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1. OVERVIEW

Mathematical programming is a rich formalism from which

powerful optimization models for production planning and

scheduling can be constructed and solved. Imbedded in easy-to-

use decision support systems, the models can provide production

managers with the means to more globally analyze their problems,

thereby increasing net revenues or reducing costs.

We have chosen to distinguish between production planning

problems, which are tactical in nature, and scheduling problems,

which are operational in nature. Models for production planning

tend to be aggregate, seek to describe large segments of the

production environment, and typically consider planning horizons

of one month to one year. By contrast, models for production

scheduling tend to be detailed, seek to describe smaller segments

of the production environment, and consider planning horizons of

a few hours to several days or a few weeks.

Of course, the scope of the models and the analyses they can

provide depends on the application. In some instances, the

complexity and size of the application may be such that an

effective micro-based model and optimizer can be developed. In

other instances, the complexity and size may require optimization

by a supercomputer. More experience with the practical use of

mathematical programming models in solving a variety of

production planning and scheduling problems is required before we

will fully understand how to choose effective models.
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At present, two compelling reasons are stimulating new

interest in applications of mathematical programming to

production planning and scheduling. First, the information

revolution has progressed to a point that an increasing number of

managers are actively seeking decision support systems to analyze

their problems. Although -accurate and complete data bases are a

pre-requisite for better production management, managers have

come to realize that new tools are needed to unravel the complex

interactions and ripple effects that make production problems

difficult and important. Second, computer technologies that have

facilitated the recent breakthroughs in data base construction

and management can also be harnessed to the tasks of efficient

model generation and optimization.

A major concern throughout this chapter is to present models

and solution methods that either have already been applied to

actual production planning and scheduling problems, or which show

reasonable promise for practical application in the near future.

In this regard, we will attempt to convey how the art as well as

the science of modeling building and algorithm construction

should be employed in specific problem solving situations. The ·

formalism of mathematical programming is often only the point of

departure for analyzing large scale problems. To it we add

approximation, aggregation and heuristic methods designed to

foster the computation of a "good" or "good enough" solution in

an acceptable length of time.
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A major objective when creating a mathematical programming

model for production planning or scheduling is to develop

effective approaches for coordinating or integrating a broad

range of production activities. The result may be a large scale

model that is difficult to assemble, optimize or interpret as a

single, monolithic entity. Thus, an important focus of this

chapter will be an exposition of mathematical programming

decomposition methods that allow large scale models to be broken

down into manageable sub-models that can be implicitly

reassembled. These methods show considerable promise for time

critical scheduling applications, especially when the methods

have been adapted for and implemented on parallel computers. In

any event, beyond their demonstrated and potential practical

importance, decomposition methods are extremely useful as

pedagogical devices for explaining model construction and

analysis.

The mathematical programming models we will consider fall

into several categories: linear programming, network

optimization, mixed integer programming, nonlinear programming,

dynamic programming, and stochastic programming. The form of

these models will be implicitly reviewed as we develop specific

production planning and scheduling applications throughout the

chapter. The assumption is that the reader has some acquaintance

with the field; for background, the reader is referred to Schrage

(1986), Shapiro (1979a), and Williams (1985).
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The plan of this chapter is as follows. In section 2, we

discuss mixed integer programming, dynamic programming and

traveling salesman models for lot-sizing and one machine

scheduling problems. These relatively simple models represent

building blocks that we employ in later sections to construct

larger, more comprehensive models. Lagrange multiplier and

decomposition methods are presented in section 3. These methods

are used throughout the remainder of the chapter to analyze and

optimize large-scale models.

The following three sections, sections 4, 5, and 6, are

devoted to mathematical programming models for three distinct

types of production planning and scheduling problems: process

manufacturing, discrete parts manufacturing, and job-shop

scheduling. In practice, of course, one cannot always classify

production problems as fitting cleanly in one of these

categories. At a paper mill, for example, the production of pulp

and the operations of the paper machines are characterized by

process manufacturing activities, but conversion of the paper to

meet the specifications of specific orders (sizes, coatings,

etc.) is characterized by job-shop scheduling activities related

to specific orders.

Moreover, space and time constraints prevent us from

considering production planning and scheduling environments that

are not adequately described by these three main model types. In

particular, we will not cover models for flexible manufacturing

systems and refer the reader to Buzacott and Yao (1986); see also
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Stecke (1983). Nor will we cover the growing body of literature

on the application of graph and network optimization techniques

to the production of printed circuit boards (PCB) and very large-

scale integrated (VSLI) chips; see, for example, Feo and Hochbaum

(1986) and Ball and Magazine (1988).

Section 7 contains a brief discussion of stochastic

programming extensions to the deterministic models of earlier

sections. In section 8, we discuss the important role that

mathematical programming models can play in coordinating

manufacturing with other company activities. The chapter

concludes with a section devoted to future directions for

mathematical programming applications to production planning and

scheduling.

Our reference citations are intended to be representative

rather than encyclopedic. This is a necessity rather than a

convenience since the number of articles and books on the subject

published over the past 30 years is enormous. Preference in most

instances is given to recently published articles. Interested

readers can easily develop their own reference list by working

backward from these recent papers.
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2. SIMPLE MODELS

We characterize simple models for production planning and

scheduling as those with the property that they can be solved in

at most a few seconds, even on a microcomputer, for the majority

of practical applications. Moreover, the problems addressed by

simple models are primitive or elementary ones that reflect only

myopic planning concerns. Two examples that we discuss below

are: a dynamic programming model for production planning of a

single item; and, a traveling salesman problem formulation of one

machine scheduling problems.

The class of simple models includes those that can be

optimized by polynomially bounded list processing algorithm.

The class also includes some models, such as those for the

traveling salesman problem, from the class of combinatorial

models called NP-Complete for which polynomially bounded

algorithms do not, in all likelihood, exist (see Papadimitrou and

Stieglitz (1982)). However, for the vast majority of practical

applications, optimization of traveling salesman problems,

knapsack problems and several other NP-Complete problems, can be

carried out very quickly, at least to a good approximation. Of

course, other NP-complete models, such as the general zero-one

programming model, can often be relatively difficult to optimize,

and we will not consider them in the category of simple models.

From another perspective, the simple models we discuss here

will serve mainly as elements in large-scale model syntheses.
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This is their primary importance. Conversely, a practitioner

would be hard pressed to utilize these simple models on a stand

alone basis to support production decision-making. This is

because, for example, production and inventory decisions about an

individual product are difficult to isolate from those for other

products, or, decisions about scheduling an individual machine

are difficult to isolate from those for other machines that can

process some or all of the same products.

2.1 SINGLE ITEM DYNAMIC LOT-SIZE MODELS

A classic production problem is to determine an optimal

balance between set-up costs and inventory carrying costs. On

the one hand, a production manager prefers long production runs

to spread out set-up costs. On the other hand, he/she would like

to make frequent, smaller runs that match demand, thereby

reducing inventory carrying costs to a minimum. The basic

dynamic lot-size model (Wagner and Whitin (1958)) formally

optimizes these conflicting decisions for individual production

items.

Parameters:

f = set-up cost ($)

ct = variable production cost ($/unit)

h = inventory carrying cost ($/unit)

rt = demand in period t (units)

Mt = upper bound on production in period t (units)
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Decision Variables:

Yt = inventory at the end of period

xt = production during period t

1 if production occurs during

8
t =

0 otherwise

Subject to

t

period t

Dynamic Lot-size Model

T
v = min {f t + ct xt +h yt}

t=l

Yt = Yt-1 + Xt - rt

for t=l,..,T

Xt - Mt 6t 0

Yo given

Yt > 0, x t 0, t = 0 or 1

(2.2)

(2.3)
a

(2.4)

(2.5)

This is a very simple MIP model. As stated, demand in each

period must be satisfied by some combination of starting

inventory and production since ending inventory t is constrained

to be non-negative; i.e., no backlogging is required. The model

could easily be extended to allow backlogging by substituting

Yt = Yt+ - Yt

with yt+ > 0, Yt- 0. The unit holding cost h is then

associated with yt+ and a unit backlogging penalty cost, say p,

with Yt-.

8
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Another simple model enhancement that may be worthwhile is

to constrain final inventory T to lie in some set. Otherwise,

the optimization model will tend to run inventories to zero at

the end of the planning horizon, even though production and sale

of the item will continue for the foreseeable future.

Alternatively, the term -rqT could be added to the objective

function where r > 0 is a reward per unit (negative unit cost)

for terminal inventories.

A more extensive enhancement is to consider part or all of

demand rt to be tied to specific orders with specific due dates.

We consider the following example. Suppose demand consists

entirely of orders of size wk for k=l,...,K, where each order has

a target completion (shipping) date tk. Suppose further that

every order must be complete before it is shipped. Finally,

suppose an order is allowed to be completed one or two periods

after the due date tk, with penalties Pkl and Pk2, respectively.

We extend the formulation (2.1) - (2.5) to include the

situation just described. Let Kt = { k I tk = t. Let Ptk,

Pt,k+l, t,k+2 denote zero-one variables that take on values of

one only if order k is completed in periods tk, tk + 1, tk + 2

respectively. With this new notation and variables, we change

the equations (2.2) to

Yt = Yt-1 + xt - Wk tk - Wk t,k+l - C Wk t,k+2 (2.6)
keK t keKt_1 ksKt_2

In addition, for each order k, we add the multiple choice

constraint
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Otk + t,k+l + t,k+2 = 1

Lastly, we add to the objective function the penalty term

K
E Pkl t,k+l + Pk2 t,k+2 (2.8)

k=l

The single item dynamic lot-size model (2.1) - (2.5) can be

re-formulated and optimized as a dynamic programming model. Let

Gt(y) = minimal cost of meeting demands in

periods t, t + 1,..., T when

inventory at the beginning of period t is y

We let t denote the set of beginning inventory states that we

need to consider for period t. For example, we might let

T
yt = {y : 0 y r + T}

s=t

where YT is an upper bound on inventory at the end of the

planning horizon.

The Gt functions satisfy the following recursive

relationship for all yeYt

Gt(y) = minimum {f8t + ctxt + h(y + Xt - dt)

+ Gt+l (y + xt - dt)} (2.9)

Subject to xt max {O, dt - y}

Xt - Mt 8t 0

Xt 0, t = 0 or 1

where GT+l(y) given for all y

10
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The recursion (2.9) is solved by backward iteration starting

with t = T and continuing until G(y 0) has been computed. Since

the state space y in each period is continuous, some finite

discretization is in general required to perform these

computations. The result, as we shall shortly see, is a

representation of the model and optimization algorithm as the

problem of finding a shortest route in a network.

First, we discuss a special property of the Dynamic Lot Size

Model. Using an induction argument, one can show that the

functions Gt(.) are concave. This property can be used to prove

the following result due to Wagner and Whitin (1958); see also

Wagner (1969).

DYNAMIC LOT-SIZE THEOREM: If initial inventory y0 = 0, an optimal

solution to the Dynamic Lot-Size Model can be characterized by

the condition

Xt Yt-1 = 0 for t=l,...,T

This result implies further that an optimal production strategy

must satisfy x t > 0 only when Yt-1 = 0 in which case x t equals

one of the quantities

T
rt, rt + rt+1,...,, rs

s=t

Unfortunately, the condition that starting inventory

s
inventory equals zero (or E rt for any s) is not realistic in

t=1
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the sense that if we were considering a real-life inventory

system, we would in all likelihood find y to be some random

amount at the start of a planning horizon. Adjusting to the

initial transient caused by positive inventory may require

several periods.

We return now to a consideration in more detail about how

one computes optimal solutions with the recursion (2.6).

Accordingly to the Dynamic Lot Size Theorem, when initial

inventory is zero, we can solve the Dynamic Lot Size Model by a

simple dynamic programming model that considers producing in lot

amounts equal to the next k periods demand for appropriate values

of k. Since the simplifying assumption may not hold, and also

for the purposes of exposition, we ignore the consequences of the

Theorem in illustrating the dynamic programming approach.

Consider a five period problem with demands r 1=695, r 2=177,

r 3=511, r 4=425, r 5=468. Suppose that the set-up cost = $800, and

that the unit holding cost = $1. We assume for simplicity that

the variable production cost is constant over time and therefore

can be ignored (the total variable cost of production is a fixed

amount). Choosing the basic unit of inventory and demand to be

100 units and dollars to be $100., we then have demands (rounding

off to the nearest 100) r1=7, r 2=2, r 3=5, r4=4, r5=5, a set-up

cost of 8, and an inventory holding cost = 1. We consider two

cases: starting inventory = 0 and starting inventory = 3.

