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Abstract

In this thesis, I first systematically develop the theory of nonarchimedean differential
modules, deducing fundamental theorems about the variation of generic radii of con-
vergence for differential modules over polyannuli. The theorems assert that the log of
subsidiary radii of convergence are convex, continuous, and piecewise affine functions
of the log of the radii of the polyannuli.

Then I apply these results to the ramification theory and deduce the fundamental
result, Hasse-Arf theorem, for ramification filtrations defined by Abbes and Saito.
Also, we include a comparison theorem to differential conductors and Borger's con-
ductors in the equal characteristic case.

Finally, I globalize this construction and give a new understanding of the rami-
fication theory for smooth varieties, which provides some new insight to the global
class field theory. We end the thesis with a series of conjectures as a starting point
of a long going project on understanding global ramification.
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Title: Associate Professor of Mathematics
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Reader's Guide

This is a guide to the project which applies the theory of nonarchimedean differential

modules to the ramification theory. We try to explain the structure of the project so

that people who are interested specific topics can take a fast-pass.

There are two main topics of this project: the nonarchimedean differential modules

and the ramification theory. Each of them has several levels.

The following diagram indicates the relation between the main components of two

topics. Topics in bold letters are covered by this thesis; topics in slanted letters are

partially solved in this thesis; others are mostly conjectural. Direct arrows indicate

prerequisites, dashed two-sided arrows refer to relations, and curly arrows are ex-

pectations or conjectures. Letters or numbers in the parentheses will be explained

later, where lowercases are on the differential module side, capital letters are on the

ramification theory side, and numbers are links for the corresponding two objects.

Diff. mod. Ram. theory

Radii (a) - Refined radii (b) Ram. fil. (A)

Fake HA thm (

1-dim var. (c) - iff. cond. (d) - - -Equal char. (C) Mixed char. (E)

1 )
Refined cond. (e) -- Refined cond. (D Refined cond. (F)

Multi-dim (f) Higher loc. F (G

(4)1

Reg. loc. ring (H)

Global ram.? (I) - > Euler char. (J)



(a) Radii of convergence: This consists of Subsections 1.1.2, 1.1.3, 1.1.4, and

1.1.6. We define the notion of radii of convergence in Definitions 1.1.2.6, 1.1.2.8, and

1.1.6.3. Also, derivation of rational type is a key concept, defined in Definition 1.1.4.1

(see also Situation 1.1.6.7.) Theorem 1.1.4.27 on decomposition by radii is the key

theorem on this topic. Remark 1.1.3.5 also provides some point of view.

(b) Refined radii: This is defined in Subsection 1.1.5 and the later part of

Subsection 1.1.6. The key results is Theorem 1.1.5.22. Also, Example 1.1.5.24 and

Lemma 1.1.5.26 are very interesting and are the motivation of Definition 1.1.5.20.

(c) 1-dimensional variation of subsidiary radii: This is discussed in Sub-

sections 1.2.2-1.2.7. The key results are Theorem 1.2.4.4 and theorems in Subsec-

tion 1.2.5, where the latter are all of the same flavor.

(d) Differential conductors: This basically consists of Subsections 1.2.7 and

1.2.8, where the former is just a repeat of the variation and decomposition results in

(c) (suggest to ignore). One need to read all of Subsection 1.2.8 to understand the

definition of differential conductors.

(e) Refined differential conductors: This is discussed in Subsection 1.2.6.

The key is Theorem 1.2.6.7, which relies on the very explicit Example 1.2.6.1.

(f) Multi-dimensional variation of intrinsic subsidiary radii: This is noth-

ing but Section 1.3. Subsection 1.3.2 mainly deals with a simple mathematical analysis

exercise, which is not of much interest if one does not care about the proof.

(A) Ramification filtration: We review the definition of Abbes-Saito's rami-

fication filtrations in Subsection 2.2.2. Just before that, Proposition 2.2.1.7 is very

illustrative.

(B) Fake proof of Hasse-Arf theorem: A fake proof of Hasse-Arf Conjec-

ture 2.2.2.17 is presented in Section 2.3; along the way, we point out the remedy to

the gaps and will give the correct proof in Chapters 3 and 4. Two direct applications

of the Hasse-Arf theorem are comparison with Borger's conductor and a Hasse-Arf

theorem for the ramification filtration on finite flat group schemes; they are discussed

in Section 2.4 and 2.5.

(C) Equal characteristic Hasse-Arf theorem: This is done in a way trying



to link (d) and (C) directly and transfer all the results of (d) to the ramification

side. The only purpose of Section 3.1 is to verify Theorem 3.4.1.3. Subsection 3.2.1

is dedicated to the construction of differential modules. Subsection 3.2.2 meant to

prove Proposition 3.2.2.4, which enables us to apply results in Subsection 1.2.8 as

discussed in Subsection 3.2.3. Sections 3.3 and 3.4 basically follows the description

in Subsections 2.3.5 and 2.3.6. Slightly different from what is stated in Section 2.3,

we prove the Hasse-Arf theorem by comparison to differential conductors, which have

Hasse-Arf properties by the result in Subsection 1.2.8.

(D) Refined Swan conductors in the equal characteristic case: Saito [Sai07+] de-

fined refined Swan conductors in the equal characteristic case. We have a definition

of differential Swan conductors in Subsection 3.2.5. However, we do not know yet if

the two refined Swan conductors agree.

(E) Mixed characteristic Hasse-Arf theorem: This basically follows the line

drawn in Section 2.3. However, it is more technically involved. Theorem 4.2.1.7 is

the technical core of the proof.

(F) Refined Swan conductors in the mixed characteristic case: We except a similar

theory as in (D); however, there are technical difficulties which we do not know how

to solve.

(G) Multi-indexed ramification filtration for higher local fields: This should follow

from the refined Swan conductors fairly easily (if we know how to define (F)).

(H) Ramification for regular local rings: In the equal characteristic case, this is

discussed in Section 5.2. We do not know how to deal with the mixed characteristic

case.

(I) Global ramification theory: Some expectation is discussed in Section 5.1.

(J) Euler characteristic: We only have Conjecture 5.1.3.6.

(1) relation between (e) and (f): This should be easy and straightforward but has

not been carried out yet.

(2) relation between (d) and (C): This is discussed in Sections 3.3 and 3.4;

it mainly consists of Theorems 3.3.4.6 and 3.4.2.2.

(3) relation between (e) and (D): This refers the comparison between Saito's re-



fined Swan conductors with differential refined Swan conductors. We do not know

this yet.

(4) relation between (G) and (H): This is expected to be easy and follows from

(1) immediately in the equal characteristic case. We do not know this in the mixed

characteristic case.
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Chapter 1

Nonarchimedean Differential

Modules

The study of p-adic differential modules is initiated by Dwork, in his groundbreaking

paper [Dwo60] on rationality of Weil's zeta functions. After that, Christol, Dwork,

Matsuda, Mebkhout, Robba, and many other mathematicians have devoted to the

study of the behavior of solutions of p-adic differential modules. They discovered that

the differential modules have a nasty habit of failing to admit global solutions even

in the absence of singularities; for instance, the exponential series fails to be entire.

To measure this, Dwork and his collaborators introduced a very important notion of

the generic radius of convergence of a p-adic differential module over a 1-dimensional

space (for simplicity, we restrict attention here to discs and annuli). The modern def-

inition of this concept was given and studied in depth by Christol and Dwork [CD94].

A further refinement, the collection of subsidiary generic radii of convergence, was in-

troduced (under different terminology) by Young [You92]. Matsuda [Mat95] pointed

out the mysterious analogy between this notion and Malgrange's irregularities [Ma174]

of differential modules over the complex number. Precisely speaking, when the dif-

ferential module comes from a Galois representation (will be discussed in Chapter 3),

the variation of the generic radius of convergence is related to the Swan conductor of

the representation. We will get back to this point in Chapter 3.

Given a differential module over a p-adic disc or annulus of the form a < Itl < 3,



one obtains a generic radius of convergence and some subsidiary radii for each radius

p E [a, 6], and one would like to be able to say something about how these quantities

vary with p. (In fact, one also obtains these data for each point of the Berkovich

analytic space; this is the point of view adopted in ongoing work of Baldassarri and

di Vizio, starting with [BdV08+].) Many partial results involving heavy computation

have been achieved by Christol, Dwork, and Robba, but no systematic and concep-

tual approach is available for a long time. By pulling together techniques from the

literature and adding one or two new ideas, Kedlaya gave fairly definitive statements

about the nature of this variation; this was done in a course given in fall 2007, whose

compiled notes constitute the volume [Ked**].

The course [Ked**] was deliberately restricted to the study of p-adic ordinary

differential equations. One could view the extension of the variational results to

higher-dimensional spaces as an implied exercise in [Ked**]. This chapter constitutes

a partial solution of this implied exercise, in which we obtain variational properties

for differential modules over certain higher-dimensional p-adic analytic spaces. Most

part of this chapter is taken from the joint paper [KX08+] of Kedlaya and the author.

Structure of the Chapter

In Section 1.1, we consider differential modules over a field. In particular, we in-

troduce the notion of derivations of rational type, which characterizes the nature of

"reasonable" differential operators. Also, we interpret Frobenius homomorphism as

a inclusion of subfield determined by derivation and a rational parameter. Another

new feature, refined intrinsic radii, is discussed in Subsections 1.1.5 and in the later

part of Subsection 1.1.6; this will be related to the refined Swan conductors discussed

in later Chapters.

In Section 1.2, we study the variation of subsidiary radii of convergence over a

1-dimensional disc or annulus. This is done in several steps. First, we consider the

variation properties and decompositions for each single derivations; this consists of

Subsections 1.2.2 and 1.2.3. In the multi-derivation case, we use a rotation technique

to reduce the problem to single derivation case; this is carried out in Subsections 1.2.4



and 1.2.5. After that, we discuss the variation of refined intrinsic radii in Subsec-

tion 1.2.6. We also insert a short discussion in Subsection 1.2.8 of application to

Artin and Swan conductors, which requires Subsection 1.2.7 as a preparation. Fi-

nally, we discuss briefly in Subsection 1.2.9 the subharmonicity in the characteristic

zero case.

In Section 1.3, we first do some simple mathematical analysis on piecewise linear

and convex functions (see Subsections 1.3.1 and 1.3.2). Then, we apply this result

to reduce the higher-dimensional variation problem to the 1-dimensional variation

problem.

1.1 Differential modules over a field

In this section, we assemble a comprehensive collection of definitions and basic results

concerning differential modules over a field. We adopt the point of view to build up

everything from differential operators.

1.1.1 Setup

The setup of this subsection applies throughout the thesis.

Notation 1.1.1.1. Let f* : R 1 --+ R 2 be a homomorphism of rings. For an R1-

module MI, we write f*Mi to denote the extension of scalars M1 ®R,f* R 2. For an

R2-module M 2 we write fM 2 to mean M2 viewed as an Rl-module via f* (i.e., the

restriction of scalars).

Notation 1.1.1.2. The lexicographic order on Z is that for (i, i (i...,n), (i,...,) E

Z n , we have (i,. .. , in) - (i,...,i',) if there exists some j e {1,... ,n} such that

i = i,...,i _.1 = i'_ 1 and is _ ij.

Notation 1.1.1.3. By a multiset S, we mean a set where we allow elements to have

multiplicity. For s E S, the multiplicity of s in S is denoted by multi,(S).

Notation 1.1.1.4. For K a field, we use char k to denote its characteristic. We fix

an algebraic closure of K~' and let Ksep denote the separable closure inside Ka g .



Denote GK = Gal(KeP/K). For a finite Galois extension L/K, we denote the Galois

group by GL/K = Gal(L/K). For a finite extension L/K, denote the norm map by

NL/K : L -- K.

Notation 1.1.1.5. By a nonarchimedean field, we mean a field K equipped with a

nonarchimedean norm |I = I ' I K --+ R'. A subring of K (with the induced

norm and topology) is called a nonarchimedean ring. If K is complete for the nonar-

chimedean norm and L/K is a finite extension, the norm I- IK extends uniquely to a

norm I IL on L.

Let K be a nonarchimedean field. Denote the ring of integers and the maximal

ideal of K by OK = {x E KixI 1} and mK = {x E K||xI < 1}, respectively;

the residue field of K is denoted by KK = OK/mK. We reserve the letter p for the

characteristic of KK. If char KK = p > 0 and char K = 0, we normalize the norm on

K so that Ip = 1/p. For an element a E OK, we denote its reduction in KK by a. In

case K is discretely valued, let IrK denote a uniformizer of OK and let vK(-) be the

corresponding valuation on K, normalized so that VK(IrK) = 1.

More generally, for s E R, we set

m ) = {x E K I jx < e- }, ms)+ ={x K x l <e - }, K. =m)/m )+

If s E -loglKx I, we have a non-canonical isomorphism nK ,K). For a E K with

al < e-8 , we sometimes denote its image in 4S) by (s). In particular, Ka, = KK and

(O) = 6f if v(a) > 0.

Notation 1.1.1.6. Let K be a nonarchimedean field. We say K is of equal charac-

teristic, if char K = char k = p. We say K is of mixed characteristic if char K = 0

and char k = p > 0.

Definition 1.1.1.7. Let K be a complete discretely valued field. For L a finite ex-

tension of K, the (naive) ramification degree of L/K, denoted by eL/K is the index of

the value group of K in that of L. If L is the completion of an infinite algebraic exten-

sion of K, we define the ramification degree to be the supremum of the ramification

degrees of the finite subextensions.



Convention 1.1.1.8. A finite separable extension L of a complete nonarchimedean

field K is unramified if L and K have the same value group, and the residue field

extension is separable of degree [L : K]. It is tamely ramified if p { eL/K and the

residue field extension is separable of degree [L : K]/eL/K. If char .K = P = 0 (and

hence K is of characteristic zero), any finite extension of K is tamely ramified, by a

theorem of Ostrowski (see [Rib99, Chapter 6]). For L the completion of an infinite

algebraic extension of K, we say that L is unramified or tamely ramified if the same

is true of each finite subextension of L over K.

Notation 1.1.1.9. Let J be a finite index set. We will write ej for a tuple (ej)j3 y.

For another tuple uj, write u j = EJ u'. We also use E=0 to mean the sum over

ej E {0, 1,..., n} for each j E J; for notational simplicity, we may suppress the range

of the summation when it is clear. Write lejl = EjEJ lejl and (ej)! for IjEJ(ej)!.

Convention 1.1.1.10. Throughout this paper, all derivations on topological modules

will be assumed to be continuous; in particular, 01 will denote the continuous differ-

entials. We may suppress the base ring from the module of continuous differentials

when it is Fp, Z or Z,.

Moreover, all derivations considered on nonarchimedean rings will be assumed to

be bounded (i.e., to have bounded operator norms). All connections considered will

be assumed to be integrable.

Definition 1.1.1.11. For f/K a (not necessarily finite) extension of fields of charac-

teristic p > 0, we say the extension is separable if e is geometrically reduced over iv,

that is e 0 K' is reduced for any finite extension of K. A p-basis of e over K is a set

{cj}jEJ C £ such that the products c J , where ej e {0, 1,... ,p - 1} for all j E J and

ej = 0 for all but finitely many j, form a basis of the vector space e over rnP. By a

p-basis of f we mean a p-basis of £ over P'. (For more details, see [Eis95, p. 565] or

[EGAIV1, Ch.0, §21].)

For K a complete nonarchimedean field with residual characteristic p > 0, a lifted

p-basis of K will mean a set of elements bJ C O' whose images bj C iL form a

p-basis of KK.



Remark 1.1.1.12. When K is of equal characteristic p, a lifted p-basis together with

a uniformizer 7rK form a p-basis of K.

Remark 1.1.1.13. Let K be a field of characteristic p > 0. For a p-basis bg C K', dbj

form a basis for the differentials Qf as an K-vector space.

Let K be a complete discretely valued field. If K is of mixed characteristic, then

for a lifted p-basis bj E OK, dbj form a basis for the differentials 0 as a K-vector

space. If K is of equal characteristic p > 0, then for a lifted p-basis bj E OK together

with a uniformizer 7rK, dbj, drK from a basis for the differentials Q sK as a free OK-

module.

Convention 1.1.1.14. For a matrix A = (Aij) with coefficients in a nonarchimedean

ring, we use IAI to denote the supremum norm over entries.

Hypothesis 1.1.1.15. For the rest of this subsection, we assume that K is a complete

nonarchimedean field.

Notation 1.1.1.16. Let I C [0, +oo) be an interval and let n E N. Let

A (I) = {(, . .. Xn) E Kalg I Ixi E I for i = 1, ... ,n}

denote the polyannulus of dimension n with radii in I. (We do not impose any

rationality condition on the endpoints of I, so this space should be viewed as an

analytic space in the sense of Berkovich [Berk90].) If I is written explicitly in terms

of its endpoints (e.g., [a, fl]), we suppress the parentheses around I (e.g., A a, ]).

Remark 1.1.1.17. Throughout this paper, we will implicit use Berkovich spaces, ex-

cept at only two places (See Remarks 3.1.2.13 and 3.4.1.4) where we have to shift back

to the classical rigid analytic setting to talk about (geometric) connected components

[BGR84, 9.1.4/8] by imposing some rationality on the radii of discs or annuli.

Notation 1.1.1.18. For 0 < a < < oo, we have the ring of analytic functions on

A' [a, 3], denoted by

K(a/t, t/) = { at' K[t] : lim {lail/3p} = 0, lim {laila } = 0.
i ++oo 2---o-

ieZ



If a = 0, we have the ring of analytic function on the disc A' [0, /], denoted b

K(tl/3) =
(i=O

EKt] : lim {Iai l'} = 0}.
i-+o

Definition 1.1.1.19. We have the ring of series with bounded coefficients

K[t/3]o = aai' te K[t] :sup{ai } < oo ;
i=O i

these are the power series which converge and take bounded values on the open disc

Itl < p. Note that for any 56 (0, 3),

K(t/l3) C K[t/l3]o C K(t/6).

In particular, when 3 = 1, we have

K[tlo = OK[t 0oK K.

An analogue of this construction for an annulus is

K(a/t, t/flPo = Sait': ai E K, lim jaila' =
iEZ

0, sup{I aI i} < oo
i

these are the Laurent series which converge and take bounded values on the half-open

annulus a < Itl < ,. For any 6 E [a, 3), this ring satisfies

K(a/t, t3) C K(alt, t/P]o C K(a/t, t/6).

Definition 1.1.1.20. Define the ring

K{{t/P3}} = n
6E(o,/3)

K(t/6) =
Si=0

ait' : ai E K, lim jaip i' = 0
%--+00

these are the power series convergent on the open disc Itl < fl, with no boundedness

for all p E (0,) ;



restriction. In particular, for any 6 E (0, 3),

Kjt/3 0lo C K{{t/3}} C K(t/6).

An analogue of the previous construction for an annulus is

K{ {a/t, t/l}} = aiti' : ar E K, (lim |i' = 0 for all (a, 3)}

these are the Laurent series convergent on the open annulus a < Itl < 0/.

Definition 1.1.1.21. Put I = {1,..., n}. For (rli)i E (0, +oo) n , the r-Gauss norm

on K[t] is the norm I Inr given by

7 a,,tei = max{lae, I j7

this norm extends uniquely to K(ti).

For q E [a,13] and q 74 0, let x = EEieaiti be an element of K(a/t,t/l),

K(a/t,t/j o0, or (if q : a,/,) K{{a/t,t/3}}. We define the 17-Gauss norm of x

to be

Ix1, = sup {ai .
iEZ

Notation 1.1.1.22. For a nonarchimedean ring R, we use R(ul,..., un) to denote

the Tate algebra, consisting of formal power series Eil,...,i.EZ>o fil,...,iU ... u with

fi,...,in E R and Ifil,...,, I-+ 0 as i + - - - + in -+ +oo. For r71, ... , 7n E (0, 1], the ring

admits a (ri,..., rln)-Gauss norm given by

ii,...,inEZ>o

Convention 1.1.1.23. By a G-map, we will mean a morphism of affinoid (K-

analytic) spaces or (direct) limits of them with G-topology, which need not respect

the K-space structure. This amounts to a homomorphism between the corresponding

rings of global sections, which need not be K-linear. For example, the homomorphism



f*e defined in Lemma 1.1.2.16 below gives rise to a G-map fgen : AK[O, R(K)) -

Spm(K), where Spm(K) denotes the rigid space associated to K.

Definition 1.1.1.24. A differential module or V-module over a ring R is a locally

free R-module equipped with an integrable connection, i.e. a map V : M --+ M 0 f2

subject to Leibniz rule (that is V(am) = aV(m) + m 0 da for all a E R and m E M)

and V(V(m)) = 0 for all m E M. Any homomorphism Q~ --+ R gives rise to a

derivation 6 on R by sending a E R to the image of da in R; it satisfies the Leibniz

rule (that is o(ab) = aob + boa for all a, b E R).

Remark 1.1.1.25. When Q1 is a free R-module, we may read off the information

of differential modules over R by looking at the derivatives. This is the point of view

we will be taking for the rest of this chapter.

Be caution that it is not true that all the information in 01 can be detected

using derivations. In particular, the torsion part of Jf, usually does not admit a

homomorphism to R and hence may not be seen using derivations.

1.1.2 Differential fields and differential modules

Definition 1.1.2.1. Let K be a differential ring of order 1, i.e., a ring equipped with

a derivation 6. Let K{T} denote the (noncommutative) ring of twisted polynomials

over K [Ore33]; its elements are finite formal sums i>0o aiT with ai E K, multiplied

according to the rule Ta = aT + o(a) for a E K.

Definition 1.1.2.2. A 6-differential module over K is a finite projective K-module V

equipped with an action of 6 (subject to the Leibniz rule); any 6-differential module

over K inherits a left action of K{T} where T acts via a. The rank of V is the rank

of V as a K-module. The module dual VV = HomK(V, K) of V may be viewed as a

6-differential module by setting (Of)(v) = o(f(v)) - f(o(v)). We say V is free if V

as a module is free over K. We say V is trivial if it is free and there exists a K-basis

vl,..., vd E V such that (vi) = 0 for i = 1,..., d, where d = rank (V).

For V a 6-differential module free of rank d over K, we say v E V is a cyclic

vector if v, v,..., 6d-iv form a basis of V. A cyclic vector defines an isomorphism



V K{T}/K{T}P of a-differential modules for some twisted polynomial P E K{T}

of degree d, where the a-action on K{T}/K{T}P is the left multiplication by T.

Definition 1.1.2.3. For a 0-differential module V over K, define

H(V) = Ker a, Ha(V) = Coker = V/0(V).

The latter computes Yoneda extensions; see, e.g., [Ked**, Lemma 5.3.3].

Lemma 1.1.2.4. If K is a differential field , every a-differential module over K

contains a cyclic vector.

Proof. See, e.g., [DGS94, Theorem I1.4.2] or [Ked**, Theorem 5.4.2]. O

Hypothesis 1.1.2.5. For the rest of Subsection 1.1.2, we assume that K is a com-

plete nonarchimedean field of characteristic zero, equipped with a derivation 0 with

operator norm talK < oo, and that V is a nonzero 0-differential module over K.

Definition 1.1.2.6. The spectral norm of 0 on V is defined to be

0alsp,v = lim ina" "
n-*oo

for any fixed K-compatible norm I v on V. Any two such norms on V are equivalent

[Sch02, Proposition 4.13], so the spectral norm does not depend on the choice [Ked**,

Proposition 6.1.5]. One can show that l0ap,v > j lsp,K [Ked**, Lemma 6.2.4].

Explicitly, if one chooses a basis of V and uses the matrix Dn to denote the action

of 0n on this basis, then

l0 [sp,v = max{j0jsp,K, lim IDnl/n}.
n--oo

Remark 1.1.2.7. If K -- K' is an isometric embedding of complete nonarchimd-

edean differential fields, then for a 0-differential module V over K, V' = V OK K' is

a 0-differential module over K', and ijlsp,v, = max { Isp,K', lalsp,V}-



Definition 1.1.2.8. Let p denote the residual characteristic of K; we conventionally

write

1 p=0

p-1/(p-1) p > 0

Define the generic a-radius of convergence (or for short, the generic O-radius) of V

to be

Ra(V) = wl-lv;

note that Ra(V) > 0. We will see later (Proposition 1.1.2.18) that this indeed com-

putes the radius of convergence of Taylor series on a "generic disc". In some situa-

tions, it is more natural to consider the intrinsic generic a-radius of convergence, or

for short the intrinsic a-radius, defined as

IRa(V) = Iasp,K
alsp,V '

note that this is a number in (0, 1] by [Ked**, Lemma 6.2.4].

Let V1,..., Vd be the Jordan-Holder constituents of V as K{T} modules. We

define the (extrinsic) subsidiary generic a-radii of convergence, or for short the sub-

sidiary a-radii, to be the multiset 9 a(V) consisting of Ra(V) with multiplicity dim V

for i = 1,..., d. Let Ra(V; 1) < ... < Ra(V; dim V) denote the elements in 9 a(V) in

increasing order. We similarly define intrinsic subsidiary (generic) a-radii of conver-

gence 39ia(V), or for short intrinsic subsidiary a-radii, by aggregating the intrinsic

a-radii of V for i = 1,...,d. Let IRo(V; 1) < ... < IRa(V; dim V) denote the

elements in 39i~(V) in increasing order.

We say that V has pure (intrinsic) a-radii if 91(V) consists of d copies of Ra(V).

Lemma 1.1.2.9. Let V, V1, V2 be nonzero a-differential modules over K.

(a) For 0 -* V --+ V -4 V2 --+ 0 exact,

Ra(V) = min{Ra(V), Ra(V2)}; IR0 (V) = min{IRa(Vi), IRa(V2)}.



More precisely,

ia() = 91a(V 1) U 91(V 2 ); 39i (V) = 39a(V) U 3 a(V 2).

(b) We have

Ra(VV) = Ra(V);

al(vv) = 9ja(V);

IRa(V) = IRa(V);

39i(Vv) = 39a(V);

(c) We have

Ra(V1 0 V2) > min {R(V 1), Ro(V 2)}; IR 8 (V 0 1/2) > min {IRa(Vi), IRa(V2)}.

(1.1.2.10)

Moreover, if Ra(V1 ) $ Ra(V2), or equivalently, if IRa(V1 ) # IRa(V2), we have equal-

ities in (1.1.2.10).

(d) If V and V2 are irreducible and IRa(V) f IRa(V2), then 39ia (V1 0 V2) is just

dim V -dim V2 copies of min{IRa(V), IRa(V2 )}.

Proof. As in [Ked**, Lemma 6.2.81 and [Ked**, Corollary 6.2.9]. O

Definition 1.1.2.11. Let R be a complete K-algebra. For v E V and T E R, define

the 0-Taylor series to be

c an (v ) T nT(v;, T) = n E V K R
n=O

in case this series converges.

We include some formal properties of Taylors series as follows.

Proposition 1.1.2.12. Keep the notation as above.

(a) If V = K, thei- Taylor series x - 'I(x; 0, T) for fixed a and T E R gives a ring

homomorphism K -* R if it converges; that is in particular saying that for xl,x 2 E K,

For general V, the 0-Taylor series gives aT(XlX2;a,T) = T(Xl;-,T)T(x2; , T).



homomorphism v H * T(v; 8, T) of modules V -+ V OK R via the aforementioned ring

homomorphism, if it converges.

(b) If v C V, x E K, and T E R, we have

T(T(v; a, x); a, T) = T(v; 0, T + T(x; a, T)), (1.1.2.13)

if the -Taylor series involved all converge.

Proof. Statement (a) follows from formal properties of Taylor series immediately.

Statement (b) also follows but less trivially. We include the deduction here.

We expand the left hand side of (1.1.2.13) to be

T (T(; 0, x); a, T) = T
m

m=0 n=O

0 t f () 0 -i(ft(
m=O i=O n=O

0o m Tmam-i(xn) . i(v)

m,n=O (m n!
m,n=0 i=0

(1.1.2.14)

Similarly, we expand the right hand side of (1.1.2.13) to be

T(v; o, T + T(x; a, T)) =
a=0

C

(u + T (x; 8, T)) (

a!

Z~:o ()T'YT(x; 0, T)O- Y

a=O y=O

0 ft TYT(xc--; a, T)
= E E a (v)

o0 a o T + (xc_.)
= E E a(v).

a=O y=O )=0

by (a)

(1.1.2.15)

One checks that (1.1.2.14) and (1.1.2.15) match if we set m = P + 7, n = a - y, and

i=.y

Lemma 1.1.2.16. The Taylor series x -+ T(x; a, T) uives a continuous homomor-

phism fn : K - KIT/Ra(K)]o, which induces a G-map fgen : A'[O, Ra(K))

x"n"(v)n!

I I



Spm(K). Moreover, for 77 E [0, Ra(K)], fg*n is isometric for the r7-Gauss norm on

the target.

Proof. It is straightforward to check that f*n is bounded for the q-Gauss norm for any

SE [0, Ra(K)); that is, there exists c > 0 such that for all x E K, Ifg*en(x), 5 cliX.

For any positive integer n, we can plug x n into the previous inequality to deduce

Ifgen(x)l clllzj. Consequently, Ifg*n(X)W)k I for any r7 E [0, Ra(K)), and by

continuity also for r7 = Ra(K). We also have Ifg*n(x)jRa(K) |xj because the first

term in T(x; 0, T) is x itself which contributes to the Gauss norm. O

Corollary 1.1.2.17. For each positive integer n, we have IO/n!IK < Ra(K)- =

w-liOisp,K. In particular (by taking n = 1), J Isp,K - Wl( 9 K

We have the following geometric interpretation of generic radii. This is slightly

different from, but essentially equivalent to, the treatments in [Ked07a, Section 2.2]

and [Ked**, Section 9.7].

Proposition 1.1.2.18. With notation as in Lemma 1.1.2.16, the pullback f*enV be-

comes a OT-differential module over A1K[O, R(K)), where =- d. Then for any

r E (0, Ra(K)], Ra(V) 2 r if and only if f*enV restricts to a trivial Or-differential

module over A [0, r).

Proof. Since f*en is an isometry and ijTIK[T/RO(K)]o = Ro(K)- 1, we have Ra(V) =

Rar(fg*enV 0 FracK[T/Ra(K)]o). It then suffices to check that R8a(fgenV) 2 r if

and only if fg*nV restricts to a trivial 9T-differential module over A'[0, r); this is the

content of Dwork's transfer theorem [Ked**, Theorem 9.6.1]. O

1.1.3 Newton polygons

In this subsection, we summarize some results in [Ked**, Chapter 5 and 6] and

[Ked07a, Section 1]. Throughout this subsection, let K be a complete nonarchimedean

differential field of characteristic zero.

Definition 1.1.3.1. For P(T) = Ej iaT i E K[T] or K{T} a nonzero (twisted)

polynomial, define the Newton polygon of P as the lower convex hull of the set



{(-i, -loglail)} C R 2. The Newton polygons for twisted polynomials obey the usual

additivity rules only for slopes less than -logl1K.

Proposition 1.1.3.2 (Christol-Dwork). Suppose that V - K{T}/K{T}P, and let

s be the lesser of -log0alK and the least slope of P. Then

max {Ia1K, klsp,v} = e-8

Proof. See [CD94, Theoreme 1.5] or [Ked**, Theorem 6.5.3]. O

Proposition 1.1.3.3 (Robba). Any monic twisted polynomial P E K{T} admits a

unique factorization

P = P+P... P

such that for some sl < -- < sn < -logK, each Pi is monic with all slopes equal

to si, and P+ is monic with all slopes at least -log alK.

Proof. See [Ked07a, Proposition 1.1.10] or [Ked08+a, Corollary 3.2.4]. 0

Proposition 1.1.3.4. Suppose that w. - |aI 1 = ro. Then there is a unique decompo-

sition

S= V+ e V,
r<ro

of a-diferential modules, such that V, has pure a-radii r, and the subsidiary a-radii

of V+ are all at least ro.

Proof. Apply Lemma 1.1.2.4 to write V " K{T}/K{T}P for P a twisted polynomial.

Then the statement may be deduced from Proposition 1.1.3.3, applied first to P in

K{T} and then to P in the opposite ring. For more details, one may consult [Ked**,

Theorem 6.6.1]. 0

Remark 1.1.3.5. If V K{T}/K{T}P for P a twisted polynomial, then Proposi-

tions 1.1.3.2 and 1.1.3.3 imply that the multiplicity of any s < -logK as a slope of

the Newton polygon of P coincides with the multiplicity of weS in R (V).



Notation 1.1.3.6. Keep the notation as in Proposition 1.1.3.4. We call @~<ro V, the

visible part of V; its subsidiary radii are called the visible radii and the corresponding

set of spectral norms is called the visible spectrum. If V+ = 0, we say that V has

visible &-radii.

1.1.4 Moving along Frobenius

As discovered originally by Christol-Dwork [CD94], and amplified by Kedlaya [Ked**],

in the situation of Definition 1.1.4.1, one can overcome the limitation on subsidiary

radii imposed by Proposition 1.1.3.2 by using the pushforward along the Frobenius.

In this subsection, we imitate the techniques in [Ked**, Chapter 10] and obtain

Theorems 1.1.4.25 and 1.1.4.27 as analogues of [Ked**, Theorems 10.5.1 and 10.6.2].

Definition 1.1.4.1. Let K be a complete nonarchimedean differential field of char-

acteristic zero and residual characteristic p. The derivation a on K is of rational type

if there exists u E K such that the following conditions hold. (If these hold, we call

u a rational parameter for a.)

(a) We have a(u) = 1 and IIK = I-1

(b) For each positive integer n, Ian/n!lK < K-.

It is equivalent to formulate (b) as follows.

(b') We have Iasp,K wlaIK-

(It is clear that (b) implies (b'); the reverse implication holds by Corollary 1.1.2.17.)

For p > 0, in the presence of (a), yet another equivalent formulation of (b) is as

follows.

(b") For each polynomial P E Q[T] such that P(Z,) C Zp, IP(u)IK 1.

This relies on the fact that the Z,-module of such P is freely generated by the binomial

polynomials

(T) T(T-1) ... (T - n + 1) (n = 0,1, ... ).



Remark 1.1.4.2. Note that in Definition 1.1.4.1, the inequality in (b') is forced to

be an equality by Corollary 1.1.2.17, while the inequality in (b) is forced to be an

equality if (a) holds because then (On/n!)(u n ) = 1. In particular, for any nonzero

a-differential module V, IRa(V) = ul -Ra(V). Similarly, if (a) holds and p > 0, then

the inequality in (b") becomes an equality whenever P(Zp) 0 pZ,.

Remark 1.1.4.3. If u' is a second rational parameter for 0, then u - u' E ker(a)

and Iu' - uI < lul. The converse is also true; that is, if u is a rational parameter,

u - u' E ker(8), and Iu' - uI 5 lul, then u' is also a rational parameter. The only

nonobvious part of this statement is the fact that these two conditions imply Iu'I = Jul.
This is because a(u') = 1 implies 1 lalKiu'l = lu'l/lul, SO Iu'I _ lul.

Remark 1.1.4.4. The simplest case of Definition 1.1.4.1 is the derivation d/dt on

the completion of the rational function field Qp(t) for any Gauss norm if p > 0, or on

the ring of Laurent series C((t)) if p = 0. For more cases, see Situation 1.1.6.7 and

the following remarks.

Remark 1.1.4.5. We will often run into the case when we need to enlarge the

valuation of K. We can achieve this via replacing K by K' the completion of K(z)

with respect to i?-Gauss norm for some q E R>o and setting a(z) = 0, where z is

some transcendental element over K. We have I|K = IaIK' and 10 sp,K = ( asp,KI,

and hence a will continue to be of rational type (with respect to u) over K'.

Lemma 1.1.4.6. Let K be a complete nonarchimedean field of characteristic zero,

equipped with a differential operator a of rational type with respect to u. Let L be a

complete tamely ramified extension of K. Then the unique extension of a to L is of

rational type (with u again as rational parameter).

Proof. We reduce immediately to the case of a finite tamely ramified extension. The

extension of 0 to L is obtained from the isomorphism Q - L ®K . We need to

prove that for each positive integer n and each x E L, ju"n"(x)/n! < lxi. We point

out a useful fact that, for x, y E L, to check the above property for xy, it is enough



to check it for x and y separately; this is because

9n(xy) n (n) i(x) n-i (y)
n! i! (n-i)

i=O

We may consider the unramified extension and the totally tamely ramified extension

separately.

Suppose first that L/K is unramified. Since every element of L equals an element

of K times an element of O , we need only check the inequality jlunn(x)/n!l < Ixl for

x E O~. We do this by induction on n. Let h(T) = Td + adlTd - 1 +... + a E OK[T]

be the minimal polynomial of x; thus h'(x) E Ox. For the base case n = 1 of the

induction, applying uO to the equation h(x) = 0 gives

uO(adl)d - 1 + ... + uO(ao)
h'(x)

Assume the statement is proved for n- 1. Applying unan/n! to the equation h(x) = 0

gives
d UXo AO UX1 1 Ui Ai1

E E Ao! (a2) 1! (x) ... (x)= 0,
i=0 \o++...Ai=n

where ad = 1 by convention. Each summand belongs to OL by the induction hy-

pothesis except for those in which Aj = n for some j > 0; those terms add up to

h'(x)u(ga(x)/n!. Therefore u7"n"()/n! E OL, completing the induction.

Now suppose that L/K is totally tamely ramified. We induct on [L : K], which

we may assume is greater than 1. (We need the induction because we did not assume

that K is discretely valued and hence the group L /K may not be cyclic.) Then

we can find d > 1 and x0 E OL such that x14l IKXI for i = 1,... ,d - 1. Choose

an element y E OK with ly - zdl < (dj. By Hensel's lemma, y has a d-th root z in

L. Let K' be the completion of K(t) for the lyil/d-Gauss norm, and extend 8 to K'

by setting 0(t) = 0. The residue field of K' is sK(y/td). Put L' = K' ®K K(z); then

L' = K'(z) = K'(z/t). Now z/t is a d-th root of the quantity y/td E OK', whose

image in the residue field has no i-th root for any i > 1 dividing d. Hence L'/K'

is unramified, so by the previous paragraph, 0 extends to L' and is of rational type



with respect to u. We may then read off the same conclusion for K(z); applying the

induction hypothesis to L/K(z) yields the claim. O

Corollary 1.1.4.7. Let K be a complete nonarchimedean field of characteristic zero,

equipped with a differential operator a. Let L be a complete tamely ramified extension

of K. Then a extends to L and llL = IaIK.

Proof. It follows from the proof of Lemma 1.1.4.6 above. OI

Hypothesis 1.1.4.8. For the rest of this subsection, we assume that K is a complete

nonarchimedean field of characteristic zero and residual characteristic p, equipped

with a differential operator a of rational type with respect to the rational parameter

u. We also assume p > 0 unless otherwise specified.

Construction 1.1.4.9. If K contains a primitive p-th root of unity (p, we may define

an action of the group Z/pZ on K using a-Taylor series:

x() = T(x; a, (( - 1)u), (i E Z/pZ, x E K);

in particular, u() = (u. Indeed, it is a field homomorphism by Proposition 1.1.2.12(a),

and it gives an action because, by Proposition 1.1.2.12(b),

(x('))(3) = T(x; a, (( - 1)u + ((i - 1)u(j)) = T(x; a, (( - 1)u + (Ci - 1)(u) = x ('+ )

Since |( - 1)nunan/n!lK < Iunan/n! K < 1 for i E Z/pZ, we have lx(i)l = lx,
in other words, the action of Z/pZ on K is isometric. Let K (9) be the fixed subfield

of K under this action; in particular, uP E K (a) . By simple Galois theory, K is the

Galois extension of K (a ) generated by u with Galois group Z/pZ. Moreover, KP( ) is

stable under the action of ua because (uax)(') = ua(x(')) for x E K. (If K does not

contain a primitive p-th root of unity, we may still define K (a ) using Galois descent.)

We call the inclusion p(a)* : K(a) . K the a-Frobenius morphism. We view K(a)

as being equipped with the derivation 0' = al/(puP-'); we will see below (Lemma 1.1.4.14)

that a' is of rational type with parameter uP. (uP E K(d) because (uP)() = (4u)p = up

for i E Z/pZ.)



It is worthwhile to point out that K (a ) depends on the choice of the rational

parameter u, not just the derivation 0.

Occasionally, we use cp(an ) : K (a,n ) -* K to denote the pn-th 0-Frobenius obtained

by applying the above construction n times; if K contains a primitive pn-th root of

unity (pn, this is the same as the fixed field for the natural action of Z/pnZ on K

given by x (i) = T(x; 0, ((P - 1)u) for i E Z/pnZ.

Example 1.1.4.10. Let Ko be a complete nonarchimedean field of characteristic

zero. If K is the completion of Ko(u) with respect to the r-Gauss norm and 0 = _,

then K (a) is the completion of Ko(uP) with respect to the rP-Gauss norm and p(a)

sends uP to uP.

Lemma 1.1.4.11. The residue field K(a) contains KPK'

Proof. We know that K is generated by u over K ( ) . If ju K(a)x I, K would have

same residue field as K does. If ju E JK(a)x I, let x E K(a) be an element with

Ix[ = jul. Then KK is generated over IK(a) by u/x, whose p-th power lies in KK(8).

The statement follows. O

Lemma 1.1.4.12. We have I'YK(a) = ll -P .

Proof. We may assume that K contains a primitive p-th root of unity (p. We need

only show that uPa' preserves OK(a). For any x C OK(a), we have

1 1 (X) p-1
z= ( +zl P+--+ 1))= un ( .)"p (X+x +.--+x P n! ( - 1).

n=O i=0

Applying uP"' = uO/p gives

SuP'(x) ,= 8"((x)" ( - 1)n + x n-1 - 1)
n=0 i=O i=O

= _ _ ( n _(_ - 1)"(. (1.1.4.13)
n=0 i=0

The sum EP-o ((i -1)_ equals 0 for n = 0, ... , p-2; it equals p for n = p- 1; and it is

a multiple of p2 for any n > p (because the quantity belongs both to Z and to the ideal



((p - 1)p in Z[(p]). Hence by (1.1.4.13) and the fact that u"+n+l"'(x)/(n + 1)! E OK

from Definition 1.1.4.1, uP'(x) equals uPoP(x)/p! plus an element of OK, yielding

uPa'(x) E OK n K(a) = OK(a). ]

Lemma 1.1.4.14. The differential operator o' on K(a) is of rational type, with pa-

rameter u P.

Proof. Condition (a) in Definition 1.1.4.1 follows from Lemma 1.1.4.12 above and

the simple fact that 0'(uP) = a(uP)/pup - 1 = 1. Now, we check Condition (b) in

Definition 1.1.4.1. Write

u"O("  = (up')(ua' - 1) ... (uPO' - (n - 1))

n! = n!
(u) (ua - p) ...(uo - (n - 1)p) (x)

n! -pn

As a corollary of Lemma 1.1.4.12, for any element x E K (a) and i E Z \ pZ, (uO -

i)(x) = lx . Since uO maps K(&) to itself, applying differential operators ua - i for

i e Z\pZ to the result will not change the norm, so

upn 'n (u (ua -(u 1) ... (uO - (np - 1)) Un pO np

n! (x) n! . p (np)!

Definition 1.1.4.15. Given a 0'-differential module V' over K (0) , we may view

0p(a)*V ' = V' ®K(a) K as a 0-differential module over K by setting

0(v' 0 x) = puP-0'(v') 0 x + v' 0 a(x) (v' e V',x E K).

Lemma 1.1.4.16. Let V' be a 0'-differential module over K(&). Then

IROa(p()*V') > min{IRo, (V')l/p, p IR, (V')}.



Proof. This is essentially [Ked**, Lemma 10.3.2]. Consider the diagram

K() -fgen K(&) lT'/uPlo

I (a)* 'g*. I (B0

K e K[T/u1o

where 0(a)* is a K(9)-homomorphism extending p(a)* by ,3(a)*(T ' ) = (u + T)P - uP.

The diagram commutes because formally

(p0")* 0 fgen)(x) =
(O)* (

n= o

uP')
n

(x) (&T )
00

= (uO/P) ( ()*(x)) + T)
n=0

T)p

u
- 1U o/p

- )n

(,(a)*(* ))

= ((1+ T)P) u

00

n=O
n=o

= (f*en 0 ()* )(x).

For x E K (£ ) , all of the series in this formal equation converge, and we obtain correct

equalities.

For r' E [0, 1), set r = min{(r') lP,pr'}, or equivalently, r' = max{rP,p-'r}. By

Proposition 1.1.2.18,

Ra,(V') r'lu

f* V' is a trivial OT,-differential module over AK(a) [0, r'Iu)

S g(a)*f nV' = fen (a)*V' is a trivial T-differential module over A[O0, rjuj)

S Ra(()*V' ) > rul,

where the second implication is a direct corollary of Lemma 1.1.4.17 below. The

statement follows.

+ T)
U

u09 (a9)* () n



Lemma 1.1.4.17. [Ked**, Lemma 10.2.2] Let K be a nonarchimedean field of resid-

ual characteristic p > 0. For u, T E K and r E (0, 1), if Ju - TI 5 rJul, then

jup - TPI 5 max{rPIuIP, p-'rluP}.

Example 1.1.4.18. We give a rank 1 example to see the spectral norm change after

pulling back along p(a ). Let K be as above and let x E K be an element such

that Ox = 0 and lzxl (|ul-P,plul-P). Then the rank 1 0-differential module L'.

over K (a ) defined by 0'v = xv has visible intrinsic 0'-radii IR'a(£') = wlul-l/Ixl

(p-P/(P-l), p-l/(P-)). By Lemma 1.1.4.16, IRa(o(a)*L') > w is expected to be not

visible.

The 0-differential module p(a)*L' is generated by v and the derivation acts on it

via Ov = pu-iv. Then

02 v = ((pu-lX) 2 + p(p _ 1)up-2)v,

03v = ((puP-x)' + P2 (2p - 2)u 2 -1 x2 + p(p - 1)(p - 2)u-3)v,

and so on. Since lxj < plul- P, we have IpuP-lx| < Ju1-1. The dominant term is the last

term (but not the first term) in the above equations. More generally, the dominant

term in the expansion of 0nPv is (P-l1(puP-'x))nv = (p!)xynV; it has norm IpIxnIvl.

Hence, IRa(o(p')*L' ) = wul-llpxl-1/P = IRa,(£')l/p; this justifies Lemma 1.1.4.16.

Definition 1.1.4.19. Keep Hypothesis 1.1.4.8. For a 0-differential module V over

K, define the -Frobenius descendant of V as the K(a)-module cp(a)V obtained from

V by restriction along p(a)* : K ) --+ K, viewed as a &O-differential module over K (a)

with differential 0' = -- 0a. Note that this operation commutes with duals.

Definition 1.1.4.20. For n = 0,..., p- 1, let Wn( ) be the 0'-differential module over

K( ) with one generator v, such that

0'(v) = -u-Pv.
p
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From the Newton polynomial associated to v, we read off IRa,(W a)) = p-p/(P-1) for

n - 0. (One may view the generator v as a proxy for un.)

Lemma 1.1.4.21. We have the following relations between 0-Frobenius pullbacks and

0-Frobenius descendants.

(a) For V a 0-differential module over K, there are canonical isomorphisms

(n = O,..., p - 1).

(b) For V a 0-differential module over K, a submodule U of p(')V is itself the 0-

Frobenius descendant of a submodule of V if and only if ~n(U 0 W(a)) = U for

n = 0,..., p - 1.

(c) For V a 0-differential module over K, there is a canonical isomorphism

p (a)*p (a)V V@ p .

(d) For V' a O'-differential module over K (a) , there is a canonical isomorphism

p-1

(v' ((a)*V (V' W Wa).
n=O

(e) For V1, V2 o-differential modules over K, there is a canonical isomorphism

p-1

pa)Vl 0 po)V 2  
W ( ) 0 p )(V1 0 V2).

n=O

(f) For V a 0-differential module over K, there are canonical bijections

(i = 0, 1).

Proof. Straightforward.

to : (c() V) & W a) (8) V

H (V) - , (9 a)V)



Definition 1.1.4.22. Let V be a a-differential module over K such that IRa(V) >

p-/(P-1). A 0-Frobenius antecedent of V is a '-differential module V' over K(a) such

that V - (p(a)*V' and IRa,(V') > p-p(p- 1).

Proposition 1.1.4.23 (Christol-Dwork). Let V be a a-differential module over K

such that IRa(V) > p-1/(p-1). Then there exists a unique a-Frobenius antecedent V'

of V. Moreover, IRa,(V') = IRa(V)p .

Proof. As in [Ked**, Theorem 10.4.2]. EO

Remark 1.1.4.24. As in [Ked**, Theorem 10.4.4], one can form a version of Propo-

sition 1.1.4.23 for differential modules over discs and annuli.

Theorem 1.1.4.25. Let V be a a-differential module over K. Then

V) U rP, p-P/(P-1) (p - 1 times)} r > p-1/(-l)

rE 39o(V) {p-lr (p times)} r < p-1/(p-1)

In particular, IRa(pa)V) = min{p-1 IRa(V), p-P/P- 1)}.

Proof. The proof is identical to that of [Ked**, Theorem 10.5.1]. O

Corollary 1.1.4.26. Let V' be a a'-differential module over K (a) such that IRa, (V')

p-P/(p- 1). Then IRa ((a)*V') = min{IRo,(V')'/P, p IRa (V')}.

Proof. In case IRa,(V') > p-p/(p- 1), this holds by [Ked**, Corollary 10.4.3]. Other-

wise, by Lemma 1.1.4.21(d), ! t)p(a)*V' - p-o(V' 0 Wna)) and IRWn(V' ® Wa)

IRo,(V') since IR,(V') < IRa(Wa)). Hence by Theorem 1.1.4.25,

IRal(V') = IRa,()O*(a )*V') = min{p-lIRao((a)*V'), p-/(p- 1)}.

We get a contradiction if the right side equals p-/(P- 1), so we must have IRa, (V') =

p-lIRa((a)*V') 5 p-P/(p- 1 ), proving the claim. O

For the following theorem, we do not assume p > 0.



Theorem 1.1.4.27. Let V be a -differential module over K. Then there exists a

decomposition

V= V ,
re(o,1]

where every subquotient of V has pure intrinsic a-radii r. Moreover, if p = 0, then

rdimV E IKx ; if p > 0, then for any nonnegative integer h, we have

r < p -p- P - 1)  Tdim r E [(K(',h))x P-h.

Proof. The proof is similar to those of [Ked**, Theorem 10.6.2] and [Ked**, Theo-

rem 10.7.1]. O]

Remark 1.1.4.28. In the case of Example 1.1.4.10, K(a,h) is the completion of

Ko(uph) with respect to the rp h-Gauss norm. We deduce thus from Theorem 1.1.4.27

that rdimv r E IK Ip-h r7Z

Remark 1.1.4.29. Let K' be a complete extension of K equipped with an extension

of 8 which is again of rational type with parameter u. Then the intrinsic a-radii of a

a-differential module over K are the same as that of its base extension to K': namely,

this is clear from Remark 1.1.3.5 for those a-radii less than w, but we can reduce to

this case using Theorem 1.1.4.25.

1.1.5 Refined radii

In this subsection, we discuss the refined radii, which is a secondary information

attached to a differential module. This will lead to the construction of refined Swan

conductors later in Subsection 3.2.5.

Hypothesis 1.1.5.1. Until Hypothesis 1.1.5.19, let K be a complete nonarchimedean

field of characteristic zero, equipped with a derivation a. Let V be a a-differential

module of rank d over K of pure a-radii Ra(V). Denote s = -log(wRa(V) - 1)

-log|a8|p,v.



Definition 1.1.5.2. A norm I - 1v on V is called good if it has an orthogonal basis

and 1v < maxf{1 1K, lalsp,V}; it is forced to have equality when 1a sp, > JlaK. We

will see in Lemma 1.1.5.6 that such a good norm always exists.

Notation 1.1.5.3. Let P(T) = Td + alTd- 1 + --- + ad be a (twisted) polynomial

with coefficients in K, whose Newton polygon has pure slope s (Definition 1.1.3.1).

The reduced roots of P are the reductions of the roots in .() If the characteristic

polynomial P of a matrix A has pure slope s, we call the reduced roots of P the

reduced eigenvalues of A.

Definition 1.1.5.4. Assume that V has (pure) visible a-radii. Let I - v be a good

norm on V. Enlarge the value group of K in the sense of Remark 1.1.4.5 so that V

admits an orthonormal basis. Let N be the matrix of i acting on the chosen basis.

Define the refined a-radii of V, denoted by Oa(V, I I) C I0., to be the multiset of

reduced eigenvalues of N. (In fact, we define the refined a-radii after we enlarged

K, but this will not matter as we will explain in Remark 1.1.5.5 below.) We will see

in Lemmas 1.1.5.7 and 1.1.5.8 that the refined 6-radii are independent of the choices

of good norm and orthonormal basis of V. After these lemmas, we will abbreviate

a(V) for ea(V, I I).

Remark 1.1.5.5. In the definition of refined 6-radii, we first enlarged K to K' the

completion of K(ul,... ,u,) for some (ril,... ,71r)-Gauss norm. However, the refined

6-radii 8a(V, I) is still a (multi)subset of ) i,. Indeed, since the construction is

canonical, for any 0 E EO(V, I), gO E Oa(V, I - ) for any automorphism g of K'

fixing K. But Ea(V, I I) is a finite set. So it can consist only of elements in Ks)

Alternatively, we can work out this more carefully in the computation of reduced

eigenvalues to cancel the new variables we introduced.

Lemma 1.1.5.6. For any V in Hypothesis 1.1.5.1, it has a good norm.

Proof. By Lemma 1.1.2.4, there exists a cyclic vector v E V. We use P to denote

the associated twisted polynomial. Let s be the lesser of -log|jK and the least slope

of the Newton polygon of P. Then we can define a good norm on V by taking the

orthogonal basis to be v, av, ... , ad- 1v and set 1'ivl = e- is for i = 0,..., d - 1. O



Lemma 1.1.5.7. Assume that V has visible 0-radii. Let I be a good norm on V.

Then the refined o-radii 8a(V, I - 1) are well-defined.

Proof. We may enlarge K as in Remark 1.1.4.5 so that we can find orthonormal

bases for I - 1. Let {ei} and {e:} be two orthonormal bases for I I and hence the

transition matrix A E GLd(OK). Denote N for the matrix of 0 acting on {ei} and

thus INI 5 Iov. Since I det NJ = I0f,yV = l0Id, the Newton and Hodge polygons

of V coincide and have pure slope -log08v. The same is true for A-1NA since

A E GLd(OK). On the other hand, IA- 10AI 5 1K and hence all the singular values

are not larger than 101K < JIasp,v. By [Ked**, Theorem 4.4.2], the reduced eigenvalues

of N coincide with those of A-'NA + A-1OA. O

Lemma 1.1.5.8. Let V be as above and let I - I1 and I 12 be two good norms on V.

Then, we have EO(V, I - I1) = EO(V, I - 12).

Proof. We may enlarge K as in Remark 1.1.4.5 so that j -1 and -12 both have orthonor-

mal bases {el,..., en} and {fi,..., fn}, respectively. Let A be the matrix for which

(el,..., ed)A = (fl,..., fd). By Gaussian elimination, we can find P, Q E GLd(OK)

such that PAQ is a diagonal matrix. By Lemma 1.1.5.7, we may change bases {ei}

and {f} so that A is in fact a diagonal matrix Diag(all,... ,add}.

