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Abstract: 
 
We provide two different neighborhood construction techniques for creating exponentially large 

neighborhoods that are searchable in polynomial time using dynamic programming.  We illustrate both of 

these approaches on very large scale neighborhood search techniques for the traveling salesman problem.  

Our approaches are intended both to unify previously known results as well as to offer schemas for 

generating additional exponential neighborhoods that are searchable in polynomial time.  The first 

approach is to define the neighborhood recursively.  In this approach, the dynamic programming 

recursion is a natural consequence of the recursion that defines the neighborhood.  In particular, we show 

how to create the pyramidal tour neighborhood, the twisted sequences neighborhood, and dynasearch 

neighborhoods using this approach.  In the second approach, we consider the standard dynamic program 

to solve the TSP.   We then obtain exponentially large neighborhoods by selecting a polynomially 

bounded number of states, and restricting the dynamic program to those states only.  We show how the 

Balas and Simonetti neighborhood and the insertion dynasearch neighborhood can be viewed in this 

manner.  We also show that one of the dynasearch neighborhoods can be derived directly from the 2-

exchange neighborhood using this approach.   

 
Subject classifications:  
 
Traveling Salesman:  Very large scale neighborhood search for the TSP. 
 
Heuristics:  Very large scale neighborhood search for the TSP. 
 
Dynamic Programming:  Two DP methodologies for heuristic search for the TSP. 
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Section 1.  Introduction 
 
Neighborhood search is a practical method for efficiently finding “good” solutions to hard combinatorial 
optimization problems.  Let P = min {cx: x ∈ D} be an instance of an optimization problem with cost 
vector c and feasible set D.  Given a feasible solution x’ in D, a neighborhood search algorithm has an 
associated neighborhood function N which identifies a subset, N(x), of D as the “neighbors” of x under N.   
 
A local search algorithm follows the following basic scheme.  Start with a current feasible solution, say x, 
and iteratively replace the current solution with a neighbor y of the current solution with lower objective 
value.  Continue until there is no neighbor with improved objective value, at which point the current 
solution is called locally optimal.  There is a large literature on local search as well as extensions of local 
search including simulated annealing and tabu search.  For an excellent reference on local search in 
combinatorial optimization, see Aarts and Lenstra (1997). 
 
In very large-scale neighborhood (VLSN) search, the number of solutions in a neighborhood is very large 
(often exponential) with respect to the size of the input.  As a rule of thumb, one expects to find better 
locally optimal solutions assuming that one can search a larger neighborhood efficiently.  Unfortunately, 
for many very large neighborhoods, the search time may be much larger.  There are a variety of 
techniques for efficiently searching neighborhoods in VLSN search. One general approach that has been 
successful in searching exponentially large neighborhoods in polynomial time has been dynamic 
programming. See Ahuja et al. (2002) and Deĭneko and Woeginger (2000) for surveys on these 
techniques, including a number of papers on VLSN search that employ dynamic programming. 
 
Here, we present two different approaches for developing exponentially large neighborhoods that are 
searchable in polynomial time using dynamic programming.  In so doing, we offer frameworks that 
encompass many of the existing results in the literature, as well as offer general methodologies for 
creating new neighborhoods that are searchable in polynomial time. 
 
In the first approach, we consider instances in which a neighborhood is recursively defined.  For the 
examples we provide, these neighborhoods can be efficiently searched via the dynamic programs that are 
naturally induced by the recursions.  We illustrate this approach on pyramidal tours, as developed by 
Sarvanov and Doroshko (1981), on twisted neighborhoods as defined by Aurenheimer (1988) and 
described for VLSN search by Deĭneko and Woeginger (2000), and for dynasearch neighborhoods as 
introduced by Potts and van de Velde (1995).  The properties of recursively defined neighborhoods are 
often easily established using mathematical induction.  We describe the use of recursion in defining 
neighborhoods in detail in Sections 3 and 4.   
 
The second approach starts with the standard dynamic program to solve a combinatorial optimization 
problem and restricts attention to a polynomially large subset V of states of the dynamic programming 
state space.  When | is polynomially bounded in the size of the input, the time to solve the dynamic 
program is also polynomial.  In Sections 5 and 6, we give examples in which |  is polynomially 
bounded, and solving the dynamic programming recursion over V is equivalent, in a technical sense that 
we will make clear, to searching an exponentially large neighborhood.  We illustrate this approach on 
dynasearch neighborhoods and extensions as well as on the Balas-Simonetti neighborhood.   

|
|

V
V
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The approach in our paper differs from the rollout approach of using dynamic programming for heuristics 
(see, Bertsekas, Tsitsiklis, C. Wu. 1997) in that our approach explicitly searches a well defined 
neighborhood, whereas their approach uses dynamic programming combined with heuristic search to find 
a good solution for a combinatorial optimization problem. 
 
The results in this paper present unifying views of dynamic programming algorithms for searching 
neighborhoods for the traveling salesman problem.  We note that Deĭneko and Woeginger (2000) 
presented permutation trees as a unifying concept for dynamic programming methods for searching 
exponentially large TSP neighborhoods.  Some of the exponential neighborhoods we survey are not 
representable as permutation trees (such as the twisted sequences neighborhood and the Balas-Simonetti 
neighborhood), and concurrently there are other exponential neighborhoods that are naturally represented 
in terms of permutation trees that are not as easily represented within our framework.  So, neither 
framework subsumes the other. 
 
We view the contributions of this paper as follows: 
 

1.   We provide two alternative unifying frameworks for using dynamic programming for the TSP for 
very large scale neighborhood search:  recursively defined neighborhoods and dynamic 
programming restrictions.   

2.   We provide basic theory for working with restricted dynamic programs.  In particular, we show 
how to associate a neighborhood with each restriction of the canonical dynamic program for the 
TSP. 

3. We provide a method of using a dynamic programming recursion to transform a neighborhood N 
into a possibly larger neighborhood N’ that is called the “dynamic programming expansion” of N.  
In the case of the 2-exchange neighborhood, the dynamic programming expansion is 
exponentially large, but can be searched in polynomial time. 

4.   Often the description of a recursively defined neighborhood is both compact and elegant. 
 
We believe that the constructs in this paper will help to open up new lines for future research. 
 

1.   We expect that similar frameworks can be applied for other combinatorial optimization problems 
as well when there is a dynamic program that is much more efficient than complete enumeration.   

2.   Our constructs suggest the possibility of automating searching a number of exponentially sized 
neighborhoods.  In particular, if a neighborhood can be recursively defined, perhaps one can 
automatically derive the dynamic programming recursion from the recursive definitions for the 
neighborhood. 

  
Usually, the measure of a neighborhood search technique for a combinatorial optimization problem is 
how it performs in practice.  In our case, several neighborhoods discussed in this paper have already been 
empirically tested by other researchers, including the dynasearch neighborhoods (Potts and van de Velde 
1995 and Congram 2000), variants of pyramidal tours neighborhoods (Carlier and P. Villon 1990), and 
the Balas-Simonetti neighborhood (Balas and Simonetti 2001), all with some success for the TSP.  
Dynasearch neighborhoods have been applied with success on other combinatorial optimization problems 
as well (Agarwal et al. 2003, Congram, Potts, and van de Velde 2002, Ergun, Orlin, and Steele-Feldman 
2002). 
 

 4



Nevertheless, we believe that the value of the methodologies in this paper should ultimately be judged on 
three criteria:  First, will they lead to newly discovered neighborhood search techniques that are effective 
for some combinatorial optimization problems?  Second, will they be the first step in a process that 
ultimately results in software that helps users to design neighborhood search techniques?  Third, will they 
lead to further developments in the theory of VLSN search? 
 
In Section 2 of this paper, we present additional background as well as our notation and definitions.  In 
Sections 3, 4, 5, and 6 we present techniques for constructing exponentially large neighborhoods that are 
searchable in polynomial time using dynamic programming.  In Section 7, we present a summary and 
conclusions. 
 

Section 2.   Definitions and Background for the TSP 
 
In this section we offer definitions and background for the Traveling Salesman Problem (TSP). 
 
The Traveling Salesman Problem 
 
The traveling salesman problem tries to find the minimum distance tour on n cities that are labeled 1, 2, 
…, n.  Let the distance from city i to city j be c(i, j).  We represent a tour using a permutation T ∈  Sn, 
where Sn denotes the set of all permutations of {1, 2, …, n}.  The permutation T = T(1), …, T(n) refers to 
the tour in which the first city visited is T(1), the next city visited is T(2), and so on.  The cost of the tour 
T is denoted as c(T) = .  We refer to a pair of consecutive cities of T 

(including T(n), T(1)) as an edge of the tour T.  We denote a sequence A of k cities as A = 〈i1, i2, …, ik〉.  If 
k = n, we refer to the sequence A as a tour. The reverse of a sequence A of cities is the cities of A in 
reverse order, and is denoted as Rev(A).  For example, Rev(〈i1, i2, …, ik〉) = 〈ik, ik-1, …, i1〉. 