Figure 2.1 depicts this problem as a shortest route problem

in a network where the nodes correspond to starting inventory

12



states in each period and the arcs correspond to feasible

statetransitions. Not all nodes and arcs they need be considered

are actually shown in the figure. The arc "lengths" are the

immediate costs. Consider, for example, the choice of an optimal

immediate decision at the start of period 3 when starting

inventory equals 2 units. The numbers beneath the nodes at the

end of period 3 are the G4(y) values previously computed by

backward iteration. The decision choices are to set-up and make

any number of units between 3 and 12, with associated transitions

to ending inventory states ranging from 0 to 9. The length of

the arc from node to node 3 is 11 corresponding to a set-up cost

(8) plus an inventory holding cost (3) on three units of ending

inventory. Comparing the 10 decision options, the optimal

immediate decision to is to set-up and manufacture 7 units,

thereby making the transition to 2 + 7 - 5 = 4 units of ending

inventory.

The solid dark arcs represent shortest routes from the two

possible initial inventory states. The implied optimal

production strategy when starting inventory is 3 units, for

example, is: x1 = 6, x 2 = 0, x3 = 9, x4 = 0, x5 = 5. Note that

the optimal routes for both cases follow the pattern predicted by

the Dynamic Lot Size Theorem; namely, produce only when inventory

falls to zero.

The Dynamic Lot-Size Model has been studied and generalized

by several authors. Zangwill (1966) extends the dynamic lot-size

theorem to include the case of backlogging. Crowston, Wagner and

13
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Williams (1973) extend the model and the analysis to a multi-

stage and multi-product assembly system in which each product may

have many predecessors, but only one successor (multi-item

assembly systems are discussed again in section 5.2). Over an

infinite planning horizon, and under mathematical assumptions

similar to those made for the Dynamic Lot Size Model and Theorem,

they prove that the optimal lot size at each stage is an integer

multiple of the lot size at the successor stage. Karmarkar,

Kekre and Kekre (1987) generalize the model to allow long

production runs for a given item that last more than one period.

In such an event, only one set-up should be charged for

production of that item.

Love (1972) gives a dynamic programming approach and

algorithm for the multi-stage serial manufacturing system in

which each product may have exactly one predecessor and one

successor. Crowston and Wagner (1973) give a similar but more

general dynamic programming approach and algorithm for finite

horizon, multi-stage assembly planning.

2.2 THE TIME DEPENDENT TRAVELING SALESMAN PROBLEM

AND ONE MACHINE SCHEDULING

The Traveling Salesman Problem (TSP) is another classical

and well studied combinatorial optimization problem. Simply

stated, the TSP is concerned with finding a tour of a set of

cities such that every city is visited exactly once and the total

distance traveled is minimal. The TSP admits several distinct

15



zero-one integer programming formulations (see Lawler et al

(1985)). Its relevance here is to optimizing the schedule of

several jobs processed sequentially on a single machine. In

section 6, we discuss job shop scehduling problems that

correspond roughly to multiple TSP models, one for each machine,

with linking precedence constraints.

For our purposes, the formulation that we prefer is one

consisting of a shortest route model with additional constraints

requiring each node (city) to be visited exactly once. We

present this formulation and then discuss how it can be adapted

to one machine scheduling.

Consider a network with nodes 0, 1, 2,..., N, directed arcs

(i, j) for all i and j = i, and associated arc lengths cij. Node

0 corresponds to the starting city. For technical purposes, we

define a new node with the label N+1 which is located identically

with node 0 but corresponds to terminating there. Thus, the arc

costs ci,N+1 = ciO for all i. As shown in Figure 2._ we

consider N replications of the nodes 1, 2,..., N, each

replication indexed by t. The TSP can be expressed as the

problem of sending one unit of flow from node 0 to node N+1 so

that the distance traveled is minimized (this is a shortest route

problem), but with the additional constraints that each node i

must be visited exactly once.

16
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Letting xijt denote zero-one decision variables, the model

can be stated as

Traveling Salesman Problem

N
min E c0 j x 0j +

j=1

N-1 N N N
E E E ij ijt + E Ci,N+1 Xi,N+1,N

t=l i=l j=l i=l

Subject to

N
E x0j0

J=1
= 1

N

N
-xoiO + E Xij1j=1

N
- Xki,t-1 + E xij t
k=l j=1

N
k l Xki,N-1 + Xi,N+1,N
k=l

N
E Xi,N+1,N

t=l

N-1 N
xOjO + E E xijt

t=l i=l
iij

xijt

The constraints (2.11) -

= 0 for i=1,...,N

= 0 for i=l,... ,N
t=2,... ,N-1

= 0 for i=1,...,N

= 1

= 1 for j=i,...,N

= 0 or 1

(2.13) describe the shortest route

problem and the constraints (2.14) require each node 1,...,N to

be visited exactly once. Note that the arc lengths cij do not

18
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depend on t. When they do depend on t, such as in the machine

scheduling formulation about to be described, we say that we have

a Time Dependent TSP.

Consider the problem of scheduling N+1 jobs on a single

machine (Picard and Queyranne (1978)). For i = 0, 1, 2,..., N,

we associate with job i an integer processing time Pi, an integer

due date di, an integer changeover time hij, and a tardiness cost

Ci(t) for completing the job by time t. We assume the job is

currently (that is, at time t=O) set-up for job 0. Two examples

of Ci(t) are

(a)
Ci(t) := 0 if t di

ai if t > d i

(b) Ci(t) = ai max {0, t - di} + Pi max (0, d i - t}

Note that the tardiness function (b) includes the possibility of

penalizing (i > 0) or rewarding (i < 0) early completion of job

i. Also associated with each job i and all other jobs j are

changeover costs fij- The problem is to sequence the N jobs so

as to minimize the sum of changeover and tardiness costs.

We modify the TSP formulation (2.10) - (2.15) as follows.

Let node 0 correspond to the current configuration of the

machine. Let T denote an upper bound on the time to complete all

jobs, and replicate the N nodes T times. For future reference,

let T* denote a lower bound on the completion of all jobs.

Finally, let node N+1 denote the desired terminal configuration

of the machine.
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The model contains several types of arcs. Node 0 is

connected to nodes j for all j = 0 at time P0 + ho0j by arcs of

length cjO = f0j + C0(po). Each node j at each time t (t > p +

h 0j) is connected to node k for all k = j at time t + pj + hjk by

an arc with length cjkt = fjk + Cj(t + pj). In addition each

node i at time t is connected by an arc to node i at time t + 1

with arc length ciit = 0; these arcs are needed in those cases

when it is advantageous to delay processing certain jobs.

Finally, each node i at each time t (t T*) is connected to node

N + 1 by an arcs with length c i N+l,t = fiN+ + Ci(t + Pi).

The algebraic model statement is

One Machine Sequencing Model

N N T N N T
min cOjOx0j + E E cijt xijt + E ci,N+l,t xi,N+l,t (2.16)

j=1 i=l t=Pi j=l i=l t=T*

N
Subject to E XOj0 = 1 (2.17)

j=1

N N
k Xk,i,t-pk + E xijt = 0 for i = 1,...,N (2.18)

k=l1 j=1 t =1,...,T-

N N+1
E Xk,i,t-pk + E xijt = 0 for i = 1,.. .,N (2.19)

k=l j=1 t = T*,...,T-1

N T
E Z Xi,N+l,t = 1 (2.20

i=l t=T*

20



N T
xOjO + E E Xkj,t = 1 for j = 1,...,N (2.21)

k=l tPk
kfj

xijt = 0 or 1 (2.22)

The statement of the one machine scheduling model is very similar

to that of the TSP given above. The objective function (2.16)

consists of three terms: initial costs, intermediate costs, and

the final cost associated with proceeding to the terminal

configuration N+1. Constraints (2.17) - (2.20) are material

balance equations. Flow out of node i,t to node N+1 is allowed

only after t has reached T*. The constraints (2.21) impose the

restriction that every job must be scheduled.

The model just described allows the jobs 0,1,...,N to be

performed in any order. In many job-shop scheduling

applications, the order is restricted by precedence constraints

reflecting the physical necessity to perform a certain job on a

particular component before a second job is performed. To

illustrate, suppose job i can be performed only after job k has

been completed. Mathematically, we require for any t that xijt =

1 ==> Xkgs = 1 for some g=k and for some s t - Pk. This

logical condition can be expressed as the constraint

T N T-pi N
E Z t Xijt - E E s Xkgs Pk

t=Pk j=1 s=1 g=l
jti gfk

21



Since we need such a constraint for each precedence relation, it

is apparent why job-shop scheduling problems are often extremely

difficult to model and optimize. These problems are discussed

again in Section 6.
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3. LAGRANGE MULTIPLIER AND DECOMPOSITION METHODS

In this section, we review Lagrange multiplier and

associated price-directed decomposition methods; see Geoffrion

(1974), Shapiro (1979a), (1979b), or Fisher (1981) for more

details. These methods will be applied to several large scale

production planning and scheduling models in the sections that

follow. Resource-directed decomposition, also known as Benders

decomposition, is another relevant and important method,

especially for mixed integer programming models. Unfortunately,

space limitations prevent us from reviewing this method; the

reader is referred to Shapiro (1979a) or Nemhauser and Wolsey

(1988).

Decomposition methods for large-scale mathematical

programming models, and for complex models with special

structures that can be algorithmically exploited, were thoroughly

studied during the period 1960-1975. A few applications have

been successfully implemented. But, despite their attractive

features, practitioners have shown little interest in the

methods. Nevertheless, for reasons we are about to explain, the

methods are worth examining here in detail.

A primary reason for the lack of applications is that

decomposition methods can be inefficient on serial computers when

compared with a monolithic (non-decomposition) approach. Of

course, for very large models, a monolithic approach may not be

possible. The imminent availability of commercial parallel

computers should greatly renew interest in decomposition methods

23



because the methods can exploit parallel architectures by

distributing sub-models to separate processors. The methods

allow solutions from these sub-models to be re-assembled in a

rigorous manner to find a globally optimal solution. The

combination of decomposition methods and parallel computers is

particularly alluring for time critical decision support

applications such as production scheduling. An important added

feature of decomposition methods for these applications is that

they provide objective function bounds on how far the best known

solution is from optimality.

A second reason for the lack of applications is that

decomposition methods need to be tailored to a particular

application. This means first that greater effort is required to

implement the software than that required by a monolithic method.

Moreover, since decomposition methods perform best when provided

with good starting information, the user must involve

himself/herself more heavily in initialization procedures.

Similarly, automatic re-start procedures should be implemented so

that those sub-models that have changed since the most recent

optimization can be given the greatest attention. Tailoring is

also required to fully exploit the sub-model approximations and

associated bounds provided by a decomposition approach. In

short, the successful implementation and use of a decomposition

method may require more work than a monolithic method, but it

offers the potential for more flexible and efficient computation,

particularly on a parallel computer.
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In addition to this the potential afforded by parallel

computers, decomposition methods are excellent pedagogical tools

for presenting and examining production planning and scheduling

models, particularly in describing how these models can be

constructed as syntheses of smaller sub-models. Moreover, the

methods mechanize concepts of economic equilibria by providing a

rigorous means for computing them, thereby affording us with

insights into the supply and demand forces that abound in many

production environments.

We begin our mathematical development by considering the

mathematical program

v = min cx

Subject to Ax b (P)

x X

which we refer to as the primal problem. The constraints in (P)

have been partitioned into the easy to solve implicit constraints

x X, and the more difficult to solve, or complicating,

constraints Ax b. The matrix A is an m x n. For the vast

majority of cases of interest to us here, the set X is finite and

can be enumerated as {xt t=1,..,T}. For example, X might

consist of the finite set of zero-one solutions of an integer

program, or the finite set of extreme points of a linear

programming model.

An alternate form of (P) that we will sometimes employ is
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v = min c lx1 + c 2x2

Subject to A 0 1xl + A 02x 2 bo0 (p)

X 1 X 1 , X2 X2

where

X 1 = {lAllX 1 bl, x 1 0 X 2 = {x2 JA22x2 b 2, X2 0}

The model (P') is no more than a structured linear program. Note

that it would decompose into two separate models if t were not

for the linking constraints A 01x1 + A02x2 b0.

Returning to model (P), we attempt to eliminate the

complicating constraints by pricing them out and placing them in

the objective function. The result is the Lagrangean function

defined for any m-vector u 0

L(u) = ub + min (c - uA)x

Subject to x X

Optimization of the Lagrangean produces the solution x(u) X. A

central question is: When is x(u) optimal in (P)?

The answer to this question is related to the following

conditions: We say XEX, u 0 satisfy the global optimality

conditions for (P) if

(i) L(u) = ub + (c - uA)x

(ii) u(Ax-b) = 0

(iii) Ax b

The global optimality conditions are sufficient conditions for

optimality as demonstrated by the following theorem that we state

without proof.
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THEOREM 1: If xeX, u 0 satisfy the global optimality

conditions, then x is optimal in (P).

The global optimality conditions are not necessary in the

following sense. For a given x optimal in (P), there may be no

u 0 such that the global optimality conditions hold. This is

frequently the case when X is a discrete or otherwise non-convex

set. It is easy to demonstrate, however, that L(u) v

regardless of the structure of X.

A second important question is: How should we choose u?

