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Abstract

There are numerous papers in the literature, which analyze the behavior

of specific queueing systems in terms of certain roots of a nonlinear equation.

In this paper we show that a very general class of queueing systems, including

queues with heterogeneous servers, multiple arrival streams, bulk queues and

feedback, is described by a characteristic equation. We prove that the number

in queue and the waiting time distribution is a sum of geometric and exponential

terms respectively involving the roots of the characteristic equation. The sum

is finite if the service time distributions belong to the class R of distributions

with rational Laplace transform. We find explicitly the characteristic equation

for a wide variety of queueing systems and furthermore, we provide an easy

method to generate the characteristic equation for even more general systems.

Our results are structural for the case of arbitrary distributions and aim to unify

the field, but they can potentially lead to an algorithmic solution for queues

with distributions in the class R.
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1 Introduction

One of the classical problems in queueing theory is the steady state and transient

analysis of the GI/G/m queue. Ramaswami and Lucantoni [7] and de Smit [8]

analyze the steady state behavior of the GI/R/m queue through the matrix geo-

metric method and complex variable methods respectively. Bertsimas [1] analyzes

the R/R/m queue, where R is the class of distributions with rational Laplace trans-

forms using the method of stages. All these investigations address the case where

the servers are homogeneous and there is only one arrival stream which forms a

renewal process. Yu [10] proposes an approach for the case of heterogeneous servers

and Erlang interarrival times. There are also numerous papers in the literature,

which analyze the behavior of specific queueing systems in terms of certain roots of

a nonlinear equation.

In this paper we aim to understand the structure of the solution of an arbi-

trary G/G/rn queue with heterogeneous servers and multiple arrival streams, as

well as more complicated systems involving bulk queues and queues with feedback.

Moreover, we want to demonstrate that a very general class of queueing systems, in-

cluding queues with heterogeneous servers, multiple arrival streams, bulk queues and

feedback, is described by a characteristic equation, which we characterize explicitly.

Although our results are only structural in the case of systems with arbitrary

distributions, they can potentially lead to an algorithmic solution in the case where

all the distributions have rational Laplace transform. Moreover, we believe that

they lead to a certain unification of the field.

The methodology we used is to extend the method of stages, which has been

used for queueing systems only for distributions with rational Laplace transform

(Cox [5]), to arbitrary distributions using supplementary variables.

In section 2 we introduce our techniques with respect to the GI/G/1 queue. We

then proceed in section 3 to the G})L/{G}'/rm queue with L arriving streams and

m heterogeneous servers. In section 4 we describe the general methodology to derive
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the characteristic equation of arbitrary systems and apply it in the context of bulk

queues and queues with feedback, while the final section contains some concluding

remarks.

2 The generalized method of stages in the GI/G/1

queue

Since we are addressing the transient queue length distribution we assume the sys-

tem is initially idle. Let a(z), b(z) be the interarrival and service time distribution

respectively and let (s), p(s) be the corresponding Laplace transforms. Let

a(z) b(z)
(z ) -f a(y)dy' Vb(z) f b(y) dy

be the corresponding hazard rate functions.

Let P,(t, z, zb) be the probability that at time t there are n customers in the

system, zt is the elapsed time since the last arrival and Zb is the elapsed time since

the current service initiation. We can then write down the Kolmogorov equation

that describes the dynamics of the system. For n > 1,

P,(t + At, z. + At, zb + At) = (1 - a.(ta.)At - Tlb(Zb)At)Pn(t, Z., Zb)+

6(z.)j P. u-l(t,u, z6)(u)du At + 6(zb) Pn+l(t,z.,u)lb(u)du At,

where 6(z) is the usual delta function. Taking the limit as At - 0 we find that for

n>l1

a P(tZaXZ) =(Za) Pnl(t,u, Zb)()d + 6(Zb) Pn+l(t,Z .,u)rb(u)du

~ Pn(t, t, tb) + 17(Z)Pn(t,t, tZb)] [ Pn(t,ta Z.b) + 1b(tb)Pn(t, Zt, b)].

