a low-load limit. The fueling is high at low

residual fraction operation so the left side of the misfire limit forms a high-load limit. The

approach to the high load limit can be characterized by a significantly higher degree of cyclic

variability than the approach to the low load limit.

4.3 Intake Temperature and EGR
In this part of study, the intake pressure is held to 1.5bar, and the intake temperature is set to

60oC, 90°C, and 120°C. EGR and NVO are varied as in Section 4.1 and 4.2. Exhaust pressure is

set to 30mbar higher than intake pressure so as to drive EGR flow. The purpose of this study is to

illustrate any difference between varying the charge temperature via the temperature of the air

and EGR gas versus varying the fraction of trapped residuals versus EGR. Continuing on the

conclusion that the high-load limit occurs at the misfire limit where EGR is as high as possible,

the misfire points are shown first, mapped on xre,/xb,, and xbum in Figure 4.20. The curves show

that as intake temperature is increased, the engine will run stably at a lower xre/Xbur fraction.

Less thermal energy is needed from the residual fraction for ignition when the intake temperature

is higher.

Average temperature at 150 BTC is plotted against burned gas fraction for the misfire points

in Figure 4.21. Misfire occurs at approximately the same temperature almost regardless of intake

temperature and burned gas fraction. xre/xburn clearly shows a trend against xbum, while bulk

temperature stays relatively constant, implying the misfire limit is more reliant on thermal

stratification than the bulk temperature. It does matter then that thermal energy is added via

trapped residual versus intake heating.
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Figure 4.21. Temperature at 150 BTC vs. Xburn for the EGR Misfire Limits for Three Intake Temperatures. Pin, =

1.5bar.

The maximum rate of pressure rise, mapped in Figure 4.22, Figure 4.23, and Figure 4.24,

shows a changing dependence on residual-burned fraction and total burned fraction with intake
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temperature. PRRmax increases with a slope of roughly +1 in the Tin = 60'C and Tin = 90'C maps.

- PR Rm x (MPa/ms)
* Misfire Points

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
burn

Figure 4.22. PRRmax vs. Xre/Xburn VS. Xburn
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Figure 4.23. PRRmax vs. XreXburn VS. Xburn. Tin = 90'C; Pin = 1.5bar.
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As intake temperature increases to 1200C, PRRmax depends less and less on the level of EGR.

This is because, as intake temperature increases, the temperature of the EGR gas increases so it

becomes less effective as a cool diluent. There becomes less of a difference between the EGR

temperature and the trapped residual temperature. EGR, therefore, most effectively mitigates

pressure rise rate if the intake air and EGR are kept cold.
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Figure 4.24. PRRma vs. Xre/Xburn VS. Xburn. Tin = 120°C; Pin = 1.5bar.

4.4 A Misfire Limit Correlation with EGR

As in Chapter 3 for the data without EGR, correlations are proposed to describe the misfire

limit with EGR. The first attempt to describe misfire with a function of oxygen fraction xO2,

pressure 15' BTC P15Brc, and temperature 15' BTC T15Brc was not successful. The average

temperature was not sufficient to describe the temperature effects on misfire. Figure 4.14 showed

that temperature at 150 BTC was not a good metric for misfire limit across the four boost

pressures studied. The next correlation attempts to capture the thermal stratification effects by

residual fraction and intake temperature. Pin replaces P15BTC SO the correlation can be used with

control parameters. The function describing misfire with EGR is stated such that oxygen fraction

is a function of intake pressure, intake temperature, and residual fraction as in Equation 4.2.

x = 2.15 - P-0.40 res-1.03 T-0.64 (4.2)
o= 2.15. P " T (4.2)
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This optimized correlation yields an R2 of 96%, and the result is plotted in Figure 4.25.

16%0/

14%

12%

10%

8%

6%

6% 8% 10% 12% 14%

2.15Pin -0 .4*x resA-1.0 3*Tin -0 .64

16%

-040 -1.03 -064
Figure 4.25. Correlation result for EGR misfire data of the form xo2 = 2.15 Pi,,-4 Xres" Tn.

The left side of the equation is divided by the right side to develop a threshold function, EGR,

where IEGR is 1 at the misfire limit. This is stated in Equation 4.3.

IfEGR = 1= 0.466 x 0 2 Pin0.4 0
Xres.

0 3 Tn0. 64 (4.3)

The correlation result is plotted in Figure 4.26 versus oxygen fraction. The correlation works

well except for several points at high oxygen fraction.

0.08 0.1 0.12
Oxygen Fraction

x All Points
0 Misfire Points

0.14 0.16

Figure 4.26. Correlation Result vs. Residual Gas Fraction. X02, P15BTC, Xres, and Ti, are used for the correlation.
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4.5 EGR Effects on the Range of Operation
The correlation stated in Equation 4.3 is now used to illustrate where the misfire limit is for

constant levels of Xres/Xburn. Figure 4.27 features a contour map of the misfire limits at constant

XresXbum mapped on oxygen fraction and intake pressure. Intake temperature for the data

presented in this plot is 120'C. The acquired data lie at 1.1bar, 1.3bar, 1.5bar, and 1.7bar which

allow misfire points to be shown for Xres/Xbum levels of 95%, 85%, 80%, and 75%. The

correlation results feature reasonable agreement with the data. There appears to be systematic

error where pressure at the misfire limit is overestimated. The data's limit at high oxygen

fraction at 85% Xre,,/bum shows behavior where as pressure is increased, the allowable oxygen

fraction decreases. This behavior is not captured by the correlation. In general though, the

correlation illustrates how EGR advances the misfire limit to a higher pressure without shifting

the optimal oxygen fraction for low-pressure operation. It also shows how the range of oxygen

fraction allowable for stable operation narrows slightly as the EGR rate is increased and the

pressure is increased.

15%

13% -
1 - []e0. x_res/x_burn = 95%

,A / A A x res/xburn = 85%

S11% / xres/x burn = 80%
I / x res/x burn = 75%

C - - -x res/xburn = 95%, corr.

