
-- .., ". I- :--.I- .---. ... ,-.�� �1 - .1 : .� � �:, , --,. I.I -, -..-
II-iI.II-�- .1.�IIIZ...-.1..:II.�

-- �-.,.�.-�
,-�- II-7-I

.II.
.I�-II,..I-.:-.I�.- -�. �--, .1 .I --�..,, .. �.---,I..�,.-, I I.-.w���I�

-,.-I-,-:
�.

..
1.--.�-.m.:-.

-,� 1-, -,,,..

.. �� , ; ': 2.--�-.,4 : -": ;.-I i-,,I�.-.. �� ..- .

1,,-. i1.,,-.:�-,Z�� -�,--�.. --- .- I I.I--,.,�I�,II�::,.:II.1;:-I --.. �-. I11;1. -,�.., .II,�-,I-1�:,,---, .I .:,,I '.-�-,:... ... �--iI!-: ,--,- � .,.,�- 4-.,.I ,II,----"..-,!�.IIII%.I: -.�,�I�.--1I�,-�- ': --I�I. -,�� --� 11-�--- ,I.,,....-� .-,,.-...,I6,,� ...: �.i,-:.. 1.:-'.-�- T",,.-.1 -1.-�--�:�- .. .I,� �,� .-. �- I-�I�....:I:.-�,..-.,- ,o �. -,:� --. IZ.,,- ��-:--�,,.-��:,,,�I.,--�,, .-1�.��
-- ,II--..�,.--I I�.I,�.,,. , -,-,,.-.,

, , , �,. -,--� , , ,� � I. I � I. -,,, ,--,," ,4--, -�-,-1 .,�:.-��
.- ---- �-�.,,�-- .,-- �- �.,.�-.-,..-�-,,.--� ,.. :,,

�------- �m-- -�� ,-,.-�.-'..,� ":� -,.�._�,.�: , --,-,,-,,,.-��, �;�� �i-:- -,�7 �,,-,. :-� .1..�I�
-- �-----�.I:.-:�.�:

-, .��I-�
,� ,.-�.,%'.,.,., -, -I- �.. � ,----, �-- -"

-,�,-,---,.---
.r:l '.

.- ,� -...: : --, -,-I,���-,: -,I-�...-.�-.-,;, :I�-5��,-�-,� ,-
.���,I-�I�-,. �'.,..I ,�� I ,.--.,,--; �- -,.I _- --.. �,.,-

,,,�T�.-�.I-.�.-, ,,,�-� ��,-, -. " -. -� -:,: ,�,,�t ,i�1
,.Ii.,.,.Z�

.-I-.,.I� ,�;.: �-, , �`: �- I ,-Z1,�,��-: ,",,,� ,..-.-,� .'-,�,,.. ,,.--� -,,;-Z,,--,
,'. 1�,-,-,::t..;`,----�--, -�--,�

-, , �., �,,"' --,-,--,� -,-. � -,�..�,��-- ,��-",,.-
,� ,--� �� -,-� -, -�: .. ,:,,�-,,---�-.- -,, .-,��,,�,-

-...-- �. -,,��, ,-:--, 1� ,-�-1-..�I,,. -- .:,.��;-:,--,1 7r�---,.,,.,.- 11"
---.. '- -1 .- I-,Z:-- �'. -�,,I-..,.��.,,.,�.II -.--.- II,-,.,t.II-

�I��;�. I- .�-�.-1:-,,:- ,-_: -:--, ..,,.�
.�� �� III---:,

-- ,,�.F- :��' ,..-�,-: ,--�--,,f,-.�-,-_I..�-�,.�.-v-
�

I,---II-,,,--, -,-, , 1.,�� ,� ,-.�.
-;,,.-,.---�:I-;�11�'-

� �, ,--�.��.�-.-�-.�--, -,,-I�, � .::-`1 -- ,��:�, '.,.,..- :.�-�.�I -... ,,-,, ,�-� -: i .�-.� .�:.I�..-,.- �,I--,

-- , ,�11,-,..,-.,.-�I..II.�
�

I--o,,-,�--;�
.�:,I I.

-,�'- ,--,� � �, -, -,,�,--,,,.,�-. I �-�-,--
I1.�, -- -A .:

1-- �-, , -, -,----�,.--��,--,,,-
'�`-i- � �---�,-�.,II;�.,-,�.i.:1�,�,�,:�-�-�, :--.-��I�.,:,-�,�,-,��.��

-:
-�, I. .�I�.-1��-.-���-.� I�--:. , �-��`- -:��- ,�, �,4-I

--- I I.,.��I�..I�-,I-�-,�, -" .-.,--�,,-.- ----��,,. ,,- -- �:�,4:-,',,,�: Z,���,-.-...-.-.��.,
,,

.e-.-- "7, '' �:. -,.".�.- ,� ,,. .-..- :::,.,�--
-,,,.�,,,, �,-�.�,-,-, mi ,-,., -,. , ,:�,--�-_ ,�- --�:,�-'. --�Z-,--r, :,,--:- �- !; .- % �I.-: .-f ---� ,, , ..- -,,-.I:�-:-.-, :.I,

,'-,�". .,-. %� -. �-.,,-�I-..--�,'-�;.I-,-,�,1 �,I.,p, � �I.I I -- �I -r -'... , ,-.I�
-'j I,-:z , � -�-� ,.�,,. �� %,-�-���-I�-.,... ��,,.,.--; --.�I�I:,..,-�-.,.:� -. I�,..�

.1..I.1.,,�I- :I-:���I, .. i-;..,--�� �I�-i-.1 i�-�,.1.�- -- �,,7 1 .�
-'. -,--.,:-,- -:�,.-,.I�IM,..�, , ,-

,-, " ', ��! - , ��, , "��.,.:-. ".- .- ,-.-. �,, ,.I � -, .�-4
--- ,,-� �. .,�-.� �7. 1,-

I-;z. �` ,- I�, ��- � "- -�--�e � �,� �z,-.:!�-.�--z��.-I.�
..-.

-- ,,-�'--,. .�.II.-�..I.-1.,.-I-;.,--1
�'--

,11-�..:..-: ��-----1.I--I.- 1.:., -..�- . �-I-I,, �.o�,.:.-: I.-��,-1I.-- -1
.- I-�-II I�.,.� -�.--

,
-.. I -.- I':-.,,- �� ��

-. ,.I--,�-le., ,�::,� �'. �, -,"-.- -, �----�-.- :.
.. ,"--`'�'- -I, --' �� -'�-, ..- �--� .', , ,- ---'� � !� �-' ,7-z� t-"---. -,:, ,:,.-:.I-I,--�.I�..,.j- I .-p-,."I--.�"�,-----!�,v---,-,�--�, --- ,�i- -, ,�--'��:1 ,.-- .�-..:!:� �, ;; i. ��, ��-;�.,,=-- ,.,"�,.,-.. -i-�'-�,� -. ", " ,_,, ,- � �7-"-..,�-,.-, -,!- :-� ,.- I-I..::�;II,,.�,,.,,`--'-,,,-�,,..,I"�I�I�-I. -,..-...�,. ,-I�,-� .�,..,�.�-:-.�. ..- 1,I� '...,..- ;. : ., .,�,�, :,�--,,-,�.�:-II�:--.,, -,--�,.r,

,�I:"11-V�'�.II,:--...
---.. ,,-�-

,,--,- - , I, , - � .. .: ,. � - I .�. r. - , " , � - -"I. I .� " ,;,, . - . -

-,I...11 ': -: ... -�� "�.I--.-II-L-,�:I--
�'�-,,,, -:�

%..-�-, �- '. I "- I--._-_:.--- ., .,,,_��:,:��I
I-

-,--I---- -,I` --- , -� ��� -,,,,I ,

-�.,,� -��,-, I, �-1"-,-, .- �,. -I.� �,-�:- �:

I-���- -:.,,� �i ,;�I,�-. .- �-- -".- -

,., .-- II-i.,I-11 ,�.,-:� .,:,-,...-� ,,.-.� ---. : , -".�-, .� .:r.�.�,:- -,.-Z-�,--�...�
��1. ..--- ,' ,,.----�- � :,,,--��--I, �-- .--- �,-4- .1I--..- .���,- :� .-,,'-,,I-: ��,,:. ,:. -_-,

-,I ,�--,-:, �-.1.It�. .- -... ,�,,��-W � I--,. .- .I .I��Z���.-�.. ;,.
�-,� :- i':-' -,--� -, �,:� -I � ::,�-�, �- :--,,--,.,. -�',.��-7,-� -�---..;-,��.� .-,-.,-.,�-,,.� ... ,:.� "-I--,I,

�I�--�--- -�.�. �.,� �.., ,--:..:7 .�-.,,��,,i,-_ , ,-J. I- ,��,,�..: , 1.- ,-���,,:�-I-. ����
,.,� ,-,,--",, ,- -,,�-,r,', -, ,,, � , --, --: ..-- .-, --. 7 -, � .. -��', -,�_-- : I,,."

.�,--.-.--"..,.I''.-..�;,-I ..- �rc�I- -- I-..II

-:- -,,--,,,�.. .,I- -.-. �, ,-:.,.-,I:.-- ".;,�- --I,:; ,-I"' I" ",, �,"�t,".,.,,.i :-..d :.--1.I.

-,I ,1 : .- '.' �-�� :,,�-- ., �1,---I.:-��--;�- -- t-.Ii�-�I.,�1:,-��-�.I1--.-,.�-,1 ,7...�,,.��-�,.,I��.- .,...,�,,,.�.�.-�;,;., � " .���, :,,--�..
.�.,--.'.

I1��. �- 7
.� ��L�. '., �� .� �:-.C: � �:,,-:���-- :--:�m,-- -- : -- --.- �9 �-,.-,-�I--,-�:�

,,,I� -,-,
�

.,11.:I�I-,"
,�-�o�.-

-,-.I--,,:--,�---t �,., ,,�,..-�-�:,; ,.,-.--I-.I-� �-�:.:�-.---�.,-�;� ,-:: ':� �-.� :,-,� ,�: � i---", -,
-,I,- --,-.-I-��..-I-II-�;-,,����] �., � ;�,,,�.,..-�,.,I�� : :I-----

--.-- �-,-,-,I-:11
-�:�-

-,--- I- I-- �;,..�-,�-�.-I-,�.- �c -- �,.I..-I..II.III--I-�,�.;
,I-.� .:,.-�,. .,.-,.- .. ��-,-p.,,--.-I,..-I.-,- �.,I1.,-,-- Z ...-. ,�-, f -,,'. ,��,

II �I-,,,-��, .,.I---��-,,.,I�-�-�t-,.1-.-
I� ., � ,7v.-�,.,; :,..."�, .i --, -, ,.� ,,.,, ��- �..��,,,- .,�- ,--

,,-. -,!.,V-�..�: ,.. �"�.q,�, ,..I,7,;:.-, ,-.",���� --.:� ., .,�, ,,-1,�I-�-"-.:.-., �.� -:I�q:..-.-,-,I--I.,,,-,. -,.,. , I ..I -:7 ,�I-� I�1. .. �- �,-��l .�, --�, ,,...�.�I- �"I,--,-� �-t -,,

-,-.I. ..I, .�. .:..", i-,-�!�,II-� .,:�; -1 '.--,, �--,,, ,� :, ,-.,- -Z,-�,.,.
... �I -.-.. �, -.-. ,;:,,;�. ,,,�--, , I-I ..

