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Abstract

We find necessary and sufficient conditions for the stability of all work-conserving

policies for multiclass fluid queueing networks with two stations. Furthermore, we find

new sufficient conditions for the stability of multiclass queueing networks involving any

number of stations and conjecture that these conditions are also necessary. Previous

research had identified sufficient conditions through the use of a particular class (mono-

tone piecewise linear convex) potential functions. We show that for two-station systems

it is not possible for this class of potential function to give the new (sharp) conditions.

1 Introduction

The problem of establishing conditions under which a multiclass queueing network is stable

under a particular policy has attracted a lot of attention in recent years. It is known that for

single class (Borovkov [1], Sigman [16], Meyn and Down [14]) and multiclass acyclic queueing

networks a necessary and sufficient condition for stability of all work-conserving policies is
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that the traffic intensity at each station of the network is less than one. For multiclass

networks with feedback, Kumar and Seidman [11] (see also Lu and Kumar [12] and Rybko

and Stolyar [15]) have identified particular priority policies that lead to instability even if the

traffic intensity at each station of the network is less than one. More surprisingly, Bramson

[2] has shown that these instability phenomena are present even for the standard FIFO

policy. It is therefore, a rather interesting problem to identify the right set of necessary and

sufficient conditions for stability of multiclass queueing networks.

In recent years researchers have identified progressively sharper sufficient conditions for

stability of all work-conserving policies through the use of Lyapunov functions. Kumar and

Meyn [10] used quadratic potential functions, while Botvich and Zamyatin [3], Dai and Weiss

[7], and Down and Meyn [8] used piecewise linear convex potential functions. In all cases, it

was established that a multiclass network is stable if certain linear programming problems

are bounded. To the best of our knowledge the sharpest such conditions are those of [7] and

[8] obtained through the use of piecewise linear convex potential functions. For some specific

examples (for example in [3]), the conditions obtained are indeed sharp. In general, however,

the problem of establishing the exact stability region, i.e., sharp necessary and sufficient

conditions for stability, is open. Furthermore, it is not known whether the potential function

method with piecewise linear convex functions (or with any convex potential function) has

the power of establishing the exact stability region. Finally, Chen and Zhang [5] have

found some sufficient (but not necessary) conditions for the stability of multiclass queueing

networks under FIFO.

Dai [6] and Meyn [13] have shown that a stochastic multiclass network is stable if and

only if the associated fluid limit (a deterministic network) is stable. For this reason, while

this paper concentrates on deterministic fluid models, there are immediate ramifications of

our results for the case of stochastic models.

The contributions of this paper can be summarized as follows:

1. We find, in Section 3, the exact stability region for two-station multiclass networks by

a method that looks at the detailed structure of possible trajectories. The stability
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condition is expressed in terms of a linear program.

2. We find, in Section 4, new sufficient conditions for multiclass networks with more than

two stations that we believe to be necessary, although we were unable to establish

necessity. The conditions are again expressed in terms of a linear program. Unfortu-

nately, the number of variables involved increases exponentially with the number of

stations, but we believe that this is unavoidable.

3. We fully characterize, in Section 5, the power of the potential function method based

on piecewise linear monotone convex functions, for the two-station case. In partic-

ular, we show that one never need consider potential functions involving more than

two linear pieces. We also derive a linear program that searches for such potential

functions. We further show that this class of potential functions cannot find the exact

stability region, thus establishing certain intrinsic limitations of earlier approaches.

2 Notation

We introduce a fluid model (a,p, P, C) consisting of n classes C1,..., C, and J service

stations 1, ... , J as follows. Each class is served at a particular station. Let aj be the set of

classes that are served in station j. The external arrival rate for class i is ai and the service

rate is pi. Let a = (al,...an)' and p = ( 1,...,/ln)'. After service completion a fraction pij

of class i customers becomes of class j and a fraction 1 - Ej pij exits the system. Let P be

the substochastic matrix P = (Pij)l<ij,<. Finally, we define the J x n matrix C as follows:

Cjk = 1 if class k is served at station j and cjk = 0 otherwise. We let M = diag{pl,..., p}

and assume that the matrix P has spectral radius less that one.

Any scheduling policy can be described in terms of the variables Tk(t) defined as the

amount of time class k is being served in the interval [0, t], and Qk(t) defined as the queue

length for class k at time t. We let T(t) = (Tl(t),...,T,(t))' and Q(t) = (Ql(t), .. X,Qn(t))'-

Throughout the paper we call Q(t) the trajectory of the fluid process under the allocation

process T(t). Given the initial condition Q(0), the dynamics of the queue length process
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are as follows:

n

Qk(t) = Qk(0) + kt + + E iTi(t)pik - kTk(t) > 0, k = 1, ... , n,
i=l

or in matrix form:

Q(t) = Q(O) + at + [P' - I]MT(t) > 0.

We assume that the allocation process satisfies the following conditions:

1. T(O) = 0,

2.(Feasibility) For any t 2 > tl > 0 and any station i:

E [Tk(t2) - Tk(tl)] < t2 -tl, (1)
kEoi

and Tk(t) is nondecreasing.

3. (Work-conservation) If for all t E [tl,t 2] we have kEa, Qk(t) > 0 for some station i,

then

E [Tk(t2) - Tk(tl)] = t2 - tl (2)
kEoai

Any scheduling policy satisfying all the above properties is called a (feasible) work-conserving

policy.

An alternative characterization of the above requirements is to introduce for any station

i, the cumulative idling process:

U(t)=t- E Tk(t).
kEai

The feasibility condition (1) then requires that Ui(t) be nonnegative and nondecreasing,

while the work-conservation condition is rewritten as follows: if for all t E [t,t 2] we have

kEoi Qk(t) > 0, then

Ui(tl) = Ui(t 2 ). (3)

Following Chen [4], a fluid network (a, p, P, C) is said to be stable for all work-conserving

policies if for every work-conserving allocation process T(t) and every initial condition Q(O),

there exists a finite time to such that Q(to) = O.
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A necessary condition for stability (see Chen [4]) is that the traffic intensity vector p

defined by p = CM-'[I - P']-lc, satisfies

p < e, (4)

where e = (1,... ,1)'. As mentioned in the introduction, for general multiclass networks with

feedback, this condition is not sufficient. Our goal in the next section is to establish necessary

and sufficient conditions for the stability of a multiclass fluid network with two stations,

given that p < e. In preparation for this analysis, we introduce some useful notation.

We refer to Q(t) E R as the state of the system at time t > 0. We partition the set

R. - {0} of nonzero states into the following finite family of subspaces. For any non-empty

set of service stations S C {1, 2, ..., J}, we let

Rs = {x E R:ViES, EX k> 0, and ViS, Z k = 0),
kEri kEoi

i.e., Rs corresponds to states for which all stations in S are busy, while all other stations

have empty buffers.