S9% - -x_res/x_burn = 85%, corr.
0 \ A- - - - x res/xburn = 80%, corr.

7n - - x res/x burn = 75%, corr.

5% .

0.8 1 1.2 1.4 1.6 1.8 2

Intake Pressure (bar)

Figure 4.27. Misfire Contours Mapped on Oxygen Fraction and Intake Pressure. Each contour represents constant
Xre/Xburn. The contours represent misfire limits for fixed Xre/Xburn based on the correlation stated in Equation 4.3.

An analogous plot is presented for oxygen fraction and intake temperature in Figure 4.28.

These data are located at Tin = 60'C, 90C, and 120'C with Pin set to 1.5bar. These data allow

contours for Xres/Xbum at 90%, 85%, and 80% to be generated. The contours describe the variation
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with intake temperature well. They seem to slightly overestimate oxygen fraction however. This

may reflect the correlations failure to capture a trade off between temperature effects related to

residual fraction and intake temperature.

15%

13% "

SA - * xres/xburn = 90%
S11% -

SA x res/x burn = 85%

,. xres/xburn = 80%

>, 9% - - -x res/x_burn = 90%, corr.

O xres/xburn = 85%, corr.

* . - - x res/x burn = 80%, corr.
7% _.. "

5% ,

40 60 80 100 120 140

Intake Temperature (QC)

Figure 4.28. Misfire Contours Mapped on Oxygen Fraction and Intake Temperature. Each contour represents
constant Xre/Xbrn. The dashed lines are misfire limits based on the correlation stated in Equation 4.3.

The effects of boost and EGR on the misfire limit, on PRRmax, on fuel rate, and on efficiency

have all been discussed. How load, the knock constraint, and misfire change together when EGR

and boost are changed determines how the operating range shifts with EGR and boost. The effect

of EGR on NIMEP, PRRmax, and misfire limit is shown step-by-step in the next three plots.

NIMEP is contoured on xo2 and Pin for Xre/Xbum = 95% and for Xre/Xbum = 85% in Figure 4.29.

The plot shows that the NIMEP contours retain the same slope when EGR is increased at the

expense of trapped residuals. Also, the contours nearly line up; the fuel rate is independent of

from where the burned gas arrives. There is a slight efficiency improvement with decreased

trapped residuals since the 85% lines are shifted slightly to a lower x0 2 and Pin level. This

efficiency improvement stems from more optimal combustion phasing.

The maximum pressure rise rate and the misfire limit, derived from the correlation of

Equation 4.3, are contoured on xo2 and Pin in Figure 4.30. The decrease of trapped residuals and

replacement with EGR gas is shown to cause the PRRmax to drop significantly.
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Figure 4.29. NIMEP Contoured on x 0 2 and Pin for XrebXbum = 95% and XreXburn = 85%. Tin, = 1200C.
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Figure 4.30. PRRm.x Contoured on X02 and Pin for XelXXburn = 95%
from Equation 4.3 is overlaid for both conditions. Tin = 120C.

and XrIX burn = 85%. The misfire limit correlation
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The contour lines shift down and to the right. The misfire limit also shifts considerably when x-

re/Xburn is decreased from 95% to 85%. The misfire limit is where the maximum load occurs for a

given maximum rate of pressure rise, as was concluded from Figure 4.2 and Figure 4.6. If

5MPa/ms is taken to be the upper limit of PRRma, then it can be seen from Figure 4.30 that the

maximum load point shifts from 12% x0 2, 1.1bar Pi, to 10.5% x0 2, 13.2bar Pi,. Figure 4.31

shows NIMEP contours, the misfire limit, and the PRRmax contour at 5MPa/ms are shown on xo2

and Pi, for XreXbm,, = 95% and for XreXbum,, = 85%. By combining each of these features, the shift

from one EGR to a higher EGR rate can be clearly shown. The NIMEP contours shift only

slightly from efficiency effects. The PRRmax contours and the misfire curves shift because charge

temperature is reduced. The maximum load point shifts, but the value of the maximum load

remains roughly the same.

0.14 EGR 95o Xresx'

0.13

0.12 - PRRmax (MPa/ms)
'5.5 -Wm Xres/Xburn = 95%

0.11 Xres/Xburn = 85%

So.1 .5 - Misfire Correlation
0.09 - 4.5 -esXburn = 95%

S44.5 -- - Xres/Xburn = 85%

-0r es/Xburn = 5%

0.06 Xres/Xburn = 85%
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Pin (bar)

Figure 4.31. NIMEP Contoured on xo2 and Pin for Xreb/Xburn = 95% and XreXburn = 85%. The misfire limit correlation
from Equation 4.3 is overlaid for both conditions. The contour for PRRmax = 5MPa/ms is shown for both conditions
as well. Stars mark the high load condition for each xre/Xburn level. Ti, = 120'C.

4.6 Misfire Mechanism Under EGR Operation
In this section, cycle-by-cycle data and 5-cycle averaged data will be inspected to gain

insight on the misfire phenomenon under EGR operation. Just as in Section 3.3.3, the goal of this

section is not to conduct an exhaustive exploration but simply to broach the topic of how the

engine misfires to direct future study.
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Case #3 is taken at Pi, = 1.5bar, Ti, = 60'C, xb,, = 58%, and Xrexbu,, = 86%. The location of

this point is circled in the contour map of CA10 on Xreslxbur and Xbum in Figure 4.32.
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0.75I I -
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0.7 " " , "
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0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Xburn

Figure 4.32. CA10 (CAD) vs. ,,JXburn VS. Xburn. Tin = 600C; Pin = 1.5bar. Case #3 circled in black.

The four cycles leading to misfire and the misfire cycle are shown in parts of the pressure

trace in Figure 4.33 and Figure 4.34. In the combustion event in Figure 4.33, it appears that

combustion phasing starts at a mid-range phasing and then oscillates between early and late until

it is too late for a full burn to take place. This plot is somewhat deceiving since all of the featured

combustion events occur at late phasing. The recompression event shown in Figure 4.34 shows

the corresponding oscillation of the maximum pressure of the recompression event indicating the

link between the strong, early combustion event and the weaker recompression event of the same

cycle which leads to a weak combustion event in the next cycle.