.��-.�-� ,� :��`.,,-:. �,�-� � ,� -� ,".
, : �. -� q�.'..�,,-z �.- ��,-I--- �,..,.,,':.-- --�-��.�I-;-,-..- : -,- �,�i .- , .- "�- -,-, �� --�;a. �I,' � I .� -�- �m -- :..j:��,�",.-II-.�I I.q--:,-.:-,z -. �,���Z, ,.,� :. �,-,--�-,.,- -,. ��,�, .-�-1 .,---,.,-.-- -7i-I-�-�-, .-", 7. 1.-,-1,.. �- -,- ,-�- ,-,.I�.:-I- I -I.-,--- , 1��.�--.�17�,I,-, -: -

.,�-� 'i���,,.- � ,�...-.
-,I.-�

,� .'- ,-1 �:-.� , �,.I.li I �-.....,,5.� ,..z
.�.- ,,..� �, ,.- -, �-, �-I.Z. � I-�,�-�I-I,--,,�-;,"-I.I.�-.I�,. ... ,.-�-- ,1--�I-�.
-- ,��2.,�--,..,�: :�,.-�11 -;; ��I..
�;,..1,.I;

I-
-'. Z'�:I ��� �7,-.--. -,-,-�,. �.II. I;,.-I: -���,Z,� r, ---.--- III
".-,j'; L :".. Z � " ,' " 1- ;�:'. � �, -: � .� � �-�-- �,. '- ", --�I�IK -,��'I--"�-.�I-

I I-_:: .,-,-�1..-�II-�.-^,I&
, E--

-'.I.-I0.1
�- ".-`�".- -- �,.9MOM .1, 2.--r%.--- 1.-1.�.�.-. --, ",-. �I.1 I- .I,,-.,-1 - ,� -.- 1.�.-- -:1 "-- �-- " -- , I--,-�--I-� , .I.. I'.

, ,.��--- .1 � -��
" ,2 ,�

�" .- ,�,.--,.I-.�-. 7�-., ----
,.

,,.�.,-.1---.� -�I ---�-I-"
-�

I,, ,, .--��. .-- -1I-I��..

�,�-.,�--1 �-,-,I.I.vI.- .. �,�, ,,,,,,I, �-, I �, I .,--,'-' --. I-.-- .�,.�-�.I�-1-

;:I:,� %401) %.i,--N7,-^. -.--�--L,-,� ,----
.

I.--I-��.--...7-
: -:::� t�.

.-- :- ,�,:..-� , , -I'l�,h,,,-:,. �I.,I,-I-
.I -,I'� , -o.�- I�-.I.-:,� �I." �--I---,., o,;I.�l�-. .� :: .�".--.�- -..- ---.. �. ..-- :.-�,I�t.:,-.:.;.�--.-,-,��

,."1:,, , ,. ,,",', -,,-�-I,- :-II,-,-,.;II-,,,-,,-:I ��'. --- �I- -.. ,�-�.�-�-, :�.,:.-- � ::.. �-. .1.�-:, .,- �A,,,

-.. �I.II-..I.I...-.I1.-I.I-..-:.-�,-�-..-I�;7,-,I.- . ,.- �. -. ,:1 '- '-. .-��t. ���, I11t,. �- ,:�-,�I-,.,-; ---,I: 1-!.1.,�---.,.--� .,�, %,-- �". �T ..,,---- , : -- �-

-. �. -- Ii-�:.7, ��-,-; ,,-III.-.
.�� �.. I -,--.II-�I�-,-� , , r �.Tq,�-1��� ..,I.

;,,....,,,--�--ft, I �� :, �.,...I,..�,�-�
-,;�� ., �,,,--�-�-

�,-t�.-:�,;t.,,,-�---.�:�...�
... I"

,- .- , ��I II...I- , �". ,- ---- �..-.I-,�- �.i.I-.II:-::-�-,,-..",�:
-. I--.,.�.��---1I:I,�,. �..;-.��,

�,-.,,.I.-
,� ;�!� .,,"-T; ;,,�I"I�.�-.I-.-I�II�II,�.I--

I�����,",�'. , :: -.. �..-� , �,

�I�. �-- .-,--1.- %-II--�--�I-�-�.�
.-I. .. �: :I :�-

-., I.-II�,-,. .I,,-'.- I--...:I�..��,,-I��
-�,I-�� ., �- ,�.�::- --� � ",,� -� , ,,; �, , I-�::-..��,-,-.,

;,,,-:- ." "i,:,:i�4.'..1� �..I-. � �1.I�.--:....I�=
., �.

,�..I.I...I.�-II�Iw.I..I--I-

��

.. ,,I.��-,-I..:-.I�,.� ,- -�, :,-�; -, �:--Ir.-,.�"I.:I.1,-% .,��,-, 7�-�. .T-:-��,.��IiII- I--�I.
1.�I��-., .I�c-I'.��:�.,Ir.�

�;.%�.�-,,'..---.-..-,--. I -�� .:-...I-.-.��-:,-::-.-� -� .-.---. ��...-,.I.-i, �I
-- .��I-.I�.--.-1,.�.�-p,-II�I::,,�..I,-;:

�,--.,,
,-.- --,",.��,.�,� � � ': -�.- I,� �I-I::... --i�, -�I..-� .:..�-.��I��-;.-%,,--�I .. ��.�,�,- , :;-.-

-...

I ,I;�.�-.I,.�ZII...-;��-.-,..,.�.,-

.- -,,,,- ,-,.�,:.,-�,-� t:.�II .. �,-�-.� ,-.,,,I,��..�.I.-,1�.." ��--,,,7,,.--I.-.I..,'--II--
-'.I�� ��--.,,�-.-� -1...I,.I�I.��.��I.,..--�

,blll ; �.q., �--�I-. �I-I-,o..--,",:�.,.�-
,.I,.�..-.,�I�.:.� �.�..�,-I�,.��-�I�I. .�;. ,---�-.-I�.I�: .-

:-.:I- �..�� !..ii .- -1-,'. .., :� ��-��-.1 .. �,-.---- �--��.-- �--,;�---�
,�:-, I�,��.: I._4--1 -. ,III-, ,,II.I �� �.L�I-� --- ::.�., _. ,..�.�- ,,.--.,.��. I,;I

,�-I--,�.�It-.-. �.II�-�,'�-.�-"-p'.I,..I�"--:-.�,..Z-.--.--..,I.��,--.
.- ,- .,.��I- ,::. :.. .. .:I�I---.. .- .Ii-, '- � I.��,; ,:i1,,:- �,.--.1, 11II-�--� .-. �-.�"�� ::�. �, � --, .: ;�4. I:, -�,,I--- , � ,:...,,-.I �,�I�--�,�.----

�I--� .tI��- II;,o-� .- �. .- �I--II,:I.-II --�,-�,� :: .--- ,i

I:.---..II..I.I..I�.,-,-- .- I-I--- ,-: ,� .--- �-:�:�-.,-.� �.-1�:�� �-,-. --- ,� ,;,- �-f;.i .�.,�I-.
�.�

�-..:-- �-- -,-, :-.,,-�I-�,-.-.��-1 I-I-..--, �--.-1, � ;�,��-: ;;,II..I.�..-, .

..11-�...I- �.�.,,.�:: :,:I- -, ,�.rI.��-.;�"
-,--:I-. '�,,I:-�.�.11,:- � ,.. 1 ::�,��.�V- I -- II .�-.. � ��Io,-,..I-��I�I--,--,�..,--I..

�..I---.-I
,�I ;, -.-

, �'-,,I--2... , .

, .:.,:'t , �,,-,��I, �---..,.:�:-.�. .IIII...
,-,�.- �--.....-.,- �, i�-.�-,- ,�-. ��,II�.,.�-.� I...1I.�..Z-��- .II�,;--- i1:I�I II.� ..�.I�-1---,---:--I

;;: � I-.1.,I II.-��,�I ,I...Z��:�. .I..�.".�-- -. Z .,-.,.1.

:�,.% '.,.,,.�-.�i�� .. .���I..---II��,.I.:-I�-.�II�-I-.,I---��,.,...�-�
-I,.- -

,��, , , .-- ,-:-:,�:,"�%-I.,-,:,...-.-.-1-��I.IIIII.-,I,-,-��,I��..�I,..
.-.-.. � .,--,I-�.

.7-.--,.�.��.I -I�.'.�-�I-.�I�.--:...�-�,
:,�.-, :�,��

.- �:,,.:,:,,.:..-..�� .- �.I,.II:, .- I.: �I�-7 -:-�; � -:;-.�-.- .,�� : .. II.-'--,,r�� :, ��:11:-�

-,... :..-II�.I�I����,,....�I-�
..-: -.�,., �,,� �.:1,-. -.- ��I-,,�"I �� .,- :- :����,-....:.�I�I-�,�III

-�-

I-,.I�%..-����,:,:�,,,�1�m,:,-j`��
�, --1 11:�,-

,,,., .- ��---.II,-�II1� I--,., -.I-.,4,�:-,Iql.,.Ii.,.
-. -;�- ,-., :.�,II-..�---,-II.- �-.--�.�-�. -m..�.�. I ,�.,I-"-.-.��..,-�-

I.-.-.I�-I-- -I ��.-.�-.-:�.�.�..,-I�-��.I.-,"--'
.,II��.,

t-It.�-.--I,-o:7�4;..�..-�I-�:,-�7--:�-..�I.I�,-..IL�:,': .ir.-,.--I I..I..711--.,� .: ���...1-�-., �.�-�-,-,-:-:�

I...�--�IL-..II�t
... ,.�I ���II,,�

.�,I, I�II.III..I.1,.�:-�.-,
.�.I� i �t-t,-, , I� :i--'.--7-:,, , , .-, I

--
I�,- I.-:

II,:1�I�.II-,;
,I--�-IlI,,

�,--: �.:.-,;-�-:..�1.,II'..�--IL-.II�,II� .-�.. �.-I-��'�..,r�.-,--
,,���

.4,�,,,�-II�..�I-�-, .�.I.. ..- ,.Z,�:�,--- .., ..,.,- �',-;, � ,:4 -, ,.-,---I-�,.,�.�:----11---� ,-, �,-,� -.- ,�.I,-.,.
.I -- I.�,���I�II- ,I- -- I.-,.ZI, -Ii-,,-�,�:

�1: , ,� -., -- -: , .., .�-.--I -. ��,II�---I,�,.�I-�-,-::�-,-1-.,-I�I�-,--
.I",�.,�� .:-"--. 1 .��:�I,.�.-.;:�

.��.I,, --,�,,�,;.

:.,--.-I.I-��-
, , -�-,%�

.�...�-.I.--.I��
.. ��II�p -. ,,,-, , .,".

"�-, .- -,�I12,-�Z-LL.I---��-�I-I.-.�I.I�I�-,
:.�I�---�-,.... �

�,..-., -�,--,.:I...�4�.�
�.I.;�--,-;�-,..-I-��,I-I.-1�, --. I.",-%II., I�II-�I.-

�1.,i:..I":- : :,

, .-.. ,,,--�I
,��rJ ,�I..�.I�.-.I-,.
-- o,..---�--,�;.�..-..��II..,,.�:,,-��.I-I�::�::.'

--I"II-��.�.-

,tI.I,�:�,-. ,,.�I-�".�
-,��-"-1I��

I.-.-��.�. ,I.dI...�I.�.��,...�I�-�I..I,
I�.-II� 11..::: :�

-� �I-.,..�i---�.
.. �:,,I.I �. ,� I III� -:,- :lo-.

-:�,:.�.. ..- :�,I.I.�-:-1.�-.�,I�,�-..�;4.-". -I��.
,,I.�.�-.I�.�..'�I�-..I�--,.�

-.-----.. 1�.I�-

.-� ,,,I:.: � -,. , -�:;:�--" '.�. ,-" , :--..-- ,I--.I-..II.I.�I�I-- --,II.�-I.�.���-I:-.1.�,. -. :.I�--- -I. .i.�I-..-, ,.��.,, -�

�.--I.. .- ��I -.- I�III.I�, -- I�I�I,."w�,� ,, .,�-,,,� .- ,.,,"�,4

,, �;, ,,-.�.,�.�-��. -.. �,.,.�.I.�-�,i-.
.

-- ��-�II-.-I�,,.. --
�--.I-,,-4 ���,.�F,-. �,-,I.�I.1-.-,

, .�,.,..I, :,-�;��I�-.,�.�,,-�-
-�-. �'�

tII .�,---I-.�-i.�,,---I,-
�--f,,--:---,.I.-�. -,-,-�:

-. -- ,�,�i..I�,.Z.--.,-..��,:-.-. �.- �1�..-.
�-.,.,-!�.

�,-F-,:.��-�.i �',,,.�-I-�-.----
-�,--�-.,��- -I

-I.II-.�-�,--
.- ��,,, ��-. 1. .� �-�

--
I

--
I-

. -

-� -,-.��I-�
�-,�;,:�:�"��-;--4 ,� ---- ,��- --,!,:..-.,

1.II IL--":,I I� -. II:��II, �.i-1.,I.,, '�.I.-� � .�,.,
,.,.-,., -.-:!�-, ��I..-, � -�;-,,-.�--�;,.�:,

-,�,�, �
m.�� .�,- .:.-�1. -�I�I-..,,.,-.

