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Abstract

In this paper we develop a framework for modeling the management of flexible

workforces in services with stochastic work arrivals and absenteeism. We present a

classification scheme for a family of workforce sizing models that take into account ab-

senteeism, overtime, backlogging, working time and functional flexibility, and the timing

of work arrival information. The working time flexibility feature of the models is rep-

resented in a general way by constrained overtime and call-in workers. We explicitly

formulate models for work environments with only one job type and therefore ignore

functional flexibility. The various models, in this paper, are formulated as optimization

problems that determine the combined labor and backlog cost minimizing pool sizes for

call-in and regular workers. Embedded within this optimization problem is a dynamic

programming problem of making optimal daily staffing decisions with respect to the

utilization of call-in and overtime resources. The models not only determine optimal

pool sizes but provide managers with a tool for making optimal dynamic staffing de-

cisions on a daily basis. We implement several of the models and demonstrate, with

numerical examples, that there is a strong link between the benefits of different types of

flexibility, the stochasticity of the work environment, and the availability of information

for decision making.

'Operations Research Center, Massachusetts Institute of Technology

tOperations Research Center, Massachusetts Institute of Technology
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It is now a well established fact that the U.S. economy has become dominated by services,

91.3 million civilian employment [Sta95]. The special characteristics of services, reviewed in

[BL93b], and the increasing acceptance of novel work arrangements (see [Fie94], [Fod95]),

demand a modern and innovative set of models for managing workforces. Specifically,

the lack of inventories and the relatively short time scales involved in services mean that

stochasticity in work arrivals and absenteeism require firms to find flexible approaches to

utilizing workforces. Failure to do so will result in either high labor costs or poor service.

Within the labor economics literature several forms of flexibility are mentioned. We

will follow the classification found in [Tre92] of numerical, working time, functional, and

pay flexibility. Numerical flexibility governs the employers options in altering the size of

their workforce and allows a firm to better match their workforce to workload, when there

is workload variability over a time scale of months. Working time flexibility governs the

scheduling of work hours and the number of hours worked, and allows a firm to better match

its workforce to workload when there is workload variability from day to day or within days.

Functional flexibility governs many organizational issues such as job definition, supervisory

hierarchies, and internal mobility. This flexibility can increase the range of activities a

workforce is capable of performing and therefore make it more adaptable to work demand

variability. It can also be a necessary condition for a firm to be able to apply different

operational techniques such as JIT and continuous improvement. Pay flexibility governs

a firm's ability to tie wages more closely to the firm's economic performance and/or the

worker's individual performance. Labor advocates have traditionally criticized "flexible"

work arrangements as exploitative, portraying them as means to cheapen labor unfairly

[HB90]. Most complaints focus on issues of job security, benefits and safety [Reb95] for

flexible workers. In short, there is evidence that flexible workers, and particularly working

time flexible workers are treated as second tier employees. This paper does not address

these issues, and we make no assumptions about employer-employee relations. The flexible

work arrangements we model are compatible with well compensated, long-term, and safe

employment. Similarly, they are compatible with unfavorable labor relationships as well.

We are interested in the problem of matching workforce size to workload in service en-

vironments with variability in workloads, and focus our attention on those forms of labor
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flexibility that directly relate to this problem, namely numerical, working time, and func-

tional flexibility. The variability in a workload can be characterized by the degree to which

it is stochastic and the time scale of the variability. We consider the following time scales:

months, weeks, days, and hours. For each of these time scales there are examples of work

environments in which there is deterministic or seasonal workload variability, examples in

which there is stochastic variability, and examples of combinations of both. We use the

term stochastic broadly to describe work arrivals that have a random component. We do

not preclude correlation between work arrivals at different times. Each form of variability

may benefit from a different form of labor flexibility.

Monthly variability in workload can be a result of unexpected changes in demand for a

firm's services, a change in the type of services required or a seasonal effect. In all cases a

firm may need to expand or contract its workforce for a period of one or more months but

usually not more than 6 months1 . The problem of deciding how to adapt the workforce size

in such situations was considered for manufacturers in [HM60]. The same approach applies

for services without the ability to build inventory. In [HM60] the only option for adjusting

workforce sizes is to hire or fire workers. Today there are other options commonly used

to achieve the same effect such as, subcontracting excess work and contracting contingent

workers 2. The ability to contract contingent workers is a form of numerical flexibility.

When a firm faces a shift in demand from one mix of services to another it may be aided

by functional as well as numerical flexibility. Crosstrained (or multiskilled) workers can

be shifted, from a low demand job to a higher demand job, thereby reducing the firm's

need to lay-off workers, from the low demand job, and its need to hire new workers, for the

high demand job, both actions involving significant costs3 . In these situations firms also

use working time flexibility in the form of overtime and short-time to smooth their labor

1We assume that the firm has already taken measures such as scheduling vacations and low priority tasks

for low workload times of year.
2 The term 'contingent worker' has been used in many different ways. We will use the definition in [Pol89]:

"Any job in which an individual does not have an explicit or implicit contract for long-term employment or

one in which the minimum hours worked can vary in a non-systematic manner."

3Crosstraining also involves significant costs and many other complications such as, assigning supervisory

responsibility to workers who perform a variety of tasks, setting pay incentives, paying for training, and

maintaining skill levels [Kle94].
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requirements [Mic87].

When workload varies on a weekly, daily or hourly basis working time and functional are

the most applicable forms of flexibility. It is not feasible to hire and fire on a regular basis

from week to week, therefore numerical flexibility is not relevant in any significant scale4 .

When workloads vary deterministically working time flexibility is manifested in days-off

scheduling and the use of part-time work. The benefits of such flexibility are demonstrated

in [Bak73, BLP94, MR73]. The benefits of crosstraining (functional flexibility) for within-

day variability is demonstrated in [BLP94, War72].

When workload varies stochastically within a day there is a practical limit to working

time adjustments. Once a scheduled worker has arrived to work it is difficult to reassign

them to different hours or to send them home. The most common working hour adjustment

is to offer overtime hours. In mail processing plants managers can move the start time of a

worker's shift up to two hours, but must pay an overtime premium for those shifted hours

and must be able to make the adjustment before the worker has arrived. The most common

phenomenon is for mail, the workload, to arrive in the predicted quantities, but at later than

planned times. In these situations a large amount of overtime is usually utilized. Short-

timing is a less common option and is used when workload is light. Functional flexibility

can be beneficial for within day variability if the variability shifts work from one job to

another. This occurs in stochastic flow shops and the benefits of crosstraining for these

environments has been shown in [Tre89].

When workload varies stochastically from day to day or week to week there is an op-

portunity to benefit from functional flexibility, as in the previous case, but there is also

a significant opportunity to benefit from working time flexibility. The primary vehicle for

this benefit is the call-in worker. Call-in workers are workers who are called in to work on

short notice when there is a need for them. A firm employing call-in workers would draw

upon two sources of labor. The primary source, is the pool of regular staff who have fixed

schedules and are permanent employees of the firm. The second source would be call-in

workers who do not have preset schedules, i.e. workers with flexible working time. These

4It is feasible, and common, to use temporary workers to cover for absences and unfilled positions.
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workers could be permanent employees or contracted from an external temporary employ-

ment agency. In either case the firm would be required to guarantee some minimum pay

over the employment period to each call-in worker. If the workers are called in more than

the guaranteed amount they would be compensated accordingly. An aggregate model of

this approach, with no backlogging of work from day-to-day, is presented in [BL93a] and

[BL94].

An interesting hierarchical model for planning the use of long-, medium-, and short-

term flexibilities is presented in [WR93]. In this paper an attempt is made to model the

use of short-timing, temporary workers, overtime, and crosstrained floaters in a service

environment with stochastic workloads and absenteeism. The classification of the model as

service based is used to justify the lack of inventories and/or backlog. Furthermore it is

assumed that there is an endless supply of temporary workers. These assumptions together

lead to a formulation in which the daily staffing decisions are independent of one another.

This approach is successful in modeling the impact of long-term planning decisions on the

availability of resources for short-term staffing decisions but fails to accurately represent

the short-term system behavior.

There are many work environments that would fall under the category of services with

day-to-day workload variability. For example, in the transaction processing center of a

mutual fund company the amount of work that arrives in the mail each day is highly

variable. This workload is subject to variability in mail service, economic trends, market

events, and response to marketing promotions. Customer's requests for transactions must be

processed very quickly, preferably on the day of receipt, and obviously cannot be processed

before they arrive. Staffing to the average workload leads to the accumulation of backlogged

work and poor customer service. Staffing at a level that is sufficient, with high probability,

is very costly and involves a low utilization of the workforce. Another example is a hospital.

