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Photon trapping and transfer with solitons

Ken Steiglitz1,* and Darren Rand2,†
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�Received 16 October 2008; published 12 February 2009�

We show, numerically, that a single photon trapped by a soliton in a Kerr nonlinear medium can be
transferred from one soliton to another when the captor soliton undergoes collision with a second soliton.
Soliton collisions can also be used in this way to realize a beam splitter, as well as a mode-separating beam
splitter, analogous to the usual polarizing beam splitter. We discuss briefly the feasibility of an optical fiber
implementation and possible applications to quantum-information processing.
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An optical soliton in a homogeneous medium such as a
fiber is characterized, ideally, by undistorted propagation and
elastic collisions. It arises because of an intensity-dependent
change in the fiber’s refractive index. For a temporal soliton,
this refractive index change creates a traveling potential,
which can serve as a waveguide for another optical pulse �the
probe�. Similarly, a spatial soliton imprints a waveguide in
the medium, an effect that has been confirmed in both Kerr
�1� and photorefractive media �2–5�. In this Rapid Commu-
nication we show that when a soliton �the pump� collides
with another soliton, the corresponding probe wave can be
transferred almost perfectly from one soliton to another, or,
depending on the conditions, split between two solitons, in
perfect analogy to a beam splitter.

In the quantum limit where the probe wave represents a
single photon, these effects may find application to the stor-
age, transport, and routing of qubits. Its delivery by a soliton
means that a single photon will be subject to reduced disper-
sion compared with unguided transmission; its arrival time
will be known more precisely and timing jitter reduced. This
may be beneficial in quantum-communication applications as
bit rates and propagation distances increase. Beyond this, the
proposed implementation of a mode-splitting beam splitter
suggests application to quantum computing using linear op-
tics �6�. Pittman et al. �7� show, in fact, that a polarizing
beam splitter completely analogous to the mode-splitting
beam splitter described here can be used to realize a
controlled-NOT gate. Soliton-guided photons—in a fiber, for
example—may thus provide a natural medium for optical
quantum gate implementation.

Following Manassah �8,9�, de la Fuente and Barthelemy
�1�, and Ostrovskaya et al. �10� we model the system of
interest with two coupled wave equations, the first being a
standard cubic nonlinear Schrödinger equation for the pump,
and the second a linear wave equation for the probe signal,
which is assumed to be very much weaker than the pump.
Thus, the propagation of the pump signal P�z , t� is governed
by

i
�P

�z
+ �p�P�2P −

�2p

2

�2P

�t2 = 0, �1�

where t is local time, z is propagation distance, �2p repre-
sents the group velocity dispersion of the pump, and �p is a
nonlinearity parameter. We neglect higher-order dispersion
and assume a lossless medium with an instantaneous elec-
tronic response. We would like to use the exact two-soliton
solution given in �11�. To this end we scale z by letting

x=−��2p /2�z, which yields Eq. �2�, and the pump P̂�x , t� in
the notation of �11� with �p=−�p /�2p �we will take �2p�0
and �p�0, so �p�0�:
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�t2 = 0. �2�

The general, ground-state, single-soliton solution of Eq.
�2� is given by �11�

P̂�x,t� =
�kR�
��p

ei�kI�t−t0�+�kR
2−kI

2�x� sech�kR�t − t0 − 2kIx� + �� ,

�3�

where the free complex parameter k=kR+ ikI, kR determines
the energy of the soliton, and kI its velocity, all in normalized
units. To launch the soliton along the t=0 axis, we choose
t0=� /kR and the velocity kI=0, so that the single-soliton
solution is

P̂�x,t� =
�kR�
��p

eikR
2x sech�kRt� . �4�

The use of the closed-form two-soliton solution �11� ensures
that the computation of the pump is both fast and accurate.

The linear equation for the propagation of the probe wave
u�z , t� is

i� �u

�z
+ ��1s − �1p�

�u

�t
� + �s�P�2u −

�2s

2

�2u

�t2 = 0, �5�

where P�z , t� is the soliton pump and �s is a nonlinearity
parameter. Here, �1	p,s
=1 /vg	p,s
, vg	p,s
 is the group velocity
of the pump and probe, �2s is the group velocity dispersion
of the probe, and the term in ��1s−�1p� represents the
walkoff between the probe and pump. Taking the walkoff
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term to be zero and using the one-soliton solution in Eq. �4�
as the soliton pump, the probe equation becomes

i
�u

�z
+ �s

kR
2

�p
sech2�kRt�u −

�2s

2

�2u

�t2 = 0. �6�

Notice that the intensity of the pump does not vary with
propagation distance z. When we come to use the two-soliton
solution of Eq. �2�, however, the scaling of z will matter.

