
A TECHNIQUE FOR SPEEDING UP
THE SOLUTION OF THE

LAGRANGEAN DUAL

Dimitris Bertsimas and James B. Orlin

OR 248-91 April 1991





A technique for speeding up the solution of the Lagrangean

dual

Dimitris Bertsimas * James B. Orlin t

April 10, 1991

Abstract

We propose new techniques for the solution of the LP relaxation and the Lagrangean

dual in combinatorial optimization problems. Our techniques find the optimal solution

value and the optimal dual multipliers of the LP relaxation and the Lagrangean dual

in polynomial time using as a subroutine either the Ellipsoid algorithm or the recent

algorithm of Vaidya. Moreover, in problems of a certain structure our techniques find

not only the optimal solution value, but the solution as well. Our techniques lead to

significant improvements in running time compared with previously known methods (in-

terior point methods, Ellipsoid algorithm, Vaidya's algorithm). We apply our method

to the solution of the LP relaxation and the Lagrangean dual of several classical com-

binatorial problems, like the traveling salesman problem, the vehicle routing problem,

the Steiner tree problem, the k-connected problem, multicommodity flows, network de-

sign problems, network flow problems with side constraints, facility location problems,

K-polymatroid intersection, multiple item capacitated lot sizing problem, etc. In all

these applications our techniques significantly improve the running time and yield the

fastest way to solve them.

Key words. Lagrangean relaxation, linear programming relaxation, polynomial algo-

rithm.

*Dimitris Bertsimas, Sloan School of Management, MIT.

tJames B. Orlin, Sloan School of Management, MIT.

1



1 Introduction

During the last two decades combinatorial optimization has been one of the fastest grow-

ing areas in mathematical programming. One major success has been computational: re-

searchers have been able to solve large-scale instances of some NP-Hard combinatorial op-

timization problems. The successful solution approaches typically rely on solving, either

approximately or exactly, the linear programming (LP) relaxation or the Lagrangean dual

of an integer programming formulation of the problem.

The successes in using linear programming methodology (LP relaxations, polyhedral

combinatorics) have been very impressive. Starting with the seminal computational research

conducted by Crowder and Padberg [8] and Padberg and Hong [26], researchers have now

been able to solve to optimality a number of applications including traveling salesman

problems with up to 2000 nodes (Padberg and Rinaldi [27]), a variety of large scale (up

to about 2000 integer variables) real world zero-one business planning problems (Crowder,

Johnson and Padberg [7]), input-output matrices that arise in economic planning (Gr6tschel,

Jiinger and Reinelt [14]), multiple item capacitated lot size problems that arise in production

planning (Barany, Van Roy and Wolsey [5] , Eppen and Martin [10], Leung, Magnanti and

Vachani [21]), strategic planning problems (Johnson, Kostreva and Suhl [19]), production

planning problems with changeover costs (Magnanti and Vachani [23]), and certain spin

glass problems that arise in physics (Barahona et. al. [4]).

These successes show that linear programming and Lagrangean relaxations can play an

important role in solving many problems met in practice. The landmark in the development

of Lagrangian relaxation (see for example, Geoffrion [12] or Fisher [11]) for combinatorial

optimization problems were the two papers for the traveling salesman problem (TSP) by

Held and Karp [16], [17]. In the first paper, Held and Karp [16] proposed a Lagrangian

relaxation based on the notion of 1-tree for the TSP. Using a complete characterization of

the 1-tree polytope, they showed that this Lagrangian relaxation gives the same bound as

the LP relaxation of a classical formulation of the TSP. In the second paper, Held and Karp

[17] introduced a method, which is now known under the name of subgradient optimization

2



(see also Held, Wolfe and Crowder [18]), to solve the Lagrangian dual. Despite its success

in computational experiments subgradient optimization is not known to be a polynomial

method.

In this paper we propose new techniques for the solution of the LP relaxation and the

Lagrangean dual in combinatorial optimization problems. Our techniques find the optimal

solution value and the optimal dual multipliers of the LP relaxation and the Lagrangean dual

in polynomial time using as a subroutine either the Ellipsoid algorithm [20] or the recent

algorithm of Vaidya [29]. Moreover, in problems of a certain structure our techniques find

not only the optimal solution value, but the solution as well. Suprisingly, our method is

significantly faster than interior point methods and Ellipsoid like methods directly applied

to the problem. We apply our techniques to the solution of the LP relaxation and the

Lagrangean dual of several classical combinatorial problems, like the traveling salesman

problem, the vehicle routing problem, the Steiner tree problem, the k-connected problem,

network design problems, network flow problems with side constraints, facility location

problems, K-polymatroid intersection, multiple item capacitated lot sizing problem, etc. In

all these applications our techniques significantly improve the running time and yield the

fastest way to solve them. Our technique can also be used to speed up the solution of the

dual of multicommodity flow problems in certain cases.

The paper is structured as follows: In section 2 we introduce our method and its vari-

ations. In section 3 we apply it to a wide variety of classical combinatorial optimization

problems. The final section contains some concluding remarks.

2 The theoretical development of new techniques

In this section we develop the algorithm to solve linear programming problems. The method

is particularly useful for problems of special structure as those appearing in the solution of

LP relaxations of combinatorial optimization problems.

