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A. THREE-CM MEDIUM-VOLTAGE TRAVELING-WAVE TUBES

Several more tubes of the type described in the last progress report

have been made; they have been modified by replacing the old gun by a new

one. Their characteristics are substantially similar to those described

previously. Present efforts are concerned with getting a good focusing

magnet design.

B. VELOCITY-MODULATED-INPUT TRAVELING-WAVE TUBE

The mechanical construction of the tube was revised by making the cavity

of copper-plated, mild steel and sealing the helix-supporting glass tube to

a Kovar ferrule instead of to molybdenum. These changes were made because

of the technical difficulties of making the tube of non-magnetic materials,
and the urgency of getting a thesis done. The rationalization for the

changes was based on the fact that the steel cavity would shield the gun

from the magnetic field, and that the beam would enter the magnetic field

somewhere within the Kovar ferrule which would be just at the start of the

helix.

Two tubes were assembled in this way, of which one broke while being

tested. The other had the following characteristics:

Cavity loaded Q (matched input) 1000

Resonant wavelength 3.215 cm
Synchronous voltage 1350
Helix length 4 inches
Ist anode current 2.8 ma

Helix current 2.4 ma

Collector current .03 ma

Gain vs. input power is plotted in Figure VIII-1, for the conditions

given. The small collector current is attributed to the fact that the helix

support cracked during assembly and it was repaired so that the alignment

between the helix and beam axes was uncertain. By running the anode (cavity)

at 1600 volts, and the helix at 1350 the helix plus collector current was

increased to 3.5 ma and the gain was increased by about 2 db.

Noise measurements were made, and a N.F. = 48 db was obtained. This

is far in excess of any theoretical prediction, and is attributed to the
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Fig. VIII-1 Velocity-cmodulated
traveling-wave tube; gain vs. input
power.

partition noise due to current interception in the cavity and along the

helix.

The tube was used as an oscillator by connecting the output- to the

input-waveguide through a phase shifter. Electronic tuning of about 12 MN/sec

between half-power points was obtained by varying beam voltage. This corre-

sponded closely to the cavity bandwidth. The power output was about 7 Mw.

C. THEORY

In the Progress Report of July 15, 1949 theoretical expressions for

gain and noise figure were given. The gain expression is believed to be

correct, but the noise figure expression is wrong, because the effect of the

cavity was ignored. If the noise voltage induced in the cavity by the beam,
and the resulting velocity and current modulations are computed, the resulting

expression is y2 e 1 ZD 2

F = 2 + 2
kTA

where

A = e - - Cd + JC D = e + JC - Cd - 2jC
- o

Z1 - cavity shunt impedance and d = distance from cavity gap to start of

helix. Comparing with Pierce's expression for a conventional traveling-wave

tube, we get

v.m. Z l o

Pierce o 0o
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This indicates a disadvantage of about 10 db for the velocity modulated tube

for common values of Z1, C, and Zo. At very large currents it might be

possible to make CZo > Z1, but this seems to be of little use.

This work is described in detail in a master's thesis, M.I.T. Department
of Electrical Engineering, 1949, by Philip M. Lally.

P. M. Lally

D. LOW-VOLTAGE THREE-CM TRAVELING-WAVE AMPLIFIER

1. Helix Assembly

The scheme described in the last report has been further modified since

it was found that the heavy slugs tended to pull the helix out of place
during the assembly process. The last tube assembled had variations in pitch
of + 4 percent along its length.

MOLY SLUG

HELIX Fig. VIII-2 Detail of
helix assembly for low

QUARTZ SPACER voltage traveling-wave
el ,, , tube.

THIN FERRULE OUTER GLASS
(PHOS.BRONZE) TUBE

The thin ferrules, weighing only a fraction of an ounce, are welded to

the helix and clamped between the quartz spacers. The heavy slugs are then

dropped into the glass tube, one at either end of the helix, and the whole

assembly clamped together by axial pressure.