Figure 4.35 features cycle-by-cycle data for NIMEP, normalized air-fuel ratio 2, and CA50.

They are plotted as the percent deviation of NIMEP, 5 times the percent deviation of 2, and the

deviation in CAD from the stable average for CA50 as stated in Equations 3.16, 3.17, and 3.18,

reprinted here.
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Figure 4.33. Case #3: Pressure Traces for Five Individual Cycles where the Fifth One Misfires. The traces feature
the combustion event.

19I 
I I I

...........

1 8 .5 " . ._-----.------------------ 2 
.........-... ..... ......................-..... 1

18

Co17.5

17

16.5
532 534 536 538 540 542 544 546 548

Crank Angle (deg)
Figure 4.34. Case #3: Pressure Traces for Five Individual Cycles where the Fifth One Misfires. The traces feature

the recompression event. Cycles 1 through 5 correspond to the same cycles Figure 4.33.
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100

ICA50i

Deviation of CA50 = CA50 i - 1 (3.18)
100

The figure shows A drop significantly at cycle 132. NIMEP drops at the same time, and CA50

phases later at the same time. This suggests a lack of oxygen is causing combustion to phase later

which leads to cycles at low efficiency. The engine recovers, and then a similar phenomenon

happens again at cycle 144, but this time, A does not return to the average value, and the engine

misfires.

0 Point by Point

0 10 iA ...... NIMEP
0 A A / ----- Airflow

/.3A -a 5 ,.. \ J\{ " - 5*Lambda
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-t .
" I I I I I

100 110 120 130 140 150
Cycle Number

Figure 4.35. Case #3. Cycle-by-Cycle Data Leading up to the Misfire. NIMEP, X, and CA50 recorded. For NIMEP,
the percent deviation from the stable value is plotted. For X, 5*the percent deviation is plotted. For CA50, the
number of CAD deviation from the stable value is plotted.
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Figure 4.36. Case #3. Five-Point Averages of Cycle-by-Cycle Data Leading up to the Misfire. NIMEP, X, and CA50
recorded. For NIMEP, the percent deviation from the stable value is plotted. For X, 5*the percent deviation is
plotted. For CA50, the number of CAD deviation from the stable value is plotted.
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The 5-cycle averages plotted in Figure 4.36 show more clearly that 2 is varying quite a bit,

and NIMEP and CA50 vary at the same time. The time scale for these variations appears to be

approximately 10 cycles.

Misfire does seem to be related to these slow variations in 2. These variations in i were not

observed in Cases #1 and #2 which did not use EGR. It is possible that the EGR loop generated

flow dynamics that pulsed exhaust into the intake thus varying the air flow. If this were the case,

then this phenomenon would be highly engine specific. A four or six cylinder engine would yield

completely different EGR flow characteristics than the single-cylinder research engine used for

this experiment. Nevertheless, the point that the EGR flow can affect 2 in an unsteady, periodic

fashion illustrates an issue that would need to be addressed to extend the misfire limit.
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Chapter 5 A Phenomenological Model for the High Load Knock
Limit

A good deal of data has been presented, and still more data, including lean operation data,

has been presented in the doctoral thesis of R.J. Scaringe [53]. Here, these data will be used to

develop a phenomenological model to describe the high-load knock limit. This model will be

based on bulk parameters including oxygen fraction, equivalence ratio, pressure, and average

temperature. It is understood from previous work that distributions in temperature and

concentration play a roll in determining CAI knock. This experiment is not equipped to measure

such distributions so the model aims will be limited to describing combustion with bulk

parameters.

5.1 CAI Knock
A first step to developing the model is defining the limit. One proposal is to define it when

knock starts to occur or when pressure waves are first observed in the pressure trace. Pressure

data was acquired at 90kHz at a variety of operating conditions to observe the pressure wave

phenomena in closer detail. Even at a modest rate of pressure rise, oscillations were observed

indicating pressure waves. Figure 5.1 features an example pressure trace in which the average

maximum rate of pressure rise over 300 cycles was 4.0MPa/ms. This cycle was typical of the set.
45
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Figure 5.1. Pressure trace acquired at 90kHz sampling rate. Average PRRmax (for 300 cycles) = 4.0MPa/ms.
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Pressure oscillations are evident, starting before pressure nears its peak and continuing at least

250 after the end of combustion. The data recorded for this thesis feature PRRmax values ranging

from just under 2 to 21MPa/ms so 4MPa/ms is low. It is also below Andreae et al.'s knock limit

of 5MPa/ms [20]. Using the criterion of the onset of knock is therefore not feasible.

The two problems with knock are unacceptable levels of noise and accelerated wear on the

mechanical components of the engine. The stricter criterion is noise so an arbitrary limit based

on the emitted noise is appropriate. What that limit should be is really a question of product

design and depends on how the engine is used and whether the rest of the product can be

designed to separate the user from the noise source. This model will not define a threshold but

instead will relate charge parameters to combustion parameters that relate to emitted noise.

As mentioned in Chapter 1, Eng developed a relationship between ringing intensity I, which

was a measurement of the noise emitted from an experimental engine, and various combustion

parameters, restated in Equation 1.1 [18].

12
dP

I ~1 TdtmT (1.1)2r Pax

dP/dtmax is the maximum pressure rise rate (PRRmax); Pmax is the maximum cylinder pressure. y is

the ratio of specific heats; Tax is the maximum cylinder temperature; R is the universal gas

constant, and a is a correlation constant. Figure 5.2 features this ringing intensity plotted against

PRRmax for the NVO sweep data, IVC sweep data, EVO sweep data, and intake temperature

sweep data. This plot shows that ringing intensity strongly correlates with PRRmax and that the

dependence is stronger than linear. PRRmax can therefore be used as a good metric for emitted

engine noise for CAI knock.
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Figure 5.2. Ringing Intensity vs. PRRmax. The NVO, IVC, EVO, and Ti, sweeps are included.