Let N be the matrix of 0 acting on the basis {ei}, then the matrix of 0 acting on

the basis {f } is given by A- 1 NA+A-Io(A) = A-'(N+0(A)A-1)A. It suffices to show

that N has the same reduced eigenvalues as N + 0(A)A- 1. This is true by [Ked**,

Theorem 4.4.2] because I0(A)A- 1 1 = IDiag(aj1'0(a), ... , a d (add)) K. O

Corollary 1.1.5.9. Let V be as above. For any cyclic vector v E V, the reduced

roots of the twisted polynomial associated to v are exactly the refined 0-radii of V. In

particular, they are not zero in i a(g"

We would like to obtain a decomposition by refined 0-radii as in Theorem 1.1.5.16

in the visible range and as in Theorem 1.1.5.22 when 0 is of rational type.

Lemma 1.1.5.10. Let V be as above. Then ea(VV) = -Ea(V) = {(-0 I0 e a(V)}.



Proof. Straightforward.

Lemma 1.1.5.11. Let V and W be two a-differential modules over K of pure and

visible 0-radii Ra(V) = Ra(W). The following two statements are equivalent.

(a) The refined 0-radii of V and W are distinct, i.e., Ea(V) n Ea(W) = 0.

(b) The tensor product V 0 W' has pure 0-radii Ra(V).

Moreover, if either of the statements holds, we have Oa(V 0 WV) = {1 - 02101 E

Ea(V), 02 E EO(W)} as multisets.

As a corollary, we have

(1) If Oa(V)na(W) = 0, any homomorphism f : W -- V of a-differential modules

is zero.

(2) If Ea(W) consists of only one element 0 e r-0, (with multiplicity), then 0 E

Ea(V) if and only if V 0 W V is not of pure 0-radii Ra(V).

Proof. By Lemma 1.1.5.10 above, Ea(WV) = -8a(W). We may enlarge K as in

Remark 1.1.4.5 so that we have good norms on V and WV given by orthonormal

bases. Consider V 0 W v with the norm given by the tensors of elements in the bases

from two modules. Let No, N1 E Mat(mK ,g) be the corresponding matrices of 0 on V

and WV, respectively. Since No has reduced eigenvalues Ea(V) and N1 has reduced

eigenvalues -Ga(W), the mamodultrix N = No 0 1 + 1 0 N would have reduced

eigenvalues exactly the same as {01 - 0211 E EO(V), 92 E Oe(W)}.

If (a) holds, N has nonzero reduced eigenvalues and hence INnl = e- n8 for all

n e N with full rank when working modulo m) (and when identifying 'a) with

KKalg). Therefore, Ra(V 0 WV) = Ra(V).

If (b) holds, we in fact have a good norm on V 0 WV already and the reduced

eigenvalues of N should give the refined 0-radii of V 0 WV. By Corollary 1.1.5.9,

0 ega(V 0 WV). This implies (a).

Now, we prove (1). Since Ro(V 0 WV) = Ra(V), HO(V 0 WV) = 0, which

parametrizes all homomorphisms of 0-differential modules from W to V.

(2) is just the inverse statement of (a) (b). O



Lemma 1.1.5.12. Let V and W be two a-differential modules over K. Assume that

V has pure and visible a-radii and Ra(V) < RO(W). Then Ra(V 0 WV) = Ra(V)

and ge(V 0 WV) is just ea(V) with the multiplicity of each element multiplied by

dim W.

Proof. By Proposition 1.1.3.4, we may assume that W has pure visible a-radii or

non-visible radii. By Lemma 1.1.5.6, we may find a good norm on W. We proceed

as in Lemma 1.1.5.11. Now, if No, N1 E Mat(Kalg ) denote the matrices of a on V

and WV, respectively, then N1 E Mat(m9 )+ ) and No has reduced eigenvalues Ea(V).

Hence No 0 1 + 1 0 N1 has the same reduced eigenvalues as No but with multiplicity

multiplied by dim W. The lemma follows. O

Lemma 1.1.5.13. Keep the notation as in Lemma 1.1.5.11(2) above. If, moreover,

Ea(V) also consists only of 0 e a (s (with multiplicity), then Ra(V 0 W) > Ra(V).

Proof. We proceed similarly as in Lemma 1.1.5.11. Now No and N have pure reduced

eigenvalues 0 and -0, respectively. Hence N = No 0 1 + 1 0 N1 reduced to a matrix

in ~ I() with zero eigenvalues (if we identify Ka, with nK-aI). It is then nilpotent,

i.e., N n E Mat(mn, ) for n > 0. This implies that Ra(V 0 W) > Ra(V). O

Remark 1.1.5.14. An alternative way to think about refined a-radii is the following.

We call a a-differential module over K absolutely indecomposable if it is indecompos-

able over any finite tamely ramified extension K' of K. Lemma 1.1.5.13 implies that

we can define an equivalence relation between all absolutely irreducible a-differential

modules over finite tamely ramified extensions of K with same pure a-radii e-r as

follows: V , W if and only if Ro(V O K" 0 WV) > e- for some finite tamely ramified

extension K" on which V and W are both defined. Then the refined a-radii give a

parameterization of this equivalence relation.

Lemma 1.1.5.15. Let 0 E (,,g\{0}, where s < -logl01K and s E -loglKX IQ. Then

we have the following.

(a) If p = 0, then s E -logl(K')× and 0 E ,rK for some finite tamely ramified

extension K'/K. Let x E m( be a lift of 0. Also, we set n = 0 in this case and

pn = 1 by convention.



(b) If p > 0, there exists n E Z>o such that OP" E rn with pfs e -log (K') I for

some finite tamely ramified extension K'/K. Let x e m K, be a lift of Op"

Define £x,(n) to be the a-differential module over K' of rank pn with basis {e, . . . , e },

on which 0 acts as aei = ei+l for i = 1, ... ,pn - 1 and 0epn = xze. Then £x,(n) has

pure a-radii wes and Oa(4£,(n)) consists of only 0 with multiplicity pn.

Proof. The existence of x is obvious. For the calculation of Oa(V), we may replace

K by the completion of K(z) with respect to the e-S-Gauss norm (and set az = 0).

Then el, z-1 e 2, ... , z-(p-l)epn gives a good norm on tx,(n), for which the refined

a-radii can be easily computed to be as stated. O

Using 4 x,(n), we can obtain a decomposition by refined a-radii as follows.

Theorem 1.1.5.16. Let K be a complete nonarchimedean field of characteristic zero,

equipped with a derivation 0. Let V be a a-differential module over K with pure and

visible a-radii Ra(V). Denote s = -log(wRa(V)- 1). Then V admits a canonical

decomposition by refined O-radii as follows.

V = V{o), (1.1.5.17)

((a)

where the direct sum runs through all Galois conjugacy classes in ,( and the refined

a-radii of V{o} are exactly the Galois conjugacy class {0} with same multiplicity on

each element.

After making a finite tamely ramified extension K' of K, one can obtain the

canonical decomposition (1.1.5.17) without taking the conjugacy classes. In particular,

Oa(V) C Un (/1s))

Proof. By making a finite tamely ramified extension K' of K, we may assume that

Oa(V) C Un,( ))l n. (By Corollary 1.1.4.7, doing so will not change the visible

range.) For each 0 E Oa(V), we construct £x,(n) as in Lemma 1.1.5.15, which is a 0-

differential module of pure a-radii Ra(V) and pure refined radii 0. By Lemma 1.1.5.11(2),



V 0 £,() is not of pure radii Ra(V). By Proposition 1.1.3.4, we get a decomposition

V ,() = Wo D W1, where Ra(Wo) > Ra(V) and W1 is of pure a-radii Ra(V).

Denote Wo = Wo 0 £4,(n) and W1 = W1 0 £,,(n). Now consider the following

homomorphisms of a-differential modules

V .~ 1(0LCX,(n) 0 ( ,(n) o e W,

where i is the diagonal embedding and j is the projection so that ji = id. Let Po and

Pi be the projection from V 0 £,(n) 0 £u,(n) to the factors Wo and W1, respectively,

viewed as submodules of the source. Hence p2 = Po, P = pi, and Po + pi = 1. We

claim that jpoi and jp 1 i are projections on V which give the desired decomposition.

By Lemma 1.1.5.13, Ra(£Lv ()L,(n)) > Ra(V). By Lemma 1.1.5.12, V C,c)v 0

'4,(.) and hence Wo and W1 have pure a-radii Ra(V). Also, by Lemma 1.1.5.12,

ea(Wo) consists of solely 0, and by Lemma 1.1.5.11,

es(w 1) = {(0 + 0 (with multiplicity pn) 101 E O ea(W)).

In particular, 0 Ea(W1). Hence any homomorphism of 0-differential modules be-

tween Wo and W1 has to be zero by Lemma 1.1.5.11(1). In particular, plijpo =

poijpl = 0. Thus, we have

(jpoi)(jpoi) = jpoij(1 - pl)i = jpoi(ji) - j(poijpi)i = jpoi

(jpri)(jp1 i) = jplij(1 - po)i = jpli(ji) - j(plijpo)i = jp 1i

jpoi + jpli = j(po + P)i = ji = 1.

This proves that V = jpoi(V) @ jpli(V). Moreover, ea(jpoi(V)) consists of only 0

since it is a quotient of Wo, and ea(jp1i(V)) does not contain 0 since it is a quotient

of W1. Applying this process to each of 0 E a(V) gives the desired decomposi-

tion (1.1.5.17).

The decomposition (over K') is canonical because it is characterized by the way



that 0 acts on direct summands. By Galois descent, we can easily get the decompo-

sition over K as stated in the theorem. Ol

Corollary 1.1.5.18. Let V and W be two 0-differential modules over K of pure and

visible 0-radii Ra(V) = Ra(W). If we use U to denote the maximal 0-differential

submodule of V 0 Wv whose 0-radius is larger than Ra(V), we have

dimU = E multio(oa(V)) - multio(Oa(W)).
OEK(s)

0Kalg

Proof. We may replace K by a finite tamely ramified extension. By Theorem 1.1.5.16,

we may assume that V and W both have pure refined 0-radii. If V and W have the

same refined 0-radii, the statement follows from Lemma 1.1.5.13; if they are different,

the statement follows from Lemma 1.1.5.11. O

We now extend the definition of refined 0-radii to the non-visible case when 0 is

a derivation of rational type.

Hypothesis 1.1.5.19. For the rest of this subsection, we abandon Hypothesis 1.1.5.1.

Let K be a complete nonarchimedean field of characteristic zero equipped with a

derivation 0 of rational type with respect to u. Let V be a 0-differential module of

pure intrinsic 0-radii IRa(V) < 1. Denote s = -log(wlRa(V)-l).

Definition 1.1.5.20. Let p(o) : K(a) --+ K be the 0-Frobenius. We define the refined

intrinsic 0-radii, denoted by ZOa(V) as follows.

(a) If IRa(V) < w, define ZOa(V) = u - oa(V).

(b) Ifp > 0 and IRa(V) = w, pa)(V) has pure 0'-radii p-p(p-1). By Lemma 1.1.4.21(a)

and Lemma 1.1.5.11, the element in Z1a,(,pa)(V)) can be grouped into p-tuples

(0, ... + , + ) (with some multiplicity), where 0 E rKg. Define

ZO8(V) to be the multiset consisting of (pP0p - pO)'/p E Kalg for each p-tuple

in I$o, (c.a) (V)).



(c) If p > 0 and IRa(V) > w, by Proposition 1.1.4.23, V = p(a)*W for some

'-differential module W on K (a ) such that IRa,(W) = IRa(V)P. We define

ZOa(V) = {(pO')l/p E I ga (W) I)} C 'Ki,.

If IRa(V) is large, we need to iteratively apply (c) to seek for its higher a-Frobenius

antecedents until we arrive at case (a) or (b), and then we solve all the way back to

define ZOa(V).

Remark 1.1.5.21. An alternative way to see the Frobenius antecedent in Defini-

tion 1.1.5.20 is to consider the decomposition of (oa)V given by Theorem 1.1.4.27.

The Frobenius antecedent is exactly the submodule in this decomposition which has

intrinsic a-radii IRa(V)1IP.

Theorem 1.1.5.22. Let K be a complete nonarchimedean field of characteristic zero

equipped with a derivation a of rational type. Let V be a 0-differential module over

K with pure intrinsic 0-radii IRa(V) < 1. Denote s = -log(wlRa(V)-l 1). Then V

admits a canonical decomposition by refined radii as follows.

V = V{e), (1.1.5.23)

where the direct sum runs through all Galois conjugacy classes in Kj,, and the refined

0-radii of V{0} are exactly the Galois conjugacy class {0} with same multiplicity on

each element.

After making a finite tamely ramified extension K' of K, one can obtain the

canonical decomposition (1.1.5.23) without taking the conjugacy classes. In particular,

Ea(V) C Un ( K  ) .C

Proof. If IRa(V) < w, this is just Theorem 1.1.5.16. If p > 0 and IRa(V) = W,

applying Theorem 1.1.5.16 to W. a)V as a 0'-differential module gives a decomposi-

tion (1.1.5.17). If we group the direct summands according the refined 0'-radii as in



Definition 1.1.5.20(b), i.e., we write

V = v(.
{(o,...,0+ )}CKKalg/Fp

where the refined radii of V(0,...,e+ -1)} are exactly the Galois conjugates of p-tuples

(8,...,0 + 2-1) with same multiplicity on each element. By Lemma 1.1.5.11, the

decomposition is invariant under twisting by Wa) and hence it descends to a decom-

position of 8-differential modules over K.

If p > 0 and IRa(V) > w, the decomposition (1.1.5.23) comes from the decompo-

sition of its 0-Frobenius antecedent. 0

Example 1.1.5.24. Let p > 0. We extend the example in Lemma 1.1.5.15 to the

non-visible case as follows, giving examples with pure intrinsic refined 0-radii. Let

0 eK g) \{0}, where s e [0, llogp) and s E -log|KXIQ. Similar to Lemma 1.1.5.15,

there exists n E N such that p n E e (n n-))P with pn-is E -log|(K')I for some

finite tamely ramified extension K'/K. Let x E m(pnS) be a lift of OP"; we may find aK( a )

lift in K'(a) because of Lemma 1.1.4.11.

Let £L,(n) denote be the a-differential module over K' of rank pn with basis

{el, ... , ep,}, on which a acts as 0ei = ei+l for i = 1,..., ,p -1 and aep = xu-P"el,

where the extra u-Pa compare to Lemma 1.1.5.15 reflects the different normalizations

of refined intrinsic 0-radii and refined 0-radii.

Remark 1.1.5.25. The restriction s E [0, 1logp) in Example 1.1.5.24 is linked with

the choice x e m, In order to extend s to the radius [0, ( p )logp) we

need to be able take x e mo,, lifting 9BP for some n E N and some tamely ramified

K'/K. However, as r gets larger, n might need to take a bigger value accordingly to

guarantee the existence of the valid lift x. That is why we cannot essentially remove

this restriction.

Lemma 1.1.5.26. Keep the notation as in Example 1.1.5.24. Then 4£,(n) has pure

non-visible intrinsic 0-radii IRa(£x,(n)) = we" and pure refined intrinsic 0-radii 9.



Proof. We need to consider )£4,(), which has a basis given by

{u i+ le i I 1= 0,...,p- 1; i = 1,...,pn.

The derivation uPO' = 1uO acts on this basis as follows.
P

uPOui+tei = Lu+lei+ iui++le+l, I = O,...,p- 1;i = 1,...,pn - 1,

uP'uPn+ee,n = P+lupf+lzepn + 1xu'l+e, I = 0, ... ,p - 1.

We replace K by the completion of K(z) with respect to the e-8 -Gauss norm and set

a(z) = 0. Then, with respect to the basis given by

uel, z- lue 2 , .., -P +1 epn,

u2el, z-1 3 e2,... z-pn+1 upn+lepn

uPel, z-LP+le 2 ,... , Z-pn+l Upn + P--lepn,

the action of uP& is given by a block diagonal matrix N, whose diagonal blocks are

+1 0 " 0 lXZ - p n +l
P P

z 1+2 ... 0 0
p p

N= 0

0 0 ... l+p-1 0

0 0 ... .
p p

where 1 = 0,... ,p - 1. (Here, we used the crucial fact that x E K'(A).) Hence,

- Cx,(n) = e = 1, where V corresponds to the -differential module on which a

acts via N, for 1 = 0,..., p - 1. It is easy to compute the characteristic polynomial

of the matrix N, as
14 l+i x

(T (1.1.5.27)



The Newton polygon for the product has slopes rlogp with multiplicity pn--2(p - 1)

for r = -1, 0,..., n - 2 and a slope (n - 1)logp with multiplicity 1. Since IxI E

(p-P-1, 1], I-l E (pP-l(P-1), pP" ] and hence the Newton polygon of (1.1.5.27) has

slope -logp with multiplicity pn-l(p - 1) (from the product) and slope

-logl _ I - p-l 1 (p - 1)(-logp) pns _ pn-1 logp
p-l p-1 = ps - logp,

with multiplicity pn-1 (from the new constant term rw). The two kinds of slopes are

the same if (and only if) s = 0.

If s = 0, the refined OY-radii of V are exactly the reduced roots of (1.1.5.27), which

are .1 times the reduced roots of pn 1(T' - (1 + i)) = x, that is, 1 times the roots of
p p

l-= (T' - i)P"- = 0p" . By Definition 1.1.5.20(b), this says exactly the statement of

the lemma.

Now, we assume that s > 0. The condition on slopes of (1.1.5.27) implies that

the singular values of N match the norms of the eigenvalues of N. By [Ked**,

Theorem 4.3.11], we can find a matrix U E GLpn(OK,(o)) such that U-INU is block

diagonal triangular, with the top left block accounting for the singular values p and the

bottom right block accounting for the singular values pe- P" . Then applying [Ked**,

Lemma 6.7.1] to U-INU + U-uPo(U) implies that we can find V E GLpn(OK(o))

such that V-NV + V-1 uPO'(V) is block lower triangular.

The key point here is that the leading term for the characteristic polynomial of

the lower block is Tp - _ - ' because adding V-'uPa'(V) E Matp.(OK'(a)) does not

affect the leading term. Therefore, there is a unique submodule W of rank pn-1 of V of

intrinsic 8'-radii p-P/(P-)epB and pure intrinsic a'-radii E0,(W) = x1/p" - 1 / (ps-logp)

OP/p. Thus, by Definition 1.1.5.20(c), this implies the statement of the lemma. O

1.1.6 Multiple derivations

In this subsection, we introduce differential fields of higher order.

Notation 1.1.6.1. In this subsection, set J = {1,... , m} for notational convenience.



Definition 1.1.6.2. Let K denote a differential ring of order m, i.e., a ring K

equipped with m commuting derivations a1,... , m. For j E J, a j-differential

module is a finite projective K-module V equipped with the action of aj. In other

words, we view K as a differential ring of order 1 by forgetting the derivations other

than Oj. A (1, ... , am) -differential module (or aj-differential module, or simply a dif-

ferential module) is a finite projective K-module V equipped with commuting actions

of a1,..., 9 m. We may apply the results above by singling out one of a1,..., m.

Definition 1.1.6.3. Let K be a complete nonarchimedean differential field of order

m and characteristic zero, and let V be a nonzero (a1,..., Om)-differential module

over K. Define the intrinsic generic radius of convergence, or for short the intrinsic

radius, of V to be

IR(V) = min {IR (V)} = min {Iajsp,K/Iajsp,V .
jEJ j~EJ

For j E J, we say aj is dominant for V if IRa, (V) = IR(V). We define the intrinsic

subsidiary radii 3~M(V) = {IR(V; 1), ... , IR(V; dim V)} by collecting and ordering

intrinsic radii from Jordan-H6lder factors, as in Definition 1.1.2.8. We again say that

V has pure intrinsic radii if the elements of 23~(V) are all equal to IR(V).

Similarly, we define the extrinsic generic radius of convergence (or extrinsic ra-

dius) R(V) to be the minimum of R, (V) and extrinsic subsidiary radii 9(V) =

{R(V; 1), ... , R(V; dim V)} by collecting and ordering extrinsic radii from Jordan-

H6lder factors. (This concept will not be used until Subsection 1.2.7).

Definition 1.1.6.4. Let K be a complete nonarchimedean differential field of order

m and characteristic zero. We say that K is of rational type with respect to a set of

parameters {uj : j E J} if each 9j is of rational type with respect to uj, and i (uj) = 0

for i = j in J.

Remark 1.1.6.5. Recall that if p > 0, we have a j-Frobenius <p(Oj)* : K(aj) - K for

j E J. Since the elements uj\{j} are killed by aj, they are elements in K (° ). Hence

by Lemma 1.1.4.14, the differential operators \{j} and 8' are of rational type over

K( j) with respect to the parameters uJ\{j} and us.
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Theorem 1.1.6.6. Let K be a complete nonarchimedean differential field of order m

and characteristic zero, of rational type. Let V be a cj-differential module over K.

Then there exists a decomposition

V =( V,
rE(O,1]

where every subquotient of Vr has pure intrinsic radii r. Moreover, if p = 0, then

rdimV E IKxI; if p > 0, then

r < p - h/( p - ) rdimV E IK x i1/ p h .

Proof. Since the 0j commute with each other, the theorem follows by applying The-

orem 1.1.4.27 to each 0j and forming a common refinement of the resulting decom-

positions. O

One important instance of Definition 1.1.6.4 is the following.

Situation 1.1.6.7. Let F be a complete discretely valued field of characteristic zero

with residue field . of characteristic p > 0. Let K1 be a complete extension of

F with the same value group and residue field kl separable over K. Assume that

ul,..., um E OK1 lifts a set of p-basis of KK 1 over KF (Definition 1.1.1.11). Let F'

be an extension of F complete for a (not necessarily discrete) nonarchimedean norm

I - I, with the same residue field .. Let K 2 be the completion of K1 ®F F'. Let k be

a (possibly infinite) separable algebraic extension of k1, and let K be the completion

of the unramified extension of K 2 with residue field k.

In this case, we call such K standard differential fields.

Lemma 1.1.6.8. In Situation 1.1.6.7, the natural projection Q1K -- K 0 Q K1/F

j 1 Kduj gives derivations (Oj = &u)jEJ of rational type with respect to u,. . . , urn.

Proof. It is enough to check for Ki: it is clear that the same conclusion then holds

for K 2, and then Lemma 1.1.4.6 implies the same conclusion for K. That is, we must

check that OK, is stable under 0j/n! for all nonnegative integers n and all j E J. For



each n E N, any element x E OK, can be written (not uniquely) as

+oo00 pn-1

i=O ej=O

where an,i,eJ e OXI U {0} and f2 E OF. Then for any jo E J,

+oo pn-l n a n-0
(x) = zz z: ,e) ( 0 (uY) fi E OKi .

i=O ej=O (=0o

The lemma follows. O

Remark 1.1.6.9. Situation 1.1.6.7 includes the two options in [Ked07a, Hypothe-

sis 2.1.3]. (Note that [Ked07a, Hypothesis 2.1.3(b)] should require that 1/k be sepa-

rable.) We will see later (Theorem 1.2.8.2) that the results in [Ked07a] carry over to

differential fields of rational type.

Next, we continue the discussion in Subsection 1.1.5 to the case with multiple

derivations.

Definition 1.1.6.10. Let K be a complete nonarchimedean field of characteristic

zero, equipped with m commuting derivations oj. Let V be a oj-differential module

of pure aj-radii for all j E J. A norm I - Iv on V is good if it is good for each j.

Proposition 1.1.6.11. Let K and V be as above. If K is discretely valued and

max{IajIK, i,sp,v} E IKX Q for all j E J, then a good norm of V always exists.

Proof. Denote r = max{Iaj)K, ajlsp,v} for j E J. There is no harm to replace K by

the completion of K(xj) with respect to the rj-Gauss norm, where we set aj(xyj) = 0

for j, j' E J. (In particular, K is still discretely valued.) It suffices to show that given

any norm I v with orthonormal basis el,..., ed, the submodule M of V generated

by

{xa~j~aJeilaj E Z>o for j E J;i E {1,...,d}}

over OK is a finite OK-module; if so, M would give V a norm, under which 10 I <

|xjI = rj verifies the condition of good norm in Definition 1.1.5.2. To prove that M



is a finite sub-OK-module, it suffices to prove that Ix 7l v is bounded for each j as

n -- +oo. (Here, we used the fact that K is discretely valued, otherwise, boundness

may not imply finiteness.) It is enough to verify this boundness condition for any

norm on V. In particular, for each of aj, we can choose a good norm by Lemma 1.1.5.6,

for which Ixzylv < 1. Thus, M is finite over OK and the lemma follows. O

We now define the notion of refined radii for multi-dirivations.

Definition 1.1.6.12. Let K be a complete nonarchimedean field of characteristic

zero, equipped with derivations Oj of rational type with respect to parameters uj. Let

V be a j-differential module of pure intrinsic radii IR(V). (This does not mean that

it is of pure 0-radii for each j.) Denote s = -log(wlIR(V)-l). By Theorem 1.1.5.22,

we may replace K by a finite tamely ramified extension such that V 0 K admits a

direct sum decomposition V = DVeo such that, for each direct summand Vo,,

(a) it has pure refined intrinsic 0j-radius 0j for any j such that IR0 (Vo,) = IR(Voj),

(b) we set Oj = 0 for other j.

Define the refined intrinsic radii of V, denoted by ZO(V), to be 0 = Ejj Z j d - - with

multiplicity dim Vo,; it is an element in j .J,(s) du

Remark 1.1.6.13. One may hope to find some analogue of Example 1.1.5.24 for

dj-differential modules. This, however, amounts to carefully choosing the x in Ex-

ample 1.1.5.24 for each single differential operator so that the action of dj commutes.

This places some restriction on possible refined intrinsic radii. In other words, all

possible intrinsic refined radii form only a subset of EjEK() J~ d Unfortunately, we

do not know how to identify this subset in general. The following proposition partly

answers this question.

Proposition 1.1.6.14. Keep the notation as above. Assume that K is discretely

valued and s < 0, i.e., V has visible intrinsic radii. Assume moreover that p = 0 or

d = rank V = 1. Note that the action of ujaj on K induces a derivation on iKunr. If

79 = EjJ, , j ZO(V), then for i, j E J, we have ujaiO6 = ujde0 in ur.



Proof. By possibly replacing K by a finite tamely ramified extension, we reduce to

the case when V is irreducible and has pure refined intrinsic radii E-EJ83.jdu By

Proposition 1.1.6.11, we can find a good norm I - Iv, for which ujaj acts as a matrix

N3 e Matdxd(mr)). Since 9 and aj commute with each other for any i, j E J, we

have

N N + ui2a(Nj) = NjN + ujoj(Ni). (1.1.6.15)

Taking the trace of (1.1.6.15), we have d. updejO = d uj~,9 1 . The proposition follows.

Proposition 1.1.6.16. Let K be a complete discretely valued field of characteristic

zero, equipped with derivations dJ of rational type with respect to parameters uj. Let

V be a j-differential module of pure visible intrinsic radii IR(V). Denote s =

-log(wIR(V)-'). Assume that s E -logKXIQ. Assume moreover that c = a1a 1 +

. + am -Om for some al, ... , am E OK is another derivation on K of rational type

with respect to u, and V is of pure intrinsic o-radii IRa(V) = IR(V). Then, we have

ZOa(V) = ( a01 + - amOm 1 = 01 d u l +- -Om dum Z(V).

Moreover, if V has pure refined intrinsic radii ~ = 01 +  +Om dm , IR 0 (V) =

IR(V) if and only if aO18 + - + am9m / 0 in n(,.

Proof. Let Jo be those j E J for which IRa, (V) = IR(V). We may assume that V

has pure intrinsic dy-radii for any j E J. By Proposition 1.1.6.11 and by possibly

enlarging K, we may assume that V admits a good norm given by some orthonormal

basis and V has pure refined intrinsic 8a-radii 9j for any j E Jo. For j E J, let Nj be

the matrix of ujj acting on this basis. Then Nj has a unique reduced eigenvalue O

for j E J0 and Nj E Mat(m8 )+ ) for j E J\Jo. The key point here is that ai commutes

with aj for i,j E Jo. Hence, (1.1.6.15) implies that NiNj - NjNj in Mat((2s).

Therefore, Njo can be uniformly diagonalized in Mat(ag) by a matrix in GL(,"g).



Therefore, if N is the matrix for uO acting on this basis, then

N= EZaN =jc ENj,
jEJ jEJo

in Mat(,()), which has all reduced eigenvalue equal to jo ajj. The proposition

is proved. O

1.2 Differential modules on 1-dimensional spaces

Having considered differential modules over fields, we next consider differential mod-

ules on a disc or annulus over a differential field. This parallels [Ked**, Chapters 11

and 12].

1.2.1 Setup

Hypothesis 1.2.1.1. Throughout this section, we assume that K is a complete (not

necessarily discretely valued) nonarchimedean differential field of order m, character-

istic zero, and residual characteristic p (not necessarily positive). We also assume K

is of rational type.

Notation 1.2.1.2. Let 81,... ,m denote the derivations on K and let u l ,...,u,n

denote a set of corresponding rational parameters. Let J = {1,..., m}. We reserve j

and J for indexing derivations.

Notation 1.2.1.3. For l > 0, let F, be the completion of K(t) under the 7-Gauss

norm I - ,. Put 0 0o = on F,; by Remark 1.1.4.5, F, is of rational type for the

derivations &j+, where J+ = J U {0} = {0,..., m}.

Remark 1.2.1.4. For I C [0, +oo) an interval and j E J+, we may refer to differential

modules or 3j-differential modules over A'K(I), meaning locally free coherent sheaves

with the appropriate derivations. For I = [a, 3] closed, these are just modules with

appropriate derivations over the principal ideal domain K(a/t, t/3); in particular,

any 6j-differential module over a closed annulus is free by [Ked**, Proposition 9.1.2].



Caution 1.2.1.5. When j E J, the category of 9j-differential modules over A (I)

is not abelian. In fact, the quotient of two j-differential modules may not be locally

free. However, the category of 80-differential modules over Al (I) is free because the

existence of the derivation forces the modules to be free.

Remark 1.2.1.6. For I C [0, +oo) an interval, and M a nonzero 9j-differential

module over A (I), it is unambiguous to refer to the intrinsic -radius IRQ (M 0 F,)

of M at Itj = rl.

The intrinsic radii are stable under tame base change.

Proposition 1.2.1.7. Let n be a (possibly negative) nonzero integer (coprime to p if

p > 0), and let f,* : F, --+ F,1/. be the map t -- t'. Then for any j E J+, and for

any Oj -differential module V over F,, IRa (V) = IR8o (f*V) and hence 319i (V) =
J, ( f*V).

Proof. The proof for j = 0 is in [Ked**, Proposition 9.7.6], and the proof for j E J

is to apply Remark 1.1.2.7. L[

Remark 1.2.1.8. One may also consider off-centered tame base change; see Subsec-

tion 4.2.2.

1.2.2 Variation of subsidiary radii

In this subsection, we prove slightly weakened analogues of some results in [Ked**,

Chapter 11]. We begin by studying the variation of slopes of Newton polygons.

Notation 1.2.2.1. Let P E K(a/t, t/3) [T] be a polynomial of degree d. For r E

[-log3, -loga], let NP,(P) denote the Newton polygon of P under I - I - ,-

Proposition 1.2.2.2. For r E [-log/, -loga], let fi(P, r), ... , fd(P, r) be the slopes

of NPr(P) in increasing order. Fori = 1,...,d, put F(P, r) = f (P, r) +- --+ f(P, r).

(a) (Linearity) For i = 1,. . . , d, the functions f(P, r) and F(P, r) are continuous

and piecewise affine in r.



(b) (Integrality) If i = d or fi(ro) < fi+1(ro), then the slopes of F(P, r) in some

neighborhood of r = ro belong to Z. Consequently, the slopes of each f (P, r)

and Fi(P, r) belong to .Z U ... U 1Z.

(c) (Monotonicity) Suppose that P is monic and a = 0. For i = 1,..., d, the slopes

of Fi(P, r) are nonnegative.

(d) (Concavity) Suppose that P is monic. For i = 1,..., d, the function F (P, r) is

concave.

(e) (Truncation) For any fixed a E R>o and b E R, the statements (a), (c), and (d)

are also true if we replace fi(P, r) by min{fi(P,r),ar +b} for all i E {1,...,d}.

Proof. See [Ked**, Theorem 11.2.1] and [Ked**, Remark 11.2.4]. [

Lemma 1.2.2.3 (Lattice lemma). Put R = K(t), U,< 1K(a/t, t), or Ucj<K(a/t, t/1P),

or (if K is discrete) K[t]o or U,<1K(a/t, t]o equipped with the norm I 1i. Let M be

a finite free R-module of rank n, and let I - IM be a norm on M compatible with R.

Assume that either:

(a) c > 1, and the value group of K is not discrete; or

(b) c > 1, and the value groups of K and M coincide and are discrete.

Then there exists a basis of M defining a supremum norm I (M for which c-llmIM <

Iml' < clmIM for m E M.

Proof. Let F be the completion of FracR under I1. By [Ked**, Lemma 1.3.7], we

can construct a basis of M 0 F defining a supremum norm I -I' for which c-1 mIM 5

ImI < cimlM for m E M. If R = K(t), or K is discrete and R = Kt]o, then

[Ked**, Lemma 8.6.1] gives a basis over M defining the same supremum norm - I'.

If R = U,< 1K(a/t,t) or U<l<pK(a/t,t/1), then [Ked**, Lemma 8.6.1] gives a

basis of K(1/t, t) defining I - I. However, we can approximate that basis arbitrarily

closely with a basis of M itself, because R is dense in K(1/t, t) under I , and any

element of R with an inverse in K(1/t, t) also has an inverse in R. Any sufficiently



good approximation will define the same supremum norm. If K is discrete and R =

U,< 1K(a/t, t]o, then R itself is a field, so we can approximate a basis of M 0 F with

a basis of M defining the same supremum norm. O

Notation 1.2.2.4. Fix j E J+. Let M be a 0j-differential module of rank d over

K(a/t, t/lP). For r E [-logp, -loga] and i E {1,..., d}, define

fi) (M, r) = -logRa 3(M 0 F-r;i), F' (M,r) = f')(M, r) + + f )(M, r).

Theorem 1.2.2.5. [Ked**, Theorem 11.3.2] Let M be a 9o-differential module of

rank d over K(a/t, t/13).

(a) (Linearity) For i = 1,... , d, the functions f o) (M, r) and F) (M, r) are contin-

uous and piecewise affine.

(b) (Integrality) If i = d or f()(M, ro) > f(o)(M, ro), then the slopes of F(o)(M, r)

in some neighborhood of ro belong to Z. Consequently, the slopes of each

fo) (M, r) and Fo)(M, r) belong to {Z U ... U !Z.

(c) (Monotonicity) Suppose that a = 0. For any point ro where f) (M, ro) >

ro, the slopes of F(o)(M, r) are nonpositive in some neighborhood of ro. Also,

f(O) (M, ro) = ro for ro sufficiently large.

(d) (Convexity) For i = 1, ... , d, the function F(o) (M, r) is convex.

We have a similar but slightly weaker result for 0j-differential modules when j E J.

Theorem 1.2.2.6. Fix j E J. Let M be a 0j-differential module of rank d over

K(a/t, t/).

(a) (Linearity) For i = 1, ... , d, the functions fj) (M, r) and (J) (M, r) are con-

tinuous. They are piecewise afine in the locus where f(')(M, r) > -loglujl; if

p = 0, they are in fact piecewise affine everywhere.

(b) (Weak integrality)



(i) Suppose p = 0. If i = d or f(j)(M,ro) > f(j)(M,ro), then the slopes

of F)(M, r) in some neighborhood of ro belong to Z. Consequently, the

slopes of each f j)(M, r) and F) (M, r) at r = ro belong to Z U -- U 1Z.

(ii) Suppose p > O. If i = d or f(j)(M,ro) > f~) 1(M,ro), and fP) (M,ro) >

1 logp - logiujl for some n E Z>o, then the slopes of Ffj)(M, r) in

some neighborhood of ro belong to Z. Consequently, if fi) (M, ro) >

T logp-loglujl for some n E Z>o, the slopes of f() (M, r) and F) (M, r)

at r = ro belong to 1Z U ... U 1-Z.

(c) (Monotonicity) Suppose that a = 0. For i = 1,... , d, the slopes of Ff) (M, r)

are nonpositive.

(d) (Convexity) For i = 1,... , d, the function FP) (M, r) is convex.

Proof. We prove the theorem analogously to [Ked**, Theorem 11.3.2]. First of all,

as in Remark 1.1.4.5, we may replace K by the completion of K(x) with respect to

the juji-Gauss norm. We may then replace uj by uj/x and hence aj by xOj to reduce

to the case juj| = 1.

We first show that the statements are true for ff )(M, r) = max{ ff) (M, r), E} with

E > -logw and F )(M, r)= fl')(M, r) + + fi'(M, r). Let F = FracK(a/t, t/1).

Choose a cyclic vector for M 9 F to obtain an isomorphism M 0 F - F{T}/F{T}P

for some monic twisted polynomial P over F. We may then apply Proposition 1.2.2.2

and Remark 1.1.3.5 to deduce (a) and (b), provided we omit the last assertion in (a)

(in case p = 0); for that, see below.

For (c) and (d), it suffices to work in a neighborhood of some ro. Again by

Remark 1.1.4.5, there is no harm in enlarging K so that e- ro E IKx . We may reduce

to the case ro = 0 by replacing t by At for some A E Kx with AI = e- ro. We then

argue as in [Ked**, Lemma 11.5.1] and deduce (c) and (d) from Proposition 1.2.2.2,

as follows. We may further enlarge K to include A1,..., Ad E Ker (9j) such that

-logA i= min -logw - fU)(M, 0), 0 (i = 1,...,d).



Let Bo be the basis of M 0 F given by

A l• - -d1T (i= 0,...,d-1).

Let No be the characteristic polynomial of the matrix of action of Bj on Bo. Let

Al, ..,-, d be the eigenvalues of No, labeled so that II I > -" - I Adl - By [Ked**,

Proposition 4.3.10], we have max{I[til, 1} = max{wef (j) (M,o), 1} for i = 1,... , d. By

Lemma 1.2.2.3, for each c > 1, we may construct a basis Bc of M such that the

supremum norms I- lo, I Ic defined by Bo, Bc satisfy c-1I • Ic I - lo < cI -Ic. Let Nc be

the matrix of action of &j on Be. For c > 1 sufficiently small, [Ked**, Theorem 6.7.4]

implies that for r close to 0, the visible spectrum of M 0 Fe-r is the multiset of those

norms of eigenvalues of the characteristic polynomial of Nc which exceed 1. We may

then deduce (c) and (d) from Proposition 1.2.2.2(c) and (d).

We next relax the truncation condition that we have imposed; we may assume

p > 0 as otherwise there is nothing to check. For each nonnegative integer n, we will

prove the claim for fi)(M, r) = max{fi'j)(M, r), E} and F-J)(M, r) = fl)(M, r) +

-+f) (M,r) with e l)logp, 1 logp], by induction on n; the base case

n = 0 is proved already. As above, we may reduce to the case ro = 0.

Consider the 0 -Frobenius o(aj)* F() Fe-. Put g) (r) = -logR 3 ( p'M 0

F(O);i) and -j)(r) = max{g P(r),pe} for i = 1,...,pd. By Theorem 1.1.4.25, the

list { (r),. , g (r)} consists of

d {pf')(M, r), logp (p- 1 times)} fj)(M, r) < 1 logp

=1 {logp + fi (M, r) (p times)} f (M, r) > -llogp.

Thus, the list )(r), ... , j (r) consists ofd ., p (r) consists of

U i(pfi' (M, r), p logp (p - 1 times)} f$')(M, r)< p -1logp

{logp + ]f')(M, r) (p times)} f (M, r) p1 logp.



We may thus deduce (a) and (b) directly from the induction hypothesis. We similarly

deduce (d) as in [Ked**, Lemma 11.6.1], except that we are considering g )(r) but

not ~)(pr); this explains the weakened integrality result. (See also Remark 1.1.4.28.)

Also, we can luckily deduce (c) directly, because o(a,)* does not introduce a singularity

on A' [0, ]; by contrast, in the proof of [Ked**, Theorem 11.3.2], one must switch to

an off-centered Frobenius to avoid a singularity at t = 0.

We deduce that (a)-(d) hold for gf)(M, r) = max{ffj) (M, r), E} and FU)(M, r) =

j1 )(M, r) + - + f )(M, r) with E > 0. The desired results hold by taking E -- 0+ .

This completes the proof except that if p = 0, we must still prove piecewise

affinity everywhere. In this case, the integrality of (b) is not burdened with an extra

denominator of pn, so we may repeat the argument from [Ked**, Lemma 11.6.3]; see

Step 3 of Theorem 1.2.4.4 for essentially the same argument. O

Example 1.2.2.7. When j E J, we do not expect an integrality result as in the j = 0

case; see Remark 1.1.4.28. One can easily generate an example in which the strong

integrality statement for &j fails, as follows. Suppose p > 0, a E (p-1/(p-1), 1), and

uj = 1. We take the rank one aj-differential module M over K(a/t, t) generated by

v with j (v) = t-v. Thus, f' )(M, r) = r for r E [0, -loga]. By Corollary 1.1.4.26,

fli)( (p i)*M, r) =

Remark 1.2.2.8. Besides the weakening of the integrality condition, there are some

other aspects in which Theorem 1.2.2.6 is weaker than its counterpart [Ked**, The-

orem 11.3.2] if p > 0. For one, the latter includes a subharmonicity assertion, which

refers to the algebraic closure of the residue field of K. It is awkward to add a sub-

harmonicity assertion here because the residue field of K is crucially imperfect, so

that it can admit a nontrivial p-basis. (By contrast, if p = 0, we can achieve a sub-

harmonicity result; see Theorem 1.2.9.6.) For another, Theorem 1.2.2.6(a) does not

apply in a neighborhood of a point ro at which f1 ') (M, ro) = -loglu I. The argument

in [Ked**, Lemma 11.6.3] does not extend to this case because the weak integrality

result does not give a lower bound on slopes. On the other hand, we do not have a

counterexample against the claim that fi()(M, r) is everywhere piecewise affine.



1.2.3 Decomposition by subsidiary radii

In this subsection, we prove some decomposition theorems over annuli and discs, as

in [Ked**, Chapter 12]. We start by a technical lemma, copied from [Ked07+b,

Lemma 1.2.7].

Lemma 1.2.3.1. Let

R --- S

T -- * U

be a commuting diagram of inclusions of integral domains, such that the intersection

S n T within U is equal to R. Let M be a finite locally free R-module. Then the

intersection of M OR S and M OR T within M OR U is equal to M.

Proof. Choose el,... , e, M which form a basis of M OR (FracR); then there exists

f E R such that fM C Rel + - -- + Ren. Given v E M OR U which belongs to both

M OR S and M OR T, we can uniquely write fv = clel + - -- + cnen with cj E U.

From the intersection property, we have ci E R for i = 1,..., n, whence fv E M.

Since M is locally free, as we vary the basis el,..., en, the values of f obtained

generate the unit ideal of R. We thus have v E M, as desired. O

Lemma 1.2.3.2. Retain notation as in Lemma 1.2.3.1. Then any direct sum decom-

positions of M OR S and M OR T which agree on M OR U are induced by a unique

direct sum decomposition of M.

Proof. Apply Lemma 1.2.3.2 to the idempotents in Mv 0 M giving the projections

onto the factors in the decompositions. O

Lemma 1.2.3.3. Given a < P and x E K {{a/t, t/lP}} such that the function r -

loglxl,-r is affine for r E (-logo, -loga), then x is a unit in K{{a/t, t/3}}.

Proof. The condition is equivalent to saying that the Newton polygon of x does not

have any slopes in (-logp, -loga). This immediately implies the claim. O

Lemma 1.2.3.4. Let P = E PTi and Q = E QiT be polynomials over K(a/t, t/l)

satisfying the following conditions.



(a) We have IP - 11, < 1 for all y E [a, 1].

(b) For d = deg(Q), Qd is a unit and IQI, = IQdl for all y E [a, 3].

Then P and Q generate the unit ideal in K(a/t, t/l) [T].

Proof. We may assume without loss of generality that Qd = 1. The hypothesis that

IQ17 = IQdl for all y E [a, 3] implies that if S is the remainder upon dividing R by

Q, then ISI,! IR I for all -y E [a, 3] (compare [Ked**, Lemma 2.3.1]). If we then let

Si denote the remainder upon dividing (1 - P)i by Q, the series E o Si converges

in K(a/t, t/) [T] (since the degrees of the Si are bounded by d - 1) and its limit S

satisfies PS - 1 (mod Q). 0

Theorem 1.2.3.5. Fix j E J+. Let M be a aj-differential module of rank d on

A' (a, 3). Suppose that the following conditions hold for some i E {1,..., d - 1}.

(a) The function F(j) (M, r) is afine for -log3 < r < -loga.

(b) We have f2 )(M, r) > fU )(M, r) for -log3 < r < -loga.

Then M admits a unique direct sum decomposition separating the first i subsidiary

j -radii of M 0 F, for any r7 E (a, 3).

Proof. When j = 0, this is [Ked**, Theorem 12.4.2]; we thus assume hereafter that

j e J. The proof is similar to those of [Ked**, Theorems 12.2.2 and 12.3.1]; for the

benefit of the reader, we fill in some of the key details.

By Lemma 1.2.3.2, we may enlarge K as needed; in particular, we may reduce

to the case jujl = 1 as in the proof of Theorem 1.2.2.6. Since the decomposition is

unique if it exists, it is sufficient to exhibit it on an open cover of (a, P) and then

glue. That is, it suffices to work in a neighborhood of any fixed -y E (a, 3); again, we

may enlarge K to reduce to the case 7 = 1.

Suppose first that f,3)(M, 0) > -logw. Set notation as in the proof of The-

orem 1.2.2.6. For some sufficiently small c > 1, we can choose -y E (a, 1) and

Y2 E (1, /) such that the coefficient of T d- i in the characteristic polynomial Q(T) of

Nc computes Fi( )(M, r) for r E [-logy2, -logy1]; by (a), we may apply Lemma 1.2.3.3



(after changing y1, Y2 slightly) to deduce that this coeffficient is a unit in K(yi/t, t/72).

By (b), we can apply [Ked**, Theorem 2.2.2] to factor Q = Q2Q1 so that the roots of

Q1 are the i largest roots of Q under I - V, for all y E [yi, 72]. (This is true for all - si-

multaneously because the construction is purely algebraic and [Ked**, Theorem 2.2.2]

takes care of convergence of the procedure.)

Use the basis B, to identify M with K(7y1/t, t/72)d. Then we obtain a short exact

sequence

0 --- Ker (Q1 (N,)) -4 M --+ Coker (Q2(Nc)) - 0

of free modules over K('y1/t, t/y2). (The quotient is free because by Lemma 1.2.3.4

applied after rescaling, Q1 and Q2 generate the unit ideal in K(7 1/t,t/72)[T].) Ap-

plying Lemma 1.2.2.3 to both factors (again for c > 1 sufficiently small, and a choice

of y7, 72 depending on c), we construct a basis of M on which 0j acts via a matrix

(c A c 
B 

c

Cc 
Dc

for which the following conditions hold.

(a) The matrix Ae is invertible and I Aly -max{10j I,, IB, , ICI,, IDI,} < 1 for all

7 E [yl, y2].

(b) The Newton slopes of Ac under I - |7 account for the first i subsidiary radii of

M ® F for all y E [71, 72].

By [Ked**, Lemma 6.7.1], M admits a dj-differential submodule accounting for

the last n - i subsidiary aj-radii of M 0 F7 for all y E [yi, 72]. By repeating this

argument for Mv, we obtain the desired splitting.

To deduce the theorem in the case p > 0 without assuming that fi) (M, 0) >

~llogp, we prove the theorem in the case when f) (M, 0) > (1logp by in-

duction on n, using aj-Frobenius pushforward. This is sufficient because (b) forces

fj')(M, 0) > 0, so there exists some n for which f)) (M, 0) > ( logp. O
pn plog.[



Caution 1.2.3.6. In Theorem 1.2.3.5, M is only a locally free coherent sheaf and

need not be free, because the annulus on which we are working is not closed. Even if

M is free, the summands need not be free unless K is spherically complete, in which

case any locally free coherent sheaf on A(, /,) is free.

Remark 1.2.3.7. In [Ked**, Chapter 12], the analogous development starts with

a full decomposition theorem over a closed annulus [Ked**, Theorem 12.2.2]. We

cannot do this here because we have not established an analogue of subharmonicity

[Ked**, Theorem 11.3.2(c)] for aj-differential modules, except in the case p = 0 (see

Theorems 1.2.9.10 and 1.2.9.11). We can however recover partial decomposition theo-

rems over a closed disc or annulus, analogous to [Ked**, Theorems 12.5.1 and 12.5.2],

as follows.

Lemma 1.2.3.8. (a) For x E K[tlo nonzero, x is a unit if and only if IxIe-, is

constant in a neighborhood of r = 0.

(b) For x E U~(o,1)K(a/t, t]o nonzero, x is a unit if and only if the function r -

loglxle-r is affine in some neighborhood of 0.

Proof. This is [Ked**, Exercise 12.3]; for the benefit of the reader, we sketch the proof

here. We may assume that Ix1l = 1. For (a), this means that x E OK[t]. Hence,

x = E o ait is a unit if and only if ao is a unit in OK, which is equivalent to 1xe-
being constant in a neighborhood of r = 0. For (b), by [Ked**, Lemma 8.2.6(c)], x is

a unit if and only if its image modulo mK in rK((t)) is a unit or equivalently nonzero,

which is equivalent to the function r H loglxle-r being affine in some neighborhood

of 0. O

Theorem 1.2.3.9. Fix j E J+. Let M be a oj-differential module of rank d over

AK(a, 3]. Suppose that the following conditions hold for some i E {1, ... , d - 1}.

(a) The function F) (M, r) is affine for -logo < r < -loga.

(b) We have f( )(M,r) > f()Y(M,r) for -log < r < -loga.



Then M 0 K{{a/t, t/,3]o admits a direct sum decomposition separating the first i

subsidiary j -radii of M 0 F, for 7 E (a, #).

Proof. We first obtain a decomposition of M 0 K(6/t, t/010 for some uncontrolled

6 E (a, 3), by arguing as in Theorem 1.2.3.5, but using Lemma 1.2.3.8(b) instead of

Lemma 1.2.3.3. (So far we have not used condition (a).) To get the desired result,

we use the fact that the decomposition of M over A'(a, 0) given by Theorem 1.2.3.5

is unique, so we may thus glue together the decomposition of M 0 K(6/t, t/Po

with the decomposition from Theorem 1.2.3.5. More explicitly, this involves applying

Lemma 1.2.3.2 to the following situation: for any e E (6, P), we have

K{{a/t, t/e) n K(6/t, t/3]o = K{{a/t, t/1]o

within K (6/t, t/e). O

Theorem 1.2.3.10. Fix j E J+. Let M be a aj-differential module of rank d over

K(t/o). Suppose that the following conditions hold for some i E {1,... , d - 1}.

(a) The function F j ) (M, r) is constant in a neighborhood of r = -logp.

(b) We have f' '(M, -log3) > fi+(M, -logO).

Then M 0 K t/31]o admits a direct sum decomposition separating the first i subsidiary

-radii of M 0 F, for 7 E (0, 3).

Proof. Similar to Theorem 1.2.3.5, but using Lemma 1.2.3.8(a) instead of Lemma 1.2.3.3.

Remark 1.2.3.11. In Theorems 1.2.3.9 and 1.2.3.10, if K is discrete and f E IKX 1Q,

we can begin with free differential modules over the rings K(a/t, t/3]o and Kt/plo,

respectively. (The main reason for the restrictive hypotheses is to ensure that is that

the resulting rings are noetherian; among other reasons, this is needed to ensure that

we may freely pass between finite projective modules and finite locally free modules.)

Also, we can extend the results to ring of analytic elements, which does not require

the valuation on K to be discrete. Note that these statement require extending the



definition of ffj) (M, r) to r = -logp, using the completion of FracK[t//310 for the

f-Gauss norm instead of Fp. (Compare [Ked**, Remark 12.5.3].)

1.2.4 Variation for multiple derivations

In this subsection, we study the variation of intrinsic generic radii of a differential

module over a disc or annulus. The results here more closely match those of [Ked**]

than in the case of a aj-differential module with j E J.

We first introduce a rotation construction, in the manner of [Ked07a].

Notation 1.2.4.1. Fix 7+ E R>o. Assume that lujI = 1. Denote K to be the

completion of K(xj) with respect to the (771,...,i7+1 )-Gauss norm; view K as a

differential field of order m with derivations a1,..., m. We may use Taylor series

(as in Lemma 1.1.2.16) to define, for any 7_ E [0, 77+), an injective homomorphism

f* : K(_/t, t/j+)} --+ K(7_/t, t/?+}} such that f*(uj) = uj + xjt. More precisely,

for k E K

eJ(k)f*(k) = T(.. (T(k;al, Xit); 02, x 2t) ... ); am, Xmt) = Z -) XJej

In particular, If*(k)j, = Jki for any q E [7-, q+).

For 77 E [0, q+), we use F, to denote the completion of K(t) with respect to the 77-

Gauss norm. Then f* extends to an injective isometric homomorphism f* : F, F,.

Lemma 1.2.4.2. For any subinterval I of [0, 77+) and any j+-differential module M

on Al (I), f*M gives a 9o-differential module on A (I). Moreover, for y E I,

Rao(f*M 0 F,) = min {7IRao(M 0 F,); 77lIRa,(M 0 F,) (j E J)}.

Proof. This follows from the fact that

9OI.1*M = 8OlM + XjajIM,
jEJ

after accounting for the different normalizations. O



Notation 1.2.4.3. Let M be a j+-differential module of rank d on K(a/t, tl/). For

r E [-logo, -loga] and i E {1,..., d}, denote

f (M, r) = -logIR(M 0 Fe-r;i), F(M,r) = fi(M,r) + - + f2 (M,r).

Note that we have changed the normalization from Notation 1.2.2.4, as we are now

using intrinsic rather than extrinsic radii.

Theorem 1.2.4.4. Let M be a Oj+-differential module of rank d on A~ [a, 0].

(a) (Linearity) For i = 1,... , d, the functions f (M, r) and F(M, r) are continuous

and piecewise afine.

(b) (Integrality) If i = d or fi(M, ro) > fi+1(M, ro), then the slopes of F(M, r) in

some neighborhood of ro belong to Z. Consequently, the slopes of each fi(M, r)

and Fi(M, r) belong to Z U . -. U !Z.

(c) (Monotonicity) Suppose that a = 0. Then the slopes of Fi(M, r) are nonpositive,

and each F(M, r) is constant for r sufficiently large.

(d) (Convexity) For i = 1,... , d, the function F(M, r) is convex.

Proof. Before proceeding, we reduce to the case luji = 1 as in the proof of Theo-

rem 1.2.2.6. (Note that when enlarging K, we do not retain the derivations with

respect to any added parameters.)

Step 1: In this step, we prove that for i = 1,... ,d, f2 (M, r) and F(M, r) are

continuous at r = -logp. Moreover, if fi(M, -logp) > 0, we show that there exists

y E [a, 3) such that (a) and (b) hold for r E [-logp, -logy]. As in the proof of

Theorem 1.2.2.6, we may reduce to the case # = 1.

