
~~:e: f S: aX: :2-:ft::: L i my A: IdI : i tw0;-: : : ti,,~~-ztawni ff w r; paer: ;;00f;0y; ;E n m
M& M'WE.- 2 ' a' .1,'-i,:

DC ffS ':X0X if 0 - 0~~~~~~~:: ; ;0 0;: ::i :l :
SEE: tA: :!: 00 D:

'_'','."''" ' '' ;-J .. '.' ''...
XATO pape~~:

M AS S HUSETTS INSTITU
:.,O TECHNLOGY. '

< : 0~~~~~i~: :::: 94"SRSi:0000;-;:: :: :A;0;
IL�--YLaULII-__I_�._·

i..,.
r

i,

: �I·:·

�·:·-··-·. ;·:

-...1:
:·.

-·:":
·i :

.- . ;-� ·:.-. - ·'·:r·· ·-- ·- � ���·-.

'I; ·-'-i

·;·- 1

··· · ·

f'l ;

i-

T': -;.· ·I .. ---- · :- ·-:---' ··.·..-:'I

A Faster Strongly Polynomial Minimum
Cost Flow Algorithm

By

James B. Orlin

OR 175-88 March 1988

e

1

A FASTER STRONGLY POLYNOMIAL MINIMUM COST FLOW ALGORITHM

James B. Orlin*
Sloan School of Management

Massachusetts Institute of Technology,
Cambridge, MA. 02139, USA

ABSTRACT

We present a new strongly polynomial
algorithm for the minimum cost flow problem, based
on a refinement of the Edmonds-Karp scaling
technique. Our algorithm solves the uncapacitated
minimum cost flow problem as a sequence of
O(n log n) shortest path problems on networks with n
nodes and m arcs and runs in O(n log n (m + n log n))
steps. Using a standard transformation, this
approach yields an O(m log n (m + n log n))
algorithm for the capacitated minimum cost flow
problem. This algorithm improves the best previous
strongly polynomial algorithm due to Galil and
Tardos, by a factor of m/n. Our algorithm is even
more efficient if the number of arcs with finite upper
bounds, say m', is much less than m. In this case, the
number of shortest path problems solved is
O((m' + n) log n).

1. Introduction

The minimum cost flow problem is one of the
most fundamental problems within network flow
theory, and it has been studied extensively.
Researchers have developed a number of different
algorithmic approaches that have lead both to
theoretical and practical improvement in the
running times. The polynomial algorithms for
theminimum cost flow problem can be classified into

two categories:
polynomial. We
polynomial if
conditions:

(weakly) polynomial and strongly
call a network algorithm strongly
it satisfies the following two

SP1. The number of arithmetic operations is
polynomially bounded in the number of
nodes n, and the number of arcs m.

SP2. The only arithmetic operations in the
algorithm are comparisons, additions and
subtraction.

Here, we are using a slightly more
restrictive notion of strong polynomiality than has
been used by others including Meggido [1983].

The first (weakly) polynomial algorithm
for the minimum cost flow problem was deveoped by
Edmonds and Karp [1972]. The other (weakly)
polynomial algorithms were suggested by Rock
[1980], Bland and Jensen [1985], Goldberg and Tarjan
[1987, 1988], and Ahuja, Goldberg, Orlin and Tarjan
[1988]. Tardos [1985] developed the first strongly
polynomial algorithm for the minimum cost flow
problem, which was followed by many other
strongly polynomial algorithms. Figure 1
summarizes these developments. In the figure, m'
denotes the number of arcs with finite upper bounds,
and S(n, m) denotes the time to solve a shortest path
problem on a network with n nodes and m arcs. The
best current bound for S(n,m) is O(m + n log n) due to
Fredman and Tarjan [1984].

This research was supported in part by Presidential
Young Investigator Grant 8451517-ECS of the National
Science Foundation, by Grant AFOSR-88-0088 of the Air
Force Office of Scientific Research, and by Grants from
Analog Devices, Apple Computer Inc. and Prime
Computer.

2

Due to

Tardos [1985]

Orlin [1984]

Fujishige [1986]

Galil and Tardos [1986]

Goldberg and Tarjan [1987]

Running Time

O(m4)

O((n + m')2 S(n, m))

O((n + m')2 S(n, m))

O(n2 log n S(n, m))

O(nm2 log n log(n2/m))
/ A

Goldberg and Tarjan [19881 OnmL logz n)

Orlin (this paper)[1988] O((n + m') log n S(n, m))

FIGURE 1. STRONGLY POLYNOMIAL ALGORITHMS FOR THE
MINIMUM COST FLOW PROBLEM

2. Notations and Definitions

Let G = (N, A) be a directed network with a

cost cij associated with each arc (i, j) E A. We

consider uncapacitated networks in which there is
no upper bound on the flow on any arc and the lower
bound onarcflow is 0O. Letn= INI and m= IAI. We

associate with each node i N a real number b(i)
which indicates the supply (demand) of the node if

b(i) >0 (b(i) < 0). Let U = 1 + max{b(i): i N}.