5.2 Characteristic Burn Duration
Maximum rate of pressure rise is a suitable metric for the noise limit for the engine, but it

yields no information about the engine load so another metric building on this is required to

indicate both noise and load. The following analysis, drawing from the personal notes of Wai

Cheng, show how a characteristic burn duration can be developed to account for rate of pressure

rise and fuel rate together [54].

Considering a uniform charge, the chemical energy heat release acts to heat the gas and to do

work on the piston, as in Equation 5.1.

dT dV
Vq = mc -dT + dV (5.1)

dt dt

V is the cylinder volume; 4 is the volumetric heat release. To simplify the analysis, the gas is

assumed to have a uniform temperature T and specific heat capacity c,. Substituting the ideal gas

law into Equation 5.1 for mass and temperature yields a relationship for the rate of pressure rise

in Equation 5.2.

p=(Y - 1Wq - = (;V - 04 (5.2)
V

Under conditions where the PRRmax is high, the heat release term dominates the work extraction

term on the right side of the equation so the right hand term can be neglected.
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The total chemical energy of the fuel can be thought of as occurring at a particular time with

a reaction duration r in a volume V(O), which is a function of crank angle. In Equation 5.3, r is

defined as the time for the fuel mass mf to burn at an average heat release rate q(9) in this

volume.

LHV m
v - ) (5.3)

LHV is the lower heating value of the fuel. Combining Equations 5.2 and 5.3 yields the pressure

rise rate as a function of combustion phasing, fuel mass, and combustion duration.

S= (-1)LHV mf (5.4)
V(9)p

V(O) can taken to be the volume at the time of 50% mass fraction burned, VCAso. P is taken as

the PRRmax, as in Equation 5.5.

=(-1)LHV f (5.5)
VCA 50 (dp max

r or 1/r can serve as metric for the high load limit. If r increases, then the mass of fuel per

cycle increased while the PRRmax remains constant. Efficiency may change between operating

conditions affecting the high load limit slightly without changing r. For simplicity, r is presented

as a function of fuel mass rather than NIMEP although NIMEP could be used for an alternate

definition.

A salient feature of this r is that it strongly correlates with the 10-90% burn duration for the

acquired data, as shown in Figure 5.3. The metrics are also close to the same magnitude thus

bolstering the physical meaning of r. Therefore, the high load knock limit can be increased by

increasing the burn duration.
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Figure 5.3. Tau vs. 10-90% Burn Duration. Stoichiometric, Lean, and EGR data.

5.3 A Correlation Based on Bulk Parameters
The r bum duration metric can now be used to build a correlation based on bulk parameters

that describe the charge. Since the experiment yields no data on temperature or concentration

distributions, the model is expected to have limited accuracy. The state of the charge just before

the start of the earliest combustion event was used as the point of reference, and this was decided

to be 150BTC. The five metrics used were oxygen fraction xo2, equivalence ratio (p, the

temperature at 15OBTC T1rBTc, the pressure at 150BTC P15BTC, and R defined as the inverse of r.

The ranges of values available in the data set are listed in Table 5.1.

The correlation was formed as stated in
Table 5.1. Ranges of Values for

Burn Duration Correlations Equation 5.6. This form is based on the

0.063 _ X0 2 0. 15 Arrhenius formula for a reaction rate
0.80 _ _1.01 although it should be stressed that this form

13.4bar P - 23.4bar15BTC is meant to be purely phenomenological.
832K T 5c 969K5BTnC The constants a, through as were found via a
0. 18ms _ r 1.96ms

least squares fit of the natural logarithm of
0.510Equatimson 5.6 R stated in Eq5.56ms- uation 5.7.

Equation 5.6 as stated in Equation 5.7.
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a2 a4 (ayR= Tau =a 3 BTC exp (5.6)

log(R)= log(a1 )+ a2 log(xo2 )+ a 3 log(0)+ a4 log(P 5  BTC (5.7)
1 5BTC

Various other forms of this equation were evaluated that did not necessarily work with this

linearization technique. The constants for these were found with MATLAB's "fminsearch"

command, a nonlinear minimization algorithm using the Nelder-Mead technique.

The first correlation to be shown is as stated in Equation 5.6. The resulting R is plotted

against R from the data for 568 points in Figure 5.4. The correlation shows promising agreement

as R2 = 71.5%. The correlation clearly does not describe all of the phenomena at play;

nevertheless, a clear trend is observable. The correlation coefficients yield some understanding

regarding the behavior of the system. The exponent for oxygen fraction is 2.3, and the pressure

exponent is 1.5. These are roughly consistent with previously presented data. Burn rate increases

with both oxygen and with pressure. The temperature coefficient also features the correct sign.

The exponent for equivalence ratio indicates that burn rate increases with excess air. While this

effect is not explored in this work, the Ph.D. thesis of R.J. Scaringe features data and analysis

supporting this [52].
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. .Table 5.2.3-
3.5 Correlation Parameters

..3 C R 71.5%
Sal 71.41

E a2 2.34

2 a3  -1.41
A a4  1.53

1.5a 5  -2543

0.5
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
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Figure 5.4. R from the Correlation vs. R from the Data. X02, qo, P5IBTC, and T BTc

were used in the correlation.
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One consideration for improving this correlation is looking for where there might be

substantial experimental error. The EVO sweeps yielded significant error for residual fraction

estimates between the in-cylinder CO2 measurements and the exhaust state technique. If the

moles of residual gas were estimated poorly, this would affect both oxygen fraction and the bulk

temperature. The next correlation, shown in Figure 5.5, shows the same formula but with these

points omitted. R2 increases to 72.7% for the 520 points plotted. The coefficient for temperature

changes most significantly of the five coefficients.