3



2.1 An algorithm for linear programs of special structure

Consider the following LP:

(Pi) zi = Min cx (1)

subject to

Ax = b

x ES,

where S is a polyhedron. Let x k , k E J be the extreme points of S, and similarly let wk,

k E R be the extreme rays of S. Then applying the resolution theorem for the polyhedron

S we obtain that any point x E S can be written as:

= Xkzk + E Okw k

kEJ kER

Ak,Ok > , Ak = 1.
kEJ

Substituting in (1) we obtain that problem (P1 ) is equivalent with

(Pf) Min zl =E A k(CXk ) + : Ok(CWk)

kEJ kER

subject to

SAk(Axk) + E Ok(Awk) = b
kEJ kER

E Ak = 1
kEJ

Ak, Ok > 0.

The dual of the above problem is

(D 1) z = Max yb + 

subject to

y(Axk ) + < c xk, k E J,

y(Awk) c w k , k E R.

4



Because of strong duality, problem (D1) has exactly the same value as the original problem

(P1). Problem (D 1), however, has a potentially exponential number of constraints. In

order to find z we will solve problem (D1) using either the ellipsoid method or the recent

algorithm of Vaidya [29].

Given a solution yo, o for the dual problem, we need to solve the separation problem:

(SEP) u = Min (c - yoA)x

subject to

x E S.

If the solution of this problem is bounded and u o then the solution (yo, o) is feasible

in (D1) and thus we can start Vaidya's sliding objective algorithm (see [29]) or the Sliding

objective Ellipsoid algorithm (see for example Nemhauser and Wolsey [25], p.155) with the

same separation problem. If u < o0, a new extreme point is generated, which is added to

(Di). If, on the other hand, the subproblem is unbounded, then a new extreme ray of S

is generated, which is also added to (D1). In the last two cases the ellipsoid method or

Vaidya's algorithm will continue with one extra constraint. The algorithm will compute the

optimal value z of (D1) (which is also equal to the optimal value of (P1)), as well as the

optimal dual solution y* and a*.

In general, Vaidya's [29] algorithm for an LP with k variables takes O(kL) iterations

with a running time

O(TkL + M(k)kL), (2)

where T is the number of arithmetic operations to solve the separation problem (SEP),

L is the input size of problem (PI) and M(k) is the number of arithmetic operations for

multiplying two k x k matrices. (It is known that M(k) = O(k 2's ) [6]). For comparison, the

number of iterations of the ellipsoid algorithm is O(k2L) and its running time is O(Tk2 L +

k 4L). Note that the Ellipsoid algorithm does not benefit from fast matrix multiplication.

So, overall Vaidya's algorithm has a better worst-case time complexity than the ellipsoid

method. For this reason we will use Vaidya's algorithm in the rest of the paper.

5



For problem (P1 ) let n be the number of variables, let m be the number of constraints

Ax = b and let T(n) be the number of arithmetic operations to solve the separation problem

(SEP). Then, the number of variables in (D 1) is k = m+ 1 and thus from (2) the overall time

complexity to find z1 and the optimal dual solution y*, a* of (D1) is O(T(n)mL+M(m)mL).

We summarize the previous developments in the following theorem.

Theorem 1 The optimal solution value z of problem (P1 ) and the optimal dual variables

y*, a* can be found in O(T(n)mL + M(m)mL) arithmetic operations.

A natural question is whether we can also find the optimal primal solution x* of (P1). For

example, since our algorithm takes O(mL) calls to the separation problem (SEP), there

will be O(mL) constraints in (D 1) and correspondingly O(mL) variables Ak, 0k in (P).

Applying an interior point algorithm in (P[) we can find the optimal A*, 0* in O((mL)3 L),

from which we can compute the optimal solution x*. Unfortunately, this running time is

not attractive except for problems where L = 0(1). Moreover, if the optimal solutions of

problems (D 1), (PI) are unique we can apply the complementary slackness property and

thus we can find the optimal x* in O(mL), which does not change the overall complexity

of the method. In applications, however, we want to find the optimal solution value rather

than the solution of the LP or the Lagrangean relaxation, since the solution value can be

later used in a branch and bound algorithm.

2.2 LPs with more than one subproblems

We now generalize the technique of the previous subsection to handle problems of the form:

(P2 ) 2 = Min EN =l cxr (3)

subject to
N

ArXr = b
r=l

xT E Sr, r= 1,...,N

where each Sr is a polyhedron with the property that optimizing over Sr is easy.

6



Let xz, k E Jr be the extreme points of S, and similarly let wUk, k E Rr be the extreme

rays of Sr. Using the same technique as before we find that problem (P 2) is equivalent to

problem (D 2 )
N

(D2) 2 = Max yb + E r
r=1

subject to

y(Axlk ) 1 < C c1 l, k E J1,

Y(ANXN) + ON < CNz N k E JN,

y(Alw k ) < clWk, k E R1,

y(ANwN) < cNWp, k E RN.

In order to apply Vaidya's algorithm to (D 2 ) we should be able to solve efficiently the

separation problem, which in this case decomposes to the N subproblems:

(SEPt) Min (cr - yAr)Xr

subject to

Xr E Sr.

As a result, Vaidya's algorithm applied to (D 2 ) with separation problems (SEPt), r =

1, ... , N computes the optimal value z of (D 2 ) (which is also equal to the optimal solution

value of (P2 )) and the optimal dual solution y*, 0o, r = 1,... , N.

Let nr be the number of variables in Sr, let m be the number of constraints EN=i Arr =

b and let Tr(nr) be the number of arithmetic operations to solve the separation problem

(SEPr). Therefore, the total number of arithmetic operations to solve the entire separation

problem is rN=i Tr(nr). Since the number of variables in (D2) is k = m + N, we obtain

from (2) that the overall time complexity to solve (D2) is

N

o([Z Tr(nr)](m + N)L + M(m + N)(m + N)L).
r=l

7



Therefore,

Theorem 2 The optimal solution value z* of problem (P2) and the optimal dual variables

y*, o, r 1 , N can be found in O([]N=1 Tr(nr)](m + N)L + M(m + N)(m + N)L)

arithmetic operations.