Patients arrive to an emergency room randomly each day and, as many medical services are

distributed to clinics and centers, a higher proportion of hospital workloads are emergency

cases and therefore less predictable and manageable. The hospital cannot afford to be

understaffed since patients must receive their treatments in a timely manner. On the other

hand, medical personnel are highly trained and expensive, therefore overstaffing can be a
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great financial burden.

The use of call-in workers has many potential benefits. For the employer, call-in workers

may provide an expanded labor capacity with a lower cost than an equivalent labor capacity

composed of entirely full-time regular workers. Call-in workers also provide a consistent

source of of expanded capacity making it easier for a firm to maintain consistent workforce

performance standards. For employees, the use of call-in workers will reduce the amount

of overtime worked and should reduce the overall amount of wage received per worker

employed by the firm. On the other hand the call-in worker arrangement suggests a long

term commitment of employment. Furthermore, the reduction in wages paid come with an

increase in leisure time for regular workers who work less overtime and for call-in workers

who do not work full-time hours. Although the uncertainty in schedule is a negative factor,

overall a call-in arrangement offers a stable source of income for workers who do not want

to work full-time.

Some employers try to reap these benefits today but in very adhoc ways. The USPS has

a class of employees called casual employees that are not required by union contract to have

regular schedules. These workers are utilized to fill staffing gaps in operations caused by

absenteeism or vacations etc. [Ser94]. In some financial services companies part-time data

entry clerks are informally promised 16 hours of work each week and are sent home early

without pay if workload is light, this is an example of short-timing 5. In neither case has a

systematic analysis been done to determine staffing needs in light of the existing scheduling

flexibility6 .

The financial services and hospital examples described previously have several charac-

teristics in common that are not modelled comprehensively in any of the existing literature:

* Workload is stochastic.
5 The limitation of this approach is that short-timed workers have already come in to work and must be

compensated for the inconvenience.

6In practice employers commonly rely on temporary personnel services to provide call-in workers. How-

ever, from our perspective this is just one extreme of the flexibility spectrum. Such temporary workers

are call-in workers who receive no commitment from their employer beyond the single continuous period of

utilization.
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* Workload can be backlogged.

* There is no 'finished goods' inventory.

* The time scale does not allow for hiring/firing of workers.

The purpose of this paper is to fill this void in the literature by fulfilling the following

goals:

* Formulate a new family of workforce management models that address the major

trade-offs involved in determining staffing policies in a service firm with variable work-

loads.

* Provide managers with tools for setting and testing staffing policies.

* Demonstrate the potential utility of call-in workforce arrangements and illuminate

their dynamics.

The remainder of this paper is organized as follows. In section 1 we present a classi-

fication scheme for distinguishing different work environments and thereby define a family

of new modern workforce management models. In section 2 we formulate a representative

group of one-job models. In section 3 we perform some analysis of these models. In section 4

we present some numerical results demonstrating the use of these models and the potential

benefits of workforce flexibility. Finally in section 5 we present some extensions and discuss

conclusions.

1 Definitions and Problem Classification

We develop a general set of models for workplaces similar to the financial services and

hospital examples described previously. We assume that all of these workplaces follow

operating policies with the following general structure: The firm processes all work that

arrives each day with only regular staff. If there is excess work a decision is made to

draw upon non-regular labor capacity or not. Excess capacity is drawn from the call-in
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workforce and overtime hours. If excess work remains, it is backlogged. Different workplaces

are distinguished from one another by the following characteristics: notification, backlog

tolerances, workload distributions, absenteeism, call-in worker contracts, crosstraining, and

their cost structures. In this section we define what we mean by the above distinguishing

characteristics of workplaces:

* Period - We model the problem using a general time unit called a period. This can

be considered to be a day, a week, etc. On the level of a period we make decisions

about drawing upon call-in workers or overtime and how much backlog to allow. The

day is the time unit for which the problem is most naturally defined but we do not

restrict ourselves to this scale.

* Planning Horizon - A planning horizon is some number of periods for which we make

the decision of how to size the workforce.

* Notification - The information available when call-in workers are informed, that they

will be needed in any particular period, is strongly dependent upon the stochastic

process governing the exogenous work arrivals. If a manager has good knowledge7 in

period 1, of what the workload will be in period 2, she can call in workers in period 1

for period 2. In this situation we assume it is reasonable to expect the call-in workers

to be able to come in. If a manager's information about the period 2 workload is

incomplete until the start of period 2 it is less likely that she can make the call-in

worker utilization decision for period 2 with full workload information. Based upon

this reasoning we will consider two different notification scenarios. The first scenario

occurs when the manager has workload information early enough to contact call-in

workers for the same period that workload is expected. The second scenario occurs

when the manager only receives complete workload information when it is too late to

call in workers for the same period as the workload arrives. In this scenario call-in

worker's utilization will be decided in one period for the next-period with incomplete

workload information. To summarize we will consider two notification schemes: same

period, and next period.
7In reality there will always be uncertainty in the workload so we consider knowledge of workload to be

a low variance estimate of workload.
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* Backlog and Backlog Tolerances - Backlog is the work that is carried from one period

to the next. Any firm may have specific tolerances for backlog which we encode in

the backlog penalty function.

* Workload Statistics - We characterize new work arrival distributions by considering the

following two questions: 1) Are the workloads in each period identically distributed,

and 2) are the period workloads independent?

* Absenteeism - Another source of variability in a workplace is absenteeism. We consider

the cases when there is no absenteeism and when there is absenteeism in one or both

of the regular and call-in staffs.

* Call-in worker contracts - We view call-in workers as being contracted for a planning

horizon. These workers could be regular staff that are temporarily placed into this

scheduling category, permanent call-in workers, or externally contracted temporary

workers. In any event we assume that call-in workers are guaranteed a minimum num-

ber of payed work periods for the contracted planning-period. If call-in workers are

needed more than the guaranteed number of periods then they must receive additional

compensation.

* Crosstraining - In firms where there are multiple jobs requiring different worker qual-

ifications, crosstraining can be used to increase worker management flexibility. If the

workload of one job is not strongly correlated with the workload at another job, it

is possible that having some workers who are crosstrained to perform each job will

reduce labor costs.

* Shift - A shift is the number of hours worked within a period without requiring

overtime pay.

* Cost Structures - In formulating the cost functions for the models we take into account

the following sources of labor costs: Benefits costs for regular and call-in workers,

hourly wages for all workers and overtime wage premiums. We also assess a penalty

for carrying backlog.
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While all the above characteristics may distinguish work environments we focus on a

subset that most strongly defines the structures of the models we develop in this paper.

These characteristics are: Notification and Crosstraining, and Backlog policy. We use these

characteristics to define a family of workforce management problems. This family is outlined

in the form of a tree in Figure 1.

Determine Staffing Levels

One Job Multiple Jobs
(No Crosstraining) Crosstraining

Same Period Next Period Same Period Next Period
Notification Notification Notification Notification

Figure 1: Tree of Workforce Problems

On the most general level, the problem we want to solve is: What are the optimal

staffing levels that would minimize the sum of labor and backlog penalty costs? On the next

level, we model one job and multiple jobs with no crosstraining as a single problem type.

Environments with multiple jobs and crosstraining require a distinct model. On the lowest

branching level, on the problem tree, we distinguish between the two different notification

regimes, same-period and next-period. Within the context of each of the problems, on

the tree, we will have to consider the effects of absenteeism and non-homogeneous and/or

dependent work arrival distributions.
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2 Formulations

In this paper we are focusing on the one-job branch of the problem tree. In this situation

the manager must decide:

Problem 2.1 How many regular workers N and call-in workers M to staff for a planning

horizon of length V time periods, so that the expected labor and backlog costs are minimized

over the entire planning horizon.

We initially assume that there is no absenteeism and that the new work that arrives

each period is independent and identically distributed to all other periods and formulate the

same-period and next-period notification problems. We then formulate both problems with

absenteeism, in doing this we show how absenteeism can be manifested in several different

ways requiring distinct formulations.

The problem formulations all address problem 2.1 and assume that in each period man-

agers have two decisions to make, how many call-in shifts to utilize and how many overtime

shifts to utilize. These decisions are assumed to be made optimally and dynamically. The

major difference between the different problems formulated in this chapter is the informa-

tion available about workloads and absenteeism when these two decisions must be made.