Let R denote the completion of OK((t)) 0OK K for the 1-Gauss norm; note that

this contains both F and K(y/t, t]o for any y E [a, 1). We first apply Theorem 1.2.2.5

(if j = 0) or Theorem 1.2.2.6 (if j E J), and Theorem 1.2.3.9, to decompose

dl

M K(y/t, t]o = M 'l]
A=1



for some -y E [a, 1), in such a manner that the following conditions hold for j E J+

and A = 1,..., d'.

(i) The module M" 1' ] 0 R is the base extension to R of a differential submodule

M' of M 0 F of pure intrinsic 6j-radii.

(ii) For I = 1,...,rank M"'] the function f(j) (M'l1,r) tends to -logIRa,(MA)

as r -+ 0+ . If j = 0 or IRa (M() < 1, then also f') (M~"l],r) is affine for

r E (0, -logy].

This alone suffices to imply continuity of f (M, r) and F(M, r) at r = 0.

Applying Theorem 1.2.3.5 after possibly making y closer to 1, we get a further

decomposition Mf 'l ] -- d, M1,1) over A [,y, 1) such that the following conditions

hold for A = 1,..., d'.

(iii) For j E J+, = 1,..., d, if IR, (M) < 1, then Ml " ) 0 Fe-r has pure intrinsic

6j-radii for r E (0, -logy].

(iv) If IR(M\) < 1, then for j E J+, p = 1,... , d,, j is dominant for MI'f Fe-r

for some r E (0, -logy] if and only if the same holds for all r E (0, -logy].

(v) If A, A' E {1,...,d'} satisfy IR(M() > IR(M',), then IR(M"l 0 F-r) >

IR(M ,,, 0 Fe-r) for all E (1,..., d}, I' E {1,..., dx,} and r E (0, -log-y].

The piecewise affinity from (a) in the case f (M, 0) > 0 now follows from Theo-

rems 1.2.2.5(a) and 1.2.2.6(a) applied to each M~"' )

To check (b), it suffices to verify integrality of slope times rank for each component

M ) for which IR(M() < 1. If 6o is dominant for M b ' )  Fe-r for some (hence

all) r E (0, -logy], (b) follows from Theorem 1.2.2.5(b). Otherwise, pick arbitrary

77 < 7+ E (y, 1) such that for 77 E (r~, 7+),

77-/77+ > IR(M ") 0 F,)/IRao(M' 0 F,).



Define K as in Notation 1.2.4.1. By Lemma 1.2.4.2, for r E (r_, rl), we have

Rao(f* M l) F0 ) =min {rIRao(M ' F); +IRj(M '1) 0 F) (j J)

= ?+IR(M, ®2 F,).

In particular, (fo)) . 7,-log) = f'(M,') ,-log7) = (f)'_(M ), 0) for r7 E

(7-, 7+). (Note that we showed in the proof of (a) that f(M ['~", r) extends contin-

uously to r = 0, so its left derivative at 0 makes sense.) Thus, the statement (b)

follows by applying Theorem 1.2.2.5(b) to f*Mb 'l)

Step 1': As a corollary of step 1, we deduce that for any ro E [-log3, -loga],

f(M, r) and Fi(M, r) are continuous at ro, and in case fi(M, ro) > 0 one also has

(a) and (b) in a neighborhood of ro. (In particular, we will then have continuity of

f(M, r) and F(M, r) over all of [-log3, -loga].) To make this deduction, we first

replace 3 by y = e- ro in case ro < -loga, to obtain all the desired assertions in

a right neighborhood of ro. By pulling back along t - t-1 and then repeating the

argument, we obtain the desired assertions in a left neighborhood of ro0.

Step 2: In this step, we prove that (d) holds in a neighborhood of each ro E

(-log3, -loga) for which fi(M, ro) > 0. It suffices to check in the case fi(M, ro) >

fi+ (M, ro), as the general case follows by interpolation.

At this point, we may reduce to the case ro = 0. As in Step 1, for some r7_ E

(a, 1), we have a partial decomposition of M over K(rq_/t, tjo as M = Dd= M[_,11

satisfying (i) and (ii). For some ?7+ E (1, P), we also have a partial decomposition

M = e+= 1 M1 "n+1 obtained by pulling back the decomposition over K(r+-'/t, to

along t -+ t-l; it satisfies appropriate analogues of (i) and (ii). By making _7- and

77+ closer to 1, we may guarantee that for each index A_ (resp. A+) for which the

ratio IR(M'_)/IRao(M\_) (resp. IR(M\+)/IRo,(M +)) is less than 1, this ratio is

also less than qr_/r+.

Use Notation 1.2.4.1; by Theorem 1.2.2.5, F(O)(f*M,r) is convex at r = 0. In



particular, (Fi0))' (f*M, ) 0' (F()) (f* M, 0). It suffices to show that

(F(O))+ (*M, 0) - O9(M, 0) (F)(M, 0) (1.2.4.5)

(Fi())' (f*M, 0) - 0i(M, 0) _ (Fi)' (M, 0), (1.2.4.6)

where Oi(M, 0) denotes the sum of the dimensions of the constituents N of M 0 F

for which o is dominant and fi(N, 0) _ f (M, 0).

The proofs of (1.2.4.5) and (1.2.4.6) are similar, so we focus on (1.2.4.5). De-

compose M as in Step 1. For each A such that 0 is dominant for M(, we have by

Lemma 1.2.4.2 that in a punctured right neighborhood of r = 0,

F(o)(f*M 'l), r) = F(°)(M 'l), r),

and so

(F'() 1 (f*~M, 0) - 1 = (F()' (M[,l) 0) -1 < (Fi)' (MF), 0).

(The term -1 comes from the change of normalization from Notation 1.2.2.4 to No-

tation 1.2.4.3. The inequality can be strict if 6j is also dominant for M' for some

j > 0.) For each A such that o is not dominant for M\, we have by Lemma 1.2.4.2

(and the choice of l+, 77-) that in a punctured right neighborhood of r = 0,

F (o)( *M '), r) = F j)(M[Y ' ), r) - log+

and so

(F) ))(f*M ), 0) (F), (M ,1), 0).

Summing over components yields (1.2.4.5).

Step 3: In this step, we prove (a), (b), (d) in general, by induction on i. Keep in

mind that we already have the continuity aspect of (a) in general (by Step 1'), and all

of (a), (b), (d) in a neighborhood of any ro E [-log, -loga] for which fi(M, ro) > 0



(by Steps 1, 1', 2).

We first check the piecewise affinity aspect of (a) in a right neighborhood of some

ro for which fi(M, ro) = 0. By the induction hypothesis, we can pick rl > ro such

that Fi_1(M, r) is affine on [ro, ri]. Suppose that r2 E (ro, ri) is a value for which

f(M, r2 ) > 0. By continuity of fi, there exists an open neighborhood of r2 on which

fi(M, r) is everywhere positive. Let U be the union of all such neighborhoods in

[ro, rl]; then U is an open interval (r3 , r4 ), and f1(M, r3) = 0. Since (a) and (d) hold

in a neighborhood of each r E U, FI(M, r) and hence f(M, r) are piecewise affine and

convex on U. In order for f(M, r) to both be convex and to tend to 0 as r -+ r +,

fi(M,r) must have no nonpositive slopes; that is, fi(M, r) is strictly increasing on

U. However, we must also have fi(M, r4 ) = 0 unless r4 = rl. The former possibility

leads to a contradiction, so we must have r4 = rl.

To sum up the previous paragraph, we now know that if there exists r 2 E (ro, ri]

such that f 1(M, r 2) > 0, then fi(M, r) > 0 for all r E [r2, rl]. Consequently, on some

right neighborhood of ro, fi(M, r) is either everywhere zero or everywhere positive.

In the former case, fi(M, r) is clearly affine on a right neighborhood of ro. In the

latter case, pick r2 E (ro, rl] for which fi(M, r2) > 0; then the slopes of fi(M, r) on

(ro, r 2] are nondecreasing, bounded below by 0, and (by (b)) confined to a discrete

subset of R. Consequently, there must be a least slope achieved, occurring on a right

neighborhood of ro. We thus deduce (a) in a right neighborhood of ro. By symmetry,

the same argument applies to left neighborhoods; we may thus deduce (a) in general.

Since (a) is now known, fi(M, r) takes only finitely many slopes on all of [-log3, -loga].

Except possibly for the slope 0, each slope must occur at some r for which fi(M, r) >

0; consequently, the knowledge of (b) at such points now implies (b) in general.

Finally, we still need to check (d) in a neighborhood of a point ro at which

fi (M, ro) = 0. By (a), f(M, r) is affine on a right neighborhood of ro and on a

left neighborhood of ro; since fi(M, r) > 0 everywhere, the right slope of fi(M, r)

at ro must be greater than or equal to the left slope of fi(M, r) at ro. Since the

same is true of Fi-1 (M, r) by the induction hypothesis, the same must also be true

of F (M, r). This yields (d).



Step 4: In this step, we prove (c). By Dwork's transfer theorem (see Proposi-

tion 1.1.2.18), for any rI < Ro(M 0 Fp), M 0 K(t/ri) admits a basis in the kernel of

8o. In other words, M 0 K(t/r) is isomorphic to the pullback of a (0j)-differential

module over K. Consequently, F (M, r) is constant for r sufficiently large; by (d),

this implies that Fi(M, r) has all slopes nonpositive. O

Remark 1.2.4.7. If p = 0, then the assertion that rdimVr E IKXI in Theorem 1.1.6.6

implies that d!F(M, r) E logKX I + Zr. If p > 0, then we only deduce that for h a

nonnegative integer,
-h

fi(M,r) > logp == d!F(M,r) E p-hloglK I + Zr.
p-1

In either case, we may conclude that the values of r at which Fi(M, r) changes slope

must belong to Q - log IKx

1.2.5 Decomposition for multiple variations

We now obtain decomposition theorems which allow for multiple derivations.

Theorem 1.2.5.1. Let M be a 9j+-differential module of rank d on Ak(a, 3). Sup-

pose that the following conditions hold for some i E {1,..., d - 1}.

(a) The function Fi(M, r) is affine for -logp < r < -loga.

(b) We have fi(M,r) > fi+l(M,r) for -logp < r < -loga.

Then M admits a unique direct sum decomposition separating the first i subsidiary

radii of M 0 F, for any ir e (a, 3).

Proof. Before proceeding, we reduce to the case luji = 1 as in the proof of The-

orem 1.2.3.5. It suffices to prove the decomposition in a neighborhood of each

ro E (-logf, -loga). Again, we may assume ro = 0.

We continue with Step 2 in the proof of Theorem 1.2.4.4. We may further impose

the auxiliary condition that

log(r+) < f(M, 0) - fi+l (M, 0). (1.2.5.2)



By (1.2.4.5) and the symmetric result, we have

(F)' _(M,0) 5<( (o)) _(f*M,0)-O(M,0O) !(F))'(0*M,O)- O(M,0) _ (F)'_(M, 0);

(1.2.5.3)

all the inequalities are forced to be equalities as FZ(M, r) is affine in a neighborhood of

r = 0. In particular, FI(O)(f]*M, r) is affine when r E (-logr+, -logrl_]. We would get

the decomposition by Theorem 1.2.3.5 if we knew that f(O)(f*M, r) > fi(f*M, r)

for r in a neighborhood of r = 0. Indeed, by our auxiliary condition (1.2.5.2) and

Lemma 1.2.4.2,

f(i) (* M, O) > -log(rl) + f)i(M, O) > f l (M, 0) f) (f* M, ).

The theorem follows. O

Theorem 1.2.5.4. Let M be a Oj+-differential module of rank d on A'[0, fl). Suppose

that the following conditions hold for some i E {1,..., d - 1}.

(a) The function F(M, r) is affine for r > -logp. (This implies F (M, r) is con-

stant by Theorem 1.2.4.4(c).)

(b) We have fi(M,r) > fi+l(M,r) for all (some) r > -logp.

Then M admits a unique direct sum decomposition separating the first i subsidiary

radii of M 0 F, for any j E (0, ,).

Proof. Before proceeding, we reduce to the case lui = 1 as in the proof of Theo-

rem 1.2.3.5. As noted in Step 4 of the proof of Theorem 1.2.4.4, there exists some

77 E (0, P) such that M®K(t/~) is isomorphic to the pullback of a aj-differential mod-

ule Mo over K. Consequently, we have the desired decomposition of M over A [0, ]

by pulling back the decomposition of Mo in the sense of Theorem 1.1.4.27. The

theorem follows by applying Theorem 1.2.5.1 to Al(7', 1) for some ' e (0, 7). O

Remark 1.2.5.5. Under condition (a), the condition (b) for some r > -log3 implies

that for all r > -logp. Indeed, the affinity of F(M, r) and the convexity of F_ 1(M, r)



and Fi+ (M, r) implies that f (M, r) is concave and f±i+l(M, r) is convex. In particular,

f i+l(M, r) - fi(M, r) is concave and nonnegative. Hence, if it is zero once, it is zero

identically.

Remark 1.2.5.6. We can sometimes verify the hypotheses of Theorem 1.2.5.4 using

monotonicity and convexity (Theorem 1.2.4.4(c) and (d)). For example, if Fi'(M, ro) =

0, then F(M, r) is constant for r > ro. Moreover, if we also have fi(M, ro) >

fi+l(M, ro), then condition (b) holds for r > ro.

Remark 1.2.5.7. As in Remark 1.2.3.7, we cannot state a decomposition theorem

over a closed annulus without assuming p = 0 (in which case see Theorems 1.2.9.12

and 1.2.9.13). However, we do get partial decomposition theorems analogous to The-

orems 1.2.9.10 and 1.2.9.11, as follows.

Theorem 1.2.5.8. Let M be a Oj+ -differential module of rank d on Al(a, /]. Sup-

pose that the following conditions hold for some i E {1, ... ,d - 1}.

(a) The function F(M, r) is afine for -logp < r < -loga.

(b) We have f(M, r) > f+ 1(M, r) for -logf < r < -loga.

Then M 0 K{{a/t, t/Po admits a unique direct sum decomposition separating the

first i subsidiary radii of M 0 F for any r7 E (a, P).

Proof. The fact that this holds over M 0 K( 7 /t, t/1P]o for some Y E (a, /), even

without hypothesis (a), is a corollary of Step 1 of the proof of Theorem 1.2.4.4. The

desired conclusion follows by combining this assertion with Theorem 1.2.5.1. O

Theorem 1.2.5.9. Let M be a Oj+-differential module of rank d on A'[0, ]. Suppose

that the following conditions hold for some i E {1,..., d - 1}.

(a) The function Fi(M, r) is affine for r > -logp.

(b) We have f(M, -logp) > fi+1(M, -logp).

Then M ® Kit/]o admits a unique direct sum decomposition separating the first i

subsidiary radii of M 0 F, for any r E (0, 3).



Proof. This follows by combining Theorems 1.2.5.4 and 1.2.5.8.

Remark 1.2.5.10. As in Remark 1.2.3.11, if K is discretely valued and 3 E IKXIQ,

we can admit modules in Theorems 1.2.5.8 and 1.2.5.9 defined directly over the cor-

responding rings of bounded functions, namely K(a/t, t/P o and K[t/oo-

Proposition 1.2.5.11. Let M be an indecomposable Oj+-differential module over

AK(a, /), i.e., it is not the direct sum of two nonzero Oj+-differential submodules.

Assume that fi (M, r) is affine for r E (-log3, -loga). Then, for each j E J+,

(a) either M 0 F, has pure intrinsic aj -radii the same as IR(M 0 F,) for all 7 E

(a, 0), or

(b) IRa, (M 0 F,) > IR(M 0 F,) for all 77 E (a, 3).

Proof. Assume that we are not in case (b). Then IR, (MOF,) = IR(M F,) for some

7 e (a, p). By Theorems 1.2.2.5(d) and 1.2.2.6(d), the convexity of flO')(M, r) forces

IRa, (M F,) = IR(MOF,) for all 7 E (a,/3). Now, if IR, (MOF,; 2) > IR(MOF,)

for all rl E (a, /), the decomposition in Theorem 1.2.5.1 would imply that M is

decomposable, which contradicts what we assumed earlier. Therefore IRa(M 0

F,; 2) = IR(M 0 F,) for some rl E (a, 3). By Theorems 1.2.2.5(d) and 1.2.2.6(d)

again, we have the equality for all r E (a, /). Continue this argument will lead us to

case (a). O

1.2.6 Variation of refined intrinsic radii

In this subsection, we discuss the variation of refined intrinsic radii of a j+-differential

module M when fi(M, r) = ... = fdimM(M, r) is affine.

We continue to assume Hypothesis 1.2.1.1 and keep the notation as in previous

subsections.

Before proving general results, we first look at an example of pure refined radii.

It is a 1-dimensional analogue of Lemma 1.1.5.15.



Example 1.2.6.1. Let j E J+ and let (a, 3) E (0, oo00) be an open interval. Let

a(b) , for some b E -loglKx IQ and let a E Q. Assume that

b , 
eaa-b3a > 1 if p = 0

p-1/p if p > 0.

Note that this is actually incorporate some non-visible radii. For the reason of this

restriction, see Remark 1.1.5.25.

Let d be the prime-to-p part of the denominator of a. Then we have the following.

(a) If p = 0, then b E -logi(K')× and 0 E nK, for some finite tamely ramified

extension K'/K. Let x E m,(b) be a lift of 0. We set n = 0 and pn = 1 in this

case.

(bO) If p > 0 and j = 0, there exists n E N such that P" E K(afb) With ps E

-log(K')X| and pnda E pZ is a multiple of p, for some finite tamely ramified

extension K'/K. Let x E mgKb) be a lift of OP" .

(bl) If p > 0 and j E J, there exists n E N such that OP" E (( n:-1'))P and

pnda E Z with pn-is E -logl(K') for some finite tamely ramified exten-

sion K'/K. Let x E m(Pfs) be a lift of OP" in the fixed field of a; this is possible

by Lemma 1.1.4.11.

Let Al,(l/d, /1/d) be the open annulus with coordinate tl/d. Define () tox,a,(n)

be the 3j-differential module over AK,(a1/d, 1/d) of rank pn with basis {el,..., e-},

on which 8 acts as aei = ei+l for i = 1,... ,pn - 1 and %ep = xtpnuTq"el , if j E J

and Oep, = xtP"(a-l)el, if j = 0. (The added uj" and t- P " is to balance the different

normalization on intrinsic aj-radii and 8d-radii.)

Lemma 1.2.6.2. Keep the notation as in Example 1.2.6.1. If we denote F _,e- r

Fe-r (tl/d), then for all r E (-log3, -loge), Ca,(n) 0 F_-r has pure intrinsic oj-radius

wear+b and Oa-,C,(n) 0 F'_,) consists of only Ota with multiplicity pn.



Proof. At the point r E (-logp, -loga) for which e-ra-b > 1, F,a,(n)'F _ has visible

0j-radii and it follows from Lemma 1.1.5.15. If p > 0, at the point r E (-logo, -loga)

for which e- rab E (p-1/p(p-1), 1], this follows from Lemma 1.1.5.26. O

Theorem 1.2.6.3. Fix j E J+. Let M be a aj-differential module over an open

annulus A' (a, /) such that M 0 Fe-r has pure intrinsic j-radii wear+b < 1 for any

r e (-logo, -loga). (This is saying that f.(M r) = .. = f (M) is an afine

function of slope -a.) Then there exists a canonical decomposition

M= @ M{0), (1.2.6.4)

cb ) such that Me) ® F,
where the direct sum runs through all conjugacy classes of .l , such that M{6} 0 F

has refined intrinsic a-radii {(ta} with multiplicity rank M{o}/#{0} for all {0} C K ('g

and r~ E I.

Let d be the prime-to-p part of the denominator of a and let A'k(al/d, o1// ) be the

open annulus with coordinate tl/d. Then, by replacing K by a finite tamely ramified

extension, we may make the decomposition similar to (1.2.6.4) but over A ( 1/d, Il/d)

and with the sum over elements in n(b) instead of conjugacy classes.

Proof. Since the decomposition if it exists is determined by the decomposition at

each radius e-' E (a, /), it is canonical. Thus, we may replace K by any finite

tamely ramified extension when we need (and then obtain the decomposition over K

by Galois descent). Also, it suffices to obtain the decomposition in a neighborhood

of each radius in (a, 3).

Let r E (-log, -loga) be a point. We first assume that IRa(M 0 Fe-r) < 1

when p = 0 and IRa(M 0 Fe-r) < p-1/p(p-1) when p > 0. (Note that this restriction

still allows some non-visible radii.) Let Ota E Ia 8 (M 0 Fe-r) be an intrinsic refined

-rradius. Since M 0 Fe-r has pure intrinsic aj-radii wear+b, we have 0 E rK(b)aI

Now, applying the construction in Example 1.2.6.1 gives a aj-differential module

£,U) over Al (ail/d, /3ld) of pure aj-radii War+b and pure intrinsic a-radii Ota at

radius e- , /d, where (-logo', -loga') is a neighborhood of r in (-log, -loga) and



the coordinate on the annulus is tl/d.

Denote N = M 0 (,&),(n )) and Fr , = Fe_,,(tl/d). Then IR(N 0 F' _) <

waar'+b for r' E (-logo', -loga). By Lemma 1.1.5.11(2), N 0 Fe_r is not of pure

intrinsic aj-radii wear+b. By Theorem 1.2.2.6(d), if N 0 F'_,, were of pure intrinsic

j-radii wear'+b for some r' E (-logp', -loga'), the same has to be true for all r' E

(-log 3, -loga') because a convex function below a linear function is same as the

linear function if the two functions touch at some point; this would contradict to

what we just showed. Therefore, N 0 F_-, does not have pure intrinsic ,j-radii

wear'+b for any r' E (-log', -loga'). By Lemma 1.1.5.11(2), that is to say Ota E

ZOa(NOF'_,,). Moreover, using the exact argument as in Theorem 1.1.5.16, invoking

Theorem 1.2.9.10 in place of Proposition 1.1.3.4, we can obtain the decomposition

(1.2.6.4).

Now, it suffices to deal with the case when p > 0 and IRaj (MOFe-r) E [p-l/P(P-1), 1).

In this case, we have 8j-Frobenius antecedent of M in a neighborhood of r. The de-

composition follows from the decomposition of the 0j-Frobenius antecedent or, more

generally, iterative 9j-Frobenius antecedent (until the intrinsic ,y-radii fall in the

range above.) O]

Remark 1.2.6.5. The above theorem stays valid if we replace the rational type

condition by visible condition.

Remark 1.2.6.6. We do not know if we can extend this result to bounded rigid

analytic rings when K is discretely valued.

Theorem 1.2.6.7. Let M be a Oj+ -diferential module over an open annulus A1(a, 1)

such that M 0 Fe-r has pure intrinsic radii wear+b < 1. Let d denote the prime-to-p

part of the denominator of a. Then after a finite unramified extension K'/K, there

exists a canonical decomposition

M = $ M (1.2.6.8)

over A1, ( l / d, l/d), where the direct sum runs through all 1 E j s(b) d, Kag ,ove AjK a/~ 3 /) jJ~a19 U3 Ka1g



such that M, 0 F, has pure refined intrinsic radii tai9 for all r E I.

We may obtain the decomposition (1.2.6.8) over K if we group Galois conjugates

of 9's.

Proof. Without loss of generality, we assume that M is indecomposable. By Proposi-

tion 1.2.5.11, we have the stated dichotomy there. We apply Theorem 1.2.6.7 to the

aj for which case (a) of Proposition 1.2.5.11 holds for M. The decompositions for

different 9j's are compatible. This gives the desired decomposition. O

Notation 1.2.6.9. Keep the notation as in Theorem 1.2.6.7. We use Z(M) to

denote the set of 0 in (1.2.6.8) with multiplicity rank M,.

1.2.7 Variation of extrinsic subsidiary radii

In this subsection, we will consider the variation and decomposition by extrinsic

subsidiary radii for multi-derivations (under some assumptions). This will be used

to study differential Artin conductors in the next subsection. The proofs in this

subsection are similar to the ones in Subsections 1.3.3 and 1.2.5, but much simpler.

We keep Hypothesis 1.2.1.1 as usual. We also assume the following.

Hypothesis 1.2.7.1. Assume luj1 = 1 for j E J.

Notation 1.2.7.2. Let M be a aj+-differential module of rank d over A(a , f), with

0 < a < p < 1. For r E (-logp, -loga) and i E (1,... ,d}, denote

fi(M, r) = -logR(M 0 Fe-r; i), Ei(M, r) = fi(M, r) + ... + fi(M, r).

Notation 1.2.7.3. Denote K to be the completion of K(xj) with respect to the

(1,..., 1)-Gauss norm; view K as a differential field of order m with derivations j.

For 0 < a < 3 < 1, Taylor series (as in Lemma 1.1.2.16) gives rise to an injective

homomorphism f* : K{{a/t, t/3}} --+ K({at, t/3}} such that f*(uj) = uj + xjt.

For rl E (a, /), we use F, to denote the completion of K(t) with respect to the r-

Gauss norm. Then f* extends to an injective isometric homomorphism f* : F, -+ F,.



Lemma 1.2.7.4. For any 0 < a < P < 1 and any oj+-differential module M on

A'[a, #), * *M gives a 0o-differential module on AL [a, 3). Moreover, for E (a, ),

Ra(M 0 F,) = min {Ra, (M 0 F,)} = R(M 0 F,).
jEJ+

Proof. This follows from the fact that 0l1.M = 0o1M + EjEjXjjlM. O]

Theorem 1.2.7.5. Let M be a oj+-differential module of rank d on Ak(a, P) with

0<a<8<l1.

(a) (Linearity) For i = 1, ... , d, the functions f (M, r) and F(M, r) are continuous

and piecewise affine.

(b) (Integrality) If i = d or (M, ro) > f+1 (M, ro), then the slopes of (M, r) in

some neighborhood of ro belong to Z. Consequently, the slopes of each fi(M, r)

and F(M, r) belong to UZ U . U 1Z.

(c) (Monotonicity) Suppose that M is defined over A[O0, 3). Then the slopes of

j (M, r) are nonpositive, and each (M, r) is constant for r suficiently large.

(d) (Convexity) For i = 1,... , d, the function i (M, r) is convex.

(e) Suppose for some i E {1,..., d-1}, the function F (M, r) is affine and i (M, r) >

fi+1(M, r) for r E (-log,, -log&). Then M admits a unique direct sum de-

composition separating the first i subsidiary extrinsic radii of M 0 F, for any

Proof. Consider f*M as a ao-differential module over K{{j/t,t/13}}. (For (c), we

view f*M as a module over K( {t/,}}.) By Lemma 1.2.7.4, we have f'° )(f*M, r) =

fi(M, r) for r E (-logp,, -loga). (For (c), we have the equality for r E (-log, +oo).)

The theorem follows from Theorems 1.2.2.5 and 1.2.3.5. [

1.2.8 Differential conductors

As promised earlier (Remark 1.1.6.9), we can use the results of this subsection to

extend the results of [KedO7a] by relaxing [Ked07a, Hypothesis 2.1.3] to the hypothesis



that K is of rational type. As this is straightforward to do, we merely summarize the

outcome by stating and deducing a result which includes [Ked07a, Theorems 2.7.2

and 2.8.2].

Definition 1.2.8.1. Let M be a j+-differential module of rank d on A'( 0o, 1) for

some ro E (0, 1). We say that M is solvable if IR(M 0 F,) -- 1 as q --+ 1-.

Theorem 1.2.8.2. Let M be a solvable Oj+-differential module of rank d over A'(r7o, 1)

for some ro E (0, 1). Then by making ro closer to 1, there exist a decomposition

M = M 1e- --eMr over A'(lo, 1) and nonnegative distinct rational numbers bl,.. , br

with bi -rank (Mi) E Z, such that

IR(Mi 0 Fn; j) = ribi (i = 1, ... , r; j = 1, ... , rank (Mi); 77 E (ro,1)).

Under the same hypothesis and by making ro closer to 1, there exist a decomposi-

tion M = M,1 .. . ~ M,, over A'(io, 1) and nonnegative rational numbers b, . . . , b

with bi -rank (Mi) E Z, such that

R(Ii 0 F; j)- i ( ... ,r'; j= 1,...,rank (Mi); r E (70,1)).

Proof. The two statements can be proved using the same argument as follows. By

Theorems 1.2.4.4 and 1.2.7.5(a)(b)(d), for 1 = 1,..., d, the functions d!F(M, r) and

d!F,(M, r) on (0, -logro) are continuous, convex, and piecewise affine with integer

slopes. By hypothesis, d!Fi(M, r) -- 0 and hence d!E (M, r) -- 0 as r -- 0+ ; because

of this and the fact that d!F(M, r) > 0 and d!Fi(M, r) 2 0 for all r, the slopes of

F(M, r) and F (M, r) are forced to be nonnegative. Hence there is a least such slope,

that is, d!Fi(M, r) and d!F (M, r) are linear in a right neighborhood of r = 0.

We can thus choose 7o -- 1- so that d!Fi(M,r) and d!F(M,r) are linear on

(0, -logro0) for i = 1,..., d. We obtain the desired decomposition by Theorems 1.2.5.4

and Theorems 1.2.7.5(e), respectively; the integrality of bi -rank (M) and b -rank (Mi)

follows from the fact that Fdim M(Mi, r) and Fdim Mf (Mi, r) have integral slopes, again

by Theorems 1.2.4.4 and 1.2.7.5(b). O



Definition 1.2.8.3. Let M be a solvable 9j+-differential module of rank d over

A'(,lo, 1) for some i0o E (0, 1). Define the differential log-breaks of M to be the multi-

set consisting of bi from Theorem 1.2.8.2 above with multiplicity rank (Mi). We define

the differential Swan conductor of M to be the sum of the differential log-breaks, that

is Swan(M) = E'=1 b - rank (Mi); it is an integer by Theorem 1.2.8.2 above. Sim-

ilarly, we define the differential (non-log)-breaks to be the multiset consisting of b

from Theorem 1.2.8.2 above with multiplicity rank (Mi). We define the differential

Artin conductor of M to be the sum of the differential non-log-breaks; it is also an

integer by Theorem 1.2.8.2 above.

1.2.9 Subharmonicity for residual characteristic zero

When m = 0, the functions Fi(M, r) obey a certain subharmonicity property [Ked**,

Theorem 11.3.2]. When the residual characteristic p is equal to 0, one can obtain a

similar result even when K carries derivations. (See Remark 1.2.2.8 for discussion of

the case p > 0.)

We continue to assume Hypothesis 1.2.1.1 for this subsection. Moreover, we as-

sume the following.

Hypothesis 1.2.9.1. Throughout this subsection, we assume p = 0.

Definition 1.2.9.2. For 7 E (nK9) , let i be a lift of 7! in some finite extension L

of K. Let E be a finite unramified extension of the completion of OK[t](t) 0OK L for

the 1-Gauss norm. For a < 1 < , define the substitution

T,: K(alt, tl/P) -+ E, t - t + it.

Definition 1.2.9.3. Fix j E J+. Let M be a 8j-differential module of rank d on

A'[a,/3] for some a < 1 < p. For i = 1,..., n, let s(M) and s(M) be the left

(if/3 p 1) and right (if a - 1) slopes of Fj'U)(M, r) at r = 0. For 7 E ( ag)x, pick any

SE OL lifting 7 in a finite unramified extension L of K, and let s,i((M) be the right

slope of F ) (T*(M), r) at r = 0. Note that T* (M) is still a 6j-differential module by

Lemma 1.1.4.6.



If M is a oj+-differential module of rank d on A'[a, 3] for some a < 1 < /3, for
i= 1,... ,n and e ~g we similarly define soo,i(M) and s7,i(M) as the slopes of

the corresponding functions Fi(M, r) or Fi(TZ(M), r).

Theorem 1.2.9.4. Fix j E J+. Let M be a oj-differential module of rank d on

A' [a, 3] for some a < 1 < 3. Choose i E {1,.. . , d} such that ff()(M, 0) > 0.

(a) The quantity s (M) does not depend on the lift p and the unramified extension

LIK.

(b) We have si (M) < 0 for all I O, with equality for all but finitely many 71.

(c) We have

s , (M) < s- S(M),
alg

with equality if either i = n and fj) (M, 0) > 0, or i < n and f(j) (M, 0) >

f+) (M, 0).

Proof. When j = 0, this is [Ked**, Theorem 11.3.2(d)]. When j E J, the proof of

Theorem 1.2.2.6 reduces the problem to [Ked**, Theorem 11.2.1(c)]. Note that we

do not have to use the Frobenius pushforward. OI

Remark 1.2.9.5. Let L be a complete extension of K such that oj extends to L with

the same operator norm. Then M L becomes a 0j-differential module over Al[a, 1].
For f 7 ! , we always have s (M) = 0; this can be seen either by inspecting the

proof of Theorem 1.2.9.4, or by deducing the claim directly from (b). Namely, (b)

implies that the equality s, (M) = 0 holds with only finitely many exceptions; on the

other hand, if 7 were an exception not in aK, then so would be each of its infinitely

many conjugates in a1 g

Theorem 1.2.9.6. Let M be a Oj+-differential module of rank d on A'[a,/] for

some a < 1 < p. Choose i E {1,..., d} such that f(M, 0) > 0.

(a) The quantity s-g,i(M) does not depend on the lift p and the unramified extension

L/K.



(b) We have s-,j (M) 5 0 for all 71 4 0, with equality for all but finitely many ft.

(c) We have

soo,i(M) s,i(M).
-iEK

Proof. Suppose first that 0 is dominant for each irreducible component of M 0 F

which contributes to F(M, 0). Then soo,i(M) is less than or equal to the left slope

of F(o))(M, r) at r = 0, whereas s-g, (M) is greater than or equal to the right slope of

F()(T*(M), r) at r = 0. We may thus reduce to the case m = 0, which is [Ked**,

Theorem 11.3.2(c)].

It suffices to reduce to the case where ao is dominant for each irreducible com-

ponent of M 0 F which contributes to Fi(M, 0). This proceeds as in Step 2 of the

proof of Theorem 1.2.4.4, except that we may end up working over an enlargement of

K. This causes no harm in (a) or (b), but in (c) the sum may end up running over

a larger field. However, the argument of Remark 1.2.9.5 shows that the extra terms

do not contribute: that is, we may use (b) to show that s,S(M) = 0 if jt f g, so

(c) holds as written. O

Remark 1.2.9.7. The proof given above does not achieve the equality in (c) for

m > 0, because the reduction in the last paragraph does not maintain equality.

As in [Ked**, Subsection 12.2], we can study decomposition theorems over closed

annuli or discs using subharmonicity.

Definition 1.2.9.8. Fix j E J+. Let M be a 8j-differential module over K(a/t, t/1)

with a < 1 < p. Define the i-th 0j-discrepancy of M at r = 0 as

discj) (M, 0) = - s (M);

E( Kag) X

it is nonnegative by Theorem 1.2.9.4. By Remark 1.2.9.5, this definition is invariant

under enlarging K. We may extend the definition to general r E [-logp, -loga] by



pulling back M along

K(a/t,t/3) -- K(c)^(aer/t,t/fler), t ct,

where c is transcendental over K and K(c)^ is the completion with respect to the

e-r-Gauss norm.

If M is a 9j+-differential module over K(a/t, t/l) with a < 1 < , we similarly

define the i-th discrepancy disci(M, 0) of M at r = 0 as the sum of -su,j (M) over

TE e (kalg)x . This quantity is again nonnegative, and is again invariant under enlarging

K (this time by the final remark in the proof of Theorem 1.2.9.6). This definition

can similarly be extended to r E [-logp, -loga].

Remark 1.2.9.9. If r Q - loglK , then Remark 1.2.4.7 implies that Fi(M, r) is

affine in a neighborhood of r. By Theorem 1.2.9.6, it follows that disci(M, r) = 0.

Theorem 1.2.9.10. Fix j E J+. Let M be a aj-differential module over K(a/t, t/P)

of rank d. Suppose that the following conditions hold for some i E {1,..., d - 1}.

(a) We have f) (M, r) > f2 ) (M, r) for r E [-log3, -loga].

(b) The function FP) (M, r) is affine for r E [-log3, -loga].

(c) We have discj) (M, -loga) = disc)(M, -logp3) = 0.

Then there is a direct sum decomposition of M inducing, for each rl E [a, P], the

decomposition of M 0 F, separating the first i subsidiary Bj -radii from the others.

Proof. Similar to Theorem 1.2.3.5 but invoking [Ked**, Lemma 12.1.3] instead. O

Theorem 1.2.9.11. Fix j E J+. Let M be a Oj-differential module over K(t/l3) of

rank d. Suppose that the following conditions hold for some i E {1,..., d - 1}.

(a) We have fj) (M, -log3) > f()(M, -logp).

(b) The function Fj) (M, r) is constant for r in a neighborhood of -log3.

(c) We have discj ) (M, -log/) = 0.



Then there is a direct sum decomposition of M inducing, for each y E (0, p], the

decomposition of M 0 F, separating the first i subsidiary aj -radii from the others.

Proof. One can prove this similarly to Theorem 1.2.3.5 by invoking [Ked**, Lemma 12.1.2]

instead. It is also an immediate corollary of Theorems 1.2.9.10 and 1.2.3.10; note that

Theorem 1.2.9.4 verifies the condition (c) in Theorem 1.2.9.10. O

Theorem 1.2.9.12. Let M be a Oj+-differential module over K(a/t, t/,) of rank d.

Suppose that the following conditions hold for some i E {1,... , d - 1}.

(a) We have fi(M, r) > fj+l(M, r) forr E [-logp, -loga].

(b) The function F (M, r) is affine for r E [-log3, -loga].

(c) We have disc2(M, -loga) = disc (M, -logp) = 0.

Then there is a direct sum decomposition of M inducing, for each 77 E [a, P], the

decomposition of M 0 F, separating the first i subsidiary radii from the others.

Proof. Similar to Theorem 1.2.5.1 but invoking Theorem 1.2.9.10 instead on the

boundary. O

Theorem 1.2.9.13. Let M be a aj+-differential module over K(t/l) of rank d. Sup-

pose that the following conditions hold for some i E {1,... , d - 1}.

(a) We have fi(M, -logp) > f+l(M, -logp3).

(b) The function F(M, r) is constant for r in a neighborhood of -logp.

(c) We have disci(M, -log3) = 0.

Then there is a direct sum decomposition of M inducing, for each 'q E (0,P], the

decomposition of M 0 F, separating the first i subsidiary radii from the others.

Proof. It follows from Theorems 1.2.9.12 and 1.2.3.10; note also that Theorem 1.2.9.6

verifies the condition (c) in Theorem 1.2.9.12. O



1.3 Differential modules on higher-dimensional spaces

We now study the variation of subsidiary radii of differential modules on some simple

higher-dimensional spaces. Rather than derive these directly, we deduce these from

the corresponding results on 1-dimensional spaces from the previous section, using

some properties of convex functions.

Throughout this section, we retain Hypothesis 1.2.1.1.

1.3.1 Convex functions

In this subsection, we set some terminology for convex functions, as in [Ked08+a,

Section 2].

Definition 1.3.1.1. For a subset C C R", we denote its interior by int(C). We say

it is convex if for all x, y E C and all t E [0, 1], tx + (1 - t)y E C. For C C R" convex,

a function f : C - R is convex if for all x, y E C and all t E [0, 1],

tf(x) + (1 - t)f(y) > f(tx + (1 - t)y). (1.3.1.2)

Such a function is continuous on int(C).

Definition 1.3.1.3. An affine functional on R" is a map A : Rn --+ R of the form

A(Zxl,...,,) = alzl + --- + anz, + b for some al,...,a,,b E R. If al,...,a, E Z,

we say A is transintegral (short for "integral after translation"); if also b E Z, we say

A is integral. For A : R" --> R an affine functional, define the slope of A as the linear

functional A(x) = A(x) - A(O).

Definition 1.3.1.4. For f : C -- R" convex, a domain of affinity of f is a subset

U of C with nonempty interior (in Rn) on which f agrees with an affine functional

A. The nonempty interior condition ensures that A is uniquely determined; we call it

the ambient functional on U.

Lemma 1.3.1.5. Let f : C -+ Rn be a convex function, and let A : R" -- R be an

affine functional which agrees with f on a subset of C with nonempty interior in Rn.



(a) We have f(x) > A(x) for all x E C.

(b) The set of x E C for which f (x) = A(x) is a convex subset of C.

(c) If A' is another affine functional with the same slope as A, and A' occurs as the

ambient functional of some domain of affinity of f, then A = A'.

Proof. For (a), choose y in the interior of a domain of affinity U of f with ambient

functional A. For e > 0 sufficiently small, the quantity z defined by Ex + (1 - e)z = y

will also belong to U. By convexity of f, cf(x) + (1 - e)A(z) A(y), so

f(x) A(y) - (1 - )A(z) = (x).

We may deduce (b) and (c) immediately from (a). LO

Definition 1.3.1.6. A subset C C R" is polyhedral if there exist finitely many affine

functionals A,,... , Ar such that

C = {zx E E n : Ai(x) 2 0 (i = 1,..., r)}. (1.3.1.7)

(We do not require C to be bounded.) If the Ai can all be taken to be (trans)integral,

we say that C is (trans)rational polyhedral. (We use RP and TRP as shorthand for

rational polyhedral and transrational polyhedral.) For C C IR a convex subset of R ,

a continuous convex function f : C --+ RI is polyhedral if there exist finitely many

affine functionals A', ... , A' such that

f(x) = max{A'(x),..., A'(x)} (x E C). (1.3.1.8)

(In particular, such a function extends continuously to a convex function on the

closure of C, or even to all of Rn.) Similarly, if C is (trans)rational polyhedral, we

say f is (trans)integral polyhedral if (1.3.1.8) holds for some (trans)integral affine

functionals A,... , A/.



Remark 1.3.1.9. If C is a convex subset of R", then a continuous convex function

f : C --+ R is polyhedral if and only if C is covered by finitely many domains of

affinity for f, by [Ked08+a, Lemma 2.2.6]. Moreover, if C is compact, then it suffices

to check that every point in C has a neighborhood covered by finitely many domains

of affinity for f, as then compactness will imply the existence of finitely many domains

of affinity which cover C.

1.3.2 Detecting polyhedral functions

In this subsection, we establish a theorem that can be used to detect polyhedrality

of certain convex functions based on integrality properties of certain values of the

functions. We start with a weaker result in the same spirit, from [Ked08+a, Section 2].

Notation 1.3.2.1. In this subsection, for a point x E Qn, we write xl,..., x, for the

coordinates of x.

Theorem 1.3.2.2. Let C be a bounded RP subset of R", and let f : C --+ R be a

continuous convex function. Then f is integral polyhedral if and only if

f(x) E Z + Zx + - -- + Zxn (x E C n Q). (1.3.2.3)

Proof. See [Ked08+a, Theorem 2.4.2]. 0

One cannot hope to similarly detect transintegral polyhedral functions by sam-

pling them at individual points, i.e., on zero-dimensional TRP subsets of Rn . The

best one can do is detect them by sampling on 1-dimensional TRP subsets of Rn , as

follows.

Definition 1.3.2.4. Let C be a convex subset of R n . We say a function f : C --+ R is

convex transintegral polyhedral in dimension 1 if its restriction to the intersection of

C with any 1-dimensional TRP subset of Rn is continuous, convex, and transintegral

polyhedral. In other words, for any x E C, a E Qn, if we put Ix,a = {t E R : x + ta E

C}, then the function g : Ix,a --* R defined by g(t) = f(x + ta) is continuous, convex,



piecewise affine with slopes in ajZ + -- - + aZ, and has only finitely many slopes.

(The latter is automatic if Ix,a is closed and bounded, which always occurs if C is

compact.)

Theorem 1.3.2.5. Let C be a TRP subset of R". Let f : C -+ R be a function

which is convex transintegral polyhedral in dimension 1. Then f itself is convex and

transintegral polyhedral (hence continuous).

The proof is somewhat complicated, and will occupy the rest of this subsection.

We first tackle the case where C is compact, for which we assemble several lemmas.

Definition 1.3.2.6. Let C be a TRP subset of Rn. For x E C, define the angle of C

at x, denoted ZxC, to be the set of z E R" such that for some to > 0, x + tz E C for

t E [0, to]. It is clear that ZC is an RP subset of Rn stable under multiplication by

R>o.

Lemma 1.3.2.7. Let C be a TRP subset of R n , and let f : C -- R be a function

which is convex transintegral polyhedral in dimension 1. Then f is convex.

Proof. We may assume dim(C) = n, by replacing Rn by a plane of the appropriate

dimension. It suffices to verify (1.3.1.2) for any x,y E C and any t E [0, 1]. By

applying a change of basis in GL(Z), we may reduce to the case where the standard

basis vectors el,...,e belong to ZC.

We now choose x~,..., x' > 0 in turn so that for i = 1,...,, i x i - Yi E Q,

x + x'el + .- + zxej E int(C), and

If(x + x'e 1 + -..- + xei) - f(x + xzel +... + x'_le 1) < E/n

If (t(x + x'e + - - - + xze) + (1 - t)y) - f(t(x + x'e 1 + - - - + x_lei_) + (1 - t)y)I < e/n.

Namely, given xz,... , xi_ , the eligible choices of x form a dense subset of an open

interval with left endpoint 0. (Here we are using the continuity of the restriction of

f to TRP sets of dimension 1.)



Put x' = x + x'el + --- + x'e,. Since x' - y E Q", the segment from x' to y is

TRP. Hence

tf(x') + (1 - t)f(yy) f(tx' + (1 - t)y),

and so

tf(x) + (1 - t)f(y) _ f(tx + (1 - t)y) - 2E.

Since e was arbitrary, this implies (1.3.1.2), yielding convexity of f.

Definition

x E C, and

direction of

1.3.2.8. Let C be a TRP subset of R". For f : C -+ R a convex function,

z E ZC, define f'(x, z) to be the directional derivative of f at x in the

z, i.e.,
f (X + tz) - f (x)

f'(x, z) = lim
t-.O+ t

Note that this is a limit taken over a decreasing sequence; for it to exist in all cases,

we must allow it to take the value -oo.

Lemma 1.3.2.9. Let C be a TRP subset of R", and let f : C -, R be a convex

function. For any fixed x E C, the function z F-+ f'(x, z) is convex as a function from

ZC to IR U {-oo} (in the sense of satisfying (1.3.1.2)).

Proof. Take any zl, z2 E LZC. We assume first that f'(x, zl), f'(x, z2) > -oo. Pick

u E [0, 1] and put z3 = uzl + (1 - u)z2. Given e > 0, choose t > 0 for which

x + tz EC (i=1,2,3), f'(x, zi) > f + tzi)- - e (i = 1, 2).
t

Then

f (x + tzi) - f (X) f (X + tz2) - f (X
uf'(x, Z1) + (1 - u)f'(x, z2) uf(x + tz) - f(x)+ f( + tz)) -

((+ t t

f(u(x + tzl) + (1 - u)(X + tz2)) - f(X)
-- t

> f'(x, z 3 ) - E.

Since e was arbitrary, this proves the claim when both f'(x, zi) and f'(x, z 2) are not

-oo. If one of them is -oo, the same argument would imply that f'(x, z 3) = -00;



this completes the proof.

Lemma 1.3.2.10. Assume that Theorem 1.3.2.5 holds for compact C with n replaced

by n - 1. Let C be a compact TRP subset of R, and let f : C -+ R be a function

which is convex transintegral polyhedral in dimension 1. Then for any x E C, the

function z F- f'(x, z) on ZxC is itself convex transintegral polyhedral in dimension 1.

Proof. By Lemma 1.3.2.7, f is convex. By Lemma 1.3.2.9, f'(x, z) is convex on

ZxC, hence continuous on int(ZC). By hypothesis, for z E z.C n Qn, f'(x, z) E

Zzl + -- - + Zzn. By Theorem 1.3.2.2, f'(x, z) is integral polyhedral on any bounded

RP subset of int(ZxC).

By subdividing C by hyperplanes, we may reduce to the case where ZxC admits

a bounded cross-section by a rational hyperplane. Pick any z E ZxC and a E Q"

such that the set Iz,a = {u C R : z + ua E ZC} is bounded. We must show that

the function g(u) = f'(x, z + ua) is continuous, convex, and transintegral polyhedral

on Iz,a. (This suffices because we can recover all values of f'(x, z) from the values

on a bounded cross-section by a rational hyperplane.) By what we know about f',

we already know all of these on int(Iz,a). Consequently, it suffices to check that g is

affine in a neighborhood of an endpoint of Iz,a-

For this, we may assume that the endpoint in question is a left endpoint at u = 0.

Then z lies on the boundary of ZxC, so we can choose a codimension 1 facet D of C

containing x, such that the ray from x in the direction of z has nontrivial intersection

with D. By the hypothesis that Theorem 1.3.2.5 holds on compact TRP subsets

of dimension n - 1, the restriction of f to D must be transintegral polyhedral. In

particular, we can rescale z so that for t E [0, 1 + e] for some E > 0, x + tz E C and

f(x + tz) = f(x) + tf'(x, z).

Consider the function h(t) = f'(x + tz, a) for t E [0, 1 + e]. Since the difference

quotient (f(x + tz + ua) - f(x + tz))/u is convex in t (the term f(x + tz + ua) is

convex, the term -f(x + tz) is affine, and dividing by u has no effect), so is h(t).

However, h(t) E Zal + - - - + Zan for all t. This means that for t E (0, 1 + e), h(t) is

continuous but takes values in a discrete subset of R; this can only happen if h(t) is



equal to a constant value c on (0, 1 + e).

Rescale a if necessary so that x+z+a E C and f(x+z+ ua) = f(x) + f'(x, z) +uc

for u E [0, 1]. We now claim that f(x+tz+ua) = f(x)+tf'(x, z)+uc fort E [0, 1], u E

[0, t]. Since equality holds at (t, u) = (0, 0), (1, 0), (1, 1), we have by convexity of f

that f (x + tz +ua) < f(x) + tf'(x, z) +uc in the entire region. On the other hand, for

any t E [0, 1], the function f(x+tz+ua) in u is convex, and equals f(x) + tf'(x, z) +uc

for u in a right neighborhood of 0. Consequently, f(x+tz+ua) f(x) +tf'(x, z) +uc

for u E [0, t), yielding the desired equality.

We may rewrite the last claim as f(x + tz + tua) = f(x) + tf'(x, z) + tuc for

t E [0, 1], u E [0, 1]. From this, we may deduce that g(u) = f'(x, z+ua) = f'(x, z)+uc

for u E [0, 1]. This proves affinity of g near an endpoint, completing the argument. O

We now establish the compact case of Theorem 1.3.2.5.

Lemma 1.3.2.11. The conclusion of Theorem 1.3.2.5 holds if C is compact.

Proof. We may assume that C has nonempty interior, by replacing Rn by a plane

containing C of the appropriate dimension. With this extra hypothesis, we proceed

by induction on n, with trivial base case n = 1.

We have convexity of f by Lemma 1.3.2.7. It thus suffices to prove that f is

transintegral polyhedral (and hence continuous) in a neighborhood of any x E C.

By Lemma 1.3.2.10, the restriction of f'(x, z) to any compact TRP subset of ZC is

convex transintegral polyhedral in dimension 1. By applying the induction hypothesis

to the intersection of xC with a rational hyperplane, we may deduce that f'(x, z) is

continuous, convex, and transintegral polyhedral. By Theorem 1.3.2.2, f'(x, z) is in

fact integral polyhedral.

To prove that f is transintegral polyhedral in a neighborhood of x, it suffices to

do so after cutting C into finitely many pieces. We may thus reduce to the case

where f'(x, z) is affine on ZC. Since ZC is a rational polyhedral cone, we may pick

zl,..., z E zxC n Qn such that ZC is the convex hull of the rays from 0 through

Zl,..., zl. We may then rescale z,... , z so that f(x + tzi) = f(x) + tf'(z, zi) for

i = 1, ... , and t E [0, 1].



For any z in the convex hull of zl,... ,zl, we now deduce (using the affinity of

f'(x, z)) that f(x + z) < f (x) + f'(x, z). Since f(x + tz) is convex in t, this is only

possible if f(x + tz) = f(x) + tf'(x, z) for t E [0, 1]. We conclude that f agrees with

an integral affine functional on the convex hull of z, x + zl,..., x + zl. As noted above,

this completes the proof. O

We now allow C which are no longer necessarily bounded.

Definition 1.3.2.12. Let C be a TRP subset of R. Define the small cone of C at

x, denoted ' C, to be the set of z e R such that x + tz E C for all t > 0; this

is again a convex rational polyhedral cone in R n . Moreover, it does not depend on

x by the following reasoning. Write C = {x E Rn : Al(x),..., Am(X) > 0} for some

transintegral affine functionals A,... , Am. Write A(x) = Ai,0 (x) + ci with Ai,o linear.

Then z E Z' C if and only if x E C and Ai,o(z) > 0 for i = 1,..., m. In particular,

Z'C does not depend on the choice of x E C; we thus notate it also by Z'C.

Lemma 1.3.2.13. The conclusion of Theorem 1.3.2.5 holds.

Proof. We may again assume that C has nonempty interior in Rn; by slicing C with

hyperplanes, we may further assume that the small cone Z'C is strictly convex (i.e.,

Z'C n (-Z'C) = {0}). We now induct on n, where we may assume n > 2 because

the case n = 1 is trivial. By the induction hypothesis, the restriction of f to each

boundary facet of C is convex transintegral polyhedral.

As in the proof of Lemma 1.3.2.10, for each boundary facet D of C, each i E

{1,... , n}, and each a E Q, the function x '-4 f'(x, a) is constant on the interior of

each domain of affinity of the restriction of f to D. In particular, for x E D outside

of a set of measure zero, f'(x, a) takes only finitely many values.

By Lemma 1.3.2.11, f is polyhedral on any compact TRP subset of C. In par-

ticular, C is covered by domains of affinity of f; to prove that f is polyhedral on all

of C, it suffices to show that C can be covered by finitely many domains of affinity

of f (see Remark 1.3.1.9). By Lemma 1.3.1.5, it suffices to check that the ambient

functionals on domains of affinity of f can have only finitely many slopes.



Let U be a domain of affinity of f with ambient functional A. Choose a basis

a l ,... , an of Qn none of whose elements is contained in Z'CU (-L'C) (this is possible

because Z'C is strictly convex and n > 2). For x E U and i E {1,..., n}, the function

f (x + tai) on Ix,aj is convex transintegral polyhedral, so has a limiting slope at each

endpoint of Ix,a,. (Note that our hypothesis that ai Z'C U (-Z'C) ensures that

I,a, is compact.) By the previous paragraph, for x away from a set of measure zero,

these limiting slopes are themselves confined to a finite set. Since f is convex, the

slope of f(x + tai) at t = 0 is now also constrained to a finite set. This conclusion for

i = 1,..., n constrains the slope of A to a finite set, proving the claim. O

1.3.3 Variation of subsidiary radii

In this subsection, we will extend Theorem 1.2.4.4 into a higher-dimensional gener-

alization (Theorem 1.3.3.9). We keep Hypothesis 1.2.1.1 and Notation 1.2.1.2. We

begin by introducing the setup of [Ked08+a, Section 4.1].

Notation 1.3.3.1. Throughout this subsection, we put I = {1,..., n} for notational

simplicity.

Notation 1.3.3.2. For X an n-tuple:

* for A an n x n matrix, write XA for the n-tuple whose j-th entry is n xAi";

* for c a number, put X c = (x ,...,x).

Definition 1.3.3.3. For a subset C C Rn , let e- c denote the subset {e - rI : rr E

C} C (0, +oo)n . A subset S of [0, +oo)n is log-(T)RP if S is the closure of S = e- c

for some (T)RP subset C of Rn. We say S is ind-log-(T)RP if it is a union of an
O O

increasing sequence of log-(T)RP sets S,; we denote S= U" S,. For instance, any

open subset of [0, +oo)" is covered by ind-log-RP subsets.