-- -:..,.�-:-:-��I.III-I.
,. �. -: �,:

�.,-.I,-,�I�
... ��,-- �"�,..,.: - - .� ��'.. -.,,I-img:�� - i�-11-1111; -,-,�� -!--, �, _,,,�I � .

,:

.

.t.

�7
-
-,-�'� I.

wrk
0-pa

, er, ---
,I.

- ,. -,jl-q�-,

��'. �:,- �-,-,.- i , ,.-I. .- F-1 4 .,-1 �, �-,, ,- --1,:" -

�i-..,,:,,�
"..-�.,,,.�- ,,

-,--.,�.�4,-:,�,-.: :,,-1. ,�, ��,- ".f-- --1.-I: .:-..-II-,��.. -�:-I�,.

.,,,:--7---�, :.-.-- .-..-.- ----- .I.- � ..-.- I- -..-- ---- -. -- __. -.- --.. .. ----, .� .-- II .�,4 �-.I-�:,--.,-I- .

-.�I II �-� .,I- -.
�t -.,�7.II-� - ,I. ,.�"-, -,I

, - I�j.-�� - .--.. ,�.:�I-,,--
'.

-,I:,
��. �-�I.-.--i.,-

.- �-,---�--�-I.I-1.-I-1
-,., .�.

1:..� - I-,�II
,-.,t_-,_ .:I..Ir.�:","-.- -,:�.I- III.i;

,-�,�-
-� :,. -�:. �" ��:,��,r: -:, �J ,--- �. ,, :,: --.- �--.

... I-�. .:� �: I �,� � .i .,,II.
I..,

., .I�.-,..- ":-,,-,-�
I

"-:-I.II..-:-�:: �'--I:-,- �I. -I. .�.7..
��'.-

., e,.,�i��-��.
I If .��:�.. � .� .,,I

,� -, 'I�-d ..-.- �."'-' �-.���----��..,r: �- � -� 11 -,.:I" Ii1.�I�-.,�. I � I-: ": - .- I ,;.'�Z11II..�,,-
.�..--.,I�i,��, -i,--1I,.-I.--1�'Z�.

-. Im., ��` ; -� :,- �-.:,.�" -�,�:, �-- ��
.-. .�I- "--I1.".,

.,--1.I..
-I,.--"-,

-,--M�;. : m,-
I--I.�II- il p---��,�

-.:-�:�.- I II..1.-�.-,2-.-1,,-�.-- II-,I--.:-,
�,�-

-,�.11�I-I--.:.�-�-�,.-
� -,-. i.. ;

�..,, .. ��--.-�..,, ,---� I I I ..,.--.-�.�.:�
.:", ,,, .,,,- '.�-,�

--
r.:�I��-.1.

I-,,�
'.,,. .-.

� -I.�� ,.-:
,,,:;,.. , , --. 1

---. : ,-I �,..- ,l �. '.:- -. � �: .,..
,�II a I.--.;".� �-� �, .,

,-I�I-. -'.. �,�.I.�.II
�: � .�-

-1 . .- �-,..-�I, ,-,-
.. .. ���.I-�..-I:1 1;,_:���.�-�-�I.� .11".

�

�, .I-I�..�,���::,:
',:; --

-I�..�II �..�,.,�-
.� ,i

l-,. .I.. �. ,�.I.�I-�-.,.L�-�.-�,,�, �. .." I .-11 : ,--�I ...
:I�.11Ia,-:.-� �..�, , ", , ,3 -I.

--, ,. ,rI-I--�:1� :: -. �;-;,
Z, ,--,:.--I-,��"�.,�.-..

-z .-I �-,;,�.�;.,,.1:-,�1:.j11,.�,.�-:
':-�

-- �-- -�: ��:� " -.�. .%.-�� �..--IL, .I,.
I -.. I- .4-�,,-.-,I11,I -�..��.r, , I-

.-- -.- I1,,,, -�.-.,-I�.-�
.-- -,�I.�� ,�..I,,

,-,--.2.��:�.-, :. .�.�

-.1--I�-,�-...:..�:
�,�--1..-..--. , I-..: --:.:.

, �. --- ,.� -. -,-:.-,- ,... �-
,� �..-71:-...

I,-, ,� --,-I-��.,,- II

,- "' " -- ,� :''-- I-���j- I.-..:,'i---
':�� .� .�.I...I

-!.�,�.--I".� �� .,- .--.
I.-.. I,-I- :-� ,I.I -.-

..-.--.- I.;--�,��-
--- :j.I.

",,�-., -- ,.�.�..-I:
-- .. .,-,.,---., .r.I�-.-,,-,- -; ,�:�,� ��..I.-I�- �II:-

�- :,-I.,.,'. d1�-��-

.�, --l .. .,II . -1, :.III--::.1.�a
-''- -�I-.---

�-�r '. ",I:.I� .7.-II-;;-"-..�I.I-Z:
:-,t-

.I�, ��,II-.,--:--
I-I.-�.�,--,.:���. ,-.

-- -1I.,re�-..I,.�I.... �I%.II..��:I.-,�,I...
I-,-�'; '�:,,,,Z�..,,-II��

,-�I.;�,,I-I..
.I�I

--- I..I.�I:.�,-
�I-

-I. IL �I��.-�1.
:I.--1,

�... IIII..I..- .1I.I,,--..
. .- I

-I�.,-�."--.:,,.-,,I ,., �, ., �-�-�L-I-�-- III--..,
:�-�---I

-. I.-�I-,
�-..�.II.�:II--,-�� -,.�.I-I.--�.1�.I���.II,:

�. � ,, �' : �,

.,::, �.i.- �- .. I.��,,, :.I.�....
�I; ,,,

I-... ��.�-
.�..-I

1. .� -,.��: t�; ,. ,-.--, -- �.I.��.�I-
I-.-.....I;m-

.- ,- "..I-.-II.-III�,, .--,�.�I-�,"! � :�.-�--�.-. - -. , .I . - II..
. � : , - -1. . :. : :17 , .�- -� , I

.,-,II,�I.�,,,,�I�-1'� �-...�.�.:-,2 ,--...I
-. �I:,.. �,: � :, 1. � -, -,.

��:�'.,-_�.�
.I-

,..Ir�.,-, �.
:I-..

,� �,--�. -1,.-.-�,-�I.I -�;,,:::�..I�.�I �l..::,-Ii.��.�-m-,�.��,:-.I��.� -.-. I.-
-,

-;lj��.:-,e. , -.. ,� .I.���I II.-I.I.-..,:
.1-II

�- �....-11.-:.I :Ii- �i,
---.-. IrIa!:, ,11,--�

-� ��..;-.....I-.I-�.I-.-I'.
I:��.� I�-.�-I�I-,

I..�,-",-�

I��-.-.II� .I.-,.-�..�.- .I-� �,,�-I.
,

-.-.
I.

-- -,::�.-I�.-...III...II....II.-I:",
.-- :.�-..-"--��"�.I

-- �-.I--.�:-..-�-..
,-,-. : .1,I--1--, ---

I-�I�,.�--�I,, .- �..I-I1.i,-,
...... "." :,J��

'',-,III.II...�-... �--..�I�,��I�I
-II--..-.� i.

�..-. ,��,.-I-I..-,�.I�"I-II.----I,�,.��I�.1�
I�- -I�.

.� ,, ,-,,,.�II.: -I.�I�:.I�..�,
"'- , .- ,,,.I-_

I .�", -,-,I I�,�:--��-I.II� -. I.I�- .. III�.-.-----,I I I.., �---.�

.-.. ,� -,�.�:,.-.�I��I-I�
II.-.�.I.

�.- -��-�-�.-.III...IIIIII.:,--,
�II

.. �II.-..I� II...��I.I-I-�.I.I..�-,.
�--�,, I::�..-�-..�II.�.-III.-.I-.. I.�II-�L-I III..-.,.-,.:�
-,..�..�.III----., --. I.�-III-�I.

..-.- ,-.-I-.�II�I:IL...I1.I-
�

�. .I- .I'. .1I": - �.�.IIII.�-��- .- '...-1 �,I-. .�,-.-. ,�.--

'� ,. -.-II�:, ,,,,- �, .. .1I-I�. :...�I-.--�I�--II11-��I.: -- 7-�...�-I ,.,.-.,� �I- �i -:,..,-�

II�Z-I�.��.:...I
I.1 .. �I

.I �.7. -- .I--�.�-� .. I.-.- I-.I, I-

I.I�I�-��-.II-.I� ,�I�I-.,I-.I-,,.,.IIZ .- II�, �I.I-..�.I ���. .- I--: .-- II.- I.-- .�-� ': .�

--,, .. �,.I,,:-�I ���--.��--II-��.I.�I�II-
y ,,.1.

,..:�-.�-.-1-.�.IIII.��-"

-.
I-.IZ

�� -.. �.�.I I--III.�,.-..�.I.
��, -,...I� II1.I11..-II..- ,����..-�I--7..:1��-"-�II-.�,

,;�: 21.�
I-��I.I.-�.i-� --.. ,�I�..;,.- -- �.�.I�II,�:.II-.,

..- ,-I�, -I�.�..I..I�,.I-.�-;�.
II�

.- :_-:,�,I�-I.,�I-..Z-:� ..- I�-.I-.���I.�.I�.�L�
,-1% -- L---�..�.II-I���....

-.

"I

The Theory of Cyclic Transfers

by

Paul M. Thompson and James B. Orlin

OR 200-89 August 1989

* � _ �_���____

THE THEORY OF CYCLIC TRANSFERS

by

Paul M. Thompson*

and

James B. Orlin**

August, 1989

* Leavey School of Business and Administration
Santa Clara University, Santa Clara, CA 95053

** Sloan School of Management
MIT, Cambridge, MA 02139

ABSTRACT

This paper develops the theory of cyclic transfers, a neighborhood search

strategy for a broad class of combinatorial problems. The problem class is

characterized by a two-phase decision process: first, the optimal assignment

of elements to clusters and, second, the optimal configuration of the elements

within each cluster. Many important and difficult problems fall into this

problem class, for example, facility location, multi-vehicle routing and

scheduling, clustering, vertex covering, graph coloring, weighted matching and

quadratic assignment problems.

We characterize a local search neighborhood in terms of cyclic transfers

of elements among clusters, define data structures useful in searching the

neighborhood, and show that the neighborhood search problem is itself NP-

hard. We derive necessary and sufficient conditions for the existence of

negative cost cyclic transfers in terms of negative cost cycles on an

auxiliary graph. Finally, we examine algorithm implementation issues.

_ _ _ -_ I ---- -

I

This paper develops and analyzes a generic type of local search algorithm

for a broad class of combinatorial problems. In the first section, we define

rooted partitioning problems, the combinatorial problem class to which our

research applies, and discuss representative examples. In Section 2, we

motivate local search as a solution methodology and review the local search

literature for this class of combinatorial problems. In the remaining

sections, we develop the theory of cyclic transfers, the neighborhood search

strategy that is the focus of this paper, and discuss implementation of cyclic

transfer algorithms. Section 3 introduces cyclic transfers, characterizes a

class of local neighborhoods in terms of cyclic transfers, shows that a

solution locally optimal in a cyclic transfer neighborhood is not necessarily

globally optimal, defines data structures useful in searching cyclic transfer

neighborhoods, and investigates the computational complexity of the

neighborhood search problem. Section 4 derives necessary and sufficient

conditions for the existence of negative cost cyclic transfers in terms of

negative cost cycles on an auxiliary graph. Section 5 examines algorithmic

implementation issues. Finally, Section 6 presents conclusions.

We believe that the methodology developed in this paper will prove useful

for solving a variety o problems of practical importance. Indeed, related

work [Thompson, 1988] [Thompson and Psaraftis, 1989], has shown the efficacy

of our methods for several classes of rooted partitioning problems that arise

in vehicle routing and scheduling.

1. The Combinatorial Setting

The generic class of combinatorial problems that we investigate in this

paper we term rooted partitioning problems. Before defining this problem

class, we introduce some notation. Let S be a set. An n-partition of S is a

partition of S into m (possibly empty) subsets I,I 2,...,I, i.e., the subsets

(Ij:j-l1 to m) are pairwise disjoint, and their union is the set S. Now, let S

and T be disjoint sets, and let us refer to T as the root set, with ITI - m.