6 F

5 - i

E o C D ~O "0 Table 5.3.
4 Correlation Parameters

. R 72.7%

3 O at 140.1
S: a2 2.30

0 a3 -1.46
E 2 ra4 1.39

as -2876

0 1 2 3 4 5 6
R (1/ms)

Figure 5.5. R from the Correlation vs. R from the Data. xo2, (, P15BTc, and T15BTc
were used in the correlation. EVO data was omitted.

Considerable spread persists in the correlation so different sweeps are overlaid with the

correlation parameters to determine which data are well modeled and which are not. Figure 5.6

shows NVO sweeps with intake temperature set to 90C at four different intake pressures

overlaid on the correlation results. The variations in EVC timing seem to be well represented by

the correlation. Since there are several NVO sweeps represented, with and without EGR, it is

reasonable that they would dominate the points of the correlation and drive the form. Correlation

results for intake temperature sweeps at five different pressures are overlaid the overall

correlation result in Figure 5.7.
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Figure 5.6. Correlation from Figure 5.5 with NVO Sweep (Ti, = 90°C)
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Intake Temperature Sweep Points Overlaid.

These sweeps are poorly represented by the correlation as the curves are almost perpendicular to

the reference line. T15BTc changes in a different way with intake temperature than it does with

residual trapping. This implies that the T15BTc term in the correlation is not helping the fit.

XreXburn sweeps at constant total burned gas fraction, pressure, and intake temperature are
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overlaid on the correlation result in Figure 5.8. The premise of flowing EGR rather than trapping

residuals is that the bulk temperature is lower. Varying XreXburn is not well captured by the

correlation so the bulk temperature term in the correlation is not describing this behavior either.
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Figure 5.8. Correlation from Figure 5.5 with XEGR/Xburn Sweeps Overlaid. Total burned gas fraction is held constant
for each color.

Since temperature effects were not captured in the correlation, the temperature term was

omitted to evaluate the sensitivity of the correlation. This variation of the correlation is shown in

Figure 5.9 for the formula in Equation 5.8.

R 1T -a1  a2 .a 3 .pa4
= Ta u 02 

3  P15BTC (5.8)

The resulting R2 value features a modest drop to 70.8% indicating that the temperature term had

little effect on the quality of fit. The exponents for oxygen fraction, pressure, and equivalence

ratio have adjusted slightly as well.

Temperature is an integral part of a chemical kinetics reaction rate so the fact that average

temperature does not help deserves some attention. First, it should be noted that in an NVO

sweep, valve timing controls both oxygen fraction and bulk temperature since temperature is

strongly affected by the amount of fuel and trapped residuals. Therefore, changing oxygen

fraction accounts for changes in bulk temperature. Changing boost also affects bulk temperature,

so the average temperature is already accounted for in some cases. It is possible that varying
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intake temperature and EGR affect temperature and concentration stratifications in ways that

conflict with the intuitive expectation of their effects on bulk temperature. The data provide no

information on their effects on stratification characteristics so the discussion is relegated to

speculation.

5.5

5

4.5

4--4 'Table 5.4.
Correlation Parameters

3.5
0 R 70.8%

3 a, 2.02
Co a2 2.46

2.5
0 a 3  -1.63

7 2 a 4  1.90

1.5

0.5 I I I
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

R (1/ms)

Figure 5.9. R from the Correlation vs. R from the Data. X0 2, p, and P15BTC were
used.

5.4 Correlations Including Corrections for Stratification Effects
As discussed in Section 1.4.2, stratification is a primary driver of burn duration. In this

section, three different parameters will be considered as means to improve the correlation by

accounting for differences in stratification characteristics from one operating condition to

another. First, a temperature difference term of the form (Tlvo - Tin) will be introduced to account

for temperature stratification effects. This is meant to represent the temperature difference

between inducted air with EGR and the trapped residual gas. Next, two different terms will be

considered to account for concentration effects. (1-XEGR/Xbur,,d) is used to account for

concentration stratification via EGR, and [Xres(1-Xres)] is meant to represent concentration

stratification effects caused by residual gas mixing.

Starting with the correlation shown in Figure 5.5 and Table 5.4 which includes bulk

temperature, the three speculative terms are incorporated one at a time and then in combinations.

The resulting R 2 values are listed in Table 5.5.
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Table 5.5. Speculative Correlation Results

Correlation Additions R
Baseline: x 0 2, 0, P15BTC, T15BTC 72.7%

TIVO - Tin 77.7%
(1-XEGRIXburned) 83.9%
Xres(1-Xres) 72.8%

Tvo - Tin & (1-XEGRIXburned) 85.0%

Tvo - Tin & Xres(1-Xres) 77.8%

(1- XEGRIXburned) & Xres(1-Xres) 86.5%
TIvo - Tin & (1-XEGRIXburned) & Xres( -Xres) 86.9%

The final correlation takes the form in Equation 5.9 and yields the plot in Figure 5.10.

Oa3 . Da4
15BTC

(exp as T)6 -- )]a7 - TXEGRres 
a

res8

S(15 C burned

(5.9)

OI i I 

0 1 2 3 4 5 6 7
R(1/ms)

Figure 5.10. Burn Duration Correlation with Three Speculative Additions to
Account for Stratification.

Table 5.6.
Correlation Parameters

R 86.9%
at 20.44
a2  1.77
a3 -0.11
a4 1.93
a5  -4652
a6  -3.00
a7  3.19
a8 -0.47

The correlation features good agreement at this point, and it could be improved further by

replacing Two with Texhaust or simply using Tin rather than the temperature difference. The form

presented has the strongest physical meaning. Exhaust temperature is determined, in part, by

combustion phasing so using that metric would give information about phasing, which was
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avoided in this section. Using Tin does not really add insight; it only acknowledges that intake

temperature was varied in the experiment.