This means that for each problem in this branch of the problem tree we formulate a different

dynamic program for the period by period decision making.

In all the formulations we define t to be either the amount of work in the system in

period t, or the amount of work in excess of the staffing available tha period. This work

has two components, new work that arrived at the beginning of period t, which we call dt

and work left in the system at the end of period t - 1. For any given fixed staffing policy

we view {(t as a Markov process. The transitions from state to state are driven by the

iid. work arrival process {dt} and staffing decisions made in each period.

In each period the amount of work that can be processed is determined by the number of

regular workers present, the number of call-in workers utilized and the number of overtime

shifts utilized, any excess is backlogged to the next period. In the different problems the
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timing of the call-in and overtime decisions may be different but the trade-offs involved in

these decisions are the same. Let's consider these trade-offs here.

If we do not utilize call-in or overtime work and the workload in a period t does not

exceed the available regular staff's capacity there are no backlog costs and no new staffing

costs, since the cost of the N regular workers is a sunk cost. If the workload exceeds the

regular staff's capacity we have backlog costs unless a sufficient number of call-in and/or

overtime shifts are utilized. I.e. we must tradeoff the cost of backlog with the cost of

overtime and/or call-in worker utilization. The cost of overtime is a linear function of the

number of hours utilized in period t. The cost of call-in workers is dependent upon the

cumulative use of call-in workers up until period t; because, we contract M call-in workers

for the planning horizon with a guarantee of a fraction G, of V, paid periods of work in

the planning horizon. The payment for GV per call-in worker periods of work is a sunk

cost and any periods worked in excess of GV periods per call-in worker incurs extra costs.

This means that the overtime/call-in decision, in each period t, is a dynamic decision based

upon cumulative call-in utilization, expected future utilization, and future backlogs.

To make these various costs more tangible we now define the cost parameters that are

used in all the problem formulations. First, we recall our definition of the shift as the

number of hours a worker works within a time period at their ordinary wage8. Second, we

only define labor costs over the course of a single planning horizon (composed of an arbitrary

number of time periods). Third, we assume that each worker has three components to their

compensation: A salary received for each shift worked, a benefits component for each shift

worked, and a fixed component for being part of the workforce during the planning period

in question. The cost parameters we use in the formulations are as follows:

Cf = fixed cost for each worker, call-in or regular that is a member of the workforce for

the planning period. It includes fixed component of compensation and fixed costs per

worker for the firm. E.g. human resource department costs, services available to all

employess regardless of status, etc.

Crw = per-shift cost of a regular worker that combines the benefits and salary.

8Later we introduce the constant 7r as the number of units of work processed per shift of work.
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Ccw = per-shift cost of a call-in worker that combines the benefits and salary.

Cot = the premium paid per-worker per shifts worth of overtime worked.

Cb = the per-time period penalty incurred by the firm for every unit of work backlogged.

CB = the penalty incurred by the firm for every unit of work backlogged in the final

period of the planning period.

We have assumed linear costs of Cot for overtime shifts worked and Cc for call-in

worker shifts paid for. We have specified linear backlog penalties Cb and CB. Note: We

could formulate the models with an arbitrary functional form for backlog penalties. We use

linear penalties here to be consistent with the numerical examples and analysis sections.

Having understood these trade-offs and cost parameters we can now state the problem more

completely as:

Problem 2.2 What staffing level S = (N, M) should a firm contract, over a planning

horizon of length V, to minimize the expected labor and backlog cost incurred when opti-

mal call-in/overtime decisions are made dynamically each period, if the call-in workers are

guaranteed at least a fraction G, of V, paid periods of work per planning horizon.

The implication of this problem statement is that for each problem in the one-job branch

of the problem tree the expected cost of a staffing level S is the expected cost of the optimal

solution to a finite horizon, labor allocation, dynamic problem. We formulate problem 2.2

as a mathematical program:

P1

minCrwNV + CcwMGV + Cf(N + M)+ f(xil, l1)
S

subject to:

S (0, 0)

S integer
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where Cf is a fixed cost for each worker, call-in or regular, and Crw and Ccw are respec-

tively per-period costs for employing regular and call-in workers that include hourly wages

and pro-rated benefits. The expression f(x 1 , nci) is the expected cost of making optimal

dynamic staffing decisions over the planning horizon given a staffing level S, with x1 units

of work in the system, and nli guaranteed shifts of call-in workers unused in period 1.

2.1 Same-period notification, no absenteeism

Definitions

The problem has V stages that are equivalent to periods.

The state of the system at each stage t is given by the vector (t, t).

it is unused portion of the total call-in worker guarantee MGV at the end of stage

t- 1.

xt is defined to be the workload in the system at the start of stage t. This work is

composed of new work that can be thought of arriving between stages t-1 and t which

we will call dt, and work left in the system at the end of stage t-1.

Decisions

ut is the number of call-in workers utilized in stage t.

wt the number of overtime shifts utilized in stage t.

Constraints

ut < M

Wt < OTmax(N, ut)
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Where OTmax(N, ut) is a function representing the maximum amount of overtime that

can be performed by a complement of workers (N, ut). I.e. N regular workers are always

available and ut call-in workers are on site in stage t.

Transitions

ft = [t-I - Ut-l]

xt = [xt-_ - r(N + ut-_ + Wt-l)]+ + dt

where 7r is a constant that converts units of people-shifts to units of work. The geometry

of the state space is depicted in figure 2.

Kt
A

MGV

a)

I

ce:z

ce

a)

(0,0)

t-1

t t+l

Work-in-System xt

Figure 2: State Space Schematic

Costs The costs incurred in stage t are the costs of backlog, the cost of overtime and a

cost for call-in worker usage in excess of the guarantee. The cost at stage t is given by:

C [ut - Kt]+ + Cotwt + Cb(xt - i-r(N + ut + Wt))

To save space we define: bt = Max(xt - 7r(N + ut + wt), 0). The end of planning period

cost (or terminal value function) is used to allow a different cost for backlog remaining at

15

-



the end of the planning period and is defined as:

Cv(bv) = CB(bv)

The cost to go function in stage V is:

fv(rv, xv) = Min,,,,, {C[ut - rIt]+ + CotwV + Cv(bv))

and in stage t:

ft(rt, xt) = Minu,wt {C[ut - rt]+ + Cotwt + Cb(bt) + Edt+l,, [ft+l(Nt+l, Xt+l)]}

The interpretation of this equation9 is: If you are in state (t, xt) in stage t, the expected

cost you incur from stage t until the end of the planning period is the minimum expected

cost over all decisions (ut, wt) of the overtime and backlog cost in stage t, plus the cost that

is incurred from stage t + 1 until the end of the planning period, when following an optimal

policy. When we solve this dynamic program we start with fv() and work back to f().

2.2 Next-period notification, no absenteeism

In the previous section we have assumed that all staffing decisions (i.e. how many call-in

workers and overtime shifts to utilize), for a period, have been made with perfect information

about the workload in that period. In this section we consider the scenario where we do not

have perfect information about the workload when we make the decision to call-in workers.

This situation can arise because, for example, we must notify call-in workers by 5pm on

Tuesday if we want them to work on Wednesday. It can also occur, for example, when we

can notify call-in workers by 7am Wednesday morning that we want them to work that

day, but do not have perfect knowledge of the workload for Wed. by that time. However,

next-period notification describes all situations in which call-in worker decisions are made

for a time period with incomplete knowledge of workload for that period. In this paper we

9 The notation used in this formulation is based upon the conventions of [Ber87].
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only consider next-period notification scenarios in which exogenous work arrivals in each

period are independent and identically distributed. Therefore, information about workload

is unchanged until a new work arrival occurs.

Within this scenario we can consider two subcases, relating to when we make overtime

decisions. Subcase (i): Overtime must also be allocated before we have perfect workload

information. Subcase (ii): Overtime may be allocated after information has become avail-

able.

I.e. In subcase (i) overtime and call-in decisions are made at the same time and in

subcase (ii) the overtime decision may be made later. These two cases arise in practice

in the sense that in many workplaces managers may not require overtime and therefore

must seek volunteers. These volunteers are more likely to be found if sought out earlier

as represented in subcase (i). On the other hand there are workplaces in which employers

may require overtime (within some limits) and therefore do not have provide notice to the

employees as is represented in subcase (ii). In this paper we only present the formulation

of the second subcase.