Caution 1.3.3.4. The subset (0, 1] is an ind-log-TRP subset but not a log-TRP

subset. By contrast, [0, 1] is a log-TRP subset.



Definition 1.3.3.5. Let C C RI be a TRP subset defined by (1.3.1.7), where

A,(xj) = as,x 1 + - - - + as,nxn + bs for as,i E Z and s = 1,...,r. Denote the clo-

sure of e-C in [0, +oo)n by S. Define AK(S) to be the subspace of the (Berkovich)

analytic n-space with coordinates tl,..., tn satisfying the condition (Itil,..., It|) E S.

Precisely,

(AK(S), 0) = K[tl,..., itn](tfl"'/e -bi , ,I /e-br

= a, t lim Ia,,n; j =0, for all 7 E S}.
elEZ

n

For an ind-log-TRP subset S = U,S, we define AK(S) = nAK(Sa).

Definition 1.3.3.6. Let S be an ind-log-TRP subset of [0, +oo) . A (iuj-) differential

module M over X = AK (S) is a locally free coherent sheaf together with an integrable

connection

V : M --+ M 0 Ox - du e Ox dt.
j= 1 i=l

We label the derivations 1,..., am as usual, and put am+1 = at 1,..., 0 m+n = atn.

Notation 1.3.3.7. For r, = (, ... ,77n) ES, let F,, be the completion of K(t 1 )

with respect to the 77,-Gauss norm. Write f (M, r1 ) = -loglR(M 0 Fe-r,; 1) and

Fi(M, r) = fi(M, r) + - --+ fj(M, r) for 1 = 1,... ,rank M.

Lemma 1.3.3.8. Given r1 E (0, +oo)n and A E GLn(Z), let M be a differential

module over F,A, and let h* : FnA -- F,, be given by t '-* tA Then IR(M) =

IR(h*M).

Proof. This follows from [Ked08+a, Proposition 4.2.7] (which is itself an immediate

consequence of [Ked08+a, Lemma 4.1.5]) applied to A and A -1. O

Theorem 1.3.3.9. Let S be an ind-log-TRP subset of [0, +fo)" , and let M a differ-

ential module of rank d over AK(S).

(a) (Continuity) For 1 = 1,... , d, the functions f (M, rj) and F (M, r1 ) are contin-

uous.



(b) (Convexity) For 1 = 1,..., d, the function F (M, r1 ) is convex.

(c) (Polyhedrality) For ri E -log S, if 1 = d or f (M, rj) > f1+l(M, ri), then

F(M, rj) is transintegral polyhedral in some neighborhood of ri. Moreover, on

any TRP subset of -log S, d!F (M, r1 ) and Fd(M, r1 ) are transintegral polyhe-

dral functions.

(d) (Monotonicity) Assume that S is log-TRP. Then for any rI, r' E -log S, if

ri 5 ri for i E I and (1 - t)rj + tr' E -log S for any t E [0, +oo), then

F(M, r) > F(M, r') for 1= 1,...,d.

Proof. We first prove (a)-(c). We need only verify that, for I = 1,..., d, d!F(M, rj)

and Fd(M, r) satisfy the conditions of Theorem 1.3.2.5. Moreover, by translating

and enlarging K if necessary, it suffices to check the hypothesis of Theorem 1.3.2.5

for Ix,a in the case x = 0.

It suffices to consider a = al E Z with gcd(ai) = 1. Let us describe f (M, art)

and F(M, ait) for 1 = 1,...,d and t E Io,a,. Pick an n x n invertible integral

matrix A with (al) as the first row. Equip AK(SA-1) with the coordinates (sl),

and define the toroidal transform : AK(SA - ) - AK(S) by O*(tI) = sA , where

S A - ' = {XA-IX E S}. By Lemma 1.3.3.8, fi(M,ajt) = fi(¢*M,(ajA- 1)t). The

theorem follows from Theorem 1.2.4.4.

To prove (d), by continuity, we may assume that rr - r' are all rational numbers.

By an argument as in the previous paragraph, we may reduce to the 1-dimensional

case. In this case, we get a differential module over a disc, so the desired statement

follows from Theorem 1.2.4.4(c). O

1.3.4 Decomposition by subsidiary radii

To conclude, we extend the theorems of §1.2.5 to higher-dimensional spaces.

Lemma 1.3.4.1. Supposer E {0,..., n}. Put C = {(XI)IxI 0, X +- --+Xr : 1} C

Rn, and let C, be any TRP subset of Rn containing C in its interior. Let S (resp.

S,) denote the closure of e- c (resp. e- ce) in [0, +oo)", which is a log-TRP subset.
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Let M be a differential module of rank d over AK(SE). Suppose that the following

conditions hold for some 1 e {1,..., d - 1}.

(a) The function F(M, r1 ) is affine for (rj) E C,.

(b) We have f,(M, r1 ) > f+l(M, ri) for (r,) E C,.

Then M admits a unique direct sum decomposition over AK(S) separating the first 1

subsidiary radii of M 0 F,-,, for any (rj) E C.

Proof. Note that F(AK(S), O) = K(ti, e- 1 /tl - tr) may be embedded into the com-

pletion F1,...,1 of K(tl,... ,tn) for the (1,...,1)-Gauss norm. For i = 1,... ,n, let

F.F(, be the completion of K(t, ... ,t~... ,t) for the (1, ... ,1)-Gauss norm; then

the image of [(AK(S), O) also belongs to each of the subrings

Fl,),-1/ti, ti) (i = 1PM r); 1,(t-) (i = r + 1,..., n),

In fact, it is equal to the intersection of these subrings; this is true because C is the

convex hull of the union of the segments

{(xl,...,x):0x 51; xj=0 (j#i)} (i=1,...,r)

{(Xl,... ,X,) : 0 5 Xi; Xj = (j (i= r + 1,... ,n).

Consequently, by Lemma 1.2.3.2, it suffices to prove the decomposition over the rings

F,) ,(e 1/titi) for i = 1,...,r and F1,(ti for i = r + 1,..., n. The former case

follows by applying Theorem 1.2.5.1 to M0 F1,..., (e-l-/ti, tile) for i = 1,..., r for

some E > 0; the latter case follows by applying Theorem 1.2.5.4 to F,...,l(ti/e') for

i = r + 1,...,n for some E > 0. O

Theorem 1.3.4.2. Let S be a ind-log-TRP subset of [0, +oo) ", and let M a differ-

ential module of rank d over AK(int(S)). Suppose that the following conditions hold

for some 1E {1,...,d - 1}.

(a) The function F(M, rj) is affine for (rj) E int(-log S).
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(b) We have f1(M, ri) > fi+l(M, ri) for (r1 ) E int(-log S).

Then M admits a unique direct sum decomposition over AK(int(S)) separating the

first 1 subsidiary radii of M 0 Fe-r, for any (rj) E int(-log S).

Proof. We can cover int(S) by log-TRP subsets Sa C int(S) such that for each point

of x E int(S), there exists a neighborhood of x contained in some Sa. Moreover, we

can choose those S, to be simplicial, i.e., under a toroidal transform and rescaling,

each S, can be transformed into the form desired for Lemma 1.3.4.1. Since So lies

in the interior of S, the decomposition follows from Lemma 1.3.4.1 by gluing the

decompositions obtained on each of the Sa. Oi

Lemma 1.3.4.3. Supposer E {0,..., n}. Put C = {(xi)lxl _ 0, x +- +x, < 1} C

R", and let C, be any TRP subset of R" containing C in its interior. Let S, denote

the closure of e-  in [0, +oo)", which is a log-TRP subset. Let S be the set of points

(si) E S, such that s, < 1 and s ... s, > e- 1. Let R be the subring of F(AK(S,), O)

consisting of those f for which If 1,, is bounded over (si) E S. Let M be a differential

module of rank d over AK(S). Suppose that the following conditions hold for some

1 E {1,..., d- 1}.

(a) The function F (M, ri) is affine for (rj) E C,.

(b) We have fi(M, ri) > ft+1(M, ri) for (r1 ) E C,.

Then MOR admits a unique direct sum decomposition separating the first I subsidiary

radii of M 0 Fe-,i for any (rj) E C.

Proof. Let F be the completion of FracR for the (1,... ,1)-Gauss norm. Define F(i)

as in the proof of Lemma 1.3.4.1. Then inside F, R is the intersection of the rings

F,..,(1/t7 ,t-1/ejo (i= 1,...,r); F .,(i) (i = r + 1,..., n).

We may thus argue as in Lemma 1.3.4.1, but using Theorem 1.2.5.8 instead of The-

orems 1.2.5.1 and 1.2.5.4. O
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Theorem 1.3.4.4. Let S be a log-TRP subset of [0, +oo) n . Let R be the subring of

F(AK(int(S)), 0) consisting of those f for which Ifl,, is bounded over sr E int(S).

Let M be a differential module of rank d over AK(S). Suppose that the following

conditions hold for some 1 E {1,..., d - 1}.

0

(a) The function F1(M, rj) is aine for (r1) E -log S.

(b) We have f (M, r1 ) > f+l1(M, rl) for (r1 ) E -log S.

Then MOR admits a unique direct sum decomposition separating the first 1 subsidiary

radii of M 0 Fe-r, for any (rI) E int(-log S).

Proof. Analogous to Theorem 1.3.4.2, except using Lemma 1.3.4.3 instead of Lemma 1.3.4.1.

O

Remark 1.3.4.5. It may be helpful to illustrate the argument needed to reduce

Theorem 1.3.4.4 to Lemma 1.3.4.3 with an explicit example. Take S = [0, 1]2, so that

R = OK X, y 00K K. We must partition int(-log S) = (0, +00)2 into regions to

which Lemma 1.3.4.3 may be applied. One such partition consists of

{(x, y) E R2 :0 < x, O < y 5 min{x, 1}},

{(x, y) E R2 : 0 < y, O < x < min{y, 1}},

{(x,y) E R2 : 1 x, < y}.

Since the parts all contain (1, 1), we can glue the three resulting decompositions

together by matching them on M 0 Fe-i,e-1.

Remark 1.3.4.6. Note that Lemma 1.3.4.3 is not a special case of Theorem 1.3.4.4.

We will not discuss the formulation and proof of a common generalization because it

is just a somewhat awkward exercise.

Remark 1.3.4.7. By Remark 1.2.5.10, in Theorem 1.3.4.4, if loglKXI g Q and

-log S is RP, we may also take M to be defined over R. For example, if K carries

the trivial valuation (forcing p = 0) and

S = {(x, y) E (0, 1]2 : xy = e-l1,
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then R = K[x,yj[x-l,y-l]. This example can be used in the study of good for-

mal structures for flat holomorphic connections; however, one needs to refine The-

orem 1.3.4.4 slightly in case p = 0, to remove the need for strict inequality on the

boundary of -log S. For this, please consult to [Ked08+b].
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Chapter 2

Ramification Theory for Local

Fields: Overview

2.1 Introduction

Let K be a complete discretely valued field and let GK be the Galois group of a

separable closure K" P of K. When the residue field K is perfect, one has a classical

ramification theory as well as Artin conductors and Swan conductors, which measure

the ramification of a representation of GK Of finite local monodromy (i.e., the image

of the inertia group being finite). Also, we have the Hasse-Arf theorem in this case,

which states that these conductors are integers. It is one of the fundamental and

amazing theorem in the classical ramification theory.

A goal of this thesis is to generalize the ramification theory to the case when the

residue field rK is not perfect. The key result in this case is the analogue of Hasse-Arf

theorem proved in Theorem 2.2.2.19.

2.1.1 Why imperfect residue case?

Let X be a connected proper smooth curve over an algebraically closed field k of

characteristic p > 0, with geometric generic point r7. Let D be a finite set of

closed points. Let F be a lisse Qj-sheaf of rank d over U = X\D, where 1 is a
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prime number different from char k. In other words, F is given by a representation

w1r(U,, ) -- GLd(Ql). From this, we can read off Swan conductors Swan:(F) asso-

ciated to the representation G(Fracx)^,l - Ir(U, i) -- GLd(I), where (FracOx) ^ ,

is the completion of the function field of X with respect to the norm at x. If we

use Xc(F) = 2=o(-1)i dim Hc(U, F) to denote the Euler characteristic of F, the

Grothendieck-Ogg-Shafarevich formula states that

xc(F) = d Xc(Q) - Swanx(F), (2.1.1.1)
xED

where Q, is the trivial sheaf on U. In other words, this formula says that the Euler

characteristic can be obtained from the global geometric information and the local

ramification information. Since Xc(F) is an (alternating) sum of integers, it suggests

that each single conductor Swan.(F) should be an integer.

In order to generalize this formula to higher dimensional cases, we need to measure

the ramification along a divisor D with simple normal crossings on a smooth variety

X. It is natural to pass to (the completion of) the local ring at the generic point i of

one irreducible component Di of D, which is a (complete) discrete valuation ring OK.

The residue field of OK is exactly the function field of Di, which is typically imperfect

if dim X > 1. We still want to understand the ramification for the Galois group of

its fraction field Frac(OK), a complete discretely valued field. However, some notable

technical difficulties arise then, for example, the poorly behaved nature of Herbrand

functions 0 and i; non-monogeneration of ring of integers; and fierce ramification.

2.1.2 Some historical review

Motivated by the questions above, we need to understand the situation when the

residue field KK is not perfect. In [Kat89a], Kato made a pioneer attempt. He

defined arithmetic Swan conductors for one-dimensional representations. Even more,

he also introduced the refined Swan conductors, which give secondary information of

the ramification. Then, there have been fifteen years with no essential breakthrough

until Abbes and Saito [AS02, AS03] gave a general definition of arithmetic non-
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logarithmic ramification filtration and arithmetic logarithmic ramification filtration

on GK by counting geometric connected components on certain rigid spaces ASSI/K

over K. One can define arithmetic Artin conductors and Swan conductors using

the two filtrations. Later, Saito [Sai07+] gave a general definition of refined Swan

conductors in the equal characteristic case.

Abbes and Saito showed [AS06+] that their definition of Swan conductors coincide

with Kato's definition for characters in the equal characteristic case. Moreover, they

proved some important properties of their filtrations. For example, the subquotients

of both log and non-log filtrations are p-abelian groups [AS03]. (See also [Sai07+],

where Saito proved that the subquotients of the log filtrations are annihilated by

p.) However, they were not able to establish a Hasse-Arf theorem of the filtrations.

This has become one of the central problem in ramification theory and arithmetic

geometry.

Another approach to the problem using p-adic differential modules emerged in

the mid 1990s. If the field K is of equal characteristic p > 0, the work of Christol,

Matsuda, Mebkhout, Kedlaya, and Tsuzuki [Mat95, Ked05a] gave an alternative way

to understand the classical Swan conductors. They first associated a p-adic differential

module over the Robba ring to any p-adic Galois representation with finite local

monodromy (that is to say the image of the inertia group is finite). Then they

gave an interpretation of the Swan conductors by measuring the spectral norms of

differential operators.

Partly inspired by Matsuda [Mat04], Kedlaya realized that this framework can

be generalized to the case when the residue field K is not perfect. In [Ked07a], he

adopted the same construction and took into account of the effects of the differential

operators corresponding to a p-basis of KK. Vaguely speaking, he defined the differen-

tial Artin / Swan conductor to be the maximal number computed by the differential

operators under certain normalization. Kedlaya showed that the definition of Artin

and Swan conductors turned out to give filtrations on the Galois group [Ked07a, Def-

inition 3.5.12] (Theorem 3.2.3.5(4)). Also, he was able to prove a Hasse-Arf theorem

for differential conductors (Theorem 3.2.3.5(1)(4)).
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In [Ked07a], Kedlaya asked, as Matsuda suggested, whether the differential con-

ductors are the same as the arithmetic ones, in which case the Hasse-Arf theorem

for the arithmetic filtrations in the equal characteristic case would follow from that

for the differential ones. Chiarellotto and Pulita [CP07+] gave an affirmative answer

to this question when the representations are one-dimensional, using the setting of

Kato's conductor [Kat89a]. We will give an affirmative answer to the general case

in Chapter 3. This proof is close to Matsuda's approach [Mat04], however, we do

not know how to explicitly link two methods. We will also show in Chapter 4 that

a slightly modified proof may be applied to prove the Hasse-Arf theorem for K of

mixed characteristic!

Another method of understanding general ramification theory is due to Borger,

who introduced the notion of generic perfection [Bor04] of a complete discretely valued

field, which is universal for all perfections of the residue field. He defines the Artin

conductors to be the ones obtained by base changing to (the completion of) the

fraction field of the generic perfection. The Hasse-Arf theorem of these conductors

follows immediately from that of the classical ones. Kedlaya in [Ked07a, P.297] asked

if Borger's definition also coincides with the two definitions above. We will show

in Proposition 3.2.4.8 that, in the equal characteristic case, the differential Artin

conductors are invariant under the operation of "adding a generic p'-th root" (see

Definition 2.3.2.7), and hence it is the same as Borger's definition. However, in the

mixed characteristic case, we can only deduce that the Artin conductors are invariant

under the operation of "adding a generic p-th root" (see Definition 2.3.2.7), and we

do not know if Borger's Artin conductors agree with the arithmetic Artin conductors.

2.1.3 Structure of this chapter

In Section 2.2, we give a brief review of the classical ramification theory, to motivate

Abbes and Saito's definition. Then, we give Abbes and Saito's definition of arithmetic

ramification filtrations, following [AS02].

In Section 2.3, we outline a fake proof of the Hasse-Arf theorem, leaving out some

fake-assumptions that we cannot meet. We hope that this would help the readers
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better understand the big picture first. In particular, we would like to point out that

the concept of generic rotation is actually used in previous chapters already, but with

more number theoretic picture involved here.

In Section 2.4, we first review Borger's definition of generic perfection and Artin

conductors. Then we prove the comparison theorem between Borger's Artin conduc-

tors with differential Artin conductors, provided that we know the invariance of the

arithmetic Artin conductors under the operation of "adding a generic p""-th root".

We briefly discuss why the same argument fails for mixed characteristic case.

In Section 2.5, we first discuss an application of ramification filtration to finite

flat group schemes, given by Abbes and Mokrane [AM04]. Then we prove that the

Hasse-Arf theorem for non-logarithmic ramification filtrations implies a Hasse-Arf

type theorem for finite flat group schemes.

2.2 Ramification Filtrations

2.2.1 Classical ramification theory

We now discuss the classical ramification theory for a complete discretely valued field,

following [Ser79, Chapter IV].

Hypothesis 2.2.1.1. In this subsection, let K be a complete discretely valued field

whose residue field rK is perfect. Let L be a finite Galois extension of K with

ramification degree eL/K.

Definition 2.2.1.2. The lower numbering filtration of GL/K is defined as follows: for

i > -1 an integer,

def Aut( /m
GL/K,i = Ker (GL/K -+ Aut(OL/ '))
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In particular,

GL/K,-1 = GL/K;

GL/K,O = IL/K, the inertia group;

GL/K,1 = PL/K, the wild inertia group.

For i > -1 real, we define GL/K,i = GL/K,[i]. The lower numbering filtration behaves

nicely with respect to subgroups of GL/K but not quotients; it thus cannot be defined

on the absolute Galois group GK-

Definition 2.2.1.3. For i > -1, the upper numbering filtration of GL/K is defined
by the relation G L/K) L/,i, where

LIK -GLIK,i, where

L/K(i) = dt.
(i [GL/K,o : GL/K,t]

Note that the indices where the filtration jumps are now rational numbers, but not

necessarily integers. In any case, Proposition 2.2.1.4 below implies that there is a

unique filtration GI on GK which induces the upper numbering filtration on each

GL/K (that is, GL/K is the image of G' under the surjection GK -+ GL/K).

Proposition 2.2.1.4 (Herbrand). Let L' be a Galois subextension of L/K, and

put H = Gal(L/L'), so that H is normal in GL/K and GL/K/H = GL'/K. Then

GK = (GL/KH)/H; that is, the upper numbering filtration is compatible with form-

ing quotients of GL/K.

Proof. See [Ser79, § IV.3 Proposition 141. Ol

Definition 2.2.1.5. We call b E R a (ramification) break of L/K if GL D Ua>b-1Ga/K

From Definition 2.2.1.3, all breaks of L/K are rational numbers. Among all breaks

of L/K, the biggest one is called the highest (ramification) break of L/K, denoted

by b(L/K). (If L = K, we set b(L/K) = 0 by convention.) This quantity has a more

direct interpretation in terms of generators, stated in Proposition 2.2.1.6 below.
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We also define the highest log-break to be biog(L/K) = 0 if b(L/K) < 1 and

biog(L/K) = b(L/K) - 1 otherwise; it measures the wild ramification of GK.

Proposition 2.2.1.6. There exists x E OL that generates OL as an OK-algebra. For

such an x,

b(L/K) = 1vL(gX - X) + max vL(gX- x).
eL K  1gEGL/K

1:gEGL/K

In particular, if L/K is totally ramified, we may take x to be any uniformizer irL of

L.

Proof. The existence of x is proved in [Ser79, § 111.6 Proposition 12]. The rest is just

plain calculation, which may be found in, for instance, [Co103+, Proposition 1.2]. O

A key observation, which Saito attributes to Kato, is the following.

Proposition 2.2.1.7. Let P be the minimal polynomial of x in the proposition above.

Then, the rigid analytic space Xa = {uIuI _ 1, JP(u)| < IIKla} has [L: K] geometric

connected components ([BGR84, 9.1.4/8]) if and only if a > b(L/K).

Proof. A rigorous proof may be found in [Co103+, Lemme 2.4] or [AS02, Lemma 6.6].

We will, instead, give a rough idea of why this is true.

The picture here is that if a is very large, we confine u in very small neighborhoods

of the roots of P(u) = 0, or equivalently, the conjugates of x. The rigid space Xa

should be geometrically disjoint union of very small discs centered at each conjugate

of x. When a becomes smaller, the discs grow larger and, at some point, some of them

crash into one disc, which decreases the number of geometric connected components;

the number b(L/K) records this moment.

The cut-off condition is obviously lu - xI < Igx - xI for any g E GL/K\{1; in

other words, u is closer to x than any other conjugates of x. Note that P(u) =

1gEGL/K (U - gx). Hence, one has Iu - gx i = Igx - xI. Thus,

IP(u) = - g = Ju - x 1 Ix - g x l < [7rK Ib(L/K)

gEGL/K 19geGL/K
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In fact, this gives the essential ingredient of a rigorous proof.

2.2.2 Review of Abbes-Saito's definition

We will sketch the definition of arithmetic ramification filtrations on the Galois group

of a complete discretely valued field K. For more details, one can consult [AS02,

AS03].

Hypothesis 2.2.2.1. In this subsection, let K be a complete discretely valued field

with possibly imperfect residue field K. Assume char KK = p > 0. Let L be a finite

Galois extension of K with (naive) ramification degree e = eL/K (see Notation 1.1.1.7).

Notation 2.2.2.2. Denote 0 = JIrKI. When K is of mixed characteristic, we denote

PK = vK(p), the absolute ramification degree. We say K is absolutely unramified if

PK = 1, equivalently, p is a uniformizer of K.

Definition 2.2.2.3. Take Z = (zj)jEJ C OL to be a finite set of elements generating

OL over OK, i.e., OK[(Uj)jEJ/Z f OL mapping uj to zj for j E J = {1,... , m and

for some appropriate ideal I. Let (fi)i=,...,n be a finite set of generators of I. For

a > 0, define the Abbes-Saito space to be

ASL/K,Z = {(uj) e A~ [0, 1] I If(uJ) < A , 1 < i < n}. (2.2.2.4)

We denote the geometric connected components of AS2/K,Z by 7 eom(AS2/K,Z).

The highest ramification break b(L/K) of the extension L/K is defined to be the

minimal b such that Va > b, #7rO° m (ASa/K,Z) = [L : K].

Caution 2.2.2.5. Recall from Notation 1.1.1.22 that OK(UJ) denotes the Tate al-

gebra in m variables over OK. S. Zerbes pointed out that a set of polynomial

generators of Ker(OK(uJ) -- OL) may not generate I over OK[Uj]. For exam-

ple, K = F,(x, y)((lrK)) with p > 2 and L is generated by z,w with relation

zP = zP- 1WP-lrK +, Wp = zP-1 P- 7rK+y; these two equations generate the kernel of

OK (UJ) -- OL but not the kernel of OK[Uj] -+ OL because OK[Uj] is not 7rK-adically

complete.
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Remark 2.2.2.6. When the residue field KK is perfect, we may choose the generator

in Definition 2.2.2.3 to be the one in Proposition 2.2.1.6. Then the rigid analytic

space X a in Proposition 2.2.1.7 is the union Ua,>aAS/K, . Hence, Abbes and Saito's

definition is a natural generalization of the classical ramification breaks.

Similarly to the proof of Proposition 2.2.1.7, we give an intuitive way of under-

standing the above definitions following [AS02].

First, if a -- 0+, the conditions on fl, ... , f, in 2.2.2.4 are almost vacuous. So,

AS2/K,Z is almost the whole polydisc. In particular, it is geometrically connected. In

contrast, if a -+ oo, the conditions on fl,..., f, in 2.2.2.4 basically restrain the pos-

sible uj to be very close to zj or other solutions to the equations fi = 0, ... , f, = 0,

which are exactly Galois conjugates of zj. Thus, ASy/K,Z has exactly [L : K] geomet-

ric connected components. From these two extreme cases, we know that, when we

increase a, the Abbes-Saito space shrinks from a whole polydisc to smaller polydiscs

and, at some a it breaks apart into different polydiscs. The highest ramification break

captures the last break.

Remark 2.2.2.7. It might be more natural to view ASa/KZ, together with a mor-

phism r : AS/K, -+ A'[0, a] mapping (uj) to ( f (uj),. ., fn(uj)). The similar

view should also be taken for ASa/K,1og,Z,P below. We will come back to this in

Subsection 2.3.3.

Definition 2.2.2.8. Keep the notation from Definition 2.2.2.3. Moreover, take a

subset P C Z and assume that P and hence Z contain lrL. Let ej = vL(zj). Take

gj E OK[(Uj)jEj] as a lift of z /re, Vj E P, and take hij E OK[(Uj)jEJ] as a lift of

zj'/z , Vi, j e P 2. For a > 0, define the logarithmic Abbes-Saito space to be

fi(jA Oa1, 1 < i < n

AS2/K,log,Z,P (uj) E Am [0, 1] 7u~ Vej E P

- u. h ij I oa+eiejleL K/  V(i,j) E P 2

(2.2.2.9)

Similarly, the highest logarithmic ramification break blog(L/K) of the extension

LIK is defined to be the minimal b such that Va > b, #7feom(ASy/K,log,Zp = [L : K.
0Tr (S/g,Iog,Z,p) =-[L:'K].
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Remark 2.2.2.10. The additional structure on the special subset P is to give a log-

variant of Definition 2.2.2.3, where we equip OK and OL the natural log-structures

given by z --+ OK and Lz L--+ OL, respectively.

We reproduce several statements from [AS02, AS03].

Proposition 2.2.2.11. The Abbes-Saito spaces have the following properties.

(1) For a > 0, the Abbes-Saito spaces ASL/K, Z and ASa/K,og,Z,P do not depend

on the choices of the generators (fi)i=1,...,n of I and the lifts gj and hi,j for i,j E P

[AS02, Section 3]. (This justifies the omission of fi, gj, hi,j from the notation.)

(1') In the definition of both Abbes-Saito spaces, if we choose polynomials (fi)i=l,...,n

as generators of Ker (OK(UJ) --+ OL) instead of I = Ker (OK[UJ] - OL), the spaces

do not change.

(2) If we use another pair of generating sets Z and P satisfying the same proper-

ties, then we have a canonical bijection on the sets of the geometric connected com-

poents KZ) and geom(AS/KogZP for different generating sets, where

a > 0. In particular, both highest ramification breaks are well-defined [AS02, Sec-

tion 3].

(3) The highest ramification break (resp. highest logarithmic ramification break)

gives rise to a filtration on the Galois group GK consisting of normal subgroups FilaGK

for (resp., Fil'logGK) for a > 0 such that b(L/K) = inf{alFilaGK C GL} (resp.

biog(L/K) = inf{alFilogGK C GL}) [AS02, Theorems 3.3, 3.11]. Moreover, for L/K

a finite Galois extension, both highest ramification breaks are rational numbers [AS02,

Theorems 3.8, 3.16].

(4) Let K'/K be a (not necessarily finite) extension of complete discretely valued

fields. If K'/K is unramified, then FilaGK, = FilaGK for a > 0 [AS02, Proposi-

tion 3.7]. If K'/K is tamely ramified with ramification index e < 00, then Fill gGK'

FilagGK for a > 0 [AS02, Proposition 3.15].

(4') Let K'/K be a complete extension of discretely valued fields with the same

value group and linearly independent of a given finite extension L/K. Denote L' =

K'K. If OL' = OL 0OK OK', then b(L/K) = b(L'/K') [AM04, Lemme 2.1.5].
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(5) For a > 0, define Fila+GK = Ub>aFilbGK and FilgGK = Ub>aFilogGK.

Then, the subquotients FilaGK/Fila+GK are abelian p-groups if a E Q>1 and are 0 if

a V Q, except possibly when K is of mixed characteristic and absolutely unramified

([ASO2, Theorem 3.8] and [AS03, Theorem 1]). The subquotients Filg GK /Fil GK

are abelian p-groups if a E Q>o and are 0 if a V Q ([AS02, Theorem 3.16], [AS03,

Theorem 1]).

Moreover, if K is of equal characteristic p > 0, the subquotients Filg GK/Fil aGK

are abelian p-groups killed by p if a E Q>o. [Sai07+, Corollary 1.3.6]

(6) For a > 0, Fila+±GK C FilogGK C FilGK [AS02, Theorem 3.15(1)].

(7) The inertia subgroup is FilaGK for a E (0, 1] and the wild inertia subgroup is

Fil'+GK= Fil0+GK [AS02, Theorems 3.7 and 3.15].

(8) When the residue field CK is perfect, the arithmetic ramification filtrations

agree with the classical upper numbered filtration [Ser79] in the following way: FilaGK =

Filj 1GK = G '- 1 for a > 1, where Ga is the classical upper numbered filtration on

GK [AS02, Section 6.1].

Proof. For the convenience of readers, we point out some ingredients of the proof.

For details, one can consult original papers.

(1) is straightforward by matching up points.

(1') is not in any literature. However, it can be proved verbatim as (1).

(2) One can show that if we add a new (dummy) generator in Z or P, the new

Abbes-Saito space admits a fibration over the original Abbes-Saito space whose fibers

are closed discs of radius 0a.

(3) The first statement is just abstract nonsense. The second one is essentially

because Abbes-Saito spaces are defined over K and the geometric connected compo-

nents can be detected over the algebraic closure K g, which has value group IKX IQ.

However, realizing this principle needs formal models of rigid spaces. As we will re-

prove this result in the main theorem, we refer to the original paper for the formal

model proof.

(4) and (4') When (OLK' f- 0 L ®OK OK', one can match up the non-logarithmic

Abbes-Saito space for LK'/K' and the extension of scalar of the non-logarithmic
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Abbes-Saito space for L/K in a natural way. In the tamely ramified and the loga-

rithmic case, one can also identify two logarithmic Abbes-Saito spaces [AS02, Propo-

sition 9.8]; it is slightly more complicated.

(5) The proof uses the formal models of the Abbes-Saito spaces and their stable

reductions, which is in an orthogonal direction of the present thesis. One may consult

[AS03] and [Sai07+] for a complete treatment.

(6) and (7) are easy facts.

(8) follows from an explicit calculation in monogenic case, carried out in Proposi-

tions 2.2.1.6 and 2.2.1.7 and Remark 2.2.2.6. O

Remark 2.2.2.12. To avoid confusion, we point out that our approach to the Hasse-

Arf Conjecture 2.2.2.17 below does not use (5) and the second statement of (3) on the

rationality of the breaks in the proposition above. In fact, we will derive these prop-

erties from the properties by reducing to the classical case, or using the comparison

with differential conductors.

Definition 2.2.2.13. By a representation of GK, we mean a continuous homomor-

phism p: GK -- GL(V,), where V is a finite dimensional vector space over a field F

of characteristic zero. We allow F to have a nonarchimdedean topology; hence the

image of GK may not be finite. For a : H --+ GK a continuous homomorphism, we

write PIH for po a.

We say that a representation p of GK has finite local monodromy if the image of

the inertia subgroup of GK is finite.

Definition 2.2.2.14. Let p : GK --+ GL(V,) be a representation of finite local mon-

odromy. Define the arithmetic Artin and Swan conductors as

Art(p) de a. dim (V il=+ K VF il K ) ,  (2.2.2.15)
aEQ>o

Swan(p) a -dim (VFila + GK / ,F il G K ) .  (2.2.2.16)
aEQ>o

They are actually finite sums.
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Conjecture 2.2.2.17. (Hasse-Arf Theorem) Let K be a complete discretely valued

field. For any representation p of GK of finite local monodromy, the arithmetic con-

ductors are nonnegative integers, namely, Artar(p) E Z>o and Swanar(p) E Z>0.

Moreover, the subquotients of the filtration FilaGK/Fila+GK for a E Q>,1 and

logGKIFlgGK for a E Q>o are abelian groups killed by p.

Proposition 2.2.2.18. If the residue field rK is perfect, Conjecture 2.2.2.17 holds.

Proof. By Proposition 2.2.2.11(8), we are reduced to the classical Hasse-Arf theorem

[Ser79, §VI.2 Theorem 1' and §IV.2 Corollary 3]. Note that in this case, Swan(p) =

Art(p) - dim VV I'K. 

We will prove Conjecture 2.2.2.17 in Chapters 3 and 4, except for some special

cases. The precise statement is as follows; it summaries the results from Corol-

lary 3.4.3.3 and Theorems 4.2.3.5, 4.3.1.14, and 4.3.3.3.

Theorem 2.2.2.19. Let K be a complete discretely valued field and let GK be its

absolute Galois group.

(1) (Hasse-Arf Theorem) Let p : GK -- GL(V) be a continuous representation of fi-

nite local monodromy. Then the Artin conductor Art(p) is a nonnegative integer

except possibly when K is of mixed characteristic and is absolutely unramified;

the Swan conductor Swan(p) is a nonnegative integer except possibly when K is

of mixed characteristic and p = 2, in which case, we have Swan(p) C !Z>o.

(2) The subquotients FilaGK/Fila+GK for a > 1 and Fila GK Fila GK for a > 0

of the ramification filtrations are trivial if a Q and are abelian groups killed

by p if a E Q, except possibly in the mixed characteristic, absolutely unramified

and non-logarithmic case.

Remark 2.2.2.20. The restriction on not being absolutely unramified also occurs

in [AS03]. It reflects the failure of deforming the uniformizer p (not even "slightly").

Explicitly, we have a dichotomy (assuming that K has a finite set of lifted p-basis
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bi, ... , bm)

KZ =1 K- dbj K is absolutely unramified,

K/p K K d $rK E 1 K dbj otherwise.

Compare Remarks 2.3.4.14 and 4.1.1.9 for another interpretation of the restriction

from a more technical point of view. This does not affect the logarithmic ramification

filtration because it well-behavior under tame base change helps avoid the restriction

on 3 K.

The restriction on p # 2 is purely technical. Please see the proof of Theo-

rem 4.3.1.14 as well as Remark 4.3.1.15 for more detailed description.

We do not know any counterexample of Conjecture 2.2.2.17 in the case when either

of the two conditions fails.

For the rest of this chapter, we first give some idea of the proof of the above

theorem, and deduce some applications of it.

Before doing so, we point out a relevant conjecture on the arithmetic ramification

filtration, which we will prove in Corollary 3.4.3.5 for the equal characteristic case.

Conjecture 2.2.2.21. Let K be a complete discretely valued field. For a E Q>0, let

FilaogGK be the arithmetic logarithmic ramification filtration. Then for a E Q>o, the

conjugation action of FiloGK/FlGK on FilgGKFil GK is trivial

Remark 2.2.2.22. By [Ser79, §IV.2 Proposition 10], the above Conjecture 2.2.2.21

is true if the residue field I'K is perfect. We will prove it for the equal characteristic

case in Corollary 3.4.3.5.

2.3 A fake proof of Hasse-Arf conjecture

In this section, we give a fake proof of the Hasse-Arf Conjecture 2.2.2.17, which will

be the prototype of the real proofs in Chapters 3 and 4.
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2.3.1 A brief sketch of the proof

This subsection is designed to give a vague overview of the proof. A slightly more

detailed argument is presented in later subsections of this section.

Some preliminary reductions may reduce the problem to studying the ramification

break of a finite totally ramified and wildly ramified Galois extension L/K. The

problem is that the residue field extension IL/K may not be separable. The idea

of the proof is that if we could add the p-th roots of some elements of K without

changing the ramification break b(L/K), then we would practically "perfectify" the

residue field of K and hence reduce to the separable residue field extension case, which

can easily reduce further to the perfect residue field case.

The reality is not as ideal as we hoped, but one expects that, if adding the p-

th roots of bj, an element in a p-basis of K, changes the ramification break, then

adding the p-th roots of bj + arK would not change the ramification break for all

a E O. In order to give a systematic approach, we introduce the operations of

adding generic p-th or p'-th roots of elements in a lifted p-basis, that is to replace K

by K = K(x)unr,' ((b+ zrK)1/p) or K = K(X)unrA(b+ zXK)/pn), namely, we first add

a dummy variable x and then adjoin a p-th or p"-th root of an element involving x.

Fortunately, knowing that the ramification breaks are invariant under adding generic

p-th or poo-th roots is enough for proving Conjecture 2.2.2.17, because we can still

reduce to the separable residue field extension case (see Proposition 2.3.2.10).

Now, it suffices to show the invariance of ramification breaks under the operations

of adding generic p-th or p"-th roots. For this, we need to link the ramification breaks

with the generic radii of convergence of some differential modules and apply the tool

of differential modules from Chapter 1. Assume for a moment that pulling back an
Abbes-Saito space AS/K Z - A[0, O ] along some map Al[0, 0a] - A'[0, 0] gives

an Abbes-Saito space for the extension KL/K, i.e., we have the following Cartesian
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diagram.
ASI/Kz ASKL/kE (2.3.1.1)

A [, 9"] -- A [O, O]

The key here is that the morphism ir is finite 4tale of degree [L : K] (for some

standard Abbes-Saito spaces which will discuss below). Thus, we can push forward

the structure sheaf along 7r to get a differential module £ over An[0, O0]. Using simple

Taylor expansion, we know that 7reom (AS/K,Z) = [L : K] if and only if E is trivial

over An [0, 0b] for b < a, which can be seen from the generic radii of E. (This is not

false when char K = p > 0; see Subsection 2.3.6 for the explanation.) When adding

a generic p-th or pl"-th root, it is equivalent to considering an Abbes-Saito space for

KL/K and considering the corresponding differential module. By the base change

property (2.3.1.1), we need to match up the generic radii of £ with those of f*E. This

is exactly where the tool of differential module from Chapter 1 comes into play.

Now, we discuss the base change diagram (2.3.1.1) above. In practice, we work

with a special type of Abbes-Saito spaces (Definition 2.3.3.7). They basically arise

from a good set of generators of OL/OK, by choosing a lifted p-bases of nL and

a uniformizer rTL. A more serious problem we encounter is that the definition of

Abbes-Saito space is not "functorial" with respect to the base field K and hence

the expected base change diagram (2.3.1.1) does not hold. The key point here is to

slightly change the morphism r : ASL/K, - A [0, 0a] to II: TS/K --- An [0, a],

where we introduce a space TSa/K isomorphic to ASa/K,Z, which carries a "functorial"

morphism down to A'[0, 0a]. We call this AS = TS theorem (Fake-theorem 2.3.5.2).

We will see in Subsection 2.3.5 that this needs to be more carefully studied in the

mixed characteristic case.

2.3.2 Generic p-th roots and generic pl-th roots

The notion of generic p'°-th roots was first (implicitly) introduced by Borger in

[Bor04]. Kedlaya [Ked07a] realized that in the equal characteristic case, adding
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generic p-th roots into the field extension will not change the (differential) non-

logarithmic ramification filtration; hence, one can prove the non-logarithmic Hasse-

Arf theorem by reducing to the perfect residue field case.

Hypothesis 2.3.2.1. In this subsection unless otherwise specified, let K be a dis-

cretely valued field with separably closed and imperfect residue field. Let L be a

finite Galois extension of K. Assume that K admits a finite lifted p-basis (see Defi-

nition 1.1.1.11).

Remark 2.3.2.2. This is a mild hypothesis because the conductors behave well

under unramified base changes, and the tamely ramified case is well-studied (Propo-

sition 2.2.2.11(7)). Also, one can easily reduce to the finite p-basis case (see Propo-

sition 2.3.2.13).

Notation 2.3.2.3. Let J = (1,..., m} for notational convenience. For rest of the

thesis, we reserve the notation j and m for indexing p-basis. We also use J+ to denote

J U {0O, where 0 refers to the uniformizer rK.

Notation 2.3.2.4. Let x be transcendental over K. Define K(x)^ to be the comple-

tion of K(x) with respect to the 1-Gauss norm and define K' to be the completion of

the maximal unramified extension of K(x)A. Set L' = K'L.

Lemma 2.3.2.5. Let L(x)A be the completion of L(x) with respect to the 1-Gauss

norm. Then, L' is the completion of the maximal unramified extension of L(x)A. In

particular, the residue field of L' is KL = rK(X) p " KL, which is separably closed.

Proof. First, L(x)A = LK(x)A because the latter is complete and is dense in the

former. So, it suffices to prove that L' is complete and has separable residue field.

Since L'/K' is finite, L' is complete. Moreover, the residue field L' of L' is separably

closed because it is a finite extension of a separably closed field K( ) se p .  O

Proposition 2.3.2.6. The highest ramification breaks do not change if we make a

base change from K to K'. In other words, b(L/K) = b(L'/K') and biog(L/K) =

biog (L'/ K').
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Proof. Since 7rL is a uniformizer of L' and OL @OK OK' surjects onto KL' by previous

lemma, we have OL, = OL @OK OK'. The result follows from Proposition 2.2.2.11(4').

O

Definition 2.3.2.7. Let bj0 be an element in a lifted p-basis of K. We will often

need to make a base change K -+ K = K'((bjo + xrw/K)'lp';n E N)A(resp. K --

K = K'((bj, + XzrK)l/P)), a process which we shall refer to as adding a generic p"-th

(resp. p-th) root (of bjo). If we start with a finite field extension L/K, adding a

generic p"-th (resp. p-th) root will mean considering the extension L = LK/K. We

have GZlk = GL/K as K is linearly independent from L over K. By convention, we

take -r = 7-K as K/K since unramified. If we add a generic p'c-th root, we provide

K with a lifted p-basis {b\(jo), x}, which has the same number of elements as the

original lifted p-basis. If we add a generic p-th root, we provide K with a lifted p-

basis {bj\j 0o), (bjo + xrK)l /p , x}, which has one more element than the original lifted

p-basis.

Remark 2.3.2.8. The reason to introduce the distinction between the generic p-th

roots and the p"-th roots is that, on one hand, to prove the comparison to Borger's

conductor, we need the invariance under adding generic p"-th root operations; and

on the other hand, we can only prove the invariance under adding generic p-th root

operations in the mixed characteristic case, which is fortunately enough to deduce

the Hasse-Arf theorem. see also Remark 2.4.2.2.

Remark 2.3.2.9. If K is of mixed characteristic, adding a generic p'-th or p-th root

does not change the absolute ramification degree of K (Notation 2.2.2.2).

The purpose of adding generic p-th or p'-th roots is to reduce to the mono-

genic case. The proof of the following proposition is essentially the same as [Ked07a,

Lemma 3.5.4]. It is also implicitly contained in Borger's construction of Artin con-

ductors (Section 2.4).

Proposition 2.3.2.10. Let L/K be a finite Galois extension of complete discretely

valued fields satisfying Hypothesis 2.3.2.1. Then after finitely many operations of
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adding generic p'-th or p-th roots, the field extension we start with has separable

residue field extension.

Moreover, if K is of mixed characteristic, then in this process, the absolute rami-

fication degree /K does not change.

Proof. First, the tamely ramified part is always preserved under these operations. So,

we can assume that L/K is totally wildly ramified and hence the Galois group GL/K

is a p-group. We can filter the extension L/K as K = Ko C ... C Kn = L, where

K/K_- is a (wildly ramified) Z/pZ-Galois extension and Ks/K is Galois for each

i = 1,... , n. Each of these subextensions

(a) either has inseparable residue field extension (and hence has naive ramification

degree 1),

(b) or has separable residue field extension (and hence has naive ramification

degree p).

Moreover, OK,/OK,_, is generated by one element, a lift of the a generator of the

residue field in case (a), or a uniformizer of OK, in case (b).

Let io be the maximal number such that Kj/K_ 1 has separable residual extension

for i = 1,..., io. Obviously adding a generic p"-th or p-th root does not decrease io

because after adding a generic p-th root, the naive ramification degree of Kio/K still

equals to the degree piO. Now, it suffices to show that after finitely many operations

of adding generic poo-th or p-th roots, Kio+l/Kio has separable residue field extension

(if io < n). Suppose the contrary.

Let g E GKio+1/Kio ~ Z/pZ be a generator. We claim that

y = min (vKo+l (g(x) - X))
XEOKio+
xEoKiO+1

decreases by at least 1 after adding generic p-th roots of each of the elements in the

p-basis. This would be enough to conclude the proposition because y is always a

nonnegative integer.
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Let z be a generator of OKo+, over OKo. It satisfies an equation

zP + alzP- 1 + ... + ap = 0, (2.3.2.11)

where al,..., ap- 1 E mKio and ap E OK with 51, xVo \(n )P = K\(XK)P. It is

easy to see that -y = vKo+(g(z) - z).

Adding generic p-th or pc-th roots of each of the element in a lifted p-basis gives

us a field K. Now, the field extension KKo+1/KK, is also generated by z as above.

But we can write ap = aP + p for a E ORK K and P E mKio. Hence if we substitute

z' = z + a into (2.3.2.11), we get z'P + az'P- 1 + + a, = 0, with a', . . .,, a mKi.

Hence, VKio+1 (Z') > 0. By assumption that the extension KKio+1/KKio has naive

ramification degree 1, 4 o is a uniformizer for KKio+I and hence z'/7rK lies in

ORK O+1 . Thus,

7' = min (vKo+ (g(x) - x)) 5 VKo+I (g(z'/rKio) - Z'/7Kio)
EOKKio+l

= VKol(g(z) - - 1 = Y -1.

This proves the claim and hence the proposition. O

Remark 2.3.2.12. It is worthwhile to point out that, if we only add generic p-th

roots, then after these operations, the number of elements in the lifted p-basis of the

resulting field will be more than that of the original field.

For the following proposition, we drop Hypothesis 2.3.2.1.

Proposition 2.3.2.13. Assume that the highest non-logarithmic ramification breaks

b(L/K) are invariant under the operation of adding a generic p°-th or p-th root if

(a) either K is of equal characteristic and L/K verifies Hypothesis 2.3.2.1,

(b) or K is of mixed characteristic with a fixed absolute ramification degree 1K and

L/K verifies Hypothesis 2.3.2.1.

Then, we have for all such K,
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(1) Art(p) is a nonnegative integer for any representation p : GK -+ GL(V) with

finite local monodromy;

(2) the subquotients FilaGK/Fila+GK are trivial if a ' Q and are abelian groups

killed by p if a E Q>I.

Proof. (1) Since the conductor is additive and is invariant when base changing to

the completion of the maximal unramified extension of K (Proposition 2.2.2.11(4)),

we may assume that p is irreducible and exactly factors through the Galois group

of a totally ramified Galois extension L/K. We may also assume that the residue

field IK is imperfect and the extension is wildly ramified since the classical case

is well-known (Propositions 2.2.2.11(7) and 2.2.2.18). We need only to show that

Art(p) = b(L/K) - dimp E Z.

Now we reduce to the finite p-basis case. Choose a finite subset Jo C J such that

IK(b /) is linearly independent from 'L for any j E J\Jo. Pick lifts bj E OK of b for

each je J\Jo. Define K, = K(bP;j J\Jo, n E N and L = KL. It is easy to

see that [Li : KI] = [L : K], eL 1/K 1 _ eL/K, and [L 1 :K K] [rL : IK], where KK 1

and KL1 are the residue fields of K 1 and L 1, respectively. Thus, all the inequalities

are forced to be equalities. This implies GL1/K1 = GL/K and OLi = OL ®OK OK 1 . By

Proposition 2.2.2.11(4'), b(L 1/K 1) = b(L/K). Therefore, we may reduce to the case

when Hypothesis 2.3.2.1 holds.

Now, we can apply Proposition 2.3.2.10 and the assumption we have to reduce

to the case when L/K has separable residue field extension. In this case, Proposi-

tion 2.2.2.11(4') implies that replacing K by K(b /" ; G J, n N) does not change

the conductor, where bg is a lifted p-basis of K. Hence, we reduce to the classical

case; the statement follows from Proposition 2.2.2.18.

Now we prove (2), following the idea of [Ked07a, Theorem 3.5.13]. Let L be a finite

Galois extension of K with Galois group GL/K; then we obtain an induced filtration

on GL/K. It suffices to check that FilaGL/KFila+GL/K is abelian and killed by p;

moreover, we may quotient further to reduce to the case where Fila+GL/K is the trivial

group but FilaGL/K is not. As above, we may reduce to the classical case because the

ramification break of any intermediate extension between L and K is also preserved
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under the operations above. The statement follows from Proposition 2.2.2.18. O

2.3.3 Standard Abbes-Saito spaces

In this subsection, we introduce the standard Abbes-Saito spaces by choosing a dis-

tinguished set of generators of OL/OK. We continue to use Notation 2.3.2.3 and

assume the following.

Hypothesis 2.3.3.1. Let K be a discretely valued field with imperfect residue field

and let L be a finite Galois extension of K. Assume that K admits a finite lifted

p-basis bg.

Notation 2.3.3.2. We define a norm on the polynomial ring OK [UJ+]: for h =

Zyej+ ae ,J+ , where , E OK, we set hj = maxej+ {e+ I. oeo/e). For a E !Z>0 ,

denote N' to be the set of elements with norm < 0a; it is in fact an ideal.

Construction 2.3.3.3. Choose lifted p-bases bj C OK and cj C OL of K and L,

respectively. Let ko = KK with p-basis (bj)jEJ. By possibly rearranging the indexing

in bj, we can filter the extension ~L/KK by subextensions kj = rK(Cl,... , j) with

p-bases {c, ... , b+1, ... 7} for j E J. Moreover, if [kj kj_1] = pri, then

e j E ki1. We also choose uniformizers rK and 7rL of K and L.

Write A : OK(UJ+)-IL/K " OL mapping uj to cj for j E J and uo to lrL, where

IL/K is some proper ideal. Let A be the composite of A with the reduction OL -- 1.

Hence,

{ue( ej E {0,..., pr - 1} for all j E J, and eo E {0,..., e - 1}} (2.3.3.4)

form a basis of OK(UJ+)/IL/K as a free OK-module. We choose a set of generators

pJ+ of IL/K by writing each u?" (for j E J) or ue (for j = 0) in terms of the basis

(2.3.3.4). We say that pj corresponds to cj. Obviously, pg+ generates IL/K. Moreover,

p E P - bj(Ul,..., uj-1) + N 1/e .OKUJ+], j E J,

Po E u - Z(Ul,... ,Um)7rK + rKN 1/ . OK[uJ+],
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where bj(ul,..., uj_I) E OK[U1, - -, Uj-1] with powers on ui smaller than pri for all

i= 1,..., j- 1, and D(ul,..., um) E OK[U1,*., Um] such that A(D) E O'.

Remark 2.3.3.5. It is attractive to hope that one can find p-basis (bj)jEj of nK SO

that nL = nK( - ) for some rj E Z>o. This however is false in general, as pointed

out to the author by S. Ohkubo. In fact, Sweedler [Swe68] studied this phenomenon

and called the above case modular. He also gave the following non-modular example

[Swe68, Example 1.1].

Let no be a perfect field of characteristic p and let X, Y, Z be indeterminants.

Let n = ,Ko(XP, YP, ZP2 ) and e = I(Z, XY + Z). Then [ : f n p- 1] = p2 and

[ n nP-1 : r] = p. Hence, f/n cannot be modular.

Remark 2.3.3.6. It is also not true in general that one can take uniformizers lrL

and 7rK of L and K so that 4T/r7rK - 1 mod mL, as notified to the author by Shun

Ohkubo. He gave the following counterexample.

Let K be a complete discretely valued field with imperfect residue field rik. Let

b E OK be such that b E KK\,K. Choose a, / E K as follows: let a be a root of the

polynomial X P + rKX + b E K[X] and 3 a root of the polynomial YP + 7rKY + 7rKa E

K(a)[Y]. Denote L = K(a, P). Then L/K is a separable extension of degree p2 with

naive ramification degree p. The ring of integers of K(a) and K(a, 3) are OK[a] and

OK[a, /3], respectively. We claim that we cannot choose uniformizers rL and 7rK so

that rPKL/ rK- 1 mod mL.

It is clear that 3 is a uniformizer of L. For any uniformizer rL of L,

rP _ /1 LP (mod mL)
=r - k)P E (-a-/3)(Ox)P (-a)PL C r'L*

In particular, rPL/irK is not congruent to 1 modulo mL.

We expect (though we do not know at the moment) a counterexample for which

L/K is Galois.

Definition 2.3.3.7. The (standard) Abbes-Saito spaces ASI/K and AS1/K,log for

a > 0 are defined by taking generators to be {cj, 7rL} and relations to be pJ+ (see
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Proposition 2.2.2.11(1')). In particular, their rings of functions are

0 AS,L/K = K(uj+ , raVJ+)/(po(uj+) - Vo, . . , pm(uJ+) - Vm), and

0 AS,L/K,log = K(u j+,, V-lVo , 7aVj )/(po(uj+) V- Vo,... ,Pm(uJ+) - Vm).

Remark 2.3.3.8. The additional 7r 1 added on Vo reflects the log-structure. (See

Remark 2.2.2.10.

2.3.4 Cohen rings and €K-functions

We insert here a discussion of Cohen rings and their functoriality with respect to

the p-bases. For more detailed study, one may consult [Whi02]. We also give an

interpretation of the functoriality by differential module using Taylor series. Then,

we introduce the fake function VK : OK -- OKKI 0/rK, 6J] , which is a deformation of

the uniformizer 7K and the lifted p-basis bj.

Definition 2.3.4.1. Let i be a field of characteristic p > 0. A Cohen ring C, is

a absolutely unramified complete discrete valuation ring with residue field K. If n is

perfect, CQ is exactly the ring of Witt vectors.

A based field of characteristic p > 0 is a field x equipped with a distinguished

p-basis b, where J is an index set. We view based fields as forming a category whose

morphisms from (n, bg) to (n', b's,) are morphisms r, -+ ix' of fields carrying bj into b,

as a set.

For (r., bg) a based field, a based Cohen ring for (r, bj) is a pair (C,, Bj), where

C, is a Cohen ring for r. and Bj is a subset of C, which lifts b.

Proposition 2.3.4.2. There is a functor from based fields to based Cohen rings which

is a quasi-inverse of the residue field functor.

Proof. This is implicit in Cohen's original paper [Coh46]; an explicit proof is given

by [Whi02, Theorem 2.1]. An alternative proof may be found in [Ked07a, Proposi-

tion 3.1.4). O
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The following proposition, proved in [Whi02, Theorem 2.1], is stronger than the

proposition above. For convenience of the reader, we include the proof.