A rooted partition of S u T is an m-partition of S U T into subsets I1,...,Im

such that

for each j - 1 to m, IIj n TI - 1.

We refer to Ii as the j-th cluster, and we refer to the unique element in Ii n

T as the root of the j-th cluster. We denote this element as ROOT(IJ).

1

__U1_1 _I __C_ I

Rooted partitioning problems have the following mathematical structure.

Let S and T be sets, and suppose that T is a root set with TI - m. Let f be

a function from S U T into the reals, i.e.,

f : (Si + tj)

for all subsets Si S and all elements tj E T. Thus, f is a function both of

the root and of the cluster's elements. The rooted partitioning problem is to

Minimize: Z (f(IJ): j - 1 to m)

Subject to: Il,...,Im is a rooted partition of S u T.

For cases where the cost function f is independent of the root but where

the number of parts is fixed, the problem is really an unrooted problem. In

this case, we define an analogous unrooted m-partitioning problem. If the

cost function f is independent c the root and, in addition, the number of

parts is not fixed in advance, we define an unrooted partitioning problem.

In our problem formulation, we allow f to implicitly model both the

problem's objective function and the problem's constraints. We model the

constraints by assigning arbitrarily large values to f for infeasible (rooted)

partitions. In this way, f can model feasibility restrictions such as time

window and capacity constraints. In addition, we permit functions f that are

defined implicitly but not explicitly. For example, f(S) might be the minimum

TSP cost of visiting all of the customers in S. Thus the evaluation of (.)

may in and of itself be an NP-hard problem.

Because both the feasibility constraints and the objective function may

be modeled implicitly, the problem class is very broad. In fact, every

combinatorial problem can be modeled in this way by looking for an optimal 1-

partition and letting f(.) model both the objectives and the constraints.

While this is true, however, it is not particularly helpful. Our theory

offers no help in solving a problem in which the number of parts is one. It

applies well only if the problem may be modeled naturally as a partitioning or

rooted partitioning problem.

The practical importance of partitioning and rooted partitioning problems

lies in the broad variety of operational contexts in which they occur. In the

remainder of this section, we identify some important and representative

examples of this problem class.

1. Vehicle Routing and Scheduling [Bodin et al., 1983], [Christofides,

Mingozzi and Toth, 1979], [Golden and Assad, 1986], [Magnanti, 1981], [Solomon

and Desrosiers, 1987]. We can formulate a vehicle routing and scheduling

2

problem as follows. Let S denote the set of customers and let T denote the

set of vehicles. Let f(IJ) reflect the cost of optimally scheduling the

customers in I to vehicle ROOT(IJ) while satisfying capacity, time, and other

constraints. If the vehicle fleet is non-homogeneous (or based at more than

one depot), then the problem is to find a rooted partition I1,...,Im of S u T

so as to minimize f(IJ: j - 1 to m). If, however, the fleet is homogeneous

and based at a single depot, then the cost of servicing a cluster of customers

is independent of the vehicle serving the cluster. In this case, the

mathematical formulation does not require one to specify a set of vehicles.

In this case, the problem is a partitioning problem, i.e., a problem of

finding a partition Il,I2,... of S that minimizes f(IJ: j - 1,2,...).

A common route initialization procedure for vehicle routing problems is

seed assignment [Jaw et al., 1982] [Fisher and Jaikumar, 1983] [Psaraftis et

al., 1985]. Typically, a "seed" for a vehicle denotes the first customer that

an algorithm assigns to the vehicle. Because the initial assignment

profoundly affects the cost of subsequent assignments to a route, a good

selection of seed assignments is critical. With this approach, once the seeds

are assigned for a vehicle routing problem, the remaining scheduling problem

is a rooted partitioning problem.

2. Facility Location [Francis and White, 1974] [Odoni, 1974] [Handler

and Mirchandani, 1979] [Larson and Odoni, 1981]. Facility Location problems

are naturally modeled as rooted partitioning problems. Let S denote the set

of customers and let T denote the set of potential facility sites. The

facility location problem is to find a rooted partition Il,...,I m of S U T so

as to minimize (f(Ij): j - 1 to m), where f(-) reflects the cost of

servicing the customers of cluster Ii if the facility ROOT(IJ) is located

optimally for the customers in Ii.

3. The Assignment Problem. The assignment problem [Ford and Fulkerson,

1962] [Papadimitriou and Steiglitz, 1982] may be stated as a rooted

partitioning problem. Let S denote a set of persons and let T denote a set of

tasks. The problem of assigning persons to tasks may be modeled as a problem

of finding a rooted partition I1,...,Im of S u T that minimizes (f(IJ): j -

1 to m), where each cluster IJ has an element s of S and an element tJ of T,

and f(sJ,tJ) is the "cost" of assigning person s to task t.

4. Exam Scheduling. The version that we consider here is a special case

of the quadratic assignment problem [Lawler, 1963] IMurty, 1976]

3

____1__1�_1 __ _

[Papadimitriou and Steiglitz, 1982]. The objective is to assign classes to m

exam periods so as to minimize the total number of student conflicts that

result from scheduling different classes in the same exam period. Let Cij

denote the number of students taking both class i and class j. Let f(Ik)

reflect the total number of student conflicts for period k of the exam

schedule, i.e.,

f(Ik) = Cij.
i,j EI

The problem is then to minimize k f(Ik).

5. Clustering problems. This problem class includes data aggregation,

clustering and other statistical problems [Charoen-Rajapark, 1987] [Hartigan,

1975] [Johnson and Wichern, 1982] [Lebart, Morineau and Warwick, 1984], as

well as related problems in operations research [Garey and Johnson, 1979]

[Mulvey and Beck, 1984]. Let S denote the set of elements to be clustered.

The problem is to find an (unrooted) m-partition I1,...,I M of S that minimizes

I f(IJ: j - 1 to m), where f(-) reflects the cost of cluster I. For example,

f(.) could be a function of the information lost by aggregation for a data

aggregation problem. These problems formulate as similar (unrooted)

partitioning problems if the number of clusters is not specified in advance.

6. Graph Coloring. [Garey and Johnson, 1979] [Papadimitriou and

Steiglitz, 1982]. We can state the graph coloring problem as an unrooted

partitioning problem, as follows. Let G - (S,A) denote a graph. Find a

partition Il,I 2,.... of S so as to minimize I f(IJ: j - 1,2,....), where f()

is given by

0 if IJ =
f(IJ) - 1 if Ii f 0 and if arc (r,s)6A for all (r,s)CIj

o otherwise

As stated, the coloring problem is to minimize the number of colors needed to

color the nodes of a graph, such that no arc in the graph has both endpoints

with the same color. If we wish to determine such a coloring with exactly m

colors, then we would formulate a similar m-partitioning problem.

7. N-Dimensional Weighted Matching. [Garey and Johnson, 1979]

[Papadimitriou and Steiglitz, 1982]. The N-dimensional weighted matching

problem may be formulated as an unrooted m-partitioning problem, as follows.

Let W,X,Y,...,Z be q sets, each of cardinality m. Let R be a subset of (W x X

x Y x *.. x Z), and let S = (W u X U Y U *-- U Z). The problem is to find an

m-partition of S that minimizes (f(IJ): j - 1 to m), where f() is given by

4

Cj if I n w - 1, jIiJ n xl - 1,.., Iii n zi 1,
f(IJ) - and IJ E R

co otherwise,

and where Cj is the cost of the matching IJ. If E (f(IJ): j - 1 to m) is

finite, then we have found an N-dimensional matching with weight (IJ).

8. Vertex Cover [Garey and Johnson, 1979] [Papadimitriou and Steiglitz,

1982]. Let G - (V,S) be a graph, and let m be an integer. The vertex

covering problem is to form an m-partition of S so as to minimize (f(IJ): j

- 1 to m), where f(-) is given by

I 0 if IJ -
f(IJ) - 1 if all edges in I share a common endpoint

X otherwise

If (f(IJ): j - 1 to m) is finite, then we have found a vertex cover.

2. RELATED WORK

In this section, we motivate local search as an appropriate solution

strategy for partitioning and rooted partitioning problems. To this end, we

survey the literature that is devoted to local search methods for these

problems. We find that existing neighborhood search techniques for this

problem class are highly problem-dependent and limited in their ability to

find good solutions. In addition, exact solution methods are limited in the

problem size that they can handle. These findings open the way for the

development of a generic local search strategy for rooted partitioning

problems.

The importance of studying approximate solution methods for rooted

partitioning problems is underscored by their inherent computational

complexity. Most interesting rooted partitioning problems belong to the

difficult class of NP-hard problems. For example, of the problems discussed

in Section 1.3, all but the assignment problem are NP-hard.

Computational work over the past two decades has demonstrated that

optimal solutions to most NP-hard problems that arise in practice are

unattainable in reasonable amounts of computation time, for even moderately

sized problem instances. This has led researchers to focus on heuristic

solution methods for these problems. Although heuristic methods do not

guarantee optimal solutions, one may sometimes obtain confidence bounds on a

solution's goodness through statistical techniques; or deterministic bounds

through worst case, a posteriori, or other bounding methods. Moreover, a

5

reasonably good, feasible solution is often entirely adequate from a practical

standpoint.

One effective and general heuristic solution strategy is local search

(See, for example, [Papadimitriou and Steiglitz, 1982] and [Llewellyn, Tovey

and Trick, 1987]). These algorithms attempt to improve an initial solution by

iteratively making small changes in the current solution, while maintaining

feasibility. Thus they transform the starting solution into a local optimum

via a series of simple transformations.

The archetypical application of local search is the edge-exchange, or "A-

change," procedures of Croes [1958], Lin [1965] and Lin and Kernighan [1973]

for the Traveling Salesman Problem (TSP). This methodology has been

successful for extremely large problems. For example, Johnson, McGeoch and

Rothberg [1987] report solution values within a few percent of optimality for

TSPs with up to 100,000 nodes, using 3-changes and the variable-depth method

of Lin and Kernighan [1973].

The success of edge exchange methods for the TSP has spurred researchers

to adapt them to other vehicle routing and scheduling problems. For example,

Kanellakis and Papadimitriou [1980] extend these methods to the asymmetric

TSP. Savelsbergh [1984, 1985] generalizes the work of Lin [1965] to the

time-constrained TSP. Independently, Baker and Schaffer [1986] extend the

work of Croes 1958] and Lin [1965] for the TSP to the VRP with time windows.

Psaraftis [1983] develops efficient k-interchange procedures for the

precedence constrained TSP. Solomon, Baker and Schaffer [1986] propose

accelerated branch exchange heuristics for the VRP with time window

constraints.

It is an indication of the power of the edge exchange concept that it is

successful on a wide variety of vehicle routing and scheduling problems. Its

success rests, in part, on the relative simplicity of feasibility checks for

unconstrained single-vehicle and multi-vehicle problems. Unfortunately, the

concept is not easy to apply to complex, constrained fleet planning problems.

For example, the task is much more difficult for problems with time windows

[Baker and Schaffer, 1986] [Solomon, Baker and Schaffer, 1986]. However, a

clever use of data structures may reduce the complexity of checking

feasibility [Savelsbergh, 1985]. Similarly, the addition of precedence

constraints complicates the extension of A-change methods to the multi-vehicle

case. For example, the k-interchange procedures of Psaraftis [1983] for a

6

single vehicle precedence constrained problem do not directly apply to

multiple vehicle problems, except insofar as they can be used to improve the

cost of individual tours. The complexity and size of A-change neighborhoods

precludes using these methods for medium or large sized multi-vehicle

problems. In general, complicating factors such as multiple vehicles,

capacity restrictions, time windows and precedence constraints, make

feasibility checks more difficult, thereby increasing the effort required to

search a A-change neighborhood.

A related class of local search procedures for partitioning problems

involves transferring or exchanging elements between clusters. For example,

Kernighan and Lin [1970] propose a variable-depth "swap" algorithm for the

Uniform Graph Partitioning problem. Their method involves sequences of swaps

of elements between the two subpartitions of a problem instance. A related

method is the algorithm of Armour and Buffa [1963] (see also [Francis and

White, 1974]) for facility layout problems, which attempts to improve a given

solution by iteratively interchanging department locations. Similar to this

is the "swapper heuristic" of Bodin and Sexton [1983] for multi-vehicle dial-

a-ride problems. Their algorithm transfers single demands between vehicle

tours if a lower cost solution results. These methods represent a departure

from edge exchange methods because they transfer cluster elements instead of

graph edges.