In this subcase we make the assumption that the timing of the call-in decision for a

period and the overtime decision for that period are separated by the arrival of information

about the workload (see Figure 3). To accommodate this we redefine the start and end

of a period. A period will begin with the exogenous arrival of new work followed by the

overtime decision for that period and call-in decision for the next-period (see Figure 4).

I One Period I

I 1
I I I time
I CW Work O.T. I
I Dec. Info Dec. I

CW Call-in Workers Dec. Decision O

I CW = Call-in Workers Dec. = Decision O.T. = Overtime |

Figure 3: Order of events with next-period notification
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One Period

I I I I I time
I Work O.T. CW I

Info Dec. Dec. I
for

next period

CW = Call-in Workers Dec. = Decision O.T. = Overtime

Figure 4: Order of events for next-period notification with redefined periods

Definitions We define a two dimensional state space: (t, t) where:

/t is unused portion of the total call-in worker guarantee MGV at the end of stage

t - 1.

xt is defined to be the workload in the system, in excess of the call-in workers on

hand, at the start of stage t. t may be negative.

We define a single random variable dt for each stage t as, the amount of exogenous work

arriving to the system at the start of stage t.

Decisions We have two decision variables: ut, the number of call-in workers utilized in

stage t, and wt the number of overtime shifts utilized in stage t.

Constraints

ut < M

wt < OTmax(N, M)

Where OTmax(N, M) is a function representing the maximum amount of overtime that

can be performed by a complement of workers (N, M). I.e a standard limit on overtime has
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been set based upon the total staffing level l0 .

State Transitions

xt = [tl - 7r(N + wt)]+ + dt - rt-

t = [Kt-- Ut-l]+

Cost Functions The end of planning period cost (or terminal value function) is used to

allow a different cost for backlog remaining at the end of the planning period and is defined

as:

Cv(xv - rwv) = CB(XV - lrwv)

The cost-to-go function in stage V is:

fv(nv, xv) = min {Cottwv + Cv(xv - 7rwv)}
WV

in stages t:

ft(st, xt) = min {Cotwt + Cb(xt - rwt) + Ccw[Ut - Kt]+ + Edt+l [ft+l('nt+l, Xt+l)]}
Wt,Ut

2.3 Same-period notification with absenteeism

We now consider the staffing problem when there is absenteeism among the regular and

call-in worker pools. There are several different scenarios for how absenteeism can affect

the decision making process. We characterize these scenarios by the relative timing of

absence information and staffing decisions. In all scenarios we assume that absences among

regular workers are independent of absences among call-in workers and that absences are

independent of workload. As in the no absenteeism case, we always have two staffing

decisions to make for each period, namely how many call-in workers to use and how many

10In theory basing the overtime limit on the total staffing level allows for situations in which overtime is

assigned in amounts that require more call-in workers to be present than are actually utilized that day. In

practice this anomoly is only significant for extreme problem parameter choices.
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overtime workers to use. We model the multiple decision points by splitting each exogenous

work arrival cycle, or time period, into two stages for the DP staffing engine. Therefore,

while we considered a V stage problem in the no absenteeism case we now consider the

problem to have 2V stages with stage 1 being the first stage.

Case (i) In this case we assume that we make the call-in decision when we know the work-

load and regular worker absenteeism. We then assume that we make the overtime decision

when we know the call-in worker absenteeism. In this case we are assuming that regular

workers are giving some notice about their absence and that we know this information when

we start to solicit call-in workers. We then solicit call-in workers until we find the amount

we want or have exhausted the available ones. At this point in time we know how many

regular workers and call-in workers are actually at work and how much work there is and

make the overtime decision. The order of events is depicted in figure 5.

One Period

O O

-: I I I I 
RW Work CW O.T. time
Abs. Info Dec. Dec.
Info &

Abs.
Info

CW = Call-in Workers RW = Regular Workers

O.T. = Overtime Abs = Absenteeism Dec. = Decision

Figure 5: Order of events for same-period notification with absenteeism case (i)

Definitions We define a two dimensional state space: (t, 'it) where:

/it is unused portion of the total call-in worker guarantee MGV at the end of stage

t - 1.

xt is defined to be the workload in the system at the start of stage t.

We define the following random variables in each odd numbered stage:
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nt is the number of regular workers who are present in stage t.

dt is the amount of exogenous work arriving to the system in stage t.

We define st = dt - 7rnt to be the newly arrived staffing 'shortage' for stage t. I.e. if st is

positive it means that the new work arriving to the system exceeds the regular staff. If st

is negative it means that there are more regular workers present than needed for the new

work and therefore the excess staff can work on the backlog, if any, from the previous day.

For the even-numbered stages we define the random disturbance: mt as the number of

call-in workers who are available in stage t.

Decisions As with the random variables we have different decisions variables for odd and

even stages.

If t is odd we make the decision: ut, the number of call-in workers utilized in stage t.

If t is even we make the decision: wt the number of overtime shifts utilized in stage t.

Constraints

ut M

wt OTmax (nt, mt)

Where OTmax(nt, mt) is a function representing the maximum amount of overtime that

can be performed by a complement of workers (nt, mt). I.e a standard limit on overtime has

been set based upon the expected number of regular workers present and call-in workers

availablell.

"lThis means that on days with a lot of absenteeism we could ask workers to perform more overtime per

person than on days with less absenteeism as long as the overtime does not exceed a limit based upon the

expected number of regular workers present. This situation is fairly realistic.
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State Transitions For odd stages t + 1:

Xt+1 = [[t - roWt]+ + St+l] +

tKt+1 = t

Note: We are defining the workload at the start of an odd stage as the work beyond the

processing capability of the regular staff.

For even stages t + 1:

Xt+1 =[t - 7r min[ut, mt]]+

t+l = [i t - min[ut, mt]]+

Cost Functions The end of planning period cost (or terminal value function) is used to

allow a different cost for backlog remaining at the end of the planning period and is defined

as:

C2V (X2V - W2) = CB(z2v - W2)

The cost-to-go function in stage 2V is:

fv(n2v, X2v) = min {CotW2V + C2V(X2V - W2V)}
W2V

and in even stages t:

ft(nt, t) = min {Cotwt + Cb(t - 7rWt) + Est+l(tt+l, t+l)]}wt

and in odd stages t:

ft('t, Xt) = min {Emt+l [C,,w[min[ut, mt] - t]+ + ft+l(t+l, Xt+l)]}
Ut

Case (ii) In this case we assume that we make the call-in decision without knowing the

regular worker absenteeism, only the workload. We then assume that we make the overtime

decision with complete information about call-ins, regulars, and the workload. In this case

we are assuming that the regular workers do not give notice of absences and just don't show
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up. I.e. when we find out how many regular workers are present it is too late to solicit

more call-in workers.

We can see from the timeline in figure 6 that as in case (i) there are two decision points,

one for call-in workers and one for overtime workers. We again model this by splitting each

exogenous workload arrival cycle into two stages for the DP staffing engine. We define the

same two dimensional state space as in case(i): (t, t).

I One Period I

l l
lO l

I I I I I
X Work CW RW O.T. time
Info Dec. Abs. Dec.

& Info
Abs.
Info

CW = Call-in Workers RW = Regular Workers

O.T. = Overtime Abs = Absenteeism Dec. = Decision

Figure 6: Order of events for same-period notification with absenteeism case (ii)

Case (iii) In this case we assume that we make the call-in decision without knowing the

regular worker absenteeism and without knowing the call-in worker absenteeism but make

the overtime decision with complete information. The implication here is that the regular

workers do not give notice of their absences and that the call-in workers who are absent are

ones that have said they would come in to work but do not show up.

We can see from the timeline in figure 7 that as in case (i) there are two decision points,

one for call-in workers and one for overtime workers. We again model this by splitting each

exogenous workload arrival cycle into two stages for the DP staffing engine.

2.4 Next-period notification with absenteeism

In this case we assume that we make the call-in decision when we know the regular worker

absenteeism but before we know the new work arrival. We then assume that we make the

overtime decision when we know the call-in worker absenteeism and the workload situation.
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I One Period I
I I

I I I I I -

Work CW CW RW O.T. I time
Info Dec. Abs. Abs. Dec.

Info Info

CW = Call-in Workers RW = Regular Workers

O.T. = Overtime Abs = Absenteeism Dec. = Decision

Figure 7: Order of events for same-period notification with absenteeism case (iii)

In this case we are assuming that regular workers are giving some notice about their absence

and that we know this information when we start to solicit, call-in workers. We solicit call-

in workers until we find the amount we want or have exhausted the available ones. At this

point in time we know how many regular workers and call-in workers will actually be at

work and how much work there is and make the overtime decision. The order of events is

depicted in figure 8.