A flow x is a function x: A -- R satisfying

I xji
j N

In this paper, we develop a new strongly
polynomial algorithm for the 'minimum cost flow
problem, based on a refinement of Edmonds-Karp
scaling algorithm. Our algorithm improves the best
previous strongly polynomial algorithm due to Galil
and Tardos, by a factor of m/n. Our algorithm is
even more efficient if the number of arcs with finite
upper bounds is much less than m.

This paper is organized as follows. The
notations and definitions are given in Section 2. A
brief discussion on the optimality conditions for the
minimum cost flow problem is presented in Section 3.
In Section 4, we describe a modified version of
Edmonds-Karp scaling technique on uncapacitated
networks (i.e., there is no upper bound on arc flows,
the lower bound being 0). This algorithm solves the
uncapacitated network flow problem as a sequence of
O(n log U) shortest path problems, where U is an
upper bound on the maximum supply. In Section 5,
we describe how to modify the algorithm so as to
solve the uncapacitated network flow problem as a
sequence of O(min (n log U, n log n)) shortest path
problems. Using a standard transformation, this
leads to O(min (m log U, m log n) S(n, m)) time
algorithm for solving the capacitated network flow
problem. This generalization is described in Section
6. In Section 7, we discuss possible implications of
our results to parallel algorithms as well as to other
sequential algorithms. In particular, we point out
the possible significance of our strongly polynomial
algorithm under the logarithmic (or bit) model of
computation.

xij = b(i), forallieN
jeN

xij 0, for all (i, j) E A.

The uncapacitated minimum cost
problem is to identify a flow x for which

E cij xij
(i, j) A

(1)

(2)

flow

is minimum.

We consider the uncapacitated minimum
cost flow problem satisfying the following
assumptions:

Assumption 1. (Dual feasibility)
are nonnegative.

All arc costs

Assumption 2. (Strong connectedness) For each
pair i,j of nodes in N, there is a directed path in G
from i to j.

Assumption3. (No arc multiplicity) There is at
most one arc between any pair of nodes i and j , i.e.,
we can have arcs (i, j) or (j, i) in A, but not both.

The first two assumptions are made without
any loss of generality. There is some loss of
generality in the third assumption; but this
assumption is made solely to simplify the notation
needed in this paper. We can easily relax this
assumption on arc multiplicity and extend the
theory presented here to the case in which there are
multiple arcs.

3

A pseudoflow x is a function x: A - R
satisfying only the nonnegativity constraints, i.e.,
x > 0. The algorithms described in this paper
maintain a pseudoflow at each intermediate step.

For a given pseudoflow x, for each node i E N
we define the imbalance at node i to be

e(i) =b(i)+ I xji -
jEN J

I xij
N

A positive e(i) is referred to as an excess and a
negative e(i) is called a deficit. A node with excess
is called a source node, and a node with deficit is
referred to as a sink node. A node i with e(i) = 0 is
called a balanced node. We denote by S and T, the
sets of source and sink nodes, respectively.

For any pseudoflow x, we define the residual
network G(x) as follows: We replace each arc (i, j) E
A by two arcs (i, j) and (j, i). The arc (i, j) has cost cij
and a residual capacity rij = oo, and the arc (j, i) has
cost -cij and residual capacity rji = xij. The residual
network consists only of arcs with positive residual
capacity. The imbalance of node i in the residual
network G(x) is e(i), that is, it is same as the
imbalance of node i for the pseudoflow.

3. Optimality Conditions

A dual solution to the minimum cost flow
problem is a vector xc of node potentials. We assume
that ir(1) = 0. For a given vector Ir of node potential,
the reduced cost c is defined as cij = cij - t(i) + t(j).
A pair x, r of pseudoflow and node potential is
optimum if it satisfies the following linear
programming optimality conditions:

C1. (primal feasibility) x is a feasible flow.

C2. (dual feasibility) cij > 0 for all arcs (i, j) in

the residual network G(x).

It is easy to derive the above conditions from
the well-known characterization (see Lawler [1976])
that x is an optimum flow for the minimum cost flow
problem if and only if the residual network G(x)
does not contain any negative cycle.

The algorithms described in this paper
always maintain a pseudoflow satisfying dual
feasibility and successively reduce the amount of
primal infeasibility of the solution. The correctness
of our algorithms relies on the following well-known
result:

Lemma 1. Let x be a dual feasible pseudoflow and
suppose x' is obtained from x by sending flow along a
minimum cost path in the residual network. Then x'
is also dual feasible. ·

4. Edmonds-Karp Scaling Technique

In this section, we present a description of a
version of Edmonds-Karp right hand-side scaling
technique which we call the RHS-scaling
algorithm. Our version of the Edmonds-Karp
algorithm is a modification of their original
algorithm, but it differs in several computational
aspects. Our version appears to be particularly
well-suited for generalization to a strongly
polynomial algorithm. In addition, our proof of the
correctness of the RHS-scaling algorithm is of
further use in proving the correctness of the strongly
polynomial algorithm.