1

1
( ( ), (1)) ( ( ), ( 1)n

i
c T n T c T i T i−

=
+ ∑ +

 
If i ≤ j, we let [i, j] be shorthand for the sequence 〈i, i+1, …, j〉.  If i > j, then [i, j] = ∅.  
 
The subset obtained from subset S of cities by deleting any city in S’ will be denoted as S \ S’.  We 
abbreviate S \ {i} as S \ i. 
 
If S is a subset or sequence of cities, then max(S) denotes the maximum index of a city of S, and min(S) 
denotes the minimum index of a city of S. 
 
As per Deĭneko and Woeginger (2000), if A is a sequence of cities, and B is a different sequence of cities 
with no city in common with A, then A B is the sequence obtained by concatenating A with B.  For 
example, 〈3, 1, 7〉  〈2, 6, 4〉 = 〈3, 1, 7, 2, 6, 4〉.   
 
Notation for Neighborhoods for the Traveling Salesman Problem 
 
We first describe a neighborhood for the tour TI = 〈1, 2, …, n〉, which is also the identity permutation.  A 
neighborhood N(TI) is a collection of tours, that is N(TI) ⊆  Sn.   
 
Any neighborhood of TI can be extended to a neighborhood of any other tour T ∈ Sn as follows.  If σ ∈ 
N(TI), then the tour ( (1)), ( (2)), ... , ( ( )) ( ).T T n Nσ σ σ σ=T T  Mathematically, TT∈ σ  is the 
permutation obtained by composing T and σ.  If we let fT(i, j)  = c(T(i), T(j)), then the cost of the tour 
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T σ  is , which is the usual formula for the cost of σ except that c 

is replace by fT.   

1

1
( ( ), (1)) ( ( ), ( 1))n

T Ti
f n f i iσ σ σ σ−

=
+ ∑

*
TSPN

*
TSPN

TSPN *
TSPN

+

 
In subsequent sections, we assume that the initial tour is TI = 〈1, …, n〉 , and we provide dynamic 
programs for determining the minimum distance neighbor of TI.  However, if one wants to search N(T) 
instead, then it suffices to replace c by fT in the recursions. 
 
In general, we are treating neighborhoods for different sized TSPs. Sometimes, when the number of cities 
n is permitted to vary, we let Nn denote the neighborhood set for problems with n cities.  In the case that 
the number of cities is obvious from context, we drop the index, and denote the neighborhood set as N.  
We assume that the identity permutation TI ∈ Nn, that is 〈1, 2, …, n〉 ∈ Nn for all n. 
 
All of our recursions define both tours as well as sequences of fewer than n cities.  We let N* refer to all 
sequences and tours defined by the recursion, and we let N = N* ∩ Sn denote the neighborhood.  We will 
refer to the set N* as a superneighborhood.   
 

Section 3.   Recursively Defined Neighborhoods 
 
In this section, we discuss recursive definitions as part of VLSN search for the TSP.  In particular, we will 
provide recursive definitions for well known exponentially sized neighborhoods together with dynamic 
programs based on the recursions for searching these neighborhoods efficiently.  We illustrate our 
approach on one of the dynasearch neighborhood as well as some “relatives” of this neighborhood, the 
pyramidal tour neighborhood, and the twisted sequences neighborhood. 
 
As above, we will let N denote a neighborhood, and let N* denote all sequences created by the recursions 
in the construction of N.  In each case, rather than present a dynamic program, we will create an 
equivalent state space graph.  Our objective in so doing is to make explicit a very clear connection 
between the recursion that defines the neighborhood and the resulting dynamic program.  
 
To illustrate our recursion-based approach, we first consider a recursion for generating the neighborhood 
Sn, that is the neighborhood of all tours.  The superneighborhood N* that we generate will consist of all 
sequences of cities in which the first city is 1.   
 
The Held and Karp (1962) dynamic program for the TSP can be viewed as being based on the following 
recursion: 
 

The Complete Neighborhood NTSP  for the TSP. 
1.   1 ∈ .  
2.   If A ∈  and k ∉ A, then A k ∈ *

TSPN . 
3.    =  ∩ Sn. 

 
The state space graph corresponding to the dynamic program for the TSP can be obtained as follows.  It 
includes a node for each state of the dynamic program as well as a special destination node t. 
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State Space Graph GTSP = (VTSP, ETSP). 
1.     ({1}, 1) ∈ VTSP

  and  t ∈ VTSP . 
2.     If (S, j)  ∈ VTSP , and if k ∉ S, then (S ∪{k}, k) ∈ VTSP, and there is an arc from (S, j)   

to (S∪{k}, k) in ETSP with cost c(j, k). 
3.      If (S, j)  ∈ VTSP and if S = n, then there is an arc from (S, j)  to t with cost c(j, 1).  

 
Let gTSP(S, j) denote the optimal value for state (S, j) ∈ VTSP in the Held and Karp dynamic program for 
the TSP.  Then gTSP(S, j) is the shortest length of a sequence A whose initial city is 1, whose terminal city 
is j, and such that A includes all of the cities of S.   
 
The following are well known properties of the state space graph and its relation to the Held and Karp 
dynamic program DPTSP.   
 

1. The shortest path from node ({1}, 1) ∈ VTSP to node (S, j) has length gTSP(S, j) . 
2. Any shortest path from node ({1}, 1) ∈ VTSP to node t corresponds to a minimum length tour. If 

we let (Sj, ij) denote the j-th node of VTSP on the shortest path, then the shortest length tour is  
〈i1, …, in〉. 

 
Properties 1 and 2 above extend to the other dynamic programming state space graphs as defined in this 
section and the next. 
 
The Independent Compounded 2-Exchange Neighborhood: Dynasearch 
 
We next present a class of exponentially sized neighborhoods developed in Potts and van de Velde 
(1995), Congram (2000) and  Congram, Potts, and van de Velde (2002) that is obtained from the 2-
exchange neighborhood by compounding sets of independent 2-exchanges. 
 
We let h(i, j)  be the cost associated with sequence [i, j] =  〈i, i+1, …, j〉.  Thus .  

One can first compute h(1, j)  and h(j, n) for all j in O(n) steps.  Subsequently computing h(i, j) = h(1, n) – 
h(j+1, n) – h(1, i-1) takes O(1) additional steps. 

1( , ) ( , 1)j

k i
h i j c k k−

=
= +∑

 
Recall that for i ≤ j, Rev[i, j] denote the sequence 〈j, j-1, …, i〉.  We let RevMove[i, j] be the move that 
reverses the orders of cities in positions i to j.  For example, if we apply RevMove[i, j] to the identity 
permutation TI, we obtain 〈1, …, i-1〉  Rev[i, j]  〈j+1, …, n〉.  If we apply RevMove[3, 4] to 〈1, 5, 2, 3, 
4〉, we would obtain 〈1, 5, 3, 2, 4〉.   
 
A 2-exchange of a tour T is a permutation obtained from T by the operation RevMove[i, j] for some i < j.  
Equivalently, the 2-exchange of the tour 〈1, …, n〉 can be viewed as breaking edges (i-1, i) and (j, j+1)  
and adding edges (i-1, j) and (i, j+1).  We say that two 2-exchanges RevMove[i1, j1] and RevMove[i2, j2] 
are independent if j1 < i2 - 1 or j2 < i1 – 1.  If j1 < i2 or j2 < i1, we say that the two 2-exchanges are weakly 
independent.  Potts and van de Velde (1995), and Congram, Potts, and van de Velde (2002) introduced 
neighborhoods based on compounding (or applying) independent moves under the name “dynasearch”, a 
term which we use here as well.  We refer to the neighborhood obtained from TI by compounding 
independent 2-exchanges as the 2-exchange dynasearch neighborhood.  We refer to the neighborhood 
obtained by compounding weakly independent 2-exchanges as the weak 2-exchange dynasearch 
neighborhood. 
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Exponential neighborhoods based on compounding moves were designed and computationally tested on 
classes of single and parallel machine scheduling and vehicle routing problems as well as the traveling 
salesman problem and the linear ordering problem (Agarwal et al. 2003, Congram 2000, Congram, Potts, 
and van de Velde 2002, Ergun 2001, Ergun, Orlin, and Steele-Feldman 2002).   
 