The neighborhood search strategy that we develop for rooted and unrooted

partitioning problems generalizes the methods of both Kernighan and Lin [1970]

and Bodin and Sexton [1983]. Its application to vehicle routing and

scheduling problems also generalizes the edge exchange method of Croes [1958]

and of Lin [1965], as well as the variable depth method of Lin and Kernighan

[1973]. We describe our strategy in the next few sections.

3. CYCLIC TRANSFER NEIGHBORHOOD SEARCH

This section introduces and develops what we term cyclic transfer

algorithms, a general class of local search procedures for partitioning and

rooted partitioning problems. In section 3.1, we introduce and define cyclic

transfers. In Section 3.2, we define a class of local neighborhoods based on

cyclic transfers. In section 3.3, we describe data structures that enable us

to search the class of neighborhoods efficiently. Finally, in section 3.4, we

7

discuss both theoretical and implementation issues associated with cyclic

transfers.

3.1. CYCLIC TRANSFERS

The central concept for cyclic transfers is the iterative attempt to

improve the total cost of a given solution [I1,...,Im] to a partitioning or

rooted partitioning problem by transferring small numbers of elements among

clusters. We formalize this idea in the framework of neighborhood search by

using cyclic transfers to define a local neighborhood.

Let [I1,... ,Im be a rooted partition of S U T. Let p be a cyclic

permutation of a subset of {l,...,m) written in cyclic form. For example, p -

(2 5 3) maps 2 into 5, it maps 5 into 3 and it maps 3 into 2. We also write

p(2)-5, p(5)=3, and p(3)=2. We refer to the simultaneous transfer of elements

from Ii to IP(j) for each j, as a cyclic transfer. Figure 1 illustrates a

cyclic transfer.

Several special cases of cyclic transfers are of interest. First, a

cyclic Q-transfer is a cyclic transfer in which each subset transferred from

IJ to Ik is a member of a set Q. For example, Q might be the collection of

all pairs of elements of S. Or it might be modified dynamically at each

iteration of a cyclic transfer algorithm. This latter possibility also

permits Q to be user-defined according to the special features of a problem

instance and the current solution.

We say that a set qQ is feasible for a solution I to a rooted

partitioning problem if all of the elements of q belong to a common part of I,

say Ik. In this case qcIk, which we write as I(q) - Ik . Thus, I(q) denotes

the cluster to which each element of q is assigned for the current solution.

Clearly, every subset involved in a cyclic Q-transfer is feasible for the

current solution.

If a cyclic transfer involves the transfer of exactly k elements from

from Ii to IP(j) for each j, then we refer to it as a cyclic k-transfer. For

example, the cyclic transfer in Figure 1 is a cyclic 2-transfer. Kernighan

and Lin [1970] used a cyclic 1-transfer algorithm for the uniform graph

partitioning problem, where the cycle length is limited to two arcs.

A natural extension of cyclic transfers is to permit "acyclic" transfers

in which there is a simultaneous transfer of elements along permutations

8

(rather than cyclic permutations) of subsets of ({1,2,...,m). However, the

extension may be simulated as a cyclic transfer in which dummy elements are

transferred. For example, if the subset transferred from Ii to IP(J) is a set

of dummy elements, then no real elements are transferred from I to IP(j), and

the chain of transfers becomes acylic. We will not focus further attention on

acyclic transfers since they comprise a special case of cyclic transfers.

A fourth case of interest we call k-transfers. A k-transfer is the

simple transfer of k elements from one cluster to another. This situation

corresponds to an acyclic k-transfer involving two clusters (where only dummy

elements are transferred from one of the clusters). Bodin and Sexton [1983]

used this concept in their dial-a-ride problem heuristic.

In this section we have introduced and defined the concept of cyclic

transfers for rooted partitioning problems. Now, we define a local

neighborhood based on this concept.

3.2. Cyclic-Transfer Neighborhoods

Local search heuristics for combinatorial optimization problems are

normally defined in terms of a local neighborhood [Papadimitriou and

Steiglitz, 1982]. Formally, given an instance (E,c) of a combinatorial

optimization problem. where E is the set of feasible solutions and c is the

cost mapping, and given a feasible solution rE, a local search procedure

chooses a neighborhood function

N :E 2E

in which to search for a feasible solution sN(r), for which c(s) < c(r). If

the search is successful, then the procedure may repeat the search at the new

feasible solution s. If all feasible solutions in the neighborhood of r have

cost at least as great as c(r), then a local optimum is attained.

We define the cyclic transfer neighborhood of a feasible solution r to a

partitioning or rooted partitioning problem to be the set of feasible

solutions reachable from r via a cyclic transfer. Rigorously, given an

instance (E,c) of such a problem, the cyclic transfer neighborhood at a

feasible solution rE is

N(r) - (s : sE and s can be obtained from r via a cyclic transfer).

Analogous definitions hold for the cyclic-Q-transfer and cyclic-k-transfer

neighborhoods of r.

9

Although we have defined cyclic transfers in a general setting, we do not

propose to search the neighborhood for any but small values of k. Further, we

will typically search the neighborhood approximately. The reason for limiting

our search is that the neighborhood may be exponentially large. For example,

if all clusters have a common number t of elements and if we consider only

cyclic k-transfers involving p clusters, then the size of the neighborhood of

r is

NPk(r) -) (p-l)! () (k) -

The first term is the number of cyclic permutations of p clusters; the second

term is the number of combinations of p clusters that can be taken from a set

of m clusters; and the third term is the number of combinations of sets of k

elements that can be taken, each set from one of p distinct clusters. This

restricted neighborhood is exponentially large.

Let us now define the cost of a cyclic transfer. As above, we assume

that cluster costs are independent. We say that the cost of a cyclic transfer

is the change in objective function caused by the cyclic transfer. For

example, suppose that I - (IlI 2,...,IP) is the original set of p clusters

involved in a cyclic transfer CT, and let J - (J1 ,J 2,...,JP) be the

transformed set of clusters resulting from the cyclic transfer. Then the cost

of CT is given by

P

Cost(CT) - f(Is) - f(JS) .
s-1

Using these measures of neighborhood and cost, we may define local

optimality for partitioning and rooted partitioning problems in terms of

cyclic transfers. Let r be a feasible solution to a rooted partitioning

problem. We say that r is cyclic-transfer-optimal if there are no negative

cost cyclic transfers for r, that is, if

X [f(Ii) : Iier] < E [f(IJ) : Is] for all sN(r).

Similarly, we say that r is cyclic-Q-transfer-optimal for some set Q

(cyclic-k-transfer-optimal for some integer k) if there are no negative cost

cyclic Q-transfers (cyclic k-transfers) for r.

Figure 2 demonstrates that the cyclic transfer neighborhood is not exact,

i.e., a local optimum may not be a global optimum. Here there are 3 clusters

comprised, as indicated, of the elements al, a2, a3, b1 , b2, cl, c2. If

f(al,bl,cl) - 0, and the cost of any other cluster is 1, then the solution of

10

Figure 2 is not optimal. But there are no negative cost cyclic transfers,

hence the solution is cyclic transfer optimal. This implies that the cyclic

transfer neighborhood is not exact, regardless of how many elements may be

transferred from one cluster to another.

3.3. NEIGHBORHOOD SEARCH

In this section we develop a general heuristic methodology for searching

a class of cyclic transfer neighborhoods. Our method uses an auxiliary graph

to transform the search for negative cost cyclic transfers into a search for

negative cost cycles on the graph. We formally relate properties of the

auxiliary graph to properties of the cyclic transfer neighborhood. Finally,

we show that the neighborhood search problem is itself NP-hard, and discuss

why cyclic transfer neighborhood search is nonetheless a reasonable approach

for solving rooted partitioning and related problems.

For notational ease, we present neighborhood search in terms of cyclic Q..

transfers. The reader should note that our methods apply equally well to the

general case where Q is not prespecified, as well as to special cases such as

cyclic k-transfers.

Several alternate approaches exist for cyclic transfer neighborhood

search for partitioning and rooted partitioning problems. First, consider an

auxiliary graph H - (V,A), which has one vertex for each cluster of the

partition, and one arc for each possible transfer of element subsets from one

cluster to another. This approach has intuitive appeal because each arc

represents the natural transfer of elements between clusters. Unfortunately,

however, the costs of the arcs in H are not well defined. In particular, the

cost of a transfer may be affected by other transfers that take place

simultaneously. For example, the net change in travel distance due to moving

a customer from one vehicle route to another may depend heavily on other

changes made simultaneously to the two routes. These interaction effects are

endemic to the structure of H, and preclude its effective use for rooted

partitioning problems. For this reason, we elect not to pursue this approach

further.

A more effective (and less intuitive) approach to searching cyclic

transfer neighborhoods is the following. Let I - (I1 ,I2,...,Im) represent a

feasible solution to a rooted partitioning problem, i.e., a rooted partition

11

of S U T. In order to identify a negative cost cyclic Q-transfer, we

construct an auxiliary graph GQ - (VQ,AQ,CQ), where

vQ - (sets in Q feasible for I) has one vertex for each feasible set of Q

AQ - ((i,j) : i,jEvQ, I(i) I(j), and I(j)+i-j) is a feasible cluster)

CQ - Cij : (i,j) E AQ} are arc costs (defined below)

The cost Cij of each arc (i,j) in AQ is equal to the increase (for a

minimization problem) in the cost of the cluster I(j) due to simultaneously

adding subset i to and removing subset j from I(j). This increase may be

positive, in which case it is a "cost" in the normal sense of the word, or

negative, in which case it is a "benefit". Rigorously,

Cij - f(I(j)-j+i) - f(I(j)).

We emphasize that Cij does not include any costs due to removing i from I(i)

or due to adding j to any other cluster.

As a special case we denote the auxiliary graph for cyclic k-transfers by

Gk . Here, Vk {(sets of k distinct elements of S all from the same cluster),

and Ak and Ck are defined as above.

In contrast with the graph H, the impact of any cyclic Q-transfer on

cluster cost may be determined directly from the cost structure of GQ. This

is so because each arc cost accounts for interaction costs at its head vertex.

We shall see that GQ is very useful in finding solutions to partitioning and

rooted partitioning problems.

Figure 2 shows the clusters of an example problem with seven elements and

three clusters, A = (al,a2,a3}, B - (bl,b2) and C - (cl,c2). The

corresponding cyclic 1-transfer and cyclic 2-transfer auxiliary graphs G1 and

G2 appear in figures 3 and 4.

Whereas the size of the cyclic k-transfer neighborhood is exponentially

large whenever the number of parts is not bounded, the size of the auxiliary

graph is polynomially bounded for fixed k. In particular, the number of

vertices in Gk is given by

Ivkl X k ,
r=l

where Ir1 is the number of elements in the rth cluster. A lower bound on

IVk is given by the instance with exactly i elements per cluster. In this

case, ir - (m)(i), and the number of vertices in Gk is given by

IvkI = m (k).

12

Now we formally relate properties of the auxiliary graph to properties of

the cyclic transfer neighborhood. As before, we assume that cluster costs are

independent of one another. We define a Cycle through Distinct Clusters in GQ

to be a cycle whose vertices each correspond to element sets in different

clusters. Using this definition, we may state necessary and sufficient

conditions for the existence of a negative cost cyclic transfer at a feasible

solution to a partitioning or rooted partitioning problem.

3.3.1. Theorem. Suppose that the cluster costs for a partitioning or

rooted partitioning problem are independent, i.e., that cluster cost depends

only on the elements of the cluster and not on the elements of other clusters.

Then there is a negative cost cyclic Q-transfer for a given feasible solution

if and only if there is a negative cost cycle through distinct clusters in the

auxiliary graph GQ.

Proof. Sufficiency: by definition of independent cluster costs, the cost

of a cycle in GQ is equal to the cost of the associated set of transfers of

elements among clusters, if the cycle is through distinct clusters. But then

the transfer is cyclic. The desired result follows.