One Period l

O O
I I I I I

I RW CW Work O.T. I time
Abs. Dec. Info Dec.

Info &
Info Abs.

Info

CW =Call-in Workers RW = Regular Workers

O.T. = Overtime Abs = Absenteeism Dec. = Decision

Figure 8: Order of events for next-period notification with absenteeism case (i)

We define a two dimensional state space: (t, rIt) where:

't is unused portion of the total call-in worker guarantee MGV at the end of stage

t - 1.

xt is defined to be the workload in the system at the start of stage t.

We define the following random variables in each odd numbered stage:
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nt is the number of regular workers who are present in stage t.

dt is the amount of exogenous work arriving to the system in stage t.

For the even-numbered stages we define the random variable: mt as the number of call-in

workers who are available in stage t.

Decisions As with the random variables we have different decisions for odd and even

stages.

If t is an odd stage we make the decision: ut, the number of

stage t.

If t is an even stage we make the decision: wt the number of

stage t.

call-in workers utilized in

overtime shifts utilized in

We place the following constraints on the decisions:

ut M

wt OTmax (nt, mft).

Where OTmax(nt, fmt) is a function representing the maximum amount of overtime that

can be performed by a complement of workers (nt, mt). I.e a standard limit on overtime has

been set based upon the expected number of regular workers present and call-in workers

available12. To simplify notation we define at = min[ut, mt] as the actual number of call-in

workers utilized in stage t.

State Transitions For odd stages t + 1:

Xt+l = [Xt - 7rWt]+ - nt

12This means that on days with a lot of absenteeism we could ask workers to perform more overtime per

person than on days with less absenteeism as long as the overtime does not exceed a limit based upon the

expected number of regular workers present. This situation is fairly realistic.
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Kt+1 = Kt

Note: t may take on negative values for odd t. If xt is positive it means that the backlogged

work in the system exceeds the regular staff processing capacity. If xt is negative it means

that there are more regular workers present than needed for the backlog currently in the

system and therefore the excess staff can work on the new work yet to arrive that period.

For even stages t + 1:

Xt+l = [Xt - 7rat + dt]+

/Ct+l = [t - at]'

Cost Functions The end of planning period cost (or terminal value function) is used to

allow a different cost for backlog remaining at the end of the planning period and is defined

as:

C2V(X2V - TrW2V) = CB(X2V - rW2V)

The cost-to-go function in stage 2V is:

fV(K2V, X2V) = min {CotW2v + CB(X2V - 7rW2V)}
W2V

and in even stages t:

ft(rt, xt) = min {CotWt + Cb(t - rwt) + Ent+l [ft+l(tt+l, t+l)]}
ot

and in odd stages t:

ft(i;t, xt) = min {Emt+l,dt+l [Ccu[at - rt]+ + ft+l(Kt+l,t+l)]}
Ut

The assumption that the systems starts with no backlogged work requires some discus-

sion. The formulation clearly does not require this to be the case and we could also draw

the starting work in the system from some probability distribution representing the backlog

in the system at the end of V periods. We could generate such a distribution with numerical

experiments. Alternatively we could set the terminal stage backlog cost very high to drive

the system to empty itself. In the numerical results chapter we will discuss this issue more.
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3 Analysis

In this section we analyze the optimzation problems formulated in the previous section. In

the analysis we attempt to achieve two goals. The first is to characterize the real-world work

arrangements that can be represented by some of the special cases of the various problems.

The second goal is to derive methods to simplify the computational burdens of solving the

problems.

3.1 Special Cases

The models we have formulated are very general in many senses. We have not assumed any

special probability distributions for the random variables in the model. We also have created

a structure that can represent many of the realistic work force management arrangements

that exist today. These arrangements are modelled by choosing special values for some of

the different parameters in the models. We now demonstrate how this can be done.

Traditional workplace In the traditional, inflexible workplace there are only regular

workers and overtime available to the managers. The problem of determining how many

regular workers to staff and how to utilize overtime can be represented in our models by

setting M = 0. The outer optimization becomes a problem of choosing the cost minimiz-

ing value for N and the dynamic decisions made within the inner optimizations involve

managing the use of overtime to reduce backlog.

Temporary workers Today many workplaces rely on temporary agencies to supply them

with labor when the regular workforce is insufficient. These temporary workers are only

paid for the days they work. This arrangement can be represented in our models by setting

G = 0. This means that the call-in workers are not guaranteed any days of work. This

implies that there is no need to select a value of M. It is assumed that there is always some

employment agency that can provide temporary help on short notice.
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Short-timing/Flextime In some workplaces (more commonly in Europe than the United

States) management works out arrangements with workers in which the hours of regular

fulltime employees are set over longer time spans than usual. For example, a fulltime worker

is defined to be any worker that works 40 hours per five-day work week. This definition

does not require that each worker work eight hours per day. Although, there might be a

restriction that within any day a worker may only be required to work up to 10 hours. This

form of flexibility can be represented by our models as well. If we consider call-in workers

to be the flexible workers we can set G = 1 and only charge an overtime premium for work

done in excess of the guarantee MGV.

Everything in between While we have shown the way the most common workforce

management practices can be represented by our models it is important to note that these

special cases are extremes. This suggests that what is done in practice is only a very limited

representation of the arrangements available to a firm. Our models provide a framework

for making decisions about a wide spectrum of work arrangements that form compromises

between the special cases described above.

3.2 Computational Analysis

The way we have formulated the problem we have two nested optimization problems. The

inner problem is the optimal, in an expected value sense, dynamic allocation of preset

staffing resources over a finite planning horizon. The outer problem is the determination

of the staffing resources to have available to minimize the cost of the inner problem plus

the cost of maintaining a workforce. In this section we first analyze the outer optimization

and then analyze the dynamic optimization problem in order to find ways to reduce the

computational intensiveness of solving these problems. For purposes of this discussions we

will assume that workload has been scaled by 7r, so without loss of generality, we only use

units of worker shifts.
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Outer Optimization As stated before the solution of problem 2.2 involves solving the

problem P1. The objective function can be decomposed into a deterministic part:

CrwNV + CCWMGV + Cf(N + M)

and a stochastic part based upon the dynamic program:

flS (X, i)

The deterministic part is just a combination of linear functions in N and M. The

stochastic part is not linear but it is non-increasing in N and M and therefore quasicon-

vex. This means that the objective function of problem 2.2 is a combination of linear and

quasiconvex functions of the staffing level S and therefore it is a quasiconvex function. We

prove later that if we relax the integrality constraints, the objective function of the outer

optimization is convex.

Therefore, the outer optimization problem is the minimization of a convex function on a

two dimensional lattice. One way to solve this problem would be to constrain our search to

the non-negative values of M and N such that M + N < Wup that would depend upon the

workload distribution and absenteeism rates. We can then search for the optimal solution

using a two dimensional binary search that would require O((logWup)2Dp(Wup)) time to

solve, where DP(WUp) is the time to solve the dynamic program.

3.3 Inner Dynamic Optimization Analysis

In analyzing the inner, dynamic optimization problem we limit the discussion to the same-

period notification with no absenteeism problem and the next-period notification with ab-

senteeism problem. These two problems are representative of the main computational issues

of the family of models. In this section we summarize the important observations about the

control policies and leave their proofs to the appendix. Some of the results are general and

some are specific to a continuous approximation of the real problem.
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3.3.1 Same-period notification with no absenteeism

If we consider different relative cost structures we can characterize the control decisions

made each period. We assume that the backlog costs in each period including the final

period are linear and, equal. We also assume that exogenous work arrivals are iid. Within

the dynamic programming problem there are then three cost parameters, C,, Cot, and Cb.

Their relative values will determine the control decisions made each period. In this analysis

we will assume all the state and control variables to be continuous. Those results that are

independent of the continuous approximation will be noted.

Ccw < Cot < Cb In this case in each period in which t exceeds N it is optimal to

use as many call-in workers and overtime workers as are available to eliminate backlog.

Furthermore we always use all the call-in workers available before utilizing any overtime.

This means in each such period t, ut = Min[M, t - N] and Wt = Min[OTmax(N, M), t -

N - t]. We notice that this cost structure results in our control decisions only being

dependent upon the state variable xt.