To reduce the probe equation to a z-independent eigen-
value problem, let

u�z,t� = u�t�e−iEz, �7�

yielding

�2s

2
u� − �E + �s

kR
2

�p
sech2�kRt��u = 0. �8�

We use the transformation �12�

� = tanh�kRt� , �9�

to put this equation in the form

d

d�
��1 − �2�

du

d�
� + ���� + 1� −

m2

�1 − �2��u = 0, �10�

where

m2 = 2E/�kR
2�2s� �11�

and

��� + 1� = − 2�s/��p�2s� = 2�s/�p, �12�

where �s=−�s /�2s. This is the associated Legendre equa-
tion, with solutions �eigenfunctions� u�m of degree � and
order m that are nonsingular and physically acceptable for
integers ��m�0. Each u�m is the product of �1−�2�m/2 and
a polynomial in � of degree ��−m� and parity �−��−m, with
��−m� zeros in the interval −1	�	 +1 �13,14�. As func-
tions of t the solutions of Eq. �10� take the form sechm�kRt�
times a polynomial in tanh�kRt� of degree ��−m�. �A conve-
nient list of associated Legendre functions in explicit form is
given in �15�.� Note that the degree of the wave functions
supported in the induced waveguide is determined solely by
the ratio of the � parameters between the probe and pump
equations.

Restrict attention to the cases where � and m are integers,
when the system described by Eq. �10� supports analytically
known eigenfunctions in the induced waveguide. We also
exclude the cases where �=0 or m=0 because the corre-
sponding solutions do not decay to zero at t= 
�. Assume
that we design the fixed physical parameters of the system,
�s, �2s, �p, and �2p, to ensure that � given by Eq. �12� is
integer. �In simulations we choose �s, �p, �2p, and �, and
then use Eq. �12� to determine �2s. In general, such values
may not be realizable in a fiber implementation.� Then there
are exactly � eigenfunctions supported by the induced wave-
guide, corresponding to m=1, . . . ,�. Equation �11� gives the
corresponding energy eigenvalues E1 , . . . ,E�. When more
than one of these copropagate the difference in these energy
levels causes beating in the z direction �see Eq. �7��, as dis-

cussed in �8�. From now on we think of the probe as a single
photon in the weak-signal quantum limit, and start with the
simplest case, when �=m=1. This corresponds to the single-
peaked ground state u11, which we denote by �11�.

We now consider something new: we launch a photon
trapped by a soliton, soliton 1, and launch a second soliton
after it, soliton 2, at greater speed, so that it overtakes soliton
1. In the z-t plane, soliton 1 is launched in the positive z
direction, along the t=0 line, say, and soliton 2 travels up
and to the right so that it collides with soliton 1. What, then,
happens to the photon originally trapped by soliton 1? Figure
1 �top� shows the pump solitons �from the exact analytical
solution in �11�� in a typical example, and Fig. 1 �bottom�
shows the corresponding resulting probe �from numerical in-
tegration�: the photon is almost perfectly transferred from the
first to the second soliton. The results shown for the probe
were obtained by numerically integrating Eq. �5� using the

FIG. 1. �Color online� An example of photon transfer. Top: The
pump solitons. The soliton parameters in the notation of �11� are
k1=1.5, k2=−1.5+0.5i, �p=0.1 ��p=0.02, �2p=−0.2�, and the am-
plitudes of both �scalar� solitons are 4. The relative phase at colli-
sion is arranged to be �. Bottom: The probe when launched in the
state �11�. The parameters for the probe propagation are
�s=0.013 33 and �2s=−0.1333 ��=1�. The photon is transferred to
the overtaking soliton.
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split-step Fourier method. The initial condition used for nu-
merical integration is the analytical solution u�m of Eq. �10�,
and we again assume a zero walkoff term in Eq. �5�. The
extra velocity is imparted to the photon on transfer, not by a
walkoff term, but by the moving potential which results from
the two-soliton solution for the pump.

It is important to note that we have arranged things to
make the relative phase of the solitons at collision exactly �,
producing a so-called “repulsive” collision. This results in an
effective waveguide that can be made to bend more or less
gently, depending on the relative speed of the soliton colli-
sion. When the relative phase at collision is much different
from �, the soliton collision no longer induces a smoothly
bent waveguide, and the behavior becomes more compli-
cated and remains to be explored.