The basic idea behind the RHS-scaling
algorithm is as follows. For some integer A, let S(A)
={i EN: e(i)>A},and T(A) = {i E N: e(i) < -A}.

We call a pseudoflow x A-optimal, if x is dual
feasible and either S(A) = or T(A) = o. The
RHS-scaling algorithm starts with a A-optimal

pseudoflow with A = 2log U. Given a A-optimal
pseudoflow, the scaling algorithm obtains a
(A/2)-optimal pseudoflow by solving at most n
shortest path problems. An iteration during which
A remains unchanged is called a A-scaling phase.
Subsequent to the A-scaling phase, A is replaced by
A/2, until A < 1. Clearly, there are Flog U1 + 1
scaling phases. A formal description of the
RHS-scaling algorithm is given below.

4

algorithm RHS-SCALING;
begin

set x:= 0, r: =0,and e: = b;

set U: = 1 + max {e(i): i E N};

A: = 2rlg ul - 1;
while there is an imbalanced node do begin

(A-scaling phase)
S(A): = {i: e(i) > A)};

T(A): = (i: e(i) < -A);

while S(A) • 0 and T(A) • do
begin

let k E S(A) and 1 e T(A);
considering reduced costs as arc lengths,

use modified Dijkstra's algorithm to
compute shortest path distances d(i)
from node k to all other nodes;

n(i) : = 7r(i) - d(i), for all i E N;
augment A units of flow along the

shortest path from node k to node I;
update x, r, e, c S(A) and T(A);

end;
A: = A/2;

end; (A-scaling phase)
end;

In order to prove that the RHS-scaling
algorithm is correct, we first observe that it
satisfies the following flow invariant.

Flow Invariant 1. The residual capacity of each arc

in the residual network is an integral multiple of A.

Lemma 2. The Flow Invariant 1 is satisfied prior to
and subsequent to each augmentation in the
RHS-scaling algorithm. ·

Flow Invariant 1 ensures that during an

augmentation, A units of flow can be sent on the path
P. Lemma 2 implies that the flow after the
augmentation is still dual feasible. The algorithm
terminates when all nodes are balanced; i.e., there
is a feasible flow in the network. As the flow is
always dual feasible, the resulting flow is optimum.

We now come to the complexity of the
algorithm. Our proof uses additional constructs that
will be useful in proving improved time bounds for
the strongly polynomial algorithm. A node i is
active in the A-scaling phase if le(i)l A, and is
inactive if le(i)l < A. A node i is said to be

regenerated in the A-scaling phase if i was not in

S(2A) u T(2A) at the end of 2A-scaling phase, but is
in S(A) u T(A) at the beginning of the A-scaling

phase. Clearly, for each regenerated node i, A <

I e(i) I < 2A. The following lemma shows that there
can be at most n augmenting paths found in any
scaling phase. In fact, it proves a slightly stronger
result that is useful in the proof of the strongly
polynomial algorithm.

Lemma 3. The number of augmentations per scaling
phase is at most the number of nodes that are
regenerated at the beginning of the phase.

Proof. We first observe that at the beginning of the

A-scaling phase either S(2A) = 0 or T(2A) = o. Let

us consider the case when S(2A) = o. Then each node
in S(A) is a regenerated node. Each augmentation

starts at an active node in S(A) and makes it inactive
after the augmentation. Thus, the number of

augmentations are bounded by IS(A) I and the
lemma follows. A similar proof for the lemma can

be given for the case when T(2A) = 0. ·

It is now easy to observe the following result:

Theorem 1. The RHS-scaling algorithm determines
an optimum solution of the uncapacitated minimum
cost flow problem after O(log U) scaling phases and
runs in O((n log U) S(n, m) time. ·

5. The Strongly Polynomial Algorithm

In this section, we present a strongly
polynomial version of the RHS-scaling algorithm
discussed in the previous section. We first introduce
the idea of contraction, point out why an obvious
extension of the usual RHS-scaling algorithm is not
strongly polynomial, and then present a mod-
ification that is strongly polynomial.

5.1. Contraction

The key step to make the RHS-scaling
algorithm strongly polynomial is to identify arcs
whose flow are so large in the A-scaling phase that
they are guaranteed to have positive flow in all
subsequent scaling phases. In fact, we can quickly
justigy why a flow of 4nA is sufficiently large. In

the A-scaling phase of the modified RHS-scaling,
the flow in any arc can change by at most 2nA units,

5

since there can be at most 2n augmentations. (The
number of augmentations is at most n in the RHS-
scaling algorithm.) If we sum the changes in flow in
any arc over all scaling phases, the total change is
at most 2n(A + A/2 + A/4 + ... + 1) = 4nA. It thus
follows that any arc whose flow exceeds 4nA at any
point during the A-scaling phase will have positive
flow at each subsequent iteration. We will refer to
any arc whose flow exceeds 4nA during the A-scaling
phase as strongly basic. A natural operation would
then be to contract (or shrink) the basic arcs and
continue the scaling procedure on a problem
involving fewer nodes.