2.3 Cost Splitting

We now consider LPs, in which the feasible region is the intersection of K polyhedra.

Examples in this category are the K-matroid and K-polymatroid intersection problems,

LP relaxation problems of combinatorial problems with this property, etc. In order to

speed up algorithms for the solution of such problems we combine our technique with cost

splitting or Lagrangean decomposition (see for example Nemhauser and Wolsey [25], p.333),

a method which has been applied to strengthen the bounds given by Lagrangean relaxation.

Consider the LP

(P3 ) Z3 = Min cx (4)

subject to

E S1 nS2 n...SK,

where S1 ... SK are polyhedra, over which we can optimize easily. We rewrite the problem

as follows:

(P3) Z3 = Min cx1 (5)

subject to

X1 - X2 = 0

X2 - X3 = 0

Xk-1 - Xk = 0

x1 E S1, 2 E S2, ... ,XK E SK

8



Let xk, k E Jr and lk, k E R, be the extreme points and extreme rays of Sr, (r =

1,2,..., K). Applying the resolution theorem to the polyhedra S, (r = 1, 2,..., K) we

rewrite (P3) interms of k and w k. Taking the dual of (P3) we obtain

(D 3 ) Z3 = Max 1 + 2 + . .. + K

subject to

y k + J1 < lk , k E J1,

-yX2k + 2 < O, kEJ 2,

-yx. + oaK < 0, k E JK,

ywkc< Cw , k E R 1,

ywk < O, k E R2.

ywk < O, k E RK-

In order to apply Vaidya's algorithm to (D 3 ) we should be able to solve efficiently the

separation problem, which in this case decomposes to the K subproblems:

(SEP1 ) Min (c - y)xl

subject to

X E S1

and for r = 2,...,K

(SEPr) Min yxr

subject to

xr E S,.

As a result, Vaidya's algorithm applied to (D3 ) with separation problems (SEPr), r =

1, ... , K computes the optimal value z of (D 3 ) (which is also equal to the optimal solution

9



value of (P 3 )) and the optimal dual solution y*, o,*, r = 1,..., K. In order to analyze

the running time of the algorithm let n be the number of variables, and let Tr(n) be the

number of arithmetic operations to solve the separation problem (SEP) respectively. From

(2) with k = Kn we obtain:

Theorem 3 The optimal solution value z of problem (P3 ) and the optimal dual variables

y*, *, 2*,... c , can be found in O([Z_1 Tr(n)] KnL + M(Kn)KnL) arithmetic oper-

ations.

The cost splitting approach will be superior than applying Vaidya's method directly to (P3 )

whenever the separation problem over Sr is more difficult than the optimization problem

over Sr. Examples in this category include polymatroid polytopes. As a result, we will see

that the cost splitting approach leads to significant improvements in the K-polymatroid

intersection problem.

2.4 Applications to Lagrangean relaxation

Lagrangean relaxation is a primary method used in practice to find good bounds for com-

binatorial optimization problems. Consider the integer programming problem:

ZIp = Min cx (6)

subject to

Ax < b

x E S = {x E Z :Alx < bl}.

Suppose we want to solve the Lagrangean dual

(P 4 ) ZLD = Max>o Mines [cx + A(b - Ax)].

It is well known that ZLD = Min(cx : Ax < b, x E conv(S)} and also ZLP < ZLD < ZIp,

i.e., the Lagrangean dual gives better bounds than the LP relaxation (see for example

Nemhauser and Wolsey [25], p. 327) .

10



In order to find ZLD we rewrite (P4) as follows:

(P4) ZLD = Max w

w < cx + A(b- Ax) for all xE S

A >0.

In order to apply Vaidya's algorithm to (P4) we need to solve the following separation

problem: Given (w, A), with A > 0

(SEP) Maz (c - AA)x (7)

subject to

x E S.

If T(n) is the number of arithmetic operations to solve the separation problem (7) and there

m constraints Ax < b, then the application of Vaidya's algorithm to the reformulation (P)

leads to:

Theorem 4 The optimal solution value of the Lagrangean dual ZLD of problem (P4) and

the optimal Lagrange multipliers A*, can be found in O(T(n)mL + M(m)mL) arithmetic

operations.

2.5 Variable relaxation

We will now consider LPs where instead of complicating constraints we have complicating

variables. Our goal is again to speed up the computation. Consider the LP

(Ps) z5 = Min cx + dy (8)

subject to

Ax + By > b

x> O, y > 0.

11



Suppose that the problem is easy to solve whenever y is fixed. Examples in this category are

LP relaxations of fixed charge network design problems. We write problem (P5 ) as follows:

Z5 = Miny>o [dy + Minx:Ax>b-By, x>O cx]

Taking the dual in the inner minimization we obtain:

Z = Miny>o [dy + Max1 A<c,,>o w(b - By)]

which can be written as follows:

Z5 = Min dy + (9)

subject to

r(b- By) < r for all r E {7r: 7rA < c, r > O}.

We will solve problem (9) using Vaidya's algorithm. Given a (y, a), the separation problem

is

(SEP) Max 7r(b - By)

subject to

7rA < C

7r>O

which by taking the dual is equivalent to

(SEP') Min cx

subject to

Ax _> b- By

x > 0.