3 Stability conditions for multiclass two-station fluid net-

works

In this section we establish necessary and sufficient conditions for stability, for the case

where J = 2, i.e., for multiclass networks with two stations. Throughout this section, we

assume that p < e because otherwise the stability problem is trivial.

We denote by R 1, R 2 and R12 the subspaces corresponding to S = {1},{2}, {1,2},

respectively, as defined at the end of Section 2. In particular, for Q E R 1 station 2 has no

customers, for Q E R 2 station 1 has no customers, while for Q E R 12 both stations have

customers in queue. The proposition that follows states that a trajectory can be broken

down into subtrajectories of four different types.
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Figure 1: The times ti for a typical trajectory.

Proposition 1 Consider a stable work-conserving trajectory Q(t) and let T be the smallest

time such that Q(T) = O. There exists a (finite or infinite) nondecreasing sequence ti such

that supi ti = T and such that for all times less than T the following hold:

Q(t 4m+l) E R 1 and fort E [t4 m+l, t4m+ 2], Q(t) E R 1 U R 1 2;

Q(t4 m+2 ) E R 1 and fort E (t4 m+ 2 ,t 4 m+ 3 ), Q(t) E R12 ;

Q(t 4 m+3 ) E R 2 and for t E [t4 m+ 3a, t 4 m+4 ], Q(t) E R 2 U R1 2 ;

Q(t4 m+4 ) E R 2 and for t E (t4 m+ 4 ,t 4 m+ 5 ), Q(t) E R12.

Proof: This is a simple consequence of the fact that starting in R 1, the system can get to

R 2 only by first going through R12, and vice versa; see Figure 1. In particular, once t4m+1

has been defined, we may let t 4m+ 3 = min{t > t 4m+l I Q(t) E R 2} and t4 m+ 2 = max{t <

t4 m+ 3 Q(t) E R1). [In case Q(t) never enters R 2 after time t 4m+l, then the preceding

definition of t 4m+ 3 is inapplicable; however, in this case, the system gets to Q(T) = 0

without ever leaving R1 U R12. Thus, [t4m+1, T) can be taken as the last interval.] Having

thus defined t4m+3, the times t4m+4 and t4m+5 are defined similarly. o
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3.1 Bounds for the strong busy period of stable work-conserving policies

In this subsection we find an upper bound on the time that stable work-conserving policies

take to empty the fluid network starting with an initial condition Q(O). This time is usually

called the strong busy period. This result is of independent interest, as it contributes to our

understanding of the performance of the network; it is also the key to our stability analysis

in the next subsection.

Proposition 2 Consider a stable work-conserving policy T(t) starting with initial condition

Q(O) 0 O. Let T be the smallest time such that Q(T) = 0. Then, T is bounded above by the

optimal value of the following linear program to be called LP[Q(O)]:

4

maximize E T
j=l

subject to

T = E Tkl,
kEli

T2 = E Tk2,

kEol

T3> T,
kEla

T4 = E" Tk'
kEol

n

akT1 + E pipik'
i=1

n

cakT2 + E piPik
i=1

n

akT4 + E PiPik
i=1

akT3 + E PiPik'

i=1

T1 > E Tkl,
kEo'2

T 2 = E Tk2,
kEG2

T3 = E Tk X
kEa2T4 = E Tk

kEo72

T - kTk = 0,

Ti - kTk2 > 0,

Ti4 - kTk < 0,

-i3 -kT = 0,T?- PkTk o
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n
akT4 + Pi kTi - kTk > 0,

i=l

n
akT2 + E Z iPiPkT -- kTk < 0,

i=l

Vk E {1,...,n}:

4 n 4 4

ak E Tj + E 'ipik E Ti - k E Tk = -Qk(O), (5)
j=1 i=l j=1 j=1

Tj > 0, T>0.

Proof: Consider a stable work conserving policy with initial condition Q(O) 0. Without

loss of generality, we only provide the proof for the case Q(O) E R 1; the proof for the other

cases is essentially identical. Let t = 0 and let the times tj be as in the statement of

Proposition 1. For j = 1,..., 4 we introduce the following variables:

00

Tj j (t4m+j+l - t4m+j) (6)
m=O

and
00

Tk = E (Tk(t4m+j+l) - Tk(t4m+j)). (7)
m=O

Intuitively, T1 is the total amount of time the trajectory spends in R1 as well as in excursions

from R 1 into R12 and back into R 1; T 2 is the total amount of time the trajectory spends in

R12 coming from R 1 and going to R 2; T3 is the total amount of time the trajectory spends

in R 2 as well as in excursions from R2 into R 12 and back into R 2; finally, T4 is the total

amount of time the trajectory spends in R12 coming from R 2 and going to R1 . Clearly

Tj > 0 and the first time that Q(t) becomes zero is given by T = T1 + T 2 + T 3 + T4 . Note

that for every class k, Tk, Tk, Tk and Tk is the total work allocated to class k, during the

time intervals that enter in the definitions of T 1, T 2, T3, T4, respectively.

For all t E [t4m+l,t4 m+2 ], we have Q(t) E R1 U R1 2 , and therefore EkEao Qk(t) > 0.

Because the policy is work-conserving,

t4m+2 - t 4 m+l = E (Tk(t4m+2) - Tk(t4m+l)). (8)
kEol
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By summing over m > 0 we obtain that

T = Tk,
kEOl

which simply expresses the work conservation in station 1, while the trajectory is in R1 U R1 2

(station 1 busy). Similarly, work conservation for station 2, while the trajectory is in R 2UR1 2