Proposition 2.3.4.3. Keep the notation as above and let R be a complete noetherian

local ring with the maximal ideal mR containing p. Assume that we have a homomor-

phism : -- R/mR. Then, for any B', C R lifting 4(bj), there exists a unique

continuous homomorphism : O --* R lifting 4 and sending Bj to B for all j E J.

Proof. For any n E N, a level n expression of an element g E C, is a (non-canonical)

way of writing g as
pn-1

g iAP i ,,ej Be (2.3.4.4)
i,i'>O ej=O

for some Ai,i,,ej E C, and for a fixed i, Ai,,ej = 0 when i' > 0 for all ej. Then we

set
pn-1

On(g) = P pP i ,i ej Bp l  (2.3.4.5)
i,i'O ej=O

where Ai,i,ej is some lift of O(ai,i,,ej) in R with ai,i',ej being the reduction of Aig,ej in

K. Different choices of lifts Aii,,,j may change the definition of n,(g) by an element in

m"; a different level n expression as in (2.3.4.4) may also vary On(g) by some element

in mn. For a level n expression of g as in (2.3.4.4) with n > 1, we can rewrite it as

p-1 pn-1-1

g =9 p (Aie Bj' B
i,i'>0e'=0 ej=O

which is a level n - 1 expression for g. From this, we conclude that ' (g) -

On-1 (g) mod m - .- Taking n -- oc, we get our map 0(g) = limnoo On(g). It is

not hard to check that 0 is actually a homomorphism; this is because for g, h E C,

the formal sum and product of level n expressions of g and h are level n expressions

of g + h and gh, respectively.

To prove the uniqueness, take another continuous homomorphism 0' : C, --+ R
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satisfying all the conditions. Then for a level n expression of g as in (2.3.4.4),

pn-1 pn-1

Sii i e=0 iij _ 0 ep=
ii'>0 ej=O i,i' O ej=O

is exactly one possible definition for On. As we pointed out above, 4'(g)

V(g) mod mn. Let n -+ oo and we have V = 0'.

Hypothesis 2.3.4.6. From now on, we assume that J = {1,..., m} is a finite set.

Corollary 2.3.4.7. Keep the notation as above. There exists a unique continuous

homomorphism : C, --+ C,1, . . . , 6m] such that for all j E J, 0(Bj) = Bj + 6j and

for any g E Cr, 0 (g) - g lies in the ideal generated by 61,..., 6m. Moreover, if no =

n,inp " and Cr o is the ring of Witt vectors of the perfect field no, the homomorphism

4 above is a Co-homomorphism.

Proof. The first statement follows from the proof of previous proposition. By the

functoriality of Witt vectors, 0 has to be identity when restricted to Cr because no

is perfect. Hence, 0 is a C,,-homomorphism. 0

Corollary 2.3.4.8. Let K = KK((7rK)) be a complete discretely valued field of char-

acteristic p > 0 with lifted p-basis bj. Fix j E J and let b' E OK be an element

such that b' - bj (mod mK). Then there exists a (unique) continuous automorphism

g* : K --+ K such that g*(7rK) = 7rK, g*(bj) = b', and g*(bg\j) = b\j.

Proof. Applying Proposition 2.3.4.3 to r = KK, R = KK[TrKr, and maR =

us a homomorphism g* : C K/(p) = K -- KK [rK] such that g*(bj)

g*(b\j) = bj\j. One can extend this to an automorphism g* : K -+ K

g* (7K) = rK.

Proposition 2.3.4.9. The homomorphism o in Corollary 2.3.4.7 can be also con-

structed via Taylor series as follows. For x E C,,

ej

eJ
(ej!(x
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where 8j = ,,j are differential operators as introduced in Situation 1.1.6.7.

Proof. By Lemma 1.1.6.8, Taylor series gives the desired homomorphism; Defini-

tion 1.1.4.1 (or in fact Corollary 1.1.2.17) verifies that we can divide the factorials.

By the uniqueness in Proposition 2.3.4.3, this gives the homomorphism we are looking

for. O

Corollary 2.3.4.10. Modulo p, the homomorphism o in Corollary 2.3.4.7 gives a

continuous homomorphism b : ii --+ [46j]. Moreover, if for g E K, we can write

dy = idbi + --- + mdbm in Q/FP, then Vb(g) -- 9 + 911 + --- + gm6m modulo

6)2 . rv [6j]

Proof. This follows from Proposition 2.3.4.9 above immediately. O

From now on, we assume Hypothesis 2.3.3.1 for the rest of the subsection; we fix

a finite p-basis (b ) and a uniformizer 7rK of K.

Fake-assumption 2.3.4.11. Pretend that we have a continuous homomorphism

OK : OK -' OKI[6o/TrK, SJ] such that OK(rK) = 7rK + 60 and 'K(bj) = bj + irK for all

jE J.

Remark 2.3.4.12. The reason to use So/irK instead of 60o is for convenience of nota-

tion.

Caution 2.3.4.13. Such a homomorphism exists when K is of equal characteristic

p > 0 (Corollary 2.3.4.7). However, when K is of mixed characteristic, there is never

such a continuous homomorphism. In particular, we cannot make OK (p) = p and

OK(7rK) = 7rK + JO happen at the same time. This is because one cannot "deform"

the uniformizer in the mixed characteristic case.

Moreover, since K will not be absolutely unramified in applications, (lifted) p-basis

may not deform freely either. In other words, we may not be able to find a continuous

morphism 0' : OK - OK [SJ such that 4'(bj) = bj + Sj for all j E J. However, this

is true if K is absolutely unramified (Notation 2.2.2.2), as proved in Corollary 2.3.4.7.

More generally, this is true if K is the composite of an absolutely unramified field
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and a field which is a totally ramified extension of a complete discretely valued field

with perfect residue field. (See Situation 1.1.6.7 and the following discussions.)

Remark 2.3.4.14. This fake assumption will be fixed in Chapter 4, by taking K :

OK -- OK[O/7rK, 6J] to be just a function, without requiring to be a homomorphism

(Construction 4.1.1.2). It turns out that we may take /K to be an approximate

homomorphism modulo p( 5o/UK, 6J) (Proposition 4.1.1.8).

This also explains the reason that Theorem 2.2.2.19 is only stated for the case Pg >

1; indeed when PK = 1, we have no control over the approximate homomorphism K-

It is very interesting to compare this more technical interpretation of the restric-

tion PK > 1 with the explanation in [AS03] recalled in Remark 2.2.2.20. Since the

differentials often measure the ability of deforming an object, the lack of the direct

summand dlrK in the absolutely unramified case is reflected here as the failure of

"deforming" the uniformizer, even infinitesimally.

Although 'K is just a fake function, but 'K : KK -- JKK 6JJ still satisfies the

conclusion of Corollary 2.3.4.10, by Lemma 4.1.1.11. Before moving on, we deduce a

technical lemma that is useful in the proof of AS = TS theorem.

Lemma 2.3.4.15. Assume that 'lK satisfies the conclusion of Corollary 2.3.4.10, the

determinant

det (N(O(K i) ijEJ A6) 1 E (K [UJ+]/(PJ,uo ))X =

where pj are reductions of pj in K [UJ+I (UO)

Proof. By the expression in Cosntruction 2.3.3.3.

((V)(Pi) i)) mod (5) = (i b)iJj mod (bj) (2.3.4.16)

Let &dj E rL denote the entries in the matrix on the right hand side of (2.3.4.16),

where we identify OK (UJ+ )/(pJ+, U0 ) - KL. Under this identification, bi will become

2ri for all i E J. It suffices to show that the i-th row is nL-linearly independent from
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the first i - 1 rows for all i. If we write

pro-1 pri- 1 -1

el=0 ei-i=O

where Ael,...,e-_i E KK for which dAel,...,e i = Pe,...,e-_l,ldbl +- -+ fTei,...,ej_l,mdbm, then

by Corollary 2.3.4.10,

pro-1 pri- 1

dildl .. + imdbm = .. E e' . f__-, (Pe,,...,eji,ldjl +-- + Te,...,ej_,mdbm)
el=0 ei- =0

Sd('ri) mod (dj,..., d _l1)

in 1i/Fp; it is in fact nontrivial because da1,... ,dEm form a basis of 0 /' and

hence there should not be any auxiliary relation among d 1,..., dej in Q /Fp. But

we know that the sums ildbl + --- + i,mdbm for i' < i all lie in the submodule of

_./Fp generated by dal,... , di.-_1. Hence the i-th row of the matrix in (2.3.4.16) is

(ki_l-)linearly independent from the first i - 1 rows. The lemma follows. O

Remark 2.3.4.17. When IL/KK is modular in the sense of [Swe68], we can choose

the p-basis of KK SO that P = bj for all j E J; in that case, the above lemma is much

easier to prove because the matrix in (2.3.4.16) is the identity matrix. However, this

may not be the case in general; see also Remark 2.3.3.5.

2.3.5 Thickening spaces and AS = TS theorem

In this subsection, we introduce the thickening spaces for the extension L/K and

state the AS = TS theorem. Since we have Fake-assumption 2.3.4.11, we will not

be able to give meaningful definition of the thickening spaces. For precise definition

in the equal and mixed characteristic case, please consult Section 3.3 and Defini-

tion 4.1.1.13, respectively. (The definition in Section 3.3 actually looks different from

the construction below. This is because we need to solve another problem first, which

is explained in Remark 2.3.6.4.)

We continue to assume Hypothesis 2.3.2.1.
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Fake-definition 2.3.5.1. Let a > 1. We define the (non-logarithmic) thickening

space (of level a), denoted by TS2/K, to be the rigid space associated to the algebra

TOS,L/K = K(r O aJ+) '®K,K L.

Similar, for a > 0, we defined the logarithmic thickening space (of level a), denoted

by TS2/K,log to be the rigid space associated to the algebra

OTS,L/K,log = KrK a-16o, 7rfSJ) QPK,K L.

The thickening spaces are equipped with compatible projections IIH to the polydiscs,

which give rise to the following Cartesian diagram for a > 0.

TSqa+l- r / aTL/K TS/K,log TSL/K

j n

A [0, a+1] A [0, +1 x A [0, Oa A [0, 0) x A [0, 1)

where TSL/K = Ua>oTSa/K,log.

Fake-theorem 2.3.5.2. We have an isomorphism of K-algebras:

0 AS,L/K S,L/K if a> 1

OAS,L/K,log - OTS,L/K,log if a > 0.

The correct version of this theorem is proved in Theorems 3.4.2.2 and 4.1.2.2,

respectively.

Remark 2.3.5.3. As discussed in Subsection 2.3.1, the real purpose of constructing

the thickening spaces isomorphic to standard Abbes-Saito spaces is to replace the
morphism ir : AS/K -- A [O, Oa] by the morphism H :TS,/K = Am[O, 0al xj ,KL -+

Am[, 0a]. The thickening has the obvious advantage that it is functorial on K, as

can be easily seen from its Fake-Definition 2.3.5.1.

The idea of proving Theorem 2.3.5.2 is simply approximation. We may get some
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sense from the following.

Example 2.3.5.4. It is also good to see the difference between Abbes-Saito spaces

and thickening spaces in an example. Consider the extension of Fp((x)) given by

yP - xP-ly = x. A standard Abbes-Saito space is given by

{ (u, 6)IIuLl I 1,61 < a0, uP - xp-lu = x + 6},

whereas a thickening space is given by

{(u, 5)|luIl < 1, 161 < 0a , UP - (x + 6)P-'l = x + 6}.

In other words, an Abbes-Saito space ASa/K consists of the points which are close

to the solutions to those equations; in contrast, a thickening space TSa/K consists

of points which are solutions to some equations whose coefficients are close to the

original equations. So it should not be surprising that they consist of the same set

of points. This can be also justified by the non-vanishing of the Jacobian matrix in

Lemma 2.3.4.15.

2.3.6 Interpretation by differential modules

In this subsection, we interpret the ramification breaks using differential modules.

This naive approach actually fails in the equal characteristic case, we defer this failure

to later discussion. Also we give the ideal picture of realizing the ramification break

as the maximum of the breaks with respect to the uniformizer and each element in

the lifted p-basis.

As a reminder, we continue to assume Hypothesis 2.3.2.1.

Fake-construction 2.3.6.1. Consider the projection II : TSL/K - A'+'[0, 0a]; it

is finite and etale (under Fake-assumption 2.3.4.11). Then S = HI.OTS,L/K become a

differential module over A +[,O a ] with respect to &/d6j for j E J+; we call £ the

differential module associated to L/K.
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Remark 2.3.6.2. In the equal characteristic case, the 6taleness of thickening space

over the polydisc is stated in a slightly different way, as in Subsection 3.3.4. In the

mixed characteristic case, the 6taleness of thickening space is in fact a nontrivial

result, proved in Subsection 4.1.3.

Fake-assumption 2.3.6.3. Assume that the theory of differential modules from

Chapter 1 applies to differential modules over Ay+' [0, 9a] (even if K is of characteristic

P > 0).

Remark 2.3.6.4. This is indeed a very problematic assumption. For example, d

is zero on K[x] if K is of characteristic p > 0. So the theory of differential modules

does not work at all.

Our remedy carried out in the next chapter is to, roughly speaking, lift the whole

picture from over K to over an annulus A [0o, 1), where E = FracCK is the fraction

field of a Cohen ring of rK, and o0 is some real number in (0, 1) close enough to 1. It

turns out that taking the limit lo --_ 1 as in Subsection 1.2.8 will give the ramification

information for K.

Fake-theorem 2.3.6.5. Let L/K be a finite Galois extension. For a > 1, the

following statements are equivalent.

(a) The ramification break b(L/K) < a.

(b) The number of geometric connected components #rom(TS/K) = [L: K] for

any a' > a.

(c) The differential module £ is trivial on A' [0, oa'] for any a' > a.

(d) The generic radii of convergence of £ at A [09', o a'] is 0a' for any a' > a.

(e) The generic radii of convergence of £ at A~a[O9, a] is Oa.

Proof. We will just give the idea of the proof since the notations here are not quite

well-defined. In the equal characteristic case, this fake theorem is realized by Theo-

rem 3.3.4.6; in the mixed characteristic case, we use a slight variant Theorem 4.1.4.4.
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Now, we prove the theorem under Fake-assumption 2.3.6.3.

(a) - (b) follows from Fake-theorem 2.3.5.2.

(b) =- (c) is true because the generic radii of convergence is not sensitive to base

extension; we are just pushing forward geometrically [L : K] copies of A [0, '].

(c) =#, (b) is less trivial. Note that for any a' > a, the Taylor series induces a

ring isomorphism

JE6+0 OK L - Ho (Am [0, oa'], ) ®K L C OTS,L/K,a' OK L. (2.3.6.6)

But we know the left hand of (2.3.6.6) is isomorphic to L 0 L -% HgeG L. So the

idempotent elements on the left hand side of (2.3.6.6) map to idempotent elements

on the right hand side; this forces #ro(TS~,' K X L) = [L: K].

(d) == (c) can be obtained by constructing horizontal sections using Taylor series.

Conversely, (c) -== (d) is trivial.

(d) - (e) follows from Theorem 1.2.4.4(a) and (c). O

Remark 2.3.6.7. The differential module 8 is defined over A'l[0, 0) x A [0, 1). We

know that the geometric connected components of TS/K = -1 (Am+' [0, 0a]) deter-

mine the ramification break. The key observation is that it may happen that when

ajo < b(L/K) for some jo and aj > b(L/K) for j e J+\{jo}, 11-1(A' [0,ao] ... x

Al[0, Oam]) still have [L : K] geometric connected components. This is because the

generic radii of - for a single jo can be bigger than ob(L/K)

Fake-assumption 2.3.6.8. Ideally, for each j E J+, there should be a ramification

break bj(L/K) associated to bj (j E J) or 7rK (j = 0), which is given by the log

of generic radii of ' with 0 as base. By Theorem 2.3.6.5, the ramification break

b(L/K) = maxjE+ {bj(L/K)}.

Remark 2.3.6.9. This fake assumption is again wrong in two different ways for equal

or mixed characteristic cases.

In the mixed characteristic case, aside from the problem in Fake-assumption 2.3.4.11,

Fake-assumption 2.3.6.8 is not valid because we cannot use a single number to mea-

sure the generic radii over a polydisc; when the radii of the polydisc vary, the generic
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radii will change. The same phenomenon, however, does not show up in the equal

characteristic case, because as we will show in Sections 3.2 and 3.3 that the differen-

tial module £ is a pull-back of a differential module over an annulus and the generic

radii of - does not change as the radii vary.a6j

In the equal characteristic case, this is equivalent to fixing Fake-assumption 2.3.6.3.

See Subsection 3.2.4 for more details.

Definition 2.3.6.10. we say bj for j E J (resp. 7rK) is dominant if b(L/K) is the

same as bj(L/K) (resp. bo(L/K)).

Remark 2.3.6.11. In the classical case, there is no p-basis and hence IrK is always

dominant. The inseparable residue field extension causes a possibility that IrK might

no longer be dominant but some bj dominates the ramification break of LIK.

2.3.7 Adding generic roots

We study the behavior of thickening spaces, differential modules, and ramification

breaks under the operation of adding generic p-th or pl-th roots (Definition 2.3.2.7).

Fake-assumption 2.3.7.1. Pretend that the continuous homomorphism VK in Fake-

assumption 2.3.4.11 is functorial in the following sense: If K is obtained by adding

a generic pc-th (resp. p-th) root of bjo for an element in the lifted p-basis of K, we

have the following commutative diagram

o0 K K K [O/IIK, 6J] (resp. OK --- KI0/lrJK, J )

Ok- O [o/7rK, 7J\{jo}, 77m+1 K D OkI[3 0/rK, 7J, 7m+1I

where i? is constructed by Fake-assumption 2.3.4.11 for K, with respect to the

uniformizer 7rK and lifted p-basis {bJ\{jo}, x} (resp. {bJ\{jo}, (bjo + XZrK)1/ , x}), and
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where

f*(j) = j, for j E J+\{jo},

f*(jo) = (x + m,+l)(rK+7 0) -XrK

(resp. f*(6jo) = ((bji + xzrK) 1/ p + qj o) ( + rm+l)(rK + 70) -bjo) ).

The homomorphism f* induces a K-morphism of rigid spaces A (+')[0, Oa]
Am[0, 0a ] if we add a generic p'-th root (resp. p-th root).

Remark 2.3.7.2. When K is of mixed characteristic, we need to invent the notion of

approximate commutative diagram (Defintion 4.1.1.7) to save this Fake-assumption.

See Lemma 4.2.1.4.

Fake-proposition 2.3.7.3. The differential module associated to LIK is exactly

f*6 with f defined as above.

Proof. This follows immediately from the following Cartesian diagram (under the

Fake-assumptions 2.3.4.11 and 2.3.7.1) for adding a generic pl-th (resp. p-th) root.

TS/K A [O0, am X'K,K L A(+)[o, O , r L---- TSx L/

Aml[O, O] . Am(+') [0, ]

Remark 2.3.7.4. In the mixed characteristic case, the above fake-proposition is the

core of the proof of the Hasse-Arf theorem. See Theorem 4.2.1.7.

Fake-proposition 2.3.7.5. The action of differential operations on f*E are related
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to the action of differential operators on £ as follows.

-L - -L for all j E J\{jo),

a7 - Ao+ (X + +)

a "- (rE + 70) a6o
am+l 3

p ((bo + xrK)1/ + jo)"-1 (if adding a generic p-th root).

Proof. It follows immediately from the expression of f* in Fake-assumption 2.3.7.1.

Fake-proposition 2.3.7.6. Under the Fake-assumption 2.3.6.8, the ramification

breaks bj(L/K) for each j vary as follows under the operation of adding a generic

p'*-th or p-th root of bjo(L/K).

bj (L/K) = bj(L/K) for all j E J\{jo},

bo(L/K) = max{bo(L/K), bjo(L/K)},

bm+i(L/K) = bjo(L/K) - 1,

bjo(L/K) < bjo(L/K) (if adding a generic p-th root).

In particular,

b(L/K) = max {bj(L/K)} = max{bj(L/K)} = b(L/K). (2.3.7.7)
jEJ+U{m+1} jEJ+

Proof. It follows from previous proposition. U

Remark 2.3.7.8. If bjo is dominant, as a result of adding generic p'-th or p-th root,

7rK becomes dominant. In the language of Remark 2.3.6.11, we return to a situation

closer to the the classical case.

Fake-theorem 2.3.7.9. Let K be a complete discretely valued field and let GK be its

absolute Galois group. Assume that K is not absolutely unramified if K is of mixed

characteristic. Let p : GK --+ GL(V,) be a continuous representation of finite local
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monodromy. Then the Artin conductor Art(p) E Z>o. Moreover, the graded piece

FilaGK/Fila+GK of the ramification filtration are trivial if a ' Q and are abelian

groups killed by p if a E Q>1.

Proof. It follows from Proposition 2.3.2.13 and Fake-proposition 2.3.7.6, which are

subject to numerous fake-assumptions. The restriction of K not being absolutely

unramified and of mixed characteristic reflects the complete failure of rescuing Fake-

assumption 2.3.4.11. O

2.3.8 Integrality of Swan conductors

In this subsection, we introduce a dichotomy for the relation between non-log and log

ramification breaks. Then from this ideal situation, we deduce the fake proof of the

integrality of Swan conductors.

Fake-assumption 2.3.8.1. Continuing with Fake-assumption 2.3.6.8, we assume

that the logarithmic ramification break is computed by blog(L/K) = max{bo(L/K) -

1, bj(L/K);j E J}. We say bj for j E J (resp. 7rK) is log-dominant if blog(L/K) is

the same as bj(L/K) (resp. bo(L/K) - 1).

Moreover, we assume the following behavior of the logarithmic breaks under tame

base change. Fix n E N prime to p and let Kn = K(rKn) and L = LK. Let

rK K 7~=r/n be the uniformizer of Kn and we continue to take ba as the set of lifted p-

basis of K,. Then, we assume that bo(Ln/Kn) = nbo(L/K) - (n-1) and bj(Ln/Kn) =

nbj(L/K) for j E J.

Remark 2.3.8.2. The motivation of the fake assumption is that it is true (under

modification) in the equal characteristic case. See subsection 3.2.4. In the mixed

characteristic case, we actually use a slightly different strategy because we do not

have well-defined bj(L/K) as explained in Remark 2.3.6.9. See also Subsection 4.3.1

for the actual proof, which is a variant of the one proposed here.

Fake-theorem 2.3.8.3 (Dichotomy of Swan conductors). Let L/K be a finite Galois

extension of complete discretely valued field, satisfying Hypothesis 2.3.2.1. There is a

dichotomy for the relation between the non-log and log ramification breaks as follows.
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(1) Either rK is log-dominant, in which case b(L/K) = biog(L/K) + 1;

(2) or 7rK is not log-dominant, in which case there exists N E N such that for any

integer n > N prime to p, b(Ln/Kn) = biog(L,/Kn) = nblog(L/K).

Proof. We deduce this theorem by combining Fake-assumptions 2.3.6.8 and 2.3.8.1.

Indeed, if 7rK is log-dominant, bo(L/K) > bj(L/K) for all j E J. Hence, b(L/K) =

bo(L/K) = blog(L/K) + 1. If 7rK is not log-dominant, bj is dominant for some j E J.

In other words, there exists some N E N such that bj(L/K) > bo(L/K) - 1 + 1/N.

Then, for any integer n > N prime to p,

bo(L,/Kn) = nbo(L/K)-(n-1) = n(bo(L/K)-(n-1)/n) < nbj(L/K) = bj(Ln/Kn).

Hence, b(Ln/K) = bj(L/Kn) = biog(Ln/Kn) = nbiog(L/K). 0

Fake-theorem 2.3.8.4. Let K be a complete discretely valued field and let GK be

its absolute Galois group. Let p : GK -- GL(V,) be a continuous representation of

finite local monodromy. Then the Swan conductor Swan(p) E Z>o.

Proof. Similarly to the reduction steps in Proposition 2.3.2.13, we may reduce to the

case when p is induced by a faithful irreducible representation of Gal(L/K) of a finite

Galois extension L/K satisfying Hypothesis 2.3.2.1. We first observe that to prove

Swan(p) E Z, it suffices to show that for two integers nl, n2 E Z coprime and both

prime to p, Swan(pIGK ), Swan(pIGc ) are both integers, where Kn, = K(ir{~') is

a tamely ramified extension of K. Indeed, knowing Swan(pGKn ) = nlSwan(p) E Z

and Swan(plGKn2) = n2 Swan(p) E Z would imply that Swan(p) E Z.

Therefore, we may assume that K is not absolutely unramified in the mixed

characteristic case. Now, we use the dichotomy Fake-theorem 2.3.8.3. If irK is log-

dominant, biog(L/K) = b(L/K) - 1 and Swan(p) = Art(p) - dim(p). The theorem

follows from Fake-theorem 2.3.7.9. If 7rK is not log-dominant, we take ni, n 2 E Z>N

142



such that p t nin2 . By Fake-theorem 2.3.8.3,

nlSwan(p) = Swan(pK ) = Art(pIK, ) E Z,

n2Swan(p) = Swan(pK, 2) = Art(pK,2) E Z.

This also implies that Swan(p) E Z. O

Remark 2.3.8.5. As we stated in Theorem 2.2.2.19 that when p = 2 and K is of

mixed characteristic, we have a little trouble in proving strong integrality for Swan

conductors. One can compare the above fake proof with the actual proof of Theo-

rem 4.3.1.14.

2.4 Borger's conductors

In this section, we first review Borger's definition of Artin conductors by generic

perfection, following [Bor04]. Then, we prove the comparison theorem linking this to

arithmetic and differential conductors.

2.4.1 Borger's definition

In this subsection, we review the definition of Borger's Artin conductors following

[Bor04].

Let K be a complete discretely valued field with residue field rK. Assume rK is

of characteristic p > 0. We do not impose Hypothesis 2.3.2.1 on K.

Definition 2.4.1.1. An Fp-algebra R is called perfect if F : ax xP is an iso-

morphism. For a Fp-algebra R, we use RPf = UIENR p " to denote its perfection.

Let CRPoK be the subcategory of the category of OK-algebras consisting of flat OK-

algebras A, complete with respect to mK-adic topology and A/mKA is perfect.
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Proposition 2.4.1.2. [Bor04, Theorem 1.4] The category has an initial object 01,

the universal residual perfection of OK. We have an equivalence of categories

CRPoK - PerfAlgo-, A F A/mKA,

where PerfAlgo-- is the category of perfect OK/mKOK-algebras.

Definition 2.4.1.3. Let 0O be the inverse image of Frac(Ou/mKO ), called the

generic residual perfection of OK. Denote K9 = Frac(0g). By Proposition 2.4.1.2,

0O is a complete discrete valuation ring with perfect residue field.

We have a homomorphism of Galois groups GK9 -+ GK. Thus, given a represen-

tation p of GK, we define the Borger's Artin conductor ArtB(p) to be Art(pIcK9 ),

where the latter term is the classical definition [Ser79]. (See also Definition 2.2.2.14.)

Obviously, Borger's Artin conductors have a Hasse-Arf property naturally inher-

ited from the one for K9, a complete discrete valuation field with perfect residue

field.

Proposition 2.4.1.4. [Bor04, Theorem A] Keep the notation as above, ArtB(p) is

a nonnegative integer and it coincides with classical definition when the residue field

KK is perfect.

[Bor04, Proposition 2.3] Furthermore, ArtB(p) is unchanged after a (not neces-

sarily finite) unramified complete extension of K.

Moreover, Borger proved that his definition coincides with a variant of arithmetic

Artin conductor ArtK for characters using the language of [Kat89a]. The author is

not sure if this variant fits into Abbes and Saito's definition.

Proposition 2.4.1.5. [Bor04, Theorem B] If X is a class in HI(GK, Q/Z) and X' is

its image in HI(GK9, Q/Z), then ArtK(X) = ArtK(x'). In particular, for a rank one

representation p of GK, ArtK(p) = ArtB(p).

Borger gives the following explicit descriptions of Ku and K 9.
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Proposition 2.4.1.6. Let bj be a set of lifted p-basis of K.

If K is of equal characteristic p > 0, K" = NK[vij;j E J, i E Z>0Pf ((1rKu)). The

homomorphism K --+ Ku is determined by rK '-+ rKu and bj F-+ bj + i>o vi,jr .

K9 = Frac(KK[i,j;j E J,i E Z> 0]Pf)((irKg)) and the homomorphism K -+ K9 is

given by composing K -* Ku with the natural morphism KU - K9, sending rKu to

r Kg .

If K is of mixed characteristic, We have a Cohen ring CK with respect to the

lifted p-basis bg. Let W be the Witt vectors of K[VUi,j;j E J,i E Z>0]pf and W9

the Witt vectors of Frac(/K[ij;j E J,i E Z>o]Pf). We have K" = K ®CK W

and K9 = K ®CKK W 9 . The homomorphisms K -- Ku" - Kg is determined by

b - [bj]w + Ei>o[vi,j]w7rX , where [-]w denotes the Teichmiiller lift.

2.4.2 Comparison theorem

A key ingredient to prove the comparison between Borger's Artin conductors and

arithmetic non-logarithmic conductors is to study how arithmetic non-logarithmic

conductors behave under the operations of adding generic po"-th roots.

In this subsection, we do not impose any Hypothesis on K.

Proposition 2.4.2.1. Assume that the highest non-logarithmic ramification breaks

b(L/K) are invariant under the operation of adding a generic pOO-th root if

(a) either K is of equal characteristic and L/K verifies Hypothesis 2.3.2.1,

(b) or K is of mixed characteristic with a fixed absolute ramification degree 3K and

L/K verifies Hypothesis 2.3.2.1.

Then, we have for all such K and all representation p of GK of finite local monodromy,

ArtB(p) = Art(p).

Proof. Let p be a representation of GK of finite local monodromy. Without lost of

generality, we may assume that K is separably closed because both conductors stay

the same under unramified complete extension (Propositions 2.2.2.11(4) and 2.4.1.4).

Thus, we may assume that p exactly factors through the Galois group GL/K of a
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finite totally ramified Galois extension L/K. Moreover, we may assume that p is

irreducible. As K9 has perfect residue field, ArtB(pIGK9 ) = Art(pIGK 9 ) are all the

same as the classical definition (Propositions 2.2.2.11(8) and 2.4.1.4). We need only

to show that Art(p) = Art(pGK9).'

Similar to the proof of Theorem 2.3.2.13, one may add a p"-root of some elements

of the lifted p-basis into K without changing the Abbes-Saito conductors and hence

reduce to the case of finite p-basis. In other words, there exists K '-+ K1 = K(b- Ij E

J\Jo, n E N) ^ for some Jo C J and #Jo < +oo, such that Art(p) = Art(pGK1). We

easily see that there exists K1 -- K9 extending K --+ K9.

By Proposition 2.3.2.10, we can do finitely many operations of adding generic p"-

th roots and make sure that the result field extension K 2L/K 2 has separable residue

field extension but Art(pGK1) = Art(PIGK2). We also have to show that we have a

homomorphism K 2 '-- K9 extending K1 -+ K9, for which we go back to the proof of

Proposition 2.3.2.10 and construct the homomorphism step by step.

The r-th (1 < r < ro) step of adding generic p'-th roots is to construct

K(r) - (K r-1)(Ur,Jo)((Ur-l,j + Ur,jrK)/Pn; j E Jo, n E N))

where uoj = bj, Vj E Jo and K 0o ) = Ki. In equal characteristic case, we map

Urj H-+ vrI,j,,r, Vj E Jo, r = 1,...,r0;
r'>r

in mixed characteristic case, we map

'-+ Z[Vr1,j WTrK9 , Vj E Jo, r = 1,..., r0.
r' >r

One checks easily that this map extends to a homomorphism K 2 L- K 9 .

Now, K 2L/K 2 has naive ramification the same as the degree, so OK9L = OK9oK2

OK2 L. Hence, Art(pGcK2) = Art(pIGK9 ) via Proposition 2.2.2.11(4'). O

Remark 2.4.2.2. Be careful that the above proposition may not hold if we change
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generic p"-th roots to generic p-th roots. This is because, in a sense, Borger's Artin

conductors are not quite generic as they do not allow rotations like ((bj + urK)1/p +

vrK) 1/p for a dummy variable v at the next step; it only allows the specialization to

v = 0. This is not a problem if Fake-assumption 2.3.6.8 were true, because, after the

first rotation, the direction corresponds to (bj + u-rK)'1/ is not dominant so we can

forget about this direction and obtain a comparison theorem. However, we can only

save Fake-assumption 2.3.4.11 in the equal characteristic case (see Remark 2.3.6.9). In

the mixed characteristic case, we do not know if we can obtain a comparison theorem

with Borger's conductors. Nevertheless, we do not expect that specializing to v = 0

would mess up the conductors.

2.5 Hasse-Arf theorem for finite flat group schemes

2.5.1 Ramification filtration for finite flat group schemes

We first recall some definitions and basic properties from [AM04] and [Hat08]. Then,

we use a theorem by Raynaud [BBM82, Theorem 3.1.1] to reduce the integrality result

to the case of finite Galois extension of complete discretely valued fields.

Keep the notation as in previous sections. We do not assume any hypothesis on

K (and there will be no L in this subsection).

Convention 2.5.1.1. All finite flat groups schemes are commutative.

The construction of the canonical filtration on a generically etale finite flat group

scheme is similar to that of the arithmetic ramification filtration.

Definition 2.5.1.2. Let A be a finite flat OK-algebra. Write A = OK[X1,... , x /-T

with I an ideal generated by fl,..., fr. For a E Q>o, define the rigid analytic space

Xa = {(x1 ,...,xn) E A [0,1] I fa(xi... ,x)I <a a = 1,...,r},

where 0 = 17grK as in Notation 2.2.2.2. The highest break b(A/OK) is the smallest

number such that for all a > b(A/OK), #7reom(Xa) = rank oK A. This is the same
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as Definition 2.2.2.3 if A = OL, except here we use the ring of integers instead of the

fields in the notation.

Lemma 2.5.1.3. [AM04, Lemme 2.1.5] Let K'/K be a (not necessarily finite) ex-

tension of complete discrete valuation fields of naive ramification degree e. Let A

be a finite flat OK-algebra which is a complete intersection relative to OK- Put

A' = A @oK OK'; then b(A'/OK') = e -b(A/OK).

Notation 2.5.1.4. For a finite flat group scheme G = Spec A, it is generically 6tale

if G xoK K is etale over K; it is generically trivial if G xoK K is a disjoint union of

copies of Spec K.

Definition 2.5.1.5. For a geometrically 6tale finite flat group scheme G = Spec A,

we have a natural map of points G(K 9) ,- Xa(Kal); further composing with the

map for geometric connected components, we obtain a map

an : G(Kag) Xa(K'g ) --+ gom(X).

Define Ga to be the closure of Ker aa. We use b(G/OK) to denote the highest break

b(A/OK); then for a > b(G/OK), Go = Spec OK.

Proposition 2.5.1.6. [AM04, Lemme 2.3.2] Let 0 -+ G' -, G -+ G" -- 0 be an exact

sequence of finite flat group schemes. Then for a > 0, O -- G'" -- G a - G"a -_ 0 is

exact.

2.5.2 Hasse-Arf theorem for finite flat group schemes

The following question is first raised in [Hat08]; and its proof is essentially due to

Hattori. The author would like to thank him for clarifying this and the permission

to include the proof here.

Theorem 2.5.2.1. Assume that Theorem 2.2.2.19 holds. Let OK be a complete

discrete valuation ring. For any generically trivial finite flat groups scheme G over

OK, b(G/OK) is a nonnegative integer.
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Proof. Since Theorem 2.2.2.19 requires that PK > 1 when K is of mixed characteristic,

we need to get around this restriction first. Let n1 , n2 E N be two coprime numbers

such that p f n1n 2. Let Kn, and K, 2 be two tamely ramified extensions of K with

ramification degree nl and n2 , respectively. By Lemma 2.5.1.3, it suffices to prove

the theorem for G xoK Knl/OKnl and G xoK OKn2 /K, , respectively. Thus, we

may assume that OK > 2 when K is of mixed characteristic.

We may assume that G is connected by taking the connected component of the

identity. By a theorem of Raynaud [BBM82, Theorem 3.1.1], we may realize G as

the kernel of an isogeny f : 93 --, 9 of two abelian schemes over Spec OK. Let a and

3 be generic points of the special fibers of % and 8, respectively. Then by [AM04,

Lemme 2.1.6], b(O^,B/Oa) = b(G/OK).

Since the generic fiber of G is a disjoint union of copies of Spec K, we know that

O,/O ,o is a generically 'tale finite Galois extension of complete discrete valuation

rings, with Galois group G(K); in particular, all irreducible representations of this

Galois group over an algebraically closed field are one dimensional. By Hasse-Arf

Theorem 2.2.2.19, b(Of/O a) = b(G/OK) is an integer. O
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Chapter 3

Ramification Theory for Local

Fields: Equal Characteristic Case

Plan of this chapter

The aim of this chapter is to prove the Hasse-Arf Conjecture 2.2.2.17 in the equal

characteristic. The idea is that we first define the differential conductors which do

have the desired properties and then we should that they are in fact the same.

In Section 3.1, we make a construction, which lifts a rigid space over K to a rigid

space over an annulus over K. In particular, we prove that the connected components

of the original rigid space are in one-to-one correspondence with the connected com-

ponents of the lifting space, when the annulus is "thin" enough. This construction

suggests strong connection to Berthelot's construction of rigid cohomology.

In Section 3.2, we discuss how to associate a differential module E, to a represen-

tation p of GK of finite local monodromy. Then we introduce differential Artin and

Swan conductors following [Ked07a] and discuss their properties in Subsection 3.2.3.

In Subsection 3.2.4, we introduce a calculation of breaks by p-basis. In Subsec-

tion 3.2.5, we discuss refined Swan conductors.

In Section 3.3, we introduce a thickening construction. In Subsection 3.3.1, as an

example, we first construct the thickening space when K can be realized geometrically.

Then in Subsection 3.3.2, we define the thickening spaces for general K and discuss
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spectral properties of the differential module obtained by pulling back E, to the

thickening spaces. In Subsections 3.3.3 and 3.3.4, we link the (highest) differential

breaks and spectral norms with the connected components of certain base change of

the thickening spaces.
h- a

In Section 3.4, we first define the lifts ASLIK of standard Abbes-Saito spaces

ASL/K. Then we prove in Subsection 3.4.2 that the lifted Abbes-Saito spaces and

(the base change of) the thickening spaces are isomorphic (Theorem 3.4.2.2). From

this, in Subsection 3.4.3, we deduce our main Theorem 3.4.3.1: the differential con-

ductors coincide with the arithmetic conductors; the Hasse-Arf theorem for arithmetic

conductors follows.

3.1 Lifting rigid spaces

In this section, we introduce a construction, which lifts a rigid space over a field of

characteristic p > 0 to a rigid space over an annulus over a field of characteristic zero.

Most of the content in this section should be credited to Kedlaya. The author

would like to thank him for allowing to include the proofs.

3.1.1 A Gribner basis argument

In this subsection, we introduce a division algorithm using Gr6bner basis, which

enables us to find a representative in the quotient ring achieving the quotient norm.

Hypothesis 3.1.1.1. Let F be a complete discretely valued field of mixed charac-

teristic (O,p), with ring of integers OF and residue field n. We fix a uniformizer xrF

of F.

Notation 3.1.1.2. Fix a positive integer n, and put

Rint= OF(U1, ... , u)((S)),

R = Rint 0oF F,

R, = Rint O, r. n[u, u,..., un]((S)) = I((S))(u1,..., Un).
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For rl E (0, 1], let I - 1, (for short) denote the (1,..., 1, 77)-Gauss norm on R.

Definition 3.1.1.3. We equip RN with the lexicographic term ordering induced by

the correspondence u ... u i- S j - (-j, ii, ... , in), i.e., we write auu ... 
u

>
S

S u ' if (-j, i .. , i) (i', . i') under the lexicographic order (No-

tation 1.1.1.2), where d, P Ex

Using this ordering, we define the leading term lead(f) of a nonzero element

f E RN to be its largest term under the ordering. In particular, for f, B E R,\{O},

lead(f) = lead(f)lead(g).

For an ideal IN of RN, a Grdbner basis of I is a finite subset {f1,..., rm} C IN

such that lead(fi) do not have exponents on S and the ideal consisting of the leading

terms of all elements of Ir is generated by lead(f 1),..., lead(fm). Such a basis exists

because RN is noetherian. By [Eis95, Lemma 15.5], f1,..., ,m also generate I.

Proposition 3.1.1.4. For any f E RN, there exists g, ... , Em, I, E R, such that

f = 91f + - mrm + f', (3.1.1.5)

where any term of f is not divisible by any lead(fh), and lead(f) >- lead(hfrh) for all

h.

Proof. Let j be the exponent of S in lead(f) and let Sf(i ) be the sum of terms in f

for which the exponents of S are j. Applying [Eis95, Proposition-Definition 15.6] to

fj), we can write

0fj) - gl,(j)rl +"" + gm,(j)rm + f1j) (mod S -r[ul,..., um][SI),

where gh,(j) E n[ul,...,um] and lead(9h,(j)fh) _ lead(jfj)) for h = 1,..., m and any

term in fP() E [u1,..., um] is not divisible by any lead(fh).

If we repeat the above argument for fj) - Si (gl,(j)fl " + gm,j)rfm + fP()) E

Sj+ 1 - r[u1,...,um][S] in place of f, we will obtain f ',) and h,(j) for h = 1,..., m

and for some j' > j + 1. We can then iterate this process.
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For h = 1,..., m, put gh = Sjgh,(i)+Sj+gh,(+1)+- - - and f' = Sjlj)+S,+tj+1)-

S--; the power series converge to elements in RK we are looking for. Oi

Definition 3.1.1.6. For f E R, write

f = fi,,i u' S  (3.1.1.7)
il .... .n n,j

Of the monomials for which If1,...,,,I = If 1, there must be one which is lexicograph-

ically largest; we call the corresponding term fiU...,il, ... ui"Sj the 1-leading term

of f, denoted by Lead(f).

Hypothesis 3.1.1.8. Let lint be an ideal of Rint such that Rint/Iint is flat over OF.

Notation 3.1.1.9. Denote I = Int @o, F and I = "int 0,F x; the latter is an ideal

in R, by the flatness hypothesis above. Choose rl,... , rm E Iint which project to

elements of a Grobner basis f1 , ... , fm of I,.

For f E R, let jf denote the minimal exponent of S in the expression (3.1.1.7) of

f. Denote j, = min(jh,; h = 1, ..., m}; it is a nonpositive integer.

Notation 3.1.1.10. In this subsection, fix 70o E (IXrF-1/j', 1). In particular, IrfoIr' <

1.

Notation 3.1.1.11. Let Ro be the Frechet completion of R for I K for q E [7o, 1).

Let R int denote {f E R olf 1 1} and put Rno = Rint o, F and Io = I R R 0 .

Notation 3.1.1.12. For an element f E Ro written as in (3.1.1.7) and 1 E Z, let

rf(l) be the sum of all terms fil,...,i,.ju i.. u 'nS for which vf(fi ,...,i,,j) = 1. Thus,

f(l) E Rit; we use f(l) denote its reduction in R,.

Lemma 3.1.1.13. For h = 1,... , m and 7 E [io, 1],

Irh7 = 1, Irh,(l) I rI, for I E Z>o.

Proof. The former inequality follows from the choice of qo in Notation 3.1.1.10. The

latter follows from the definition of j, in Notation 3.1.1.9. O
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Construction 3.1.1.14. For f E Ro with If I = IrF 1 ,10 the division algorithm is the

following procedure. Put flo = f. Given fi for I > 10, we apply Proposition 3.1.1.4 to

write

fi,(1) = lrl + + ,mFm + f ,(),

where y,h E RK and lead(Pt,hfh) - lead(fj,()) for h = 1,..., m and any term of

f',(t) E R is not divisible by any lead(fh). For each h, pick lifts gt,h of gj,h in Rint so

that gI,h = gl,h,(), namely, we only lift nonzero terms. Put

fi+1 = fi - rK (g,r1 + ... + g1,mrm).

Remark 3.1.1.15. Division algorithm depends on many choices but we will prove

in Proposition 3.1.1.19 that the outcome lim--.+oo fi is uniquely determined by f.

Lemma 3.1.1.16. At each step of the division algorithm, for rl E [7o, 1] and h =

1, ... ,m ,

r -r"Ifl,(o 1' > I

9Ig,hin 5 If,(1)oI, If1+1,(1') - f1,(1) fIn,( l'= (3.1.1.17)

=0 l' <1

Proof. The former inequality holds because lead(t1,h h) _ lead(fj,(0). The latter

relation follows from the former one, using Lemma 3.1.1.13. O

Corollary 3.1.1.18. For h = 1, . . . , m, the series gh = o7r glo,h + o+190+1,h + "

converges under I l7 for 7 E [ro, 1). Consequently, gh E Ro for h = 1, . ,m.

Proof. By Lemma 3.1.1.16,

17rI,h[5 h 17r'f,,( ) Il7'max {'J1Ifi-1,t-1 Il,, Ifl-1,(o1}

5 Ir'FlI max { 2  1 fl-2,(1-2) I, Yj Ifl-2,(1-1), I' fl-2,(1-2)In, Ifl -2,(1) In} '"

1I7rFI {(L')aI Ifh)lll } max { (1)rFII') " j7rf(1)') , };
S1'<1 11<l

this goes to zero as 1 --+ +oo.
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Proposition 3.1.1.19. Keep the notation as above. The quantity f-girl - - -- gmrm

is the unique element of f +I,, for which none of its term is divisible by any Lead(rh).

Proof. It follows from the definition of gl, ... , g that none of the term of f - girl -

S - gmrm is divisible by any Lead(rh).

Assume that f E Ro does not contain any term divisible by any of Lead(rh), then

we need to show that for any nonzero g E I,, there is a term in f + g divisible by

some of Lead(rh). Assume the contrary. Let n = logll igl. Then g(n) E I does

not contain any term which divides any of lead(fh). This forces g(n) = 0 because the

leading term of any nonzero element in I, is divisible by some lead(fh). Contradiction.

The lemma follows. O

Lemma 3.1.1.20. For E E [o, 1], If - girl -... - gmrmI1 equals the minimum 77-

norm of any element of f + Io. Moreover, this continues to hold if we pass from R,o

to its completion RqO under I .

Proof. For rl E [7o, 1], by Lemma 3.1.1.16, Ifl+ l -5 Ift , and hence If - gir - -

gmrma < If i. By Proposition 3.1.1.19, starting with any element in f + I,~, the

division algorithm will eventually lead to a unique element f - girl - ... - g,rm;

hence the first statement follows.

The second statement follows from the fact that any element in f + I,7oR77 is a

limit of elements in f + I,o. O

Proposition 3.1.1.21. Let f be a rigid analytic function on the space

X1o= - {(U,..., Un, S) E An+[0, 1]0lro 5 ISJ < 1; ri,... , r m = 0}.

Then the following are equivalent.

(a) f is induced by an element of R t .

(b) There exists a function r : [7o, 1) -+ R with lim,- r(7) K 1, such that for each

SE [o, 1), f lifts to an element of the I - ,-completion of Ro having r/-norm

less than or equal to r (7).
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Proof. It is clear that (a) implies (b), so assume (b). We can write f as a Frechet limit

of the projections of some sequence of elements fl, f2,... of R, under the quotient

norms associated to the I -I, for 7 E [70, 1). Use the division algorithm to write fi =

g,lrl+ "- - +g,mrm+ hi with gi,, .. . , gl,m, hi E R,,. Moreover, as fi - fi+l tends to zero

under the Frichet topology, so is h, - ht+ 1 since it can be obtained from the division

algorithm of fi - fi+l and Lemma 3.1.1.16 ensures that Ifi - f1+lin 2 h, - hl+lq,.

Hence, the h, form a F6chet convergent sequence; denote the limit by h, which is a

lift of f. Note that for a fixed r, IhiT, equals the r-quotient norm of f,, which in turn

equals the 7-quotient norm of f when 1 is large enough. Thus, Ihl, 5 r(7) for all

27 E [70, 1). Hence it lies in Rti.

Notation 3.1.1.22. Define

Aint = Rint/Iint  A = R/I

Ao = RO/I7o A, = A int Qo, a - R,/I,;

we may view A, as an affinoid algebra over n((S)), whose corresponding rigid analytic

space is denoted by X.

3.1.2 Quotient norms versus spectral norms

In this subsection, we compare spectral norms with the quotient norms discussed in

previous section. As an application, we deduce that the connected components of

Xn when o70 -+ 1- as a rigid space over F are the same as the connected components

of X as a rigid space over n((S)).

Keep the notation as above and assume the following.

Hypothesis 3.1.2.1. In this subsection, we assume that A, is reduced.

Notation 3.1.2.2. Let I -1,qt denote the quotient norm on AK induced by the Gauss

norm on RK. Let I - I,,p = limn- + I " JI qt be the spectral norm; it is a norm

because AK is reduced. By [BGR84, Theorem 6.2.4/1], there exists c > 0 such that

I - IK,sp 5 - Jr,qt < ISI cl - i,,sp, where ISIJ is the norm of S in K((S)).
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Notation 3.1.2.3. In this subsection, fix no E (7rIE 1/ (- j +Pc), 1); in particular,

I7rFl 7o < 7oC and no > p-l/pc

Notation 3.1.2.4. For yr E [70o, 1], let I ),,qt denote the quotient norm on Ao or

A induced by the 7-Gauss norm on R0o or R. Similarly, we have the a-spectral

(semi)norm 1 1 ,,p = limn-+oo I n I1t; we will see in Lemma 3.1.2.6 that it is a norm.

Proposition 3.1.2.5. The quotient norm I - l1,t on A is the same as the spectral

(semi)norm I - II,sp. As a consequence, the map Aint -+ A, induces an isomorphism

Ao/Ao o- AK, where Ao = {f E Allfll,sp, 1} and A °° = {f E Allfli,sp < 1}.

Proof. Since Aint/mFAint = A, is reduced, by [BGR84, 6.2.1/4(iii)], the quotient

norm on A is equal to the spectral seminorm, A" = Aint, and Ao ° = mFAint. This

proves the claim. O

Lemma 3.1.2.6. For 7 E [7o, 1), we have -I,,,sp I I- o,qt 5 ,-pc/(p-1) (1 I7,p on A7o.

The same is true when extending both norm to the completion of Ano with respect to

I" In,qt (which is the same as the completion with respect to the spectral norm). In

particular, this shows that I ),,, is a norm on A7o.

Proof. It suffices to show that for any f E Ano, If' n,qt > fcIfl ,qt; then it would

follow that Ifp~" |,qt > 9(p"-1)pc/(p-1) lfl, q for all n E N by iteration, and hence the

statement follows by taking limit.

Pick a representative f of f in R,, containing no terms divisible by any Lead(rh)

(hence by Proposition 3.1.1.19, IfJ| = If |,qt). Fix r7 E [0o, 1), we will show that

lis,qt= (rF/j Pr,) C- I I = -- l,qt. (3.1.2.7)
S,qt

First, we remark that, given the middle inequality, the former equality follows; this is

because fP - Ejt(4f)) consists of products of rf(t) with an extra multiple p from

the multinomial coefficients and then IfP - (f (1))P,qt If' - E 1(7'f(I))I77 :
p-ll1 f < r77Pc ll, for r7 E [7o, 1). So it suffices to prove the middle inequality in
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(3.1.2.7). For any 1, we have

I(f())o I(f)PI ,p = If( 1,5 > ISIP fQ)LY&IX I - =S -Is r.,qt

Let (f(l))P = g1,lrl + - -- + gi,mrm + h, be the result of the first step of applying the

division algorithm to (f())P. Then log~hl,(o) , = loglslj, (r())Pl,qt and hence Ihl,(o) In >
Pcl f(j)I. Moreover, by Lemma 3.1.1.16, Ihi - hl,(o)) <1 rI7 FllfLf(l)l < ?7irFI-Plfl] ;

this implies that Ihl,(o) ,qt = Ih,(o) ,.

Now, we can write

Z(F( 1 )P = Z F h,(o) + 7rF(h, - hl,(o)) (3.1.2.8)
S1 1

in the quotient ring. The former term on the right hand side of (3.1.2.8) has (quotient)

norm at least r CIfl~ because none of them is divisible by any Lead(rh). In contrast,

the latter term on the right hand side of (3.1.2.8) has norm strictly less than rfPclIf.

Thus, the inequality in (3.1.2.7) holds. O

Remark 3.1.2.9. It is attractive to think that I - I,,sp I |,,qt _ -cl -I,,sp when

r --+ 1-. However, the best we know is that for any c' > c, we have an E depending

on c', for which I I,,, I I |,qt < r/-C'. I,,sp for all r e [e, 1).

Corollary 3.1.2.10. For a rigid analytic function f on X 0o, the following are equiv-

alent.

(a) f is an element in A nt.

(b) There exists a function r : [70, 1) -* R with lim,,l r(r/) 5 1, such that for each

77 E [770, 1), If |7,sp 5 r(~).

Proof. It follows from combining Lemma 3.1.2.6 with Proposition 3.1.1.21. ]

Proposition 3.1.2.11. There are one-to-one correspondences among the following

four sets.

(a) the idempotent elements of AK;
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(b) the idempotent elements of A int

(c) the idempotent elements of A,o;

(d) the idempotent elements on Xo.

Proof. By Corollary 3.1.2.10, the sets (b), (c), and (d) are the same because idem-

potent elements have spectral norms 1. It suffices to match up (a) and (b). We have

a map from the set of idempotent elements of A i t to the set of idempotent elements

of A, by reducing modulo WrF. We first show the injectivity. Let f, g E R in t be

idempotents whose reductions modulo 7rF are the same, i.e., f = y E A,. This

implies that fp-1 +fp-2 + ... + p-1 = 0 in AK. Since f - g = fP - gP =

(f - g)(fp-1 + f-2g + ... + gp-1), we have

If - 9g11,t = I(f - g)(f-1 + fp-2g +... + gp-1) 1 ,qt

< If - gll,qt jfp- 1 + fp- 2g + .+ g-lll,q t  I f - gll,qt . IrFI.

This forces If - gIi,qt = 0 and hence f = g.

To see the surjectivity, we start with an idempotent f E A,, viewed as an element

in R. with none of its terms divisible by any of Lead(ih); pick a lift fo E Rint of I

which only contains the terms that f has and let fo E Aint denote its image in Aint. If

we set ho be the result of applying the division algorithm to 02 - fo and ho = f02 - fo,

then jholi,qt = Iho1i,qt 5 IJrFI and jhoIl?,qt = Iho,qt p-l-2c < 1 for all r E [o, 1),

where the latter inequality holds because all terms in fo come from the terms in f

which have norms < Ifl,qt < ISlClfjI,sp = ISbeC. We apply a Hensel lemma type

iteration to fo as follows. For a 2 0, we set f,,+l = f,, + h, - 2h,f, and

h.+l := 1,+1 - fa+l = (fa + ha - 2hcjf,) 2 - (fa + ha - 2hafa) = 4h2(h - 1).

Hence, Iha+lJn,qt < Ihj,qt for all 77 E [o70, 1]. Thus Ihal,,qt -* 0 as a - +oo; hence fc

converges to an element f E Aint which is idempotent. It is clear from the construction

that the reduction of f modulo 7rF is the same as f. This proves the surjectivity. LO
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Corollary 3.1.2.12. When 7o E pQ, there is a one-to-one correspondence between

the connected components of X and the connected components of X 0,.