The answer is to search for the best lower bound; namely to solve

d = max L(u)

u 0 (D)

We call this the dual problem. L is a concave function of u and

therefore (D) is a well behaved mathematical program. Clearly, d

< v; if d < v, we say there is a duality gap.

The following theorem tells us that we need consider only

optimal solutions to (D) in attempting to solve (P) via the

global optimality conditions.

THEOREM 2: If xX, u 0, satisfy the global optimality

conditions, then u is optimal in (D). Moreover, d = L(u) = v;

that is, there is no duality gap.

To summarize, a goal of the Lagrangean analysis is to

compute some u 0 that is optimal in (D), and then seek an xX

such that the global optimality conditions hold at that optimal

u. If X is not convex, which is the case with integer

programming and combinatorial optimization models, this objective
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may not be met for any optimal u and any xX. These are the

primal models for which there is a duality gap. Geoffrion (1974)

discusses properties of integer programming models and their

Lagrangean analysis that ensure no duality gap.

It is important to recognize, however, that the Lagrangean

constructions derived from (P) can be useful even when there is a

duality gap. First, the bounds from the Lagrangean analysis can

be employed in a branch and bound scheme for optimizing (P); see

Shapiro (1979a), (1979b). Second, the Lagrangean analysis may

produce a feasible solution XeX to (P) (conditions (i) and (iii)

hold), but the complementary slackness condition (ii) may fail to

hold. In such an event, the quantity u(Ax - b) > 0 is an upper

bound on the duality gap. If it is sufficiently small, the

search for an optimal solution to (P) can be abandoned.

Imbedded in a branch and bound scheme, the Lagrangean

analysis just described is complementary to heuristic methods for

mixed integer programming and other combinatorial optimization

models. Optimizing the Lagrangean will only rarely produce a

feasible or provably optimal solution to (P). By contrast,

problem specific heuristics applied to each sub-model in a branch

and bound search are intended to yield good feasible solutions to

(P). A heuristic may even employ information from the

Lagrangean; for example, the heuristic may be based in part on

the relative importance of the variables xj as measured by the

reduced cost values cj - uaj where u is a "good" dual solution.

If v* is the cost of the best known solution found by the
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heuristic, the quantity v* - L(u*) is a bound on the objective

function error if we decide to terminate with this solution,

where u* is the computed dual solution that produces a maximal

dual lower bound. Heuristics and Lagrangean analyses have been

employed in this manner by Christofides et al (1987) for a job-

shop scheduling model,and by Aftentakis and Gavish (1986) for a

discrete parts manufacturing model.

Moreover, if branch and bound continues, the surrogate

constraint

(c - u*A)x v* - u*b

added to (P) will serve to limit the search for a better solution

(e.g., see Karwan and Rardin (1979).

We consider briefly two algorithmic methods for optimizing

the dual problem (D). The first is an ascent method called

subgradient optimization. Suppose L has been evaluated at u 0.

Let xeX satisfy

L(u) = ub + (c-uA) x

= cx + u(b - Ax)

Define = b - Ax; this m-vector is called a subgradient of L at

u. It points into the half space containing all optimal

solutions. That is, if u* is optimal in (D), (u* - u) t 0.

This property is sufficient to ensure convergence of the

following algorithm despite the fact that may not actually

point in a direction of increase of L at u.

The algorithm is to choose a sequence {uk} of dual solutions

by the formula
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+l max {0, + k (d-L(Uk) t for i=l,...,m.
1 1 l)~ii k1 12 1

where 0 < < k < 2-2 < 2 and III denotes Euclidean norm.

It can be shown that uk converges under weak conditions to an

optimal dual solution u*. The difficulty, however, is that we do

not know the value of d. Thus, we must guess at d and therefore

subgradient optimization is essentially a heuristic method.

The other algorithm we discuss for optimizing the dual

problem (D) is generalized linear programming. This approach to

mathematical programming pre-dates, and in a sense anticipates,

the development of general mathematical programming dual methods.

Since X = {xt I t=l,...,T}, we may write

L(u) = minimum {ub + (c-uA'xt}
t=l,...,T

This representation of L permits us to express (D) as the linear

program

d = max w

s.t. w ub + (c-uA)xt for t=l,...,T

u 0

because, for any u > 0, the value achieved by w, say w(u), equals

L(u). Taking the dual of this LP, we obtain

T
d = min E (cxt) Qt

t=l

T
s.t. E (Axt) Qt = b

t=l
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T
E nt= 1

t=1

Qt 

The difficulty with this representation of the dual problem

is that the number T of solutions in X will generally be too

large to allow explicit enumeration. Generalized linear

programming proceeds by generating solutions implicitly. Thus,

suppose we have somehow obtained the solutions xteX, t=l,...,K

where K is a reasonable, practical number. The method begins by

using the simplex method to solve the LP

GLP Master Model

K
dK = min (cxt) t

t=1

K
s.t. E (Axt) t b

t=1

K
E at = 1

t=l

at 0

Let , t=l,...,K, denote optimal values, let uK denote optimal

LP dual variables for the constraint rows, and let K denote an
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optimal dual value for the convexity row. Note that dK > d since

columns have been omitted in the Master Model.

The next step is to solve the Lagrangean sub-model L(uK) to

obtain the solution xK+1 X that satisfies

L(uK) = uKb + (c-uKA) xK+1

= uKb + min (c-uKA) x
xcX

Note that we have reverted to the original definition of L

involving minimization over the set X in its given form.

There are two possible outcomes as the result of the

Lagrangean optimization.

Case One:

L(uK) - uKb = (c-uKA)xK+l < eK

In this case, the solution xK+1 is represented by a new column in

the master model with variable K+i. The new column will cause

the master model solution to change since its reduced cost in the

previously optimal LP is negative; namely,

cxK+1 - uAxK+ - K < 0

Case Two:

L(uK) - uKb = (c-uKA)xK+ = eK

Note that L(uK) - uKb cannot be greater than eK since the basic

columns in the master model price out zero. In this case, we

have

L(uK) = uKb + eK = dK d L(uK)
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where the second equality follows from LP duality. Thus, L(uK) =

d and uK is optimal in the dual.

Convergence of the generalized programming method to case

two is finite since we have assumed there are only a finite

number of possible columns to be added. As discussed above, when

an optimal u* has been obtained, we seek an xX such that the

global optimality conditions hold at u*.

We return for the moment to the alternate primal problem

(P'). For u 0,

L(u) = ub + F(u) + F 2(u)

where Fi(u) = min (ci - uA0i) X i

s.t. x i X for i = 1,2

Thus, the optimization of (P') separates. Moreover, since the

submodels i are LP's, LP duality ensures that the global

optimality conditions will hold for some u. For (P') the master

model becomes

K K
dK = min E (clx) t = E (C 2x) Pt

t=1 t=1

K K
s.t. (A 0 1x4) t + (A 02x) t b

t=1 t=1

K
E t = 1

t=1

33



K
E t = 1

t=1

at 0, Pt 0

Letting nQ, denote optimal values and uK, e8, 8e denote optimal

LP dual variables for the master model, we optimize the two LP

sub-models Fl(uK). If

F 1 (uK) = E)

and

F 2(uK) = 8E,

the method terminates. In this case, since (P') is an LP,

K K
x1 E (x) Qt and x = Z (x) T

t=1 t=l

are optimal solutions in (P'). Otherwise, we add a column to one

or both of the two sets in the Master Model.
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4. PROCESS MANUFACTURING MODELS

The first significant applications of mathematical

programming were to oil refinery, food processing and steel

manufacturing planning (see Dantzig (1963) for a discussion of

these early industrial applications). Through the years similar

types of models have been developed and applied to process

manufacturing of other products such as chemicals, paper, soap,

and industrial gases. Historically, these modeling applications

have been mainly for tactical planning; for example, determining

an optimal monthly production plan for a chemical plant.

However, due to advances in computer and process control

technologies, and to growing international competition that is

spurring companies to seek greater efficiencies, many process

manufacturing companies have introduced or are now considering

scheduling systems based in part on mathematical programming

models.

Process manufacturing planning and scheduling problems are

characterized by the following features: (1) expensive machines

and plants that must be operated near capacity if investments are

to be profitably amortized; (2) for each stage of production,

product transformation activities that are smooth and continuous

(although not necessarily linear) as long as the equipment

associated with a stage remains in the same major configuration;

(3) time consuming and sometimes costly change-overs that occur

whenever equipment undergoes an alteration in its major

configuration.
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Process manufacturing planning models ignore changeovers,

and treat products grouped into aggregate families. Process

manufacturing scheduling models explicitly consider changeovers

and consider products in greater detail, including the shipment

of specific orders for specific products to specific customers.

In the paragraphs that follow, we discuss first process

manufacturing planning models, and then process manufacturing

scheduling models.

4.1 OIL REFINERY EXAMPLE

We begin by considering a numerical example of an oil

refinery planning model. The processing stages of the refinery

are depicted in Figure 4.1. The first stage at the left performs

a distillation of two crudes CR1 and CR2. The outputs of the

distillation, P1 and P2, are transformed by different recipes to

produce intermediate products P3 and P4. The final stage is

blending the four intermediate products P1, P2, P3, P4 into the

final products Fl and F2.

Table 4.1 is a tabular display of a linear programming model

to optimize production over a single period which we consider to

be 72 shifts (24 days) long. The first row (REV) is the net

revenue to be maximized over that period. The costs of acquiring

crudes and transforming them to finished products are subtracted

from the gross revenues accruing from the sale of finished

products. Note that no cost is associated with blending; this
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cost is netted out of the unit sales price of the finished

products.

The first six constraints of the model are material balance

equations on the crudes CR1 and CR2 into the distiller, and the

intermediate products that result from the distillation and the

two process operations TA and TB. The following two inequalities

reflect capacity available for the operations TA and TB over the

72 shift period. The next four rows are material balance and

quality constraints (eg, octane rating) on the final products Fl

and F2. For example, the QAF1 inequality states that the quality

of the blended product F1 must be at least 20. Finally, there

are upper bound constraints on the quantities of crudes that can

be bought, and upper and lower bounds on the quantities of

finished products that can be sold.

The linear programming model just discussed assumes that all

transformation activities are linear and additive. Although this

assumption has been accepted through the years by practitioners

responsible for implementing refinery planning models, important

nonlinearities do occur. Advanced modeling techniques involving

mixed integer programming and/or nonlinear programming can be

applied to achieve greater accuracy in describing operations.

Mixed integer programming constructs can easily capture

nonlinearities if they can be described by separable functions.

For example, Figure 4.2 depicts the non-linear cost of the

process transformation activity TAP1 as a function of the DLCR1

input to that process. The quantity F is the fixed cost of
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setting-up the process activity, m is the conditional minimum

operating level for the process, c1 is the initial unit cost of

operations, c 2 is a reduced unit cost of operations that prevails

once the level m 2 has been reached, and c3 is the increased unit

cost of operating in the range m3 to 72 that is very close to

capacity.

The nonlinear characteristics of chemical processing

activities may be too complex to easily allow the type of mixed

integer programming approximation just presented. In particular,

if cross-product terms involving decision variables are important

to accurately describe a chemical process, the formalisms of

nonlinear programming are probably required. These points are

discussed again in Section 4.3 below.

4.2 DECOMPOSITION EXAMPLE

We illustrate the price-directed decomposition method

discussed in section 3 by applying it to the process planning

problem depicted in Figure 4-1 and modeled in Table 4-1.

Specifically, we decompose the model by splitting it into two

parts; one part consists of the distillation and transformation

activities and constraints, and the other consist of the blending

activities. We note that this decomposition is based on the

block diagonal form of the matrix in Table 4-1

D T

0 B
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where B consists of the lowest four rows (excluding lower and

upper bounds) and the right-most eight columns of the matrix.

The master model is associated with D and T, whereas the sub-

model is associated with B.

The master model is initialized with the four feasible

blending solutions shown in Table 4.2; note that these solutions

satisfy the blending constraints. The four solutions are

B1P1
B1P2
B1P3
B1P4
B2P4
B2P4

SOLN 1

60
0
0
60
40
40

SOLN 2

0
65
65
0
30
30

SOLN 3

0
45
45
45
30
50

SOLN 4

32
32
32
32
35
45

Table 4.2

BP1
BP2
BP3
BP4
GROSS
REVENUE

SOLN 1

60
0
40

100

6360

SOLN 2

0
65
95
30

6010

SOLN 3

0
45
75
95

6925

SOLN 4

32
32
67
77

660'8

Table 4.3

directly translated to the associated four product inputs and

gross revenue outputs shown in Table 4.3. We use these data in

constructing the master model
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MAX 6360 L + 6010 L2 + 6825 L3 + 6608 L4 - 20 CR1 - 22 CR2
- 1.2 DLCR1 - 1.25 DLCR2 - 0.5 TAP1 - 0.52 TAP2 - 0.61 TBP1
- 0.68 TBP2
SUBJECT TO

1
1
1

2) - CR1 + DLCR1 = 0
3) - CR2 + DLCR2 = 0
4) 60 L1 + 32 L4 - 0.48 DLCR1 - 0.49 DLCR2 + TAP1

+ TBP1 = 0
5) 65 L2 + 45 L3 + 32 L4 - 0.46 DLCR1 - 0.48 DLCR2

+ TAP2 + TBP2 = 0
6) 40 L1 + 95 L2 + 75 L3 + 67 L4 - 0.55 TAP1

- 0.59 TAP2 - 0.65 TBP1 - 0.6 TBP2 = 0
7) 100 L1 + 30 L2 + 95 L3 + 77 L4 - 0.37 TAP1

- 0.34 TAP2 - 0.31 TBP1 - 0.38 TBP2 = 0
8) TAP1 + TAP2 <= 72
9) TBP1 + TBP2 <= 72
0) CR1 <= 180
1) CR2 <= 160
2) L1 + L2 + L3 + L4 = 1

The last constraint in this model requires that the weights L1,

L2, L3, L4 on the four blending strategies sum to one. This

convexification provides the master model with a useful but

incomplete description of the blending capabilities of the

refinery.