Necessity: From the definition of the arc costs in GQ, it is clear that

the cost of a cyclic-Q-transfer at a feasible solution of a partitioning or

rooted partitioning problem is equal to the cost of the corresponding cycle in

GQ, if cluster costs are independent. The result then follows immediately. ·

3.4. Computational Complexity Analysis

The following two lemmas and theorem show that each cyclic Q-transfer

neighborhood search step is potentially NP-hard. Although we do not supply

proofs for cyclic k-transfers, the reader should note that these results apply

to this case equally well.

3.4.1. Lemma. CYCLE THROUGH DISTINCT SUBPARTITIONS is NP-complete.

INSTANCE: A directed graph G - (V,A), and an m-partition V1 ,V2, .. ,Vm of V.

QUESTION: Does G contain a cycle that has at most one element of each of the

subpartitions V1, V2,..., Vm ?

13

Proof. Transformation from HAMILTONIAN CIRCUIT. Given an instance of

HAMILTONIAN CIRCUIT, we construct, in polynomial time, an instance of CYCLE

THROUGH DISTINCT SUBPARTITIONS. Figure 5 illustrates the argument. Let GH =

(VH,AH) be an instance of HAMILTONIAN CIRCUIT, with n - IVH vertices.

Construct a graph GS - (Vs,As) as follows. For each node iVH, create n

copies il,i 2,...,i n in V. For each arc (i,j) in AH, create n copies

(ik,jk+l), where the nth copy is (in,jl). Now, define a partition of GS:

Vi (ik I kl,...,n) for iEVH.

Thus, Vi is the set of copies of node i and Vl1,V2,...,Vn is an n-partition of

VS.

Suppose that GS contains a cycle, CS, through distinct subpartitions.

Observe that every cycle in GS through distinct subpartitions contains exactly

n vertices. Then CS corresponds to a Hamiltonian Circuit in GH. Suppose, now,

that GH contains a Hamiltonian Circuit, CH. By construction, CH corresponds

to a cycle through distinct subpartitions in GS.

Therefore HAMILTONIAN CIRCUIT transforms to CYCLE THROUGH DISTINCT

SUBPARTITIONS. Since CYCLE THROUGH DISTINCT SUBPARTITIONS E NP, and

HAMILTONIAN CIRCUIT is NP-Complete, CYCLE THROUGH DISTINCT SUBPARTITIONS is

NP-Complete also. E

3.4.2. Lemma. The problem of finding a negative cost cycle through

distinct clusters in GQ is NP-hard.

Proof. Recall that GQ is not a complete graph because it contains no

arcs that correspond to infeasible transformations. In fact, any graph G is

the auxiliary graph GQ for some Q. In particular, GQ may have the structure

of Figure 5. The problem then reduces from CYCLE THROUGH DISTINCT

SUBPARTITIONS.

3.4.3. Theorem. The problem of finding a negative cost cyclic Q-

transfer for a feasible solution to a partitioning or rooted partitioning

problem is NP-hard.

Proof. By Lemma 3.3.1, finding a negative cost cyclic transfer is

equivalent to finding a negative cost cycle through distinct clusters in GQ.

The result then follows from Lemma 3.4.2.

This result contrasts with the polynomial-time complexity of identifying

14

negative cost cycles in a graph. Such cycles may be determined in O(nm) time

using the well-known label correcting algorithm (see, for example, [Ahuja,

Magnanti and Orlin, 1989]) or it may be solved in O(n1/2m log nC) time using

the scaling algorithm of [Gabow and Tarjan, 1987] or [Ahuja and Orlin, 1988],

where n is the number of arcs, m is the number of nodes, and C is the

magnitude of the largest arc cost in the graph.

Despite this discouraging computational complexity result, we believe

that it is still reasonable in practice to search for cycles through distinct

clusters. First, large potential cost benefits may motivate one to expend

great effort in order to marginally improve a given solution. Second, cyclic

transfer techniques appear to be quite effective on practical problems, even

though they are not guaranteecd to be optimal. Recent work [Thompson and

Psaraftis, 1989] has successfully employed a hybrid approach of heuristic

methods to search the cyclic transfer neighborhood for several important

classes of vehicle routing and scheduling problems. Their results demonstrate

the practical utility of approximate cyclic transfer neighborhood search.

4. SPECIAL CLUSTER COST STRUCTURES

This section derives conditions under which one may find negative cost

cyclic transfers or prove there are none, in polynomial time. However, these

conditions are quite restrictive, and do not apply to rooted partitioning

problems other than the assignment problem and its close relatives.

4.1. Separability and Interaction

First we define two terms, "separability" and "interaction". Let i and j

be vertices of GQ corresponding to element sets from distinct clusters I and

J, respectively.

Separability is an attribute of an auxiliary graph arc cost. We say that

a cost Cij is separable if (J+i) and (J-j} are feasible clusters, and if

f(J+i-j) - f(J) - [f(J+i) - f(J)] + [f(J-j) - f(J)].

Equivalently, Cij is separable if

Cij - Ai(J) + Rj(J),

where Ai(J) = f(J+i) - f(J) - cost of adding element set i to J

and Rj(J) = f(J-j) - f(J) = cost of removing set j from J.

15

This implies that the cost of adding i to J is independent of the presence of

j on J, i.e.,

Ai(J-j) - Ai(J).

For example, consider the Euclidean vehicle routing problem illustrated

in Figure 6, where f(T) is the cost of an optimal TSP tour on the node set T -

(D,E,F,G). Here, the auxiliary graph arc cost CAE is separable because the

optimal routings of both {T+A) and (T+A-E) insert A between G and D,

regardless of the presence of E. CAD is not separable, however, because the

optimum routing of (T+A-D) inserts A between G and E, not between G and D.

Interaction is an attribute of a pair of auxiliary graph arc costs. It

implies that the arc costs are dependent. Under our base assumption of

independent cluster costs, arcs whose heads correspond to element sets in

different clusters may not interact, since otherwise cluster costs would be

dependent. Hence, we consider only arcs pointing into vertices of the same

cluster as potentially interacting. Similarly, we define interaction only for

arcs whose endpoints correspond to distinct sets of elements in the

partitioning problem, since otherwise the transfers implied by the arcs would

interfere with one another. Let E(v) denote the set of elements that

corresponds to vertex v. Let j and q be vertices of GQ belonging to cluster

J, let i and p be vertices of GQ not belonging to cluster J, and let

E(i) n E(j) = 0

and E(p) n E(q) = 0.

We say that Cij and Cpq interact if the sum Cij+Cpq does not represent the

true cost of simultaneously adding i and p to J, and removing j and q from J.

Formally, Cij and Cpq interact if

f(J+i-j+p-q) - f(J) # [f(J+i-j) - f(J)] + [f(J+p-q) - f(J)]

or, equivalently, if

f(J+i-j+p-q) - f(J+i-j) [f(J+p-q) - f(J)].

Consider the Euclidean Vehicle Routing Problem. Here, the cost of a

cluster is the cost of an optimal TSP tour through the cluster's demand

locations. In this problem, interaction occurs when the optimal order in

which vehicle ROOT(J) visits the node set (J+i-j) changes if node p is added

to and node q removed from J, where j and q correspond to distinct element

sets in cluster J, and i and p correspond to element sets on other clusters.

Interaction also occurs if the sequencing is the same, but if at least one

node of the set i is inserted into j's route immediately next to a node of set

16

q. Non-interaction implies that the optimal insertion cost of i onto route J

is independent of the presence of p and q, and that the optimal insertion cost

of p onto route J is independent of i and j. In general, if rerouting is

required for vehicle routes, then the costs of arcs into vertices of the same

cluster will interact. If arc costs reflect simple insertions into existing

routes, then costs will sometimes, but usually not, interact.

In Figure 6, which shows a route for an Euclidean Vehicle Routing Problem

with two additional nodes, A and B, CAF and CBD interact, while CAD and CGF do

not.

4.2. Logical Independence of Separability and Interaction

In this section, we show that, although arc cost separability and non-

interaction are related concepts, they are logically independent.

First, we define two terms, total separability and total non-

interaction. A rooted partitioning problem's auxiliary graph arc costs are

totally separable if, for every auxiliary graph GQ of each feasible solution

to each problem instance, all arc costs CijeCQ share the following property:

Cij - Ai(ROOT(j)) + Rj(ROOT(j))

where Ai(ROOT(j)) is fixed for each choice of i and ROOT(j)

and Rj(ROOT(j)) is fixed for each choice of j.

This definition includes, as a special case, situations where all arc

costs of all auxiliary graphs GQ of all problem instances are separable. It

also includes the more general case where the clusters (I(j)+i) or (I(j)-j)

are infeasible. This is true, for instance, of the Hitchcock transportation

problem, where there are demand constraints on the "clusters." In the general

case, Ai(ROOT(j)) is the "effective cost" of adding i to cluster I(j), under

the assumption that the addition of i to cluster I(j) is part of a feasible

transformation of I(j). Similarly, Rj(I(j)) is the "effective cost of

removing j from its cluster, under the assumption that the removal of j from

cluster I(j) is part of a feasible transformation of I(j).

We say that a rooted partitioning problem's auxiliary graph arc costs are

totally nonseparable if all arc costs of all auxiliary graphs for all problem

instances are non-separable. Similarly, a rooted partitioning problem's

auxiliary graph arc costs are totally interacting (respectively, totally non-

interacting) if all arc costs of all auxiliary graphs for all problem

17

instances are interacting (respectively, non-interacting).

Consider the following examples of rooted partitioning problems.

EXAMPLE 1. f(I) = 12.

In this case, all Gk arc costs are non-interacting, and the problem has total

nonseparability.

To show non-interaction of all arc costs in Gk, observe that, for every

feasible solution to every instance of the problem, every set of cyclic k-

transfers leaves the number of elements in each cluster, and hence the cluster

cost, unchanged. Therefore, the arc costs in Gk are non-interacting.

To show total nonseparability, consider the arc cost Cij. Let the

vertices i and j correspond to i and j elements in their respective clusters,

and let J be the number of elements in I(j). We have

Cij - (J + i - j)2 2 _ i2 + j2 + 2J(i-j) - 2ij.

But, Rj(J) - (J-j)2 2 j2 2jJ,

and Ai(J) _ (J+i)2 - i2 2iJ,

so that Ai(J) + Rj(J) = i2 + j2 + 2J(i-j).

Then Cij f Ai(J) + Rj(J),

implying total nonseparability.

EXAMPLE 2. The Hitchcock transportation problem, i.e., the problem of

assigning n items to m subsets, subject to lower and upper bounds on the

number of items assigned to subset I. In this case, we have total non-

interaction and total separability because each assignment has fixed cost

independent of any other assignments that are made, as long as the total set

of assignments is feasible.

EXAMPLE 3. Multi-Vehicle Routing. Here we have total non-separability and

total interaction.

EXAMPLE 4. The rooted partitioning problem in which there are elements of two

"colors", say blue and red, and where the cost of cluster I is the square of

the number of blue elements in the cluster, mI, i.e.,

f(I) - (mI)2 .

Consider the problem instance with two clusters, and consider the feasible

18

solution in which cne cluster contains only blue elements (cluster B), and the

other only red elements (cluster R). In this case, we have separability of

all arc costs in Gk, and interacting arc costs as well.

First, we show separability. For all sets of k blue elements b and all

sets of k red elements r,

Rb(B) - (mB-k)2 - (mB)2 - k2 2mB

Ab(R) - k2

Rr(R) - 0

Ar(B) - O.

Further,

Cbr - k 2

Crb - (mB-k)2 (mB 2 k2 2B,

implying

Crb - Ar(B) + Rb(B) for all r,b.

Cbr - Ab(R) + Rr(R) for all r,b.

Therefore all costs in the auxiliary graph are separable.

Now, we show interaction. Consider two sets of k blue elements, say b

and d, and two sets of k red elements, say r and s. We have

f(B+r+s-b-d) - f(B) - (mB-2k)2 - (mB)2 - 4k2 - 4kmB

but Crb + Csd - 2k2 - 4km B,

so that Crb + Csd f(B+r+s-b-d) - f(B).

Therefore all arcs pointing into B interact with one another. Furthermore,

f(R+b+d-r-s) - f(R) - 4k2

but Cbr + Cds - 2k2,

so that Cbr + Cds / f(R+b+d-r-s) - f(R)

Therefore all arcs pointing into R interact with one another.

4.2.1. Theorem. Separability and interaction are logically independent.

Proof. Immediate, from Examples 1 through 4.