(station 2 busy) leads to

T 3 = ZTk3.
kEo2kEa2

Moreover, for t E (t4m+2, t4m+3)U(t4m+4, t4m+5), we have Q(t) E R 12, and work conservation

for both stations leads to

T2 = Tk = Tk2, T4 = = Tk.
kEai kEo2 kEol kEo 2

For every station j, we have

E (Tk(ti+l) - Tk(ti)) < t+l -ti,

kEjai

leading to

T1 > Tkl, T3 > k.
kEa2 kEai

By definition of the times ti, we have Q(t 4 m+l) E R1 and Q(t4 m+ 2) E R 1. Thus, for all

k E a 2 we have

Qk(t4m+l) = Qk(t4m+2) = 0,

which leads to

k(4m+2-4m+1)+ iPik(Ti(t4m+2)-i(4m -k(k(4 2)-k(4m k E 2-

i=l

Summing over all m > 0, we obtain
n

akTl + E pipikT - PkTk = 0, k E 2
i=l

Similarly, for k E al, we have Qk(t4m+3) = Qk(t4m+4) = 0, which yields

atk(t4m+4-t4m+3)+ iPiPk(Ti(t4 m+ 4 )-Ti(t4m+3))-k(Tk(t4m+4)-Tk(t4m+3)) = 0, k E 1,
i=l
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and leads to
n

kT3 + A PiPikT - kT = 0, k E 1 .
i=l

Since Q(t 4 m+ 2 ) E R 1 and Q(t4 m+3 ) E R 2 , we obtain

0 = E Qk(t 4 + 2) < E Qk(t4m+3)
kEOa2 kEa 2

and

0 = Z Qk(t4m+3) < E Qk(t4m+2),
kEai kE'i

which implies that for all k E a2, Qk(t4m+3) - Qk(t4m+2) > 0, leading to

n

k(t4m+3-t4m+2)+ iPik(Ti(t4m+3)T(t4 2))kTkt4m3)(T(4+)-Tk(t4 m+ 2 )) 0, k E 02.
i=l

Summing over all m > 0, we obtain

n

OkT2 + ipikT 2 - kTk2 > 0, k E 2 .
i=l

Similarly, for all k E a01, Qk(t4m+3)- Qk(t4m+2) < O, leading to

n

k(t4m+3-t4m+2)+Z PiPik(Ti(t4m+3)T(t4m+ t4m+2 ))-k(Tk(t 4 m+ 3 )-Tk(t4m+2)) < 0, k E a,
i=1

and therefore,
n

akT2 + E iPikTi2- kTk2 < 0, k E al.
i=1

Finally, since Q(t4 m+4) E R 2 and Q(t4 m+5 ) E R 1 , we obtain:

n

o(k(t4m+5-t4m+4)+EZ piPik(T(t4m+5)-Ti(t4m+4) )-ik(Tk(t4m+5)-Tk(t4m+4) )
i=1

n

ak(t4m+5-t4m+4)+J PiPik(Ti(t4m+5)-Ti(t4m+4))-k(Tk(t4m+5)-Tk(t4m+4))
i=l

leading respectively to

n

QkT4 + E piPikT
i=l

>0, k E 1 ,

< 0, k E 2 ,

- kT > O, k E al,
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n

akT4 + Z PiPikTI - kTk < 0, k e 2 -
i=l

Recall that T = 1 Tj. Then, from the dynamics of the network

n 4 4

Qk(T) = Qk(0) + (kT + Ad PiPik Z TJ - k Z Tk-
i=l j=1 j=1

Since Q(T) = 0, we obtain

n 4 4

akT + iiPik T - Pk E Tk = -Qk(O), k = 1,..., n.
i=1 j=1 j=1

We have shown that all of the constraints of the linear program LP[Q(O)] must be

satisfied. It follows that T must be bounded above by the value of that linear program. 

The linear program LP[Q(O)] gives an upper bound on the strong busy period of all

stable work-conserving policies. Similarly, if we minimize 4 we find a lower bound on

the time it takes for the network to empty using a work-conserving policy starting from an

initial condition Q(O). The lower bound is particularly interesting as it gives information

on the best possible performance.

3.2 Sufficient conditions for stability

In this subsection, we derive sufficient conditions for stability of the fluid network. These

sufficient conditions involve the linear program LP[O] which is defined exactly as the linear

program LP[Q(O)] of the preceding subsection, except that the right-hand side variables

Qk(0) in the constraints (5) are set to zero.

Theorem 1 (Sufficient Conditions for stability) Consider the following set of linear

inequalities in 4(n + 1) variables

T1 = Tk, T1 > Tk, (9)
kEoi kEO2

T2Z= ETk, T2= Tko, (10)
kEcl kEO2
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T3 > Z T, T3 = E T, (11)
kEai kEa2

T4 =Z E T 4 = E Tk, (12)
kE'i kEa2

Vk E a'2 :
n

akTl + iPikTi'--kTk = 0, (13)
i=l

n

akT2 + AipikkT? - kTk2 > 0, (14)

i=1
n

akT4 + Z piPi kT - PkTk < 0, (15)
i=l

Vk E al0:
n

akT3 + y ipikTi - pkTk = 0, (16)

i=1

n

akT2 + ipikTi2 - pkTk < 0, (18)
i=l

Vk E {1,...,n}:
4 n 4 4

ak Z Tj + ] iiik E Ti - Pk Tk = 0, (19)
j=l i=l j=1 j=1

Tj > 0, T >0

to be referred o as LP[O]. If LP[O] has has zero as the only feasible solution, then the

multiclass fluid network (a, p, P, C) is stable for all work-conserving policies.

Proof: Let us assume that zero is the only feasible solution of LP[0]. Let us also assume

that there exists an initial condition Q(O) 0 0 and a work-conserving policy such that Q(t)

never becomes zero. We will derive a contradiction.

Recall that the constraints in LP[O] and in LP[Q(O)] are the same except that the right

hand-side in (5) is changed from -Qk(O) to zero. Using linear programming theory and

since 0 is the only feasible solution of LP[0], it follows that the feasible set of LP[Q(O)] is

bounded. Let Z be the optimal value of the objective function in LP[Q(O)], which is finite.
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Let us now consider the unstable policy starting from Q(0). Let us follow this policy

up to time Z; from then on, let us switch to some stable work-conserving policy (under our

standing assumption that p < e, it is known that such a policy exists.) We then obtain

a work-conserving policy that, starting from Q(O), eventually leads the state to zero, say

at some time T. By construction T > Z. On the other hand, Proposition 2 asserts that

T < Z. This is a contradiction and the proof is complete. 0

3.3 Necessary conditions for stability

In this section we show that the conditions of Theorem 1 are also necessary. In particular,

we show that if the linear program LP[O] has a nonzero solution (Tj,Tk]), j = 1,... ,4, k =

1,... , n, then there exists a work-conserving policy and an initial condition Q(O) # 0, such

that for some time r > 0, Q(r) = Q(O). By repeating the same policy each time that the

state Q(O) is revisited, the system never empties and therefore the fluid network is unstable.

In preparation of the instability theorem we prove the following proposition.

Proposition 3 If (Tj,Tk), j = 1,...,4, k = 1,...,n, is a nonzero solution of LP[O], then

Tj > O for all j =1,...,4.