Ccw < Cb < Cot In this case, in each period in which xt exceeds N it is optimal to use as

many call-in workers as are available to eliminate backlog. This means in each such period

t, ut = Min[M, xt - N]. The determination of the overtime utilization policy requires a

little more work. We summarize our observations about the optimal policies here. 1) We

do not use overtime shifts before using all available call-in workers. 2) In the final stage

we do not use overtime shifts at all. If we assume that all variables are continuous we can

prove that: 3) ft(xt, nt) is convex in (t, Kt) for all t. 4) There exists a backlog tolerance

Ot(nt) that is the maximum amount of backlog we will tolerate before we utilize overtime

shifts.

The backlog tolerance dictates the use of overtime as follows: When t > N + M we

define t = t - N - M. The optimal overtime usage is:

W-1 = Yv-1 - bV-1
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Where, b_l is define by the following:

yv-1 if OV-1(/IV-1) > YV-1

b*_ 1 = /Pv-i(v-i) if [y - OTmax(N,M)]+ < /v-l(Kv- ) < YV-1

[y - OTmax(N, M)]+ if PV-1(nV-1) < [y - OTmaZ(N, M)]+

It is clear that Pt(nt) is a non-decreasing function of Nt since the more free call-in hours

are available the easier it will be to deal with future backlog. It should also be clear that

when CB = Cb, Pt('t) increases with t. I.e. as we approach the end of the planning horizon

we become more tolerant of backlog.

Cb < Ccw < Cot In this case we make the following observations: 1) We do not hoard

"free" call-in workers. This means that as long as rt > 0 we utilize call-in workers whenever

the workload exceeds N. 2) As a result of observation 1, we will not utilize overtime shifts

before utilizing all available call-in workers. Assuming continuity we can show that: 3)

Results similar to the previous cost structure hold with respect to backlog tolerances and

the convexity of the cost-to-go functions.

Based upon the convexity results mentioned above, we prove that the objective function

of problem P1 is actually convex.

3.3.2 Analysis of Next-period notification with Absenteeism Problem

We now consider the analysis of the dynamic programming models for the next-period

notification scenario with absenteeism. We recall from section 3 that we distinguish between

even and odd stages. In the even stages we make decisions regarding overtime usage. In

the odd stages we make decisions regarding call-in worker utilization. We will focus on the

case where Cot > CCW > Cb = CB.

Unlike the same-period problems we cannot make any simple statements about the call-

in utilization policy even when t > 0 because the decision is made before we know the new

exogenous work arrival. This means that we cannot be certain that call-in workers that

we utilize are actually be needed. However, if we analyze the continuous approximation
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to the problem in a similar way as the same-period problem we can show: 1) In the odd

stages, for every it there is a Ut(Kt) such that if xt > Ut(ct) we call-in workers. 2) As in

the previous analysis of the same-period notification problem we can also characterize the

overtime decisions in the even stages by a backlog tolerance function Pt(nt). 3) ft(Xt, rt) is

convex in (t, St). 4) The objective function of problem P1 is convex.

4 Numerical Results

In this section we review some numerical results that demonstrate the effects of different

levels of workforce flexibility on the performance of the work system. These results show

the linkages between stochasticity of the work environment, information, and flexibility. We

also make observations about the effects of using a finite horizon in the model.

4.1 Examples

In these results we assume that the system starts with no backlog and that new work arrives

each period in independent and identically distributed amounts. We perform tests for two

work arrival distributions, W1 and W2, depicted in figure 9. The coefficient of variation for

W1 and W2 are respectively .56 and .2. W1 is a scaled representation of the work arrival to

a new accounts processing area of a large mutual fund company in Boston. W2 was chosen

arbitrarily for purposes of comparison, as a distribution with lower coefficient of variations

and higher mean. In all the runs we assume that the fixed costs Cf of each employee is zero,

that the number of periods in the planning horizon is V = 20, and all workload quantities

are in terms of person-shifts.

The non-zero worker cost parameters are: Crw = 1, Ccw = 1.2, Cot = 1.5. We also

assume a linear cost for backlog each period with the final period having the same backlog

cost as all other periods, namely: Cb = CB = 1. In the first set of runs we fix the

overtime limit at .25(N + M) and compare the relative costs of call-in worker guarantees of

G = .6,.4,.2. In each run we set the cost of operating with no call-in workers to be 100%

and show the cost benefits of increased call-in worker flexibility as G is decreased. We also
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Figure 9: Probability distributions for work arrival pattern W1 and W2

display a lower bound generated by assuming that every period we had the exact number

of regular workers to process all the newly arrived work. For every different set of values for

the problem parameters we are finding the optimal staffing S and comparing these optimal

objective values. E.g. when G = .6 the objective value we use is the expected value of the

dynamic program with S = (7, 3) when G = .2 we use the expected value of the dynamic

program with S = (7, 6).

In figure 10 we have the results for the case of same-period notification, with no absen-

teeism, for work arrivals W1 and W2. We can observe two phenomena in this comparison.

First, there are diminishing returns to increased call-in flexibility, and second, there is a

greater benefit from flexibility in the scenario with greater stochasticity in the work loads,

i.e. W1. The system with work arrivals W2 is more predictable and therefore we see that

staffing with just regular workers yields a solution that is only about 10% greater than the

lower bound. We also notice that the benefit of flexibility relative to the lower bound is

greater in the W1 case than the W2 case.

We next compare two cases in which we have next-period notification with high vari-

ability work arrivals, W1. In the first case we assume that there is no absenteeism and in
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Figure 10: Comparison of the benefits of different levels of Call-in worker flexibility for two

work arrival scenarios with same-period notification.

the second that the absenteeism rate for regular workers is .05 and for call-in workers it is

.1. By these rates we mean that the probability that a particular regular worker will be

absent is .05 and is independent of all other workers. For call-in workers the probability

that a particular worker will not be able to come when we call them is .1. The results are

displayed in figure 11.

In this figure we can see that when there is no absenteeism there is almost no benefit

from the use of call-in workers and only when the guarantee is very low, G = .2. This can be

understood in terms of information. In the next-period notification problem the manager

must decide to call-in workers before she is aware of the new work arrivals. This means that

her only information about the system state is the amount of backlogged work. Since the

backlog penalty is relatively high the system tends to maintain a very low level of backlog.

This means that when the call-in decision is made there is very little new state information

beyond what is known at the beginning of the planning period. Since call-in workers are

more expensive than regular workers, per shift of work, they are not useful.

This situation changes when we introduce absenteeism. Even though the absenteesim
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Figure 11: Comparison of the benefits of different levels of call-in worker flexibility for two

absenteeism scenarios with work arrival profile W1 and next-period notification.

rates used in the example are biased against call-in workers, we find that they become more

useful than in the no-absenteeism case. This phenomenon can be explained by information

as well. We have assumed that the manager is aware of regular worker absenteesim before

making the call-in decision. This means that she has relatively more system information

when she makes the call-in decision than in the no-absenteeism case. This results in a more

effective utilization of the flexibility provided by call-in workers.

In all notification cases we always make overtime decisions after we know how much work

is in the system and how much absenteeism there is. This means that the overtime decisions

is always the most informed. In the next-period notification problems this gives overtime

a preference over call-in flexibility. In figure 12 we compare the benefits of increasing the

overtime limit versus decreasing the call-in guarantee.

To make these comparisons we calculated the optimal solution values when G = .2, .4, .6

with no overtime. We then calculated optimal solution values when OTma, = .25,.5,.75

with no call-in workers. We also calculated a base case solution value with no call-in workers

or overtime. The results of these calculations in table 1.
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Figure 12: Comparison of different types of flexibility for next-period notification with work

profile W2

In each column of the graph we compare the maximum benefits of the type of flexibility

relative to the base case of no flexibility and show the gap with a lower bound based on

perfect information and staffing.

This can be compared to the same-period notification cases in which the benefits of

call-in flexibility bring greater benefits than overtime as can be seen in figure 13. In this

figure we compare runs in which there is absenteeism and the work arrivals follow the W2

distribution. The results of the various runs appear in table 2. Figure 13 is organized

similarly to figure 12.

To summarize, the numerical examples demonstrate that there are strong links between

the benefits of workforce flexibility, the stochasticity of the work environment, and the

information available to the decision maker. In general flexibility is more beneficial in

environments with more stochasticity, than less. However the benefits may only be realized

when there is sufficient information available at decision points. In the numerical examples

we considered, call-in workers only provided a significant benefit when we had a lot of system

information when the call-in decision was made. Similarly, overtime flexibility became more
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Obj. Value

No-CW

G=.6

G=.4

G=.2

Lower Bnd.