The decomposition proceeds by optimizing the master model.

The solution is:

OBJECTIVE FUNCTION VALUE

1512.31900

VARIABLE
L1
L2
L3
L4

CR1
CR2

DLCR1
DLCR2
TAP1
TAP2
TBP1
TBP2

VALUE
.000000
.544085
.000000
.455915

180.000000
37.518890

180.000000
37.518890
69.049250

.000000
21.145720
50.854280

REDUCED COST
117.867400

.000000
52.819460

.000000

.000000

.000000

.000000

.000000

.000000

.567981

.000000

.000000
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ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 21.327400
3) .000000 22.000000
4) .000000 23.630510
5) .000000 24.314690
6) .000000 24.738380
7) .000000 28.444320
8) 2.950755 .000000
9) .000000 .657178

10) .000000 1.327402
11) 122.481100 .000000
12) .000000 1226.069000

The values of the weights imply a blending strategy B1P1 =

14.592, B1P2 = 49.942, B1P3 = 49.952, B1P4 = 14.592,

B2P3 = 32.280, B2P4 = 36.840. This strategy, along with the

solution listed above, represent a feasible solution to the

original LP model with net revenue equalling 1512.319.

Optimizing the master model also produces shadow prices on

the four intermediate products BP1, BP2, BP3, and BP4 produced by

the distillation and processing activities: n 1 = 23.631, n 2 =

24.315, 3 = 24.738, 4 = 28.444, where ni = shadow price on

product BPi. These represent the master model's best estimate of

the unit cost to provide each of these products to the blending

activities. The decomposition continues by solving the sub-model

in which the blending activities are charged these unit prices

for the products that consume. The sub-model is

MAX 31 F1 + 33 F2 - 23.631 B1P1 - 24.315 B1P2 - 24.738 B1P3
- 28.444 B1P4 - 24.738 B2P3 - 28.444 B2P4

SUBJECT TO
2) F1 - B1P1 - B1P2 - B1P3 - B1P4 = 0
3) - 5 B1P1 - 3 B1P2 + 4 B1P3 + 10 B1P4 >= 0
4) F2 - B2P3 - B2P4 = 0
5) - 4 B2P3 + 5 B2P4 >= 0
6) F1 >= 105
7) F1 <= 135
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8) F2 >= 45
9) F2 <= 80

The optimal solution to the sub-model is

OBJECTIVE FUNCTION VALUE

1440.98100

VARIABLE
F1
F2

B1P1
B1P2
B1P3
B1P4
B2P3
B2P4

VALUE
135.000000
80.000000
60.000000

.000000
75.000000

.000000
44.444440
35.555560

REDUCED COST
.000000
.000000
.000000
.438000
.000000

2.968000
.000000
.000000

This solution suggests the new strategy

BP1
BP2
BP3
BP4

60
0

119.44
35.56

to add to the master model with gross revenue = 6825 and variable

L5.

The new master model optimal solution is

OBJECTIVE FUNCTION VALUE

1529.45400

VARIABLE
L1
L2
L3
L4
L5

CR1
CR2

DLCR1
DLCR2
TAP1
TAP2
TBP1
TBP2

VALUE
.000000
.439749
.000000
.480502
.079749

180.000000
40.124490

180.000000
40.124490
72.000000

.000000
13.900010
58.099990

REDUCED COST
17.710450

.000000
192.848000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.332096

.000000

.000000
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ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 21.327740
3) .000000 22.000000
4) .000000 23.663310
5) .000000 24.281200
6) .000000 32.340550
7) .000000 32.927430
8) .000000 5.807140
9) .000000 6.955549

10) .000000 1.327744
11) -119.875500 .00000
12) .000000 371.546600

Note that the new master model activity associated with the

variable L5 is used to advantage in maximizing net revenues.

Note also that the master model has revised its estimates of the

shadow price charges on rows 4, 5, 6, and 7 for the intermediate

products BP1, BP2, BP3, BP4.

The communication between the master model and the sub-model

continued for four iterations until an optimal solution to the

original model was computed. Figure 4.3 depicts the net revenue

of the feasible solution found by the master model at each

iteration. It also depicts the upper bound determined by the

sub-model at each iteration. At the fourth iteration, the lower

and upper bounds converged on the optimal LPwvalue.

4.3 SUCCESSIVE LINEAR PROGRAMMING

Nonlinearities arise in refining, petrochemical and other

process manufacturing models due to a variety of factors. A

major factor is the need to model properties or qualities of

product flows as well as the flows themselves. For example, when

intermediate products are combined in a tank or pool, nonlinear
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relationships are required to capture pool qualities.

Mathematically, the simplest form of the pooling problem arises

when streams of intermediate products are blended on the basis of

quality-volume relationships of the form

Vp = Vi
i

qp = ( qi Vi) Vp
i

where V i and qi represent the volume and quality respectively of

incoming stream i. The volume of the pool is represented by Vp.

The expression for qp, the quality of the pool, is a nonlinear

function of the volume V i.

Note that if p were a final product constrained, say, to be

above some level q, then the relationship qp q could be

linearized simply by multiplying both sides of the inequality

thereby creating

E (qi - q) Vi 0
i

This is the type of constraint we had on the blended final

products in the refinery model displayed in Table 4.1. The

difficulty occurs, and thus the need for nonlinear programming

techniques, when the intermediate pooled products are themselves

pooled in downstream operations.
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Nonlinearities may also arise in blending final products if

the qualities of the component streams affect the qualities of

the blended product in a nonlinear manner. Baker and Lasdon

(1985) cite the example of gasoline blending where the octane

contribution of components depends radically on the presence of

lead in the blend. Nonlinear process yields may similarly occur

as functions of operating conditions of the process unit.

Finally, costs may prove to be nonlinear functions of operating

variables such as throughput or severity. As we pointed out in

section 4.1, however, many of these nonlinearities can be

approximated as piecewise linear functions. Zero-one variables

are required to capture any non-convexities in these curves.

Linear programming approximation techniques for capturing

these types of nonlinearities in process manufacturing have

proven effective for over 20 years. Baker and Lasdon (1985)

provide a survey of the more popular methods. They discuss two

specific approaches. One is a successive linear programming

modeling technique based on first order Taylor series expansions

of the nonlinear functions. The expansions are systematically

updated based on user supplied tolerances on the range of the

expansions and the optimal values of variables in successive

linear programming approximations.

In some instances, however, the nonlinearities are not

available in functional form to be expanded in Taylor series.

Rather, the nonlinear relationships are implicitly captured by

process simulation models. An approach suggested for this case
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is to use the process simulators to identify trial production

strategies for various units in a plant, and to construct a plant

model that allows convex combinations of these strategies in the

spirit of price-directed decomposition. Another approach is to

employ the simulators to compute function values and approximate

derivatives which become input data to successive linear

programming models. The reader is referred to Biegler (1985),

Biegler and Hughes (1985), and Lasdon, Waren and Sarkar (1988)

for more details.

4.4 SCHEDULING MODELS

The planning models discussed above were not concerned with

sequencing operations in a process manufacturing environment. In

this section, we discuss a detailed model that addresses the

timing of configuration changes and the management of

inventories. The model suggested is appropriate, for example,

for optimizing the production schedule over a given planning

horizon of one or several linked paper machines in a mill, or for

optimizing production in an industrial gases plant.

Indices:

i : time periods i = 1, 2, ...., N

r configuration states r = 0, 1, 2 .... , R

j process manufacturing slates

Jr : slates available under configuration r

k products k = 1, 2, ...., K

Q : (rl, r2) : rl r2, rl,r2, = 0, 1, 2. , R
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T : set of time indices for production targets

Parameters:

Cj rate at which direct cost is incurred using slate j
($/hr)

frv = cost of changing the configuration from r to v ($)

dik = cumulative target production for product k at the end
of period i for iT (#)

Pik = penalty for each unit of product k exceeding the target
at the end of period i ($/#)

Pik penalty for each unit of product k falling below the
target at the end of period i ($/#)

ajk = rate at which product k is produced by slate j (#/hr)

miw = quantity of raw material w available in period i (#)

qjw rate at which raw material w is consumed by slate j
(#/hr)

ti = time when period i ends

trv = changeover time from configuration r to configuration v
(hrs)

Variables:

xij = time that slate j is used in period i

1 if configuration v is run in period i and
configuration rv is run in period i-1

Yirv = 10 otherwise

if configuration r is run in period i

Zir = 0 otherwise

Sk = surplus cumulative production of product k above target
at the end of period iT

Sik = unmet cumulative production of product k below target
at the end of period iT
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Process Manufacturing Scheduling Model

N R
min E . E

i=l r=O jeJr
cj xj +

N
E E

i=l (rl,r2)eQ
frl,r2 Yi,rl,r2

K
K (piksik

k=l
+ PikSik )

Subject to:

R
E E

r=l jeJr
qjw Xij miw i=1,...,N

ajk Xij + Sgk - Sgk

g
= E dik

i=1

+
(rl,r2)eQ

tri,r2 Yi,rl,r2 = ti-ti-1

i=1,...,N

- (ti ti-1) Zir

R
E Zir

r=O
1

O0 r=O, .. ,R (4.1.5)
i=1,. . .,N

i=l,...,N (4.1.6)

Yi,rl,r2 > Zi-l,rl +

for all (rl,r2)eQ and i=l,...,N

Yi,rl,r2 = 0 or 1, Zir = 0 or 1, >k 2 0, Sik >
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(4.1.2)

R
E

r=O
xijj

jeJ r

(4.1.3),

k=l,
geT

xij
jEJrJ eJr

(4.1.4)

Zi,r2

xij

- 1

> 0,

(4.1.7)

0 (4.1.8)



A brief explanation of the mixed integer programming model

is the following. The objective function (4.1.1) is comprised of

direct manufacturing costs, changeover costs, and penalty costs

for being above or below cumulative production targets at certain

specified points in time. The relations (4.1.2) state that

production in each time period is constrained by the amount of

raw materials available for that period and the rate at which

they are consumed. The equations (4.1.3) relate cumulative

production to the production targets. Note that r=O corresponds

to the shut-down configuration for which there is no production;

hence this term has been omitted from (4.1.3).

The equations (4.1.4) constrain production and change-over

time in each time period to equal the time available.- The

constraints (4.1.5) and (4.1.6) effectively select one major

configuration for each period, and restrict the slates that may

be used to that configuration. The constraints (4.1.7) provide

the correct relation between the changeover variables and the

configuration selection variables; namely, a changeover from

configuration rl to configuration r2 is allowed (Zi-l,rl = 1 and

Zi,r2 = 1) only if the changeover variable Yi,rl,r2 = 1 thereby

forcing the changeover costs and times to be incurred.

The number of constraints and variables in this model is

largely dependent on NR2 . Thus, if there are 4 major

configurations and if one wishes to determine hourly plans for a

week, the model will have in excess of 168*16=2688 constraints

and variables. This is an overly large model, even for a
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supercomputer. Moreover, most of the variables and constraints

are not active in the sense that very few major configuration

changes will actually take place.

An iterative modeling approach under investigation (Shapiro

(1988)) is intended to greatly reduce difficulties due to size by

beginning with a coarse time grid and refining time periods where

optimization indicates the model is undecided about the major

configuration it desi ?s for a particular period. Re-

optimization of a refined model can be quite rapid because the

optimal solution for a parent model becomes a feasible solution

in its refined descendant. In many instances, the major goal of

the model analysis would be to determine the timing of the next

(that is, the first) major change in configuration.

Figure 4.3 depicts an implementation using realistic data

for industrial gas production (see Brown, Shapiro and Singhal

(1987)). The planning horizon consists of 32 periods with

targets on production at the end of periods 16 and 32. Five major

configuration states, including shut-down, are allowed; the

system is initially in configuration state 1. Four runs were

made with iterative refinement of the time periods. The numbers

below the axis indicate the configuration in each time period.