If in the original problem (P5 ) x E R' and y E R and T(n) is the number of arithmetic

operations to solve the separation problem (SEP') we obtain from (2) that Vaidya's algo-

rithm takes O(T(n)mL+M(m)mL). Note that in this case the algorithm not only produces

12



the optimal solution value, but in addition it finds the optimal y*. Given the optimal y*,

we can solve problem (SEP') in T(n) arithmetic operations to find the optimal solution x*

as well. Therefore, in this case we can derive the the optimal solution value as well as the

optimal solution. Therefore,

Theorem 5 The optimal solution value z* of problem (Ps) and the optimal solution x*, y*

can be found in O(T(n)mL + M(m)mL) arithmetic operations.

2.6 Summary of algorithms

In this section we summarize our findings in order to facilitate the reading and for future

reference. In table I we summarize the problem type we considered and the separation

algorithm we need to solve. Table II includes the running times. T(n) always refers to

the time to solve the separation problem in table I and M(n) is the number of arithmetic

operations to multiply two n x n matrices.

Table I: Problem type and its separation problem

Problem Separation Problem

(Pi) Min cx, s.t. Ax = b, x E S Min c'x, s.t. x E S

(P 2) Min EN 1 crX, s.t. ,N 1 ArXr = b, Xr E Sr Min c'xr, s.t. xr E Sr

(P3 ) Min cx, s.t. x E S1 n S2... n SK Min c'x, s.t. x E Sr

(P 4) MaxA>o MinxEs[cx + A(b - Ax)] Min c'x, s.t. x E S

(Ps) Min cx + dy, s.t. Ax + By > b, x,y > O Min c'x, s.t. Ax > b- By, x > O

Table II: Running times

Problem Running time

(P1 ) Min cx, s.t. Ax = b, x E S O(T(n)mL + M(m)mL)

(P 2 ) Min N=1 crXr, s.t. N=1 ArXr = b, Xr E Sr O([(r=1 Tr(nr)) + M(m + N)](m + N)L)

(P3 ) Min cx, s.t. x E S n s 2 ... l SK O((EK=l Tr(n))KnL + M(Kn)KnL)

(P4) MaxA>o Mines[cx + A(b - Ax)] O(T(n)mL + M(m)mL)

(P5) Min cx + dy, s.t. Ax + By > b, x, y > 0 O(T(n)mL + M(m)mL)

13



3 Applications

In this section we apply the theorems of the previous sections to solve LP and Lagrangean

relaxations of several classical combinatorial optimization problems. Our intention is not to

exhaust all the possible applications of our methods. It is rather to illustrate the significant

computational savings that can result from our approach to some of the classical problems in

combinatorial optimization. We start our investigation with the traveling salesman problem

(TSP):

3.1 The Held and Karp lower bound for the TSP

Held and Karp [16] proposed a Lagrangian relaxation based on the notion of 1-tree for

the TSP. Using a complete characterization of the 1-tree polytope, they showed that this

Lagrangian relaxation gives the same bound as the LP relaxation of the following classical

formulation of the TSP:

Min : C cijxij (10)
iEV jEV,j>i

subject to

: ij + E Xji = 2 Vi E V (11)
jEV,j>i EVj<i

E ij < ISI- 0 S C V (12)
iES jES,j>i

0 < ij< 1 Vi,jEV,j>i (13)

xij E {0, 1} Vi, j E V,j > i (14)

In the above formulation xij indicates whether cities i and j are adjacent in the optimal

tour; cij represents the cost of traveling from city i to city j or, by symmetry, from city j

to city i. One can compute the Held-Karp lower bound ZHK in polynomial time using the

Ellipsoid or Vaidya's algorithm directly, since the separation problem corresponding to the

polytope (11)-(13) reduces to a max-flow problem. Using this approach Vaidya's algorithm,

14



which is the fastest of the two, will take O(n3 n2L + M(n2 )n 2 L) arithmetic operations, since

from (2) there are k = n2 variables and T(n) = O(n3 ) is the time to solve a max-flow

problem on a possibly complete graph. Thus this approach takes O(n6' 76 L) where we used

the bound that M(k) = 0(k 238). Note that the ellipsoid algorithm will be even worse

taking O(n8L).

The HK polytope (11)-(13) is exactly in the form of problem (P1), where S is the span-

ning tree polytope described by the constraints (12), (13). Applying theorem 1 we obtain

that using our approach we can compute ZHK in O(n 2 nL + M(n)nL) = O(n 3 38SL) arith-

metic operations, since the separation problem is a minimum spanning tree computation,

i.e., T(n) = O(n2 ) and the number of extra constraints is m = n. As a result, our approach

leads to the fastest known algorithm for HK. Moreover, if one does not use fast matrix

multiplication (i.e., M(k) = k3), then our approach leads to O(n4 L) time complexity while

Vaidya's or the Ellipsoid method take O(n 8L), a savings of O(n 4 ).

3.2 The Steiner tree and the k-connected problem

Goemans and Bertsimas [13] prove that under the triangle inequality, the cost of the LP

relaxation of the Steiner tree problem Zsteiner and the k-connected problem Zk-conn are

related in the following way

1 k
ZSteiner = ZHK' Zk-conn = 2ZHKh',2 2

where ZHK is the cost of the Held-Karp lower bound for the TSP. Therefore, if the cost

satisfy the triangle inequality, we can apply the algorithm of the previous subsection to

compute the value of the LP relaxation of the Steiner tree problem and the k-connected

problem.