5.5 Burn Duration Correlations Incorporating Combustion Phasing
A number of research groups view combustion phasing as a principle metric for combustion

control of the CAI engine. If phasing is allowed to retard too much, misfire is encountered. If

phasing in advanced, rate of pressure rise is believed to increase. Really, many of the same

factors that affect rate of pressure rise also affect phasing. A caveat is that phasing determines

the volume in which combustion takes place, and volume affects species concentration as well as

bulk temperature. The metric r incorporates volume during combustion to account for this

though. The relationship between rate of pressure rise and combustion phasing could be useful to

gain insight to combustion behavior and to help control the engine.

The relationships are illustrated between PRRmax and CA10 in Figure 5.11 and r and CA10 in

Figure 5.12.

25

20 1e

0

170 175 180 185 190 195

CA10 (CAD)

Figure 5.11. PRRmax vs. CA10 for the Data Set.

Under certain circumstances, say varying intake temperature, it appears that PRRmax correlates

well with CA10; however, across the data set, it is evident that there is quite a spread. The same

can be said for r and CA10. It is apparently possible to achieve late-fast combustion as well as
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early-slow combustion. There is a narrower range of durations at early timing than duration

ranges at late timing.

2

1.8

1.6

1.4

1.2 -

I 0.8

0.6

0.4 -

0.2 ,

0 I I

170 175 180 185 190 195

CA10 (CAD)

Figure 5.12. , vs. CA10 for the Data Set.

The same least squares fit techniques used earlier will be used to related R = 1/r to oxygen

fraction, equivalence ratio, pressure, temperature, and now also combustion phasing. An ignition

delay is defined in milliseconds as the time after a reference point during compression, chosen at

165' ABC. The delay in crank angle degrees is divided by engine speed N as in Equation 5.10.

= (CA10 - 165)
Tig= [ms (5.10)

N
rig values ranged from 0.90ms to 2.74ms.

Correlation fits featured high R2 values. A series of correlations with different terms were

attempted with results noted in Table 5.7. The final correlation yielded a good fit with R2 at

94.4%. The correlation is plotted in Figure 5.13 and the coefficients are listed in the Equation

5.11.

The correlation is strongest where R is low. The correlation is expected to be strong because,

as was noted in the cited spectroscopy work in Section 1.3.6, both combustion phasing and burn

rate depend on the stratification of temperature and concentration in-cylinder. Phrasing burn

duration in terms of phasing allows phasing to account for these stratification effects.
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Table 5.7. Results for Correlation Incorporating rig
Correlation Additions R
X02, Zig 83.0%
X02, i, Zig 87.7%

X02, tI, P15BTC, Tig 93.4%
X02, P, P15BTC, T15BTC, Zig 94.4%

R =810.5 x2 53  2.69 . 1.3 1  exp 2341 1.39
R 805015BTC YT1BTCi

0 1 2 3 4

R (1/ms)
Figure 5.13. 1/t Correlation Based on X02, 0, P15BTC, T15BTC, and cig.

(5.11)

5 6

5.6 Combustion Phasing Correlations
In Section 5.5, it was shown that the characteristic burn duration r could be effectively

described in terms of combustion phasing. To develop greater insight into the phenomena at

play, correlations for combustion phasing are presented next. The simplest way to develop a

correlation is to pick a reference point shortly before combustion begins to take place and to use

the characteristics of the gas at this point. A formula can be used in the form shown in He et al.'s

RCM ignition delay formula in Equation 1.13 [31]. Here, 15' BTC is used as the reference point

during the compression stroke, and the terms of the correlation are oxygen fraction, equivalence

ratio, pressure, and temperature as in Equation 5.12.
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t ig a02 .X a3 .Pa4 expra5 (5.12)rig = a, 02 15BTC T (5.12)
5BTC

The resulting correlation shows promise with R2 = 65%, but does not properly capture the

behavior of the system, as shown in Figure 5.14 and in Table 5.8.

3-

2.5
SC)O Table 5.8.

Correlation Parameters
2 OC R 65.0%

al 0.049
o a2 0.17

1.5 a3 2.99
E

S0o a4 -0.06
as a 3760

S1

0.5
0.5 1 1.5 2 2.5 3

Tig (ms)
Figure 5.14. rig from the Correlation vs. rig from the Data. xo2, (p, P5BTc, and
TIsBTc were used in the correlation.

For this correlation to be very strong, a few assumptions need to be strong. First, the temperature,

pressure, and concentrations of the first series of parcels to burn must be those at the reference

point. This is not true, first, because the average properties of the charge continue to change

temporally due to compression and heat transfer. Second, as was demonstrated in the cited

spectroscopy studies, temperature stratification affects combustion phasing. The hottest parcels

will burn first and will determine CA10. Since the average parameters are used in the correlation,

the relationship between the temperatures of the hottest parcels to the average temperature ought

to play a significant role in the correlation.

To account for temperature stratifications, the three correction factors applied in the burn

duration correlation in Section 5.4 will be attempted here as well. First, (Two - Tin) will be

introduced to account for temperature differences between intake and hot residual. Next, (1-

XEGR/Xburned) will be used to account for EGR effects, and [Xres(l-xres)] is meant to represent
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concentration stratification effects caused by residual gas mixing. The resulting R2 values for

each of these three plus combinations of them are listed in Table 5.9.

Table 5.9. Results for riz Correlation

Correlation Additions R2

Baseline: xo2, 0, P15BTC, T15BTc 65.0%
(Tlo - Tin) 71.2%

(1-XEGRXburned) 83.7%
Xres(1-Xres) 67.0%
(Tlo - Tin) & (1-XEGRIXburned) 84.6%

(To - Tin) & Xres(1-Xres) 73.4%
(1-XEGRXburned) & Xres( -Xres) 84.4%
(Tvo - Tin) & (1-XEGRXburned) & Xres(1-Xres) 84.9%

The (1-EGR/Xburned) correction yields the most significant improvement as R2 reaches 83.7%.