Proof

Suppose T1 = 0. Then from (9) T = 0 for all k = 1,...,n and therefore, from (19) we

obtain for all k = 1,...,n,

n

ak(T2 + T + T4) + E iPik(T,2 + T + T4) - Pk(Tk2 + Tk + T) = 0
i=l

or in matrix form, with T i = (T[, . .,TJ) ',

a(T 2 + T3 + T4) + [P' - I]M[T 2 + T 3 + T4 ] = 0

Multiplying both sides from the left by CM-[I - -1 we obtain

( T2 + T3 + T4) + T2 + T3 + T4-EkEl(T + Tk + T)
p2 - 1 T2 + T3 + T( + + )

T2 + T + T4- EkE1 M=0.
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But from (10), (11) and (12) we obtain

T2 +T 3 +T 4 = E (T + T + ).
kEa2

Since T2 + T3 + T 4 > 0, we obtain that p2 = 1, a contradiction. A similar argument shows

that T 3 > 0.

Suppose now that T2 = 0. From (10), T 2 = (T ,...,T 2 ) = O, while from (13), (15), and

(19), we obtain that

n

akT3 + iPikVT3 - kTk > 0, k E 02.
i=l

,From (16) we obtain

n

akT3 + ,ik - kTk = 0, k E .
i=l

Combining these two equations in matrix form, we obtain

aT3 + [P'- I]MT3 > 0.

Multiplying both sides of the inequality by CM-' [I - P]-1, we obtain

IP, IT 3 + - kkEa

P2 - 1) + T3- "kE, 2 > 0.

Since from (11), T3 = ZkEo 2 Tk and T3 > 0, we obtain that P2 = 1, a contradiction. By a

similar argument T4 > 0. 0

We next prove that the condition of Theorem 1 is also necessary.

Theorem 2 (Necessary Conditions for stability) If the linear program LP[0] has a

nonzero solution, then there exists a work-conserving policy under which the multiclass

fluid network (a, p,P, C) is unstable.

Proof:

Let (Tj,Tj) be a nonzero solution of the linear program LP[0]. We will construct an

initial condition Q(O) E R1 and a work-conserving policy, such that for some time r > 0,

14



Q(r) = Q(O). It will follow that there exists a work-conserving policy under which the

system never empties and therefore the fluid network is unstable.

Let
n

Qk() = -(rkT2 + E piPikT2 - kTk2),
i=1

k E l

and

Qk(O) = O, k a.2

Constraint (18) guarantees that Q(0) > 0. We next show that kEl Qk(O) > 0, i.e.,

Q(O) E R1. If Q(O) = 0, then, for all k E 1

n
akT2 + E ~PikT? - kTk = 0

i=l

Moreover, from (14) for all k E a2

n
akT2 + iPikT 2 - PkTk2 > 0.

i=l

In matrix form, with T i = (T, ... , Tn)', the previous equations become

aT2 + [P' - I]MT2 > 0.

Multiplying by CM-I[I - P']-, we obtain

P2 - 1
T + T2 - EkEai T? > 0.

T2 - EkEV2 Tk -

From (10), we have T2 = EkEol Tk2 = kE,2 Tk2. From Proposition 3, T2 > 0, so P1, P2 > 1,

a contradiction and therefore, Q(O) 0.

We next construct the following allocation process for k = 1,..., n:

t T2

T2 + Tk3

Tk(t) = Tk2 +T+-T

Tk2 + T + T + t-T2-T-T4 

t E [0, T2];

t E (T2,T 2 + T 3];

t E (T2 + T3 ,Tz + T3 + T4];

t E (T2 + T3 + T 4,T 2 + T3 + T4 + T1].

We show that the above allocation process is both feasible and work-conserving.
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We first consider the first interval [0, T2]. By the dynamics of the fluid network for this

allocation process and starting from the initial condition given above we obtain

Qk(T2) = 0, k E o1

Qk(T2) = akT2 + PiPPikT2 - pkTk2 0, k E 2.
i=l

We next show that

E Qk(T2)> 0,
kEa2

so Q(T2) E R 2. If we assume that

n

akT2 + E pipikT 2 -P = 0, k E U2,
i=l

then from (13) and (19) we obtain that

n
ak(T3 + T4) + Ep iPik( + )- k(T + ) = 0, k E 2.

i=1

Also from (16) and (17) we obtain that

n

k(T3 + T4)+ E PiPik(i + i )-pk(T + Vk) > 0, k E 1
i=1

Written in matrix from, the two previous relations become

a(T 3 + T4) + [P'- I]M(T 3 + T4 ) > 0.

Multiplying by CM-'[I - P']-1 , we obtain

Pl- 1 (TT3 + T4

Since T3 + T4 = kEa2(Tk3 + T) and T3 + T4

Therefore, EkEo2 Qk(T2) > 0.

Since the allocation process is linear, we obta

Vt E [0,T 2 ],

- Ek (T + T) >0.

- EkE (T + T ) -

> 0, we obtain 2 > 1, a contradiction.

Q(t) > 0,
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and

Vt E (0, T2), Q(t) E R1 2 ,

i.e., the allocation process is feasible. We next show that it is also work-conserving. From

(10)
t 2 t 2

t = E T T = E Tk
kEoi kE2 

or equivalently

Vt E [0, T 2 ]: Ul(t) = U2(t) = U(0) = U2(0) = 0,

and the process is indeed work-conserving.

In the interval (T2, T 2 + T3], we prove similarly that for k E 0o2 we have Qk(T2 + T3) > 0

and Ekea 2 Qk(T2 + T3) > 0. Therefore, Q(T2 + T3) E R 2, and since Q(T2) E R 2, we obtain

by linearity that

Vt E [T2,T 2 + T 3], Q(t) E R2 .

Work-conservation is shown similarly.

Similarly, we show that in the interval t E (T2 + T3 , T 2 + T3 + T4], Q(t) E R1 2 and in the

interval t E [T2 + T3 + T 4, T 2 + T3 + T 4 +T 11], Q(t) E R 1, while the process is work-conserving.

In addition, because of (19), Q(T1 + T 2 + T3 + T 4) = Q(O). It follows that the fluid

network never empties for this work-conserving feasible policy, and is unstable. O

The necessity proof has identified a particular way that an unstable work-conserving

trajectory materializes, leading to some insight as to how instability may be reached. In

particular, we have shown that if there exists an unstable trajectory, then there exists a

periodic trajectory with a particular structure.

Combining Theorems 1 and 2 we obtain the main theorem of this section.

Theorem 3 A two-station multiclass fluid network (a, p, P, C) is stable for all work con-

serving policies if and only if the load condition p < e holds and the linear program LP[O]

has zero as the only feasible solution.
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3.4 A special case

To illustrate the use (as well as the power) of Theorem 3 we prove that a two-station fluid

network, in which one of the two stations has only one class, is stable provided that the

load condition (4) is satisfied. This generalizes previous results obtained by Kumar [9] and

Meyn and Down [8] for a three-class two-station network.