3.3 The vehicle routing problem

Consider the following classical vehicle routing problem: There is a set A of K vehicles,

located at a single depot 0, such that the kth vehicle has capacity Qk and is allowed to

15



travel a distance of at most dk. These vehicles serve a set V of n customers. Customer i

has demand pi, while ck is the cost of vehicle k traveling from i to j and dij is the distance

from i to j. The goal is to route the vehicles at minimum cost such that all constraints are

satisfied. We formulate the problem as follows:

Let xkj be 1 if vehicle k travels from i to j and 0 otherwise. Let Sk be the following polytope

Sk = {<j I Z Zk x ISI- 1 V 0 S C V, E x + E ko = 2}.
iES jES,j>i iEV jEV

The polytope Sk is the intersection of the spanning tree polytope on V (note that V does

not include the depot 0) and and an additional constraint that 2 additional arcs are incident

to the depot. For fixed k we denote all the xkj's as the vector xk. We are interested to

compute the LP relaxation of the following formulation of VRP:

(VRP) Min E ckjt (15)
i,j,k

subject to

EZ kj = 1 Vj0 (16)
iEV kEA

E E Z xkj = 1 Vi# 0 (17)
jEV kEA

Z x4jdij dk Vk E A (18)
i,jEV

Z tixpi < Qk Vk E A (19)
i,jEV

xk E Sk (20)

0 < x < 1 (21)

4,j {0,1} (22)

16



In order to solve the LP relaxation of the above problem we will apply our approach of

section 2.2. The above formulation is of the type of problems (P2 ), where there are N = K

subproblems Sk, and the number of additional constraints (16)-(19) is m = 2(n + K).

Since we can optimize over Sk using the greedy algorithm, the time to solve the separation

problem is O(n2 ). Thus, applying theorem 2, we can solve the LP relaxation of (VRP) in

O(Kn2(n + K)L + M(n + K)(n + K)L) = O((n3 K + n3 3 8 )L), since we can assume K < n.

For comparison if we applied Vaidya's algorithm directly to (15) it would lead to an

O(Kn3 (Kn 2 )L + M(Kn 2 )(Kn 2 )L)=O(K 3 3 8 n6' 76 L) algorithm, since there are Kn 2 vari-

ables and the separation problem reduces to K max-flow problems.

3.4 Multicommodity flows

Consider the classical multicommodity flow problem: Given a network G = (V, E) (IVI =

n, IEI = m), a set C of K commodities and a supply (or demand) bk of commodity k at

node i E V. Arc (i, j) has capacity uij and the cost of sending one unit of flow of commodity

k across arc (i,j) is cj. The goal is to decide the amount of flow zx from commodity k to

send across arc (i,j), so as to satisfy supply-demand and capacity constraints at minimum

cost. The classical formulation of the problem is:

Min E (23)
i,jEV, kEC

subject to

xj < uij (i,j) E E (24)
kEC

E tk- E , = b i E V, k E C (25)
jEV jev

xj > O. (26)

The above formulation is of the type (P2) in section 2.2, with

Sk: k zI >, 0, Zxj- E =b i E V}
jEV jiEV

17



and with m global constraints (24). In this case the separation problem is a min-cost flow

problem. Under the similarity assumption, the time to solve the separation problem is

T = O(nmlog2 n). For a more refined definition of T see, for example, Ahuja et. al. [1].

As a result, applying theorem 2 we can solve the multicommodity flow problem in

O([Kmnlog2 n + M(m + K)](m + K)L) = O([Knm2 log2n + m 3 38]L).

The comparison for multicomodity flows is more complex because of another algorithm

of Vaidya [28]. He considered the problem in which each commodity consists of a sin-

gle source and a single sink. The resulting running time is O(K2 5 n2v'IL). This run-

ning time dominates ours in some cases and is dominated by ours in others. For exam-

ple, for K = n2 Vaidya's running time is O(n7 \/_iL). However, our algorithm runs in

O([n2 m 2 1og 2 n + m3 3 8 ]L) time in this case, since the problem can be converted into a n-

commodity flow problem. In this case, our algorithm dominates Vaidya's for all values of

m, and is increasingly better as the graph becomes sparser.

3.5 Network flows with side constraints

Typical problems met in practice involve network flow problems with some additional side

constraints. Consider for example a min-cost flow problem with K additional constraints.

Using these K constraints as the global constraints in the formulation of problem (P1 ) in

section 2.1 and the network flow polytope

{xijl xij > O, E ij - xji = bi i E V}
jEV jEV

as the polytope S we can apply theorem 1 to solve the problem in O([mnlog2 n+M(K)]KL),

where T = mnlog2 n is an upper bound on the complexity to solve the network flow problem

under the similarity assumption (see [1]). For K constant we see that the complexity of

solving the problem with K side constraints is exactly the same as the complexity of solving

the problem with only one side constraint, i.e., O((mnlog2 n)L).

If one applied an interior point algorithm for this problem, it would lead to an O(m3 L)

running time.

18



3.6 The network design problem

The fixed charge network design problem, which is a fundamental discrete choice design

problem, is useful for a variety of applications in transportation, distribution, communica-

tion, and several other problem settings that make basic cost tradeoffs between operating

costs and fixed costs for providing network facilities (see Magnanti and Wong [24]). The

problem is described as follows. We are given a set of nodes N, a set of uncapacitated arcs

A and a set K of commodities. For each k E K, one unit of flow of commodity k must be

sent from its origin O(k) to its destination D(k). Each arc has two types of cost: a per unit

flow cost depending on the commodity and a fixed charge for using the arc. The problem

is to select a subset of arcs that minimizes the sum of the routing costs and fixed charge

costs.