The size of the compounded independent moves neighborhood is Ω(1.7548n), as may be computed from a 
simple recursion.  See Congram (2000) and Ergun (2001) for derivations. The dynasearch 
neighborhoods can be searched in O(n2) by dynamic programs as in Potts and van de Velde (1995), 
Congram (2000), Congram, Potts, and van de Velde (2002), and by network flows techniques as in 
Agarwal et al. (2003), Ergun (2001), Ergun, Orlin, and Steele-Feldman (2002) as well as by the approach 
given in this section.  
 
The approach developed here to define the neighborhood is different from the approach developed in the 
original papers on dynasearch; however, the dynamic programming recursions developed here are very 
similar.   
 

The 2-Exchange Dynasearch Neighborhood NDS  for the TSP. 
1.   1 ∈ *

DSN .  
2.   If A ∈ *

DSN  and max(A) = i < n, then  
            a.  A  i+1∈ *

DSN , and  
            b.  A  Rev[i+1, j-1]  j ∈ *

DSN  for i+3 ≤  j ≤ n, and  
            c.  A  Rev[i+1, n] ∈ *

DSN . 
3.   DSN  = *

DSN  ∩ Sn. 

 
The state space graph for the dynasearch neighborhood is constructed in a similar manner to the graph 
GTSP.   
 

State Space Graph GDS = (VDS, EDS). 
1.    ({1}, 1) ∈ VDS and t ∈ VDS. 
2.   Suppose that (S, i) ∈ VDS, and i < n.  Then  
        a.   (S∪{i+1}, i+1) ∈ VDS , and there is an arc from (S, i) to (S∪{i+1}, i+1)  in EDS 

      with cost c(i, i+1),     
        b.  for i+3 ≤ j ≤ n, (S ∪ {i+1, …, j}, j)  ∈ VDS , and there is an arc from (S, i) to 

      (S∪{i+1, …, j}, j)  in EDS with cost ( , 1) ( 1, 1) ( 1, )c i j h i j c i j− + + − + + , 
        c.  ({1, …, n}, i+1) ∈ VDS, and there is an arc from (S, i) to ({1, 2, …, n}, i+1) in EDS  

     with a cost of c(i, n) + h(i+1, n). 
3.      If (S, j) ∈ VDS and if S  = n, there is an arc from (S, j) to t with cost c(j, 1). 

 
As before, an optimal tour in NDS can be obtained by finding the shortest path in GDS from node ({1}, 1) to 
node t. 
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Theorem 1.   The set DSN  = *
DSN  ∩ Sn is the 2-exchange dynasearch neighborhood.  The corresponding 

state space graph has O(n) nodes and O(n2) edges.  The time to find a minimum distance neighbor is 
O(n2). 
 
Proof.   Suppose first that σ is in the 2-exchange dynasearch neighborhood and that σ is obtained by k 
independent two exchanges.  We prove the result by induction on k.  If k = 0, then σ = [1, n] ∈ DSN .  
Suppose instead that the compounded independent 2-exchanges to obtain σ are RevMove[i2j-1, i2j] for j = 1 
to k for some k ≥ 1 , and where indices are in increasing order.   Then  
 
    σ = [1, i1-1]  Rev[i1, i2]  [i2+1, i3-1]  Rev[i3, i4]  [i4+1, i5-1] …  Rev[i2k-1, i2k]  [i2k+1, n].  

 
Recall that [i, j] = ∅ for i > j.  
 
It is easy to see that σ  can be obtained by the recursion for NDS by starting with city 1, and at each 
application of Step 2 in the construction of σ, concatenating a single node or else concatenating Rev[i2j-1, 
i2j]  i2j+1 for some j, or else appending Rev[i2k-1, i2k] if i2k = n.  
 
Conversely if σ ∈ DSN , then for some k 
 
    σ = [1, i1-1]  Rev[i1, i2]  [i2+1, i3-1]  Rev[i3, i4]  [i4+1, i5-1] …  Rev[i2k-1, i2k]  [i2k+1, n].   
 
In this case, σ is obtained by compounding RevMove[i2j-1, i2j] for j = 1 to k, and thus σ is in the 2-
exchange dynasearch neighborhood. 
 
Let V’ = {({1, …, j}, j)  : j = 1 to n} ∪  { ({1, …, n}, j)  : j = 2 to n-1}.  We now claim that VDS = V’.  
 
We first note that it is easily established that V’⊆ VDS . We next assume that (S, i) ∈ VDS , and we will 
show that (S, i) ∈ V’.  Suppose | > 1, and it was created by applying Step 2 to some state (S’, i’).  
Moreover, | | < | , and so we assume inductively that (S’, i’) ∈ V’, and so S’ = {1, …, i’}.  It is easily 
verified that if 2a, or 2b or 2c is applied to (S’, i’), the resulting state (S, i) ∈ V’, thus showing that  
VDS ⊆ V’.  It also follows that each state (S, j) can be represented in O(1) space by the pair (i, j) where S = 
{1, …, i}.   

|S
'S |S

 
Thus | = O(n) and  = O(n2), and the time to create GDS is O(n2) since we can compute h(i, j)  in 
O(1) steps after an initial pre-computation.  The running time to find the shortest path from node ({1}, 1) 
to node t is O(n2) since GDS is acyclic, completing the proof.  (See, for example, Ahuja, Magnanti, and 
Orlin (1993) for information about shortest path algorithms.)   ♦  

|DSV | |DSE

 
In the proof, we commented on the storage space of a state.  This storage is important because in creating 
GDS or any other state-space graph, we need to know whether a node (S, j) derived from rule 2 is already 
present in the graph.  If it is already present, we need to be able to identify it in O(1) steps.  For each of 
the neighborhoods considered in this paper, except the Held-Karp dynamic program, one can store each 
state in O(1) space, and identify its presence in O(1) time. 
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Weakly Independent Compounded 2-exchanges 
 
In this subsection, we base dynasearch on the relaxed concept of weak independence in order to develop a 
larger neighborhood that is also searchable in polynomial time. 
 

The Weak 2-Exchange Dynasearch Neighborhood NWDS  for the TSP 
1.   1 ∈ .  *

WDSN
2.   If A ∈  and max(A) = i, then A  Rev[i+1, j] ∈  for i+1 ≤ j ≤ n.  *

WDSN *
WDSN

3.    =  ∩ Sn. WDSN *
WDSN

 
This neighborhood is more straightforward to define than the dynasearch neighborhood, as is its state 
space graph. 
 

The State Space Graph GWDS = (VWDS, EWDS): 
1.    ({1}, 1) ∈ VWDS. 
2.     Suppose (S, k) ∈ VWDS, and let max(S) = i < n.  Then for each j with i < j ≤ n,            

(S ∪ {i+1, …, j}, i+1) ∈ VWDS , and there is an arc from (S, k) to  
(S ∪ {i+1, …, j}, i+1) in EWDS with cost c(k, j) + h(i+1, j).  

3.      If (S, j)  ∈ VWDS and if S  = n, there is an arc from (S, j) to t with cost c(j, 1) 

 
 
Theorem 2.   The set  =  ∩ Sn is the weak 2-exchange dynasearch neighborhood.  The 
corresponding state space graph GWDS has O(n2) nodes and O(n3) edges.  The time to find a minimum 
distance neighbor is O(n3). 

WDSN *
WDSN

 
Proof.   We first show that the weak 2-exchange dynasearch neighborhood is contained in .  
Suppose that σ can be obtained by compounding weakly independent 2-exchanges. By permitting null 
operations such as RevMove[i, i], σ  can be obtained by performing RevMove[i2j-1, i2j] for j = 1 to k, where 
(1) i1 = i2 = 1, (2) i2k = n, and (3) i2j+1 = i2j + 1 for j = 1 to k-1.  It follows that σ can be obtained by starting 
with 1, and concatenating Rev[i2j-1, i2j] for j = 2 to k, and thus σ ∈ NWDS.  Conversely, if σ ∈ NWDS and can 
be obtained by starting with 1 and concatenating a sequence of reversals, then it is clear that σ can be 
obtained by compounding weakly independent 2-exchanges. 

WDSN

 
We next claim that for any state (S, j) with max(S) = i, it follows that S = {1, …, i}.  The claim is clearly 
true if i = 1, and it follows directly by induction because of Step 2 of the construction of GWDS.  Moreover, 
the state ({1, …, i}, j)  is obtainable for 2 ≤ j ≤ i by starting with {{1, …, i-1}, i-1} and then applying Step 
2 of the construction of GWDS.  The only state (S, j) with j = 1 is ({1}, 1).  We conclude that   
 

VWDS  =  {({1, …, i}, k) : for 1 ≤ k ≤ i ≤ n}.  
 