Each contracted arc has positive flow, and
its reduced cost is cij = 0. By contraction of arc (i, j),

we mean replacing nodes i and j with a single
contracted node, say v, and replacing each arc (k, i)
or (k, j) (respectively, (i, k) or (j, k)) with an arc (k,
v) (respectively, (v, k)) whose reduced cost is the
same as the arc it replaces. In addition, we let
b(v) = b(i) + b(j), and the resulting imbalance is e(v)
= e(i) + e(j). (This contraction may lead to having
arcs (i, j) and (j, i), as well as to multiple arcs. We
ignore these possibilities as before, but solely for
notational convenience.) This contraction is the
implicit foundation of a number of strongly
polynomial algorithms including those of Tardos
[1985], Tardos and Galil [1986], Fujishige [1986], and
Orlin [1984]. The algorithm continues to contract
arcs until ultimately an optimum flow is determined
in the contracted network. At this point, all of the
contracted arcs are expanded, and an optimal flow
for the original network is recovered.

The following lemma shows that contraction
of an arc incident to node i will take place by the
time that A is sufficiently small relative to I b(i) I.

Lemma 4. Suppose at the termination of the

A-scaling phase, A < Ib(i) I /8n 2 for some node i in
N. Then there is an arc incident to node i whose
flow exceeds 4nA.

Proof. We first claim that I e(i) I < 2nA. To see
this, recall that either all of S(A) or all of T(A) is
regenerated at the beginning of the A-scaling phase,
and thus either the total excess or the total deficit
is strictly bounded by 2nA. We now prove the lemma
in the case when b(i) > 0. The case when b(i) < 0 is
proved analogously. There are at most n-1 arcs

directed out from i, and at least one of these arcs has
a flow at least (b(i) - e(i)) /(n-1), which exceeds
4nA. U

5.2. A Pathological Example for RHS-scaling
Algorithm

Lemma 4 comes very close to yielding a
strongly polynomial algorithm for the following
reason: At the beginning of the algorithm, all of the
nodes have e(i) = b(i) , and thus each node can be
regenerated O(log n) times before A < I b(i) I /8n 2 and
i is incident to a strongly basic arc. At this point
two nodes get contracted into a single node. This
almost leads to a O(n log n S(n, m)) time bound.
There is, however, a difficulty which is illustrated
in Figure 3. In fact, without additional
modification, the algorithm is not strongly
polynomial. The difficulty lies with the nodes that
are created via a contraction. One can create a
contracted node v for which b(v) is nearly 0, but e(v)
is relatively large. It is possible for v to be
regenerated a large number of times before an arc
incident to v is contracted.

In Figure 2(a), we give the initial supply,
demands and flows. Assume that all the costs are 0.
There is a unique feasible solution that the
algorithm must determine. In the 8M-scaling phase,
8M units of flow is sent from node 3 to node 2.
Subsequently, in each of the 4M, 2M, and M-scaling
phases, flow is sent from node 1 to node 4. In Figure
2(b), we give the flows at the end of M-scaling
phase. At this point, we may contract arcs (1, 2) and
(3, 4), but not the arc (3, 1). The resulting contracted
graph is given in Figure 2(c). Observe that b(A) = -2
and b(B) = 2. At this point, it will take O(log M)
scaling iterations before the flow in arc (B, A) is
sufficiently small (relative to the unique feasible
flow of 2 units from B to A) so that this arc gets
contracted and the algorithm terminates. Thus the
algorithm is not strongly polynomial.

8M-1 -8M-I M-1

8M+1 -8M+1

-1 M-2

-M+2

-M+2-M+1

(a) (b) . (c)
FIGURE 2. A PATHOLOGICAL EXAMPLE FOR THE RHS-SCALING
ALGORITHM

6

To overcome the difficulty we observe that
the bad situation can occur only in unusual
circumstances; in particular, we first make the
following observation. Since all flows at the 2A-
scaling iteration are multiples of 2A,

e(i) -b(i) mod 2A.

If node v is regenerated at the beginning of the A
scaling iteration and if I b(v) I = e for some E that is
very small relative to A, then one of the following
two situations occurs. Either the excess e(v) = 2A - e

for some very small positive £, and b(v) = -e, or else
e(v) = -2A + E for some very small positive , and
b(v) = E. In these bad cases one could regenerate v a
large number of times prior to an arc incident to v
being contracted. However, one can overcome the
difficulty with one additional "special
augmentation." First observe that e(v) and b(v) are
opposite in sign. In these cases, if e(v) = 2A - e, we
can try to send 2A units of flow from v at the 2A-
scaling iteration. If such a "special augmentation"
were to take place, then subsequent to the
augmentation, e(v) = b(v) = -e. (If e(v) were
negative, then we would send 2A units of flow to v.)
This type of "special augmentation" is the last
ingredient needed for the strongly polynomial
algorithm.

5.3. The Algorithm

Our strongly polynomial algorithm proceeds
as the RHS-scaling algorithm with the following
differences.

exceeds its supply b(i) or the inflow of a
demand node i exceeds its demand -b(i).
These special augmentations are needed to
ensure that arcs will become strongly basic
at a sufficiently fast rate. Without these
special augmentations the algorithm is not
strongly polynomial.