The importance of the network design problem stems from its wide applicability and

flexibility. As noted in Magnanti and Wong [24], it contains a number of well-known network

optimization problems as special cases including the shortest path, minimum spanning tree,

uncapacitated plant location, traveling salesman and Steiner tree problems.

There are a number of IP formulations for the problem. For a review, see Magnanti and

Wong [24]. Balakrishnan et al. [3] propose the following multicommodity flow formulation,

which contains two types of variables, one modeling discrete design choices and the other

continuous flow decisions. Let yij be a binary variable that indicates whether (yij = 1) or

not (ij = 0) arc {i, j} is chosen as part of the network's design. Let xj denote the flow of

commodity k on the directed arc (i,j). Note that (i,j) and (j, i) denote directed arcs with

opposite orientations corresponding to the undirected arc {i, j}. Even though arcs in the

formulation are undirected, we refer to the directed arcs (i, j) and (j, i) because the flows

are directed. The formulation is the following.

Min (c 4jxo + ix.i) + Fij yi (27)
kEK {ij}EA i,j}EA

subject to

19



-1 i= O(k)

i- Z = 1 i = D(k) (28)
jEV:(j,i)EA jEV:(i,j)EA

0O otherwise

(DP1) j < Yij, i Yij {i,j} E A, k E K (29)

> o {i,j} E A, k E K

Yij E {O, 1} (i,j) E A.

In this formulation each arc {i,j} has a nonnegative fixed design cost Fij and c is

the nonnegative cost for routing commodity k on the directed arc (i,j). Constraints (28)

imposed upon each commodity k are the usual network flow conservation equations. The

"forcing" constraints (29) state that if yij = 0, i.e., arc {i,j} is not included in the design,

then the flow of every commodity k on this arc must be zero in both directions, and if arc

{i,j} is included in the design, i.e., yij = 1 , the arc flow is unlimited. Directed network

design problems are formulated in a very similar manner.

Although the network design problem is a hard discrete optimization problem, in the last

decade researchers have proposed several computationally successful approaches for solving

it. Magnanti et al. [22] propose a Benders decomposition approach, and Balakrishnan et al.

[3] propose a dual ascent heuristic which has solved large instances of network design prob-

lems to within 2-5% of optimality. In both these cases the authors judge the algorithm's

effectiveness by comparing solutions generated to the LP relaxation of their formulations.

It is therefore important to solve the LP relaxation efficiently.

We treat the forcing variables yij in the network design formulation (27) as the compli-

cating variables in the sense of section 2.5. If the Yij are known then the problem decomposes

to K shortest paths problems. Therefore, applying theorem 5, the LP relaxation of (27)

can be solved in

O([K(m + nlogn) + M(m)]mL),

where m is the number of complicating variables yij, and O(m + nlogn) is the time to solve

a single shortest path problem. Note that for the problems considered in [3] K = n2 and

m = O(n) and thus our algorithm takes O([n 2 (m + nlogn)]mL).

20



For purposes of comparison if one solves the LP relaxation of (27) using an interior point

algorithm, it will lead to an O(K 3m 3 L) running time.

3.7 Facility location problems

We consider the well known p-median problem in facility location (see for example [25]).

We are interested in solving the LP relaxation of the following formulation of the problem:

Min E cijxij + E y (30)
iEV jev

subject to

E yj =p (31)
jEV

E xij = 1 i E V (32)
jEV

xij yj i,j E V (33)

xij > 0, 0 O yj < 1 (34)

yj e {0, 1} (35)

The interpretation is that yj is 1 if node j is assigned to a facility and 0 otherwise and xij

is 1 if node i is assigned to a facility j and 0 otherwise. The LP relaxation of (30) has been

found to be very close to the IP solution. For this reason almost all algorithmic approaches

to the problem compute first the LP relaxation.

In order to solve the LP relaxation we observe that the p-median problem is of the type

of problem (P1 ) with constraints (31) and (32) being the global constraints and (33) and

(34) being the polytope S. We can solve the separation problem over S in T(n) = O(n2 )

(IVI = n), since we can solve it in closed form in one pass. Therefore, applying theorem 1 we

can solve the LP relaxation of the p-median problem in O(n2nL + M(n)nL) = O(n3.38L).

For comparison purposes, if one applied an interior point algorithm directly to solve the LP

relaxation of (30), it would take O(n 6L) iterations since there are O(n2 ) variables.

For uncapacitated location problems (see for example [25]) exactly the same approach

as in the case of the p-median problem leads to an O(n3 3 8 L) algorithm for the solution of

the LP relaxation.

21



3.8 The K-polymatroid intersection problem

Consider K polymatroids Mi = (N, fi) where fi is a submodular set function. For example,

if fi is the rank function of a matroid, the problem reduces to the K-matroid intersection

problem. Given costs cj for all j E N, the weighted K-polymatroid intersection problem is

described by the mathematical programming problem:

Max E cjxj (36)
jEN

subject to

Zxj fi(S) VS C N (37)
jES

Zxj < fK(S) VS C N (38)
jES

xj > O

Classical problems in combinatorial optimization can be modelled in that way. For example

the maximum spanning tree (K = 1 and fi(S) = ISI - 1, maximum bipartite matching

(K = 2 and fi(S) are the rank functions of two partitioned matroids). Our goal is to solve

(36) using the techniques of section 2.3.