Thus there are O(n2) nodes, and O(n) arcs emanating from each by the construction in Step 2 of GWDS, 
leading to O(n3) arcs.  The time to create GWDS is O(n3) since we can compute h(i, j)  in O(1) steps after an 
initial pre-computation of h(1, j) for j = 1 to n, and we can create each arc in O(1) step assuming that we 
store max(S) for each state (S, j).  The running time to find the shortest path from node 1 to all other nodes 
is O(n3) since we are solving the shortest path problem on an acyclic graph.  This completes the proof.  ♦  
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Other Dynasearch Neighborhoods. 
 
The results of the previous sections on dynasearch applied to independent and weakly independent 2-
exchanges can be extended to other neighborhoods as well.  For example, let Insert[i, j] = [i+1, j]  i , and 
let InsertMove[i, j] be the move that takes the city in position i and inserts it directly after city j.  For 
example, if we apply InsertMove[i, j] for 1 < i < j < n to the tour  〈1, …, n〉, we obtain the sequence  
[1, i-1]  Insert[i, j] [j+1, n].  Similarly, we can define Swap[i, j] = j  [i+1, j-1]  i, and we can define 
SwapMove[i, j] to be the move that swaps the cities in positions i and j of a tour.  The insert neighborhood is 
the neighborhood of 〈1, …, n〉 obtained by permitting at most one InsertMove, and the swap neighborhood 
is obtained by permitting at most one SwapMove.  We let the composite neighborhood be the neighborhood 
obtained by permitting at most one 2-exchange or InsertMove or SwapMove. 
 
We can define independent and weakly independent InsertMoves, SwapMoves, and composite moves as 
before and modify the dynasearch and the weak dynasearch neighborhoods accordingly.  In general, one 
would expect the dynasearch neighborhood to require O(n2) time to search, and the weak dynasearch 
neighborhood would require O(n3) time.  However, the weak insertion dynasearch neighborhood can be 
searched even more efficiently when it is formulated with dynamic programming restrictions as we will 
see in Section 5.   

Section 4.  Other recursively defined neighborhoods 
 
In this section, we consider recursive ways for defining pyramidal tours and the twisted sequences 
neighborhood. 
 
In the dynasearch neighborhood of Section 3 as well as in the standard dynamic program for the traveling 
salesman problem, every single tour began with the city 1, and the state (S, j) referred to tours that started 
with city 1, ended with city j, and visited all of the cities in S.  In this section, we no longer assume that 
the initial city in a sequence is city 1.  Rather, we let (i, S, j) refer to sequences A such that the first city in 
A is i, the last city in A is j, and A includes all of the cities in S.    
 
The Pyramidal Tours Neighborhood 
 
The pyramidal tours neighborhood for the TSP was first introduced by Sarvanov and Doroshko (1981).    
We say that a sequence A (which is not necessarily a tour) is pyramidal if it consists of cities  
{i, i+1, …, n} for some i ≥ 1, and if the cities in A increase in index to city n, and then decrease in index.  
For example, if n = 7, then 〈4, 7, 6, 5, 3〉 is pyramidal.   
 
The pyramidal neighborhood consists of all pyramidal tours.  For example, if n = 7, then the tour  
〈3, 4, 7, 6, 5, 2, 1〉 is in the pyramidal neighborhood.  Our definition differs slightly from the usual 
definition of pyramidal tour in that we do not require the first city to be city 1; that is, city 1 may be the 
last city instead.  Thus, our definition includes all the usual pyramidal tours as well as their reversals. We 
use this slightly non-standard definition in order to simplify the description of the recursion, but it would 
be easy to use the original definition as well. The size of the pyramidal neighborhood is 2n. 

 
Note that the edges (1, 2) and (n-1, n) of the original tour belong to all of its neighbors.  This is a 
drawback in using the pyramidal tour neighborhood in practice.  To circumvent this drawback, Carlier 
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and Villon (1990) consider all n rotations associated with a given tour, and search the pyramidal 
neighborhoods of each of these rotations.  The size of this composite neighborhood is θ(n2n) and it can be 
searched in O(n3) time by a dynamic program described in Carlier and Villon (1990) or using n iterations 
of a shortest path algorithm on an appropriately created auxiliary graph (see Ahuja et al. (2002) for 
details), or using the n iterations of the procedure listed below.   
 
We now present a recursion which defines the pyramidal neighborhood, as well as its corresponding state 
space graph.  
 

The Pyramidal Tours Neighborhood NPT  for the TSP. 
1.   n ∈ *

PTN .  
2.   If A ∈ *

PTN  and min(A) = i, then  
       a.    A  i-1 ∈ *

PTN  and  
       b      i-1  A ∈ *

PTN . 
3.   PTN  = *

PTN  ∩ Sn. 

 
 

The State Space Graph GPT = (VPT, EPT). 
1.    (n, {n}, n) ∈ VPT . 
2.    Suppose (j, S, k)  ∈ VPT, and let min(S) = i > 1.  Then 

a.   (j, S∪{i-1}, i-1) ∈ VPT, and there is an arc from (j, S, k) to (j, S∪{i-1}, i-1) in  
       EPT with a cost of c(k, i-1). 
b.   (i-1, S∪{i-1}, k)  ∈ VPT, and there is an arc from  (j, S, k)  to (i-1, S∪{i-1}, k)  in  
       EPT with a cost of c(i-1, j). 

3.   If (j, S, k) ∈ VPT  and if S = n, there is an arc from (j, S, k)  to t with cost c(k, j). 

   
 
Theorem 3.  The superneighborhood *

PTN  consists of all pyramidal sequences, and the neighborhood 

PTN  is the pyramidal tour neighborhood.  The corresponding state space graph GPT has O(n2) nodes and 
O(n2) edges.  The time to find a minimum distance neighbor is O(n2). 
 
Proof.   We first claim that for A ∈ *

PTN , A is pyramidal.  It is true if |= 1, since in that case A = 〈n〉.  
We now consider A’ and assume inductively that the claim is true for all sequences with fewer cities than 
A’.  The sequence A’ is created in Step 2 of the recursion, and either (i) A’ = A  i-1 or (ii) A’ = i-1  A, 
where A ∈ 

| A

*
PTN  and min(A) = i.  By inductive hypothesis A is pyramidal and thus A consists of cities 

{i, …, n}, and the sequence in A increases in index to city n and then decreases in index.  It follows that 
A’ is also pyramidal.     
 
We next establish that every pyramidal sequence is in *

PTN .  So suppose that A is pyramidal, and let Aj be 
A as restricted to cities {j, j+1, …, n}. Since A is pyramidal, it follows that Aj is also pyramidal for each j.  
We assume inductively that Aj+1 ∈ *

PTN  for some j < n.  It is easily verified that Aj = j  Aj+1 or else Aj = 
Aj+1  j.  It follows that Aj ∈ *

PTN  , completing the proof of the first sentence of the theorem. 
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We now establish that the state space graph has O(n2) nodes.  Suppose that (i, S, j) is a state.  Then S = 
(k, k+1, …, n} for some k and k = i or j.  It follows that there are O(n) different sets for S and O(n) ways 
that the pair (i, j)  can be chosen for a specified set.  And for each state (i, S, j), the state can be 
represented by the triple (i, min(S), j), which takes O(1) space, and can be recognized in O(1) time. 
 
Because the nodes (i, S, j) and (j, S, i) for S = {i, i+1, …, n} both have two arcs emanating, we conclude 
that PTE  = O(n2), and GPT can be created in O(n2) time.  Moreover, the optimal tour in NPT is induced by 
the shortest path from node (n, {n}, n} to node t, which can be obtained in O(n2) steps,  completing the 
proof.   ♦  
 
 
The Twisted Sequences Neighborhood 
 
We once again consider 2-exchanges, each of which is denoted by an operation RevMove[i, j] for some i 
and j with 1 < i < j ≤ n.  Let R be an ordered set of 2-exchanges on a tour on n cities.  For example, 
suppose that n = 9, and R = {RevMove[3, 5], RevMove[2, 7], RevMove[4, 6]}.  Applying the operations in 
R is to carry out the reversals in the order that they appear in R.  For example, applying RevMove[3, 5] to 
A0 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 would lead to the sequence A1 = 〈1, 2, 5, 4, 3, 6, 7, 8, 9〉.  Applying 
RevMove[2, 7] to A1 would lead to the sequence A2 = 〈1, 7, 6, 3, 4, 5, 2, 8, 9〉 since it reverses the positions 
of the elements currently in positions 2 to 7.  Applying RevMove[4, 6] to A2 leads to the sequence A3 =  
〈1, 7, 6, 5, 4, 3, 2, 8, 9〉. 
 