The experimental demonstration of such photon trapping
and transfer should be feasible with current optical fiber
technology. As an example, we assume a scheme with per-
pendicularly polarized pump and probe in a polarization
maintaining fiber where the birefringence has a standard off-
the-shelf value of about 310−4. We take soliton pulse
widths on the order of 1 ps, wavelength separation between
solitons of a few nanometers, and standard fiber parameters
of dispersion and nonlinearity at a wavelength of 1550 nm.
At this wavelength, losses are minimized, which is important
for both single-photon and soliton propagation. In order to
operate with no walkoff, we require about 50 nm wavelength
separation between pump and probe to compensate for
birefringence-induced walkoff �16�. These operating param-
eters should allow for propagation and collision experiments
to occur within about 1 or 2 km of fiber, and this wavelength
separation should make possible the detection of single pho-
tons in the probe. The physical parameters of Fig. 1 were
chosen to agree with this particular implementation.

The model of photon transfer described above assumes
perpendicular polarization in a birefringent fiber with realis-
tic parameter values and a mode of first degree, �=1. If we

can realize other, higher values of �s, by moving away from
fiber optic implementation, we can observe a further wide
range of interesting phenomena. Consider, for example, the
case with the same basic collision geometry, but where we
take �s=4, increase the relative velocity of the collision by
taking kI=0.8, and launch the probe in the state �21�.

FIG. 2. �Color online� The probe when launched in the state
�21�. In this case �s=4 and k2=−1.5+0.8i, so that the soliton colli-
sion takes place at a greater relative velocity. The system acts as an
ordinary nonpolarizing beam splitter.

FIG. 3. �Color online� Top: The probe when launched in the
excited state �21�, with the same parameters as for Fig. 2, except
�s=8. The photon in this case stays in large part with its original
captor soliton. Center: The probe when launched in the state �22�.
The photon is transferred to the faster soliton, as in the �11� case
shown in Fig. 1. Bottom: The probe when an equal linear combi-
nation of ground and excited states, �22�+ �21�, is launched. The
system is analogous to a polarizing beam splitter.
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Figure 2 shows the somewhat surprising result: the probe
wave is transmitted and deflected in about equal measure
�with a relative phase of ��. In other words, the system acts
as an ordinary �nonpolarizing� beam splitter.

For the final example, we use the same parameters as for
the non-polarizing beam splitter, except we increase �s to 8.
Figure 3 �top� shows that now the state �21� is almost entirely
transmitted. In contrast, Fig. 3 �center� shows that the ground
state �22� is almost entirely deflected �the photon deflected�,
as was the ground state �11� in our first example.

The probe equation is linear, and this observation shows
that this system is perfectly analogous to a polarizing beam
splitter �PBS�, except that the orthogonal modes separated
are �22� and �21�, instead of horizontal and vertical. When a
linear combination of modes is launched with soliton 1, the
excited-state component is largely transmitted directly, while
the ground state is deflected. Figure 3 �bottom� shows the
result when such a probe is launched, and Fig. 4 shows pro-
files of the magnitudes of the deflected and direct waves in
their local axes �orthogonal to the direction of propagation�,

together with the corresponding basis functions.
The efficiency of the PBS can be measured quantitatively

by expanding the direct and deflected waves in terms of the
orthonormal basis. The resultant projections squared,
�u �u�m��2, for the linear combination case in Figs. 3 �bottom�
and 4 are

Excited Ground

Direct 0.926730 0.001626

Deflected 0.134425 0.732341

The rows represent the outputs and the columns the inputs.
An ideal PBS would, of course, correspond here to an iden-
tity matrix.

We should point out that the parameters for the examples
presented in this Rapid Communication have not by any
means been exhaustively explored. The space of parameters
is in fact quite large. There are the complex soliton param-
eters k1 and k2, which determine the solitons’ amplitudes
�which need not be equal� and speeds; the relative soliton
phase at collision; and the pump physical parameters �p and
�2p. The probe has its own physical parameters �s and �2s
�which then determine the degree ��, and the order m. Only a
tiny fraction of this space has been touched. Nor have the
possibilities for implementation of the beam splitters using
current technology been explored, and work continues on the
properties of soliton-guided photons in general. It may also
be of interest to study the mechanism of differential transfer
exhibited in the beam-splitter examples, which is reminiscent
of quantum tunneling and frustrated total internal reflection.

In conclusion, we have shown that, when photons are
trapped by solitons, soliton collisions can be used to imple-
ment several operations that may prove useful in quantum
communication and computing: the trapping and transfer of
qubits, a beam splitter, and a polarizing beam splitter. The
transfer of qubits is practical in an optical fiber with today’s
technology.
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FIG. 4. �Color online� Probe waveform profiles for the linear
combination case shown in Fig. 3 �bottom�.
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