The other two corrections each additionally improve R2 by less than 1%. The correlation using

the EGR correction with specific parameters is stated in Equation 5.13, and the correlation plot is

shown in Figure 5.15.

i=O.24 .x4.2°9-°°.epB4T 1  . -XEGR -2.0
S= 0.24 x 2.09 exp 84- EGR (5.13)5BTC BTC 

Xburned

The reason this correction results in such a benefit is that the volume of hot residuals becomes

smaller as the XEGR/Xbumed becomes larger. The first parcel of oxygen and fuel to burn must

transfer heat from a pocket of hot residuals so access for oxygen to a hot pocket of residuals is

vital to determining the beginning of combustion. By adding more and more inert exhaust gas

that is at the same temperature as the oxygen, the oxygen's interaction with the small hot pocket

of residual gas reduces.

The correlation plot in Figure 5.15 features a number of points far from the reference line.

This error is due to poorly described phenomena as well as some experimental error. Varying

intake error causes divergence from the reference line. Also, not all of the EGR data collapse to

the reference line, and differences in behavior of some sweeps versus others imply a small but

significant degree of experimental error.
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Figure 5.15. rig from the Correlation vs. rig from the Data. The EGR correction term is included.

149



Chapter 6 Summary and Conclusions
This thesis seeks to add understanding to the high load limits of the controlled autoignition

engine. An engine experiment was performed in which valve timing, intake temperature, intake

and exhaust pressure held equal, and EGR flow were assessed for their effects on the high load

knock limit and the high load misfire limit. The air fuel ratio was held stoichiometric, and the

engine speed was set to 1500rpm for all tests.

6.1 Negative Valve Overlap
The effects on the high load limit of intake temperature, boost pressure, and negative valve

overlap without EGR were explored. The high load limit was found to be always at the misfire

limit where intake and exhaust pressures were low and residual fraction was also low. The

misfire limit was optimal because the charge temperature was only high enough for consistent

ignition. Excess charge temperature caused PRRmax to increase without increasing NIMEP. Boost

was shown to increase charge temperature considerably.

The high load limit was not very sensitive to the chosen PRRmax limit. Doubling the PRRmax

limit would typically result in only a 25% increase in the load limit.

The misfire limit could be described well by CA10 and P15BTc and with slightly worse

accuracy by Pin, Xres, and Tin.

Cycle-by-cycle data were investigated to assess the specific cause of misfire. It was observed

that variations in combustion phasing resulted in variations in residual gas fraction and residual

gas temperature on a cycle-by-cycle basis, which eventually led to a cycle with insufficient

trapped enthalpy for ignition. On the time scale of 10 to 20 cycles, the air flow and the air-fuel

ratio were observed to vary and to vary independently from one another. It was suggested that

variations in fuel pooling in the intake port could be taking place. Both the 10-20 cycle

phenomenon and the cycle-by-cycle variations were observed to be necessary for misfire.

6.2 IVC Timing
IVC timing and boost were varied with the other valve timings set to trap near 45% residual

fraction. Exhaust pressure was held constant to intake pressure. A was fixed to 1. No EGR was

used. It was shown that NIMEP could be increased while holding PRRmax constant by boosting

and retarding IVC timing. Retarding IVC timing reduced the effective compression ratio and

charge density while boost increased charge density and temperature. By combining both IVC
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retard and boost, the charge density could be increased without increasing the temperature at the

end of compression.

6.3 EVO Timing
EVO timing was varied with the other three valve timings fixed such that between 40% and

45% residual fraction was achieved. Intake and exhaust pressure, held equal, were varied as well.

It was shown that residual fraction followed a quadratic dependence on EVO timing reaching a

maximum value when EVO timing was 200 BBC. This dependence appeared to be caused by

pressure waves in the exhaust system during the exhaust event. Varying EVO timing also varied

Tvo, the temperature of the residual gas at the end of recompression. Trvo correlated with

residual fraction, not with fuel mass as it does for an NVO sweep. The maximum load,

constrained by PRRmax, was found to be where EVO timing was as advanced as possible since

the fueling was increased while the charge temperature was decreased. EVO timing effects are

expected to vary from engine to engine since they depend on exhaust pressure waves.

6.4 Exhaust Gas Recirculation
A study was conducted in which intake pressure, intake temperature, EGR flow rate, and

NVO valve timing were varied. Exhaust pressure was held to be 30mbar above the intake

pressure to drive the EGR flow. The equivalence ratio was set to 1.0.

Replacing trapped residuals with EGR gas had the effect of extending the high load limit by

reducing charge temperature. The maximum rate of pressure rise was shown to vary with fuel

rate and with XrelXburn while the fuel mass did not vary with XreSXburn. The highest load for a

given PRRmax always occurred at the misfire limit. Boosting the engine, while also flowing EGR

gas, provided no increase or decrease of the high load limit. EGR acted to offset the increase in

charge temperature caused by boost. At the misfire limit, the engine produced the same PRRmax

at a given fuel rate regardless of boost. Increasing intake temperature allowed the engine to

tolerate more EGR before misfire. This was simply a trade-off in the source of sensible energy,

and the high load limit was unchanged. A correlation for the misfire limit under EGR operation

was developed using o0 2, Pin, Xres, and Tin.

Cycle-by-cycle data was examined to understand misfire under EGR operation. Misfire

appeared to be a result of large variations in A caused by variations of intake airflow rate.

Periodically pulsed flow of the EGR may have led to variability in the air flow.
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6.5 Phenomenological Correlations for the High Load Knock Limit
The entire data set was used to develop a correlation to describe the high-load knock limit. A

characteristic burn duration r was defined to take into account PRRmax and fuel mass such that a

larger r would mean a lower PRRmax at the same fuel mass. r was found to correlated well with

the 10-90% burn duration.

A correlation for r based on the data was developed based on the bulk parameters, xO2, 0,

PISBTC, and T15BTC yielding an R2 of 72%. The primary source of error stemmed from thermal

stratification effects and poorly represented variations in charge temperature. Three correction

terms, (TNvo - Tin), (1 - XEGR/Xburn), and Xres(l - Xres), were added to account for poor accuracy in

the temperature estimate and stratification effects. These terms increased the R2 value to 87%.