Theorem 4 A fluid network satisfying the load condition p < e with two stations and such

that only one class is served by station 2 (121 = 1) is stable.

Proof: We show that the corresponding linear program LP[O] cannot have a nonzero

solution. For the purposes of contradiction suppose that (Tj,Tkj) is a nonzero solution to

LP[0]. Let a2 = I}). We distinguish two cases:

Case 1: aT 3 + pin=l piPiT 3 - PT3 > 0.

,From (16):

akT3 + piPikT 3 - kTk = O, Vk E al.
i=l

We combine the previous relations in matrix form as follows:

aT 3 + [P'- I]MT3 > O.

We multiply both sides by CM-1 [I - P']-l to obtain:

T3 + ~ _ k 0
P2-1) T 3 -T I )

But from (11) we obtain T3 = T13 and from Proposition 3, we obtain T3 > 0, leading to

P2 = 1, a contradiction.

Case 2: oaT 3 + ELl ,iPiTi3- iT3 < O.

,From (19), we obtain
n

ai(T4 + T + T 2) + ,( + T 1+ T 2) -p (T 1 + T) > 0.
i=l

Moreover, from (16) and (19) we obtain
n

ak(T + T ++ pk(T4 + T + T2) - k(T + T + T) = 0, k E a1,
i=l
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which, in matrix form, becomes

a(T 4 + T1 + T2) + [P'- I]M(T4 + T + T 2) > 0.

Multiplying both sides by CM-1[I- p1]-1 we obtain:

( (T4 + T1 + T2) +( T4 + T + T 2 -EkEal(T + Tk + T 2 )) 0
P - T4 + T + T2- (4 + T + Tot)

,From (9), (10), and (12)we obtain

T 4 +T 1 +T 2 = E (T + T +Tk),
kEoli

and since T 4 + T1 + T2 > 0, then pl = 1, a contradiction. n

4 Sufficient stability conditions for a general multiclass fluid

network

In this section we generalize the technique from the previous section to derive new sufficient

conditions for stability of a general multiclass fluid network involving an arbitrary number

J of stations.

Let us describe our approach in general terms. Recall that for any S C {1, ... , J}, we

have defined Rs (cf. Section 2) as the set of all states Q for which all stations in S (resp.,

not in S) have a positive (resp., zero) number of customers. Consider an arbitrary work-

conserving trajectory. As long as Q(t) # 0 this trajectory will be visiting the subspaces Rs,

S C {1,..., J} in some arbitrary fashion. At any given point in time, the trajectory will be

inside some Rs coming from some RU and going to some Rv and we think of each possible

triple (U, S, V) as a different type of behavior. Accordingly, we will partition the time axis

into intervals such that during each interval the system exhibits the same type of behavior.

We now continue with a more formal development. Let T be the time that the system

empties. (We let T = oo if the system never empties.) Then, it is easily shown (a formal

proof is omitted) that there exists a countable collection of disjoint intervals (t,,t') such
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that:

(a) within each such interval, Q(t) stays inside the same subspace Rs;

(b) these are maximal intervals with the property (a); formally, for every > 0 there exist

t E (tr- , tr) and t' E (t',t' + c) such that Q(t) V Rs and Q(t') Rs.

(c) these intervals together with their endpoints cover the entire interval [0, T]; in particular,

the total length of these intervals is equal to T.

Let us focus on a typical such interval (tr,t') and let S be such that Q(t) E Rs for all

t E (tr, t). We now need to define the subspace Ru that the state is coming from at the

beginning of the interval. If Q(tr) E Ru for some U S, this is easy, and we say that the

state is "coming" from Ru. If on the other hand, Q(t) E Rs, we need to look at Q(t) for

times slightly less than t. Let us choose some U so that for every e > 0, Q(t) visits Ru

during the time interval (t, - , t). (Note that the choice of U need not be unique.) We

will again say that the state is "coming" from Ru.

Suppose that the state is coming from Ru. We consider in some more detail the two

different possibilities.

(a) If Q(tr) E Rs, then every station j E S has a positive number of customers at time t.

By continuity, this is also true just before tr and we conclude that U D S.

(b) If Q(tr) E Ru, then every station j E U has a positive number of customers at time t.

By continuity, this is also true just after tr and we conclude that U C S.

The situation for the right endpoint t of an interval is entirely similar. We can define

some V such that Q(t) is "going to" Rv. If Q(t') E S, we must have V D S; if Q(t') E Rv,

we must have V C S.

Having determined for each interval where it is coming from and where it is going to,

we can now assign to each interval a "type" (U, S, V). According to our earlier discussion,

for any possible type, we must have either U C S or U D S, and either V C S or V D S.

We refer to these as admissible types.

For any given trajectory and for any admissible type (U,S, V), we define the variable

TU 'V as the sum of the lengths of all intervals of type (U, S, V); intuitively, this is the total
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time the trajectory spends in Rs coming form Ru and going to Rv. Let TsU be the total

work allocated to class k during all intervals of type (U, S, V).

Note that the number of variables that we have introduced increases exponentially with

the number of stations, because there are 2 - 1 choices for each subset U, S, V. A more

precise estimate follows:

Proposition 4 The total number of variables TU,'V isS

E (m) [(2m - 2)(2 m - 3) + (2 J- m - 1)( 2 J- m - 2) + 2(2m - 2)(2
J - m - 1)] = O ( 5 J)

Proof For ISI = m, there are the following cases:

a) U C S and V C S and therefore there are (2m - 2)(2 m - 3) choices for two nonempty

subsets of S which are not S,

b) S C U and S C V and therefore there are (2J - m - 1)(2
J - m - 2) choices for two nonempty

supersets of S which are not S,

c) U C S C V or U C S C V and therefore there are 2(2 m - 2 )( 2 J- m - 1) choices for one

subset (which is not S and not empty) and one superset of S which is not S. 0

Note that in total we have defined O(n5J) variables TsUL'S,k

Proceeding as in the two-station case, we first show the following upper bound on the

duration of the strong busy period.

Proposition 5 Consider a stable work-conserving policy T(t) starting with initial condition

Q(O) O. Let T be the smallest time such that Q(T) = O. Then, T is bounded above by the

optimal value in the following linear program to be called G[Q(O)]:

maximize TSU' V
(S,U,V)

subject to

E V 'V i E s, (20)

E _V < T, ' i , (21)
kEoi
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for i ¢ S, k E ai:
n

a k + iPikTSi
i=1

i E SnucnVc, kEai:

n

akTS + E PiPikTS$,i
i=1

- kTsV =0,

- lkTS,k = 0,

ViE SnUC V, k E ai:

n

ak~S T + : 1iPikT=
i=l

-PkTk > 0,

ViE SnUnVc, kEai :

Vk E {1,...,n}:

n

+ ipPikT -k PkT < 0,
i=1

n

k 1s PiPik E TU,V
(S,U,V) i=1 (S,U,V)

-Pk E T',k =-Qk(),
(S,U,V)

TSk V >o TU'V > 0S,k - $

(25)

(26)

Proof: Consider an arbitrary stable work-conserving policy and define the variables TU' vS,k

and T SV as in the discussion earlier in this section. Since the policy is stable, all of these

are finite.