(3) We require that all solutions be spanning
tree solutions, i.e., arcs with positive flows
do not contain cycles. This requirement can
be enforced by using a "modified Dijkstra"
algorithm in which such arcs are given
preference. (We omit the details of
modified Dijkstra in this paper, but it is
included in a more complete report
available from the author.) The
requirement of spanning tree solutions
greatly simplifies the expansion of
contracted arcs at the end of the algorithm.

(4) We no longer require A to be a power of 2,
and we no longer require A to be divided by
2 at each iteration. These modifications
are technically required by the algorithm
to be strongly polynomial. (The algorithm
given below does divide A by 2. These
divisions can be replaced by multipli-
cations of x, r, and e by 2. The resulting
algorithm would still correctly calculate
the optimum spanning tree, from which the
optimum solution for the original data
could be recovered.) Our strongly
polynomial algorithm is given below. In
the algorithm description, we denote the
contracted network by G' = (N', A').

(1) We contract an arc whenever it becomes
strongly basic. The reason that our
generalization of the RHS-scaling
algorithm is strongly polynomial is that
we can locate an additional strongly basic
arc after O(log n) scaling phases, and that
there are at most n- 1 contractions. At
termination, the contracted arcs are
expanded and exact arc flows are computed.

(2) We allow an anomalous special
augmentation to take place in some cases for
which the outflow of a supply node i

7

algorithm STRONGLY POLYNOMIAL;
begin

set x:= O, := 0, ande :=b;
set A: = max e(i): i N);
while there is an imbalanced node do begin

if xij = O for all (i, j) in A' and Ie(i) I < A for

all i E N' then A:=max (e(i): i N');
while there is an arc (i, j) E A' with xij > 4nA

do contract arc (i,j);
S(A):= (i E N': e(i)2 A};
T(A): = (i E N': e(i) <-A};
S*(A): = S(A) u i E N': e(i) > A/2 and

b(i) < 0);
T*(A): = T(A) u (i E N': e(i)< -A/2 and

b(i) > 0);
while S*(A) o and T*(A) : do
begin

let k E S*(A) and 1 E T*(A);
considering reduced costs as arc lengths,

use modified Dijkstra's algorithm to
compute shortest path distances d(i)
from node k to all other nodes,

t(i): = r(i) - d(i), for all i E N';
augment A units of flow along the

shortest path from node k to node l;
update x, r, e, c, S*(A) and T*(A);

end;
A: = A/2;

end;
end;

Let A' and A be the scale factors in two
consecutive scaling phases. We define a node k to be
regenerated in the A-scaling phase if k S*(A') u
T*(A') at the end of the A'-scaling phase and k E

S*(A) u T*(A) at the beginning of the A-scaling
phase. Note that by this definition the new nodes
formed by contraction of an arc (i,j) in the A-scaling
phase are not called regenerated nodes; however, i
and j may be called regenerated nodes.

Observe that an ordinary augmentation
originates at a node in S(A) and terminates at a node
in T(A). A special augmentation either originates at
a node in S*(A) - S(A) or terminates at a node in
T*(A)- T(A). The strongly polynomial algorithm is
essentially the same as the RHS-scaling algorithm
except that it performs special augmentations and

sometimes adjusts the scale factor by a factor larger
than 2.

5.4 Accuracy and Complexity of the Algorithm

The accuracy of the strongly polynomial
algorithm is easily established. We show that the
algorithm always satisfies Flow Invariant 1 and,
consequently, each augmentation can carry A units of
flow. The algorithm always maintains dual
feasibility of the solution and terminates when
primal feasibility conditions are also satisfied.
Thus the algorithm terminates with an optimum
flow in the contracted network. Expanding the
contracted arcs of this solution yields an optimum
flow in the original network.

The complexity proof of the algorithm is
rather involved. However, the essence of the
argument can be summarized as follows. The number
of augmentations is bounded by the number of
regenerations plus the number of contractions, and
this number is O(n log n) since each node is
regenerated O(log n) times. In addition, since we are
maintaining spanning tree solutions, there is an
additional O(n) time spent per scaling iteration
even if no augmentations occur and the number of
scaling iterations is O(n log n). Finally, there is a
total time of O(mn) spent in contractions. The
resulting running time is O((n log n)(m + n log n))
which is O(n log nS(n,m)).

Lemma 5. At each stage of the algorithm, Flow
Invariant 1 is satisfied.

Proof. This result is easily shown by performing
induction on the number of augmentations,
contractions, and adjustments in the scale factor. ·

Lemma 6. In the A-scaling phase, if xij 4nA for

some arc (i, j) in A', then xij O0 in all subsequent

scaling phases.