A relationship between the characteristic burn duration and combustion phasing was

developed based on xO2, P, P15BTC, and T15BTc plus a term for CA10 yielded an R2 of 94%. A

correlation for combustion phasing was developed also. The bulk parameters, xO2, (, P15BTC, and

T15BTc, featured poor agreement between predicted and actual CA10. Again, a correction term

was added to account for thermal stratification. Adding (1 - XEGR/Xburz) increased the R2 value to

85%.

6.6 Conclusions
The high load limit of the controlled autoignition engine occurs where the fuel rate is

maximized for a fixed maximum rate of pressure rise. For a given fuel rate, the PRRmax is

reduced by decreasing charge temperature and increasing thermal stratification. The limit to

reducing PRRmax is set by the misfire limit where the high load limit will always occur. Boost,

EGR, intake temperature, and three types of valve timing sweeps have been presented as ways to

vary the charge density and the charge temperature. These control parameters could be used to

compensate for one another to increase load at a fixed PRRmax until misfire. The high load limit

was roughly uniform at 5bar NIMEP constrained at 5MPa/ms across all conditions.

Future work should focus on extending the misfire limit to increase the high load limit. By

furthering the understanding of the misfire limit, the operating range constrained by the

maximum rate of pressure rise can be expanded, and the CAI will step closer to entering

production.
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Appendix

A.1 Fuel Specifications
Fuel Type: UTG-91
Fuel data from the Chevron-Phillips Chemical Company website [55].

Property
Copper Corrosion, 3 h at 50 oC
Specific Gravity at 60/60 oF
API Gravity at 60 OF
Oxidation Stability
Existent Gum, mg/100 mL
Lead Content, g/gal
Sulfur Content, wt %
Phosphorus, g/gal
Total Alcohol Content, vol %
Reid Vapor Pressure at 100 oF, psia
Research Octane Number
Motor Octane Number
Sensitivity
Distillation Range at 760 mmHg, oF

Initial Boiling Point
10%
50%
90%
End Point

Composition, vol %
Olefins
Aromatics
Saturates

Heat of Combustion, Net, Btu/lb
Carbon Content, wt %
Hydrogen Content, wt %
Anti-Knock Index, (R+M)/2

Typical Value
1
0.735
61
1440+
2
0.001
0.013
0.001
0.00
9.0
90.8
83.0
7.8

122
212
321
399

Specification
I max
0.734 - 0.744
58.7-61.2
1440 min
5 max
0.05 max
0.1 max
0.005 max
0.00 max
8.8 - 9.2
90.3 - 91.7

7.5 min

75- 95
120- 135
200- 230
300- 325
415 max

10 max
35 max
Remainder

6
24
70
18500
86.3
13.7
86.8

Test Method
ASTM D 130
ASTM D 1250
ASTM D 4052
ASTM D 525
ASTM D 381
ASTM D 3237 Mod.
ASTM D 3120
ASTM D 3231
EPA Procedure 10
ASTM D 323
ASTM D 2699
ASTM D 2700
ASTM D 2700
ASTM D 86

ASTM D 1319

ASTM D 3338

87.0 max Calculated
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A.2 Burn Duration Calculations
The burn duration was calculated using the Rassweiler and Withrow method [56]. This

method requires only the pressure at a given crank angle degree p(O), the pressure at ignition po,

the pressure at the end of combustion, pf and the exponent n from the polytropic relation in

Equation A-1.

pV = k (A.1)

k is a constant. This equation is used to relate the pressure and volume of the initial unburned gas

to those of the unburned gas during combustion and the pressure and volume of the final burned

gas to those of the burned gas during combustion as follows.

PoVon = pV n  (A.2)

V.,o= V, (A.3)

PfV;,b = pVb (A.4)

Vb, f = Vb (A.5)

Next, burned mass fraction is related to volume fraction. The in-cylinder pressure rise is due to a

combustion component Apc and a compression component Apv.

Ap = Ap, + Apv (A.5)

The pressure and volume change due to the compression component are estimated using an

isentropic relation.

piV" = pjV (A.6)

Incorporating this into Equation A-5 yields Equation A-7.

VApV = Pi i (A.7)

The assumption is made that for a given mass of mixture burned, a corresponding pressure rise

results.
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ob(i) C0oPcb() N (A.8)
mb(total) Y 0 Pc

Here, N is the total number of crank angles considered. Using Equations A.5 to A.8, burned mass

fraction is related to volume change.

x b =1 - V b , (A.9)
Vo Vf

By relating Equations A.4 and A.9, an equation relating burned mass fraction to in-cylinder

pressure, n, volume, pressure at ignition, and pressure at the end of combustion results [55].

pl"V - p"V oXb 1/n (A.10)
Pf V - Po Vo
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A.3 Combustion Phasing and Exhaust Gas Temperature
The relationship between combustion phasing and exhaust temperature was explored to

understand the dependencies of the exhaust temperature toward understanding Two. A strong

relationship between these variables would also allow the combustion phasing to be estimated

without any in-cylinder measurement device. Previous work with a spark ignition engine showed

that CA50 and exhaust temperature correlated very well under a fixed load, fixed speed, and

fixed valve timing [57].

Varying fuel rate would change the amount of energy in the exhaust so this factor would

have to be considered. Exhaust valve timing would also affect the amount of work extracted

from the exhaust gas and the heat transfer from the gas before it reached the thermocouple in the

exhaust.

A correlation was developed to describe CA90 in terms of fuel mass, exhaust temperature,

and EVC timing as in Equation A. 11.

CA90 = 5.45e - 19 -m .5 1Texh1 4.0 2 EVC - 7.39  (A.11)

The correlation showed good agreement with R2 = 88%. Figure A.1 shows CA90 vs. CA90

predicted by the correlation.
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Figure A.1. Correlation for CA90 Delay Based on Fuel Mass, Texh, and EVC Timing.Figure A.. Correlation for CA9O Delay Based on Fuel Mass, Texh, and EVC Timing.
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