Equality (20) expresses work-conservation for all stations i E S. Inequality (21) ex-

presses the fact that the cumulative idleness for all stations i 4 S should be nondecreasing.

Consider an interval (t,t'r) of type (U, S, V). We then have the following relations:vvllulur all uu~l~a \~r)r

E Qk(tr) = 0, i E UC
kEoi

E Qk(t,) > O, i E U
kEoi

E Qk(tr) = 0, i E VC
kEai

22
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(23)

(24)
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E Qk(t') > O, i E V
kEai

Therefore, for i E S n Uc n V, Qk(t') - Qk(tr) > 0. Writing the dynamics explicitly and

summing over r we obtain (24). Relations (22), (23) and (25) follow an entirely similar

logic. Finally, (26) expresses the fact that at time T = -(usv) TsV the network empties.

Maximizing this expression gives an upper bound on the time to empty the network. 0

Remark: It is interesting to compare the constraints in G[Q(0)] with the constraints

that we derived earlier for the two-station case. Note that G[Q(0] does not contain any

constraints analogous to (22), (23), (24) and (25) for the case i E S n U n V. It can be

checked that in the context of LP[Q(0)], this corresponds to the fact that for k E al, we do

not have any constraints involving the variables T 1 and Tk and, for that for k E a 2, we do

not have any constraints involving the variables T3 and Tk.

There is one minor discrepancy between the development in Section 3 and the develop-

ment here, which is worth noting. In Section 3, we did not use different variables for the

two interval types (R 1, R 12, RI) and (R12, R 1, R12); in particular, any interval of the form

[t4m+l, t4m+2] consist in general of an interval of type (R 12, R 1, R12) followed by a nonnega-

tive number of intervals of type (R 1, R 12, R 1). Even though these are two different interval

types, we only introduced in Section 3 a single set of variables, namely the variables Tk.

There is a fundamental reason why the discrepancy between these two lines of development

is immaterial: it can be easily shown that if a feasible work-conserving trajectory Q(-) has

an interval (tr, t') of type (R 1, R 12, R 1), then there exists another feasible work-conserving

trajectory Q(-) with the following properties: (a) the two trajectories agree outside (tr, tr);

(b) Q(t) E R 1 for all t E (tr,t'). By proceeding in this fashion, all intervals of type

(R 1, R12, R 1) can be eliminated, and this is done without affecting the stability properties

of a trajectory.

The above outlined argument can be easily generalized to the multi-station case. In

particular, it can be shown that we may ignore all types (U, S, U) with S D U. On the

other hand, types (U, S, U) with S C U cannot be eliminated.
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We conclude this section by stating the sufficient conditions for stability.

Theorem 5 (Sufficient Conditions for stability) Suppose that the load condition (4)

holds. Consider the linear program G[O] obtained by setting Q(O)=O in G[Q(O)]. If G[O]

has zero as the only feasible solution, then the multiclass network (a, p, P, C) is stable for

all work-conserving policies.

Proof: The argument is identical with the proof of Theorem 1. 0

5 On the power of convex potential functions

It is well known that a multiclass fluid network is stable under all work conserving policies

if and only if there exists some potential (Lyapunov) function which decreases along all

possible trajectories. An example of such a potential function is the maximum (over all

work conserving policies) of the time it takes for the system to empty. However, in order

to prove that a system is stable, one needs to explicitly construct such a potential function,

and this can be quite difficult. One possibility that has been investigated in the recent past

is to restrict to a class of convex potential functions (quadratic or piecewise linear) and to

use linear programming or other techniques in order to identify a suitable potential function

within such a class (Kumar and Meyn [10], Botvich and Zamyatin [3], Dai and Weiss [7],

Down and Meyn [8]).

The above approach begs the question of whether convex potential functions have the

power to establish (sharp) necessary and sufficient conditions for stability. In other words,

is it true that whenever a system is stable under all work conserving policies, there exists

a convex Lyapunov function that testifies to this? In this section we show that this is not

possible, i.e., the approach through monotone convex potential functions has limitations.

In particular we find necessary and sufficient conditions for the existence of piecewise linear

monotone convex potential function for multiclass fluid networks with two stations and

provide an example of a stable network for which these conditions do not hold, and thus

no monotone convex piecewise linear potential function exists. As any monotone convex
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potential function can be approximated arbitrarily closely by a piecewise linear monotone

convex potential function, the limitation of the method follows.

Our general approach in this section is the following. We consider only two-station

systems and focus on monotone piecewise linear convex potential functions (MPLCPF).

We show that if a MPLCPF exists that establishes stability, then there also exists one

that consists of only two linear pieces. We then find necessary and sufficient conditions

for the existence of a MPLCPF with two pieces that establishes stability. As any convex

potential function can be approximated by a MPLCPF, these conditions can be interpreted

as necessary and sufficient conditions for the existence of any monotone convex potential

function that establishes stability.

We start our development with a definition.

Definition 1 A function I : R R+ is called a monotone piecewise linear convex po-

tential function (MPLCPF) if:

(a) There exist nonnegative vectors L1, .. ., LN such that

(x2) = max Lx, Vx > 0,
1<i<N

(b) for any feasible work-conserving trajectory Q(t),

d
d b(Q(t)) <-1,

whenever the derivative is defined.

It is easily checked that if a MPLCPF exists, then the fluid network is stable. We will

now proceed to develop necessary and sufficient conditions for the existence of a MPLCPF

for a two-station multiclass fluid network. Our first step is to prove that each one of the

vectors Li in the formula for I must satisfy a set of linear inequalities.

Proposition 6 Suppose that (x) = maxi=l,..,N Lx is a MPL CPF. Then,

L(a + [P - I]Meij) < -1 Vi E , i E , j , (27)

where ej is a vector whose ith and jth components are and all other components are zero.
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Proof

We assume, without any loss of generality, that for each k E {1,..., N}, there exists some

Xo > 0 such that

Lxzo > max Lixo.

(Otherwise, we would have

,(x) = max Lxz,

for all x > 0, and Lk could be ignored altogether from our subsequent development.)

Furthermore, by possibly scaling x0 and by using the continuity of linear functions, we can

also assume that x0 > 0. Using continuity once more, we also have

¢(y)= Ly, (28)

for all y in a small enough neighborhood of x 0.