Remark 3.1.2.13. This is the first place where we need the rationality of logpro to

ensure that we are in the classical rigid analytic space setting to talk about connected

components.

3.1.3 Lifting construction

In order to apply the results from previous two subsections later in the paper, we,

reversing the picture, start with a rigid analytic space X and try to construct Xo

out from it.

Let n and F be as before.

Definition 3.1.3.1. Let X be a reduced affinoid rigid space over K((S)) with ring of

analytic functions A, = R,/I where R. = n((S))(ul,..., un) and I, is some ideal.

The lifting construction refers to the following.

(1) find an ideal iint in Rint = F(ul,..., u,)((S)) so that Rt/I fint is flat over OF

and Iint o, ;  I.

(2) Choose a Grdbner basis of I, and lift them to rl,..., rm E Iint as in Defini-

tion 3.1.1.6 and define m7o as in Notation 3.1.2.3.

(3) We call the rigid analytic space

X, = {(ul,...,un,S) E A +l[0,1]1 70 _o IS< < 1;rl,...,rm 0}

the lifting space of X; it depends only on the choices of Iint and 70 as well as the lifts

of rl . . . , rm in lint.

Remark 3.1.3.2. We do not know if such a lifting space always exists in general.

The only obstruction is to find an ideal lint lifting I, such that Rint/Iint is flat over

OF.

Question 3.1.3.3. It would be interesting to know if the above lifting construc-

tion can be globalized for arbitrary rigid spaces over ((S)). In particular, given
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a morphism between two rigid spaces over n((S)), can we lift the morphism (non-

canonically) to a morphism between (some strict neighborhood of) their lifting spaces?

Can we "glue" the lifting spaces up to homotopy? This situation is very similar to

Berthelot's construction of rigid cohomology [Brt96+].

For an affinoid subdomain of a polydisc, we explicate this lifting process.

Example 3.1.3.4. Let p, . . ., Pm E [IS[uI, . . ., un] be polynomials and a, . . ., am E

N. We consider the following affinoid subdomain of the unit polydisc

X = {(ul,...,u ) E A ,(())[O, 1] IPil ISI al,.., Pm < IjSlam}.

The ring of analytic functions on X is

K((S))(U1,..., , 1,.,, )/( IS ' - pl , l..., vSat - pm).

For each i, let Pi be a lift of pi in OF[S][ul,..., u,] (here we allow Pi to have new

terms other than the terms of pi). We claim that the ring

OF(U1,..., ,, n , V1 ... m)((S))/(v1iSa - P1, . . ., vmSam - Pm) (3.1.3.5)

is fiat over OF. This is because the ring

OF((S))[u,..., u, vl, . . ., vm]/(VlSa - Pl, . . ., vmSam - Pm) = OF((S))[Ul, ... , u,]

is flat and hence torsion free over OF, and so is its completion (3.1.3.5) with respect

to the topology induced by (p, S)OF S] [ul,..., , v , ... , vm] for r E N.

Therefore, by Definition 3.1.3.1,

X o = (u,...,su,,pS) E An+1[0, 1]o r0 IS < 1; 11 < IsSlm', ,1P0 ISlm

is a lifting space for X, for some r7o E (0, 1).
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3.2 Differential conductors

In this section, we give the definition of differential Artin and Swan conductors fol-

lowing [Ked07a].

3.2.1 Construction of differential modules

In this subsection we review Tsuzuki's construction [Tsu98a] of differential modules

over the Robba ring associated to p-adic Galois representations. For a systematic

treatment, one may consult, for example, [Ked07a, Section 3].

Notation 3.2.1.1. For the rest of this chapter, let K be a complete discretely valued

field of equal characteristic p > 0. Fix a uniformizer 7rK and a non-canonically

isomorphism

gK((WK)) ~ K. (3.2.1.2)

Let bj C ' K be a p-basis of rK, where J is an index set. Then the image bJ of bj

in K under the isomorphism (3.2.1.2) form a lifted p-basis of K. Hence, (dbj)jEJ and

dK form a basis of / We set -o = fn>oK r nn>O'K; it is a perfect field.

Notation 3.2.1.3. Let OF denote the Cohen ring of rK with respect to bj and let

Bj C OF be the canonical lifts of the p-basis. (For more about Cohen rings, see

[Ked07a, Section 3.1] or [Whi02].) Denote F = FracOF. We use OFo to denote the

ring of Witt vectors W(no), as a subring of OF. Denote F0 = FracOF.

Definition 3.2.1.4. Let 0 denote the ring of integers in a finite extension of Q, and

let IFq be its residue field, where q = p' for A E N. Write Qq for the unique unramified

extension of Q, with residue field IFq and write Zq for its ring of integer.

By an O-representation of GK, we mean a continuous homomorphism p: GK -

GL(A,) with A, a finite free O-module. We say that p has finite local monodromy if

the image of the inertia subgroup of GK is finite.

By a p-adic representation, we mean a continuous representation p : GK --+ GL(Vp)

with V, a finite vector space over Frac(O). Since GK is compact, we can always find
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a (not necessarily unique) O-lattice Ap C Vp, stable under the action of GK. Hence,

we can obtain an O-representation p: GK -+ GL(Ap).

Hypothesis 3.2.1.5. We always assume that Fq C No (see the Remark 3.2.3.7).

Notation 3.2.1.6. Denote OF' = OF OZ, 0. Since Frac(O)/Qq is totally ramified,

OF' is a complete discrete valuation ring; we denote its fraction field to be F'.

Notation 3.2.1.7. Let CK be the Cohen ring of K with respect to the p-basis

{(bj)jEJ, 7K}. By functoriality of Cohen ring (Proposition 2.3.4.3) of the isomorphism

(3.2.1.2), OF sits naturally inside CK. Moreover, Bj are the canonical lift of bj in

CK. We denote the canonical lift of 'FK in CK by S.

Put F = CK @z, O; it is a complete discrete valuation ring since 0 is totally

ramified over Z,.

Definition 3.2.1.8. A (qth-power) Frobenius lift on F is a homomorphism : F --+ F

which acts trivially on 0 and induces the qth-power Frobenius on K. The standard

Frobenius lift (with respect to B ) is the Frobenius lift which sends Bj to Bq for j E J

and S to Sq; it is unique by Proposition 2.3.4.3.

Remark 3.2.1.9. We will see below that the construction of differential module is

valid for any Frobenius lifts, but only the standard Frobenius lift gives rise to the

Frobenius antecedent for the differential modules.

Definition 3.2.1.10. Recall the definition of differential modules in Definition 1. 11.24.

Let R be a ring equipped with an endomorphism : R -- R. A (0, V)-module over

R is a V-module over R equipped with an isomorphism q*M --+ M of V-modules.

Definition 3.2.1.11. For every 0-representation p: GK --+ GL(Ap), define its asso-

ciated (4, V)-module over F by

D(p) = (Ap 0®o P
nr)GK

where Funr is the p-adic completion of the maximal unramified extension of F.
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Proposition 3.2.1.12. For any Frobenius lift q on F, the functor D from O-representations

of GK to (0, V) -modules over F is an equivalence of categories.

Proof. For convenience of the reader, we briefly describe the functor here; for more

details, one may consult [Ked07a, Propositions 3.2.7 and 3.2.8]. It is well-known that

D establishes an equivalence between the category of representations and the category

of 0-modules over F (finite free F-modules with semi-linear 0-actions), with V(M) =

(M ®r Fnr)&=1 as the inverse. The non-trivial part is that every 0-module over F

admits a unique structure of (0, V)-module; this involves a standard approximation

argument. O

For an O-representation p of finite monodromy, one can refine the (€, V)-module

associated to p as follows.

Construction 3.2.1.13. Since CK has an OF-algebra structure, any element x E F

can be uniquely written in the form of E i z iS i for xi E OF ®Zq, 0 = OF' such that

the indices i for which v(xi) < n are bounded below.

For r > 0, put Fr = {x E F1 lim v(x,) + rn = oo} and Ft = Uo>0,r; the latter
n---oo

is commonly known as the integral Robba ring over F'. It is not hard to show that

any Frobenius lift q preserves Ft and that =Rt/o = $j FtdBj E rtdS.

Since OF' C, Ft, we can identify Or __- (Ft)unr, where the superscript unr

means taking the maximal unramified extensions of discrete valuation rings. Put

ft = Ounr ®ounr (Ft)unr C Funr, where we take the p-adic completion. For a p-adic

representation p with finite local monodromy, define

Dt(p) = D(p) n (Vp ®o ft) = (V, ®o ft)GK. (3.2.1.14)

Theorem 3.2.1.15. [Ked07a, Theorem 3.3.6] Let 4 be a Frobenius lift on F acting

on Ft. Then Dt induces an equivalence between the category of O-representations

with finite local monodromy and the category of (0, V)-modules over rt.

Lemma 3.2.1.16. [Ked05a, Proposition 3.20] The integral Robba ring ft is an

henselian ring.
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Notation 3.2.1.17. For 77o E (0, 1), we use Z Ko for short to denote Al[70 , 1). Denote

the ring of analytic functions on it by ~70. We define the Robba ring over F to be

RF = U,?,Eo,1)R.~  Also denote R'o, o= R 0z and R F, = RF 0 Zq 0. We will be

only interested in the behavior when r70 is close to 1.

Remark 3.2.1.18. We use K in the subscript of ZKTo because the space is functo-

rially in K but not in F, as we made a non-canonical choice in (3.2.1.2).

Now, we restrict the (€, V)-module Dt (p) to the Robba ring over F' as follows.

Construction 3.2.1.19. Consider the natural injection Ft -+ RE,. Note that the

Frobenius q extends by continuity to RF'. Thus, from an O-representation p with

finite local monodromy, we obtain a differential module E, = Dt (p) ®rt R f over RF'.

Moreover, if we start with a p-adic representation p : GK --+ GL(V,) of finite local

monodromy, we can choose an O-lattice Ap of V, stable under the action of GK as in

Defintion 3.2.1.4. Then we associate a differential module E, to the O-representation

given by A,. It is clear that ,p does not depend on the choice of the lattice A,. We

call p, the differential module associated to p.

Proposition 3.2.1.20. [Ked07a, Proposition 3.5.1] The (0, V)-module ,P over R',

is independent of the choice of the p-basis and the lifts to K (up to a canonical

isomorphism).

Proposition 3.2.1.21. The differential module E, descends to a differential module

over Rno for some o E (0, 1).

Proof. Indeed, defining a differential module needs only finite data. So, we can realize

it on a certain annulus. See for instance [Ked07a, Remark 3.4.1]. O

Remark 3.2.1.22. The current construction of associating differential module to

a p-adic representation (Constructions 3.2.1.13 and 3.2.1.19) is not functorial with

respect to the base field Frac(O) of the representation. If O' is a finite extension

of 0, for a p-adic representation p over Frac(O) of finite local monodromy, one can

naturally obtain p' = p ®o 0' as a p-adic representation over Frac(O'). Assume that
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KK contains the residue field Fq, of O'. Then the differential modules associated to

p and p' are the same if 0'/0 is unramified, and S&p ® O' = Ep, if 0'/0 is totally

ramified.

There are two reasons of keeping this non-functoriality flaw. For one, the differ-

ential conductors we define later will be the same if we change p to p 0o O'. For the

other, if we define F in Notation 3.2.1.7 using the tensor over Z, instead of Zq, in

which case we do have the functoriality, we will get the direct sum of [Fq : F,] = A

copies of 8, as differential modules. When proving the integrality of Swan conductors,

we have to come back to study E, because K O®z O - F'( is not a field if q > p.

3.2.2 Differential modules with Frobenius structure

In this subsection, we study further structures of the differential module 8p. In

particular, we deduce that 8, is solvable in the sense of Definition 1.2.8.1. This would

enable us to invoke Theorem 1.2.8.2 to define and deduce properties of differential

conductors.

In this subsection, we assume the following.

Hypothesis 3.2.2.1. Assume that K as a finite lifted p-basis bj C OK, where

J = {1,..., m}. We also retrieve Notation 2.3.2.3.

Notation 3.2.2.2. Let do = 0/OS, a1 = /OB 1, ... , am = 9/oBm denote a dual basis

of 2F[/oQ with respect to dS, dB 1,..., dBm; they give rise to a set of derivations

on RF, of rational type for all 7o E (0, 1). For a (q, V)-module 8 over 7, these

differential operators act on 8, commuting with each other and commuting with the

Frobenius action; this gives £ a structure of j+-differential modules in the sense of

Definition 1.1.6.2.

We also use F to denote the completion of F'(t) with respect to the n-Gauss

norm.

Proposition 3.2.2.3. Let 0 be the standard qth-power Frobenius lift on F. Recall

the notation of Frobenius antecedent from Subsection 1.1.4. Then the pull back by

Frobenius 0 : F,7 --+ F is the same as p(ao,A) o... o V(am,A), where q = pA.
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Proof. We may assume that F' contains (q a q-th root of unity. It suffices to show

that the image q(Fp) is stable under the action of (Z/qZ)m+ l in the sense of Con-

struction 1.1.4.9 (one Z/qZ from each 0j-Frobenius for j E J+) and that the degree

of F over O(F,,) is qm+l.

For i = (io0 ,... ,im) E (Z/qZ)m+ l , we have S (i = (o and (B) (-) = ('Bj for j E J.

Hence, both the standard Frobenius lift 0 and (-)(i) o€ are continuous homomorphism

from OF [S] to itself sending Bj to B and S to Sq. By Proposition 2.3.4.3, they must

be the same. Hence the image of € is stable under the (Z/qZ)m+l-action.

To see that F has degree qm+l over ¢(F,), it suffices to show that the degree of

F has degree qm over O(F), because the S part is obvious. Note that : OF -- OF

is a flat homomorphism because (the latter) OF is torsion free. Hence the degree of

0: F --, F is the same as the degree of n: K --+ , which is qm. 0

Proposition 3.2.2.4. Let € be the standard qth-power Frobenius lift on F. Let E be

a (4, V)-module over A',[o0, 1) for some qo E (0, 1). Then E is solvable.

Proof. By Corollary 1.1.4.26, we have

f(4*M, r) = max {p-A f(M, qr), pl- (fi(M, qr) - logp), ... , fi(M, qr) - Alogp},

where A = logpq. Since q*M -' M, we actually get an equality comparing subsidiary

radii of M at different radii. Taking the supremum limit r --+ 0+ or equivalently

1 --+ 1-, gives a number g(M) satisfying

gi(M) = max {p-Ag(M), pl-(gi(M) - logp),..., gi(M) - Alogp}.

This forces g(M) to be zero. By continuity of f2(M, r), limr-7 .+ fi(M, r) = 0. Hence,

£ is solvable. O

Proposition 3.2.2.5. Let ¢ be the standard qth-power Frobenius lift and 0' be another

Frobenius lift on F. Assume that £ is a (0, V)-module over A',[0o, 1) for some No E

(0, 1). Then £ is naturally equipped with a (4', V) -module structure.
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Proof. Define the Frobenius structure for 0' by Taylor series as follows.

0 (0'(S) - 6(S))eo j j('(Bj) - q(Bj))ei &eo ael e,,.

ej +! aseo aB1e OBe (v

Since 1'(S) - O(S)|I < 1 and Iq'(Bj) - O(Bj)I1 < 1 for all j e J. This series

converges under I 1, for r cE (0, 1) sufficiently close to 1 and also for - I1. Ol

Remark 3.2.2.6. One may also approach the results of this subsection without using

the standard Frobenius first but using a generalized version of Corollary 1.1.4.26. This

point of view is taken in [Ked**, Chap. 17].

3.2.3 Differential conductors

Combining the result of Subsections 1.2.8 and 3.2.2, we can now define the differential

conductors associated to a p-adic representation p of finite local monodromy. This is

a slight improvement over Kedlaya's original construction in [Ked07a, Section 3.5],

as the tool of differential modules in Section 1 was not available at the time.

We continue to assume Hypothesis 3.2.2.1 in this subsection.

Theorem 3.2.3.1. Let p be a p-adic representation of GK of finite local monodromy.

Let S, be the (s, V) module over A',[o, 1) associated to p in Construction 3.2.1.19.

Then after making Tro sufficiently close to 1-, there exists a unique decomposition

of (¢, V)-modules E = ()bDQ>, 8 b (resp. = beQ>o0 b,log) over A',[qo, 1), where

each of Eb (resp. Eb,log) has uniform break (resp. log-break) b. Moreover, each of S b

(resp. Cb,log) corresponds to a p-adic subrepresentation pb (resp. pb,log) of GK and

P = ®bEQ>1 Pb (resp. p = @bEQ>oPb,log).

Proof. By Proposition 3.2.2.4, Sp is solvable. Now, we can invoke Theorem 1.2.8.2 to

get the desired decomposition as V-modules. Since this decomposition is canonical

and the action of V commutes with the action of the Frobenius, we actually obtain

a decomposition of (0, V)-modules.

Moreover, by the slope filtration [Ked07a, Theorem 3.4.6], the Frobenius action

on each direct summand of E is of unit-root; the decomposition of the representation
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follows by the equivalence of category in Theorem 3.2.1.15.

Definition 3.2.3.2. We define the differential ramification breaks of p to be the

differential non-log-breaks of 8 p/pK (See Definition 1.2.8.3), where pIK denote the

subrepresentation of p fixed by the inertia group; the biggest break is denoted by

b(p). We also define the differential Artin conductor of p to be that of ECPIpIK

Similarly, we define the differential ramification log-breaks of p to be the differential

log-breaks of 8, (See Definition 1.2.8.3); the biggest break is denoted by blog(p). We

also define the differential Swan conductor of p to be that of 8,.

Remark 3.2.3.3. In the above definition of differential Artin conductors, we split

off the unramified part because the multiset of convergence radii can not distinguish

the unramified part from the tame part which contributes differently to the Artin

conductor. This does not matter for Swan conductors.

Remark 3.2.3.4. By [Ked07a, Proposition 2.6.6], the definition of the differential

conductors does not depend on the choice of the uniformizer S and the lifted p-basis

Bj. Moreover, we may also lift the Hypothesis 3.2.2.1 and define the differential

conductors for arbitrary complete discretely valued fields of equal characteristic p

[Ked07a, Corollary 3.5.7].

Theorem 3.2.3.5. Differential conductors satisfy the following properties:

(0) When the residue field rK is perfect, the differential Artin and Swan conductors

are the same as classical ones in [Ser79].

(1) For any representation p of finite local monodromy, Swandif(p) G Z> 0 and

Artdif(p) E Z>0.

(2) Let K'/K be a tamely ramified extension of ramification degree e'. Let p be

a representation of GK of finite local monodromy and let p' denote the restriction of

p to GK,. Then Swandif(p') = e' - Swandif(p). If e' = 1, i.e., K'/K is unramified,

Artdif(p') = Artdif(P)

(3) Let p be a faithful p-adic representation of the Galois group of a Galois exten-

sion L/K. If L/K is tamely ramified and not unramified, b(p) = 1 and biog(p) = 0.

If L/K is unramified, b(p) = blog(p) = 0.
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(4) Put Fil ifGK = GK and FilaifGK = 'K for a E (0, 1]. For a > 1, let Ra

be the set of finite image representations p with differential ramification break less

than a. Define FilifGK = PERa (IK n Ker (p)) and write Fild+GK for the closure

of Ub>aFildifGK. This defines a differential filtration on GK such that for any finite

image representation p, p(FilaifGK) is trivial if and only if p E Ra.

Similarly, put Fildif,logGK = GK. For a > 0, let Ra,og be the set of finite image

representations p with logarithmic differential ramification break less than a. De-
fine lloGK pR,lo (IK n Ker (p)) and write F1 dif,logG K for the closure of

Ub>aF llif,logGK. This defines a differential logarithmic filtration on GK such that for

any finite image representation p, p(Filaif,ogGK) is trivial if and only if p E Ra,log.

Moreover,

for a > 0, Fil"ifGK/FilaGK = 0 a Q

an abelian group killed by p a E Q
1 .a .a+ 1gGK= 0 a

fora > 1, FlldifogG,log GK = 0 a

f an abelian group killed by p a EQ

Proof. For (0), see [Ked05a, Theorem 5.23].

To prove the rest of the statement, as in [Ked07a, Section 3.5], we may first reduce

to the case when Hypothesis 3.2.2.1 holds.

(1) This is Theorem 1.2.8.2.

(2) If L/K is unramified, we can use the same 7rK as the uniformizer of L. The cor-

responding differential module p, of p' is just a simple extension of scalar. Since the

calculation of spectral norms does not depend on the base field (Remark 1.1.2.7), we

compute the same result on spectral norms and hence have the same Artin conductor.

If L/K is tamely ramified with ramification degree e', we may first make a further

unramified extension and assume that the L = K( r/e'). Hence, the corresponding

differential module Sp, of p' is just the tame pullback and the statement follows from

Proposition 1.2.1.7.

(3) is an immediate consequence of (2). But be caution that the differential
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ramification breaks can not distinguish unramified extensions from tamely ramified

extensions (see also Remark 3.2.3.3).

(4) The proof for Swan conductors is in [Ked07a, Theorem 3.5.13], which we

will not repeat. The proof for the non-logarithmic differential filtration is much

simpler than the logarithmic case because of the different normalization in the Sub-

section 1.2.8. Indeed, it suffices to show that we can do some rotation so that 0o

becomes dominant; this is exactly the content of Subsection 1.2.7. O

Remark 3.2.3.6. The converse of (3) is a well-known fact for experts. However,

we are unable to find good references to support a proof. As it will become an

easy consequence of the comparison Theorem 3.4.3.1 and properties of arithmetic

ramification conductors (Proposition 2.2.2.11(6)), we do not state it here.

Remark 3.2.3.7. Note that the invariance of the differential conductors under un-

ramified base changes enables us to assume that no is algebraically closed. This

justifies the assumption we made in Hypothesis 3.2.1.5.

3.2.4 Breaks by p-basis

In this subsection, we try to fix Fake-assumption 2.3.6.8. Please consult Remark 2.3.6.7

for motivation.

We keep Hypothesis 3.2.2.1 for this subsection and we keep the notation from

previous subsections.

Proposition 3.2.4.1. For each j E J+, there is a ramification break bj(L/K) asso-

ciated to bj (j E J) or 7rK (j = 0), such that Ra, (p 0 F) = 7
bj for all 7 -- 1-.

Hence,

b(p) = max{bj(p)}, blog(p) = max{bo(p) - 1; bj(p) for j E J}.
jEJ+

Proof. By applying the same argument as in the proof of Proposition 3.2.2.4, we know

IR, (Ep 0 F7q) = IRaj (, ® F)q for r -+ 1-. Therefore, by the convexity given by

Theorem 1.2.2.6(d), f3)(j) , r) is affine as r --+ 0+ . The proposition follows. O
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Definition 3.2.4.2. We call bj+(p) the breaks by p-basis of p with respect to the

lifted p-basis bj and the uniformizer rK.

When doing operation on K, we want to understand the corresponding effect on

the bj(p).

Lemma 3.2.4.3. Fix jo E J. Let b', (p) be the breaks by p-basis of p with respect to

the lifted p-basis {bj\{jo}, bjo + rK} and the uniformizer 7rK. Then bj(p) = bj(p) for

j E J and

b(p) = max{bo(p), b.o(p)} ifbo(p) # bjo(p),{ < bo(p) if bo(p) = bjo(p).

Proof. Let Yj, denote the derivation dual to the basis dBJ\jo)}, dS, d(Bj, + S) of

OdFsIlOo' as in Notation 3.2.2.2. Then 9', = &j and &o = &o + 0jo. The lemma

follows immediately. 0

Remark 3.2.4.4. This lemma is in fact much stronger than it looks. Applying the

same argument to bjo + arK for a E Ko, we find out that for all but possibly one

a E no, bo(p) _ bj(p). So, the direction for uniformizer is "generically dominant".

This motivates the following lemma.

Lemma 3.2.4.5. Fix jo E J. Let K' be the completion of K(x) with respect to the

1-Gauss norm, equipped with lifted p-basis {bJ\jo}, bjo + xrK, x) and the uniformizer

rK. Let p' be the representation GK' --+ GK P- GL(V). Let bj+um+(,+ (p') denote the

breaks by p-basis with respect to the lifted p-basis and the uniformizer above, where

b\{jo}(p') corresponds to bJ\{jo}, bjo(pf) corresponds to bjo + XIK, b'o(p') corresponds

to 7rK, and b'~+(p') corresponds to x. Then we have bj(p') = bj(p) for j E J,

b'+l 1(p') = bO(p) - 1, bO(p') = max{bo(p), bO(p)}.

Proof. Let F' denote the completion of F'(X) with respect to the 1-Gauss norm,

where X is a lift of the x. Let f : A,[l70o, 1) -+ Al, [70, 1) be the natural morphism

and then f*E, is the differential module associated to p'. Let (J+u{m+1) be the

differential operators corresponding to the lifted basis as in the lemma. Then under
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the identification by f*, we have

'J= ,, ',, = so, o = 8o + Xajo.

The lemma follows because X is transcendental over F'. O

Lemma 3.2.4.6. Fix jo E J. Denote K' = K(b1P ) equipped with lifted p-basis

{bj\{jo}, b }. Let bj+ (PlGK,) be the breaks by p-basis of PICK, with respect to the

p-basis above. Then b (p) = bj(p) for j E J+\{jo} and bo(pIGK,) = bjo(P)'

Proof. Replacing K by K' is equivalent to use p(aj ) to pullback the differential module

£p. The lemma follows from Corollary 1.1.4.26 applying to £ ® F' when rl -- 1-. O

Lemma 3.2.4.7. Fix jo E J. Denote K' the completion of K(bP-"; n E N) equipped

with lifted p-basis bj\{jo}. Let b'+ (PICK,) be the breaks by p-basis of PICK, with respect

to the p-basis above. Then bj(p) = bj(p) for j E J+\{jo}.

Proof. Obvious. O

As promised earlier (Subsection 2.1.2 and Remark 2.4.2.2), we can also show that

the differential Artin conductor is invariant under the operations of adding generic

po'th roots. This would establish the comparison with Borger's conductor by Propo-

sition 2.4.2.1 (and by invoking the comparison Theorem 3.4.3.1).

Proposition 3.2.4.8. Fix jo E J. Let K' be the field obtained after adding a generic

p'-th root of bjo and let p' be the representation GK' --+ GK -P GL(V). Then

b(p) = b(p').

Proof. Let K 1 be the completion of K(x) with respect to the 1-Gauss norm and

let K2 be the completion of the maximal unramified extension of K 1. Let P2 de-

note the representation GK2 -- GK -P GL(V). By Lemma 3.2.4.5, b(p 2) = b(p)

and if b)+U{m+l}(P2) denotes the breaks by p-basis with respect to the lifted p-basis

as in Lemma 3.2.4.5, then bjo(p 2 ) < b'(p 2 ). The proposition follows by applying

Lemma 3.2.4.7 to K2 with respect to the bjo + XlrK. Ol
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3.2.5 Refined Swan conductors

In this subsection, we define the refined Swan conductors. This provides secondary

information of the graded pieces of the differential ramification filtration. We keep

the notation as in previous subsections and continue to assume Hypothesis 3.2.2.1.

Notation 3.2.5.1. Fix a Dwork pi ir = (-p)l/(-1) for this subsection.

Construction 3.2.5.2. Let p be a p-adic representation of GK of pure log-break

b = biog(p). Let E, denote the (0, V)-module associated to p. By Theorem 3.2.3.1,

there exists ro E (0, 1) such that IR(,p®F) = rb for r E [7o0 , 1). By Theorem 1.2.6.7,

after making a finite unramified extension of F', E, admits a decomposition

sp= o (3.2.5.3)
Oeze(e,)

over A, )(q /d, 1) with d the prime-to-p part of the denominator of b, where Eo has

pure refined intrinsic radii 0. (Here we only need to make an unramified extension

of F' because w-'IR(p, ® F4)/ b E IF'(lr)x and an unramified extension of F' is

enough to have (1.2.6.8) with each of MO with pure intrinsic radii.)

We define the set of refined Swan conductors of p to be

1
rsw(p) = {-1r-b I E Z(E) C 1(log) -b K

Lemma 3.2.5.4. Construction 3.2.5.2 of refined Swan conductor does not depend on

the choice of lifted p-basis of K or the uniformizer irK.

Proof. For another choice of lifted p-basis and uniformizer, we will end up considering

another set of differential operators U' = d/dBj for j e J and &o = d/dS'. We assume

that

dBj, dBj odS forj' E J,
B', , +jEJ 3,

dS' dBj dS

S' = o,3  + ao,o for f E J,
jEJ
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where aj,, E OFJ[S) for j,j' E J+.

Moreover, we may assume that E, has pure differential log-break and has pure

refined Swan conductors with respect to the lifted p-basis bj and uniformizer 7rK.

Furthermore, we may assume that ,p (by gluing Frobenius antecedent) extends to

[ro, 1) such that S 0 F. has visible intrinsic radii for some r e (ro, 1), and hence has

pure refined intrinsic radii o4 + 01 +. . + O d-

By applying Proposition 1.1.6.16, we have, for any j E J+,

IZOE(Ep 0 F) = {aj,o90 + -- + aj,mOm (rank (.p) times)} C n a

for some s, if IRon (E, ® F7) = IR(S, 0 F7); we use Jo denote those j for which this

is the case. By Proposition 1.1.6.16, we also have aj,o0o + - + a ,mOm = 0 in 'n,g

for j E J\Jo. Note that, we have

(ao,o0o + " + 
+o,mm) + E (aY,odo + "' + aj, ) dB

jEJ B3

dS dB 1  dBm
o= -- + 01-f + + Om Bm

S B, Bm

Hence, they compute the same refined intrinsic radii and the lemma is proved. O

Theorem 3.2.5.5. Let K be a complete discretely valued field of equal characteristic

p > 0 .

(a) Let p be a p-adic representation of GK with finite local monodromy which has

pure (differential) log-break b = biog(p). Then there exists a finite tamely rami-

fied extension K'/K such that, we have a canonical decomposition of represen-

tations of GK' over a finite extension of Frac(O):

PIGK' = E P1,
i9Ersw(p)

where p has pure refined Swan conductors V e E (log) 0 IrKbalg. By Galois

descent, we have a decomposition of p = {E}cDrsw(p)P{}, where the direct sum
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runs through all Galois conjugacy classes in rsw(p) and rsw(p{}) consists of

only the Galois conjugacy class {9} (with same multiplicity on each element).

(b) The refined Swan conductor gives rise to an injective homomorphism for b E

Q>o,

rsw: Hom(Fildif,logGK/Fil ,logGK, Fp) -+* Q(log) 0 7rKb/Kalg. (3.2.5.6)

Proof. (a) We first replace K and Frac(O) by an unramified extension of K and a

finite extension of Frac(O), respectively, corresponding to the unramified extension of

F' made for the decomposition (3.2.5.3) (so that Hypothesis 3.2.1.5 holds). Since the

decomposition is canonical, it is a decomposition for (0, V)-modules. By the slope

filtration [Ked07a, Theorem 3.4.6], the Frobenius action on each direct summand of

E is of unit-root; the decomposition of the representation follows by the equivalence

of categories in Theorem 3.2.1.15.

(b) We need to show the following.

(i) for any p-adic representations p of pure break b and any p-adic representations

p' of break smaller than b, rsw(p 0 p') is just dim p' copies of rsw(p);

(ii) for any p-adic representations p and p' of pure break b and of pure refined Swan

conductor V, then p p"V has smaller break.

They follows from Lemmas 1.1.5.12 and 1.1.5.12, respectively. O

Remark 3.2.5.7. It would be interesting to know if the homomorphism rsw defined

here coincides with the one defined in [Sai07+, Corollary 1.3.4]. The choice of the

Dwork pi here is expected to correspond to the choice of the Artin-Scheier sheaf in

[Sai07+].

We temporarily drop Hypothesis 3.2.2.1 for the following proposition. It is an

analogue of Conjecture 2.2.2.21 for differential ramification. We will see in Corol-

lary 3.4.3.5 that Proposition 3.2.5.8 implies Conjecture 2.2.2.21 for the equal charac-

teristic case.
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Proposition 3.2.5.8. Let K be a complete discretely valued field of equal charac-

teristic p > 0. Then for a E Q>o, the conjugation action of log/Fillif,+ogGK On

Fillif,ogGK/Fl ,logGK is trivial.

Proof. It suffices to show that for a p-adic representation p of GK with finite local

monodromy which has pure (differential) log-break b, if it is absolutely irreducible

under any tamely ramified extension, then P(Fildi,loGK/Filb+GK is a direct sum of a

single character X FilogGK/FilGK Q Ox. This is equivalent to showing that the

action of Fildif,log on p®pV is trivial, and to showing that p pV has smaller log-break.

Since only finitely many elements in a lifted p-basis can be dominant in E,, we may

assume Hypothesis 3.2.2.1. By Theorem 3.2.5.5(a), such condition implies that p must

have pure refined Swan conductor and hence p 0 pV must have smaller log-break. 0

3.3 Thickening technique

In this section, we introduce a thickening technique. Vaguely speaking, it is to con-

struct a reasonable object which can be thought of as a tubular neighborhood of the

"diagonal embedding of A [nl , 1) into A [o, 1) x Fo A' [?, 1)". Be caution that the

latter rigid space is not really well-defined.

We first start with a geometric interpretation of this construction and then move

on to the abstract definition of the thickening space.

We keep the Hypothesis 3.2.2.1 throughout this section.

3.3.1 Geometric thickening

In this subsection, we describe the thickening technique when the residue field rK

can be realized as the field of rational functions on a smooth no-variety. We hope

this can provide some geometric intuition of the thickening construction in the next

subsection; the content in this subsection will not be used in the rest of the thesis.

Hypothesis 3.3.1.1. Only in this subsection, we assume that the field K is a finite

separable extension of Ko0(b1, ... binm).
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Construction 3.3.1.2. Let X be a smooth variety over ro whose field of rational

functions is nK; such an X exists because we may realize it as an open subscheme of

an 6tale cover of Spec Ko[bl, b , bm] which induces the extension nKK/(bl , bin).

We may further shrink X so that it is the special fiber of a smooth formal scheme

X over OFo of topological finite type, i.e. XSpfOFo Spec Ko = X. We may further

shrink X and X so that we have lifts B1,..., B, of bl,..., bm on X and dB1,.. ., dBm

form a basis of the sheaf of differentials Q OFo. We use X to denote the "generic

fiber" of X as a rigid space over Spm(Fo), in the sense of Raynaud.

Consider the following commutative diagram

A1  
1P = Xx~o A'o P = X SpfOFo Ao - P = X Fo AO, 1]

Spec Ko > Spf OFo Spm(Fo)

where the vertical arrows from the first row to the second row are all embedding of

zero sections and the coordinates of A'o and A',o are irK and S, respectively.

The tube of X in P, denoted by IX[p, is isomorphic to X x Ao [0, 1). Let Ox be

the ring of rigid analytic functions on X; then F is exactly the p-adic completion of

FracOx. If we base change the tube ]X[p from X over to F, we get A'[0, 1). We are

interested in the annulus Al [jo, 1) for some 7o E (0, 1), which can be obtained from

base changing X x A'o [70 , 1) from X to F.

Now, we consider the thickening space of this annulus A' [70o, 1).

Construction 3.3.1.3. Consider the following commutative diagram

A- p Xo P X o0 P --- P XFo P

Speco > Spf OFo -- Spm(Fo)

where we denote pri P xoFO P -+ P the projection to the i-th factor, i = 1, 2. Then
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P XoroF P has a set of local parameter given by B 1 = pr(B), . . . , B = pr(Bm), S =

pr*(S), B = pr*(Bi),., = pr*(Bm),S' = pr*(S). By Berthelot's Fibration

Theorem [Brt96+, THEOREME 1.3.2], we have an isomorphism

]X[px 0, p"]X[p FoAm+ [O, 1),

where the factor ]X[p respects the projection pr1 and the coordinates for the open

polydisc on the right hand side are given by 6o = S - S', S1 = B1 - B.,...,6m =

Bm- Bm'. The geometric thickening space is the subspace of ]X[-xo, -p where 16ol =

IS - S'I < ISI, or more precisely,

XXFo {(S, So) AFo[0, 1) I6ol < ISl} I Fo Am [0, 1).

Thus, the thickening space, denoted by TSk, of Al [ro, 1) is the space obtained by

base changing

X XFo {(S, 60) E A2o[0, 1)IISI > ro, 160o < ISI} XFo A [0, 1).

from X to F.

The projection pr : P x F P --+ P gives a F-morphism of rigid spaces 7 : TS --

A'[rIo, 1); the projection pr 2 : P XFo P -* P gives a Fo-morphism of rigid spaces

T : TSkS - A)'[r7o, 1). The morphism -R does not respect the F-rigid space structure.

3.3.2 General thickening construction

In this subsection, we introduce the thickening spaces and study basic properties of

differential modules over them.

We keep Hypothesis 2.3.2.1 in this subsection. Note that Hypothesis 3.3.1.1 is no

longer in force from now on.

Definition 3.3.2.1. For 'q E (0, 1), we write Zk = AF[r r]. For a E Q>I and
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7o e (0, 1), we define the thickening space (of A'[ro0, 1) and level a) to be

TS >-7  = {(S, 0o,..., 6m) E Am+2[0, 1)IIS| _ ?7o; Ijl < ISl"a for j E J+}. (3.3.2.2)

For r E [770, 1), we put

TSZ' = A[4, ?] xf A~+1[0, qa].

Similarly, for a E Q>o and rio E (0, 1), we define the log-thickening space (of

Al [ro, 1) and level a) to be

TS no = {(S,So, ... ,m) E A+ 2[O,1)IISI 70; Jio 5 ISla+l; 1j 5 iS for j E J}.

(3.3.2.3)

For ri e [ro, 1), denote

TSaog = A [7, 7 xF Al [0, x A , r".
,log - F- F XF Fm

As in Notation 3.2.1.17, we may drop the superscript > m0 for simplicity.

Caution 3.3.2.4. One may want to write TS > 7o = Ue10 ,1) Al[7, 1) XF Am+'[0, 7a]

for simplicity as in the introduction. However, this will not define the same space as

in (3.3.2.2), because the union does not give an admissible cover of TSZ O . Similar

expression for log-thickening space is not valid either. Nevertheless, it might be helpful

to think the space and picture the geometry this way.

Remark 3.3.2.5. We need a E Q in Definition 3.3.2.1 to make sure that (3.3.2.2)

and (3.3.2.3) actually define (Berkovich) rigid analytic space. For individual TSk"

and TSog, one may just take a E R.

Notation 3.3.2.6. Let I - Iz denote the 7r-Gauss norm on ZK. For a E Q>1, let

I- ]TS'7 denote the Gauss norm on TS '; for a > 0, let I - ITS ,'o denote the Gauss

norm on TS'Jog
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Notation 3.3.2.7. For a E Q>1 (resp. a E Q>o) and r0o E (0, 1), denote the natural

embedding of Zn~~o into the locus where 6i = 0 for j E J+ by A : ZK ° -o TS- ' o

(resp. A: Z7O -- TSo°). Also, we have the naive projection 7r: TS >a - o -. Z> 7°

(resp. 7r : TS:,o° - Zao °) by projecting to the first factor. These morphisms are

compatible when changing a and 770, or replacing rio by r for some r77 [r0, 1).

To simplify notation, for a and 0o as above, we identify Oz, o as a subring of
K

OTS>,o and OTSa,?,o via w7*; same for r1 instead of > ro0. It is worthwhile to point
K K,log

out that 7r* is an isometry; hence the identification will not change any calculation

on norms.

Proposition 3.3.2.8. We have a unique continuous OFo-homomorphism -r* : OFS) --

OF[S, 6J+] such that ir*(S) = S + 6o and #*(Bj) = Bj + 6j for all j e J. Moreover,

for g E OF, i*(9) - 9 E ( 6 1,... , 
6 m)(.)OF V1, .. .,- -m.

Proof. It follows from Corollary 2.3.4.7 immediately. O

Theorem 3.3.2.9. For a E Q> (resp. a E Q>o) and ro e (0, 1), the homomorphism

r* induces a Fo-morphism r : TS > o -- ZK ° (resp. r: TS og ZK ) such that

fro A = id; same if replacing 2 ro by r for some 77 E [0o, 1).

For any g E Oz7( and for a > 1 (resp. a > 0),

[jr*(g) - gITSa7 <7 a-1_ I9IzX (resp. jr*(g) - gITS-og ,a IgIZ 9 ). (3.3.2.10)

In particular, Ifr*(g)lTs~,n = I*(g)lTS~og = Igl.191 Moreover, we have the following

bound for TS ": if gE Oz n OF [S], then

[r*(g) - g aTS~n < . (3.3.2.11)

Proof. We need only to establish the bound on the norms. Let g = Eiz aiSi  E

F(qr/S, S/r), we have

fr*(g)-g = (fr*(ai)(S+60)'-aSi) = 5 ((r*(ai)-ai)(S+6o)i+ai((S+6o)i-S)).
iEZ iEZ

(3.3.2.12)
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Since *(ai) - ai E (61,..., 6m)(ai)OF[51,..., 6m], we have

I*(aj) - ailTs, < la2 l7, I'(a 2) - aiITS', < la l,". (3.3.2.13)

Moreover, we have can bound (S + 60)' - Si by

S(S + bo)' - Si TS " 5 a+i-1 (S + o)' - Si' TS 'O _a+'. (3.3.2.14)
K K,log

Plugging the estimates (3.3.2.13) and (3.3.2.14) into (3.3.2.12), we obtain (3.3.2.10).

When g O F[S], (3.3.2.14) always gives j(S + 6 0 )i - SilTS ' < 7]a for i > 0 (when

i = 0, we have zero); the equation (3.3.2.11) follows. O

Remark 3.3.2.15. For a > 0, one can factor the morphism F for non-log thickening

space as TS +1' o -, TS ° 1 Zo, where the second morphism is the r for the

log-thickening space.

Notation 3.3.2.16. For a V-module over ZK1o, we call i*E the thickened differential

module of E, denoted by F. We view F as a differential module over TSZ>"° or

TS o with respect to the differential operators 8/8o,..., 9/5m, i.e. we view F

as a differential module on TSZ>o or TSi relative to Z~/o.

Proposition 3.3.2.17. Let 17 E [770, 1). The radii of convergence of aj+ on , over

Z' and the radii of convergence of O/& 6 + on .Fa, = F( Frac(OTs ')A^ and Fa,,iog

F ® Frac(OTSZ,, )̂  are related as follows.

Ralaj(Fa,,,) = min{Ra,(,),,a}, j E J+;

IRa/a8j (Fa,,,log) = min {IRa, ()/?a, 1}, j E J+.

Proof. Note that ii*(dBj) = dBj + dSj for j E J and ii*(dS) = dS + d3o. The actions

of O/OSj, j E J (resp. j = 0), on Fa,, and Fa,,7,log are the same as the action of 0j

(resp. 0o) on £7. The statement follows from the facts that 6 j are transcendental

over Ozz and the homomorphism i* is isometric (via Theorem 3.3.2.9). O
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3.3.3 Thickened differential modules

When the p-adic representation factors through the Galois group of a finite totally

ramified and wildly ramified Galois extension L/K, the thickened differential module

E can be reconstructed from a finite Galois cover of the thickening space TSK.

We keep Hypothesis 2.3.2.1 for this subsection. Moreover, we impose the following.

Hypothesis 3.3.3.1. For the rest of this subsection, we assume that L/K is a finite

totally ramified and wildly ramified Galois extension.

Notation 3.3.3.2. Let L be as above. Given a uniformizer rL of L, we fix a non-

canonical isomorphism nL((TrL)) " L. For a p-basis Ej of IL, we use cj to denote the

image of Ej under this isomorphism; we may use the same index set J because KiL//K

is a finite extension.

Let 0 E be the Cohen ring of KL with respect to j and let Cj be the canonical

lifts of Ej. Set E = FracOE.

Caution 3.3.3.3. The residue field extension iL/K is typically not separable and

hence cannot be embedded into the extension L = IL((7rL))/K = IK ((lrK)).

Construction 3.3.3.4. We retrieve the notation from Construction 2.3.3.3. For each

j E J, fix an element in OE T]J lifting bj E OK C L [t] for j E J and fix an element

in T + Te+1OEJTI lifting IrK E OK C KLkrL]. By Proposition 2.3.4.3, there exists a

continuous homomorphism f* : CK -- CL sending Bj and S to the elements chosen

above; it naturally restricts to f* : OF[S] -* OE[T].

Lemma 3.3.3.5. Keep the notation as above.

(1) The homomorphism f* is finite and C1,..., Cm and T generate OE[T] over

OFS]. Hence, f* induces a surjective map OF[S](Uo,..., Um) - OET] sending Uo

to T and Uj to Cj for j E J. Moreover, one can choose generators Po, . . . , Pm of the

kernel so that, modulo p, they are exactly pj+ in Construction 2.3.3.3. In particular,

Po E Ue - (U1,... , Um)S + (p, UoS, S 2) - OFI[S(Uo, ... , Um),

Pj E UP - j + (, UO, S) Of[S] (Uo,...,Um),
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where ,3j is a polynomial in Uo,..., Uj-1 with coefficients in OF and with degree

on Uo smaller than e and degree on U3 smaller than pri' for j' = 1, . . . , j - 1, and

1(U,..., Um) E OF[Ul,..., Um]. Moreover, {U I0  eo < e; 0 < ej < pi,j E J}

form a basis of OF[S](Uo, ... , Um)/(PJ+) over OF[S].

(2) The map f* extends to a map f,* : F(r/S, S/i) -+ E (l/e/T,T/ul/e) for
1/e

7 e [0, 1). Thus f* extends by continuity to a homomorphism f* :no --+ RIO and

a map f : A' [o, 1) --+ A'r [ / e, 1) for no E (0, 1).

(3) Let Ft and FE be the integral Robba rings over F and E, respectively, similarly

constructed as in Construction 3.2.1.13 but without tensoring with F. Let RE be the

Robba ring over L as in Notation 3.2.1.17. Then t is a finite 6tale extension of [Ft

with Galois group GL/K. Moreover, RE E- E rt F.

(4) For some m7o E (0, 1), Al [0/e, 1) is Galois dtale over 77 E [?7o, 1) via f* with
1/e

Galois group GL/K. Hence, R 'R ,70 becomes a regular GL/K-representation over 10

via f*.

Proof. (1) is equivalent to its mod p version, which is exactly Construction 2.3.3.3.

(2) It suffices to prove that f* is continuous respecting the norms I z on CK and

i,z1/. on CL, for all 7 e [7o, 1). Since f*(Of) E OE[T] and f*(S) e Te+Te+lOE[T,

we have IglzK = lf*(g) lz e for any g E CK. Hence the map f* extends continuously

to f* : K(r/S, S/y) --+ L(Ie/T, T/rlI/e).

(3) The first statement follows from Lemma 3.2.1.16. The second statement is

true because tE Qrt tF is complete and dense in RE.

(4) It follows from (2) and (3) since RF (resp. RE) is a limit of 7R (resp.
1/e

Remark 3.3.3.6. The morphism f does not respect the naive K-space structure on

A~lr/e, 1); this is precisely because of Caution 3.3.3.3. But it respects the K-space

structure on A[O /e, 1) induced by OF - OF[S] * OE[ T]

Construction 3.3.3.7. Keep the notation as in Construction 3.2.1.19. Let p :

GL/K -+ GL(Vp) be a p-adic representation, where V, is a finite dimensional vec-
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tor space over Frac(.). We have

Ep = D t (p) rt R, = (Vpoft)G K  Vrt R F ( Zq GL/K = Vp®zqZRE GL/K

Hence, for some ro E (0, 1), the differential module E, descents to

EP =(Vp Zqf, O z>,/e ) CGL/K

this is a differential module over 7R0 ®Zq (z = RF,. This construction respect tensor

products, i.e., given another p-adic representation p' of GL/K over Frac(O), we have

EpOpI = ip Q2iX,7 sp,

Hypothesis 3.3.3.8. From now on, we always assume that 7/o E (0, 1) is close enough

to 1 so that all statements in Lemma 3.3.3.5 hold and E, descents to R7o.

3.3.4 Spectral norms and connected components of thicken-

ing spaces

In this subsection, we relate the spectral norms of differential operators on 8 to the

connected components of certain rigid spaces.

We keep Hypotheses 3.2.2.1, 3.3.3.1, and 3.3.3.8 in this subsection.

Definition 3.3.4.1. Let a E Q>I. We define the spaces TSL' !o TSr a,o and

TS2L'-L by the following Cartesian diagrams.

Z " TSK --TS'\L (3.3.4.2)

1 I
Zf ZL70
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We make similar constructions for the logarithmic version of all spaces if a E Q>o.

Remark 3.3.4.3. The naive base change f x 1 helps to realize geometric connected

components as connected components (see Theorem 3.3.4.6). The base change f

encodes the ramification information, which is what we are interested in.

Remark 3.3.4.4. It is natural to relate TS~'L/KL to the thickening space of Z

However, it is not clear how to compare the levels or radii of the two spaces. We do

not need this result in our paper.

Corollary 3.3.4.5. The space TS2o~'~, admits an action of GLIK by pulling back

the action on L over Z ovia r o (f x 1). Under this action, ,TSa,,o is a
L/K\L

regular representation of GL/K over OTS,>,wo. For a p-adic representation p of GL/K
LIK

over Frac(O), define

3,= ( V × 1Qg f*.s*,ao ) L/Ke
L/K\L

this is a differential module over TS2~Lj Xq, Frac(O). Then ~ (fx 1)**Ep.

The same statement also holds for log-space.

Proof. This is an easy consequence of flat base change for the two Cartesian squares

on the right in Diagram (3.3.4.2). O

Theorem 3.3.4.6. Let p: GL/K -- GL(V,) be a faithful p-adic representation over

F with L/K satisfying the Hypotheses 3.2.2.1 and 3.3.3.1. Then, for b > 1, the

following conditions are equivalent:

(1) p has differential ramification break < b.

(2) For any rational number c > b, when rio - 1-, F is a trivial V-module over

TSco xq , Frac(O).

(3) For any rational number c > b, when ro 1-* , TS.L-L has exactly [L : K]

connected components.

(4) For any rational number c > b, when 7o --+ 1-, Z, / x ie TS>c1oe has

exactly [L : K] connected components for some finite extension L'/L, where e' is the

naive ramification degree of L'/K.

Also, the similar conditions for logarithmic spaces are equivalent provided b > 0.
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Proof. The idea of the proof is essentially presented in Theorem 2.3.6.5.

We will only prove the statement for the non-logarithmic spaces and the statement

for the logarithmic spaces can be proved completely in the same way (by using intrinsic

radii instead of extrinsic radii).

We make a general remark that the Proposition 3.3.2.17 is unchanged if we replace

F by F as the spectral norms are invariant under scalar extensions.

We first prove the equivalence between (1) and (2). If p has differential ramification

break < b, Proposition 3.3.2.17 and Remark 1.1.2.7 imply that for r7 E [ho, 1) as before,

Rala68 (Fb,) > 7/b and hence F" has a basis of horizontal sections over TS',K xQq

Frac(O) for any rational number c > b via Taylor series. This proves (2). Now,

assume (2), i.e., F is trivial over TS7 ' xQq Frac(O) for any rational number c > b

and some 77o E (0, 1). It follows that Rala/6 (F,,) = 7f. By Proposition 3.3.2.17,

Raj(E,) > 7- c, for any j E J+, 7r E [t0, 1), and c E Q>b. This implies that the

differential ramification break < b, as rational numbers are dense in the real numbers.

Obviously, (3)=(2). To see the converse, fix some rational number c > b. If

F corresponds to a trivial V-module on TS J] XQq Frac(0), then for any n E N,

*"n is also a trivial V-module, which corresponds to Ve n by functoriality (Construc-

tion 3.3.3.7). By Lemma 3.3.4.9 below from the theory of representations of finite

groups, the differential module

(.)G ) GL/KFrac(0)[G] 0% f*Os7 c,~o

is a direct summand of a direct sum of some ,®n and hence is a trivial V-module.

We claim that f*OTso'>1o is a trivial V-module for all rational numbers c' > c.
L/K\L

To see this, we look at the following isomorphism of differential modules

(Frac(O)[G] Qq, f.*OTsC, -LK Frac(O) 0q, f*OTSLc o ;
L/K\L L/K\L (3.3.4.7)

EgEGL/K fg 0 gV f. V,

where f E Frac(O) and v E f*OTsc, o . This map does not respect the Frac(O)[G]-
L/modules. From this, we know that the right hand side of (3.3.4.7), dK\L

modules. From this, we know that the right hand side of (3.3.4.7), denoted by g,
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is a trivial differential module; in particular, for all j E J+, the radii of convergence

of /5l6j on 9 are Rala6, (9,) = r, which equal the radii of convergence of /O/5j on

f*.OTc>,o at radius 77. Using Taylor series, we can construct horizontal sections on
, L/K\L

TS L/ for any rational number c' > c. This proves the claim.

As a consequence, any section of f.O ,>,'o on V(6j+ = 0) = Z /  TS - no
L/K\L LK

> 7/e
can be uniquely extended to a horizontal section over TSCL~,o relative to ZfL  via

7r. In other words, we have an homomorphism

: F (V(6,+ = 0), f, OT?,>o )--v O(TLK f, * ,>o y ( lK\L, TS /'\ L)

L/K\L /IK\L IKL/

(3.3.4.8)

where HV denotes the sections killed by oa/j+. Since the first map of (3.3.4.8) is

given by Taylor series, a is in fact a ring homomorphism. The ring on the left hand
/e _/e

side is isomorphic to the functions on Z'  x z no ZfL because the restrictions of
K

i and 7r to V(6j+ = 0) are both the same as f. Moreover, since ZL>7  is finite 6tale
--/e > f/e tl/e

Galois over ZK'o (Lemma 3.3.3.5), ZEk /7 x z oL ZZ = 0 9EGL/K Z '70 . Via the
I/e

homomorphism a in (3.3.4.8), we can lift the idempotent elements on Z' x zno
> I/e

ZLk °  to idempotent elements in OTSc' , o . Therefore, (3) holds.
L/K\L

The equivalence between (2) and (4) can be proved similarly. We need base change

at least to Z L °° in (3) so that we can split the fiber over V(6j+ = 0). O

Lemma 3.3.4.9. Let G be a finite group and Fo be a field of characteristic 0. Let

p : G --+ GL(Vp) be a faithful representation over Fo. Then the regular representation

Fo[G] is a direct summand of a direct sum of some self-tensor products of Vp.

This is an easy exercise of finite group representations but we do not know a good

reference. The author would like to thank Xuhua He for providing the following proof.

Proof. Let X be the character of V and let d be the dimension of Vp. Since the

representation is injective, X(1) = d and x(g) = d for all g E G nontrivial. (This is

because all the eigenvalues of p(g) are roots of unity and cannot all be 1.)

Therefore, for each g $ 1 there exists a polynomial Pg in X with integer coefficients

such that P(x(g)) = 0 but P(d) O. Let P = Hl0geG Pg and then P(d) / 0 but
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P(x(g)) = 0 for all g / 1. Moreover, by multiplying a constant, we may assume that

#G divides P(d).

We know that the character of a tensor product is the product of the characters.

Therefore, if we take the terms in P which have positive coefficients, those terms

together will correspond to the desired direct sum of VOn, containing the regular

representation. O

3.4 Comparison theorem

3.4.1 Lifts of standard Abbes-Saito spaces

Recall the Standard Abbes-Saito spaces defined in Subsection 2.3.3. In this subsec-

tion, we define their lifts to a rigid analytic space over the annulus A'i[ o, 1) for some

ol0, following Section 3.1.