The previous theorem does not state that total separability and total

interaction are logically independent. In fact, the following theorem and its

corollary show that they are logically dependent.

4.2.2. Theorem. Separability of all auxiliary graph arc costs for all

feasible solutions to an instance of a rooted partitioning problem implies

19

non-interaction of these costs.

Proof. Suppose that all arc costs for an instance of a rooted

partitioning problem instance are separable, i.e., for each cluster J,

Cij - Ai(J) + Rj(J) for all iJ, jJ,

or, equivalently,

Ai(J) - Ai(J-j) for all iJ, jJ.

First, observe that an inductive argument from J-0 proves that both Ai(J) and

Rj(J) depend solely on the root of J, and not at all on the elements of J.

Then, for all j,qeJ and all i,peJ, we have

f(J+p+i-q-j) - f(J)

- f(J) + Ap(J) + Ai(J) + Rq(J) + Rj(J) - f(J)

= f(J) + Ap(J) + Rq(J) - f(J) + Ai(J) + Rj(J) + f(J) - f(J)

- f(J+p-q) - f(J) + f(J+i-j) - f(J)

Cij + Cpq,

so that Cij and Cpq do not interact. This is the desired result.

This theorem easily generalizes to include all instances of a rooted

partitioning problem. Formally, we have

4.2.3. Corollary. Total separability of auxiliary graph arc costs for a

rooted partitioning problem implies that the costs are totally non-

interacting.

Proof. Immediate.

These theorems show the logical independence of separability and non-

interaction of auxiliary graph arc costs. However, in practice the two often

occur together. For example, all of the examples of Section 1.3 except the

assignment problem have arc costs that are simultaneously interacting and non-

separable. Moreover, the assignment problem's auxiliary graph arc costs are

totally separable and, hence, totally non-interacting. In fact, the

assignment problem is the only problem with total separability of auxiliary

graph arc costs. Formally,

4.2.4. Theorem. If a problem has auxiliary graph arc costs that are

totally separable, then it is equivalent to an assignment problem.

Proof. Total separability implies that the cost of each arc in the

20

auxiliary graph is given by

Cij - Ai(ROOT(j)) + Rj(ROOT(j)).

Then, for each cluster J,

f(J) - Aj(ROOT(J)),
jeJ

and, further, for all elements i and all clusters J,

Ai(J) - R i(J).

This we recognize as equivalent to an assignment problem.

It is interesting to note that the assignment problem is solvable in

polynomial time, while most other rooted partitioning problems are NP-hard.

This result suggests a relationship between computational complexity and

auxiliary graph arc cost separability. Indeed, this theorem demonstrates that

total separability of auxiliary graph arc costs implies polynomial-time

solvability for a rooted partitioning problem.

4.3. The Effect of Separability and Interaction

In this section, we develop additional sufficient conditions for the

existence of negative cost cyclic transfers and k-transfers. These theorems

characterize the effect that separability and interaction have on the

relationship between negative cost cycles in GQ and negative cost cyclic

transfers.

Two lemmas provide the base for sufficient conditions for cyclic

transfers. First, we show that under conditions of separability, a cycle in

GQ that contains multiple element sets from a single cluster decomposes into a

set of cycles through distinct clusters. Then we show that a negative cost

cycle of separable costs in GQ contains a negative cost cycle through distinct

clusters. This provides the desired sufficient conditions.

4.3.1. Lemma. Suppose that there is a negative cost simple r-cycle Cr

in GQ, for r4. Suppose further that two or more vertices of Cr, say

{N,N 2 , ..,Nz), correspond to elements from the same cluster. If the costs

of the arcs of Cr into N1, N2,..., and Nz are separable, then there is a

negative cost simple p-cycle in GQ, containing exactly one of (N1 ,N2,..., Nz),

21

for some p < r-2, whose costs are separable.

Proof. Without loss of generality, denote Cr by the index set

[1,2,3,...,v-l,v,v+l,...,r,1], where 1 and v denote vertices on the same

cluster. Let

Ai(j) - the separable cost of adding element set i to the cluster of

set j

Rj - the separable cost of removing element set j from its cluster.

Then the cost of Cr is given by

C[1,2,..,r,1] - C12 + C23 + .. + Cv.2,v.1 + Cv-l,v

+ Cv,v+l + ''' + Cr-l,r + Crl.

By separability,

Cv-l,v + Crl - (Av-l(V) + Rv) + (Ar(l) + R1)

- (Av-l(V) + R1) + (Ar(l) + Rv)

= Cv-1, 1 + Crv,

so that

C[1,2,..,r,l] - C12 + C23 + .. + Cv-2,v-1 + Cv-l,l

+ Cv,v+l + ... + Cr-1,r + Crv

- C[1,2,...,v-2,v-l,l] + C[v,v+l,...,r-l,r,v].

Thus, Cr decomposes into two subcycles, [1,2,...,v-l,1] and

[v,v+1,...,r,v]. Since the original cycle has negative cost, then at least

one of the subcycles has negative cost as well. Now, each subcycle contains

at least two vertices. This means that each subcycle has at most r-2 nodes.

Then there exists a negative cost p-cycle through one of the nodes on the

repeated route, for p r-2. By induction on r, we attain the desired result,

since separability is maintained throughout. ·

4.3.2. Lemma. Suppose that there is a negative cost cycle of separable

costs in GQ. Then there is a negative cost cycle through distinct clusters in

GQ, whose costs are separable.

Proof. By flow decomposition, any cycle in a graph may be expressed as

the sum of simple cycles. If the original cycle has negative cost, then at

least one of the subcycles has negative cost as well. Then there is a

negative cost simple cycle with separable costs in GQ. Repeated application

of Lemma 4.3.1 yields the desired result, since separability is maintained

throughout.

22

4.3.3. Theorem. Sufficient conditions for the existence of a negative

cost cyclic transfer at a feasible solution to a rooted partitioning problem

are the following.

1. Cluster costs are independent and additive, and,

2. There is a negative cost cycle of separable costs in the

auxiliary graph GQ.

Proof. Immediate, from Theorem 3.3.1 and Lemma 4.3.2.

4.3.4. Theorem. Under conditions of separability, necessary and

sufficient conditions for the existence of a negative cost cyclic transfer at

a feasible solution to a rooted partitioning problem are the following.

1. Cluster costs are independent and additive, and,

2. There is a negative cost cycle in the auxiliary graph GQ.

Proof. Immediate, from theorems 3.3.1 and 4.3.3.

This result contrasts with the necessary and sufficient conditions of

Theorem 3.3.1. If all arcs in GQ are separable, then the weaker conditions of

Theorem 4.3.3 are necessary and sufficient as well. This demonstrates the

fundamental importance of separability fcr rooted partitioning problems.

We now examine sufficient conditions for the existence of negative cost

k-transfers. Recall that a k-transfer is the transfer of k elements from one

cluster to another, and is equivalent to an acyclic transfer involving two

clusters. The cost of the transfer of element set i from cluster I to cluster

J is given by

CTri(J) - Ai(J) + Ri(I),

where Ai(J) and Ri(I) are as defined above.

4.3.5. Theorem. Suppose that there exists in GQ a negative cost cycle

of separable and non-interacting costs. Then there exists a negative cost k-

transfer.

Proof. By Lemma 4.3.2, there is a negative cost cycle through distinct

clusters in GQ, say CP, with separable costs. For notational convenience let

node p+l refer to node 1, and let CP - [1,2,...,p,l1]. By definition of

separable and non-interacting costs and under conditions of independent and

additive cluster costs, the cost of CP, C[1,2,..,p,p+l], is given by

23

_ _I� I_ __

P
G[1,2 ..,p,p+l] - C [Ai(I(i+l)) + Ri+l(I(i+l))]

i-1

P
[Ai(I(i+l)) + Ri(I(i))]

i-1

P
- CTri(I(i+l)) < 0.
i-1

The inequality follows by assumption: C[l,...,p,p+l] < 0. Then at least one

of (CTri(I(i+l)) : i - 1,2,...,p) is negative, since otherwise C[1,2,..,p,p+l]

must be nonnegative, a contradiction. Therefore there exists a negative cost

k-transfer.

4.3.6. Theorem. Suppose that there exists in GQ a negative cost cycle

through distinct clusters, Cp, with separable costs. Then there exists a set

of negative cost k-transfers whose total cost is at least as negative as Cp.

Proof. As in the previous theorem, let node p+l refer to node 1, and let

CP - [1,2,...,p,1]. Then the cost of CP, C[1,2,..,p,p+l], is given by

pP
C[1,2,...,p,p+l] - I CTri(I(i+l)) < 0.

i-1

But

CTri(I(i+l)) [CTrt(I(il)) : CTrt(I(i+l)) < 0

Therefore the set of k-transfers (CTri(i+l) CTri(i+l)<O) has cost at least
Therefore the set of k-transfers (CTri(i+l) : CTri(i+l)<0) has cost at least

as negative as Cp. a

The results of this section point out the importance of separability and

interaction when dealing with rooted partitioning problems. In related

computational work [Thompson, 1988] [Thompson and Psaraftis, 1989], we develop

algorithms that exploit the presence of separability in specific rooted

partitioning problems.

5. FINDING NEGATIVE COST CYCLIC TRANSFERS

In previous sections, we proved that the search for negative cost cyclic

transfers transforms into a search for negative cost cycles through distinct

clusters in GQ. Furthermore, we showed that this problem is NP-hard, except

under restricted conditions such as total separability. In this section, we

24

investigate the suitability of optimization and heuristic methods for solving

the general problem in practice.

5.1. Suitability of Optimization Approaches

Several well known optimization techniques solve, in polynomial time, the

problem of finding minimum cost sets of cycles in a graph. For example, the

general problem of finding a minimum cost collection of vertex-disjoint simple

cycle cover transforms into an assignment problem, as follows. Construct a

bipartite graph G' with two vertices ia and ib for each vertex i in the

original graph G. For each arc (i,j) in G, construct arc (ia,jb) in G' and

set its cost equal to the cost of arc (i,j) in G. Then, for each i, construct

arc (ia,ib) in G' and set its cost equal to zero. This problem is solvable in

O(nl/2m log nC) time [Gabow and Tarjan, 1987] [Ahuja and Orlin, 1988], where n

and m are the number of edges and vertices, respectively, in the graph, and

where C is the magnitude of the largest edge weight.

Alternatively, shortest path algorithms are able to identify negative

cost cycles in a graph in polynomial time. Of these, label correcting methods

and dynamic programming methods require O(nm) time (see, for example, [Ford

and Fulkerson, 1962] or [Ahuja, Magnanti and Orlin, 1989]). Indeed, label

correcting is a generalization of dynamic programming. Typically better (but

not strongly polynomial) O(n1/2m log nC) algorithms are due to [Gabow and

Tarjan, 1987] [Ahuja and Orlin, 1988], where n and m are the number of edges

and vertices, respectively, in the graph, and where C is the magnitude of the

largest edge weight. If we wish to find single negative cost cycles, then

these methods are appropriate. With nonseparable costs, however, it is

difficult to adapt these techniques to finding negative cost cycles through

distinct clusters. Nevertheless, these methods can be used to establish that

there is no negative cost circuit, or to provide bounds on the maximum

improvement possible with a cyclic transfer.

Finally, there are other enumeration methods, such as branch and bound

and complete enumeration. These are powerful and have proven effective for a

wide variety of difficult combinatorial problems, but are computationally

expensive. For this reason, these methods are not suitable for iterative

algorithms such as cyclic transfer neighborhood search.

25

5.2. Heuristic Approaches

We now examine some heuristic approaches for finding negative cost cycles

through distinct clusters in GQ.

Truncated enumeration is a classical heuristic tool. Traditionally, one

enumerates feasible solutions until reaching a computation time limit, at

which point one stops. Applying this method to the problem of finding a

negative cost cycle through distinct clusters in GQ, one would enumerate

cycles through distinct clusters until finding one with negative cost. In

this case the cycle found would probably not be the most negative one.

Another possibility for heuristic search is to limit the length of the

cycles under consideration, e.g., to two or three. By construction, all 2-

cycles and 3-cycles are through distinct clusters, since there are no arcs in

GQ between vertices that correspond to the same cluster. This fact simplifies

the enumeration process, since we may then avoid explicit checking for cluster

repetition on a cycle.