We say that one reversal RevMove[j1, k1] is contained in RevMove[j2, k2] if [j1, k1] ⊆ [j2, k2].    We say that 
a subset S of cities is consecutive if S = {i, i+1, …, j} for some 1 ≤ i ≤ j ≤ n. 
 
Aurenhammer (1988) defined twisted sequences in the context of sorting of data.  We provide a definition 
that Aurenhammer shows is equivalent to his original definition (modulo he specified the operations 
slightly differently.).  We say that a sequence A on a consecutive set A = {i, i+1 …, j} of cities is a twisted 
sequence if it can be obtained by carrying out a sequence R of 2-exchanges on the permutation 〈i, i+1…, 
j〉 such that the following two properties hold: 
 

TS Property 1.  Each 2-exchange RevMove(k, l) of R is contained in [i, j]. 
TS Property 2.  If RevMove(k, l) precedes RevMove(k’, l’) in R, then either the two moves are weakly 

independent or else, RevMove(k, l) is contained in RevMove(k’, l’).   
 
For a sequence R of 2-exchanges satisfying the two TS Properties, the same tour is obtained regardless of 
the order in which the moves in R are carried out.  However, we shall assume that they are carried out in 
the order they appear in R.  
 
This definition is equivalent to the definition given by Aurenhammer in the case that the sequence 
consists of all cities in {1, 2, …, n}.  We note that the sequence A3 obtained from R above is a twisted 
sequence because A3 can be obtained by a single reversal even though R does not satisfies the properties 1 
and 2 above.   
 
Aurenhammer showed that the twisted sequences neighborhood contains at least Ω(2n) and at most O(cn) 
tours for some constant c.  Deĭneko and Woeginger (2000) claimed that the twisted sequences 
neighborhoods contains O(6n) tours.  They also presented a dynamic program which finds the best tour in 
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the twisted sequences neighborhood in O(n7) time.  Congram (2000) proved that the size of the 
neighborhood grows asymptotically (3 .  In particular, it  is Ω(5.8284n) and O(5.8285n). 3)n+

 
We now present a recursion which defines the twisted sequences neighborhood.  
 

The Twisted Sequences Neighborhood NTS  for the TSP. 
1.   j ∈ *

TSN  for each j = 1 to n. 
2.   If A ∈ *

TSN ,  B ∈ *
TSN , and max(A) = min(B) - 1, then A  B ∈ *

TSN  and 
      Rev(A  B) ∈ *

TSN . 
3.    = TSN *

TSN  ∩ Sn. 

 
Before presenting the state space graph for the twisted sequences neighborhood, we establish that *

TSN  is 
the set of all twisted sequences, and  is the twisted sequences neighborhood. TSN
 
Theorem 4.  The superneighborhood *

TSN  consists of all twisted sequences, and the neighborhood NTS is 
the twisted sequences neighborhood. 
 
Proof.  We first note for any sequence A ∈ *

TSN , the set of cities in A is consecutive.  This is easily 
established via induction on the number of operations needed to create A.  We also observe that by Rule 2 
in the creation of *

TSN , if A ∈ *
TSN , then Rev(A) ∈ *

TSN . 
 
We next claim that if A’ ∈ *

TSN , then A’ is a twisted subsequence.  The claim is clearly true if A’ = 〈j〉 for 
some j.  We assume inductively that the claim is true for sets A ∈ *

TSN  with A  < 'A .  By construction, A’ 
= A  B or else A’ = Rev(A  B), where A ∈ *

TSN  is defined on  cities {i, … , j} for some i and j, and B 
∈ *

TSN  is defined on cities {j+1, …, k}.  By inductive hypothesis, there are sets of 2-exchanges RA and RB 
that satisfies TS Properties 1 and 2, and which applied to {i, …, k} yields A and B.  Then A’ is either 
obtained from R = RA, RB or else it is obtained from R’ = RA, RB, RevMove(i, k).  This completes the proof of 
the first claim.  
 
We next claim that every twisted sequence is in *

TSN .  To see this, let A’ be a twisted sequence on  
{i, i+1, …, j}, and let R be the set of 2-exchanges satisfying TS Properties 1 and 2, and which when 
applied to 〈i, …, j〉 yields A’.  If A’ can be obtained in multiple such ways via 2-exchanges, let R be the set 
with the smallest number of 2-exchanges that generates A’.   
 
We inductively assume that the claim is true for all twisted sequences with fewer cities than A’.  We also 
assume inductively that the claim is true for all twisted sequences A with the same number of cities as A’ 
but with fewer 2-exchanges needed to generate A. 
 
We consider two cases.  In the first case, we assume that there is no 2-exchange that changes the position 
of city i.  In this case, if we apply the reversals in R to 〈i+1, …, j〉, we obtain A’ \ i, that is, we obtain the 
subsequence obtained from A by deleting city i.  By inductive hypothesis A’ \ i ∈ *

TSN , and by Rule 2, A’ 
=  i  A’ \ i ∈ *

TSN .  So, if no 2-exchange contains i, then A’ ∈ *
TSN .   
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We now assume that there is a reversal that contains i, and let RevMove(i, k) be the last such reversal in R.  
We now consider the subcase that k = j.  In this case, the reversal Rev(A’) of sequence A’ is obtained from 
{i, …, j} by applying the 2-exchanges in R’ = R \ RevMove(i, j) .  Since |R’| < |R|, by inductive hypothesis 
Rev(A’) ∈ *

TSN  , and so A’ ∈ *
TSN .   

 
In the remaining subcase k < j.  By TS Property 2, the set R may be partitioned into two sets R1 and R2 
where each 2-exchange of R1 is contained in {i, .., k}, and each 2-exchange of R2 is contained in  
{k+1, …, j}.  We assume that the order of the 2-exchanges in R1 and R2 are consistent with their ordering 
in R.  Let A be generated by R1 and let B be generated by R2.  By inductive hypothesis, A ∈ *

TSN   and 
B ∈ *

TSN .  Moreover, A’ = A  B.  It follows from Rule 2 that A’ ∈ *
TSN . ♦  

 
We now provide the nodes of the state space graph for twisted sequences, and show that the resulting 
dynamic program solves twisted sequences in O(n7) time, which is the same bound obtained by Deĭneko 
and Woeginger (2000). We do not create the state space graph in its entirety since the optimal solution to 
the dynamic program does not correspond in a simple way to the shortest path in the state space graph.  
We let gTS(i, S, j) be the minimum cost of a twisted sequence starting at city i, ending at city j, and passing 
through each city of S.  . 
 

The Feasible States VTS and the Dynamic Programming Recursion DPTS  . 
1.    (j, {j}, j)  ∈ VTS for each j = 1 to n.   

gTS(j, {j}, j)  = 0 for each j. 
2.     Suppose (i1, S1, j1) ∈ VTS and (i2, S2, j2) ∈ VTS and max(S1) = min(S2) - 1.   

Then (i1, S1 ∪ S2, j2) ∈ VTS   and (j2, S1 ∪ S2, i1) ∈ VTS.    
3.     For each consecutive subset S = {k1, …, k2} of cities, and for every pair i1 and j2 cities 

of S with i1 < j2, gTS(i1, S, j2) = gTS(j2, S, i1) =  
              min     gTS(i1, {k1, …, k3}, i2) + gTS(j1, {k3+1, …, k2}, j2) + c(i2, j1) 

                                  s.t.      k1 ≤ i2 ≤ k3   and   k3 + 1 ≤ j1 ≤ k2.  
4.    The min cost of a tour in NTS is min{gTS(i, S, j)  + c(j, i) : S  = n, and i, j ∈ {1, …, n}}. 

 
 
Theorem 5.  The dynamic program DPTS finds the optimal twisted sequence in the neighborhood NTS in 
O(n7) time. 
 
Proof.  The number of states in the state graph is O(n4) since each state is of the form (i, S, j)  where S is 
consecutive and i and j are cities in S.  If one looks at the minimization in Rule 3 of the dynamic 
programming recursion, one sees that one needs to minimize over choices of k3, i2 and j1, which results in 
O(n3) time to determine g(i1, S, j2).  Thus the running time is O(n7).   ♦  
 
The running time matches the one developed by Deĭneko and Woeginger (2000), and the dynamic 
program is essentially the same.  
 