In this subsection, we continue to assume Hypotheses 3.2.2.1 and 3.3.3.1.

Construction 3.4.1.1. Let Pj+ be the lifts of pj+ as in Lemma 3.3.3.5. For a E Q>o

and 77o E (0, 1), we define the lifted Abbes-Saito spaces to be

-alno {Uo <[ S < 1
ASL/KJ+ I S) E Am+ [0, 1]

|Po(Uj+, 8)I Sla,..., |P,(UJ+, S)| 5 S a

S,>o 7 o +2, 1] 5 ISI < 1, IPo(Uj+, S)j ISja+1,ASL/Ko (Uj+,S) E AF a aS
Lg = (U jS) e [0,1 IP(Uj+, S)I ISl",...,IP,(UJ+,S) ISIa  ;

they are viewed as rigid spaces over ZK o

Lemma 3.4.1.2. Let K'/K be a finite Galois extension of naive ramification degree

e'. If we identify CK as a subring of CKi as in Construction 3.3.3.4, we may view

Pj+ as polynomials in Uj+ with coefficients in OF' S'], where F' is the fraction field

of the Cohen ring of K' and S' is a lift of the uniformizer XrK' in K'. Then, for
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770o E (0, 1) and a E Q>o, we have

I/e' - a,>7o 1/e' < | S < 1
Z"K o ASL K = (Uj+, S') e Am +2 [0, 1] <is'I <1

K 
I 0 | IleS'l ' ... Pm I S' le'

'f l/e' <S' 1, IP <S'e'(a+l),
S' AL/Klog" A '  (UJ+, ') E Am+2[0, 1]1,

K IPl S'i '" , ... , IPIl < I S' e

Proof. The only thing not obvious is that we replace IPjl ISIa(+1) by IPjl I

IS'Ie'a(+e'); this is because |S I = IS'le' as proved in Lemma 3.3.3.5(2). O

Theorem 3.4.1.3. For a E Q>o, there is a one-to-one correspondence between the

geometric connected components of AS/K,(log) and the following limit of connected

components:
ge°m o'/e° a,>7

lim lim irio( ZKR X Z'o ASL/K(,og),
K/K o--- K

where e' is the naive ramification degree of K'/K and the second limit only takes

0 7E pQ n (0, 1).

Proof. By Lemma 3.4.1.2 and Example 3.1.3.4, when e'a E Z, Z,/' x z>o ASL/K(,log)

is a lifting space of ASa/K(,log) . The theorem then follows from Corollary 3.1.2.12. O

Remark 3.4.1.4. Here, we need r0o E pQ n (0, 1) to invoke Corollary 3.1.2.12.

Remark 3.4.1.5. Introducing this ramified extension K'/K to make e'a E Z may

not be essential, but it eases the proof.

3.4.2 Comparison of rigid spaces

In this subsection, we will prove that the lifted Abbes-Saito spaces are isomorphic

to some thickening spaces we constructed in Subsection 3.3.4. In this subsection, we

continue to assume Hypotheses 3.2.2.1 and 3.3.3.1.

Lemma 3.4.2.1. Keep the notation as in Section 3.3.3. We have

det (1+r*(P) Pi)) O E (OF [S] (U+)/(P+)) X = (OETD])a6 ) i~jE J+ 115j+=0
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In particular, the corresponding matrix is invertible.

Proof. It is enough to prove that the matrix is of full rank modulo (p, T). First, mod-

ulo (p, T), the first row will be all zero except the first element which is D(cl,..., cm) E

IrL. Hence, we need only to look at

((*(Pi) - Pi) mod (p, T, +) = det(a(*( ) -A))
aij ) ijEJ abi,jEJ ij =0

This is invertible by Lemma 2.3.4.15. O

Theorem 3.4.2.2. There exists 77 E (0, 1) such that for any a E Q>1 and any

77o E (max{p - 1/a, rq}, 1), there exists an isomorphism of rigid spaces over Z n:

-a,r!o Tcqa, 17o
ASLIK o s TS" o (3.4.2.3)

Similarly, There exists r E (0, 1) such that for any a E Q>o and any 'ro E

(max{p- 1/a, 7}, 1), there exists an isomorphism of rigid spaces over ZPn:

ASLa, /o " TSznog. (3.4.2.4)
L7Klog K\L,1og'

Proof. We will give the proof for the log-spaces and make changes for the non-log

spaces when necessary. The proofs in two cases will be almost the same except that

when constructing the morphism X2, we have slightly different approximations. We

will match up the ring of functions on the two rigid spaces in (3.4.2.4) (resp. (3.4.2.3)).

Fix an 710 E (p-l/a, 1) satisfying Hypothesis 3.3.3.8. (rjq is given by the conditions in

Hypothesis 3.3.3.8.)

Recall that OTs-,-,o = RF77 (S-a- 0So, S-aSJ) (resp. OTS,>,ao = Z7 (S-a6+ )) For
t K,og K

each j E J+, *(Pj) is the polynomial Pj with coefficients replaced by their pull-

backs to OTSZ.>so (resp. OTS, >_o) via -*. So the ring of functions on TS ZI!og (resp.

TS]O,) is

Rl,og = R F (S-a-160, S-aj) (Uj+)/ (i*(P+))
(p (3.4.2.5)

(resp. R, = TF (S-a j+)(Uj+)/(R*(P+)) ).
F J+)) ).~//\7
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By Lemma 3.3.3.5(1),

i*(Pj) E UrT - *(S3)+(p, Uo,S,6o) OFI[6J+,S][U +],

j*(Po) - *()S - + (p, UoS, S2, U06, S60o, 6) - O FJ+,S] [UJ+],

Thus, we can view 'I,log (resp. R7) as a finite free module over OTSa,>no (resp.
K,log

Ors >o ) with basis { UTeJ+ 0 < eo < e; 0 < ej < pri,j E J}. For each 7 E [77o, 1),

we provide Rl,log (resp. R1) the following norm: for g = Ae,,j+ U with AXe E

OTS .!,o (resp. Aej+ E OTSa !,o), summed over eo = 0,..., e-1 and ej = 0,..., pr -1

for j E J, we define

Ig91l,og,, = max{IAej+ ITS 'o, • reo/e} (resp. Igi 1,, = max{IAeX + ITs-" . 1eo/ ).
ej+ log ej+

It is clear that Rl,log (resp. R 1 ) is the Frechet completion for the norms op,9

(resp. I |1l,n) for all 77 E [77 , 1).

On the other hand, the ring of functions of ASpJog (resp. ASO'>° o) is

R2,log = r (s--ivo, s-vJ>(v+)/(P+ - vJ+)

(resp. 2= (S- (U (P+ - V+) ),

which is clearly a finite free module over

Wog = R (Vo/e + , V/i,,) (resp. W = 7Z (Vj+/,a )

with basis { U I+ 10 < eo < e; 0 < ej < pr,j E J}. Similarly, for 7 E [lo, 1),

we provide R2,log (resp. 7R2) with the following norm: for g = I Aej+ UJ with

AeX,+ Wog (resp. Aej+ e W) summed over eo = 0,...,e - 1 and ej = 0,...,pri - 1

for j e J, we define

Ig9 2,iog, = max{JAe+ I W og - reo/e} (resp. IJgz ,, = max{jAej + w - eo/e} ).
ej+ ej+
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It is clear that 7Z2,1og (resp. 7 2) is the Frechet completion for the norms I I l2,log,1

(resp. I iaz,,) for all r E [ro, 1).

We will identify Us+ in different rings but the Vj+ will not be same as 3 j+. Be

caution that the two norms will not be the same under the identification, but they

will give the same topology.

Now, we define a continuous K-homomorphism XI : R2,log --+ J,log (resp. X1 :

R 2 - 1) so that xI(S) = S, xI(Uj) = Uj, X(Vj) = P(Uj+) for all j E J+. We need

only to check that for any r E [r0, 1),

XI(V)|niosv 77 a(resp. ,xa(V)jnl,, Vj E J+). (3.4.2.6)
ra j E J

Here we need separate arguments for logarithmic case and non-logarithmic case. In

the logarithmic case, Inequality (3.3.2.10) tells us |Pj - ir*(Pj)l,Ig,,zp  < raPjPR2,al og

for j E J+, which exactly gives the bound in (3.4.2.6) because IP0ol7 2,o' ,,- r and

IPj|I 2,og,,? 1 for j E J by Lemma 3.3.3.5(1). In the non-logarithmic case, combining

Lemma 3.3.3.5(1) and inequality (3.3.2.11), one has P - *(Pj) 1 l,, - ra for j E J+;

Inequality (3.4.2.6) follows.

Conversely, we will define a continuous K-homomorphism X2 l ,log -* T2,log

(resp. X2 : R1 --+ R2) as the inverse to X1. Obviously, we need X2 (S) = S, X2(Uj) = Uj

for all j E J+. The only thing not clear is X2(j) for all j E J+

By Lemma 3.4.2.1, let

A:= ( ( - EJ+ +=0 E GLm+1(OE [T]I) - GLm+(OFS](UJ+)/(PJ+)).

Let A - 1' denote the inverse matrix in GLm+I(OF[S](UJ+)/(Pj+)), whose entries are

written as polynomials in Uj+ (using the basis in Lemma 3.3.3.5(1)). Thus,

A-' - A - I E Matm+l((6j+) -OF S](UJ+)), (3.4.2.7)
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where I is the (m + 1) x (m + 1) identity matrix. Now, we write

0 So J0 *(P) - Po Jo Po
= (I - A-1A) - A- 1  -A - A- 1

S* (Pm) - P

(3.4.2.8)

the last term is just -A-' -x,(Vj+). We need to bound the first two terms.

By (3.4.2.7), I - A-1A has norm < ra. Hence, in the non-logarithmic case, the

first term in (3.4.2.8) has norm < 72a; in the logarithmic case the first term in (3.4.2.8)

has norm < 72a, except for the first row, which has norm < r2a+i. By the definition

of A and Theorem 3.3.2.9, the second term in (3.4.2.8) has norm < r72a in the non-

logarithmic case; it has norm < r2a in the logarithmic case, except for the first row,

which has norm _< 2a+1

Since we want X2 to be the inverse of X1, we define recursively by

Jo Vo Ao

X2 = -A-' + X2

im Vmi Am,

where A + denotes the sum of the first two terms in (3.4.2.8). Since Ah+ have strictly

smaller norms than 5j+ and A + are in the ideal (Sj+), one can plug the image

of X2 (SJ+) back into X2 (A+) and iterate this substitution. This construction will

converge to a well-defined continuous homomorphism X2 which is an inverse of X1.

Moreover, from the construction, one can see that

IX2(j)l1Z, 5 ,a, for all j E J+, 7 E [o, 1),

IX2(J0)lR1,,og a+l and IX2(j)n,,,Iog 5 ," for all j E J, r7 E [r0o, 1).

Therefore, we have two continuous homomorphisms X1 and X2, being inverse to

each other; this concludes the proof. ]

Remark 3.4.2.9. The isomorphisms constructed in Theorem 3.4.2.2 are canonical in
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the sense that they match up Uj+ on the both sides. However, slight perturbations of

the isomorphisms will continue to be isomorphic. This point will be important when

studying the mixed characteristic case.

3.4.3 Comparison theorems

In this subsection, we wrap up the argument and prove the comparison between the

arithmetic conductors and the differential conductors. As a reminder, we do not

impose Hypotheses 3.2.2.1 and 3.3.3.1 in this subsection.

Theorem 3.4.3.1. Let K be a complete discretely valued field of equal characteristic

p > 0 and let GK be its absolute Galois group. For a p-adic representation p :

GK -* GL(V) of finite local monodromy, the arithmetic Artin conductor Art(p)

of p coincides with the differential Artin conductor Artdif(p); the arithmetic Swan

conductor Swan(p) coincides with the differential Swan conductor Swandif(p).

Proof. It suffices to prove for irreducible representations, as all the conductors are

additive. Since all the conductors remain the same if we pass to the completion of

the unramified closure of K (Proposition 2.2.2.11(4), Theorem 3.2.3.5(2)), we may

assume that the residue field KK is separably closed; hence p factors through the Galois

group of a finite totally ramified extension L/K as p : GK -* Gal(L/K) --+ GL(V,)

with the second map injective. Moreover, we may assume that L/K is wildly ramified

because the theorem is known when L/K is tamely ramified (Proposition 2.2.2.11(6)

and Theorem 3.2.3.5(3)). In other words, we may assume Hypothesis 3.3.3.1. In

particular, b(L/K) > 1 and biog(L/K) > 0.

Next, we want to reduce to the case when the p-basis of KK is finite. By Con-

struction 2.3.3.3, one can choose lifted p-basis of L so that all but finitely many of

them are actually in K. Let (ci)iEi be a subset of those elements in the lifted p-basis

which lie in K. Denote K = K(c'/P, i E I, n E N) and Z = Lk. We claim that

OZ = OL 0 OK O K Indeed, after base change to K, the value groups do not change:

IK I = IK I- Thus, [ILXI : IKxI] > [ILxI : Klj]. On the other hand, the residue

field extension of L/K has degree at least the same as KL/K because C\I are not
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in the residue field of K. But we know that the degree of the extension does not in-

crease. Therefore, we have equality on both naive ramification degrees and degrees of

residue field extension. It is then clear that OZ = OL @OK k, as the right hand side

contains the uniformizer of the left hand side and both sides are isomorphic modulo

that uniformizer. Therefore, by Proposition 2.2.2.11(4), b(L/K) = b(L/K).

On the differential conductors side, [Ked07a, Lemma 3.5.4] (the non-log case fol-

lows by similar argument) shows that we can consider only finitely many elements in

the p-basis and the differential conductors are unchanged after making inseparable

field extension with respect to other elements in the p-basis.

To sum up, we can make an inseparable extension so that all conductors do not

change, and we are reduced to the case where Hypothesis 2.3.2.1 holds.

Now, we will prove the comparison theorem for the Swan conductors and the proof

for the Artin conductors follows verbatim, except replacing Swan by Art and a > 0

by a > 1 and dropping all the log's in the subscripts.

Since p is irreducible, Swan(p) = blog(L/K) - dim V,. Recall that in Subsec-

tion 3.2.1, we can associate to p a differential module E, over R7o Oz O for some

7o E (0, 1). As the representation p is irreducible, ,p has a unique ramification break

biog(Cp). So the differential Swan conductor of p is Swandif(p) = blog(&p) - dimV,.

Therefore, to conclude, it suffices to show that blog(L/K) = blog(&p).

This follows from the following equivalence relations.

a > blog(Ep)

for any (or some) extension L'/L with naive ramification degree e',
== m ,:- 1/ep' (Theorem 3.3.4.6)
0 L X e TSK\Llog) = [L : K] when -- 1-(Theorem 3.46)

L

S7eom (AS'/K,log) = [L: K] (Theorem 3.4.1.3)

== a > biog(L/K),

where a is a rational number. O

Remark 3.4.3.2. In an early version of this paper, Theorem 3.4.3.1 is stated for
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representations with finite image. Andrea Pulita pointed out that this could be

extended to the finite local monodromy case by a standard argument as in the proof.

Corollary 3.4.3.3. (1) (Hasse-Arf Theorem) Let K be a complete discretely valued

field of equal characteristic p > 0, let GK be its absolute Galois group, and let p :

GK --* GL(V) be a p-adic representation of finite local monodromy. Then the Artin

conductor Art(p) and the Swan conductor Swan(p) are integers.

(2) Let K be a complete discretely valued field of equal characteristic p > 0.

Then the subquotients FilaGK/Fila+GK (resp. FilogGK/Fila'GK) Of the arithmetic

ramification filtrations are elementary p-abelian groups if a E Q>I (resp. a E Q>o)

and are trivial if a Q.

Proof. It follows from Theorems 3.2.3.5 and 3.4.3.1. O

Corollary 3.4.3.4. Let K be a complete discretely valued field of equal characteristic

p > 0 and let p be a representation of GK of finite local monodromy. Then ArtB(p) =

Art(p).

Proof. We combine Theorem 3.4.3.1 and Proposition 3.2.4.8 to verify the condition

in Proposition 2.4.2.1. The corollary follows from that. O

Corollary 3.4.3.5. Conjecture 2.2.2.21 is true when K is of equal characteristic

p > 0 .

Proof. We use Theorem 3.4.3.1 to translate Proposition 3.2.5.8 into the language of

arithmetic ramification filtration. O
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Chapter 4

Ramification Theory for Local

Fields: Mixed Characteristic Case

Plan of this chapter

In this chapter, we will prove Hasse-Arf Conjecture 2.2.2.17 in the mixed characteristic

case, except for some special cases. The proof follows closely the strategy outlined in

Section 2.3.

In Section 4.1, we set up the framework for the proof. In Subsection 4.1.1, we

define the function 'K we mentioned earlier in Fake-assumption 2.3.4.11. In Subsec-

tion 4.1.2, we prove the AS = TS theorem. In Subsection 4.1.3, we prove that the

map II in Construction 2.3.6.1 is 6tale. In Subsection 4.1.4, we translate the question

about the ramification breaks into a question about the intrinsic radii of convergence.

In Subsection 4.1.5, we discuss a variant of thickening spaces.

In Section 4.2, we prove the main Theorem 4.2.3.5. This is achieved by proving

that the ramification break is invariant under adding a generic p-th root of p-basis.

The core of the proof is Theorem 4.2.1.7.

In Section 4.3, we study the logarithmic part of the Hasse-Arf Theorem 2.2.2.19.

In Subsection 4.3.1, we deduce the integrality of Swan conductors from that of Artin

conductors by tame base change. In Subsections 4.3.2 and 4.3.3, we use a trick of

Kedlaya to prove that the subquotients of the logarithmic filtration (on the wild
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ramification group) are abelian groups killed by p.

4.1 Construction of spaces

In this section, we construct a series of spaces and study their relations; in partic-

ular, we prove that the Abbes-Saito spaces are the same as the thickening spaces,

and translate the question on ramification breaks to a question on generic radii of

differential modules.

4.1.1 The K-function and thickening spaces

In this subsection, we first define a function (not a homomorphism) 'OK K -K

OK[c0lrK, 65J, which is an approximation to the deformation of the uniformizer rK

and a lifted p-basis as in Fake-assumption 2.3.4.11. Then, we introduce the thickening

spaces for the extension L/K (See Fake-definition 2.3.5.1 for motivation).

Hypothesis 4.1.1.1. Throughout this section, unless otherwise specified, we assume

that K is a complete discretely valued field of mixed characteristic (0, p), with sep-

arably closed and imperfect residue field. Let L be a finite Galois extension of K of

naive ramification degree e = eL/K. Assume that K admits a finite lifted p-basis bj

and fix a uniformizer irK of K.

Construction 4.1.1.2. Let r E N and h E O'. An r-th p-basis decomposition of h

is to write h as
pr-1 00 A(r),ej,n

= bej ( a)r),eZ,n,n n > (4.1.1.3)
ej=O n=O n'=O

for some a(r),eJ,n,' E O U {0} and some )(r),ej,n E Z>0 . Such expressions always exist

but are not unique. For r' > r, we can express each of a(r),ej,n,n' in (4.1.1.3) using

an (r' - r)-th p-basis decomposition and then rearrange the formal sum to obtain an

r'-th p-basis decomposition. For h E Ox, we say that an r'-th p-basis decomposition

is compatible with the r-th p-basis decomposition in (4.1.1.3) if it can be obtained in

the above sense.
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We define the function K "OK -+ OK IJ+I as follows: for h e OK\{1}, we fix a

compatible system of r-th p-basis decomposition for all r E N, and define

pr-1 o0 (r),ej,n

K(h) = lim E (bj + j)e ( ,e,n,n) ( rK + 60)n. (4.1.1.4)
ej=O n=O n'=0

This expression converges by the compatibility of the p-basis decompositions. Define

?K(1) = 1, which corresponds to the naive compatible system of p-basis decomposi-

tion of the element 1. For h E OK\{0}, write h = 7rho for s E N and ho E OK.

Define /K(h) = (ITK + 60)'(h0), where ,04(ho) is the limit in (4.1.1.4) with respect

to a compatible system of p-basis decompositions of ho (which does not have to be

the same as the one that defines K(ho)). Finally, we define OK(O) = 0.

Most of the time, it is more convenient to view K as a function on OK which

takes value in the larger ring OK 0o/ rK, 6J.

We naturally extend OK to polynomial rings or formal power series rings with

coefficients in OK by applying 'K termwise.

Notation 4.1.1.5. For the rest of the chapter, let IZK = OK SO/7rK, J J.

Caution 4.1.1.6. The map 'K is not a homomorphism, nor is it canonically defined.

This is because one cannot "deform" the uniformizer in the mixed characteristic case.

Also, since K will not be absolutely unramified in application, lifted p-basis may not

deform freely either. (See also Fake-assumption 2.3.4.11 and the following discussion.)

However, Proposition 4.1.1.8 below says that 4 K is approximately a homomorphism.

Definition 4.1.1.7. For two OK-algebras R 1 and R2 and an ideal I of R 2, an

approximate homomorphism modulo I is a function f : R1 -+ R 2 such that for

hi E 7r R 1 and h2 E ra2R 2 with a1, a2 E Z>0, 'K(hlh 2) - K(hl)K(h 2) E a+a2I

and 'K(hl + h 2 ) - K(hl) -- K(h2) E in{a a2

Moreover, if Ri and R' are two OK-algebras, a diagram of functions

R' R2

R1 --- R2
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is called approximately commutative modulo I if for h E 7rR , g'(f'(h)) - f(g(h)) E

7raI.

Proposition 4.1.1.8. For h E OK, we have K(h) - h E ( 6 J+) - OK [J+ . Modulo

IK = P(60/lrK, 6J)Z K, ?K(h) does not depend on the choice of the compatible system

of p-basis decompositions. Moreover, OK is an approximate homomorphism modulo

IK.

Proof. First, 4K(h)- h E (6J+). OK [JJ+I is obvious from the construction. Next, we

observe that when pr > 3K, in any r-th p-basis decomposition for h E OK, the sum

- ,"" J r) ,ej,n,n, 7r for any ej and n in (4.1.1.3) is well-defined modulo p. So, the

ambiguity of defining 'K lies in IK.

For hi, h2 E 0k, the formal sum or product of compatible systems of p-basis

decompositions of hi and h2 are just some compatible systems of p-basis decompo-

sitions of hi + h2 or h1h 2 . Thus, PK(hl) + 'K(h2) and K(h1) VK(h2) are the same

as 'K(hl + h 2) and K(hlh 2 ) modulo IK, respectively. The statement for general

elements in OK follows from this. O

Remark 4.1.1.9. From Proposition 4.1.1.8, we see that the ideal case is when K >>

1. In contrast, when 3K , K = (Jo,pSj). The above proposition does not give us

much information about ?OK. This is why we are not able to prove Conjecture 2.2.2.17

in the absolutely unramified and non-logarithmic case. Compare Remark 2.2.2.20.

Hypothesis 4.1.1.10. For the rest of the section, assume that K is not absolutely

unramified, i.e., fK > 2.

The following is an analogue of Corollary 2.3.4.10, which will enable us to invoke

Lemma 2.3.4.15 in Lemma 4.1.2.1.

Lemma 4.1.1.11. Let h E OK. Denote dh = hodrK + hldbl + - -- + hmdbm when

viewed as a differential in QoK/Zp 0OK KK. Then ?K(h) - h h06 + "". + hm6m

modulo (7rK)+ (6 o/lrK, 6J)2 in ZK.
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Proof. For an r-th p-basis decomposition (r > 1) as in (4.1.1.3), we have, modulo the

ideal (7TK) + (SJ+)(60/rK, SJ),

pr-1 o0 A(r),ej,n

'K(h) - ha (b+ 6 J)e; r),ej,n,nI (K So) - bJ r),e,n,n7)
ej=O n=O n'=O

pr-1 00 A(r),ej,n

-zz (r),ejn,n, J (-+ + + )
ej=O n=0 n'=0

ho o +'- -- + hm6m.

Taking limit does not break the congruence relation. O

Definition 4.1.1.12. Denote SK = RKK(UJ+). For w E 1f n [1, oK], we say a set of

elements (Rj+) C (bj+) - SK has error gauge > w if R 0 E (NwSo, N'+lJj) SK and

R E (Nw-16o, N6j) - SK for all j E J. We say that (Rj+) is admissible if it has

error gauge > 1.

Definition 4.1.1.13. Let a > 1. We define the standard (non-logarithmic) thickening

space (of level a) TSa/K,K of LIK to be the rigid space associated to

OaS,LK,K = K (7~ K baJ+) (Uj+ ) / (K(PJ+)).

For (Rj+) C (Sj+) - SK admissible, we define the (non-logarithmic) thickening space

(of level a) TS2/K,RJ+ to be the rigid space associated to

OaS,L/K,Rj+ = K(7r bj+)(uj+)/ (K(pJ+) + Rj+).

Similarly, for a > 0, we define the standard logarithmic thickening space (of level

a) TS2/K,log,(,K of L/K to be the rigid space associated to

OaS,L/K,log,K = K(7r-a6o, 7rb)(UJ+)/(OK(PJ+)).

For (Rj+) C (Sj+) -SK admissible, we define the logarithmic thickening space (of level
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a) TS/K,Iog,R, + to be the rigid space associated to

O'S,L/K,log,RJ+ = K(wKa- 1 o, r6J) (uJ+) /K (K(pJ+) + ).

Denote TSL/K,Rj+ = Ua>oTSa/K,log,R+. Then we have the following natural

Cartesian diagram for a > 0.

TS,,a+ c -TS/K,log,R+ > TSL/K,Rj+
L/K,Rj+

Am+ [O, 0a+l] A--- [0, 0 + 1] x A [O, 0a]- A~L[0, 0) x Am [0, 1)

Remark 4.1.1.14. Error gauge is supposed to measure how "standard" a thickening

space is. Unfortunately, a standard thickening space itself depends on a very non-

canonical function 'K. The upshot is that, by Proposition 4.1.1.8, the notion of

having error gauge > w does not depend on the choice of 'K if w E [1, 3K]; note that

the terms in Po are all divisible by 7rK, except ul.

Remark 4.1.1.15. The reason of introducing non-standard thickening spaces (or

rather thickening spaces which do not have error gauge _ 3K) is, as we will show later,

that adding a generic p-th root results in the error gauge of (R +) dropping by one;

the comparison Theorem 4.1.2.2 guarantees that as long as (Rj+)'s are admissible,

the thickening spaces still compute the same ramification break. On the same issue,

if 3K = 1, we can not afford to drop the error gauge; this is why we are not able to

prove Conjecture 2.2.2.17 in the absolutely unramified and non-logarithmic case (see

also Remark 4.1.1.9).

Notation 4.1.1.16. Let (Rj+) C (5 j+) - SK be admissible. We extend A to mean

the composite

SK/((J+) Rj+) mod (6 o/lrKJ)

SKI (K PJ+) + R +)K K(UJ+)/(PJ+) OL

We remark that 4 K (PJ+) -PJ+ + RJ+ are in fact contained in the ideal of SK generated

by 5j+. We denote the composition of A and the reduction OL - L by A.
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Lemma 4.1.1.17. Let (Rj+) C (6 j+) -SK be admissible. Then

{ufgJ+' |ej E {0,.. ,prj - 1} for all j E J, and eo E 0, ... ,e - 1)) (4.1.1.18)

form a basis of SK/(4K(PJ+) + RJ+) over RK. As a consequence, they form a ba-

sis of 0 S,L/K,RJ+ over K (ra6J+) for a > 1 and a basis of OS,L/K,log,R+ over

K(rga-lbo, 7rabj) for a > 0. In particular, the morphism II : TSL/K,RJ+ - AK[0, ) x

A'[0, 1) is finite and flat.

Proof. Given an element h E SKI(bK(PJ+)+ RJ+), we first take a representative

he SK in SK. Then we can simplify it by iteratively replacing ua and uj by

u~ - )K(PO) - R0 and u rj - K(Pj) - Rj for j E J, respectively. This procedure

converges and gives an element with the power of u0 smaller than e and power of uj

smaller than pri for j E J. O

4.1.2 AS = TS theorem

As explained in Subsection 2.3.5, the essential step which links the arithmetic con-

ductors and the differential conductors is to establish Fake-theorem 2.3.5.2, which

asserts that the lifted Abbes-Saito spaces are isomorphic to the thickening spaces.

Remember that we continue to assume Hypotheses 4.1.1.1 and 4.1.1.10 here.

Lemma 4.1.2.1. Let (R +) C (bj+) -SK be admissible. We have

det (a(K(Pi) A + Ri))= E (OK(uj+)/(PJ+))X = OL.

Proof. It is enough to prove that the matrix is of full rank modulo 7rL. By Lemma 4.1.1.11

and the admissibility of R +, modulo IrL, the first row will be all zero except the first

element which is (cl,..., cm) E xL defined in Construction 2.3.3.3. Hence, we need

only to look at

this is an element in by Lemma 2.3.4.15 (whose condition is verified by Lemma 4.1.1.11).+=0

this is an element in K x by Lemma 2.3.4.15 (whose condition is verified by Lemma 4. 1. 1. 11).
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Theorem 4.1.2.2. If (Rj+) C (6 j+) - SK is admissible, we have isomorphisms of

K-algebras

aS,L/K TS,L/K,R+ if a> 1,
aa

OAS,L/K,log OTS,L/K,log,Rj+ if a> 0.

Proof. The proof is similar to Theorem 3.4.2.2. We will match up uj+ in both rings.

First, lue+e j E {0,...,pri - 1} for all j E J, and eo E {0,...,e - 1}} forms a

basis of OaS,L/K (resp. OaS,L/K,log) over K(aVj+) (resp. K(rKa-lVo, 7 Vj)) as a

finite free module. Given

el

+ = ,e J+ ASL/K (resp. O4S,L/K,log)

ej+ ,elJ+

written in this basis, where a,jT,e + E K, we define

IhlAS,a = maXe,+,e' Ij+,e'+ I oaeo+0+aem+e'o/e

(resp. IhjAS,log,a = maXe,+,e'+ {Iej+,e' . (a+1)eo+ae0+. +aem+e/e).

It is clear that 0 AS,L/K (resp. 0 aS,L/K,log) is complete for this norm. The requirement

a > 1 in the non-logarithmic case guarantees that when substituting Ue by uge-po-Vo,

the norm does not increase.

Similarly, by Lemma 4.1.1.17, { ej+ {0, ... , pri - 1} for all j E J, and eo E

{0,..., e- 1 } } also forms a basis of OS,L/K,Rj + (resp. OTS,L/K,log,Rj+) over K(Wra6J+)

(resp. K( 7rKa-1bo, 7 QKaj)) as a finite free module. Given

Saej+,ej+ j+, j+ E ETS,L/K,R (resp. O S,L/K,log,Rj+)

ej+ ,et,+
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written in this basis, where a,j+,e+ E K, we define

Ih7s',a = maxe,.e' J { , Ie' j Oaeo+-..+aem+e'/e

(resp. IhlTs,log,a = maxe j+,+e':+ e{ I+,e+ . (a+1)eo+ael+...+aem+e/e}).

It is clear that 0 S,L/K,RJ+ (resp. OrS,LK,og,R+) is complete for this norm. The

requirement a > 1 in the non-logarithmic case guarantees that when substituting ue

by ue - VK(Po) - R 0 , the norm does not increase.

Define Xi : OaS,L/K S,L/K, R+ (resp. X1 : OaSL/Klog SL/KogR) by

sending uj+ to uj+ and hence V to pi(uj+) = pj(uj+) - K (pj(uJ+)) - Rj for all j E

J+. We need to verify the convergence condition for all Vj. Indeed, Proposition 4.1.1.8

and the admissibility of R + imply that

Ipj - VK(Pj)lTS,a 0a, IRjlTS,a < 0 for all j e J+
a +  J -" 0 ,RjlTS,log,a

(resp. IPj - K(Pj) ITS,log,a _ fTa+ jSoga a++ /e j 0

9a je J a+1/e j E J

Now we define the inverse X2 of X1. Obviously, one should send uj+ back to uj+.

We need to define X2(SJ+). By Lemma 4.1.2.1,

A = (A(()i,(EJ+ = K(Pi+ Ri) iEJ(

E GLm+I(OL) GLm+I(OKUj+)/(PJ + )).

Let A- ' denote the inverse matrix in GLm+,(OK(UJ+)/(PJ+)), whose entries are

written as polynomials in uj+ (using the basis (4.1.1.18)). Thus,

A-1 A - I E Matm+1 ((6+) O~TS,L/K,R,+) (resp. Matm+l((5+) OTS,L/K,log,Rj+) )
(4.1.2.3)
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where I is the (m + 1) x (m + 1) identity matrix. Now, we write

o0 60 VK (PO) -p O + RO PO

= (I-A-1A) -A - 1  - A -A -

(4.1.2.4)

the last term is just -A-1' XI(Vj+). We need to bound the first two terms.

By (4.1.2.3), I - A-1A has norm < 0'. Hence, in the non-logarithmic case, the

first term in (4.1.2.4) has norm < 02a; in the logarithmic case the first term in (4.1.2.4)

has norm < 02a, except for the first row, which has norm < 02a+1. By the definition

of A, the second term in (4.1.2.4) has entries in (6j+)(6o/lrK, 6J) ' TS,L/K,RJ+, except

for the first row, which is in (6o/lrK, 6J)2. OS,L/K,RJ+. Hence, in the non-logarithmic

case, the term has norm < 0 2a-1; in the logarithmic case, the term has norm < 02a,

except for the first row, which has norm < 02a+1.

Since we want X2 to be the inverse of X1, we define recursively by

X2 ( = -A - ( + X2

where A + denotes the sum of the first two terms in (4.1.2.4). Since Aj+ have strictly

smaller norms than 6j+ and A + are in the ideal (6 j+), one can plug the image

of X2 (J+) back into X2(AJ+) and iterate this substitution. This construction will

converge to a continuous homomorphism X2, which is an inverse of X1. Moreover,

from the construction, one can see that

IX2( 3j)IAS,a < 0a, for all j E J+,

IX2( 6 0)IAS,log,a < 0a+1 and IX2(Sj)IAS,log,a _ 0a for all j E J.

Therefore, we have two continuous homomorphisms X1 and X2, being inverse to

each other; this concludes the proof. O
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Remark 4.1.2.5. An alternative way to understand this theorem is to think of

the thickening spaces as perturbations of the morphisms AS/K -+ A 1+ [0, Ga ] and

ASa/K,log -- A [0, 0a+1] x Am[0, al ]. Abbes-Saito spaces will behave better under

base change using the new morphisms.

4.1.3 Etaleness of thickening spaces

In this subsection, we will study a variant of [AS02, Theorem 7.2] and [AS03, Corol-

lary 4.12].

Remember that Hypotheses 4.1.1.1 and 4.1.1.10 are still in force.

Definition 4.1.3.1. Let (Rj+) C (6 j+) SK be an admissible subset. Let ETL/K,Rj+

be the rigid analytic subspace of Al [0, 7) x A; [0, 1) over which the morphism II

defined in Definition 4.1.1.13 is 6tale. When there is no ambiguity of Rj+, we may

omit it from the notation by writing ETL/K instead.

Theorem 4.1.3.2. Let b(L/K) be the highest non-logarithmic ramification break of

L/K. There exists e E (0, b(L/K) -1) such that for any (Rj+) C (Jj+) -SK admissible,

A+1'[0, ob(L/K)-e] C ETL/K, Rj+.

Proof. Recall from [AS02, Proposition 7.3] that

1IOK = Ei=lOL/)7rZOL with ai < e(b(L/K) - e) (4.1.3.3)

for some e > 0 and r E N. It does not hurt to take E < b(L/K) - 1. Let J =

((K(Pi) + R )/u)i,jJ+ be the Jacobian matrix of TSa/K,RJ over Am+'[0, 0"],

whose entries are elements in 0 = OK ( aG+ (J+) )/ ( (P)+ R).

Let a > b(L/K) - e and P = (6 j+) E A'[0, Oa] be any point. Suppose the

thickening space is not 6tale at P. Then the relative differential 1/K /ATS/K,R + / A - + I [O,
Oa ]

have a constituent isomorphic to K(P) at P, where K(P) is the residue field at P.

This implies that Coker (0 -~ 0) has a torsion-free constituent at P.
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One the other hand, at P, I6jI < 0a for j E J+. Hence,

J mod 7r - (8pi/0u)i,J+ mod 7r,

Coker (0 0) 0 O/ry = Coker (O (Kp/y ) ) /r,

which should not have a direct summand OL/T7rOL according to (4.1.3.3) because

a > ai for all i. Contradiction. We have the 6taleness as stated. O

Remark 4.1.3.4. Theorem 4.1.3.2 (as well as Theorem 4.1.3.6 later) states that

the 6tale locus ETL/K,Rj+ is a bit larger than the locus where TS~/K,R+ (resp.

TS2/Kog,RJ+) becomes a geometrically disjoint union of [L: K] discs.

The following lemma is an easy fact about logarithmic relative differentials. This

is not a good place to introduce the whole theory of logarithmic structure. For a

systematic account of logarithmic structures and log-schemes, one may consult [KS04,

Section 4] and [Kat89b].

Lemma 4.1.3.5. If we provide OL and OK with the canonical log-structures r w

OL and 7 '-+ OK, respectively, then the logarithmic relative differentials

o0K (10/109) OLd OLduo /(d(po), , ,dx for x E OK)
R 9 L/OK (log/log) = ~ O0duj O -/(d d(P) d ' rK djEJ UO IrK 'rK

Theorem 4.1.3.6. Let biog(L/K) be the highest logarithmic ramification break of

L/K. Then there exists E E (0, biog(L/K)) such that, for any (Rj+) C ( 5j+) - SK

admissible, A' [0, Oblog(L/K)+1-E] x Am[0, oblog(L/K) - ] C ETL/K,RJ+.

Proof. The proof is similar to Theorem 4.1.3.2 except that we need to invoke [AS03,

Proposition 4.11(2)] to give a bound on o4L/oK (log/log); the explicit description of

L/OK (10g/log) in Lemma 4.1.3.5 singles out o0 and gives rise to the smaller radius

0a+1
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4.1.4 Construction of differential modules

In this subsection, we set up the framework of interpreting ramification filtrations by

differential modules.

As a reminder, we keep Hypotheses 4.1.1.1 and 4.1.1.10.

Construction 4.1.4.1. Let (Rj+) C (b +) SK be admissible. By Lemma 4.1.1.17,

H : H-'(ETL/K) --- ETLIK is finite and 6tale. We call £ = H.(OIn-1(ETL/K)) a

diferential module associated to L/K; it is defined over ETLIK and given by

V: £ -- (J II-1(ETL/K)/K) OETL/K ETLIKIK OETL/K ETL

jEJ+

Also, we use Fo-o,...,6 a to denote the completion of K(6j+) with respect to the

(0ao,..., 0am)-Gauss norm. We can define the action of differential operators i =

8/6j for j E J+ on £ and talk about intrinsic radius IR(£ 0 FOeo,...,.m) as in Defi-

nition 1.1.6.3 if A [0, Gao ] x . x A [0, 08n ] ETL/K.

Notation 4.1.4.2. We use IR(£; aj+) to denote IR(£ ® Foao,...,oam) for short. If

al = ... = am = a, we further simplify the notation to be IR(; a0o, a). If furthermore,

a0o = a, we will just simply write IR(£, a) for short.

We call some attention on the following result extracted from the theory of differ-

ential modules.

Proposition 4.1.4.3. Let aj+ C R be a tuple and let £ be a 9j+-differential module

on A'[0, Oaol X ... x A[0, Oam]. Then

(a) (Continuity) The function log9IR(S; sj+) is continuous for sj E [aj, +oo) and

jE J+ .

(b) (Monotonicity) Let sj s' > aj for all j E J+. Then IR(S; sJ+)

IR(S; s'+).

(c) (Zero Loci) The subset Z(S) = {sj+ E [ao, +oo) x ... x [am, +oo) I IR(E; sj+) =

1} is transrational polyhedral (see Definition 1.3.1.6).
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Proof. Statements (a) and (c) follow from Theorem 1.3.3.9. For (b), by drawing zig-

zag lines parallel to axes linking the two points sj+ and s' , it suffices to consider the

case when s3 = sj for j E J+\{jo} and sjo > so. for some jo E J+. In this case, we

may base change to the completion of K(j+\{io}) with respect to the sJ+\{jo}-Gauss

norm. The result follows from Theorem 1.2.4.4. O

Theorem 4.1.4.4. The following statements are equivalent for a > 1 (resp. a > 0):

(1) The highest non-logarithmic (resp., logarithmic) ramification break satisfies

b(L/K) < a (resp. biog(L/K) < a);

(2) For any (some) admissible (Rj+) C SK and any rational number a' > a,

# o Lm(TSE'/K,Rj+) = [L: K] (resp. #r0o m(TS/K,og,RJ+) = [L: K] ).

(3) For any (some) admissible (Rj+) C SK, A [0,0 a] C ETL/K,RJ+ (resp.

Al[0, Oa+1] x Am [0, 0a] C ETL/K,RJ+) and the intrinsic radius of & over Am+ [0, Oa]

(resp. A[0, 0a+1] x Am [0, a0]) is maximal:

IR(; a) = 1 (resp. IR(E; a + 1,a) = 1).

Proof. The proof is similar to Theorem 3.3.4.6. It is the mixed characteristic version

of Fake-theorem 2.3.6.5.

(1) 4* (2) is immediate from Theorem 4.1.2.2.

(2) =: (3): For any rational number a' > a, (2) implies that for some finite

extension K' of K, K,R+ XKK' (resp. TS/K,log,Rj+ XKK') has [L: K] connected

components and is hence force to be [L : K] copies of A [0, ] (resp. A',[0, ×a'-]X

A, [0, Oa']) because H is finite and flat; in particular, H is etale there. Therefore, ®0K

K' is a trivial differential module over A" [0, 0a'] (resp. A , [0, 0a'+1] x Am, [0, 0a']).

As a consequence,

IR(E; a') = IR(E 0 K'; a') = 1 (resp. IR(&; a' + 1,a') = IR(E K'; a' + 1,a') = 1).

Statement (3) follows from the continuity of intrinsic radii in Proposition 4.1.4.3(a).
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(3) =* (2): (3) implies that, for any rational number a' > a, S is a trivial dif-

ferential module on Am+[0, Oa'] (resp. A'[0, a'+1] x A[O, Oa']). Indeed, we have a

bijection

Ho (Am+I[o, 0a', S) - l +=o (resp. H(A [O, Oa'+ l ] x Anmrn[O, Oa' ],)

(4.1.4.5)

whose inverse is given by Taylor series. This is in fact a ring isomorphism by basic

properties of Taylor series. The left hand side of (4.1.4.5) is a subring of OS, L/KR

(resp. OTS,L/K,log,R J); the right hand side is just K(uj+)/(pj+) - L. Thus, after the

extension of scalars from K to L, we can lift the idempotent elements in L 0 K L -

IgeGL/K Lg to idempotent elements in OrKS,L/KR, +K L (resp. OrS,L/K,log,Rj+ K L).

This proves (2). EO

Corollary 4.1.4.6. Given the differential module 8 over ETLIK with respect to some

admissible subset (R¢+) C (Sj+) SK, we have

b(L/K) = min {s Am+[0, 0] C ETL/K and IR(&;s) = 1}, and

blog(L/K) = min {s A' [0, 0s+] x A [0, 0 '] C ETL/K and IR(&; s + 1, s) = 1}.

In other words, b(L/K) (resp. blog(L/K)) corresponds to the intersection of the

boundary of Z(S) with the line defined by so = ... = sm (resp. so-1 = s1 = -- = Sm).

Proof. It is obvious from Theorem 4.1.4.4 and Proposition 4.1.4.3. O

4.1.5 Recursive thickening spaces

In this subsection, we introduce a generalization of thickening spaces. This will give

us some freedom when changing the base field.

In this subsection, we continue to assume Hypotheses 4.1.1.1 and 4.1.1.10.

Construction 4.1.5.1. This is a variant of Construction 2.3.3.3. First, filter the

(inseparable) extension rL/K by elementary p-extensions
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where for each A = 1,...,r, i = x-_l(c) with Z' = bx E X-1. Denote A =

{1,... , r}. Pick lifts CA of CA in OL. Let e = eo,..., ero = 1 be a strictly decreasing

sequence of integers such that ei I ei-1 for 1 < i < ro. Set I = {1,..., ro}. For each

i E I, pick an element rL,i in OL with valuation ei; in particular, we take 7rL,ro = rL-

It is easy to see that (CA, rL,I) generate OL over OK. So we have an isomorphism

A : OK(Uo,I, uA)/ OL,

sending uo,i F-+ 7rL,i for i E I and u\ F ex for A E A, where 3 is some proper ideal and

we use the same A as in Construction 2.3.3.3. Moreover,

Uo u^ eco,i {0,... -1 foralli and e E 0...,p-1} forall AEA

(4.1.5.2)

form a basis of OK(UO,I, UA)/J as a free OK-module, which we refer later as the

standard basis.

We provide OK[UO,I, UA] with the following norm: for h = eo,,, eAUOu

with aeo,,e E OK, we set

IhI = max{jaeo,1 ,^ -0(c"' o -e+---+o,roero)/e .
Co,I,eA

For a E !Z>o, we use £ to denote the set consisting of elements in OK[UOj, UA] with

norm < Or; it is in fact an ideal.

In OK(U0,I, UA)/3, we can write ue _1/e for i E I and ue in terms of the basis

(4.1.5.2). This gives a set of generators of 3:

Po,i E e/el - K + l 1+l/e . OK[U0,IUA],

ei- 1/ei

Po E ,U0, + •9 1 (4-+)/e OK[UOI UA] I\{1},

PA E Up- + [/e KIUo,I,UA,

where Di are some elements in OK [U,I, UA] whose images under A are invertible in

OL, and for each A, b\ is some element in OK[U,... ,U-1] whose image under A
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reduces to b E kx-l modulo rL.

We say that pa corresponds to the extension /, K-1.

Definition 4.1.5.3. As in Definition 4.1.1.12, we define 6K = K(U0,I, UA)

OK 0/7rOK, 6J (U0,I, UA). For w E 1Nl[1, OK], we say that a set of elements (jo,I, 9TA) C

(S+) - K has error gauge > w if 9 1o,j E (9w-1+e/ejo, 9'w+ei/ejJ) • K for i e I and

N, E (9V-160, I "Sj) -K for A e A. The subset (910 ,j, 9iA) C (S6J+) ' K is admissible

if it has error gauge > 1.

Let (N9o, 9-A) C (6 j+) . GK be admissible. For a > 1, we define the (non-

logarithmic) recursive thickening space (of level a) TS2/K,No,A,A to be the rigid space

associated to

0 TS,L/K,9 o,,1A = K (1 +) (uo,, U)/(lK(o,) + ~0o,, O(PA) + 9).

For a > 0, we define the logarithmic recursive thickening space (of level a) TSa/K,log,o,I,9A

to be the rigid space associated to

TS,L/K, og,91o,I,9A = K( - 0 , 7rKa6)(Uo,I, UA)/(K(P,I) + K 0 ,1, )K (PA) + NA) •

We still use A to denote the natural homomorphism

K ,) 0,, K A Amod (6 o/rK "J)OK(oI UA ) / ( 0 , PA L;

G5K/(V)K(Pj)) + 910j,'OK(PA) L

we use A to denote the composition with the reduction OL --+ KLi

Lemma 4.1.5.4. Let (io,I, 9A) C (6 g+) -GK be admissible. Then (4.1.5.2) forms a

basis of SK /( K(o,I) +9O,I, 4 K(P A) +9A) as a free RK-module, which we refer later

as the standard basis. As a consequence, they form a basis of OaS,L/K, o,I, A (resp.

OTS,L/K,1og,o,,IA) as a free module over K(K6J+) (resp. K(rK -lo,iyarKaj)).

Proof. Same as Lemma 4.1.1.17. O

Example 4.1.5.5. The construction of the thickening spaces in Definition 4.1.1.13 is

a special case of the above construction. If we start with a uniformizer WFL, a p-basis
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c , and relations pj+ in Construction 2.3.3.3, the following dictionary translates the

information to fit in Construction 4.1.5.1.

WL,I 4--+ 7 (I=1}),

CA - ,-+ e , ,...,C ,C2, )..., m

Po,i, p PA the ones determined by CA and 7rL,l,

9o,j Ro,

9 -- + Rj when A corresponds to some c 3 , and 0 otherwise.

Moreover, this construction preserves the error gauge.

Conversely, we have the following.

Proposition 4.1.5.6. Let (M9o,I, 91A) C (Sj+) - SK be admissible with error gauge

> w E 1N n [1, /K]. Then, for any choices of CJ and irL as in Construction 2.3.3.3,

there exists an 'RK-isomorphism

E : SKI( K(PJ+) + Rj+) + 6K(IK(POJI) + 9O,I, )K(PA) + 9A), (4.1.5.7)

for some admissible Rj+ with error gauge > w, such that e mod (So/7rK, 6J) induces

the identity map if we identify both side with OL via A. This gives isomorphisms

between the recursive thickening spaces and thickening spaces.

TSa/K,9to,j,A - TS2/K,Rj (a > 1) and TS2/K,1.g,of,9 ~ TSL/K,log,RJ+ (a > 0)

Proof. For each j E J, express cj as a polynomial Zj in uo,I and UA with coefficients

in OK viaA - 1 : OL -% OK(Uo, UA)/(Po,I, PA), and set e(uj) = O K(j). We also set

O(uo) = uo,ro. It is then obvious that for a E Z>o, •(N . SK) C 9a . K

We need to determine Rj+. For each fixed jo E J+, since A(pjo(uj+)) = 0, we can

write

Pjo (uo,ro, Cj) = 4o,ipo,i + IP\, in OK (UO,I, UA)
iEI AEA
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for some o,i, O[ E OK(UO,I, UA) for i E I and A E A. Moreover, when jo = 0, we can

require o,i E 1-ei - 1/e . OK(UO,I, UA), and [, E 9-1. OK (U0I, UA) for i E I and A E A.

Thus,

-E(Rjo) = )K (Pjo)(e(UJ+))

= O (J,i)'K(PO,i) + S bK( A)OK(PA) +
iEl AEA

= bK((o,i)(- ,i) + 1: )(-A ) + (
iEI AEA

E ( 9 1 w 6 0o, 9' 16J) E K jo = 0

S(9w-10, "'w6J) 6 K joE J

where E E (9KSo, 9(1 K+ 1) 6J).K if jo = 0 and ( E (9T(3K-1)60, 9 3K 6J)'.K if jo E J;

they correspond to the error terms coming from K failing to be a homomorphism

(See Proposition 4.1.1.8).

Thus, we can find polynomials qo,..., q E OK[u J+] such that

N - SK jo = 0 N"+1 - SK j = 0O
qO E q. I .rn E

N' -1 -SK  jo E J N SK jo E J

E(Rj - qo6o- - - qmm) E { (Jo/7rK, 6J)(TJ 60, 9rr J) EK jo = 0

(6o0/wK, 6J)( 91w-16o, t6J) 6K jo E J

Further, we can similarly clear up the coefficients for Sjj, for j, j' E J. Repeating

this approximation gives the expressions for Rj+. They clearly have error gauge > w.

The surjectivity of E follows from the surjectivity modulo (So/rK, 6j), which is the

identity via A. Moreover, a surjective morphism between two finite free modules of

the same rank over a Noetherian base is automatically an isomorphism. The theorem

is proved. O

Remark 4.1.5.8. The isomorphism 0 is not unique. Basically, O(uo) mod (I961o, 9"w+165j)

6 K and 0(uj) mod (91-16o, 9"63j) iK for j E J are fixed; any lifts of them will

give a desired isomorphism (with different (Rj+)).
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Lemma 4.1.5.9. Let (9%o,i,91A) C (6 j+) - GK be admissible. Then an element

h E 6K(/K(IO,I) + IOJ, O (P) + 9%A)

is invertible if and only if A(h) E 0~ . In particular, u 7,ro/rK is invertible.

Proof. The necessity is obvious. To see the sufficiency, we construct the inverse of h

directly. Let h(- 1) be a lift of A(h-') E O in OK K(o,I, UA). We have A(1-h(-')h) = 0

and hence 1 - h(-1)h = g E (6 J+) - 6K. Thus,

1 _h-
1 )1 = h(- ') - (1 + g + g2 + .. ).

h 1-g

The series converges to the inverse of h. 0

4.2 Non-logarithmic Hasse-Arf theorems

4.2.1 Base change for generic p-th roots

In this subsection, we prove the key technical Theorem 4.2.1.7.

We continue to assume Hypotheses 4.1.1.1 and 4.1.1.10. When proving the main

theorem, we will assume a technical Hypothesis 4.2.1.6, which is satisfied by any

recursive thickening space coming from a thickening space by Example 4.1.5.5.

Notation 4.2.1.1. For this subsection, Fix jo E J and n E N coprime to p. As in

Definition 2.3.2.7, let K(x)^ be the completion of K(x) with respect to the 1-Gauss

norm and let K' be the completion of the maximal unramified extension of K(x) ^ .

Let K = K'((bjo + x7x)'/P) and L = LK. Denote pjo = (bjo + xnir)'/l for simplicity.

We put in an extra n here to ease the deduction later.

Lemma 4.2.1.2. If b3'P V KL, the ramification break b(L/K) = b(L/K).

Proof. Since Ia = krkL, we have OZ = Ok 0 0~ OL; the Lemma follows from

Proposition 2.2.2.11(4'). 0
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So we need to deal with the non-trivial case when b{/ E rIL.30

Notation 4.2.1.3. Denote 7Z = OkiTrlo/rK, fJl, rm+lI. Applying Construction 4.1.1.2

to K gives a function Ok : Ok --+ l , which is an approximate homomorphism mod-

ulo the ideal Ik = p(ro/7rK, r7ju{m+1}) -RK

Lemma 4.2.1.4. There exists a unique continuous OK-homomorphism f* : RK

Rek such that f*( 3j) = 77j forj E J+\{jo} and f*(6 j,) = (0jo, +-jo)P - (x+m+1)(TK +

7o) - bjo. It gives an approximately commutative diagram modulo Ik.

OK K OK 5/7rK, J] = IK (4.2.1.5)

O k l O[70/7 K7 JU{m+1}I = R1Z

For a > 1, f* gives a morphism f : AK+2[0 , 0a] - Am+ [0, 0a].

Proof. It follows immediately from Proposition 4.1.1.8. O

Hypothesis 4.2.1.6. For the next theorem, we assume that in Construction 4.1.5.1,

there exists Ao E A such that the field extension KAo/KAo-1 is given by Ko =
(1/p - -1/p;Ao- 1(b) and CAo -- b)o

Theorem 4.2.1.7. Assume Hypothesis 4.2.1.6 and keep the notation as above. More-

over, assume that /K n + 1. Let a > 1 and w > n+1. Let TSa/K,9o,I ,A be a recur-

sive thickening space with error gauge > w. Then TSa/K,9oIO9 A x A +[o,O,yA +2[0, 0O]

is a recursive thickening space for L/K with error gauge > w - n.

The reader may skip this proof when reading this paper for the first time. Roughly

speaking, the argument presented here is a combination of the arguments in Propo-

sitions 4.1.5.6 and 4.3.1.4, but in a more complicated way.

Proof. Step 1: Find the generators of OL/.0 k

The difficulty comes from that 7rLj,, CA do not generate Oz over Ok (although they

do generate L over K). We need to change the generator CA to an element which

either gives
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Case A: the inseparable extension /KL(t)S" which happens when L/K has

naive ramification degree e; or

Case B: a ramified extension of naive ramification degree p which happens when

LK has naive ramification degree ep.