We now define the following operators that act on a function f(.) from the left:

f(:Z)Ao = f(za) + 7a(zt)f(z-)

f(Zb)Aob = f(Zb) + I7b(b)f(Zb)
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f(Z,)AI. = -6(z0 ) fo" f(u)%,(u)du

f(zb)Alb = - 6 (zb) foA f(u)tlb(u)du.

With these definitions the Kolmogorov equations become:

O pn(t Z, Zb) = -P.nl(t, Z0 , Zb)Ala-Pn(t, Za, b){AOa+AOb}-Pn+l(t, Z, Zb)Alb.

Taking the Laplace transform in terms of t we obtain that for n > 1:

8rT,(s, z, Zb)+rn-1,(81, Za, b)Ala + tn(, Z, tb){Aoa+A 4)+ n+l(5, , Z, Zb)Alb = 0,

(1)

where rn(8, Z, zb)= C(Pn(t, Za, Zb)]-

Equation (1) is a difference equation in terms of n with constant coefficients. In

terms of z, zb it is a linear partial differential equation. In order to solve (1) we

use the separation of variables method and we assume that a general solution is

n(8, Za, Zb) = (8s)nOa(Z.)b(zb)- Substituting to (1) we obtain:

1
(Z)0b(zb){S8 + [ao + ,al] + [AOb +W(8)1b)]} = 0,

which can be rewritten as

(Z.)4b(Zb){8 + A (-( ) + Ab(W(s))} = 0,

if we define the operators Ai(z) = A0q + zAli, i = a, b.

As a result, 0.(z,), b(zb) should be eigenfunctions of (-), 6A(w(s)) respec-

tively with corresponding spectrums -a(s), -b(s). We are thus naturally led in

the next lemma to the investigation of the eigenfunction and eigenvalue structure

of the operators Ai(z), i = a, b.

Lemma 1 Let 0a(z) denote an eigenfunction of An(z) with a corresponding spec-

trum -. Then

k.(z) =-0C.A(Z),

where

A(z) = j a(y) dy
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and the characteristic equation of the spectrum is

za(o) = 1.

Proof

The eigenvalue equation is 4d,(z)A,(z) = -. 0.(z), which reduces to the ordinary

differential equation (ODE)

dk6 (z) jo dy -e.4(z)
dz + 40 (z)q.(Z) - Z6(z) (y)(y) dy = -0,.(z)

.() = (Z < O)

Since this is a first order linear ODE it can be solved by direct integration as follows:

.(z) = zKeC-e-fo.(Y)dY (z > 0), (2)

where

K S= (y)u .(y) dy.

Substituting (2) to the expression for K we obtain

J= zJ e-0-fo (Y) dnv(z) dz = ez0 j-X a(y) dy(tz) dz =

z j e'-a(z)dz = Cz(O.),

i.e. the characteristic equation for the spectrum is

zc(e0) = 1.

Moreover, up to a constant factor the eigenfunction 4.(z) is

b.(z) = e-.-f 0
' ' (Y)d = ze- j a(y)dy (z > O).

Applying now the previous lemma we obtain that

n(s, Z., zb) = w(s)"ce-()z- - ( ) ' A(.)B(Z)
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and w(s) satisfies the following system of equations

0.(8) + b(S) = 

W(a) = (8,.(s)) (3)
,(S)(Ao(8)) = 1

1(s) < 

The above system of equations has several solutions for w(s). If 3(s) is a ratio-

nal function where the denominator is a polynomial of degree k, i.e for the model

GI/R/1, an easy application of Rouche theorem establishes that there are exactly

k roots wl(s), ...,wk(s) in the unit circle. In this case the solution would be a linear

combination of the form:
k

r(s, (z, ) = E C(s)Wi(8S)ne- i()i()- b ( A(z.)B(zb), n > 1.
i=l

For the GI/G/1 queue, in which the service time distribution is completely arbitrary,

there is a continuum of roots wu(s) characterized by a continuous parameter u. As

a result, we conclude that the transform of the queue length distribution rn(s) is

characterized as follows:

,7n(8)= Cu(8),u(8)
U

where Cu(s) is a function independent of n. We have thus established the following

result:

Theorem 1 In a GI/G/1 queue, which is initially empty, the transform of the

queue length distribution has the following structure for n > 1:

rn,(s) = C,(),(8)",
U

where the roots wu(s) are found from () The steady-state solution is achieved by

letting = 0.

'Note that

f. (a)= r(s, z., ) dz.dzb, = a.(o)o.(e) (1 - (s)) ( )/0'/0'0()O'
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For the steady-state waiting time W under FCFS we let = 0 and we apply the

distributional Little's law of Bertsimas and Nakazato [2] to find that the density

function of the waiting time is:

fw(t) = Cu(0) -

~hr - C(o)9i (o)where Ceu(O) = -xO-w.)(-o.,.(o)) i.e the waiting time distribution is a linear com-

bination of exponential terms. As before, there are finitely many terms in the

summation for the GI/R/1 queue.

3 The {G}L/{G}m/m queue

In this section we generalize and extend the techniques of the previous section to

the multiserver {G)L/{G)m/m queue with L arrival streams and m heterogeneous

servers. This queue is notorious for its difficulty. Our main result is that the

tail of the transform of the queue length distribution is also a linear combination

of geometric terms which we explicitly characterize. Moreover, the steady state

distribution of the queue length and the waiting time under FCFS is also a linear

combination of geometric and exponential terms respectively. The number of terms

in the linear combination is finite only in the case in which all the service time

distributions have rational Laplace transform.

In this queue there are L arrival streams. The interarrival times in stream i form

a renewal process. Let ai(s) be the Laplace transform of the interarrival time of

stream i, i = 1, ... L. Customers from all the streams form a single waiting line. We

assume that the service discipline is FCFS. There are m servers in this queue. Server

j has a service time distribution with Laplace transform 13j(s). For the transient

queue length distribution we assume that initially the system is empty.

Let Pn(t, al,... , , zb,,..., zb,,) be the probability that there are n customers

in the system at time t, the elapsed time since the last arrival for each stream i

(i = 1,..., L) is za, and the elapsed time since the current service initiation for
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server j (j = 1,...,m) is Zbi. Let r,(s, z.,..., ,L, Zb ,...,z b, ) be the Laplace

transform of P,,(t, z,,,. .. , ,, z@,Zb1,., Zb).

As in the previous section we write the Kolmogorov equation that describes the

dynamics of the system and take transforms with respect to t. Using the operator

notation of the previous section we obtain that for n > m:

L

Stn(S, Zal r * *, ZaL I 'bl r * * * Zb · ) + n-l(z Zl, *.. ZG Zal bl * * .Zbm) Alai
i-l

L m

+,(,Zo, .. X ,,ZaL b .... , )(bE m ,O + E A)
i=1 j=1

+n+l (sI ZOl, .. aL , zt,..b, Zbm,) Albj = 0, (4)
j=1l

where the operators Aoj,, Alaj, A0 bj, Ala are defined as in the previous section.

Our analysis now follows exactly the same path. We use the separation of variables

technique to solve (4). We introduce a general solution

L m

frn(S zal, - - - ZaL bl,* - - Zbm) = (a)" 14 i,(Z,) II bj,(_b,),
i=l j=1

and we obtain that
L m L m

I (Z,) ]I rbj (Zbj ){ + z ~,( T)) + E Abj ((S)) = 0-
i=l j=l i--w1( j=l

Arguing as before we require that the Ob,(z.,) , dbj(Zbj), i = 1,...,L, j = 1,.. ,m

are eigenfunctions of Aa,(:-) , Ab(w(s)) respectively with corresponding spec-

trums -a,(s), -b(s). Applying lemma 1 we find that

n(s, z. ,...,Z6 * * zb,... ,Zbm) = ()nte- iL'1 .i('' -,- ,(, JI A,(z,) I Bzb,),
i=1 j=1

and the characteristic equation for w(s) is:

C .= i (8) + Ej=l 9bj(s) = J (a)
W(s) = Ii(e,,(.)) (i = 1...L) (b)

w(s)flj(eb,(s)) = 1 (j = 1.. m) (c)

IW(s)I < 1 (d)
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Therefore, we can summarize the previous discussion in the following theorem.

Theorem 2 In a {G}L/{G}m/m queue, which is initially empty, the transform of

the queue length distribution has the following structure for n > m:

rn(8) = Cu() Wu(s) ,
U

uhere the roots w,(s) are found from (5) and Cu,() is independent of n. The steady-

state solution is achieved by letting = 0.

The previous theorem is in agreement with the results of Bertsimas [1] who considers

the R/RIm queue with homogeneous servers. In the GIRIm case, where the degree

of the denominator of the transform of the service time distribution is k, there are

(m+k-1) roots inside the unit circle. More generally, in the {G}L/{R}m/m case

there are finitely many roots in the linear combination. Theorem 2 generalizes

results of Takahashi [9] about the asymptotic behavior as n - oo of the steady-

state probability that there are n customers in a Ph/Ph/rnm system.

Moreover, in the case L = 1 we can also find the structure of steady state waiting

time distribution under FCFS using the distributional Little's law of Bertsimas and

Nakazato [2]. Then the density function of the waiting time is

fw(t) = E Cu(O) C-e,(o)t,

where C"(0) = s-(-w,)(l-..()) i.e the waiting time distribution is a linear com-

bination of exponential terms. For the case with L arrival streams using a similar

approach to that of Bertsimas and Nakazato [3] we can find that

fw() = B,(o) C- L ,,.o)
i.e. the waiting time has exponential tails in this case as well.

i.e. the waiting time has exponential tails in this case as well.
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3.1 Algorithmic issues

In the case where all distributions belong to the class R of distributions with rational

Laplace transform then the variables z, zbj are discrete and therefore there are

only finitely many unknowns r(, za, ... , z L, zbl,... ,z,) for n < m. Moreover,

there are also only finite terms C,(s). Using the Kolmogorov equations for n < m

one would have to solve a (large) linear system in order to find these unknowns.

Therefore, a conceptual algorithm for the solution of such systems would be to solve

the system of equations (5) to find the roots and then solve a linear system to find

the unsaturated probabilities and the coefficients Cu(s). Bertsimas [1] implemented

an algorithm of this type for the R/R/m queue. The main difficulty with such an

algorithm is not the solution for the roots, but rather that the linear system becomes

very large very quickly. Our experience at least with the R/R/m is that finding the

roots is computationally quite easy, which is in agreement with the comments of

Chaudhry, Harris and Marchal [4]. The algorithm spends most of its time in the

solution of the linear system.

4 On the characteristic equation of an arbitrary queue

Our initial goal in this section is to understand the nature and character of the

characteristic equation (5) and to generalize it to even more general queueing sys-

tems. The final goal is to be able to write the characteristic equation directly for an

arbitrary queueing system. We then apply this technique to find the characteristic

equation of several systems with bulk arrivals, bulk service and feedback.

4.1 A physical interpretation of the queueing system

To generalize our analysis further, we introduce a direct method to obtain the char-

acteristic equations (5) from the dynamics of the system. The method is one of the

most commonly used tools in modern physics. We believe it can also be useful in
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queueing theory.

The key player of our method is the operator:

L m
T(z) =, + E ,a(z)+ ,( -) (6)

i=1 j--=-1

We interpret the definition (6) as follows.