The final run indicated that the current configuration should not

be changed until 8 periods into the planning horizon, and then

the change should be to configuration 2. Although we have shown

a linear sequence of approximations, the refinement should be

elaborated in a tree structure in the manner of branch-and-bound.
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5. DISCRETE PARTS MANUFACTURING MODELS

In this section, we consider syntheses and generalizations

of the simple dynamic lot size model considered in Section 2.

The problems addressed by the generalized models remain ones in

which items are intermittently produced with associated set-up

costs, and stored in inventory with associated holding costs

until they are needed. The generalized models, however, take

into account production capacities to be shared by the individual

items. The models also address plans for coordinating the timing

and sizing of production runs of items produced at each of

several manufacturing stages. The models discussed in this

section are applicable to production planning and scheduling

problems in the automobile, aircraft, computer and electronics

industries, to name only a few. An extensive review of discrete

parts manufacturing models can be found in Bahl, Ritzman and

Gupta (1987).

The model we will consider in section 5.1 extends the scope

of decision making from the timing and sizing of production runs

for a single item to that of many items sharing production

capacity. A further generalization considered in section 5.2

leads to models for determining the timing and sizing of runs for

items in a multi-stage production environment. Finally, in

section 5.3, we consider a model possessing a hierarchical

structure in which families of items can be grouped together into

types for aggregate planning purposes. As we shall demonstrate,

decomposition methods are useful for exploiting the structure of
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individual sub-models that make up the various large-scale

models.

5.1 MULTI-ITEM SINGLE-STAGE MODELS

Manne (1958) was the first to propose a model for this class

of problems. The model and the optimization approach was further

developed by Dzielinski and Gomory (1965), and specialized and

applied to tire manufacture by Lasdon and Terjung (1971). For

expositional convenience, the version we present here assumes

that there is only one type of capacity (e.g., machine hours,

labor hours) to be shared in producing items in each period.

Indices:

i: items (i = 1, 2 .... , I)

j: trial production strategies

Ji: index set of trial production strategies for item i

t: time periods (t = 1, 2. , T)

Parameters:

C i = set-up cost for item i ($)

ai = set-up resource utilization for item i (hrs)

bi = resource utilization rate for item i (hrs/unit)

hi = unit holding cost for item i ($/unit)

Yi = initial inventory of item i (units)

rit = demand for item i in period t (units)

qt = shared resource availability in period t (hrs)
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Mit = upper bound on production of item i in period t

Variables:

xit = quantity of item i produced in period t

Yit = quantity of item i held in inventory at the end of period t

1 if xit > 

6it =

0 otherwise

Implicit in the definition of this problem is the fact that

all periods are of the same length (eg, one week). The model

will assume that demand must be met in each period from inventory

or production; no backlogging is allowed. Variable production

costs have been ignored since they can be assumed to be the same

in every period and therefore represent an unavoidable cost.

Finally, note that we have included both a set-up cost and a set-

up resource u- lization for each item. The set-up cost might

equal the cost of unusable production at the beginning of a run.

The set-up resource utilization might be lost time in adjusting a

machine for a new item to be produced.

Multi-item, Single Stage Discrete Parts Manufacturing Model

I T T
v = min E {ci Z 8it + hi Yit} (5.1.1)

i=l t=1 t=1
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Subject to

I
E a i it + bi Xit S qt for t=1,2, .. ,T (5.1.2)
i=l

For i=1,2,...,I

Yit = Yi,t-l + xit - rit (5.1.3)

for t=1,2, .. ,T

xit - Mit it 0 (5.1.4)

Xit > 0, Yit 0, 6it = 0 or 1 (5.1.5)

This is an MIP model of potentially very large size. It has

(2I+1)T constraints and 3IT variables; thus, if I=500 and T=10,

we have a model with 10,010 constraints and 15000 variables. Of

course, the constraints (5.1.3) and (5.1.4) are quite simple, and

for each I constitute an algebraic representation of the single

item dynamic lot-size model discussed in section 2. For future

reference, we define the set

Ni = {(xit, Yit, 6it) that satisfy (5.1.3), (5.1.4), (5.1.5)}

A price-directed decomposition approach for this model is to

dualize on the capacity constraints (5.1.2), thereby allowing the

individual items to be optimized separately. Following the

development in section 3, for any = (nl, 2, .... , T) 0, we

construct the Lagrangean

T I T
L(rt) = - qt t + min E E {(ci + ai t) it

t=l i=1 t=l

+ (bi it) xit + hi Yit}

Subject to (xit, Yit, it) Ni for all i (5.1.6)
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This function can be re-written as

T I
L(R) = - Z qt t + min E Fi ()

t=l i=l

where

T
Fi(r) = E {(ci + a i t) 6it + (bi nit) xit + hi Yit} (5.1.7)

t=1

Subject to (xit, t, 6it) Ni

In words, each Fi(n) is a dynamic lot size model defined over the

set Ni of exactly the form discussed in section 2.1. To reflect

the price nt being charged for shared resource in period t, the

set-up costs associated with the it have been expanded to ci +

ai t. In addition, a time-dependent variable production cost

term b i t has been added. Thus, if 3 > 0 for the example

depicted in 2.2, arcs connecting beginning inventory in period 3

to ending inventory in period 3 associated with setting up and

producing the item would be "longer" (more costly), and the

dynamic programming recursion would seek a shorter path.

Based on our development in section 3, We can state the

three main properties of the Lagrangean construction.

Property 1: (Optimality Test) The solution (xit(), it(r),

6it(n)) that is optimal in the Lagrangean L(n) is optimal in the

Multi-Item Model (5.1.1) - (5.1.5) if

I

E ai it(i) + bi xit() qt for t=1,2,..,T
i=l

with equality on constraint t if nt > 0.

Property 2: For any nt 0, L(i) < v.
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Property 3: If 0 produces an optimal solution to the Model

according to the optimality conditions of Property 1, then n is

optimal in the dual problem

d= max L(n)

Subject to 0 (5.1.8)

Moreover, if the optimality conditions hold, we have v = d.

There is no guarantee, however, that the optimality

conditions can be made to hold for any dual vector n 0. This

is because the Multi-Item Model is a mixed integer program, a

class of non-convex models for which duality gaps (v - d > 0) are

common. To ensure convergence to an optimal solution to the

Model, we would need to imbed the dual methods in a branch-and-

bound procedure (see Shapiro (1979a, 1979b)). As we shall see

below, for this particular model, it is possible to characterize

the difficulty due to the model's non-convexity in applying

Lagrangean methods.

The price-directed generalized linear programming approach

discussed in section 3 can be specialized for this application.

In particular, suppose for each i that we have the trial

production strategies (xitr, Yitr, 6itr) e Ni for r = 1, 2,...,

Ri. For t = 1, 2,...,T, let

itr = ai 6itr + bi Xitr

and let
T T

Cir = ci itr + hi Yitr
t=l t=l

Given this data, we construct the master model
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I Ri
min E E Cir Qir (5.1.9)

i=1 r=1

Subject to

I Ri
i r Pitr ir 5 t for t=1,2,..,T (5.1.10)

i=l r=l

Ri
E Qir = 1 for i=1,2,...,I (5.1.11)

r=1

Qir > 0 (5.1.12)

In words, this linear program is intended to select a schedule r

for each item from among the trial schedules generated so far so

as to minimize total cost without exceeding available capacity.

Of course, there is no guarantee that a pure (unique) strategy

will be selected for each item since more than one ir may take

on fractional values between zero and one. This is a serious

deficiency of the approach. However, with the reader's

indulgence, we delay addressing it until after we have discussed

how the optimal LP dual variables for the master model can be

employed in generating effective new production strategies.

Let nt denote the shadow prices on the resource constraints

(5.1.10) and let i denote the shadow prices on the convexity

rows (5.1.11). For each i, we use the nt in solving Fi(r) given

in (5.1.8). This is a single-item dynamic programming calculation

of the type discussed in section 2.2. If Fi(n) < i, we add a

column to the master model corresponding to the production

strategy with this value. If Fi(r) = i, we do not add a column
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to the master model. If no new columns can be added to the

master model because the latter condition obtains for all i, then

the generalized linear programming method terminates. We refer

to such a master model as an optimal master model. All earlier

master models (that is, those admitting new columns) are called

non-optimal. Termination or convergence to an optimal master

model must occur in a finite number of steps because there are

only a finite number of feasible solutions to each of the Fi(.)

models.

We return now to the central issue in applying generalized

linear programming to a structured mixed integer programming

model such as the Multi-Item Model: Namely, how to interpret

solutions from an optimal or non-optimal master model. In

general, we cannot expect that applying generalized linear

programming as just described will lead to an optimal solution to

the Multi-Item Model. It is instructive to investigate exactly

why this is the case. Let ir denote optimal values to any

optimal or non-optimal master model. We say that the master

model produces a pure strategy for item i if ip = 1 for some p

and ir = 0 for all r = p. Conversely, we say that the master

model produces a mixed strategy for item i if Qir > 0 for two or

more strategies r; this implies air < 1 for these strategies.

Obviously, when the master model suggests a mixed strategy for

item i, we are in a quandary about which strategy to employ.

The difficulty is that each time we solve the master model,

we can expect mixed strategies to occur for a certain number of
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items in our Multi-item Model. If this number is small, say less

than 5% of the items, the difficulty may not be not be serious.

For items with mixed strategies, we may choose the strategy that

was assigned the highest weight ir' The resulting infeasibility

or lack of optimality will probably be negligible relative to the

accuracy of the demand data.

We can calculate a bound on the maximal number of items that

will have mixed strategies in the master model based on

properties of the simplex method. In particular, assuming I > T,

a simple counting argument establishes that the number of mixed

strategies cannot exceed T. Thus, if I = 500 and T = 10, the

number of items with mixed strategies cannot exceed 10 or 2%.

This is an extreme case, however, because we assumed only one

resource to be shared in each period. For example, if I=500, T

= 20, and the number of shared resources is each period is 10

(different types of machines, labor categories, raw materials,

etc.), the potentially maximal number of items with shared

resources equals 200, or 40% of the total number of items.

Although the actual percentage of mixed strategies would probably

be much lower, the percentage could easily be difficult to handle

in the heuristic manner just outlined.

A subtle but important point regarding the validity of the

Dynamic Lot-Size Theorem for a single item discussed in section

2.1 in the context of the Multi-Item Model (5.1.1) - (5.1.5) and

the model decomposition is the following. Due to the capacity

constraints (5.1.2), it may not be optimal or even feasible to
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limit production of any given item to those periods when

inventories have fallen to zero. However, by the Lagrangean

decomposition (5.1.7), the iteraction between items due to

constraints (5.1.2) have been eliminated, and the Dynamic Lot-

Size Theorem is valid for computing the Fi(r) for all i. In

this sense, the dual decomposition is deficient because it fails

to provide structure for generating necessary shortest route

paths in the dynamic programming network, and therefore columns

for the master model (5.1.9) - (5.1.12), that violate the

Theorem. This deficiency is an unavoidable result of the

discrete, non-convex nature of the scheduling sub-models.

Lasdon and Terjung (1971) applied a version of the Multi-

Item Model to the production of automobile tires. Recently,

Eppen and Martin (1987) have developed variable redefinition

procedures for this class of models that produce tighter linear

programming and Lagrangean relaxations. They report on

successful experiments with models consisting of up to 200 items

and 10 time periods.

5.2 MULTIPLE ITEM, MULTIPLE STAGE MODELS

The models we shall discuss in this subsection are mixed

integer programming generalizations of the single stage models

discussed in the previous subsection. They are applicable to a

wide range of discrete parts manufacturing problems although,

thus far, they have found little application to real world

problems. The lack of application is due in part to the size and
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complexity of the models which make them difficult to construct

and optimize. This technical difficulty should gradually

disappear as computer technology continues to improve.

In addition, the practical use of these production models

should benefit from recent research into stronger mixed integer

programming model formulations and more efficient mixed integer

programming algorithms. Crowder, Johnson and Padberg (1983)

report on successful computational experience with cutting plane

and other procedures for achieving tighter formulations of pure

integer programs. Van Roy and Wolsey (1986, 1987) develop valid

inequalities and reformulations for mixed integer programs.

Martin (1987) develops a theory of variable redefinition for

mixed integer programs that creates or exposes special structure

which can be exploited by tailored solution algorithms. These

general integer and mixed integer programming procedures have

direct application to the types of models discussed here; for

example, see Barany, Van Roy and Wolsey (1984), or Eppen and

Martin (1987).

However, the barrier to use of these models is more than a

mathematical or technical one. Materials Requirements Planning

systems have found widespread use in industry during the past ten

years. The models we discuss must be conceptually and

practically integrated with MRP if they are to have a significant

future.

At the moment, the outlook for new modeling applications is

promising because many manufacturing managers have come to
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realize the limitations of their MRP systems. These systems are,

in fact, no more than informational programs that provide

detailed bill of materials from pre-determined master schedules.