Proof. In the absence of special augmentations and
contractions, the flow changes on any arc due to
ordinary augmentations is at most n(A + A/2 + A/4 +
* · + 1) = 2nA. There are at most n special
augmentations (see Lemma 7 below) and each such
augmentation carries at most A units of flow. Each
contraction causes at most one additional ordinary
augmentation (see Lemma 8) and there are at most n

8

contractions. Thus, the total flow change on any arc
is at most 4nA and the lemma follows.

Lemma 7. The number of special augmentations is at
most n over all scaling phases.

Proof. Suppose that a special augmentation

originates at a node k E S*(A) - S(A). A proof along
similar lines can be given when the special

augmentation terminates at a node k E T*(A) - T(A).

Clearly, A > e(k) > A/2 and b(k) < 0. Observe that
node k is formed during a contraction operation since
for an uncontracted node e(k) and b(k) have the

same sign. During the special augmentation, A units
of flow are sent out of node k. Hence e(k) < 0 after
the augmentation, and there will not be any further
special augmentation starting or terminating at node
k. Thus every special augmentation can be charged
to a contraction and there are at most n contractions.

Lemma 8. The number of ordinary augmentations

during the A-scaling phase is bounded by the number
of regenerated nodes plus the number of contractions
in that phase.
Proof. At the end of 2A-scaling phase, either S(2A)

= or T(2A) = . We consider the case when S(2A) =

o. A similar proof can be given when T(2A) = 0.

Consider the potential function F = Le(i)/AJ
ieS

Clearly, at the beginning of the A-scaling phase, F
is no more than the number of regenerated nodes.
Consider the effect of contraction of arc (i,j). It can
be easily verified that if e(i) < 0 or e(j) < 0 then
the contraction does not increase F. In the case when
e(i) > 0 and e(j) > 0, there are four possibilities to
consider:

Proof. The value e(k) is b(k) minus the flow across

the cutset (k, N' - k). By Flow Invariant 1, xij-

b(k) mod A.

Lemma 10. The first time that a node k is
regenerated, it satisfies I e(k) I < Ib(k) I

Proof. Suppose that node k is regenerated for the

first time at the beginning of A-scaling phase.
There are several cases to consider. First suppose
that e(k)> 0 and b(k)> 0. At the time that k is
regenerated, all arc flows are integral multiples of

2A and e(k) < 2A. Since e(k) - b(k) mod 2A, it

follows that b(k) = e(k) + w(2A) for some integral

multiple w. Further, since 0 < e(k) < 2A and b(k)
> 0, it is immediate that w 2 0 and e(k) < b(k).

We next consider the case when b(k) > 0 and

e(k) < 0. Since k is regenerated, it was not in T*(2A)

in the previous scaling phase. Thus 0 > e(k) 2 -A.

Since b(k) = e(k) + w(2A) for some integer w and
b(k) > 0, it follows that w > 1. Consequently, b(k)

e(k) + 2A > I e(k) I, and the claim holds.
We have thus proved the lemma for the

case when b(k) > 0. The case when b(k) < 0 can be
proved in an analogous manner.

Lemma 11. Any node is regenerated O(log n) times.

Proof. Suppose a node k is regenerated for the first

time at the A*-scaling phase. Then A* < I e(k) I <
Ib(k) I, where the second inequality follows from

Lemma 10. After log (8n 2)1 = O(log n) scaling

phases, the scale factor A < A*/8n2 < I b(k) I /8n 2 ,
and by Lemma 4 there exists a strongly basic arc in
the cutset (k, N' - k}). The node k contracts into
a new node and is (vacuously) not regenerated.

(1) 0< e(i)< A
(2) 0< e(i)< A
(3) A < e(i) < 2A
(4) A < e(i) < 2A

and
and

and
and

0 < e(j)< A
a < e(j) < 2A
0 < e(j) < A
A < e(j) < 2A

In any of the above cases, the contraction
increases F by at most one unit. Finally, we observe
that each ordinary augmentation decreases F by one
unit and the lemma follows. ·

Lemma 9. At each stage of the algorithm, e(k) --

b(k) mod A for every node k E N'.

Theorem 2. The total number of augmentations over
all scaling phases is O(min (n log U, n log n)).

Proof. In the case that U < n, we can choose the

initial scale factor to be 2 Flog U}1 and the

algorithm will terminate after log U1 scaling
phases. Since there will be no contractions, the
algorithm reduces to the RHS-scaling algorithm
given in Section 4. In this case, the time is the same
as given in Theorem 1.

We now consider the case when U > n. By
the previous lemma, any node is regenerated

�

9

O(log n) times. As these n original nodes and at
most n new nodes can be formed due to contractions,
the total number of regenerations is O(n log n). The
Lemma 8 yields that the number of ordinary
augmentations is also O(n log n). The number of
special augmentations is already shown to be at
most n in Lemma 7. The theorem is now evident. ·

Theorem 3. The number of scaling phases is O(min
(log U, nlog n)).

Proof. The bound of O(log U) on the number of
scaling phases follows from the fact that in the
consecutive scaling phases, the scale factor is at
least halved. By Theorem 2, the number of scaling
phases in which an augmentation occurs is O(n log
n). We now derive a bound of O(n log n) on the
number of scaling phases in which no augmentation
occurs.