Denote L' = LK', which has residue field KL, = KIL(2) P. Then, we have OL, =

OK'(%OK OL. Hence, O( OKOL - O O OO L C O,. We may extend the valuation

VL,(') to L by allowing rational valuations in Case B. Let jo - for ~i E O, be an

element achieving the maximal valuation under VL ,(-) among 3jo + OL,.

Claim: we have a = VL'( jo - Ap) < en/p and

in case A, the reduction of cxo = krLa(8jo - ) in a. generate iZ over KL' (we also

set d = 1 by convention);

in case B, vy(ir['0](jo 0- M)) = d/p for some d E {1,..., p - 1}, in which case, we

fix a d-th root 7r,ro+1 of x7r[a](jo - /); it generates the extension O Z/OL,.

Proof of the Claim: We have the norm NZ/L,(A - 1jo) = P - (bjo + xirn). Since

there is no f E OL, that can kill the x7r term (note 3K _ n+1), UVL(Ni,/L ,(jo --)) <

en and the first statement of the claim follows. When a V N, we are forced to fall

in Case B and the claim is obvious. Assume for contradiction that a E N and

the reduction of Zxo lies in KL'. Then there exists i' E OL, such that p,'/ -r 2~

(mod mZ). But then jo - M - I' will have bigger valuation, which contradicts our

choice of C. This proves the claim.

Step 2: Find the generating relations.

By previous step, we can write

OR (Uo,,, A\\o, )/(P,,, A\Xo ) -Oz.

by sending iio,i to Co,I, iA\Ao to CA\Xo, and 6 to Zo, in Case A and rL,ro+1 in Case B,

where the relations Po,I, A\xo, 4 can be obtained using Construction 4.1.5.1. Now, we

link these relations to the relations Po,I, PA for OL/OK. We first lift the isomorphism

S: K(iio,,, o1, 6) /(PO,, iA\o, A ) L K OL k(u,I U A)/ (PO,I, PA)
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to a homomorphism X : O(io,I, A\Ao,6) --* O1(uo,I, UA)[ 1--] sending fio,, to uo,,

iiA\Ao to UA\Ao, and ii" 6 to the lift of -(iiU, 6) using the standard basis defined

in Construction 4.1.5.1. Then u(p-l)[ax(oi), u-)[] A\Ao) and oX() are con-

tained in the ideal (Po,, PA)OK(UO,I, UA).

Step 3: Explicate the goal.

We are going to establish an R7-isomorphism k : A A, where

A = K/()K(PO,I) + 9fO, , 'K(PA) + 9Ah) ®K,f* RK [ ], (4.2.1.8)

A = [ ] /(( +o,,) + Ro,I, 1'(PA\xo) + RA\Ao, 0(4) + RO). (4.2.1.9)

Here, 6- = Rk(iio,, uA\Ao, 6) and we can define 9- for a E 1 N similarly to Con-K ep

struction 4.1.5.1; the ring homomorphism 5 is given (and determined) by X(io,j) =

uoI, X(iiA\Ao) = UA\Ao, and k(6) = ?P(x(6 )); the set !Ao,I, !A\, !R4 will be admissible

with error gauge > w - n so that is an isomorphism.

Such an isomorphism k will be sufficient to prove the main theorem.

Step 4: Bound the error gauge. We first determine fRo,I, 9A\Ao, 9-4. We proceed

similarly to Proposition 4.1.5.6. To write this argument uniformly, we first divide

into the following four cases.
Case (a): Denote p = -1)[a]oi, for some io E I and = u(oP-)[H 9Ro,,;

Case (a): Denote UO,ro O,r

Case (b): Denote (P- = )[]A for A E A\{Ao} and 9R =u(P-)[]]~
Case (b): Denote = pp[a)O -

Case (c): Denote p = uop[o and = O"o] 9,, assuming we are in Case A;

[p[a
Case (d): Denote p = ,o and = - [a, , assuming we are in Case B;

By Step 2,

x(P) = + ,ipo)i + >:
iEI AEA

for some jo,i, E Ok(uo,, UA) for i E I, A E A. Moreover, in Case (a) for some io E I,

we can require bo,i E Kax{(eo-e~1)/e°}'O (uo, , UA), and \ E " e O K(U0,1, UA)
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for i E I, A E A; in Case (d), we can require 4x E 91e - Ojk(uoJ,, UA) for A E A. Thus,

-() = (()) = Ao,0A(ko) + V ¢ ()¢O(PA) +
iEl AEA

SE A(- oi)
iEl

+ g(b1k)(-9A) + e
AEA

( 9)w-1+eo-1/eT 0 , ;V+eio-l/e 7Ju{m+1}) " 6K (RK Jk

( '-~lWo, 9WT?u(m+) • K RK ZK

(9fw-1+1/e?, 9Vw+1/e?,u{m+}) - 6 K ORK Rk

case (a),

case (b) or (c),

case (d),

where the error term Q coming from K failing to be a homomorphism (See Propo-

sition 4.1.1.8) can be bounded as

(IrO, K+ Jum+l) ." K &cRK Y7

(9v K- 1 0 , %1K j) - nKORK RK

(9I3K7,o, 9IK+1lJU{m+l}) 6K ®.RK JkZ

case (a),

case (b) or (c),

case (d).

Thus, we can find polynomials o,. , i m+ ( O [O,I, IA\A0 , " O,ro

such that

-we-e+eio- - " [Q] -"

oro - Ok 1 Uo,J , uA\o, Oro]

ufie-e+O [iio, , [a\xo, u o]

i-1 -ro O 1[io,, A\o, u o b],ro-we+eo-l ~ ~ ~ [a]~
O,ro K R[uoI, iiA\O o,ro]

o ' " [ o,I, fiA\xo, "o,,-o]

case (a),

case (b) or (c),

case (d);

case (a),

case (b) or (c),

case (d);

X( - o7o - - m+1im+1)

(rO/7rK, ]JU{m+l} )(9--l+eio1-/e1o, w+eo-1/e9(JU{m+1}) (6K 7IK RA)

(770/7K, 71JU{m+1})( w-10, 97 1 lJU{m+1}) - (6K ®RK Zk)

(o/rK, JU{m+}1)(9w-1+1/eT, W+l/e 9/JU{m+l}) (6K OIK R Th)

case (a),

case (b) or (c),

case (d).
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Further, we can similarly clear up the coefficients of rryj, for j, j' E J+ U {m + 1}.

Repeating this approximation gives the expression of !A. From this and a < en/p,

we can obtain J0 ,, 9 A\Ao, 94 E (?7J+u{m+l}) - 6 k such that

Swe-e+eio-1--en, ~we+eio1--enu

f we-e-en -we-en A\o, E (uor 0 UO, oro JUum+l ) - E E o

S~we-e-en -we-en in Case A
914 G {UO,ro '0, UO,ro q7JU{m+11) " Ek

(wie-e-en+1 -we-en+1qJum+j}) - 6k in Case B(U0,ro e l0o, O,ro u{m+}) in Case B

They have error gauge > w - n.

Step 5: Prove that ) is an isomorphism.

To prove that 5 is an isomorphism, it suffices to show the surjectivity, as both

A' and A are finite free modules over R7k[ ] of the same rank. Since (4.1.5.2) forms

a basis of A over R 1[ ], we need only to show that uo,/ and UA are in the im-

age of 2. This is obvious for uo,i and UA\Ao. For u.o, we first find an element in

Ok [ 0,, U A\Ao, u o] --* OR @OK OL whose image under 2 is uXo . Then we use the

similar approximation in Step 4 to find an element in A' whose image under ) is

exactly uAo. This finishes the proof. O

Remark 4.2.1.10. We expect that when w and hence 3K is "large" compared to

[L : K], Theorem 4.2.1.7 is also valid if we add a generic p"-th root (Defintion 2.3.2.7);

this amounts to control the discrepancy between OZ and Ok oK OL. Hence, in this

case, one can obtain a comparison theorem between the arithmetic Artin conductor

and Borger's Artin conductor as in Subsection 2.4.2.

4.2.2 A digression on differential modules

We study some basic properties of intrinsic radii of convergence under certain base

changes, in particular, the off-centered tame base change and the off-centered Frobe-

nius pullback.

Construction 4.2.2.1. Let K be a nonarchimdedean field and let 7iK E K be an
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element with IrKI = 0 < 1. Denote X = A'[0, 0a]. Fix n E N prime to p and fix

xo E K such that lxoI = 0b > 8a (b < a). In particular, the point Jo = -xo is not in

the disc X. Denote Kn = K(xol"), where we fix an n-th root X /n of X0.

Consider the K-homomorphism f* : K(rKa6o) -t Kn(7rKa+b(n-1)/n O), sending 0o

to
n-1

(o + r70o)n - Xo = Xo ,Eo in 1 '
i=0 0

where the term in the bracket on the right has norm 1 and invertible because Jxo;Il >

177o. Hence fn extends continuously to a homomorphism Fa -- Fa-b(n-l)/n, where

F -b(n-l)/n is the completion of K,(o70) with respect to the 0a-b(n-1)/n-Gauss norm.

Also, f,* gives a morphism of rigid K-spaces f : Z = A [0, 9 a-b(n- l )/n]  X =

A'[0, 0"]. It is finite and 6tale because the branching locus is at 60 = -xo, outside

the disc X. Thus, for a differential module 8 on X, its pull back fn* is a differential

module over Z via

fsA f (c ox o xd o) -- f,*C cz o Ozdo,

where the last homomorphism is given by dSo '- n(x /n + 70o)n-ldqo.

Proposition 4.2.2.2. Keep the notation as above. We have

IRa,o (fE; a - b(n - 1)/n) = IRao(8; a).

Proof. The proof is essentially the same as [Ked05a, Lemma 5.11] or [Ked**, Propo-

sition 9.7.6]. Lemma 1.1.2.16 gives the following commutative diagram

Fa foen,o Fa 7rToo-a

fgen,o llr -a+b(n-1)/n o
Fa-b(n-)/n (lFa-b(n-l)/n f K

where f,* extends f,* by sending To to (xo/n + o + T) - (o + o)
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We claim that for r E [0, 1], f, induces an isomorphism between

F'b(n-1)/n Xfn,Fa (A [0, roa)) A b(n-1)/n[ A r a-b(n-1)/n).

Indeed, if IT~I < r a -b(n- 1l)/n < 0 b/n, then

To = (Xo + T) (xl/n+o)= nT(x/n )n-1 < ra-b(n-1)/n.(ob/n)n
- 1 = Oa.

Conversely, if ITol < r 0a, we define the inverse map by the binomial series

TO = (Xo + ?o) - 1 + 1 + 1/(xn T o) 1/ (/ 1/n T0)nio 1
0 i X0

The series converges to an element with norm < rOa-b(n- l)/n.

Therefore, Proposition 1.1.2.18 implies that for r E [0, 1],

IRao(; a) > r

a fg*n,o(& gOx Fa) is trivial over AFa[0, ra)

I a- b(n -1
ffgeno(& 0 Fa) = fen,O(fn* 0 F_ b_(n-1)) is trivial over A'-b(n-1)/n r[O, b(,- )

€ IRa,o (fyg; a - b(n - 1)/n) > r.

The proposition follows. O

Similarly, we can study a type of off-centered Frobenius.

Construction 4.2.2.3. Let b > 0 and 0 < a < min{-log0p+ b, pb} and let 3 e K be

an element of norm 1. Let L be the completion of K(x) with respect to the Oa-Gauss

norm.

Let f : Z = A[0, Ob] --* A'[0, Oa] be the morphism given by f* 60So ' (3 +

ro)p - OP + x. By our choices of a and b, the leading term of f*(6 o) is x, which is

transcendental over K. Hence f* extends continuously to a homomorphism F -- F',

where F( is the completion of L(ro) with respect to the Ob-Gauss norm. Moreover,

f*Q Q as the branching locus is at r7o = -3, outside the disc. Thus f * becomes
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a differential module over Z = AI[0, Ob] via

f*E f* (E o Oxd5o) - f* 0qz, Ozdo,

where the second homomorphism is given by do '-* p(3 + rjo)P-do.

Proposition 4.2.2.4. Keep the notation as above. We have

IRa(f* E; b) > IRa,o (; a).

Proof. This proof is very similar to Lemma 1.1.4.16. We start with the following

commutative diagram from Lemma 1.1.2.16.

1 f*n, 0 1

F' - Fg[e rgb

where f* extends f* by sending To to (3 + ro + TO)P - (3 + ,o)P.

For r E [0, 1], by Lemma 1.1.4.17, IT4I < r0a implies that ITol < max{rPOPa, p-lroa <

rOb.

Therefore, Proposition 1.1.2.18 implies that

IRa (E; a) > r

a fgen,o( ®ox -Fa) is trivial over Ai [0, roa)

Sf*f;en,o( @o0x Fa) = fgen,(f *E Oz F') is trivial over A 1 [0, rOb)

SIR,,o(f*E; b) > r.

The proposition follows. O
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4.2.3 Non-logarithmic Hasse-Arf theorem

In this subsection, we apply Theorem 4.2.1.7 to obtain the Hasse-Arf Theorem 4.2.3.5

for non-logarithmic ramification filtrations.

We assume Hypotheses 4.1.1.1 until stating the last theorem. As a reminder,

Hypothesis 4.2.1.6 is no longer assumed till the end of the paper.

Notation 4.2.3.1. Keep the notation as in Construction 2.3.3.3. Fix jo E J and

n E N. Let K = K'((bjo+ Xx) l /p ) as in Notation 4.2.1.1. Denote Ojo = (bj, +xir) /

for simplicity.

Lemma 4.2.3.2. Assume p { n and 3K > n. Let aj+ C R>0 and ao = ajo = am+1 >

max{j , 1}. Define a) = a3 for j E J+\{jo} and ajo = aj, +n - 1. The morphism

f* defined in Lemma 4.2.1.4 restricts to a morphism

f A [O°ao aol x ... x AL [am+l ,am+] A'[ 4 ",4 ] .x xA A1[ ', 'm.

In other words, we change the jo-th radius from ajo to ajo + n - 1.

Proof. It suffices to verify that if Iol ol ol = Im+11 = Oao, then I|jl = Oao+n-1;

indeed

6jo = ((#jo + 7 jo)p - o) - X((7K + 770o) - 7rK) + Om+( K 0 ,

which has norm 8ao+n-1 because the second term does and other terms have smaller

norms. O

Lemma 4.2.3.3. Keep the notation as in the previous lemma. Let E be a differential
module over Ak[0, 0a' ] x ... x A'[0, 0a'], then IR(f*; aj+) = IR(&; a'+u{m+}) -

Proof. The morphism f* induces the homomorphism on the differentials: d6J drlj

for j E J+\{jo} and d6ijo H P(jo + 77jo)P- drljo K(7K + 70) nm+ +n(x+ Tim+l)(7rK +
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o0)n-ldr0o. Thus,

8 l.e = 9jle, j E J\{jo},

aIo lre = p(Qo + ?7jo)P-l jo le,

a +llf'*. = (rK+ '0)". njol,

aol* = aol +n(x + m+)( K + t7o)n-1 joE,

where o = 8/8rlo for j = 0,..., m + 1. Thus,

IRj(f*9;aj+u{m+l) = IRj(; a'+) Vj e J\{jo},

IRjo(f*&;aj+u{m+i}) < IRj((E;a',+),

IRm+l(f*g; aj+u{m+}l) = 0'n IR .o(E ; a',+),

IRo(f*; aj+u{m+}) = min {IRo(&,a'+), IRjo(S;a'+ )},

where the second inequality follows from Proposition 4.2.2.4 and the last equality

holds by Proposition 4.2.2.2 because x is transcendental over K. It follows that

IR(E; a',) = IR(f*g; a+u{m+l}). 0

Theorem 4.2.3.4. Let L/K be a finite Galois extension satisfying Hypotheses 4.1.1.1

and 4.1.1.10. The highest non-logarithmic ramification break of L/K is invariant

under the operation of adding a generic p-th root.

Proof. Adding a generic p-th root corresponds to setting n = 1 in the notation in

this subsection. Fix a choice of 'OK in Construction 4.1.1.2. Let TS'/K,OK be the

standard thickening space for L/K. By Example 4.1.5.5, we can turn this standard

thickening space into a recursive thickening space (with error gauge > 3K). By

Theorem 4.2.1.7, TS/IK,OK X Am+ [0,0a], AK+2 [0, 0 a] is a recursive thickening space for

L/K with error gauge > 3K - 1, which is isomorphic to some thickening space for

L/K by Proposition 4.1.5.6.

Let E be the differential module over A +1[0, 0a] coming from TSa/K,K. Then

the differential module f*S is associated to LIK. Applying Lemma 4.2.3.3 (to the
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case n = 1) gives IR(f*E;s) = IR(E; s) for s > b(L/K) - E with E > 0 as in

Theorem 4.1.3.2. The theorem follows from Theorem 4.1.4.4. Oi

Combining Theorem 4.2.3.4 and Proposition 2.3.2.13, we have the following.

Theorem 4.2.3.5. Let K be a complete discretely valued field of mixed characteristic

(O,p) which is not absolutely unramified. Let p: GK --* GL(V) be a representation

with finite local monodromy. Then,

(1) Art(p) is a non-negative integer;

(2) the subquotients FilaGK/Fila+GK are trivial if a Q and are abelian groups

killed by p if a E Q>1.

4.3 Logarithmic Hasse-Arf theorem

4.3.1 Integrality for Swan conductors

In this subsection, we will deduce the integrality of Swan conductors from that of Artin

conductors (Theorem 4.2.3.5). We will use the fact that the logarithmic ramification

breaks behave well under tame base changes.

We will keep Hypothesis 3.2.2.1 until we state Theorem 4.3.1.14.

Notation 4.3.1.1. Let n E N such that n - 1( mod ep). Define Kn = K(rk n )

and L, = LK,. Since K and L are linearly independent over K, Gal(L,/K.) =

Gal(L/K). We take the uniformizer of Kn and L, to be I7rK = 1/n and 7rL =

rL/7n, )/ e , respectively.

Notation 4.3.1.2. Denote RK, = OK 7O/7rKn, .7j]. Applying Construction 4.1.1.2

to Kn gives an approximate homomorphism n K: OK -+ OKKn J7o/7rK., rlj].

Lemma 4.3.1.3. There exists a unique continuous OK-homomorphism f* : RK

RK. sending go to (7rK. -0o)n-7rK and 6j to rj forj E J. This gives an approximately
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commutative diagram modulo IK, = p(rlo/IrK,, rTj) IZK,,:

OK 'OK OK60/ 1K 5J]

oK. OK. I[?70/Kn, 77A

Proof. Follows from Proposition 4.1.1.8. O

Proposition 4.3.1.4. Fix a > 0. Let TS/K,log,,K be the standard logarithmic thick-

ening space. Then the space

X = TS,/K,log,l K X(AK'[o,a+llxA[,Oa]),f n (A.[0, Oa+1/n] x A [0, 0a])

is a logarithmic thickening space for Ln/Kn with error gauge > nflK - (n - 1); in

particular, it is admissible.

Proof. First, we have

sK OK Kn OK [77o0/Kn 1 A H (uJ+)/(fn* K (PJ+))).

Now we consider a construction of the logarithmic thickening space of Ln/K,,

using the same cj as the ones for L/K and 7rL, in Notation 4.3.1.1. Therefore, the

ideal IL/Kn is generated by pg+ and p'o/r ,', where the prime means to substitute

2Uo with (n-l)/e /.

Lemma 4.3.1.3 implies that

K(o/ - f( K(Po))/(TrK + u) e +Kn -nK- o,PrJ>) SKn, (4.3.1.5)

where SKn = K [ro/7rK, r~j] (uo, uj). Hence,

SK OK K OK, f/K rI[ ](o, UJ) /(f )K(Po)), f(n K(p J)))

_= SKI (fn* K (,) / 90 n-+ 1 fn KI)
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gives rise to logarithmic thickening spaces for L,/K, with error gauge > nK - (n-1);

note that Kn/K being tamely ramified of ramification degree n gives a different

normalization on error gauge. O

Proposition 4.3.1.6. There exists N E N and OL/K E [0, 1] such that, for all integers

n > N congruent to 1 modulo ep, we have

n - blog(L/K) = b(Ln/Kn) - aL/K.

Proof. By Construction 4.2.2.1, f* gives a finite 6tale morphism fn : AlK[0, 01/n) x

A [0, 1) -- A [0, 0) x A [0, 1) for a > 0. Let E denote the differential module

associated to L/K coming from a standard logarithmic thickening space. By Propo-

sition 4.3.1.4, f* is a differential module associated to Ln/K. In particular,

ETL/Kn ; ETL/K XA [0,0)xAm[o,1),fm A,[0, 91/")x Am [0,1)=: f,(ETL/K)

The morphism fn is an off-centered tame base change, as discussed in Subsec-

tion 4.2.2. By Proposition 4.2.2.2, for sj+ C R such that A[0, Oso ]x ... xAl [0, Om] C

ETL/K, we have IR(fn*E; sj+) = IR(E; so + 1, sj). Thus, by Corollary 4.1.4.6,

b(Ln/Kn) = n -min {s I Am+ [0, 0s] C ETL,/Kn and IR(f*E; s) = 1}

= n -min {s Am+[0, 08] C f,~(ETL/K) and IR(f~C; s) = 1} (4.3.1.7)

n-1
= n -min {s A [O, 8s+(n -l1) / ] x AmK[0, 08] C ETL/K and IR(E; s + - ,s) = 1},

n

where the second equality holds because we will see in a moment that the minimal of

s can be achieved inside ETLIK.

Applying Proposition 4.1.4.3(c) to E, we know the locus Z(C) = {(sj+) IR(E; sj+) =

1} is transrational polyhedral in a neighborhood of [biog(L/K), +)m+ l , namely,

where E is defined. Hence, in a neighborhood of sl = blog(L/K), the intersection of

the boundary of Z with the surface defined by sl = -- -= sm is of the form

so - a'sl = blog(L/K) + 1 - a'blog(L/K),
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where a' is the slope; a' E [-oo, 0] by the monotonicity Proposition 4.1.4.3(c). When

n > 0, it is clear that the line s -+ (s + n, s,... ,s) hits the boundary of Z at

s = blog(L/K) + 1/(n(1 - a')). This justifies the equality in (4.3.1.7). It follows that

b(Ln/K) = n - blog(L/K) + 1/(1 - a');

the different normalizations for ramification filtrations on GK and GK, give the extra

factor n. O

Remark 4.3.1.8. With more careful calculation, one may prove the above proposi-

tion and Proposition 4.3.1.11 below for any n sufficiently large and coprime to p.

Notation 4.3.1.9. Assume p > 2. Let (bj) be a p-basis of K; it naturally gives

a p-basis of Kn. Let K,(xj)^ denote the completion of K,(xj) with respect to the

(1,... ,1)-Gauss norm, and let K" denote the completion of the maximal unramified

extension of K,(xJ)A^. Set

Kn = Kn((b + jirk) 1  'nI, = KL.

Denote fpj = (b +xjr)/P for j E J. By Lemma 4.2.1.4, we have a continuous OKn-

homomorphism f: OK?1ro0K,r/ 7J -+ O 0jk o/irK,~n, , '] such that f*(ro) = 60

and f*(7j) = (Pj + 6j)P - (xj + j)(rKn + 6o)2 - bj for j E J. For a > 1, it gives

rise to f: A*m+'[0, Oa] --+ Am+l[0, a ] - A [0, 0a ] x Am [0 , 0a-1/"], where the last

morphism is the natural inclusion of affinoid subdomain.

Proposition 4.3.1.10. Assume p > 2, OK > 2+n, and a > 1. Let X be as in

Proposition 4.3.1.4. Then the space

X X(A [O,Oa+1/n]xAm [0,0.]), A+1l[0, a+I/n]

is a thickening space for LZ/K, with error gauge > n3K - 2m - n + 1; in particular,

it is admissible.
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Proof. It immediately follows from Proposition 4.3.1.6 and applying Theorem 4.2.1.7

m times. LO

Proposition 4.3.1.11. Assume p > 2 and OK > 2. There exists N E N such that,

for all integers n > N congruent to 1 modulo ep, we have

n -biog(L/K) - 1 = b(Ln/Kn) - 2 aL/K, (4.3.1.12)

where aL/K is the same as in Proposition 4.3.1.6.

Proof. We continue with the notation from Proposition 4.3.1.6. Previous proposition

implies that f*f,*, is a differential module associated to Ln/K, when n > m. By

applying Lemma 4.2.3.3 m times, we have IR(f*f*S; s) = IR(f,*E; s, s + ). By

Proposition 4.2.2.2, it further equals IR(S; s + ", s + -). By the same argument as

in Theorem 4.3.1.6, we deduce our result with the same &L/K. OE

Remark 4.3.1.13. When p = 2, we study K, = K'((bj + KxjTr)l/P) instead; the

same argument above proves the proposition with (4.3.1.12) replaced by

n - blog(L/K) - 2 = b(Ln/Kn) - 3 aL/K.

For the following theorem, we do not impose any hypothesis on K.

Theorem 4.3.1.14. Let K be a complete discretely valued field of mixed characteristic

(0, p) and let p : GK -* GL(V,) be a representation with finite local monodromy. Then

Swan(p) is a non-negative integer if p # 2 and is in 1Z if p = 2.

Proof. First, as in the proof of Proposition 2.3.2.13, we may reduce to the case when

p is irreducible and factors through a finite Galois extension L/K, for which Hypoth-

esis 4.1.1.1 hold. In this case, Swan(p) = biog(L/K) - dim p.

By Proposition 2.2.2.11(4), we have Swan(plKn) = n - Swan(p) for any K, =

K(r K/n) with gcd(n, ep) = 1. We need only to prove Swan(plKn) E Z for two coprime

n's satisfying gcd(n, ep) = 1, and the statement for Swan(p) will follow immediately.

In particular, we may assume that OK > 2.
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When p > 2, we repeat the same argument again. There exist nl, n2 satisfying

the condition of Propositions 4.3.1.6 and 4.3.1.11 and gcd(nl, n2 ) = 1. Thus, by the

non-logarithmic Hasse-Arf Theorem 4.2.3.5,

nlSwan(p) + aL/K dim p E Z, niSwan(p) + 2aL/K dim p E Z;

n 2Swan(p) + aL/K dim p E Z, n2Swan(p) + 2aL/K dim p E Z.

This implies immediately that OL/K dimp E Z; hence, Swan(p) E Z.

When p = 2, a similar argument using Remark 4.3.1.13 gives Swan(p) E 1Z. O

Remark 4.3.1.15. When p = 2, we expect the integrality of Swan conductors in the

case K is the composition of a discrete completely valued field with perfect residue

field and an absolutely unramified complete discrete valuation field. In this case,

we can factor K as OK --4 OK[O/7rKI - OKo 6 0/rK, J] with the second map a

homomorphism. This fact may allow us to show that aL/K is either 0 or 1 depending

on whether 0 dominates.

We do not know if the integrality is true for p = 2 in general.

4.3.2 An example of wildly ramified base change

In this subsection, we explicitly calculate an example, which we will use in the next

subsection. This example was first introduced in [Ked07a, Proposition 2.7.11]. We

retain Hypotheses 4.1.1.1 and 4.1.1.10.

Lemma 4.3.2.1. Let K, be the finite extension of K generated by a root of

T P + 7rKT p- 1 = 7rK. (4.3.2.2)

Then K. is Galois over K. Moreover the logarithmic ramification break biog(K,IK) =

1.

Proof. Let h(T) = TP - rKT p - 1 -- rK and w a root of h. It is clear that w is a
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uniformizer of K..

h(w + T) = (w + T) P + 7K(W + T) p -  K - 7g

= T P + p(wTP - ' +... + wP-lT)

+ rK (T p - 1 + (p - 1)wT - 2 +... + (p- 1)wp-2T)

h(w + w2T) = w2pT p + 7TK ( T2p-2Tp- 1 + (p - 1)w2p-ITp- 2 + ... + (p 1)wPT)

+p(w2p-T p -l + -..- + wP+'T)

= .((I - WP-1) 2 Tp + w-2(1 - wP-1)T P - 1 +... + (p - 1)(1 - wP-1)T)

+ plrK(1 - wp-1)(wp-T - ' +... + wT).

We see that h(w + w2T)/4K is congruent to TP - T modulo w. By Hensel's lemma,

it splits completely in K.. Hence, K./K is Galois. Moreover, the valuation of the

difference between two distinct roots is 2. This implies that biog(K./K) = 1. O

Notation 4.3.2.3. Denote the roots of h(T) = TP+rKTp-1 -rK by w = w, ... , ,.

For a > 0, the standard logarithmic thickening space TS./K,log, K for K./K is

given by

OS,+l -/KogK = K(a -So, z)/(zP + (7rK + J0)Zp - 1 - (rK + So)).TS,K*K, log,VK K- -- "

Lemma 4.3.2.4. Assume a > 1. Then the standard logarithmic thickening space

TS./K,log, ~ K X K K. is isomorphic to the product of Am [0, Oa] with the disjoint union

of p discs Iz - yl < 0a-(p-2 )/p for - = 1 ,...,p.

Proof. We can rewrite zP + (rK + Jo)Z p - 1 - (rK + 0o) as

11 (z - w-) = o0(1 - zP-1). (4.3.2.5)
Y=1

Since Izl < 1, the right hand side of (4.3.2.5) has norm < 0a+1 < 02. On the left

hand side, for -y 0 y' E {1,... ,p}, IwY - wY, I = 02/p. This forces one of Iz - wo I

to be strictly smaller than the others, for some yo E (1,... ,p}. Thus, Iz - w oo =
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kIol/(0 2 /p)p- - ea-(p-2)/p

Notation 4.3.2.6. For y = 1, ... , p, we define the K.-homomorphism f* : OK 5o/rKI -

OK. [riO0/w-] by sending 60 to

S+ o)p 00

1 - ( = t(4.3.2.7)
n--0

Lemma 4.3.2.8. For a > 1, f* induces a K-morphism f, : A' [0, 0a-(p-2)/P] -

Al[0, Oa+1], which is an isomorphism when we tensor the target with K. over K.

Moreover, if we use Fa+1 and F*-(p- 2 )/p to denote the completion of K(bo) and K.(ro)

with respect to the Oa+l-Gauss norm and oa+(p-2)/P-Gauss norm, respectively, then f*

extends to a homomorphism Fa+I - (p F*-p

Proof. The statement follows from the fact that the leading term in (4.3.2.7) is (2p -

1)wl w-2ro. O]

Proposition 4.3.2.9. Assume a > 1. Let £ be a differential module over Al[0, Oa+1].

For each {1,... , p}, this gives a differential module fE* over Ak [0, Oa-(p- 2)/p].

Then we have

IRo(f,; a - (p - 2)/p) = IRo(t; a + 1).

Proof. The proof is similar to Proposition 4.2.2.2. By Lemma 4.3.2.8, we have the

following commutative diagram

Fa+1 fen Fa+l7K.Ia-To]D

I. L1

Fa-(p-2)/l F-(p-2)/pp * a pa+p-2T 0

(w, + Rio + TA)P (w, + 7o)where we extend f* by f*(To) (w- + o + T) _ (w- + 0)
1 - (w, + 770 + T)P-1 1 - (wi +aoo)P-

We claim that for r E [0, 1), f* induces an isomorphism between

F*(p-2)/p X f*,Fa+l (A + [0, re"+l)) - A [0, r0"-(p-2)/p).
a-(p-2)/p
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Indeed, if IT I < r a- (p- 2)/p, then

T = (W, + 77o + To)P (w, + ,o)"
1 - (w, + ro + T) p - 1  1 - (w, + o)P-

= ((Wa + 7o + TO) - (w~ + N)) + ((wi + ro + T)2p - ( 0)P -1) +...

e (2p - 1)(wa + ro0 ) 2p- 2 T + ((W 0 + rlo) 2p-lT, ToP) OK. (w-pa+p-2rlo0) [w-pa+P-2 T ]

Hence, ITol = 0(2p - 2 )/p. ITI < to.

Conversely, if ITol < rea, we rewrite the above equation as

1
T' e (2p - 1)(w + )2

-
2T + (wT . K. (W;pa+p-2rlo)0 -pa+p-2Tj]. (4.3.2.10)

We substitute (4.3.2.10) back into itself recursively. The equation converges to a TO,

which is an inverse.

Therefore, Proposition 1.1.2.18 implies that for r E [0, 1),

IRo(E; a + 1) < r

Sfgen( 0 Fa+1) is trivial on AFa+ [0, r0a+l)

* f* F+i) = fen(f ® OF*-) is trivial on A [0, rOa- P
: /oenV(O f a-,---

SIRo(f*Y*; a - (p - 2)/p) < r.

The proposition follows. O

Construction 4.3.2.11. Fix a p-basis (bj) of K; it naturally gives a p-basis of K..

Fix a choice of OK " OK -- OK [o/7rK, j as in Construction 4.1.1.2. We will use

the method in Construction 4.1.1.2 to define OK*,y for y = 1,...,p such that the

following diagram commutes.

OK - OK J6 0/WK, 6J] (4.3.2.12)

1 '_OK . * J
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For any element h E OK., first write h = E - hiwt where hi E OK. As in

Construction 4.1.1.2, write each of hi as h?w for ei = vK(h) and h? e OK; chose a

compatible system of r-th p-basis decomposition of h? as

pr-1 oo Ai,(r),ej,n

ej=O n=0 n'=O

for some ai,(r),ej,n,n,' E Ox U {0} and some Ai,(r),ei,n E Z>o. We choose the system of

r-th p-basis decomposition of h/wK* (h) to be

VK* (h) VK*(h) wE be (r),ei,n,n) 2-

W W7 i=O e=--O n=O n'=0

and define VK,y(h) to be the limit for r -, +oo of

p-1 pr-1 00 \i,(r),ej,n

3(aw- + 7o)' (b+) +3)ej(> ( - * )n+es

i=O ej=0 n=O n'=0

This gives a K,, defined in the way of Construction 4.1.1.2; the diagram (4.3.2.12)

is commutative.

Hypothesis 4.3.2.13. For the rest of this subsection, let L/K be a finite Galois

extension satisfying Hypotheses 4.1.1.1 and 4.1.1.10 and such that L/K is Galois.

Proposition 4.3.2.14. Let a > 1. Then there exists admissible (Rj+) C (Sj+) -SK

such that the logarithmic thickening space for L/K, after extension of scalars from K

to K., is isomorphic to a disjoint union of p (different) logarithmic thickening spaces

for L/K.:
p

TSj/K,Iog,Rj+ XK K. - TSK-P+l
7= 1

Proof. Write OK. (uJ+)/(pj+) = OL using Construction 2.3.3.3. Since OK(Z)/(zP +

7rKzP-1 -rK) = OK., we may replace the coefficients in pj+ by elements in OK(Z) with

degree < p - 1 in z, denoting the result polynomials by p~+. Thus by Lemma 4.3.2.4
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and the commutativity of (4.3.2.12),

P

JK( pa+p-20 ,  -pa+p- J) (UJ+ )/(K.,,/(pJ+))

1 , 1

K,(K-o, (s (u +, ), zP + (wK + 6o0)Z - (K + 60)),

where the latter one is a successive logarithmic thickening space for L/K, base

changed to K,. By Proposition 4.1.5.6, this successive logarithmic thickening space

is isomorphic to a logarithmic thickening space TS/K,Iog,Rj+ for L/K for some ad-

missible subset Rj+ C (6s+) - S K .

Corollary 4.3.2.15. Let £L/K be the differential module over A'[0, Oa+1] x Am[0, Oa]

coming from TSa/K,log,R+. For y E {1,... ,p}, let SL/K.,y be the differential module

over A. [0, Oa-(p- 2)/] x A [0, Oa-(p-l)/p] coming from Tap-p+I Then 1 L/KK
K .~ LK. , fy LKK.,logy.,

Proof. It follows from Lemma 4.3.2.4 and Proposition 4.3.2.14. O

4.3.3 Subquotients of logarithmic ramification filtration

In this subsection, we prove Theorem 4.3.3.3 that the subquotients FlllogGK/FilloGK

of logarithmic ramification filtration are abelian groups killed by p if a E Q>o and are

trivial if a V Q. This uses the tricky base change discussed in previous subsection.

We assume Hypothesis 4.3.2.13 until we state the main Theorem 4.3.3.3.

Notation 4.3.3.1. Fix - E {1,...,p}. Let (b ) be a finite p-basis of K. It naturally

gives a p-basis of K,. Denote by K(xj)^ the completion of K(xj) with respect to the

(1,... , 1)-Gauss norm and by K' the completion of the maximal unramified extension

of K(xj)^. Write K' = KK' and L' = K.L. Set

K, = K((bJ + xjwo-1)1 ).

Denote pJ = (bg + xwlP-1)l/P for simplicity. Take the uniformizer and a set of lifted

p-basis of K, to be w, and {/j, Xj}, respectively.
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Situation 4.3.3.2. We have the following diagram of field extensions:

L - L'-- L

K K'

Note that (K,),=1,...,, are extensions of K' conjugate over K'. The ramification

filtrations on Gk, are stable under the conjugate action of Gal(K'/K'). Precisely,

for any b > 0 and g E Gal(K./K'), gFilb gG g- -= Filb Gg(,) and gFilbG g-1 -

FilbGg(?) inside GK,. In particular, since L'/K' and hence L7/K is Galois, b(L,/K,)

and blog(i,/K) do not depend on 7 = 1,... ,p.

For the following theorem, we do not impose any hypothesis on the field K.

Theorem 4.3.3.3. Let K be a complete discretely valued field of mixed characteristic

(O,p). Let GK be its Galois group. Then the subquotients Fil~ GK/Fil+GK of the

logarithmic ramification filtration are trivial if a 0 Q and are abelian groups killed by

p if a E Q>o.

Proof. We will proceed as in the proof of Theorem 4.2.3.5. Fix a > 0. Let L be a

finite Galois extension of K with Galois group GL/K with an induced ramification

filtration. We may assume that FlllogGL/K is the trivial group but FilogGL/K is not.

We may also assume Hypothesis 4.1.1.1. Furthermore, by Proposition 2.2.2.11(4),

we are free to make a tame base change and assume that a = biog(L/K) > 1 and

P/K > m(p - 1) + 1. Finally, we may replace L by LK. since biog(K./K) = 1 by

Lemma 4.3.2.1. We need to show that FilogGL/K is an abelian group killed by p if

a E Q>1 and is trivial if a 0 Q.

We claim that each of the logarithmic ramification breaks b > 1 of L/K will

become a non-log ramification break bp-p+2 on L1/K 1. In other words, Fil'ogGL/K _

Filb-p+ 2 G, k for any 7 E {1,...,p} and b > 1. (It does not matter which 7 we
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choose as they give the same answer by Situation 4.3.3.2.) Then the theorem is a

direct consequence of the non-logarithmic Hasse-Arf theorem 4.2.3.5(2).

To prove the claim, it suffices to prove the highest ramification breaks as the

others will follow from the calculation of the other L's.

For each y E {1,..., p}, there exists a unique continuous OK. [0/wl]-homomorphism

O : OK. [r7o/W, J - Oi .Jilo/ y 7, lr'] such that f,*j = (p + j)P- (xj + +)(w,+

770) P- l - bj for j E J. For a > 1, f* gives a morphism f~: A2m+[0, Oa ] -+ A [0, 0a].

Let TS5/K., K*., be the standard thickening space for L/K. and VK.,,. We have

a Cartesian diagram

TS/K., K* f TSa/K.,K., A m+l[0,0,, A2m+1[0, 0a ]

A [0, 0a+P] x Am [0, 0 a] Am+l [0, 0a] A [2m+[, 9]

By applying Theorem 4.2.1.7 m times, TS/K., K A[ [0,0a], A m+ 1[0, a] is an

admissible recursive non-logarithmic thickening space (of error gauge > pP3K - m(p -

1) > 1), which is isomorphic to an admissible non-logarithmic thickening space for

L/K, by Proposition 4.1.5.6. Thus f*yL/K.,/ is a differential module associated to

By Proposition 4.3.2.9 and Lemma 4.2.3.3, we have

IR(f;e lKi ) = IR(LKl ; S, S + p 2 = IR ((f)2P- + 2 - 2 5 +

The claim follows by Corollaries 4.3.2.15 and 4.1.4.6. 0
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Chapter 5

Towards Global Ramification

Theory

This chapter is dedicated to describe a project on understanding the global ramifica-

tion situation using the tool of nonarchimedean differential modules.

In Section 5.1, we lay out the big picture of the project. More precisely, Subsec-

tion 5.1.1 describes the analogy of three basic objects that we are studying. Subsec-

tion 5.1.2 explains different micro-local versions of the global objects. Subsection 5.1.3

includes all the conjectures and plans of attack.

In Section 5.2, we work out the toroidal case following [Ked07+b].

5.1 Description of a project

We outline the basic structure of the project studying ramification theory using nonar-

chimedean differential modules. This section will be of survey type. We will not

include the definition of all the terminology, rather we refer to other papers.

5.1.1 What objects are we talking about here?

We introduce the main objects of the ramification theory.

Let k be a field. Let X be a projective smooth variety over k and let D = Uf =Di
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be a divisor on X with simple normal crossings, where Di are irreducible components.

Let U = X\D denote the complement.

Suppose that F is one of the following:

(a) a locally free coherent sheaf on U with an integrable connection, when char k =

0;

(b) an F-isocrystal on U overconvergent along D, when char k = p > 0;

(c) a lisse Qt-sheaf on U, where 1 is a prime number different from char k.

Remark 5.1.1.1. The analogy among the three objects listed above is known for a

long time. One can further extend the analogy to the following table.

char k = 0 vector bundles with flat connections holonomic algebraic D-modules

char k = p overconvergent F-isocrystals overholonomic arithmetic D-modules

char k $ 1 lisse Q1-sheaves constructible Ql-sheaves

Remark 5.1.1.2. The case (c) is equivalent to the category of Q1-representations of

the fundamental group rl (U, q), where q is the geometric generic point of U. Also,

there is a fully-faithful functor from the category of Qp representations of i7r(U, q)

with finite local monodromy into the category of all objects in (b) (See [Tsu02. So,

in some sense, we are really studying representations of the fundamental groups of a

scheme.

Let qi be the generic point of an irreducible component Di of D. Use K,, to

denote the completion of the fraction field FracOu with respect to the norm given by

7ri. We have one of the following:

(a) Irregularity (will be defined in Definition 5.2.1.1), denoted temporarily by Swan(.F, Di) =

Irr(.F 0 K,,) for notational convenience;

(b) the (differential) Swan conductor Swan(F, Di) = Swan(F 0 K,), defined as in

Definition 1.2.8.3;
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(c) the Swan conductor Swan(F, Di) associated to the Galois representation Gal(K P/K,) -

r rl(U, 7) - GL(VF), where the latter homomorphism is the representation as-

sociated to the lisse sheaf F.

Remark 5.1.1.3. We in fact have two more objects which are analogous to the

three cases above. One is representations of the fundamental group 7r,(X, ix) of an

arithmetic scheme, i.e. a scheme over Spec Z. We use (d) to denote this case. The

other analogue is p-adic etale sheaves over a proper smooth semistable variety over

Spec Qp; we use may use Faltings' almost 6tale theory to study the ramification. (See

[Co103+].) We use (e) to denote this case.

We are interested in the behavior of these conductors over the variety X and

the its relation to the Euler characteristic of xc(U, F), where the latter is defined as

follows.

(a) We have the de Rham cohomology of F: HdR(X, j-F) = H(X, ,(T 01))

defined by the hypercohomology of the pushforward along j : U -- X of the de

Rham complex

- - - " " ---D 1 F 02d .

The Euler characteristic is defined as the alternating sum

2 dim X

xc(U,) dle (-1)i dimHI(X,j.F).
i=0

(b) We have the (compactly supported) rigid cohomology Hrg,c(U, F) defined as in

[Brt96+]. We take the Euler characteristic to be

2 dim X

Xc(U, F) d r 4 (-1)'dim H'ig,(U, F).
i=O

(c) We have the compactly supported etale cohomology H*t,,(U, J"). We take the
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Euler characteristic to be

2 dim X

Xc(U, F) e= ' (-1)idim Ht,(U, F).
i=0

Question 5.1.1.4. How can we calculate Euler characteristic xc(U, F) from the ram-

ification information as in the Grothendieck-Ogg-Shavarevich formula (2.1.1.1) (de-

scribed in Subsection 2.1.1)? The formula also has a p-adic analogue for overconver-

gent F-isocrystals. See [Ked06b, Theorem 4.4.1]

Remark 5.1.1.5. The real difficulty of extending the Grothendieck-Ogg-Shavarevich

formula (2.1.1.1) to higher dimensional case is that merely the information of Swan(F, Di)

for irreducible components Di's of D is not enough. In particular, if we blow up the

intersection Di n Dj of two irreducible components. Then no ramification information

along the exceptional divisor is recorded in the data Swan(F, Di)'s. This leads to our

study of the subject of the next subsection.

5.1.2 Micro-local variation of Swan conductors

In this subsection, we describe different levels of micro-local variation of Swan con-

ductors.

Construction 5.1.2.1. It would be more helpful to keep in mind the Riemann-

Zariski construction for valuation space of a variety. Precisely, let X be an integral

scheme. Define the Riemann-Zariski space, denoted by RZ(X), to be the inverse

limit lim X' over all birational proper morphisms ' : X' -+ X. The topology

on RZ(X) is given by the inverse limit topology where each of X' is equipped with

the Zariski topology.

It is a well-known fact that RZ(X) parameterizes all (multi-indexed) valuations

of Frac(Ox) which are centered on X. For more details, please consult [Ked08].

A codimension one point x E RZ(X) is the inverse limit starting from the generic

point rD' of an integral divisor D' on some X' for which Ox,,,, is a discrete valuation
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ring. (Note that the proper transform of TrD' under any further birational proper mor-

phism will continue to be a point with the prescribed property.) From the valuation

theory point of view, the codimension one points correspond to the case when the

valuations which take value in Z. We use RZ'(X) to denote all codimensional one

points in RZ(X); they form a dense subset of RZ(X).

Given one of the three situations from previous subsection, we may ask what

is the ramification situation at each codimension one point of the Riemann-Zariski

space, that is to base change to the completion of Frac(Ox) with respect to the

corresponding norm. We can also ask how the ramification globally varies on the

Riemann-Zariski space. The variation of Swan conductors should be "continuous" in

an appropriate sense, although the Swan conductors are not defined over all points

on the Riemann-Zariski space RZ(X).

The following is a list of variation questions we may ask.

(a) Complete discretely valued fields: The most local level is represented by codi-

mension one points RZ1(X). They in fact form the basic building blocks of the theory

since RZ'(X) is dense in RZ(X). This is just simply the ramification filtration on

a complete discretely valued field, which is the the main topic of Chapters 2-4. We

proved the Hasse-Arf theorem regarding the integrality of the Swan conductors.

(p,) Higher dimensional local fields: This also corresponds to a point on the Riemann-

Zariski space which is typically a limit of codimensional one points. (For more details,

one may consult the symposium [FK00].) This captures the limit of Swan conductors

for points in RZ'(X).

(y) Over regular local rings: Given a point x E X, we can consider a subset

RZ(X, x) C RZ(X) consists of valuations v such that v(f) > 0 for all f E Ox,x.

The variation of Swan conductors on (a subset of) RZ(X, x)n RZ'(X) will be studied

in detail in Section 5.2.

(6) Global variation: We will discuss in detail what we expect in this case.
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5.1.3 What is expected to be true?

In this subsection, we make a series of conjectures on the variation of Swan conductors

as well as the Euler-characteristic formulas.

Conjecture 5.1.3.1. Let K be a higher dimensional local field (see [FKOO, Section 1]

for definition). Then there exists a multi-indexed ramification filtration Fil,..".anGK

of normal subgroups on the Galois group indexed by (Zn)>(o0...,0) with lexicographic

order such that

(a) it degenerates to the arithmetic ramification filtration if we view K simply as

a complete discretely valued field and ignore the finer part a2,..., an of the

filtration.

(b) it is compatible with a filtration on the Milnor K-group via the higher class field

theory. (See [FKOO] for the terms.)

Remark 5.1.3.2. The multi-index is expected to depend on the choice of a system

of uniformizers of K, but the order of the subgroups does not.

Notation 5.1.3.3. Let X be a scheme and let U be an open subscheme of X. Let

9 x,u denote the ordered monoid of all the Ox-subsheaves I of FracOx such that

Ox C 2 and ZIv = OU, where the monoid structure is given by fraction ideal multi-

plication and the ordering is given by inclusion, i.e. " -<2' if 2 C T.

Let 9, denote the proxy for 9 1x,u[1/n; n E Z]; more precisely, it consists of pairs

(2, n) with I E 9%x,u and n E N and two pairs (1, n) and (T, n') are considered same

if Z- n'm = 2 nm for some m E N. We usually use 2 1/n to denote the pair (Z, n) E MQx,U.

The ordering on E9 x,u extends to 1QU by setting Z71/n -< Zi/n' if 2-n'm C 2mm for

some m E N.

Conjecture 5.1.3.4. Let X be a scheme and let U be an open subscheme of X. Let

F be one of the three options in Subsection 5.1.1 or a representation of irl(U) which

is unramified on U. Then there exists an irregularity sheaf I C 39x,u as an Ox-

subsheaf such that at each codimension one point 7 e X' for some birational proper

morphism X' -- X, Z 0 Ox,, has valuation -Swan(JF, ,) in Frac(O).
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Then irregularities described above induce a canonical ramification descending fil-

tration Fill/rl (U) on the fundamental group of U, indexed by L /n E 9Qx, for some

n, where descending means that if Z1/n -< 7' l /n' then Fil"/"'rli(U) C Fil/"T'l(U).

Furthermore, if we define FilZ/"+ ir (U) to be the closure of nln/n.<F.lmFIll r1 (U),

then for I1/ >- O, Fi/l/+ri(U)l/Filz1 1
n+rJ(U) is abelian and we have a refined Swan

conductor homomorphism

rsw : Hom(Fil'r(U)/Filz"+7rJ(U), kx) , i1/nl(logD ) @Ox k.

Remark 5.1.3.5. The first part of this conjecture is in fact verified for case (a) in

[Ked09+].

Conjecture 5.1.3.6. Keep the notation as in Conjecture 5.1.3.4 and we assume that

we are in case (a)-(c) in Subsection 5.1.1. Then we have B1,..., Bd E Rx,u ®z Q

which has valuation (after tensoring the valuation by Q) equals the subsidiary breaks

of F at each codimension one point of RZ'(X). Moreover, the Euler characteristic

xc(U, F) can be computed by

d

Xc(U,F) = #(c(O (logD)) n (1 + (Bi/OX))-)diO,
i=1

where c(O1(logD)) is the total Chern class of the logarithmic differential sheaf,

Bi/Ox is viewed as an element in the rational Grothendieck group of coherent mod-

ules over Ox, the intersection is taken over the rational Chow ring, and we finally

take the dimension 0 part. (See [Ful98] for more details on intersection theory.)

5.2 Toroidal variation

In this subsection, we collect some results regarding the toroidal variation of refined

Swan conductor.
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5.2.1 Vector bundles with connections

Definition 5.2.1.1. Let K be a complete discretely valued field of residual charac-

teristic zero, equipped with differential operators 01,..., Om of rational type. Let V

be a j-differential modules on K of rank d. The irregularity of V is defined to be

Irr(V) = Edi logZIR(V; i)

For the rest of this subsection, we assume that k is a field of characteristic zero.

Notation 5.2.1.2. For n > m > 0 integers, put Rn,m = k[xi,.. . , x,[[x 1 ,.. . , z].

A V-module on Rn,m is a differential module with respect to i = -d

Denote S = {(r,...,rn) E [0, +oo)n : ri +-..+rn = 1}. For r E S, write Fr for

the completion of FracRn,m with respect to the (e-ri,..., er )- Gauss norm. For M a

V-module of rank d over Rn,m and r E SnQn, define Irr(M, r) = Irr(M0Fr)/denom,

where denom is the least common multiplier of the denominators of rl,..., rn.

Theorem 5.2.1.3. Let M be a V-module of rank d over Rn,m. Then Irr(M, r) extends

by continuity to a function on S which can be written as maxh4={Aj(r)} for some

integral affine functionals A1,... ,Ah. In particular, Irr(M, r) is continuous, convex,

and piecewise affine.

Proof. It follows from Theorem 1.3.3.9. O

5.2.2 Solvable overconvergent isocrystals

In this subsection, we state a theorem from [Ked07+b] regarding the variation of

Swan conductors in case (b) of Subsection 5.1.1.

Hypothesis 5.2.2.1. Let k be a perfect field of characteristic p. let X be a smooth

irreducible k-variety. Let D 1,...,D, be smooth irreducible divisors on X meeting

transversely at a closed point x. Choose a local coordinates tl,...,t,n at x such that

ti vanishes along Di. Put D = D1U ... U Dn and X = X\D. Let .F be an F-isocrystal

of rank d on X overconvergent along D.
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Notation 5.2.2.2. Denote S = {(rl,..., rn)lrl+... --+r = 1}. For r = (rl,..., r) E

S n Qn, we have a valuation vr(-) on Frac(Ox) given by the restriction from the

(e-r1,... , e-r)-Gauss valuation on Frac(kitl,... , t,]). It corresponds to a smooth

divisor Dr on a proper variety X' birational over X. We denote Swan(F, r) =

Swan(F, Dr)/denom, where denom is the least common multiplier of the denomi-

nators of rl,..., rn.

Theorem 5.2.2.3. Keep the notation as above. Then Swan(F, r) extends by con-

tinuity to a function on S which can be written as max={l)Aj(r)} for some integral

afine functionals A1,.., Ah. In particular, Swan(F, r) is continuous, convex, and

piecewise afine.

Proof. We refer to [Ked07+b, Section 3.4] for the proof. But the main ingredient is

Theorem 1.3.3.9. O

5.2.3 Lisse e-adic sheaves

In this subsection, we state a theorem from [Ked07+b] regarding the variation of

Swan conductors in case (b) of Subsection 5.1.1.

Hypothesis 5.2.3.1. Let k be a perfect field of characteristic p. let X be a smooth

irreducible k-variety. Let D 1,..., D, be smooth irreducible divisors on X meeting

transversely at a closed point x. Choose a local coordinates tl,..., t, at x such that

ti vanishes along Di. Put D = D 1U -.. U D and X = X\D. Let F be a lisse Q-sheaf

of rank d on U, which corresponds to an 1-adic representation 7r1 (U) -- GL(V).

Notation 5.2.3.2. Denote S = {(ri,..., rn)ri+ ..- +r = 1}. Forr = (rl,...,rn) E

S n Qn, we have a valuation vr(-) on Frac(Ox) given by the restriction from the

(e-rl,..., e-r")-Gauss valuation on Frac(k[tl,... ,t,]); denote the completion to be

Fri ,...,r. It corresponds to a smooth divisor Dr on a proper variety X' birational over

X. We denote Swan(F, r) = Swan(F, Dr)/denom, where denom is the least common

multiplier of the denominators of rl,..., rn, and Swan(F, Dr) is the Swan conductor
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for the representation

Gal(Fr,..,r,,/Fri,...,r.) --+ Irl(U) --+ GL(V).

Theorem 5.2.3.3. Keep the notation as above. Then Swan(.F, r) extends by con-

tinuity to a function on S which can be written as max=l{Aj(r)} for some integral

afine functionals A),... , Ahh. In particular, Swan(F, r) is continuous, convex, and

piecewise affine.

Proof. This is proved in [Ked07+b, Theorem 5.2.1]. O
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