Let Si = {x > 01 EjEs xj < f(S) VS C N}. Using the cost splitting method of section

2.3 and applying theorem 3 we can solve problem (36) in O([KT(n)+ M(Kn)]KnL), where

T(n) is the number of arithmetic operations to solve the optimization problem over one

polymatroid, which, as it is well known (see for example Nemhauser and Wolsey [25],

p.689), can be solved by the greedy algorithm as follows:

1. Sort cl > c2 > ... > ck > 0 > ck+1 > ... > cn.

2. Let S = {1,..., j} with S o = 0.

3. xj = f(Sj)- f(Si-l) for j < k and xj = 0 for j > k.

22



For purposes of comparison, an alternative approach is to apply Vaidya's algorithm to

(36) directly. The separation problem is to decide whether a given x0 E Si. Such an ap-

proach leads to a O([KA(n)+ M(n)]nL) arithmetic operations where A(n) is the number of

arithmetic operations to solve the separation problem xo E Si. Indeed, A(n) = O(nL[T(n)+

M(n)]) if we use Vaidya's algorithm. Overall this approach leads to O(K(nL)2 [T(n) +

M(n)]) arithmetic operations. Alternatively in order to solve the separation problem, one

could use the strongly polynomial algorithm of Cunningham [9], but unfortunately the

running time would not be as good.

Overall, we expect that our approach will work better, in problems in which the sepa-

ration problem is much harder than the optimization problem.

3.9 Network flow problems on graphs with almost special structure

Consider a network flow problem on the network G = (N, A U B) such that GA = (N, A) is

a graph of special structure (for example planar, tree, unbalanced bipartite, etc.) for which

the related network flow problem can be solved faster than in a general graph. For example,

for network flow problems on unbalanced bipartite graphs see [2]. Assume that IBI = K.

The network flow problem can be formulated as follows:

z = Min CAXA + CBXB (39)

subject to

NAXA + NBXB = b (40)

0 < XA < UA (41)

0 < XB < UB (42)

where NA, NB is the arc incidence matrix corresponding to the arcs in A and in B respec-

tively.

We first observe that problem (39) is of the type of problem (P5 ) in section 2.5. Applying

the variable splitting algorithm of section 2.5, we obtain that problem (39) can be solved

23



in O([TA(n, m) + M(K)]KL) where TA(n, m) is the time to solve the network flow problem

on GA = (N, A), which is a graph of special structure. Because of the special structure of

GA, TA(n, m) will be smaller than the time to solve the problem on general graphs. For K

constant the running time becomes O(TA(n, m)L). For comparison purposes we will denote

the running time on general graphs as O(TG(n, m)).

3.10 The multiple item capacitated lot sizing problem

Consider the multiple item capacitated lot sizing problem, where xjt, Yjt and sjt represent

the production, setup and storage variables for item j in period t, djt, cjt, fjt, hit are the

demand, production cost, setup cost and storage cost for item j in period t and Qt represents

the amount of the resource available in period t:

K T

Min [cjtxjt + fjtyjt + hjtsjt] (43)
j=1 t=1

subject to

Xjt + sj,t-1 = djt + st j = 1,... K, t = 1,. T (44)

Sj = SjT = O j= 1,...K (45)

T

xjt < (:dj,)yjt j 1,...K, t 1,...T (46)
r=t

K

xjt < Qt t= 1,...T (47)
j=1

xjt,sjt > 0 Yjt E {0, 1}, (48)

The multiple item capacitated lot sizing problem is NP-hard. If we relax constraints (47)

the problem decomposes into K single item capacitated lot sizing problems, each of which

can be solved by a dynamic programming algorithm, that has O(T) running time. Applying

the algorithm of section 2.4 we can find the value of the Lagrangean dual in

O([KT + M(T)]TL) = O([KT2 + T3 38]L).

24



Note that the value of the Lagrangean dual can be strictly better that the value of the

LP relaxation, since the subproblem does not have the integrality property. To the best of

our knowledge we do not know any other polynomial time approach for the problem. For

comparison, the solution of the LP relaxation of (43), which gives a weaker bound than the

Lagrangean dual, takes O(K3 T 3 L) using an interior point approach.

3.11 Comparisons with the previously known fastest method

In order to facilitate the comparison of our methods with the previously fastest known

methods we include table III. We assumed that we could use fast matrix multiplication.

The problems refer to the LP relaxation or the Lagrangean dual.

4 Concluding remarks

The previous section was simply an indication of the variety of different applications our

method has in combinatorial optimization. One can certainly find other applications in other

areas of combinatorial optimization (for example scheduling and sequencing). Our technique

can also be used to solve stronger Lagrangean duals using Lagrangean decomposition.

25

Table III: Comparisons

Problem Our running time Best previuosly known

Held-Karp O(n3 38 L) O(n6.76 L)

Steiner tree, k-connected O(n3 38 L) O(n6.7 6 L)

K-vehicle routing O([n3.3 8 + n3K]L) O(K3.38n6.76L)

K-multicommodity flow O([Knm2 og2 n + m3 38]L) O(K2'5 n2 v/L)

Network flows with constraints O([Knmlog2n + K 3 38]L) O(m 3 L)

Network design O([K(m + nlogn) + m 2 38]mL) O(K 3 m 3 L)

Facility location problems O(n3.38L) O(n6 L)

K-polymatroid intersection O([KT(n) + M(Kn)]KnL) O(K(nL)2[T(n) + M(n)])

Network flows on G(V, A U B) O(TA(n, m)L) O(TG(n, m))

capacitated lot sizing O([KT2 + T3.3 8 ]L) ?