Section 5.  Optimization over DP Restrictions. 
 
In this section and in the next section, we apply dynamic programming restrictions; that is, we take the 
Held-Karp dynamic program for the traveling salesman problem as given by the state space graph GTSP in 
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Section 3, and solve this dynamic program as restricted to a subset V ⊆ VTSP.   We denote the state space 
graph as GTSP[V], which is standard graph theoretic notation for the subgraph of GTSP induced by the 
subset V of nodes and all edges with both endpoints in V.  This process induces a neighborhood of the 
original tour, which we describe in this section.  We are particularly interested in examples in which the 
number of states is polynomially bounded and the number of tours in the induced neighborhood is 
exponentially large. 
 
There is a sizeable literature in approximate dynamic programming for hard combinatorial optimization 
problems that is based on dynamic programming restrictions.  As with the dynamic programming 
restrictions of this section, approximate dynamic programming is an approach that tries to circumvent the 
“curse of dimensionality” by contracting the state space.  Usually, in approximate dynamic programming 
and other forms of dynamic programming restrictions, the size of the dynamic program is decreased by 
simultaneously aggregating some of the states and eliminating some of the constraints.  Thus, the problem 
solved is a relaxation of the original, rather than a restriction of the original.  Typically, the solution value 
obtained in approximate dynamic programming is a lower bound (for minimization problems) on the 
optimal value, whereas in the approach we discuss in this section, the optimal solution for the 
neighborhood is feasible for the TSP and thus is an upper bound on the optimal value.  Christofides, 
Mingozzi and Toth (1981) used state space reductions to derive lower bounds for the TSP, the VRP, and 
variants. They give several different relaxations of the states, show how these correspond to known 
relaxations of the original problems, and that these relaxations are equivalent to Lagrangian relaxations. 
Similar techniques are applied to machine scheduling problems in, Abdul-Razaq and Potts (1988), Hariri 
and Potts (1994), Ibaraki and Nakamura (1994), and Potts and van Wassenhove (1987). 
 
In order to associate neighborhoods with subsets of states, we need some additional notation and 
definitions.  For a given sequence A = 〈i1, i2, i3, …, ik〉, with i1 = 1, we let State(A) = (S, ik), where  
S = {i1, i2,  …, ik}.  For a sequence A = 〈i1, i2, i3, …, ik〉, we refer to the subsequences Aj = 〈i1, i2, i3, …, ij〉 
for j = 1 to k as the initial subsequences of A. The canonical dynamic program creates a tour A by starting 
with city 1 and concatenating one city at a time.  With this in mind, for each tour A we let    
 

VTSP[A]  = {t} ∪ {State(Aj) :  Aj = 〈1, …, ij〉 is an initial subsequence of A for j  = 1 to A }.  
 
For a given collection V ⊆ VTSP, let NTSP[V] = {A ∈ Sn : VTSP(A) ⊆ V}.  In other words, NTSP[V] contains all 
tours A such that the states needed to generate A are all in V. Similarly, we let * [ ]TSPN V  = {A: VTSP(A) ⊆ V}.  
We will soon show that NTSP[V] is the neighborhood induced by solving the dynamic program on state space 
graph GTSP[V], and * [ ]TSPN V  is the corresponding superneighborhood.    
 
In the following, for each A = 〈i1, …, ik〉, we let c A denote the cost of sequence A where A is viewed as a 

path; that is c A .  If k < n, then c(A) = c A .  If A is a tour, then c(A) =  + c(in, i1).  

ˆ( )
1

11
ˆ( ) ( , )k

j jj
c i i−

+=
= ∑ ˆ( ) ˆ( )c A

 
The following theorem shows that finding the shortest path from node ({1}, 1) to all other nodes in 
GTSP[V] corresponds to finding the best tour in [ ]TSPN V .  
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Theorem 6.   Let V be any subset of states of VTSP.  Let (S, j) be any state in V, and let g(S, j) be the 
minimum cost of a path from ({1}, 1) to (S, j) in GTSP[V].  Then  
 

g(S, j)  = min { c A  : State(A) = (S, j)  and A ∈ ˆ( ) * [ ]TSPN V  }, and   
g(t) = min {  : A ∈ [ ]( )c A TSPN V }.   

 
Proof.   We first claim that g(S, j) = min {  : State(A) = (S, j) and A ∈ ˆ( )c A * [ ]TSPN V }.  This claim is 
clearly true for S  = 1, since the only state of VTSP with one element is ({1}, 1). Let us assume inductively 
that the claim is true for any state (S’, j’) with 'S  < S , and suppose that S  > 1.  In the restriction of the 
Held-Karp dynamic program for the TSP,    
 
 g(S, j) =  min {g(S \ j, k)  + c(k, j)  :  k ∈ S \ j  and (S \ j, k) ∈ V },  
 
and thus by induction, 
 
 g(S, j) =  min {  + c(k, j)  : ˆ( ')c A A′ ∈ * [ ]TSPN V  and State( A′ ) = (S \ j, k)}.   
 
Let  be the set that causes the minimization in the previous relation.  Since A′′ A′′  ∈ * [ ]TSPN V , State( A′′ ) = 
(S \ j, k), and (S, j) ∈ V, it follows that A′′   j ∈ * [ ]TSPN V , and thus  
 
 g(S, j) = min {  : State(A) = (S, j)  and A ∈ ˆ( )c A * [ ]TSPN V }.   
 
From the above claim it also follows that g(t) = min {  : A ∈ [ ]ˆ( )c A TSPN V }. ♦  
 
We next apply the results of Theorem 6 to the neighborhood first developed by Balas (1996), and later 
extended by Balas and Simonetti (2001).     
 
The Balas-Simonetti Neighborhood 
 
Balas (1996) considered the neighborhood consisting of all sequences A with the following properties:  
(1) the first city of A is city 1, and (2) there is a parameter K of the neighborhood, such that i follows j in 
A if j + K ≤  i.   We consider the following equivalent formulation:  If i precedes j in A, then i < K + j. 
Balas presented a dynamic programming recursion for finding the minimum distance tour in the 
neighborhood that runs in O(K2 2K n) time, which is linear in n for fixed K and polynomial in n for K = 
O(log n).  The number of tours in the neighborhood is ( , which is exponential in n 
whenever k is slowly growing in n.  (Here, exponential means non-polynomial.) 

(( 1) / )n nk eΩ −

 
Balas and Simonetti (2001) generalized the neighborhood to require a condition that is equivalent to the 
following: If i precedes j in A, then i < K(j)  + j, where K(j) is a positive integer bounded above by K.  
They also showed how to implement the dynamic program effectively by searching the state space graph, 
and they carried out extensive computational experiments.  Here we show that the Balas-Simonetti 
neighborhood can be constructed in a very natural way using recursion.  Moreover, the recursion 
immediately suggests an implementation very similar to the one that Balas and Simonetti applied.  In the 
following, if A is a sequence of cities or a set, we let A = {1, …, n}\ A, that is the cities not in A.  
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The Balas-Simonetti Neighborhood NBS  for the TSP. 
1.   1 ∈ *

BSN .  
2.   Suppose A ∈ *

BSN  and choose i’ ∈ A  so that i’ + K(i’) =  min {i + K(i): i ∈ A }.     
      Then for each j ∈ A  with j < i’ + K(i’),  A  j ∈ *

BSN .   
3.   BSN  = *

BSN  ∩ Sn. 

 
State Space Graph GBS = (VBS, EBS): 
1.    ({1}, 1) ∈ VBS. 
2.    Suppose (S,  k)  ∈ VBS , and choose i’ ∈ A  so that i’ + K(i’) =  min {i + K(i): i ∈ S }.  

Then for each j ∈ S  with j < i’ + K(i’), (S ∪ {j}, j) ∈ VBS, and there is an arc from (S, 
k) to (S ∪ {j}, j) with cost c(k, j).  

3.    If (S, j) ∈ VBS and if S  = n, then there is an arc from (S, j) to t with cost c(j, 1). 

 
We next show that *

BSN  is the Balas-Simonetti neighborhood.  
 
Lemma 1.  The tour A ∈ BSN  if and only if whenever i precedes j in A, then i < K(j)  + j. 
 
Proof.  Suppose A = 〈1, i2, i3, …, in〉, and let Aj = 〈1, i2, i3, …, ij〉.  Let us assume first that A ∈ BSN , and 
thus Ak ∈ *

BSN  for each k.  It follows directly from the construction of Ak in Step 2 of the BSN  
neighborhood, that ik <  il + K(il) for all l > k. 
 