230

228

225

222

192

230

225

211

211

192

No-OT

OTmax = .25

OTmax = .5

OTmax = .75

Lower Bnd.

Table 1: Notification: Next-period, Work arrivals: W3, Absenteeism: .05 regular, .1 call-in

Call-In

No-CW

G=.6

G=.4

G=.2

Lower Bnd.

Obj. Value

230

211

203

200

192

Obj. Value

230

216

211

211

192

Overtime

No-OT

OTmax = .25

OTmax = .5

OTmax = .75

Lower Bnd.

Table 2: Notification: same-period, Work arrivals: W3, Absenteeism: .05 regular, .1 call-in
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100% 

95%

90% -

85% -

80%0/ 

75% 

70%

65% 

60% 
Call-In Overtime

Type of flexibility

-I

Figure 13: Comparison of overtime and call-in flexibility for same-period notification with

overtime and work arrivals W2

useful than call-in workers in the next-period notification cases.

4.2 Call-in Usage Trajectories

We now consider what the pattern of call-in utilization looks like. In figures 14 and 15 we

look at the period by period expected call-in worker usage and its coefficient of variation for

next-period notification with absenteeism, work arrivals WI, and staffing level S = (5,2)

for different values of G. (This staffing level is optimal for the G = .6 case.) We make the

following observations about figure 14:

ObsI: In each period the expected call-in usage increases with G.

Obs2: For each G there is a peak late in the planning horizon.

Obs3: For each G the call-in usage decreases sharply toward 0 after the peak.

Obs4: Call-in usage always increases from period 1 to period 2.
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Expected Call-in Usage
N=5, M=2

Work Arrivals W1

1 

1.4

1.2

.E 1

0.8

o 0.6

0.4
0.2

0
1 6 11 16 21

Period

_~X G=.6 A G=.4 -X G=.2 

Figure 14:

Obsl is explained by the fact that for higher values of G more call-in worker shifts have been

guaranteed and therefore, within the context of period by period operations, there are more

free call-in shifts to' use. Obs2 is explained by the call-in guarantee as well. We know that

if toward the end of the planning horizon we have shifts remaining in the call-in guarantee

it is worthwhile to use them up in a less conservative manner than in earlier periods, this

causes the observed peak. Obs3 is expected in this case since call-in worker costs per shift

are greater than backlog costs. At the end of the planning period it is most likely that the

guaranteed shifts will have been used up; furthermore, the finite horizon makes the system

more tolerant of backlog. These three factors make call-in utilization less attractive. Obs4

is explained by the initial conditions of the system. We assumed that the system starts out

empty which means that it will probably have more work in the second period than the

first since there might be some backlog after the first period. Therefore, in expected value,

there will be a greater need for workers in period 2 than in period 1. We make the following

observations about figure 15:

Obsla: Variation decreases with G.

Obs2a: Variation increases dramatically in the last periods.
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Coefficient of Variation of Call-in Usage
N=5, M=2

Work Arrivals W1

2.00 -
1.80 
1.60
1.40
1.20 XXX < X- X- -X-X-_XX
1.00
0.80
0.60 X

0.40 X-X-X-X-XX=XXx .
0.20 l
0.00 I I I I I 

1 3 5 7 9 11 13 15 17 19

Period

X G=.6 G=.4 -X- G=.2|

Figure 15:

Obs3a: Initial coefficient of variation for G = .2, .4 is very high.

Obs4a: For G = .2 and G = .4 variation seems fairly steady during the body of the planning

horizon, while during this time it is decreasing for G = .4.

Obsla is closely related to Obsl. When we change G we don't change the randomness

in work arrivals and absenteeism and since expected call-in usage is higher when G is higher

it makes sense that the coefficient of variation decreases with G. However, this relationship

is even stronger because the reduced usage of call-in workers brought about by lowering G

results in an increase in backlog levels and the variability of backlog. Obs2a can be explained

by the sharp drop in call-in worker usage. Obs3a can be explained by the low call-in usage

in the first periods caused by the initial conditions. Obs4a seems to suggest that when the

call-in guarantee is substantial, G = .6, or small, G = .2, there is little difference between

system behavior in the body of the planning horizon, i.e. some form of steady-state. When

G = .4 the behavior of the system seems to start like a G = .2 system and then converge to

a G = .6 system. This behavior shows that for intermediate values of G the system is very

sensitive to the remaining call-in guarantee and therefore never achieves any sort of steady

state.
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To get a sense of the behavior of the system in the same-period notification case we

compare it with the behavior of a next-period notification system with the same parameters.

In figures 16 and 17, we have the expected value and coefficient of variation of call-in

utilization by period for W1 work arrivals, no absenteeism, G = .4 and S = (2, 7)13.

Expected Call-in Utilization
Same-period vs. Next-period notification

W1 work arrivals, no-absences G=.4

An_

3.20

3.00

. 2.80

- 2.60

2.40

2.20

2.00

3 5 7 9 11 13 15 17 19

Period

1.00 .

0.90

0.80 -

0.70

0.60

0.50

0.40

0.30

0.20

0.10
nrn

Figure 16:

Call-in Utilization Coefficient of Variation
Same-period vs. Next-period notification

W1 work arrivals, no-absences G=.4

3.60 A

2.52 X

:-X-X-X-X--X-- X-X-X-X-X-X-X-X-X-X-XX

as_~~~~~~~

1 3 5 7 9 11

Period

13 15 17 19

- X- Same-period - Next-period

Figure 17:

The main observations are:

Obsib: Expected call-in usage is higher in same-period case than next-period.

13 Optimal staffing for same-period notification.
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Obs2b: Same-period variation in call-in usage is higher than in next-period case.

Obs3b: In same-period case there is little change in system behavior from period to period.

We explain these observations by noting that because call-in decisions are made in the

same-period case, when there is complete information about the workload in the system,

the realizations of the work arrival process will directly determine call-in usage. Uncertain

impact of the call-in workers in the next-period case keeps their usage lower, and the

anticipatory nature of the decision keeps its variability lower as well. Since the work arrivals

are iid. each period we can also explain Obs3b by the direct relation between same-period

call-in usage and work arrivals.

To summarize, the behavior of the system with respect to call-in worker utilization over

the course of the planning horizon can be very different for the same-period notification

case than for the next-period and can be strongly effected by the call-in guarantee. We

also see that the effects of the intitial conditions and the finite horizon are not important

over the majority of the planning horizon, but that the finite call-in guarantee can effect

the system throughout the planning horizon (see Obs1, Obs2, and Obs4a).

4.3 Finite horizon issues

We will now consider the question of what is the appropriate way to take into account

the effect of final period backlog on the future performance of the system. Since we have

constructed finite horizon models our primary concern is that late in the planning horizon

we will start to accept higher levels of backlog than would be realistic. Setting the final

period backlog cost at a very high level, to force the system to empty by the end of the

planning horizon artifically creates a significant difference between our tolerance for backlog

in the final period versus others.

Our approach to this problem is to optimize the staffing level over multiple planning

horizons, rather than just one. That is, if the planning horizon has length V, we would

solve the staffing problem over kV periods for some integer k. Every V periods we reset the

call-in guarantee remaining to MGV. In this scheme we do not assign any special penalty
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to backlog remaining at the end of the kVth period. The larger the value of k the less the

edge effects.

In this section we have presented numerical results for specific problem instances that

are relatively insensitive to the finite horizon. We found that after at most 3 planning

horizons the end of planning horizon backlog stabilized and that the optimal staffing levels

did not change from those determined for the single planning horizon. This need not always

be the case and can be explained by the backlog penalty. The one period backlog penalty is

high relative to the labor costs, therefore backlog is kept to a very low level in all periods.

This means that successive planning horizons are almost independent of one another.

5 Extensions and Conclusions

In most practical applications of these staffing models there are different exogenous work

arrival processes for different time periods. Typically there is a day of the week season-

ality exhibited in the work arrival profile. We can accommodate this phenomenon within

the framework of the models formulated in this chapter. To do this we must make some

assumptions about how regular workers are utilized.

Implicit in the models is the assumption that all the regular workers are scheduled to

work in each time period. This can be interpreted as all regular workers being full-time

workers. When workloads vary from time period to time period because of day-of-the-week

type seasonality it is common to use part-time workers, i.e. workers who are not scheduled

to work each time period, to match workforce to workload. The models we have developed

here are geared toward the stochastic variability as opposed to the deterministic/seasonal

variability. Therefore, we do not explicitly model the scheduling of part-time workers.