Consider a A-scaling phase in which no
augmentation occurs. Let there exist a node k for

which I e(k) I > A/8n2 . We assume that e(k) > 0;
the case when e(k) < 0 can be proved similarly.
Then within O(log n) scaling phases, the node k is
regenerated and within further O(log n) scaling
phases, there is a contraction. Thus, this case can
occur O(log n) times.

We now consider the case when I e(k) I <
A/8n 2 for each node k. If all arcs in the contracted
graph have zero flow, then we set A to
max(e(i): i E N'), and in the same scaling phase the
node with maximum excess is regenerated. Since
within the next O(log n) scaling phases there will
be a contraction, this case will occur O(n log n)
times.

Finally, we consider the case when I e(i) I <
A/8n2 for each node i and there is some arc, say (k,
1), with positive flow. By Flow Invariant 1, xkl >
4nA' with respect to the current scale factor A3 and a
contraction would take place. This last case can
occur O(n) times. ·

Theorem 4. The strongly polynomial algorithm
determines the minimum cost flow in the contracted
network in O(min (n log U, n log n) S(n, m)) time.

Proof. The algorithm terminates when all of the
node imbalances are 0. Since dual feasibility is
maintained at each step, the algorithm terminates
with an optimum solution. To complete the proof of
the theorem, we need to discuss the computation
time of the algorithm.

Consider the time spent in a scaling phase.
Reducing the scale factor by a factor other than 2
requires O(n) time as the number of arcs with
positive flow is at most n-1. The contractable arcs
can also be identified in O(n) time. The time needed
to identify the sets S*(A) and T*(A) is O(n) even if
these sets may be empty. Since these are O(min (log
U, n log n)) scaling phases, these operations require
O(min (log U, n log n) n) total time.

The number of augmentations in the
algorithm is O(min (n log U, n log n)). Each
augmentation involves solving a shortest path
problem and augmenting flow along such a path.
The time needed to perform these operations is
clearly O(min (n log U, n log n) S(n, m)). ·

5.5 Expansion of Contracted Arcs.

The optimum solution in the contracted
network does not contain a cycle consisting of
positive flow arcs; hence, we can easily obtain a
spanning tree solution. Let T' be the corresponding
tree. Now inductively expand the contracted arcs,
one at a time. Since the strongly feasible arcs form a
forest, the ultimate solution is again a spanning tree
in the original network. Let T denote this spanning
tree. As all the strongly basic arcs have zero
reduced cost at the time of contraction, the potential
of an uncontracted node is the same as the potential
of the node it got contracted into. From this
observation it is easy to prove that the expanded
spanning tree solution satisfies dual feasibility.

We now need to show that the spanning tree
T permits a primal feasible solution. We
accomplish this by showing (details are omitted)
that for each pseudoflow in the contracted network,
there exists a corresponding unique pseudoflow in
the original network, and that each augmentation of
A units in the contracted network changes the flow on
any arc in the original network by at most A units. It
thus follows that any strongly basic arc has
nonnegative flow at the end of all iterations and the
ultimate flow is primal feasible.

6. Capacitated Minimum Cost Flow Problem

There is a well-known transformation
available to convert a capacitated minimum cost
flow problem to an uncapacitated one. This consists
of replacing each capacitated arc (i, j) by an

10

additional node k and two arcs (i, k) and (j, k) as
shown in Figure 3. This gives us a network with node

set N1 uN 2 where N1 = N and each node in N2

corresponds to a capacitated arc in the original
network. Each node in N2 is a demand node (If each

arc in A is capacitated, then the transformed
network is bipartite.) When the algorithm
described in Section 5 is applied to the transformed
network, it solves O(min ((n + m') log U, (n + m') log
n)) shortest path problem and each shortest path
problem takes O(m + (n + m') log n). In order to
reduce the shortest path computation time to
O(m + n log n), we have to solve the shortest path
problems more carefully. This can be accomplished
by replacing each node in N 2 by at most two arcs,
and solving a shortest path problem on the reduced
network. We state without proof that the shortest
path problem on the transformed network can indeed
by solved in O(S(n, m)) time. We therefore obtain
the following result:

Although the theoretical significance of the
above algorithm is primarily for the uniform model
of computation, where each arithmetic operation
takes 0(1) steps, a minor variation of the algorithm
is very fast under the logarithmic model of
computation (where we count the number of bit
operations) as per Cook and Reckhow [1973]. (The

modification is that A is always chosen to be a
power of 2.) The resulting computation time for
uncapacitated problem is O((n log n) S(n, m, C) + n
log U). Here the shortest path problem is a function
of the largest cost C as well as n and m. In other
words, the running time grows linearly in log U as U
grows exponentially large. For very large values of
U and moderate values of C this bound surpasses all
other known algorithms for the minimum cost flow
problem as analyzed under the logarithmic model of
computation, even when applied to the capacitated
network flow problem.