We next assume that whenever i precedes j in A, then i < K(j)  + j.  We will claim that Ak ∈ *

BSN  for all k, 
and thus A ∈ BSN .  The claim is clearly true for k = 1, and we assume inductively that the claim is true for 
k – 1.   By inductive hypothesis Ak-1 ∈ *

BSN , and by our choice of A,  ik <  il + K(il) for all l > k.  It follows 
that Ak ∈ *

BSN , completing the proof. ♦    
 
The recursion for NBS adds one city at a time to the end of a sequence A such that the newly added city 
satisfies a condition.  Hence the recursion for NBS is a restriction of the Held and Karp recursion for NTSP 
and VBS ⊆ VTSP .  Furthermore, by Theorem 6 finding the shortest path from node ({1}, 1) to node t in 
GTSP[VBS ] corresponds to finding the best tour in NTSP[VBS ] which is equivalent to NBS.  
 
The following lemma is proved in Balas and Simonetti for their neighborhood. We give an alternative 
proof here that follows from the recursive construction of *

BSN . 
  
Theorem 7.  Consider the Balas-Simonetti neighborhood and suppose that K < log n.  Then |VBS | =  
O(n K 2k), and | EBS | = O(n K2 2K).  The time to construct GBS is O(n K2 2K), and the time to find a 
minimum distance neighbor is O(n K2 2K). 
 
Proof.  Let Qr = {S : (S, j) ∈ VBS for some j, and r = min( S )}.  Then for 1 ≤ k < r it follows that k ∈ S. 
For r + K(r) ≤ k ≤ n, it follows that k ∈ S .  Thus for any (S, j) ∈ Qr, S = {1, …, k-1} ∪ S’, where 
S’ ⊆ {r +1, …, r + K(r)-1}.  It follows that there are at most 2K(r) ≤ 2K choices for S’ and thus for S. In 
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addition, there are at most K choices for j, and so |Qr| = O(K 2K).  Moreover, VBS = ∪ , and so |VBS | 

= O(n K 2K).      
1

n
rr

Q
=

 
We note in Step 2 in the creation of EBS, there are at most K edges emanating from any state (S, j), and so  
|EBS| = O(n K2 2K). 
 
We next show that we can store (S, j) in O(1) space for all states (S, j) ∈ VBS.  So suppose (S, j) ∈ Qr.  We 
represent S by the pair (r, L( S )) where L( S ) = 

[ , ]
2k

k S r r K∈ ∩ +∑ .   Then 1 ≤ L( S ) ≤ 2K+1 ≤ 2n, and the 

pair (r, L( S )) uniquely identifies and characterizes S.  We refer to (r, L( S )) as the identifier for S, and we 
refer to the triple (j, r, L( S )) as the identifier for (S, j).  For any state (S, j) created in Step 2 of the 
recursion of GBS, it takes O(K) time to determine the identifier.  Moreover, it takes O(K) time to determine 
all of the arcs emanating from (S, j) .  So, the time to create GBS is O(n K2 2K), and the time to solve the 
shortest path problem is also O(n K2 2K).  ♦  
 
The Weak Insertion Dynasearch Neighborhood  
 
In this subsection we show that the NWIDS can be searched efficiently in O(n2) when described with a 
recursion which is a restriction of the Held and Karp recursion for NTSP.  First we provide a 
characterization of the weak independent insertion neighborhood, and then give the recursive description.   
 
Lemma 2.  Let A = 〈1, i2, i3, …, in〉, and let Aj = 〈1, i2, i3, …, ij〉 for each j = 2 to n.  Then A ∈ Weak 
insertion dynasearch neighborhood if and only if for each j, the cities of Aj are {1, 2, …, j+1}\k for some  
k ∈ {2, …, j+1}. 
 
Proof.  Suppose first that A is in the weak insertion dynasearch neighborhood.  If A = 〈1, 2, …, n〉, then 
the cities of Aj are {1, …, j}, and the lemma is valid.  Suppose instead that A ≠ 〈1, 2, …, n〉, and let 
InsertMove(r, s) be the last InsertMove in the creation of A.  We assume inductively that for j < r, the 
cities of Aj are {1, 2, …, j+1}\k for some k ∈ {2, …, j+1}.  Because A is formed by compounding weakly 
independent moves, the cities of Ar-1 are {1, 2, …, r-1}.  For r ≤ t ≤ s-1, the cities of At are  
{1, 2, …, t+1}\r.  Finally, for t > s, the cities of At are {1, 2, …, t}.  We have thus established the “only 
if” part of the lemma. 
 
Suppose instead that for each j, the cities of Aj are {1, 2, …, j+1}\k for some k ∈ {2, …, j+1}.  Let  
S = {r: the cities of Ar are {1, 2, …, r}, and let us denote the cities in S as  {1, j2 …, jk}.  Then one can 
establish inductively that A can be created from InsertMove(js+1, js+1) for all s such that js+1 ≠ js+1.   ♦  
 
 

The Weak Insertion Dynasearch Neighborhood NWIDS for the TSP 
1.   1 ∈   *

WIDSN
2.   Suppose that A ∈  and max(A) = i.  Then *

WIDSN
 a.  A  i+1 ∈ .  *

WIDSN
b.  if |A| = i, then A  i+2 ∈ . *

WIDSN
c.  if |A| = i-1 , then A  j ∈ , where  j = {1, …., i}\ A. *

WIDSN
3.    =  ∩ Sn. WIDSN *

WIDSN
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State Space Graph GWIDS = (VWIDS, EWIDS): 
1.    ({1}, 1) ∈ VWIDS. 
2.    Suppose (S, k) ∈ VWIDS and max(S) = i. Then (S ∪ {j}, j) ∈ VWIDS where 
             a.  (S ∪ {i+1}, i) ∈ VWIDS and there is an arc from (S, k) to (S ∪ {i+1}, i+1) with   

  cost c(k, i+1). 
  b.  if |S| = i, then (S ∪ {i+2}, i+2) ∈ VWIDS and there is an arc from (S, k) to  

  (S ∪ {i+2}, i+2) with cost c(k, i+2). 
  c. if |S| = i-1, then (S ∪ {j}, j) ∈ VWIDS for j = {1, …., i}\ A and there is an arc from  

  (S, k) to (S ∪ {j}, j) with cost c(k,  j).  
3.    If (S, j) ∈ VBS and if S  = n, then there is an arc from (S, j) to t with cost c(j, 1). 

  
Theorem 8.   The neighborhood  is the weak insertion dynasearch neighborhood.  The 
corresponding state space graph GWIDS has O(n2) nodes and O(n2) edges.  The time to find a minimum 
distance neighbor is O(n2). 

WIDSN

 
Proof. Lemma 2 establishes that  is the weak insertion dynasearch neighborhood. WIDSN
 
By Lemma 2 there are O(n2) values for (S, k) because S = {1, …, j} and 1 < k ≤  j or else S = {1, …, k} \ 
{i},  1 <  i <  k.  In both cases, the number of arcs emanating from each state is equal to 2 and thus there 
are O(n2) edges.  Moreover, the graph GWIDS is acyclic and can be created in O(n2) steps.  It follows that 
the time to find a shortest path in GWIDS from node ({1}, 1} to node t is O(n2). ♦  
 
We close this section with a simple negative result.  No superset of the pyramidal tour neighborhood can 
be obtained as a neighborhood NTSP[V] if we require that |V| is polynomially bounded.  To see this, 
suppose that the pyramidal tours are a subset of NTSP[V] for some V ⊆ VTSP.  Such a subset V exists since 
NTSP[VTSP] contains all tours.  Recall that a pyramidal tour can be expressed as 〈i1, …, ij-1〉  n  〈ij+1, …, 
in-1〉, where the sequence 〈i1, …, ij-1〉 is increasing in index, and the sequence 〈ij+1, …, in-1〉 is decreasing.  
There are 2n-2 distinct ways that one can choose the cities in 〈i1, …, ij-1〉, which means that V must contain 
at least 2n-2 distinct states, contrary to the assumption that V is polynomially bounded in n. 
 
 

Section 6.  The Dynamic Programming Expansion of a Neighborhood. 
 