Moreover, although some MRP systems will calculate capacity

loadings that result from a detailed schedule, the systems make

no attempt determine an effective master schedule by allocating

capacity resources in an optimal or efficient manner. The models

discussed here are intended to fill this planning vacuum. But,

the vast majority of manufacturing managers need to be educated

about their practical relevance.

At the core of any MRP system, and of mathematical

programming models for discrete parts manufacturing problems, is

the product structure. A typical product structure is depicted

in Figure 5.1. Each box refers to an item to be produced and the

number in the box is the index of the item. A chain links each

item to all other items that require it. For example, item 17 is

linked to items 12, 8, 5, 2, and 3. Each item is associated with

exactly one level in the product structure; this level equals the

length of the longest chain beginning at the item. The levels

are indexed 0 to L - 1 where items at level 0 are called finished

goods and items at Level 1 - 1 are called raw materials.

With this background, we can state a mathematical

programming model for optimizing over general product structures.

The model statement follows Billington, McLain and Thomas (1983);

see also Chapman (1985).
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Indices:

i = 1,...,M index of finished goods

i = M + 1,...,N index of intermediate products

t = 1,... T index of planning periods

k = 1,...k index of facilities

Parameters:

hi inventory of holding cost ($ per unit of item

i)

csi setup cost ($ per setup of item i)

Cokt ~ overtime cost ($ per unit of capacity in period

t at facility k

Li minimum lead time for item i

fi yield of item i (fraction)

aij number of units of item i required for the

production of one unit of item j

rit demand for item i in period t

bik capacity utilization rate of item i at facility

k (capacity units per unit)

Sik setup utilization of facility capacity k by

item i (capacity units)

CAPkt ~ capacity of facility k at time t (units of

capacity)

qit upper bound on the production of item i that

can be initialized in period t
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Variables:

Yit -

6it -

Okt -

xit 

inventory of item i at the end of period t

1 if item i made in period t, 0 otherwise

overtime capacity at facility k in period t

production of item i initiated in period t

Multi-Stage, Multi=Item Discrete Parts Manufacturing Model

N T K
v = minimize E E (hiYit + csiit) + E

i=l t=l k=l

N
s.t. Yi,t- + fixi,t-Li - Yit - aijxjt = rit

j=1

N
E (bikXit + ik6it) - Okt CAPkt

i=1

xit - qitSit 0

T
z (coktOkt)

t=1

i=l,...,N
t=1,...,T

k=l,...,K
t=l,...,T

t=l,...,T

6it = 0 or 1, xit > 0, it ' 0, Okt 0

The objective function (5.2.1) represents avoidable

inventory, set-up, and overtime costs that we seek to minimize.

The constraints (5.2.2) are generalized inventory balance

constraints. Ending inventory of each item i in each period t

equals starting inventory plus net production (recall fi is the

yield factor) of the item in period t - Li (recall Li is the lead

time) minus internal and external demand for the item in that

period. Here the lead time L i should equal the minimal lead
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time that is required to produce or otherwise acquire the item.

Capacity restrictions and set-up constraints are given in (5.2.3)

and (5.2.4).

The Multi-Item and Multi-Stage Model can easily attain an

enormous size; if N = 1000, T = 13, and K = 50, the model would

have 26650 constraints, 52650 continuous variables and 26000

zero-one variables. We will discuss two distinct decomposition

approaches for breaking up the Model into manageable sub-models.

One is a nested decomposition scheme proposed by Chapman (1985)

that we will discuss in the paragraphs that follow. The other is

a hierarchical planning approach that will be discussed in the

next sub-section. Although both approaches require further basic

research and computational experimentation, they offer

considerable promise as effective means for dealing with the size

and complexity of monolithic mixed integer programming models to

support MRP.

The nested decomposition approach is based on two

observations about the Model. First, if the set-up variables 6it

are fixed at zero-one values, the residual sub-model is a linear

program. This is the starting point for Benders' decomposition

method. The second observation, which we discuss in detail

below, is that the generalized inventory balance equations

(5.2.2) possess dynamic Leontief structures. It is easier to

optimize over such structures than over ordinary linear

programming equations. Thus, if we were to apply Lagrangean

relaxation on the capacity constraints (5.2.3) in the linear
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programming sub-model, the special structures could be exploited.

The resulting decomposition scheme is depicted in Figure 5.2.

A Leontief substitution model is a linear program

min cx

s.t. Ax = b

x 0

where b 0 and A is an mxn matrix (n m) of rank m with the

property: Any mxm invertible sub-matrix B is of the form B = I -

Q where the non-negative matrix Q has the property that Qn goes

to zero as n goes to infinity. This property implies that any

basis B has an inverse B 1 consisting of non-negative elements.

This in turn implies that an optimal basis B for any b 0 is

optimal for all b 0 since Bb 0.

A dynamic generalization is

T
min E (ctxt)

t=l

subject to Atxt = bt + Rt-1 xt-1 for t=l,...,T

xt 0 (xo given)

where At is a Leontief substitution matrix and Rt is non-

negative. It can be shown that this multi-period linear
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programming model can be optimized by computing an optimal basis

for each At and then computing xt = (xBt, XNt) for each t by

XBt = B 1 (bt + Rt-l xt-1)

XNt = 0

Classic references to dynamic Leontief substitution models and

their application to production models are Dantzig (1955) and

Vernott (1969).

Now the generalized production/inventory balance equations

(5.2.2) can be viewed as a dynamic Leontief system with

substitution, except possibly for transient conditions due to

initial inventories and initial production decisions with

positive lead times. Looking at (5.2.2), we can set that net

demands for item i

ril , -Y i , Xil-Li

and

rit - Xi,t-Li for t=2,...,Li

may be negative, thereby destroying the direct application of the

Leontief substitution properties. Indeed, we would expect and

hope that net demand for some items are negative in early

periods, thereby relieving us of the need to produce items in

those periods.

Chapman (1985) gives a procedure for identifying the

transients at the start of the planning horizon. Moreover, the

residual Leontief substitution systems in this case have a simple

structure allowing a solution to be computed without matrix

inversion. The algorithm for accomplishing this scans each
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column of the constraint set exactly once to determine a primal

optimal basis and corresponding shadow prices. Calamaro (1985)

reports on computational experience with this algorithm and the

nested decomposition scheme of Figure 5.2.

The Multi-Item and Multi-Stage Model allows general product

structures and the imposition of capacity constraints. A number

of authors have developed algorithmic approaches to restricted,

easier versions of the Model. Assembly systems have product

structures for which each item in the product structure has at

most one successor. For uncapacitated assembly systems,

Afentakis et al (1984) developed a Lagrangean relaxation approach

that allows production of each item in the product structure to

be scheduled separately by a dynamic programming algorithm. The

efficiency of their model construction and the decomposition

relies upon variables, constraints and costs associated with

echelon stock which is defined to be the number of units of an

item held explicitly in inventory and implicitly in inventory as

parts of its successors. Afentakis and Gavish (1986) have

extended this approach by showing how a general product structure

can be transformed to an equivalent assembly structure.

Aftentakis et al (1984) and Aftentakis and Gavish (1986)

employed subgradient optimization of the Lagrangean relaxations

which were imbedded in tailored branch and bound approaches for

globally optimizing the multi-stage models. They also used

forward heuristics for generating good solutions. As a result,

they were able to report efficient computational result for
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general multi-stage problems with up to 40 items in which the

upper bounds (from the heuristics) and the lower bounds (from the

Lagrangean relaxation) are within a few small percentage points.

5.3 HIERARCHICAL PLANNING

We saw in the previous two sub-sections how large scale,

monolithic mixed integer programming models for discrete parts

manufacturing could be usefully decomposed. In the process, we

were able to identify and exploit special structures cont ed

within these monolithic models. Even with the decompositions,

however, the models remained monolithic in terms of the treatment

of individual items. Specifically, all items in the discrete

parts manufacturing models presented above were treated as

separate and equal entities to be produced in batches and stored

in inventory. No recognition of the possibility for aggregating

items into larger units for planning or scheduling purposes was

made.

Our objective in this section is to discuss how mathematical

programming models and decomposition methods can be extended to

capture and exploit natural aggregations that occur in many

manufacturing environments. For ease of exposition in developing

and analyzing the hierarchical model, we will consider a single

stage manufacturing system. Our discussion follows closely the

development in Graves (1982).

The qualitative basis for considering item aggregation is

the concept of hierarchical planning (Hax and Meal (1975)).
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Using this concept for the single stage system, items may be

aggregated into families, and families into types. A type is a

collection of items with closely similar seasonal demand patterns

and production rates. A family is a set of items within a type

such that the items in the family share a common setup. In the

mixed integer programming model that we develop below, we

consider that the planning function of the model is to determine

time dependent resource requirements to satisfy aggregate demand

for types over a tactical planning horizon. We consider that the

scheduling function of the model is to determine how to allocate

these resources over a shorter, scheduling horizon.

The hierarchical approach has three advantages over the

discrete parts models considered in the previous sub-sections.

First, the aggregation serves to further reduce the

dimensionality of the models, both as monolithic and decomposed

mixed integer programs. Second, the hierarchical model requires

less detailed demand data since demands need only be forecasted

for the planning horizon (see Axsater (1981) for further

discussion of aggregation methods in production planning). The

third advantage is that the sub-models of the decomposed

hierarchical model will, or at least should, correspond to the

organizational and decision-making echelons of the manufacturing

firm.

With this background, we can present a mathematical

statement of the model. We employ the notation used in the

Multi-Item Multi-Stage Model presented in the previous section.
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The main differences are in the definitions of the entities to be

produced and the treatment of time. In particular, these are

changes in the definitions and meanings of the index sets.

Indi

i

j

Ji

P

P

t

k

ices:

= 1, , I index of types

-= 1 , ..,N index of families

= set of families belonging to type i

= length of planning horizon

= index of periods in planning horizon

= length of scheduling horizon (measured in plannin,

horizon period units)

= index of periods in scheduling horizon

= number of scheduling periods in a planning period

g

Figure 5.3 illustrates how we differentiate the length and period

definitions for the planning horizon and the scheduling horizon.

For P = 4@4-week months, T = 2@4-week months, and k = 4 weeks in

a month, the scheduling periods are indexed by t = 1,....,kT=8,

and p = 1, 2, 3, 4.
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Scheduling and Planning Horizons
Figure 5.3

Hierarchical Planning Model

v = minimize
P
E

p=l

Yi,p-l + Xip

(copOp +
I

i=l

- Yip = rip

I
E biXip - Op CAPp

i=l

kp
E E Yt Yip = 

jeJi t=k(p-1)+ - Y

Yj,t-1 + Xjt - Yjt = rjt

i=1,...,I p=l,...,T

j=l,...,I t=l,...,kT

Xjt - qjt 8 jt -

Xip > 0, y

8 jt = 0 or 1,

0

ip > 0,

Xjt > 0,
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The objective function (5.3.1) in this formulation consist of two

terms. The first corresponds to avoidable capacity and inventory

holding costs associated with the aggregate planning problem over

the longer planning horizon consisting of P periods. The second

corresponds to avoidable set-up costs associated with the

detailed scheduling problem over the shorter scheduling horizon

consisting of T periods. As we discussed, the time periods in

the time summation for the scheduling problem are a refinement of

the time periods used in the planning problem.

The constraints (5.3.2) and (5.3.3) describe inventory

balance and capacity decisions for the planning problem. The

constraints (5.3.4) link aggregate inventories of types to more

detailed inventories of families in each type category.

Again, the time summation reflects the finer time period

definition used for the scheduling problem. Constraints (5.3.5)

and (5.3.6) describe inventory balance and set-up decisions for

the scheduling problem. Demands for types and demands for

families are implicitly linked by the relation

kp
E E rjt = rip for p = 1,2,...,T

jeJi t=(k-l)p+l

In words, this relation says that the sum of demands for families

j in type i used in (5.3.5) during the scheduling periods falling

in the pth planning period equals the aggregate demand used in

(5.3.2).
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The Hierarchical Planning Model can be effectively decomposed

by pricing out the linking constraints (5.3.4). Letting nip

denote the dual variable on each of these constraints, and the

IT-vector with components nip, the resulting Lagrangean separates

as follows

I
L(T) = A(n) + Z E Fj(r)

i=l jeJi

where A(n) is a linear programming model for optimizing the

planning problem

P I
A(n) = min {copOp + (h i - nip)Yip} (5.3.9)

p=i i=l

Subject to (5.3.2), (5.3.3), (5.3.7)

and the Fj(r) for each family item j is a single item dynamic lot-

size model of the type discussed in section 2.2

T kp
Fj(n) = min E E ( ipYjt + csj6jt) (5.3.10)

p=1 t=(k-1)+l

Subject to (5.3.5), (5.3.6), (5.3.8)

Note that, in the dynamic-lot size sub-model (3.10), the

decomposition has induced holding prices ip lot-size on inventories

of family items in the aggregate period p. Unlike previous instances

of this model, however, these holding prices might be negative as

well as positive. A negative holding price on type i items in

planning period p would indicate that, from a planning viewpoint,
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scheduling production to create inventories of families in the stated

type in the stated planning period has global benefits.