2. Gun Design

The tank design for a low current gun referred to in the last report

has been tested, and the results are plotted in Figures VIII-3 and 4. The

collector current is a much slower function of cathode temperature than is

the anode current. Although no quantitative analysis has been carried out,
it is believed that the effect of cathode temperature arises from the random

velocity of emission of the electrons, as set forth in the last report.
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E. DENSE ELECTRON BEAMS IN AXIAL MAGNETIC FIELDS

The following theoretical analysis has been carried out during the past

quarter. The method of attack is based on the work of Dr. C. C. Wang of

the Sperry Gyroscope Company.

The system of coordinates used is cylindrical (r, ,z). Axial symmetry

is assumed so that 9 becomes an ignorable coordinate. Uniform axial velo-
city () is assumed for all electrons, so that for any electron z is pro-

portional to the time t and the problem is thus reduced to one in which the

variables are t, r, 9, 8. The conservation of angular momentum is employed

to solve for 0 in terms of r, t, and the given magnetic field density B. It

is found that at any instant the angular velocity 9 depends on the difference

in magnetic flux 1 threading the circle of radius r about the z axis, and

the flux Vc threading a similar circle of radius rc from which the electrons

started at the cathode.

It is thus possible to eliminate E from the equations and to derive the

differential equation of motion for any electron in terms of r and t, the

known parameters being the electrostatic potential c and the magnetic field

distribution and the position of the cathode.
The electrostatic potential is calculated by assuming a certain charge

density distribution p(r) independent of z. An expression for cp(r) has been

derived for the region of electron flow (ra < r rb) by expressing p(r) in

this range in the form of a power series

p(r)= Pn rn

n=-1

The electrostatic potential c(r) due to the beam itself and to the presence

of the inner and outer cylindrical electrodes is then evaluated as a power

series

p(r) =Z n rn

n=o

where the cp n are expressed in terms of the pn"

Finally the differential equation of motion is derived. This is a

second order, non-linear equation which can be integrated once to yield an

energy equation. The energy equation may be thought of as defining a poten-

tial trough.

If the electron under consideration is specified by its equilibrium

radius r o and if we write r = ro(l + 6) we can simplify the differential

1 1)1~11 _- ... 1 .111--. -*_ - ~~1111111111~11
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equation to the form 6 = ao + a16 + a26
2 + ..., where the an are expressed

in terms of the gn and hence in terms of the pn"
Since 6 - 0 denotes the equilibrium position, a0 = 0. For stability,

the first non-zero coefficient must have an odd subscript and must be nega-

tive. If a1 < 0 we can use a linear approximation if 6 << 1. If a1 = 0

the solution is non-linear for any size 6.

The analysis yields information as to the necessary field configuration,

or alternatively, the necessary cathode position, by consideration of the

quantity T - T0 mentioned previously.

One particular case has been treated rather extensively and design

information has been obtained for it. This is the linear case where g is

of the form T = go + g2r 2. It applies to a uniform solid electron beam, as

treated by C. C. Wang, or to a uniform hollow beam in which the correct

potential variation is maintained by inner and outer electrodes.

A few of the stability conditions have been derived for the cases where

only the first few an are present. These are all of the form, B > some

function of the pn'
Solution of the non-linear cases (a1 = 0 or 6 not << 1) will have to be

carried out numerically. None of these have been attempted yet, as there

is not sufficient information about the actual magnetic field configuration

or about the region between the cathode and the uniform beam section, i.e.,

the electron gun.

A brief analysis which must be further examined indicates that it is

possible for the thermal velocities of emission to have considerable effect

on the validity of the analysis in certain cases. The initial tangential

component of velocity can cause appreciable error if the system is designed

so that I - T c is approximately zero. This condition occurs when we have

a hollow beam with no inner electrode.

While a theoretical analysis of the gun region in which electrons are

accelerated appears to be very complicated, it is possible that the rather

simple energy conditions may provide a method of gun design. It should be

possible to design an electron gun of the Pierce type which is modified to

take account of the unavoidable magnetic field. Here the rotational energy

will appear as correction terms to the usual Langmuir-Blodgett potential

distribution for conical flow. This procedure also requires a detailed

knowledge of the magnetic field in the gun region.