For a given tour A, let VTSP[A] be the set of states of VTSP associated with A, as defined in Section 5, and 
for a given collection N of tours, we let VTSP[N] = ∪ .   [ ]TSPA N

V A
∈

 
In Section 5, we associated a neighborhood NTSP[V] with a subset V of states.  In this section, we consider 
the inverse operation of associating a set of states VTSP[N] with a neighborhood.  Moreover, for a given 
neighborhood N, we can first associate the set of states V’ = VTSP[N], and then create a second 
neighborhood NTSP[V’].  We refer to the neighborhood NTSP[V’] = NTSP[VTSP[N]] as the expansion of 
neighborhood N with respect to the dynamic program DPTSP, or more briefly as the dynamic 
programming expansion of N.  In general, if N is any polynomially sized neighborhood, then N is a subset 
of the dynamic programming expansion N’ of N, and N’ can be searched in polynomial time.  The 
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primary result of this section is that the dynamic programming expansion of the 2-exchange neighborhood 
is the dynasearch neighborhood obtained by compounding weakly independent 2-exchanges.   
 
We discovered the above result only after observing that for the 2-exchange neighborhood NEX and for the 
neighborhood NWDS obtained by compounding weakly independent 2-exchanges, it is true that VTSP[NEX]= 
VTSP[NWDS].  Thus we learned that taking a dynamic programming expansion of a neighborhood can 
transform a polynomial sized neighborhood into an exponential neighborhood that is searchable in 
polynomial time.  We have determined other cases where the dynamic programming expansion of a 
polynomial size neighborhood creates an exponential neighborhood that is searchable in polynomial time, 
but each of these cases has a very similar flavor to the dynasearch neighborhoods.  It is too early to assess 
whether this technique of creating polynomially searchable exponential neighborhoods via dynamic 
programming expansion is an interesting anomaly or whether it is potentially a useful methodology in 
very large scale neighborhood search. 
   
We first state four propositions about the operations VTSP[N] and NTSP[V], each of which has a very 
straightforward proof which is omitted.  We give a proof of the fifth proposition. 
   
Proposition 1.  For a given set N ⊆ Sn, VTSP[N] is the smallest subset V ⊆ VTSP of states such that N ⊆ 
NTSP[V]. 
 
Proposition 2.  For a given subset V’ ⊆ VTSP of states, NTSP[V’] is the largest subset N ⊆ Sn such that  
VTSP[N] ⊆ V.  
 
Proposition 3.  For a given set N ⊆ Sn, N ⊆ NTSP[VTSP[N]]. 
 
Proposition 4.  For a given subset V ⊆ VTSP of states, VTSP[NTSP[V]] ⊆ V. 
 
Proposition 5.  Suppose that Nn is a neighborhood whose size is polynomially bounded in n. Then one 
can find the best neighbor in NTSP[VTSP[N]] in polynomial time. 
 
Proof.  Since | Nn | = O(p(n)) for some polynomial p( ), it follows that |VTSP[N]| = O(n p(n)), and the 
number of edges of the corresponding state space graph is O(n2 p(n)).  Thus, the dynamic program can be 
solved in O(n2 p(n)) time. ♦  
 
The 2-Exchange Neighborhood and its Dynamic Programming Expansion. 
 
Let NEX denote the 2-exchange neighborhood, which can be obtained from 〈1, …, n〉 by performing at 
most one operation RevMove(i, j)  for 1< i < j ≤ n.    Recall that the neighborhood NWDS is obtained from 
〈1, …, n〉 by permitting the compounding of weakly independent 2-exchanges that exclude city 1.  Thus 
any element of NWDS can be obtained from 〈1, …, n〉 by performing a sequence of 0 or more operations 
RevMove(i1, i2), RevMove(i3, i4), …, RevMove(i2j-1, i2j) , where  1 < i1 < i2 < … < i2j. 
 
Theorem 9.  The neighborhood NWDS obtained by compounding weakly independent 2-exchanges is the 
dynamic programming expansion of the 2-exchange neighborhood NEX ; that is, NWDS = NTSP[VTSP[NEX]]. 
 
Proof.   We will first establish that NWDS ⊆ NTSP[VTSP[NEX]], by proving the following claim.   
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Claim 1. VTSP[NEX] = VTSP[NWDS].   
From Claim 1, it will follow that NTSP[VTSP[NWDS]] = NTSP[VTSP[NEX]], and by Proposition 3, NWDS ⊆ 
NTSP[VTSP[NWDS]] = NTSP[VTSP[NEX]].   
 
Proof of Claim 1.  It is clear that VTSP[NEX] ⊆ VTSP[NWDS], and so it suffices to show that any state in 
VTSP[NWDS] is also in VTSP[NEX].  Suppose that (S, k) is a state in VTSP[NWDS].  Then there is a sequence A ∈ 
NWDS such that A is obtained by carrying out by carryout out a sequence of weakly independent reversal 
moves.  Suppose  State(Ar) = (S, k)  for some initial subsequence Ar of A.  We need to prove that (S, k)  ∈ 
VTSP(NEX).   If city r is not part of any reversal, then S = {1, 2, …, r} and State(Ar) = ({1, …, r}, r) ∈ 
VTSP(NEX) and the claim is true.  So, we now consider the case that city r is part of a reversal, say Rev[i, j].  
Let B be the sequence in the 2-exchange neighborhood obtained by performing only RevMove[i, j], and let 
Br consist of the first r cities of B in order.  Then State(Br) = State(Ar), and so Claim 1 is true.      
 
We will soon establish that NTSP[VTSP[NEX]] ⊆ NWDS; but first we state a characterization of VTSP[NEX], 
followed by a property of NWDS.  Both are elementary and stated without proof. 
 
Claim 2.  VTSP[NEX] =  {(S, j)  : S = {1,…, k} for some k ≥ j } ∪ { (S, j)  : S = {1, …, i} ∪ {j, …, k}  for 
some i, j, and k with  i+2 ≤ j ≤ k }. 
 
Claim 3.  The tour A = 〈i1, … in〉 is in NWDS if the following is true:   

1. i1 = 1  and  
2. if ij > ij+1, then ij+1 = ij – 1.  

 
Let V = VTSP[NEX].  We now prove that any tour A ∈ NTSP[V] satisfies the properties of Claim 3, and is 
therefore in NWDS.  Let A = 〈i1, … in〉, and let Aj = 〈i1, …  , ij〉 for each j.  It is clear that i1 = 1 because the 
only state in V with one element is ({1}, 1).  Now suppose that ij > ij+1.  Then State(Aj) = (S, ij) ∈ V, and 
S = {1,…, i′} ∪ {ij, …, k} for some i′ < ij+1 and some k ≥ ij.  Then State(Aj+1) = {1,…, i′} ∪ { ij+1, …, k}, 
because there is no other possible state of V that is consistent with Aj+1 and thus ij+1 = ij – 1, and A 
satisfies Claim 3, and is thus in NWDS.  ♦  
 

Section 7. Conclusions 
 
In this paper we discussed two unifying perspectives for defining neighborhood search as applied to the 
traveling salesman problem.   
 

1. We showed that several previously developed exponential neighborhoods for the traveling 
salesman problem that are solvable in polynomial time can be defined recursively.  Furthermore, 
the exponential neighborhoods can be searched efficiently with the dynamic program induced 
from the recursion.  We illustrated our approach on dynasearch neighborhoods, the pyramidal 
tour neighborhood, and the twisted sequences neighborhood, and the Balas-Simonetti 
neighborhood. 

 
2. Given the canonical Held-Karp dynamic programming formulation for the TSP, one can obtain a 

neighborhood by restricting the dynamic program to a subset V of states.  We explain the 
correspondence between the DP restriction and the neighborhood and show that the Balas-
Simonetti neighborhood can easily be represented in this manner.  Furthermore we show that the 
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weak independent insertion dynasearch neighborhood can be represented and searched efficiently 
as a DP restriction.  We also show how one may map neighborhoods to sets of states and then 
back to neighborhoods leading to the dynamic programming expansion of a neighborhood.  In the 
case that the original neighborhood is the 2-exchange neighborhood, the dynamic programming 
extension is the neighborhood obtained by permitting compounding of weakly independent 2-
exchanges.  

 
There are a number of future issues suggested by this research.  First of all, it would be interesting to 
identify new neighborhoods for the TSP that can be obtained in the manner of this paper, and for which 
the neighborhood search algorithms are effective in practice.  Second, it would be of value to extend this 
approach to other combinatorial optimization problems for which there is a dynamic programming 
recursion that is more efficient than complete enumeration. 
 
Another issue that was briefly touched upon in this paper was that of “automation” of the process.  In 
particular, is there an algorithm that could take the input for the recursion, and automatically create the 
dynamic programming state space graph?  If such an approach could be developed, it could be of 
substantial value in permitting the quick creation of neighborhood search algorithms.   The results in this 
paper offer some first hints that such an automatic procedure may exist. 
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