The same algorithmic procedures discussed in section 3, and in

section 5.1 above, for determining the dual variables ip are

available for this decomposition. Since the dynamic lot-size sub-

models involve integer variables, the dual decomposition method will

suffer from duality gaps between the Hierarchical Planning Model and

its dual model. Graves (1982) discusses methods for overcoming

duality gaps and choosing dual variables, and reports on

computational experience with test models.
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6. JOB-SHOP SCHEDULING

Job-shop scheduling problems involve jobs consisting of a

variety of machine operations to be processing on a number of

machines in a random or arbitrary pattern. For example, these

might be finishing operations on paper produced at a paper mill

or castings produced at a foundry, or, maintenance and repair

operations on jet engines. As we shall see, the complexity of

job-shop scheduling leads to large and difficult combinatorial

optimization models. Thus, the practical use of models and

associated analytical and heuristic methods should be to identify

demonstrably good schedules, rather than to persist in trying to

find an optimal solution.

6.1 BASIC MODEL

We consider a combinatorial optimization model proposed by

Lagewig, Lenstra and Rinooy Kan (1977) and a number of other

authors for a large class of job-shop scheduling problems. This

model is comprised of a number of jobs, each consisting of a

number of operations to be processed on pre-assigned machines.

The objective is to minimize the total length of time required to

finish all jobs. In so doing, the model must simultaneously

sequence the processing of operations assigned to each machine

and ensure that the precedence relations among operations of each

job are obeyed. Extensions of the basic model are considered in

the following section.
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Indices and Index Sets:

i = jobs for i = 1, ..., I

n i = number of operations in job i

I
j = operations for j = 1, ..., N = n i

i=l

k = machine for k = 1, ..., K

kj = machine on which operation j is to be performed

Jk = { j I kj = k = operations assigned to machine k

Rk = I Jk I = number of jobs assigned to machine k

r = machine sequence order, r = 1, ... , Rk

The assumption for this class of job-shop scheduling

problems is that the operations in a given job are to be

processed sequentially; that is, operation j-1 must be completed

before operation j may begin. Thus, there is a total ordering

of the operations of each job. For notational purposes, we

assume that the operations of job i are indexed by j = Ni-1 + 1,

..., Ni, where

i
Ni = E ng.

g=l

Parameters:

pj = processing time for operation j

T = upper bound on total processing time
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Variables:

tj = start time for operation j

1 if operation j performed before operation g

Xjg "0 if operation g performed before operation j

F = total processing time for all jobs

for j,geJk

Job-Shop Scheduling Model

v = min F (6.1.1)

Subject to

For i = 1, ... , I

tj > tjl 1 + Pj-l for j = Nil + 2, ..., Ni

F tNi + PNi

For k = 1, ..., K

tg > tj + pjXjg - T(1 -Xjg)

for all j,geJk

tj tg + pg(l - Xjg) - Txjg

Xjg = 0 or 1 for all j,geKj (6.1.5)

F > 0, tj > 0 for j = 1, ..., N (6.1.6)

The objective function (6.1.1) is to minimize the time to

complete all jobs. The variable time F is, by (6.1.3), equal to

the maximum of the completion times of the I jobs. The

constraints (6.1.2) state that the start times of operation j for

j=2 through j=ni for each job i must occur after operation j-1
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has been completed. The start time for operation 1 is not

constrained by this total precedence ordering.

The start times tj of operations are also constrained by the

sequence of operations to be performed on each machine k.

Specifically, for each pair of operations j,g assigned to machine

k, the constraints (6.1.4) state that either operation j will

precede operation g, or that operation g will precede operation

j. For example, if Xjg = 1, then the first of the two

constraints is binding (tg 2 tj + pj), whereas if Xjg = 0, then

the second of the two constraints is binding (tj tg + pg).

To sum up, the start time tj of operation j is constrained

both by the total precedence ordering on the operations of its

job, and by the sequencing order of operations from a variety of

jobs on the machine kj on which j is processed. The former

constraints (6.1.2) and (6.1.3) are the simple constraints of a

network optimization type found in CPM models (see Schrage

(1986)). The latter constraints (6.1.4) are logical constraints

of a type referred in the literature as disjunctive (Roy and

Sussmann (1964), Balas (1979)).

The result is a mixed integer programming model of great size

and complexity. If I = 20, ni = 10 for all i, K = 8, and Rk = 25

for all k, the Model would have 2580 constraints, 201 continuous

variables, and 2400 zero-one variables. To try to circumvent

extreme computational difficulties, several researchers have

proposed solutions techniques based on combinations of branch-

and-bound schemes, heuristics and lower bounds based on easy to
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optimize relaxations of the Job Scheduling Model (see Lagewig,

Lenstra and Rinooy Kan (1977), Adams, Balas and Zawack (1988)).

A central construct is the disjunctive graph which consists of a

node for each operation j with an associated weight pj, plus a

dummy node 0 for the start of all operations, and a dummy node

N+1 for the completion of all operations. For each consecutive

pair of operations j - 1 and j of the same job, there is a

directed conjunctive arc. For each pair of operations assigned

to the same machine, there is a (undirected) disjunctive edge.

The major task in optimizing a given job-shop scheduling problem

is to pick a direction for each edge thereby determining an order

for the pair of operations. If all the edges have been ordered,

and an acyclic network results, the time associated with the

implied schedule is computed by finding the longest path, based

on the node weights, in the directed network. If the resulting

network is cyclic, the implied schedule is infeasible.

Figure 6.1 taken from Lagewig, Lenstra and Rinooy Kan (1977)

depicts a 3 job, 8 operation, disjunctive graph. The jobs are:

1) 1,2,3; 2) 4,5; 3) 6,7,8. The machine assignments are:

machine 1) 1,4,7; machine 2) 2,5,6; machine 3) 3,8. The

numbers next to the nodes are the processing times of the jobs.

Figure 6.2 is an acyclic network representing a feasible (and

optimal) schedule. The longest path in 6.2 is 0, 1, 4, 7, 8, 9

with time equal to 14.
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In a typical branch-and-bound scheme, a subproblem would be

characterized by a subset of disjunctive arcs that have been

resolved with respect to order (direction); the directed network

including these arcs and all the conjunctive arcs must be

acyclic. The method proceeds to try to fathom this subproblem

(that is, find its best completion, or establish that all

completions will have higher objective function value than an

optimal solution) by optimizing easy to solve relaxations of the

residual job-shop scheduling problem, thereby determining lower

bounds. If lower bounding fails to fathom a subproblem, two or

more new subproblems are created from it by branching on one or

more disjunctive arcs. Knowledge about scheduling conflicts and

other problem specific information is used in making the

branching decisions. These analytic and experimental approaches

are reviewed and extended in Lagewig, Lenstra and Rinooy Kan

(1977).

For completeness, we give the mixed integer programming

formulation of the job-shop scheduling problem of Figure 6.1.

This formulation is

MIN F
SUBJECT TO

2) F - T3 >= 6
3) F - T5 >= 7
4) F - T8 >= 4
5) T2 - T1 >= 3
6) T3 - T2 >= 1
7) T5 - T4 >= 3
8) T7 - T6 >= 2
9) T8 - T7 >= 4

10) - 103 X14 - T1 + T4 >= - 100
11) 103 X14 + T1 - T4 >= 3
12) - 103 X17 - T1 + T7 >= - 100
13) 104 X17 + T1 - T7 >= 4
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- 103 X47 - T4 + T7
104 X47 + T4 - T7

- 101 X25 + T5 - T2
107 X25 - T5 + T2

- 101 X26 - T2 + T6
102 X26 + T2 - T6

- 107 X56 - T5 + T6
102 X56 + T5 - T6

- 106 X38 - T3 + T8
104 X38 + T3 - T8

An optimal solution to this model is

OBJECTIVE FUNCTION VALUE

14.0000000

VARIABLE
X14
X17
X47
X25
X26
X56
X38

F
T3
T5
T8
T2
T1
T4
T7
T6

VALUE
1.000000
1.000000
1.000000
1.000000
1.000000
.000000

1.000000
14.000000
4.000000
6.000000

10.000000
3.000000
.000000

3.000000
6.000000
4.000000

6.2 EXTENSIONS TO THE BASIC MODEL

We discuss briefly a number of important extensions to the

basic model presented in the previous sub-section. The

extensions consider

o partial ordering of precedences

o assignment of operations to machines

o changeover times

o alternative objective functions
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o resource allocation

Partial Ordering of Precedences:

The precedences governing the processing of operations j =

Ni_1,....,Ni of job i may constitute a partial rather than a

total ordering as we assumed in developing the basic model. The

partial ordering can be described by the relation P where jPg

indicates that operation g may begin only after operation j has

been completed. The Job Shop Model of the previous sub-section

may be easily modified to accommodate the partial order. We

simply replace the constraints (6.1.2) by the constraints

tg - tj pj for all jPg in the partial order

Assignment of Operations to Machines:

We assumed in the basic model that each operation is assigned

a priori to a machine. The implication is that only one machine

can perform the operation, or possibly that the choice of machine

for each operation is obvious. In the more general situation,

there would be a set, which we denote by Kj, of machines that can

perform the operation. In this case the assignment of operations

to machines must be added to the basic model as decision options.

The extension requires that we add constraints and variables.

First, we define new variables

1 if operation j is assigned to machine k

Yjk { 0 otherwise
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Then for each operation j for which there is a choice of machine,

we add the constraint

E Yjk = 1
kcJk

In addition, the constraints (6.1.4) for each pair of operations

j and g that might (are allowed to) be assigned to the same

machine k are required to hold only if Yjk = 1 and Ygk = 1. This

condition can be enforced by changing (6.1.4) to

tg tj + PjXjgk - T(1 - Xjgk) - T(2 - Yjk - Ygk)

and

tj tg + pg(l - xjgk) - Txjgk - T(2 - Yjk - Ygk)

Here, the zero-one variable xjgk has a physical interpretation

only if operations j and g are actually assigned to machine k.

If the number of combinations of possible operations and machines

is large, this extension causes the already difficult MIP

formulation of basic model to become even more difficult.

Changeover Times:

In general we can expect the time to schedule an individual

machine will be affected by changeover times pjg that depend on

the specific consecutive pairs (j,g) encountered in a sequence of

operations on the machine. Since, however, a zero-one variable

is required to capture each changeover option, a direct mixed

integer programming extension of the basic model that included

changeovers would be excessively large.
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A less monolithic mixed integer programming approach appears

necessary for this class of problems. We saw in section 2.2 how

to model such changeover times on a single machine as a time

dependent traveling salesman problem. Ignoring precedence

constraints for the moment, the resulting sequencing/scheduling

problem with changeovers, including the assignment of operations

to machines, can be viewed as a collection of traveling salesman

problems, one for each machine, linked together by assignment

constraints. The traveling salesman problems can, in principle,

be used to generate sequencing schedules for each machine.

Feasible sequences must then be assembled to satisfy the

precedence constraints by using dual decomposition methods. This

is an area of current research.

Alternative Objective Functions:

The objective function in the basic model was to minimize the

time to complete all jobs. A more general objective would be to

associate a tardiness cost function Ci(tN + PN ) (see section

2.2) with completing each job by tN + PN and to minimize

their sum over all jobs. We point out, however, that this

relatively straightforward extension of the basic Job Shop

Scheduling mixed integer programming model is a serious

complication for the disjunctive graph optimization approach.

This is because the job-shop scheduling problem no longer reduces

to a longest path problem once all disjunctive edges have been

oriented. With the more general objective function, we are in
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effect seeking to compute simultaneously the longest path for

each job.

More general objectives would involve a combination of job

completion times and avoidable costs to be minimized. For

example, in the case discussed above in which each operation j

may be assigned to a machine in a set Kj, differentiated costs

for processing operation j on different machines could be

captured by adding an appropriate term to the objective function.

This term might take the form

NI
E E cjkYjk

j=l keKj

where cjk is the cost of processing operation j on machine k.

Resource Allocation:

A somewhat simpler version of the job-shop scheduling problem

is to treat the machine scheduling part of the problem as

resource utilization constraints, rather than detailed sequencing

constraints as we treated them in the model (6.1.1) through

(6.1.6). This model, called the project scheduling with resource

constraints model, has been studied by Christofides, Alvarez-

Valdes and Tamarit (1987) and by Talbot and Patterson (1978).

Christofides et al (1987) apply Lagrangean relaxation methods

and, at the same time, develop stronger mixed integer programming

formulations of the project scheduling with resource constraints

model. Fisher (1973a, 1973b) proposed a similar Lagrangean

relaxation for this class of models.
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7. TREATMENT OF UNCERTAINTY

The mathematical programming models considered thus far have

been strictly deterministic. The models treated all parameters

of the future - demand, production rates, yields, lead times, and

so on - as if they were known with certainty. This was clearly

a simplifying, perhaps even a heroic, assumption, although only

certain key parameters will be highly uncertain in a given

application.