Although the experimental procedure is still not definite, a few of

the pieces of necessary equipment have been started.

A demountable glass vessel for the electronic tests has been made by
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the glass shop. A non-magnetic support system upon which electrodes can be

mounted and adjusted has been built to fit this vessel.

A long solenoid to fit around the glass vessel is in the process of

construction. There is also a set of probe coils, mounted so as to measure

41 directly, under construction. These should eliminate the need to measure

B from point to point and to integrate in order to find 4.

A small air-driven probe coil for measuring magnetic field has been

designed, built and tested, following the suggestions of Mr. G. C. Dewey of

Federal Telecommunications Laboratory. A simple resistance-capacitance

circuit renders the output of this coil essentially independent of speed.

L. A. Harris

F. MICROWAVE. NOISE STUDIES

A program has been initiated to investigate experimentally the noise

in electron beams at microwave frequencies. Work in the last quarter has

been devoted to constructing and checking measuring apparatus. The noise

in the beam under study can excite a resonant cavity, and a sensitive super-

heterodyne receiver can then measure the noise signal from the cavity by

comparing it, through a calibrated microwave attenuator, with a standardized

microwave noise source.

The following components, for use at 8-band, have been completed:

1. Microwave Noise Source

Such a unit has been described by W. W. Mumford of the Bell Telephone

Laboratories. Our model consists of an F-5001 fluorescent lamp, 5 inches

long and 9/16 inch in diameter located H-wise in an S-band waveguide fitted

with a plunger and screw for impedance matching. A panel has been made with

controls for starting the lamp and adjusting the d-c lamp current which

affects the match. According to Mumford such a device has an effective

temperature of L1,4300K.

2. Receiver

A "cascode" pre-amplifier, amplifier, and detector for 30 Mc, built by

G. E. Duvall (see R.L.E. Technical Report No. 82), have been set up and

adjusted for use as the i-f stage of our receiver. These units have been

carefully designed and are provided with a CV172 noise diode with which it
has been verified that the noise figure of the amplifier (with 10,000 ohms
input impedance and no input transformer) does not exceed 2. Necessary
modifications to permit the input to be connected to a crystal mixer include
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the addition of an input transformer for impedance matching, a crystal cur-

rent meter and filter network, and suitable cable connections.

An S-band waveguide mixer has been chosen and matched at the desired

frequency with the crystal current adjusted to provide optimum conversion

efficiency and minimum noise. A TVN-7BL klystron signal generator is being

used as a local oscillator.
The receiver has been tentatively assembled and a substantial reading

on the detector output meter has been obtained upon connecting the standard

noise source to the mixer input. A. Karp

G. ANALYSIS OF TRAVELING-WAVE TUBES

An algebraic solution of the characteristic equations of a traveling-

wave tube has been carried out for the case of a lossy transmission line at
synchronous beam velocity. (The report by J. H. Tellotson, "Explicit Forms
of the Propagation Function of a Traveling-Wave Tube" Electronics Research
Laboratory, Stanford University, came to the author's attention only a month
ago.) If the forward waves are expressed by propagation constants

rn = j13 + An where the transmission line is characterized by ao + jPo, we
get for the values of An

A1 = -+ A + B

Go A+B A - B
2here3 = '  2 J f

where

3 ~~ + 2-;
A + 0

B3  +2C 3

B 77=

These are valid for about

beam and helix.

For the usual travel

a3/3oC3 << 1 Then
A1

[ 2C3(aclo + J3)12 3p o2 3 (aao + Jo )

(aWo + J L 2 + 27

2r3( o +  J13 a 3(ao + 13o)
(ano o~) +L1 2 0 +0j0 27

ao < 0/5, where a is a coupling constant between

Lng-wave tube, with an almost lossless helix,

o
I = 5- Je c

A2 , 3 +o c
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If we have a very lossy section of helix as in the case of lumped loss,
then «3 a 3 << 1. This results in

AO " Oa

A22,3 =  FP oc (1 - j) .

Further work is being carried out on the problem of finding the best
position of a lumped loss section of length 1i, along a helix of total
length 1,. L. D. Smullin
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