Although our techniques lead to the fastest known algorithms for several problems from

a worst-case perspective by a significant margin, we are not certain whether our techniques

can be competive from a practical standpoint with the classical methods to solve the La-

grangean dual, like subgradient optimization. The practicality of our algorithm critically

depends on whether Vaidya's algorithm is a practical algorithm, and to our knowledge

Vaidya's algorithm has not been tested in practice. We believe, however, that perhaphs a

combination of our techniques with the classical methods to solve the Lagrangean dual can

potentially lead to practical algorithms as well.

Acknowledgements

The research of D. Bertsimas was partially supported by the National Science Foundation

research initiation grant DDM-9010332 and and DDM-9014751. The research of J. Orlin

was partially supported by the Air Force Office of Scientific Research AFOSR-88-0088, NSF

grant DDM-8921835 and grants from UPS, Prime Computer Corp. and Draper Laborato-

ries.

References

[1] R. Ahuja, A. Goldberg, J. Orlin and R. Tarjan, "Finding minimum-cost flows by double

scaling", to appear in SIAM journal of computing, (1991).

[2] R. Ahuja, J. Orlin, C. Stein and R. Tarjan, "Improved algorithms for bipartite network

flow", "Improved algorithms for bipartite network flows", Sloan working paper 3218-

90-MS, November 1990.

[3] A. Balakrishnan, T.L. Magnanti and R.T. Wong , "A dual-ascent procedure for large-

scale uncapacitated network design", Operations Research, 5, 716-740, (1989).

[4] F. Barahona, M. Gr6tschel, M. Jiinger and G. Reinelt, "An application of combinatorial

optimization to statistical physics and circuit layout design", Operations Research, 36,

493-513, (1988).

26



[5] I. Barany, T.J. Van Roy and L.A. Wolsey, "Uncapacitated lot sizing: the convex hull

of solutions", Mathematical Programming Study, 22, 32-43, (1984).

[6] D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic progressions",

Proc. 19th Annual ACM Symp. Theory of Computing, (1987), 1-6.

[7] H. Crowder, E.L. Johnson and M.W. Padberg, "Solving large scale zero-one linear

programming problems", Operations Research, 31, 803-834 (1983).

[8] H. Crowder and M.W. Padberg, "Solving large scale symmetric traveling salesman

problems to optimality", Management Science, 26, 495-509 (1980).

[9] W. Cunningham, "Testing membership in matroid polyhedra", Journal of Combinato-

rial Theory (B), 36, (1984), 161-188.

[10] G.D. Eppen and R.K. Martin, "Solving multi-item capacitated lot sizing problems

using variable redefinition", Operations Research, 35, 832-848 (1987).

[11] M. Fisher, "The Lagrangean relaxation method for solving integer programming prob-

lems", Management Science, 27, 1-18 (1981).

[12] Geoffrion A., "Lagrangean relaxation and its uses in integer programming", Math.

Progr. Study, 2, 82-114, (1974).

[13] M.X. Goemans and D. J. Bertsimas, "Survivable networks, linear programming relax-

ations and the parsimonious property", Operations Research Center technical report,

MIT , OR 225-90, sumbitted for publication, (1990).

[14] M. Gr6tschel, M. Jiinger and G. Reinelt, "A cutting plane algorithm for the linear

ordering problem", Operations Research, 32, 1195-1220 (1984).

[15] M. Gr6tschel, L. Lovsz and A. Schrijver, Geometric Algorithms and Combinatorial

Optimization, Springer-Verlag, 1988.

27



[16] M. Held and R.M. Karp, "The traveling-salesman problem and minimum spanning

trees", Operations Research, 18, 1138-1162 (1970).

[17] M. Held and R.M. Karp, "The traveling-salesman problem and minimum spanning

trees: Part II", Mathematical Programming, 1, 6-25 (1971).

[18] M. Held, P. Wolfe and H. Crowder, "Validation of subgradient optimization", Mathe-

matical Programming, 6, 62-88, (1974).

[19] E.L. Johnson, M.M. Kostreva and H.H. Suhl, "Solving 0-1 integer programming prob-

lems arising from large scale planning models", Operations Research, 33, 802-820

(1985).

[20] L. G. Khachian, "A polynomial algorithm for linear programming", Soviet Mathematics

Doklady, 20, 191-194, (1979).

[21] J. Leung, T. L. Magnanti and R. Vachani, "Facets and algorithms for capacitated lot

sizing", to appear in Mathematical Programming (1989).

[22] T.L. Magnanti, P. Mireault and R.T. Wong, "Tailoring Benders decomposition for

uncapacitated network design", Mathematical Programming Study, 26 ,112-154 (1986).

[23] T.L. Magnanti and R. Vachani, "A strong cutting plane algorithm for production

scheduling with changeover costs", working paper OR173-87, Operations Research

Center, revised March 1989.

[24] T.L. Magnanti and R.T. Wong, "Network design and transportation planning: Models

and algorithms", Transportation Science, 18, 1-56 (1984).

[25] G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimization, John Wiley

& Sons (1985).

[26] M.W. Padberg and S. Hong, "On the symmetric traveling salesman problem: a com-

putational study", Mathematical Programming Study, 12, 78-107 (1980).

28



[27] M.W. Padberg and G. Rinaldi, "Optimization of a 532-city symmetric traveling sales-

man problem by branch and cut", Operations Research Letters, 6, 1-7 (1987).

[28] P. Vaidya, "Speeding-up linear programming using fast matrix multiplication", Pro-

ceedings of the 30th Symposium on the Foundations of Computer Science, 332-337,

(1989).

[29] P. Vaidya, "A new algorithm for minimizing convex functions over convex sets", AT&T

Bell Laboratories (1990).

29