Let U = (U1 ,..., U,) E R. be any vector satisfying:

EUi= E Uj=1. (29)
iEui jEO72

For small t > 0, we consider the allocation process T(t) = Ut. Let us show that for small

t, this creates a feasible work-conserving trajectory Q(t), starting from the initial state

Q(0) = x0o > 0. Since x0 > 0, then for small t > 0 we must also have Q(t) > 0 and the

trajectory is feasible. The trajectory is also work-conserving since the total utilization at

each station is equal to 1. Since $t(z) is a potential function, we have

d i(Q(t))t=o <-1.

For small t > 0 we have that Q(t) is close to x0 so by (28)

v4'(Q(t))lt=o = Lk-

But

d-Q(t)l=o = a + [P - I]MU.
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Therefore,

d t(Q(t)t=o = V'(Q(t))lt=odQ(t)lt=o = L(a + [P'- I]MU) < -1.

The latter inequality must be true for any U satisfying (29). In particular it should be

satisfied for

U = eij = (0, 0,..., 1, 0,..., O, 1, O, ... , 0)',

where the ones appear in positions i and j. Applying the previous inequality with U = eij

yields (27). 0

The constraints (27) have been derived by considering allocations T(t) = Ut correspond-

ing to both stations being busy. We now derive other constraints by considering situations

in which one of the stations may be underutilized while the other is busy. We start by

defining two polyhedra P1 and P2. Intuitively, P1 is the set of all allocation vectors under

which station 1 is busy while station 2 is possibly underutilized and maintains its queues

at a constant (zero) level. We let

n

P1 = {U = (Ul,..., U)l 1 = E Ui > E Uj; j+E EpPijU-pjUj =0, Vj E 2; Uj > 0.}
iEoi jEO2 i=l

(30)
n

P2 = {V = (V,,..., - Vn))l 1 = I V; E a PiilV i > l=0, E Ea; + = E 1; > }
iEO'2 iEal i=l

(31)

Let U1,U 2 ,... ,Ur, and V 1,V 2 ,..., V s, be the set of extreme points of the polyhedra P1

and P2 respectively.

Proposition 7 (a) Suppose that there exists some xo E R1 such that Lky = (y) for all

y E R1 in some neighborhood of x0. Then,

L(a + [P- I]MUi ) < -1, i = 1,...,r. (32)

(b) Suppose that there exists some xo E R 2 such that L' y = (y) for all y E R 2 in some

neighborhood of xo. Then,

L' (a + [P- IMV j ) < -1, j = 1,...,s. (33)
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Proof: For any vector U E P1 consider the allocation process T(t) = Ut. It is easily checked

that for small t > 0 and given the initial state Q(O) = xo E R1, this allocation creates a

feasible work-conserving trajectory Q(t). In particular, for i E Ol, we have Qi(t) > O, by

continuity. Also, for j E 2, the condition aj + p=l lz pijUi - pjUj = 0 in the definition

of P1 implies that Qj(t) = 0. Finally, this allocation is clearly work-conserving because the

total utilization of station 1 is 1.

Since we have a feasible work-conserving trajectory, we must have

d

For small t, we have that Q(t) is close to x0, so

,4(Q(t)) = LIQ(t).

Therefore,

L dtQ(t)lt= = L'(a + [P - I]MU) < -1,

for all U E P1. Applying the previous inequality for all the extreme points U' of P1 we

obtain (32). A similar argument yields (33). 0

We now define

Al = {L E {L1 ,...,LN} I L satisfies (32)},

A2 = {L E {L 1 ,..., LN} I L satisfies (33)}.

We now prove the following:

Proposition 8 (a) The sets A1 and A2 are nonempty.

(b) There holds

Ljx < max L'x, VX E R 1, j e A2, (34)
- LEA 1

L'x < maxL'x, Vx E R 1, j E A 1. (35)
- LEA 2

Proof: Consider R1 which is a set of dimension all . Consider some k and the set of points

x E R1 for which L:x = 4(x). This set is a polyhedron. Since the polyhedra correspondingA;~--\j. I1 tl Jd VYl;IVI IlCIlC VYIU~ VIJVllll
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to the different choices of k must cover the set R 1, it follows that at least one of these

polyhedra contains a (relatively) open subset of R 1. With such a k, we have L'y = (4(x)

on some (relatively) open subset of R1 and using the preceding proposition, we obtain that

k satisfies (32) and A1 is nonempty. The proof for A2 is similar.

(b) Suppose, to derive a contradiction, that there exists some j E A 2 and some x E R1

such that Lx > maxLEA, L'x. In particular, we have Lj A1. Consequently, there exists

an open set in R1 on which the maximum in the definition of 4 is attained by some Lm A1.

But this is a contradiction to the preceding proposition. O

In the proof to follow, we will also make use of the following result:

Proposition 9 Let there be given some vectors L, L 1,..., Lp. Then, the condition

L'x < max Lx, Vx > 0,
- l<i<p

holds if and only if there ezist 01, ..., Op > 0 such that

E Oi=l
l<i<p

and

L < E OiLi
l<i<p

where the last inequality is meant to hold componentwise.

Proof: This is a simple application of linear programming duality. 0

We are now ready to state the first result of this section, which provides necessary

conditions for the existence of MPLCPF.

Theorem 6 Consider a two-station multiclass fluid network and suppose that (x) =

maxl<k<N L'x is a MPLCPF. Then, there exists a vector M E R' satisfying (27) and

(32) and a vector N E R' satisfying (27) and (33), such that:

M(i) > N(i), Vi E oa, and N(j) > M(j), Vj E 2. (36)
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Proof Let A1 = {M1,..., Mt} and A2 = {N 1,..., N,}, i.e., M1 ,..., Mt are the vectors Lk in

the formula defining 4(x), which satisfy (27) and (32), and N 1,..., N, are the vectors L,

which satisfy (27) and (33).

We now use Proposition 8, as well as Proposition 9 to obtain an equivalent condition.

We conclude that for each k = 1,2,..., r we can find A... k >, , El=, k = 1 such that:

t

Nk(i) < AiMlI(i), Vi E .1- (37)
/=1

and for each I = 1,2, ... ,t, we can find 0, ...,0 > 0 Er= 0k = 1, such that:

MI(j) < E Nr,(j), Vj E 2- (38)
k=1

Let a = (al,..., at) and b = (b1,., br) be two nonnegative vectors satisfying:

t r

,a > 1, bk > 1.
1=1 k=1

Consider
t

M =E aIM ,
/=1

and
r

N = E bkNk.
k=1

Clearly, M satisfies (27) and (32) and N satisfies (27) and (33).