The first term s indicates the transient behavior. The second term is due to arrival

processes with the argument z representing an increase in the number in the system

by one. The last term is due to service processes, and the argument l/z means a

decrease of the number in the system by one. Adding these terms means that all the

processes in the system are independent. Therefore, an addition of a new operator

A(u(z)) to the operator T(z) is equivalent to introduce a new independent process

to the system and the argument in u(z) describes how the number in the system

changes at each renewal epoch.

The characteristic system of equations (5) is simply the condition that the spec-

trum of T( ) equals to 0. An alternative approach to see this is as follows. If

II(z) is the generating function

1(z) = E n()Zn
n

then the problem can be formulated using the compensation method (Keilson [6])

as

In(z)T(z) = x(z), (7)

where T(z) is the operator that describes the homogeneous dynamics and X(z) is

the compensation part which is regular.

From the structure of the solution

n(z) = E-(a)Z" = E CU()
n

and therefore z = ";T is a singular point of I(z). From (7) however II(z) =

X(z)T-l(z). Since X(z) is regular it means that z = ~ must be a singular point
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of T-1 (z), i.e. the spectrum of T- 1 (- ) should be infinity and thus the spectrum

of T(-) should be 0.

In addition, equation (5a) means that the spectrum of T(-) is the sum of the

individual spectrums of the operators A(.). Equations (5b,5c) are the individual

characteristic equations for the spectrums of each of the operators A(.) from

lemma 1, while the final equation (5d) is the ergodicity condition.

4.2 The characteristic equation in bulk queues

In this subsection we apply the interpretation of the previous subsection to a general

bulk queueing system. Consider a combined bulk service and bulk arrival queue with

m heterogeneous servers and L arrival streams, in which server j serves r customers

with probability qj, and in the arrival stream i at each arrival epoch there are k

customers arriving with probability pik. Let

vj(Z) = E qj3 z

be the generating function of the number of customers server j serves and

Ai(Z) = PikZk
k

be the generating function of the number of customers arriving in the arrival stream

i . Our goal is to characterize again the structure of the system.

We saw in the previous subsection that the argument of the operator A(u(z))

is a description of how the number in the system changes at every renewal epoch.

Therefore, the operator that describes the system is

L m 1
T(z) = + A ,(i(Z)) + E Aj(vji

il- jld1

since the number in the system increases according to pi(z) and decreases according
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to vi(z). The characteristic equation for this system is thusI L ea(S) + E;jl eb,(S) = S
(j)((,)) = 1 (i = 1... L)

vj(o())fj(Ss()) = 1 (j = 1 ... m)

w()l < 1

and the transform of the queue length distribution for n > m is

rn(8) = EC(a(8)W()

4.3 Queues with feedback

Consider again a heterogeneous system with one arriving stream, with the modifi-

cation that after each service completion the customer is fed back into the system

with probability q, while with probability 1 - q leaves the system. In this case

v(z) = q + (1 - q)z

is the generating function of how the number in the system changes after a service

completion. In this case the characteristic equation is as follows:

8 () + Ej= 8(s) = S8

y-((8)) = 1

V(W(s))Ij(eb,(s)) = 1 (j = 1 . . .m)

(s)l < 1

and the transform of the queue length distribution for n > m is

r.(S) = E CU() (8)".
U

Obviously one can consider quite complicated situations, for example combinations

of bulking and feedback. These can also be analyzed with the technique we intro-

duced.
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5 Concluding Remarks

We have generalized the method of stages to an arbitrary queueing system using

operators rather than matrices. This generalization enabled us to derive a rather

general procedure to describe the characteristic equation that an arbitrary queue

satisfies. Although our method can be only seen as a structural result when the

interarrival and service time distributions are arbitrary, it can potentially lead to

a finite algorithm in the case in which all the distributions have rational Laplace

transform. Moreover, our methods prove that a quite general class of queueing

systems (queues with heterogeneous servers, multiple arrival streams, with bulking

and feedback) are characterized by geometric tails for the queue length distribution

and exponential tail for the waiting time distribution.
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