TABLE OF CONTENTS | Publications and Reports | | | | | | |--------------------------|----------------------|---|--|--|--| | Personnel | | | | | | | Introduction | | | | | | | I. | Physical Electronics | | | | | | | Α. | Electron-Emission Problems 1. Work Functions and Electrical Conductivity of Oxide- Coated Cathodes | 1 | | | | | | Determination of the Thermionic-Emission Properties
of Single Tungsten Crystals by a Photometric Method | 2 | | | | | | Determination of the Field-Emission Properties of
Single Tungsten Crystals by a Photometric Method Energy Distribution of Electrons from Ultrafine- | 2 | | | | | | Grain Oxide Cathodes 5. Investigation of Certain Properties of Oxide-Coated Cathodes Using Radioactive-Tracer Techniques | 2
3 | | | | | | 6. Studies of the Phenomenon of Standby Deterioration of Oxide-Coated Cathodes 7. Studies of Photoelectric Emission | 3 | | | | | B. | Studies With Gaseous Discharge 1. Hot-Cathode Arc in Cesium Vapor | 4
4 | | | | | c. | 2. Investigation of Low-Pressure Mercury Arcs Experimental Techniques 1. Spectral Emissivity of Tungsten and Tantalum | 33445555
5 | | | | II. | Mic | 2. Ionization Gauge and High-Vacuum Studies rowave Gaseous Discharges | 5
7 | | | | • | A.
B. | Breakdown of Oxygen, Nitrogen and Air
Breakdown With Pulsed Fields | 78 | | | | | | Measurement in Helium Gas with a Liquid Helium Trap
Transient Discharge Characteristics | 10
11 | | | | | E. | An Error in a Paper by Landau on Coulomb Interactions in a Plasma | 17 | | | | III. | Sol | id State Physics | 19 | | | | | A.
B.
C. | Critical Point Fluctuations Vacuum Spectrograph Theory of Liquid Helium | 19
1 9
19 | | | | IV. | Low | -Temperature Physics | 21 | | | | | C. | Helium Liquefiers 1. Intermediate Supply of Liquid Helium Microwave Surface Impedance of Superconductors Magnetic Cooling | 21
21
23
23 | | | | | D.
E. | X-Ray Study of Superconductors
Second Sound Velocity | 23
24
26 | | | | v. | Rad | Radio-Frequency Spectroscopy | | | | | | В. | Molecular-Beam Research 1. Third Molecular-Beam Apparatus 2. Nuclear Spin and Hyperfine Structure of Cs 135 and Cs 137 3. The Fourth Atomic-Beam Apparatus 4. An Electron Bombardment Ionizer Nuclear Magnetic Resonance 1. Nuclear Magnetic Moments and Hyperfine Structure of the | 26
26
26
26
26
27 | | | | | c. | Rubidium Isotopes 2. Nuclear Magnetic Moments of Rb ⁸⁷ and Rb ⁸⁵ 3. The Magnetic Moment of Be ⁹ 4. The Nuclear Resonance of Li ⁶ 5. Deuteron-Proton Moment Ratio 6. Nuclear Magnetic Moment Values Paramagnetic Relaxation 1. Resonance Absorption | 27
28
28
29
30
32
32 | | | | | | 2. Relaxation 3. Low-Temperature Resonance | 32
32 | | | | | D. | Microwave Spectroscopy | 39 | | | |-------|-----|---|--|--|--| | | | 1. Germane Monochloride | 3 | | | | | | 2. Ketene
3. Formaldehyde | 31
31
31
31
31 | | | | | | 4. Oxygen | 31 | | | | | | 5. Apparatus | | | | | VI. | The | E Linear-Accelerator Program | 36 | | | | VII. | Mag | metron Development | 3 | | | | | A. | High-Power 10.7-Cm Magnetron | | | | | | | 1. Testing and Design 2. Thoria Cathodes | 37 | | | | | | 3. Auxiliary Equipment | 20
38 | | | | | | a. 20-Megawatt Pulse Transformer | 38 | | | | | В. | b. New Vacuum System | 39 | | | | | ٠. | Magnetron Research 1. Mode Stability | <i>2</i> 5 | | | | | | 2. Noise Properties of the Pre-Oscillating Magnetron | 3° 3° 3° 3° 3° 3° 3° 3° 3° 3° 3° 3° 3° 3 | | | | VIII. | | | | | | | | Α. | Three-Cm Traveling-Wave Amplifier Tubes | 4 (
4 (| | | | | | 1. Glass-Wool Helix Supports 2. Helix Supported by Glass Sheath | 4(
4(| | | | | | 3. Gun Design | 42 | | | | | в. | Velocity-Modulated-Input Traveling-Wave Tube | 42 | | | | | C. | Low-Voltage Three-Cm Traveling-Wave Amplifier 1. Helix Assembly | 46
46 | | | | | | 2. Gun Design | 46 | | | | | D. | Dense Electron Beams in Axial Magnetic Fields | 47 | | | | IX. | Com | munications Research | 48 | | | | | A. | Multipath Transmission | 48 | | | | | | 1. Speech and Music | 48 | | | | | | a. Automatic Volume Controlb. Comparison with Present Techniques | 48
49
51
53 | | | | | | c. Study of a Commercial FM Receiver | 50 | | | | | в. | 2. Television Microwave Modulation Techniques | 51 | | | | | υ. | 1. Investigation of Frequency Modulation of a Reflex | 52 | | | | | _ | Klystron | 54 | | | | | C. | Statistical Theory of Communication 1. Auto-Correlation Functions | 56 | | | | | | a. Correlation Functions | 56
56
56 | | | | | | b. Auto-Correlation Functions of Random Noise | 56 | | | | | | c. Digital Electronic Correlator2. Amplitude and Conditional Probability Distributions | 56 | | | | | | of a Quantized Time Function | 57 | | | | | | 3. Optimum Prediction | 57
59
59
61 | | | | | | 4. Techniques of Optimum Filter Design 5. Pulse-Modulation Studies | 59
61 | | | | | | 6. Storage of Pulse-Coded Information | 61 | | | | | | 7. "Felix" (Sensory Replacement) | 62 | | | | | | a. Bank Filters with Variable Bandwidth 8. Clipped Speech Studies | 63
64 | | | | | | 9. Pulse-Code Magnetic Recorder | 64
68 | | | | | D. | 10. Statistical Investigation of Modulation Systems Transient Problems | 68 | | | | | υ. | 1. Transient Theories | 69
69 | | | | | E. | Active Networks | 73 | | | | | F. | 1. Broadband Amplifiers Locking Phenomena in Microwave Oscillators | 73 | | | | x. | • | cellaneous Problems | 73 | | | | Α, | | | 74 | | | | | A. | Electronic Differential Analyzer 1. Computing Elements | 74 | | | | | | 2. Differential Equations | 74
74 | | | | | n | 3. Integral Equations | 74 | | | | | в. | An Automatic Impedance-Function Analyzer 1. Construction of the Mark 4 Machine | 75
76 | | | | | | 2. Method of Use | 10
77 | | | | | | Electronic-Potential Mapping | 77
78
80 | | | | | ש. | Hydrogen Arc Ultra-Violet Source | 80 | | |