Theorem 5. The strongly polynomial algorithm
solves the capacitated minimum cost flow problem
in O(min (m log U, m log n) S(n, m)) time. ·

b(i)

Q (cij , uij)
b(j)

-D0
(a)

b(i) -u.. (0,) b(j)

0 oo O

Parallel Computation

The most obvious way to speed up the
algorithm with parallel computation is to apply
parallel algorithms to the shortest path subroutine.
This leads to a running time for the fully
capacitated minimum cost network flow problem of

O(m log3 n) time using n3 processors. Here, of
course, the processor utilization is not very good.
Moreover, we conjecture that we can reduce the time
to n times a polylog function of n by allowing
randomized algorithms.

Other Algorithms

FIGURE 3. TRANSFORMING A CAPACITATED ARC INTO Two

UNCAPAC1TATED ARCS.

7. Future Directions

In this paper, we have presented a new
strongly polynomial algorithm for the minimum cost
flow problem. Our algorithm improves all previous
strongly polynomial minimum cost flow algorithms.
Our algorithm also appears attractive in
logarithmic and parallel models of computation, as
described below.

The Logarithmic Model of Computation.

There are two approaches here that merit
further investigation. First of all, if we translate
the Scaling method of the transformed problem back
into the capacitated network flow problem we
derive a new type of scaling algorithm for the
minimum cost flow problem. In particular, excesses
and deficits are stored on arcs as well as nodes. This
new type of scaling algorithm may be of use for the
maximum flow problem or the minimum cost flow
problem.

Second, the essence of the strongly
polynomial algorithm is that each node could be
expected to be contracted within O(log n)
augmentations. It was important that we could treat
nodes individually, rather than argue that just one
node is contracted with O(log n) iterations. Within

11

this context, the role of "special augmentations"
played a pivotal role. This argument may well be
applicable to other algorithms that rely on a
successive reduction in primal feasibility.

ACKNOWLEDGMENTS

I greatfully acknowledge the help of Ravi
Ahuja both with the exposition of the paper and the
details of the proofs. His help was very valuable
and greatly appreciated.

GALIL, Z., AND TARDOS, E. An O(n 2 (m + n log n)
log n) min-cost flow algorithm. Proc. 27th Annual
Symp. of Found. of Comp. Sci. (1986), 136-146.

GOLDBERG, A.V., AND TARJAN, R.E. Solving
minimum cost flow problem by successive
approximation. Proc. 19th ACM Symp . on the
Theory of Comp. (1987), 7-18 .

GOLDBERG, A.V., AND TARJAN, R.E. Finding
minimum-cost circulations by canceling negative
cycles. To appear in Proc. 20th ACM Symp. on the
Theory of Comp. (1988).

LAWLER, E.L. Combinatorial
Networks and Matroids. Holt,
Winston, New York, 1976.

REFERENCES

Optimization:
Rinehart and

AHUJA, R.K., GOLDBERG, A.V., ORLIN, J.B.,
AND TARJAN, R.E. Solving minimum cost flow
problem by double scaling. To appear.

BLAND, R.G., AND JENSEN, D.L. On the
computational behavior of a polynomial-time
network flow algorithm. Technical Report 661,
School of Operations Research and Industrial
Engineering, Cornell University, Ithaca, 1985.

COOK, S.A., AND RECKHOW, R.A. Time bounded
random access machines. J. of Comput. System Sci. 7
(1973), 354-375.

DIJKSTRA, E. A note of two problems in connexion
with graphs. Numeriche Mathematics 1 (1959),
269-271.

EDMONDS, J., AND KARP, R.M. Theoretical
improvements in algorithmic efficiency for network
flow problems. J. ACM 19(1972), 248-264.

MEGIDDO, N. Towards a strongly
algorithm for linear programming.
Computing 12(1983) 347-353.

polynomial
SIAM . of

ORLIN, J.B. Genuinely polynomial simplex and
non-simplex algorithms for the minimum cost flow
problem. Technical Report No. 1615-84, Sloan
School of Management, M.I.T., Cambridge, 1984.

ROCK, H. Scaling techniques for minimal cost
network flows. In. V. Page, editor, Discrete
Structures and Algorithms , Carl Hansen, Munich,
1980. pp 101-191.

TARDOS, E. A strongly polynomial minimum cost
circulation algorithm. Combinatorica 5 (1985),
247-255.

TARDOS, E. A strongly polynomial algorithm to
solve combinatorial linear programs. Oper. Res. 34
(1986), 250-256.

FREDMAN, M.L., AND TARJAN, R.E., Fibonacci
heaps and their uses in network optimization
algorithms. 25th IEEE Symp. on Found. of Comp.
Sci. (1984), 338-346.

FUJISHIGE, S. An O(m3 log n) capacity-rounding
algorithm for the minimum cost circulation problem:
A dual framework of Tardos' algorithm. Math.
Prog. 35 (1986), 298-309.

__X_�1___��l_ _II__�____^··I1__I__�Li--._·I�LI.-�._ I-l)mUL·�(1WI·I�-CI-L··--D-_l-�--l----�

- _---·--- _I-� -- -- - I--- I- I-_I I--_---I_----__--