Multiplying all the inequalities in (37) by bl, b2, ..., b, and adding them, we obtain

r t

N(i) < E bkAkMl(i), Vi E 01 (39)
k=l 1=1

Similarly,
t r

M(j) <j al0Nk(j), Vi E 2. (40)
1=1 k=l

We will prove that we may select a l,..., at and bl,...,b, in such a way that for each

I = 1,2,...,t·

bkak = at, (41)
k=l
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and for each k = 1,2,...,r:

Z aO = bk- (42)
1=1

In this case (39) and (40) are written as follows:

t

N(i) < alMi(i) = M(i), Vi E o,
1=1

and

M(j) < E bkNk(j)= N(j), Vj E 2,

k=l

implying (36).

Conditions (41) and (42) are written as follows:

,a o O ,1 ... O_

o ... o 1O ... Ot
(al, ,at, b b abl, ,br) = (al,, at, b,., b) A

·· \r o o

\A i A'... u ... u

or in matrix form

(a,b) = (a,b)A. (43)

Since A is a stochastic matrix, it well known that there exists a nonnegative, non-zero

solution (a, b) to (43). By multiplying this solution (a, b) by a sufficiently large number

we can ensure that:
t r

al> 1, Ebk>1.
i=1 k=l

The proof of the theorem is now complete. o

We next show that the conditions stated in the previous theorem are also sufficient for

the existence of a MPLCPF for a multiclass fluid network with two stations.

Theorem 7 Consider a two-station multiclass fluid network. Let L 1, L 2 E R+ be such that

L1 satisfies (27) and (32), L 2 satisfies (27) and (33), while both M = L 1 and N = L2
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satisfy condition (36). Then the function

4'(x) = max{Llx, L 2x}

is a MPLCPF and the fluid network is stable for all work-conserving policies.

Proof Let Q(t) be any feasible work-conserving trajectory in the fluid network. We will

prove that for any to > 0

d (Q(t))lt=to < -1. (44)

wherever the derivative is defined.

Let T(t) = (Tk(t))l<k< be the allocation process corresponding to the trajectory Q(t).

Suppose that Q(to) E R1 and that Q(t) stays in R1 for some time beyond to. Then, since

the policy is work-conserving we obtain

-Tk(t)lt=to = 1.
kEaOi

Since the second station has empty buffers, we obtain:

n d
ak + PPik tTi(t)lt=to -Pk dtTk(t)lt=to = 0, Vk E 02. (45)

i=

Let Uk = dTk(t)lt=to. Since the allocation process is nondecreasing, we have U E R'.

Moreover, due to (45), U E P1, where P1 is the polyhedron defined in (30). Now, since

Q(to) E R 1 then, by (36), we have

'4(Q(to)) = L Q(to)

Therefore,

d d(Q(t)Jt t = L' Q(t) to = L1 (+[P-I T(t ) = L (a+[P'-I]MU) < -1

The last inequalitywholds since by assumption L 1 satisfies (32).

By a similar argument we show that (44) holds when Q(to) E R2 or Q(to) E R 12, proving

the theorem. 0

We summarize the previous two theorems as follows.
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Theorem 8 There exists a piecewise linear potential function for a two-station fluid net-

work if and only if the following linear program referred to as (LPOT) on variables L1, L 2 E

R+ is feasible:

L'(a + [P- IMeij) -1, i E 1, j E 0'2,

L(a + [- IMej) < -1, i E 01, j E 0'2,

where eij is a vector with the ith and jth entry equal to 1 and all other entries equal to zero;

in addition,

L ( a+ [P-IMU i) < -1, i = 1,..., r,

where U1 , U2..., Ur , is the set of extreme points of the polyhedron P1 defined in (30);

L2 (a + [P- I]MV j ) < -1, j = 1,...,s,

where V1, . . ., Vs is the set of extreme points of the polyhedron P2 defined in (31);

Ll(i) > L2(i), Vi E 01,

L2 (j) > L(j), Vj E 0'2 ,

L 1,L 2 > 0.

Remarks:

1) The previous theorem can be used as a sufficient test for stability as follows. If

(LPOT) is feasible, then a potential function exists and the network is stable. If not, we

can only conclude that a MPLCPF does not exist; no conclusion can be reached as to

whether the network is stable or not. In comparison with the earlier work of Down and

Meyn [8] and Dai and Weiss [7], the linear program (LPOT) is the best possible result

based on MPLCPFs, since it is guaranteed to discover a MPLCPF whenever one exists. It

is thus sharper than earlier results.

2) The previous theorem can be easily generalized to the case of more than two stations.

However, the necessary and sufficient conditions for the existence of a MPLCPF amount

to a nonlinear programming problem; the reason is that the generalization of the condition

(36) turns out to be nonlinear. Moreover, we expect that the linear program of Theorem 5

gives the sharp stability conditions.
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5.1 Monotone convex potential functions are not necessary for stability

In the previous subsection we have established necessary and sufficient conditions for a

MPLCPF to exist in a two-station fluid network. A natural question is how these conditions

are related with the results of Section 3 (necessary and sufficient conditions for stability).

Consider the following example of a two-station fluid network (see Figure 2).

1 2

Figure 2: An example of a two-station fluid network.

There are 7 classes with rates p1 = 10, P2 = 2.5, p3 = 20, P/4 = 2, p5 = 4, p6 = 3

and P7 = 11. The external arrival rate to class 1 is A = 0.805. Then 1 = {1,4,5,7} and

a2 = {2,3,6}.

The traffic intensities are pl = 0.7527 and p2 = 0.6266. The linear programming LP[0]

of Section 3 finds that 0 is the only feasible solution, which means that the system is stable.

The linear program (LPOT) for the same data is infeasible, which implies that there

is no MPLCPF, even though the system is stable. We note that for A = 0.804, LP[0] has

0 as the only feasible solution and (LPOT) is feasible implying that a MPLCPF exists.

Moreover, for A = 0.806, LP[0] has a nonzero solution and therefore the system is unstable,

while (LPOT) is infeasible. In other words, for this example, (LPOT) correctly identifies

stability for all A < 0.804, while it is inconclusive for A = 0.805, (even though the system is

stable) and A = 0.806, (while the system is unstable).
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6 Conclusions

For two-station multiclass fluid network we have established

(a) necessary and sufficient conditions for stability of all work-conserving policies,

(b) necessary and sufficient conditions for existence of a monotone convex, piecewise linear

potential function,

(c) an example of a stable system for which no MPLCPF exists, which implies that the

convex potential function method has inherent limitations.

For networks with more than two stations we have established sufficient conditions for

stability and we believe that these conditions are also necessary.
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