The fact that the models we have discussed do not explicitly

treat critical uncertainties does not seriously detract from

their usefulness in many if not most cases. Sensitivity analyses

and multiple optimization runs under various parameter settings

can usually provide the insights needed to plan effectively for

an uncertain future. Moreover, developing explicit descriptions

of the uncertainties may be difficult, time consuming and costly.

Since production managers have only recently begun to seriously

consider using deterministic mathematical programming models to

support their planning and scheduling activities, it would be

imprudent to suggest that their attention should be directed

immediately at the sophisticated and more difficult to understand

stochastic models that we discuss in this section.

Nevertheless, some production planning and scheduling

applications would undoubtedly benefit greatly from explicit

modeling of key uncertainties. This is the situation, for

example, in the manufacture of style goods (eg, dinnerware,

clothing). Typically, a company with a product line of 100
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distinct style goods ite:.- might expect only 5 to 10 items to

ultimately experience heavy sales, but it is difficult to

forecast in advance which items these will be. Another example

where uncertainty is critical is in the manufacture of

semiconductor wafers where the yields of certain production

stages have high variance, especially in the early periods of

production.

Ignoring for the moment issues of model size and

computational complexity, stochastic programming with recourse

models (see Wets (1983), or Wagner (1969)) are an extension of

the deterministic models discussed above that permit production

planning and scheduling uncertainties to be explicitly modeled

and evaluated. These models consider simultaneously multiple

scenarios of an uncertain future. Optimal contingency plans for

each scenario are computed along with here-and-now strategies

that optimally hedge against these plans. Such hedging

strategies cannot in general be identified by any deterministic

model.

Bitran, Haas and Matsuo (1987) present a stochastic mixed

integer programming model for production planning of style goods

with high setup costs and forecast revisions. The model is a

stochastic generalization of the multi-item discrete parts

production model considered in section 5.2. The key element of

uncertainty in their model is demand for the style goods which is

concentrated in the last period of the year; forecasts of demands

are revised each period.
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The objective of their model is to determine a production

plan that maximizes expected profit. The objective function

includes selling price, salvage value, and the costs of material,

inventory holding costs, setup costs, and the loss of goodwill by

not being able to satisfy demand. Using the model's hierarchical

structure (see section 5.4), Bitran et al formulate a

deterministic approximation to the stochastic model that gives

good results under certain assumptions about problem structure.

Hiller (1986) generalized the multi-stage discrete parts

manufacturing model of section 5.3 to a stochastic programming

model with recourse for the case when demand for finsihed goods

is uncertain. This model rationalizes the computation of safety

stocks at all stages in a multi-stage environment taking into

account capacity constraints that limit the buildup of such

stocks. This stochastic programming model also provides new

insights into the risks faced by a production manager (de-valued

inventory or lost sales). The model's structure allows such

risks to be constrained; parametric analyses of expected costs

versus various measures of risk can also be computed. Beale,

Forrest and Taylor (1980) report on computational experiments

with a similar class of models.

We return briefly to a discussion of approaches for dealing

with the size and complexity of stochastic programming models for

production planning and scheduling which are generalizations of

large scale deterministic models that are complex in their own

right. Again, decomposition methods are available for breaking
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up large, monolitihic models. In particular, Benders'

decomposition method applied to a stochastic programming with

recourse model allows the model to be decomposed into a master

model involving here-and-now decisions, plus a sub-model for each

scenario of the uncertain future (Birge (1985)). Bienstock and

Shapiro (1988) report on a successful implementation of such a

decomposition for a capacity expansion planning model; they also

discuss how to combine Benders' decomposition applied to mixed

integer programming with its application to stochastic

programming.

8. COORDINATING PRODUCTION WITH OTHER COMPANY ACTIVITIES

Mathematical programming models provide management with

analytic tools that allow company activities to be much more

broadly coordinated than they were in the days before the

information revolution. The implication to manufacturing firms

goes beyond opportunities for more effective production planning

and scheduling. Using decision support systems based on

mathematical programming models, management can also make more

effective decisions about purchasing, distribution, marketing and

strategic plans from the perspective of the manufacturing engine

that drives the firm. In this section, we review briefly several

applications that indicate how models have promoted improved

coordination within manufacturing firms.
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Purchasing is an important, but generally neglected,

functional area that admits useful analysis by models. Bender,

Brown, Isaac and Shapiro (1985) report on the application of

mixed integer programming models to support vendor contract

selection within IBM. The models consider a family of parts; as

many as 100 parts have been evaluated by a single model.

Contract selection is difficult because a buyer must consider

simultaneously multiple vendors and contracts. In particular,

each vendor will offer one or more contracts for one or more

parts with volume price breaks, fixed costs, and even resource

constraints (machine time, labor). The purchasing decisions are

driven by parts requirements that are obtained automatically from

an MRP system. The objective is to minimize acquisition, in-bound

transportation and inventory costs over multiple period planning

horizons of a few months to three years.

The initial application of the modeling system was to the

acquisition of parts for mainframe computers. Subsequently, the

system has been used to develop purchasing plans for parts from a

range of products. The system has also been employed as a

negotiating tool with vendors whose quoted prices exclude them

from an optimal solution.

Coordination of production plans with distribution plans for

firms with multiple production sites is a second important area

where models have proven useful. Klingman, Phillips, Steiger,

Young (1987) report on an ambitious and successful project at

Citgo Petroleum Company in which large scale linear programming
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refinery models were linked to a network optimization model for

evaluating decisions regarding short-term distribution, pricing,

inventory and exchange agreements. These models were imbedded in

an integrated information and corporate planning system whose use

has contributed significantly to marketing and refining profits.

Brown, Shapiro and Singhal (1987) report on the successful

implementation and testing of a tactical production/distribution

planning model for an industrial gases company with mutliple

plants. Given monthly demand forecasts for products by customer

locations, the model determines simultaneously which customers to

allocate to each plant, how much of each product should be made

by each plant, and the production slates and lengths of time

slates are run at each plant, so as to minimize total production

and distribution costs. The production sub-model in this

application was derived from chemical engineering models that

describe optimal plant configurations under a variety of output

rates for each product. This sub-model was subsequently

transformed into an individual plant production scheduling model

that runs on a mini-computer in the plant.

Shapiro (1984) discusses a model for optimizing

manufacturing and distribution plans for a nationwide consumer

products company. This model takes into account manufacturing

costs and capacities, warehouse locations, and distribution costs

in computing a strategy that minimizes the total cost of products

delivered to markets with fixed demands. Using a quantitative

marketing models developed by Little (1975), Covert (1987)
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extended a version of the consumer products model to incorporate

marketing and sales plans. In the extension, demand is

considered endogeonous (variable) and created by various

marketing and sales strategies regarding prices, promotion,

advertsing, and so on. The objective of the model becomes

maximization of net revenues which equals gross revenues from

variable sales minus marketing and sales costs to-create optimal

demand, and minus manufacturing and distribution costs to meet

these demands. Shycon (1988) reports on the application of this

approach to tactical and strategic planning in a forest products

company.

Brown, Geoffrion and Bradley (1981) implemented and tested a

large scale mixed integer programming for coordinating yearly

production and sales plans for manufacturers with limited shared

tooling. The objective function in this model is maximization of

net revenues equalling gross revenues minus production and

inventory holding costs. Product mix decisions are allowed

within a range of forecasted demand. Their model is appropriate

for companies that make cast, extruded, molded, pressed or

stamped products.

Lagrangean relaxation methods (see section 3) were used to

efficiently extract demonstrably good solutions to this model.

The sub-models in the dual decomposition consisted of: (1)

network optimization models to determine monthly production plans

for tools and tool/machine combinations; and (2) dynamic lot-size

models (see section 2.2) to determine production plans for each
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item. A planning system based on the model was implemented and

used regularly at a large manufacturing company.

Models for analyzing strategic planning issues in a

manufacturing firm require aggregate production planning and

scheduling sub-models. The types of options to be evaluated by

such a model include plant and infrastructure capacity expansion,

mergers, acquisitions, long term raw materials contracts, new

technologies, new markets, and so on. Dembo and Zipkin (1983)

discuss methods for aggregating refinery models such as the one

discussed in section 4.1 so that they may be used in strategic

analyses. Hiller and Shapiro (1986) show how to incorporate

manufacturing learning effects into capacity expansion planning.

Nonlinear mixed integer programming models for capacity

expansion planning of electric utilities have received

considerable attention (e.g., Noonan and Giglio (1977), Bloom

(1983)). Bienstock and Shapiro (1988) devised and implemented a

stochastic programming with recourse model that explicitly treats

uncertainties reagrding demand, fuel costs, and environmental

restrictions.

9. FUTURE DIRECTIONS

In previous sections, we discussed a broad range of

production planning and scheduling applications of mathematical

programming. Although many of the models we presented were large

scale, methodologies for determining demonstrably good solutions

were presented. Suprisingly large linear and mixed integer
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programming models can be optimized by monolithic branch-and-

bound approaches, at least to a small error tolerance, by

commercial codes on today's mainframe computers. Decomposition

methods for large scale models are conceptually appealing and,

for selected applications, have already proven themselves

effective in extracting good solutions reasonably quickly.

This is not to suggest, however, that major improvements in

optimization algorithms and methods are not desirable and

necessary, especially for time critical scheduling applications.

Although mathematical programming modeling constructs provide a

rich and powerful basis for abstracting and analyzing production

planning and scheduling problems, the scientific community has

not yet demonstrated that the models can be routinely applied to

real-world problem solving in a flexible, relaible and

understandable manner. The time appears exceedingly ripe for

pursuing basic and applied research developments that will permit

the promise of mathematical programming models to be better

realized.

We envision four main areas of important research in

mathematical programming over the next five to ten years:

o mixed integer programming model formulations

and solution methods

o parallel computing

o modeling languages

o integration with knowledge-based systems

These areas are discussed briefly in the paragraphs that follow.
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MIP Model Formulations and Solution Methods:

The central role played by mixed integer programming models

in production planning and scheduling is evident from the

applications reviewed in previous sections. In section 5, we

discussed the promising new research on stronger mixed integer

programming formulations that have already led to computational

breakthroughs on some models. We have also seen a growing number

of applications of Lagrangean relaxation (dual decomposition)

methods. When combined with heuristics for determining feasible

solutions, these methods have proven extremely successful in

rapidly determining demonstrably good solutions to complex

models. Moreover, new heuristic methods based on simulated

annealing (e.g., Hajek (1988)) have recently produced promising

results for certain classes of combinatorial optimization models.

Once the research community reaches an understanding of how to

integrate these three complementary approaches to mixed integer

programming - model formulation, Lagrangean relaxation, and

heuristics - the expectation is that greatly enhanced computation

of demonstrably good solutions will be achieved.

Parallel Computing:

Mathematical programming model optimization should also be

greatly enhanced by computations carried out on coarse grained

parallel computers. These are computers consisting of a dozen to

several hundred interdependent processors. Each processor has

significant computing power and core memory in its own right, and
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is efficiently linked to other processors and/or large shared

memories. The advantages of implementing decomposition or mixed

integer programming branch-and-bound methods on such a computer

are obvious (see Brown, Shapiro and Waterman (1988) or Magee and

Shapiro (1989)); we simply await projects that will allow these

advantages to be fully demonstrated.

Modeling Languages:

In many respects, the process of moving forward from a

production manager's problems and his/her data base to an

appropriate and correct family of mathematical programming models

is more arduous than the process of optimizing the model. For

this reason, the science and art of model generation has recently

attracted a great deal of attention (Brown, Northup and Shapiro

(1986), Geoffrion (1987), Fourer, Gay and Kernighan (1987),

Brooke, Kendrick and Meeraus (1988)). Space does not permit a

discussion of the central issues and proposed approaches. We

simply mention that these researchers and others are studying

symbolic, object-oriented, non-procedural computer implementation

approaches to model generation that should lead to a much better

understanding of how to create flexible and effective decision

support systems based on mathematical programming models.

Integration with Knowledge-Based Systems:

A great deal has been spoken and written about the potential

integration of knowledge-based (that is, expert systems) with
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mathematical programming models. Very little has been achieved

from a formal viewpoint, although a number of ad hoc

implementations have been reported in the literature. Formalisms

of model generation discussed in the previous paragraph may soon

provide the missing links for insightful integrations of the two

technologies.

An expert system could prove very useful in determining the

most effective mathematical programming model to generate for a

given production planning or scheduling problem. An expert

system would also be very useful in explaining or interpreting an

optimal solution to such a model. Finally, for time-critical

applications requiring a large scale model, computation could be

significantly speeded up by having an expert system direct the

brnach-and-bound search or other solution algorithms. These

three potential areas of integration require the automation of

expertise about two domains: the real-world production planning

and scheduling domain, and the associated domain of relevant

models.
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