A third avenue is variable depth search. This general methodology has

worked very well on the Traveling Salesman Problem [Lin and Kernighan, 1973]

and related problems. Applied to our approach, we could vary either the set Q

itself, the or the cycle length.

A variable-Q heuristic would start with an initial set Q, and a cycle

through distinct clusters in GQ. Then it would attempt to improve the cost of

the cycle by changing the number of elements transferred among the clusters

represented on the cycle, i.e., by varying Q. This could be done on an arc-

by-arc basis or simultaneously for the entire cycle. The major difficulty

with this approach is that computing the relevant arc costs at each iteration

of the algorithm is computationally burdensome. Indeed, experimental work

[Thompson, 1988] has shown that this approach is inferior to variable cycle-

length methods.

The second type of variable-depth cyclic transfer search is "variable-p,"

where the cycle length p varies. This approach iteratively attempts to

improve the cost of a cycle by increasing its length, i.e., by replacing

individual arcs on the cycle with pairs of arcs. In order to maintain a cycle

through distinct clusters, one may add only vertices of clusters not yet

represented on the cycle. This check marginally increases total computation

time. Moreover, holding Q fixed considerably reduces the overall computation

26

time vis-a-vis the variable-Q approach.

These considerations lead us to propose the following approach for

finding negative cost cycles through distinct clusters in GQ. First, identify

the most negative cost 2-cycle or 3-cycle in GQ using a dynamic programming

recursion. Then use a variable-p approach to attempt to simultaneously reduce

the cycle's cost and increase its length, while maintaining a cycle through

distinct clusters. Recent work [Thompson, 1988] [Thompson and Psaraftis,

1989], provides computational results using this method for several vehicle

routing and scheduling problems. Overall, it proves to be an efficient method

for finding negative cost cyclic transfers, and appears to be an effective

means of solving practical rooted partitioning problems.

6. CONCLUSION

In this paper, we have developed the theory of cyclic transfers, a novel

and effective class of local search algorithms for a broad group of

combinatorial problems, namely partitioning and rooted partitioning problems.

First, we defined the class of partitioning and rooted partitioning

problems. We illustrated the breadth and importance of this problem class by

presenting a variety of practically and theoretically motivated rooted

partitioning problems. Then we demonstrated the limitations of optimizaton

and heuristic methods for solving these problems.

Next, we defined cyclic transfers, used them to characterize a search

neighborhood for rooted partitioning problems, and developed a data structure,

the auxiliary graph GQ, to aid in searching the cyclic transfer neighborhood.

We showed that searching the neighborhood is an NP-hard problem. Then we

derived necessary and sufficient conditions for the existence of negative cost

cyclic transfers in terms of negative cost cycles in the auxiliary graph.

Finally, we investigated polynomial-time algorithms for searching restricted

portions of cyclic transfer neighborhoods.

27

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Professors Harilaos N. Psaraftis and

Amedeo R. Odoni of MIT for their valuable comments during the course of this

research.

This research has been supported by a United Parcel Service Foundation

fellowship, the Center for Transportation Studies at M.I.T., the Office of

Naval Research contract number N00016-83-K-0220, an AFOSR grant 88-0088, and

an NSF Presidential Young Investigator fellowship.

28

REFERENCES

Ahuja, R.K., T.L. Magnanti and J.B. Orlin (1989), "Network Flows," Working
Paper No. 2059-88, Sloan School of Management, M.I.T., Cambridge, Mass., to
appear in Handbooks in Operations Research and Management Science. Volume
1. Optimization.

Ahuja, R.K. and J.B. Orlin (1988), "New Scaling Algorithms for the Assignment
and Minimum Cycle Mean Problems," Technical Report, Sloan School of
Management, M.I.T., Cambridge, Mass.

Armour, G.C. and E.S. Buffa (1963), "A Heuristic Algorithm and Simulation
Approach to Relative Location of Facilities," Mgmt. Sci. 9, 294-309.

Baker, E.K., and J.R. Schaffer (1986), "Solution Improvement Heuristics for
the Vehicle Routing and Scheduling Problem with Time Window Constraints,"
American Journal of Mathematical and Management Science, 6:3 & 4, 261-300.

Bodin, L.D., B.L. Golden, A.A. Assad and M. Ball (1983), "Routing and
Scheduling of Vehicles and Crews: The State of the Art," Comp. Opns. Res.
10(2), 63-211.

Bodin, L.D. and T.R. Sexton (1983), "The Multi-Vehicle Subscriber Dial-A-Ride
Problem," Working Paper 82-005, College of Business and Management,
University of Maryland at College Park.

Chandy, K. and T. Lo (1973), "The Capacitated Minimum Spanning Tree," Networks
3(2), 173-182.

Charoen-Rajapark, C. (1987), Clustering to Minimize (Maximize) the Within-
Cluster (Between-Cluster) Sum of Squares: Complexity, Optimization
Algorithms, and Heuristics, Ph.D. thesis, MIT, Cambridge, Mass.

Christofides, N., A. Mingozzi and P. Toth (1979), "The Vehicle Routing
Problem," Chapter 11 in Combinatorial Optimization, ed. by N.
Christofides, A. Mingozzi, P. Toth and C. Sandi; John Wiley & Sons, Bath.

Croes, G.A., (1958), "A Method for Solving Traveling-Salesman Problems," Opns.
Res, 6, 791-812.

Florian, M. and M. Klein (1971), "Deterministic Production Planning with
Concave Costs and Capacity Constraints," Mgmt. Sci. 18, 12-20.

Ford, L.R.,Jr., and D.R. Fulkerson (1962), Flows in Networks, Princeton
University Press, Princeton, N.J.

Gabow, H.N. and R.E. Tarjan (1987), "Faster Scaling Algorithms for Graph
Matching," Technical Report, Department of Computer Science, Princeton
University, Princeton, N.J.

Carey, M.R. and D.S. Johnson (1979), Computers and Intractability: A Guide to
the Theory of NP-Completeness, W.H. Freeman & Co., San Francisco.

29

�-------- --- �------�-----------

Golden, B.L. and A.A. Assad (1986), "Perspectives on Vehicle Routing:
Exciting New Developments," Working Paper, College of Business and
Management, University of Maryland, College Park.

Hadley,G. and T.M. Whitin (1963), Analysis of Inventory Systems, Prentice
Hall, Englewood Cliffs, N.J.

Handler, G.Y. and P.B. Mirchandani (1979), Location on Networks: Theory and
Algorithms, The MIT Press, Cambridge, Mass.

Hartigan, J.A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Jaw, J.J., A.R. Odoni, H.N. Psaraftis and N.H.M. Wilson (1982), "A Heuristic
Algorithm for the Multi-Vehicle Many-to-Many Advance Request Dial-A-Ride
Problem," Working Paper MIT-UMTA-82-3, M.I.T., Cambridge, Mass.

Johnson, D.S., L.A. McGeoch, and E.E. Rothberg (1987), "Near-Optimal Solutions
to Very Large Traveling Salesman Problems," presented at the TIMS-ORSA
joint national meeting, New Orleans, May.

Johnson, R.A. and D.W. Wichern (1982), Applied Multivariate Statistical
Analysis, Prentice-Hall, Englewood Cliffs, N.J.

Kanellakis, P.C. and C.H. Papadimitriou (1980), "Local Search for the
Asymmetric Traveling Salesman Problem," Opns. Res. 28(5), 1086- 1099.

Kernighan, B.W. and S. Lin (1970), "An Efficient Heuristic Procedure for
Partitioning Graphs," BSTJ 49(2), February, 291-307.

Kirkpatrick, S., C.D. Gelatt, Jr. and M.P. Vecchi (1983), "Optimization by
Simulated Annealing," Science 220, 671-680.

Kolen, A.W.J., A.H.G. Rinnooy Kan and H.W.J.M. Trienekens (1987), "Vehicle
Routing With Time Windows," Opns Res, 35(2), 266-273.

Larson, R.C. and A.R. Odoni (1981), Urban Operations Research, Prentice-Hall,
Inc., Englewood Cliffs, N.J.

Lawler, E.L. (1963), "The Quadratic Assignment Problem," Mgmt. Sci. 9, 586-
599.

Lebart, L., A. Morineau and W. Warwick (1984), Multivariate Descriptive
Statistical Analysis, John Wiley & Sons.

Lin, S. (1965), Computer Solutions to the Traveling Salesman Problem," Bell
System Tech. J. 44, 2245-2269.

Lin, S. and B.W. Kernighan (1973), "An Effective Heuristic Algorithm for the
Traveling Salesman Problem," Opns. Res. 21, 498- 516.

Llewellyn, D.C., C. Tovey and M. Trick (1988), "Local Optimization on Graphs,"
DAM, to appear.

30

Magnanti, T.L. (1981), "Combinatorial Optimization and Vehicle Fleet
Planning: Perspectives and Prospects," Networks 11, 179-213.

Mulvey, J.M. and M.P. Beck (1984), "Solving Capacitated Clustering Problems,"
Eur. J. Opnl. Res. 18:339-348.

Murty, K.G. (1976), Linear and Combinatorial Programming, John Wiley & Sons,
New York.

Odoni, A.R. (1974), Location of Facilities on a Network: A Survey of Results,
Technical Report TR-03-74, Operations Research Center, MIT, Cambridge,
Mass.

Papadimitriou, C.H. and K. Steiglitz (1982), Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Inc., Englewood Cliffs, N.J.

Psaraftis, H.N. (1983), "K-Interchange Procedures for Local Search in a
Precedence-constrained Routing Problem," Eur. J, Opnl. Res, 13, 391-402.

Psaraftis, H.N., J.B. Orlin, D. Bienstock and P.M. Thompson (1985), "Analysis
and Solution Algorithms of Sealift Routing and Scheduling Problems,"
Working Paper #1700-85, Sloan School of Management, M.I.T., Cambridge,
Mass.

Savelsbergh, M.W.P. (1984), "Local Search in Routing Problems with Time
Windows," Report Os-R8409, Department of Operations Research and System
Theory, Centre for Mathematics and Computer Science, Amsterdam.

Savelsbergh, M.W.P. (1985), "Local Search in Routing Problems with Time
Windows," Ann. Opns Res. 4, 285-305.

Solomon, M.M., E.K. Baker, J.R. Schaffer (1986), "Vehicle Routing and
Scheduling Problems with Time Window Constraints: Efficient Implementations
of Solution Improvement Procedures," Working Paper #87-03, College of
Business Administration, Northeastern University, Boston, Mass.

Solomon, M.M. and J. Desrosiers (1987), "Time Window Constrained Routing and
Scheduling Problems: A Survey," Working Paper, February.

Thompson, P.M. (1988), Local Search Algorithms for Vehicle Routing and Other
Combinatorial Problems, PhD Thesis, M.I.T., Cambridge, Mass.

Thompson, P.M. and H.N. Psaraftis (1989), "Local Search Algorithms for Multi-
Vehicle Routing and Scheduling Problems," in preparation.

Wagner, H.M. and T. Whitin (1958), "Dynamic Version of the Economic Lot Size
Model," Mgmt. Sci. 5, 89-96.

Francis, R.L. and J.A. White (1974), Facility Layout and Location: An
Analytical Approach, Prentice-Hall, Inc., Englewood Cliffs, N.J.

31

Figure 1. The Effect of a Cyclic 2-Transfer

Al A4 A5

C1 C2

B1 B2 B4

A2 A3

C3

B3 B 5

After

D1 D2

D3 D4

D1 D2

D3 D4

Before

32

Figure 2. The Cyclic Transfer Neighborhood is Not Exact

33

I

.

Figure 3. An Auxiliary Graph G1

34

Figure 4. An Auxiliary Graph G2

4

*

35

I

HAMILTONIAN CIRCUIT Transforms to CYCLE THROUGH DISTINCT
SUBPARTITIONS

V1 V2 ---- V3-~~~- --L

Vll1

V21N

V31I

V12 N

V22

V32s

* * *

Vn

/V 13

Vnl vn21 I
k t~~~~~~~~~~~~~ 1, -

* 0 V

* * 0

* * S

Vln

V2n

V3n

}

- 0 V

Instance of
HAMILTONIAN

CIRCUIT

Instance of
CYCLE THROUGH

DISTINCT
SUBPARTITIONS

36

Figure 5.

1_��_��__1_

* * .

Figure 6. A Euclidean VRP Subtour With Two Additional Nodes

A

T

B

37

I I