However, it is possible to consider call-in workers to be flexible part-time workers.

In this more general workload arrival case we will model the new work arriving in period

t as dt st + rt where st is a deterministic component of workload and rt is the stochastic

component that is distributed according to some probability mass function Ft (r). Note that

this PMF is dependent upon the time period.
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If the deterministic components st are significant we can assume that a separate schedule

for regular workers including part-time regulars has been determined to satisfy the deter-

ministic needs. We can then proceed with our ordinary models concerned with only the

stochastic component rt. If the deterministic component of the work arrival is not signif-

icant with respect to the stochastic component we can just view dt as being a stochastic

variable as we did in all our models.

In practice it is also common that the workload information that is available when the

call-in decision is made is somewhere between the extremes of same-period and next-period

notification models. We call this mixture of the two, the mixed-info model. In this model

we split periods into odd and even sub-stages as in the next-period notification cases. We

model new work arrival at the start of each of these sub-stages with different probability

distributions Fodd, Feven. The call-in decision is made after the realization of Fodd and the

overtime decision is made after the realization of Feven.

Although we can accomodate non-homogeneous work arrival processes and mixed-info

within the formulations presented in this paper, we cannot, in general, extend the analytical

results of the previous section to this case. To summarize, we do not really have to change

our models to adapt to non-identical workload arrivals. All we do is use the time period

dependent distributions in all calculations of expected values involving workload in the

dynamic programs.

In this paper we have defined a new family of realistic workforce management models

that represent the many of the important charactersitics of modern service providing firms

in stochastic environments. We have created a classification scheme that distinguishes

different problems by the presence of crosstraining, the availability of workload information,

and absenteeism. We have formulated the general one-job problem 2.2 as an optimization

over two dimensions; regular workforce size N and call-in workforce size M. The value

of the objective funtion at a particular solution S = (N, M) is the expected cost of the

optimal solution to a finite horizon dynamic program. We have formulated all the one-job

problems depicted in the problem tree in figure 1. That is, we have formulated the various

problems as distinguished by notification and absenteeism. All the dynamic programming

formulations are based upon a Markovian structure that governs the work in the system
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and the cumulative utilization of call-in workers.

In the formulations involving absenteeism we characterized different cases distinguished

by the relative timing of the two staffing decisions made each period and information about

workload and absenteeism. Each case required a distinct formulation. Finally we showed

how the formulations could be extended to situations in which the exogenous new work

arrival each time period were not identically distributed. In all cases we have assumed that

they are independent.

In the analysis section we have shown how this family of one-job models represents a wide

range of realistic practical situations. We also derived characterizations of the optimal call-in

and overtime decision policies for the inner dynamic optimization problem. In the numerical

results section we demonstrated how the model can be used to determine the benefits

of different forms of labor flexibility. We have also gained insight into the relationship

between the benefits of flexibility, the degree of stochasticity of the work environment and

the availability of system information. The implication of these results is that workforce

flexibility, in and of itself, is not a panacea for a firm's operating costs. The form of flexibility

that best takes advantage of system information will be the most effective. Furthermore,

if the stochasticity of the system is not great, the benefits of flexibility will probably be

marginal.

A Same-period notification analysis

In this appendix we demonstrate in detail that ft(xt, /t) is convex when CC < Cb < Cot.

This result carries over to the other cost structures of interest, namely Ccw < Cot < Cb and

Cb < Ccw < Cot.

Lemma A.1 If Ccw < Cb < Cot then fv(xv, rv) is convex.

Proof We know that we do not use any overtime hours before we have utilized all the

call-in workers available. This means that overtime is not used unless t exceeds N + M.
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In the final period we know we do not use overtime at all, since the cost of backlog for that

period is less than the overtime cost. Therefore we write:

fv(xv, V) = Ccw[UT - nv]+ + Cb[xv - N- u ]

Where, ur(xv) = Min(M, [xv - N]+ )

We drop the subscript V and consider the following 3 regions of values for x:

R1: Region 1 is x < N = u*(x) = 0

R2: Region 2 is N K x < N + M : u*(x) = x-N

R3: Region 3 is N + M < x = u*(x) = M

Therefore:

For x E R1: f(x, ) = V t

For x E R2: f(x,n) = Ccw[- N- ]+ VK

For x E R3: f(x, ,) = CC[M - ]+ + Cb(x-N-M) Vi

All three of the above functions are clearly convex in their respective regions. To demon-

strate convexity we need to show that convexity holds between points from different regions.

These demonstrations are not very informative so we will only present the demonstration

for points in R2 and R3. Define xo = A2 x2 + A3 x3 for A2, A3 > 0 and A2 + A3 = 1 and

similarly so = A2 2 + A3 3. Where xi E Ri.

Step 1: Say we have chosen A2, A3 so that xo E R3.

= f(xo, ,C) = Cc[M - o]+ + Cb(xo - N - M)

= A2f(x 2, 12) + A3 f(X 3, 13) - f(Xo, 1o)

= A2 Ccw[2 -N-r2]+ +A 3Ccw[M- 3]++A3 Cb(x 3 --N-M)-Cw [M- no]+-Cb(Xo-N-M)

= -2Cb(X2 - N - M) + Q1
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Where

Q1 = C{A 2[x 2 - N - K2]+ + A3 [M - 3] + -[A2M + A3 M - A22 - 3n3]+

Note: Q1 > CA 2 (M - 2 - N) and x2 E R2 =~ M - 2 - N < 0.

CCw < Cb = -A2Cb(x2 - N - M) + Q1 > 0

Therefore, convexity holds for xo E R3.

Step 2: Say we have chosen A2, A3 so that xo E R2.

=* A2 f(x 2, K2) + A 3 f(x 3, n3) - f(xo, 0o)

= A2Cc[x2 - N - s2]+ + A3 Cc[M - K3] + + A3Cb(x3 - N - M) - Ccw[Xo - N - o]+

= A3 Cb(3 - N - M) + CcwQ2

Where

Q2 = A2 [x 2 - N - 2] + + A3 [M - 3]+ - [A 2 (x2 - N - 2) + A3 (x3 - N- 3)] +

Note: Q2 > A3 (M - x3- N) and x3 E R3 =* M - x 3 + N 0.

Cw < Cb = 3 Cb(3 - N - M) + CcwQ 2 > 0

Therefore, convexity holds for xo E R2.

Results of steps 1 and 2 complete proof. · .

Lemma A.2 If Ccw, Cb < Cot then fv-i(xv-, v-1) is convex.

Proof If xv1_ < (N + M) then we know that:

fv(XV-i, V-1) = Ccw[XV-1 - N - V-1]+ + Edv [fv(dv, nv)]

which is convex.
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If xv-_ > N + M then we define Yv-1 = xv1_ - N - M and write:

fv-i(XV-1, V-1) = Mino<~<y {Ccw[M - rv-1]+ + Cb[Yv-1 - wv-1]

+Cotv-1 + Edv[fv(dv + Yv-1 - wv-1, r-1 - M)]}

We define bv_1 = yv-1 - wv-1 to be the backlog at the end of period V - 1 and rewrite

the cost-to-go function as:

fv-1(XV-l, V-1) = min {(Cb-Cot)bv-l + Edv [fv(dv + b-l, Kv-1 - M)]}
[y-OTmax (N,M)] + <b<y

+CCW[M - V-l] + CotYV-1

Using the convexity of fv(xv, v) we see that the quantity within the minimization

brackets is a convex function of the variables b-1_ and v-1. This means that there is

some minimizer OV-1(Iv-1) of this function for every possible value of Kv-1. This implies

the following:

Yv-1 if V-1(nV-1) > Y-1

bV_ = Vl(/KV-1) if [y - OTmax(N, M)]+ < V-,1(/V-1) < Yv-1

[y - OTmax(N, M)]+ if 13 v-1(V-1i) < [Y - OTmax(N, M)]+

Therefore:

WV- 1 = Yv-1 - bV-1

The above argument was based upon the convexity of fv(xv, Kv). This also allows us

to demonstrate the convexity of fv-. Let's define:

G(b, r,) = (Cb - Cot)b + Edv [fv(dv + b, [- M] +)

We know that G(b, ) is a convex function of (b, ri). We can now write:

fv-1(XV-1, V-1) = L(x, ri) + Ccw[M - v-l] + CotYv-1
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Where L(x, ) = min {G(b, )}.
[y-OTma (N,M)]+ <b<y

We focus our attention on L(x, ). If xo = AXll + A2x2 for A1, A2 > 0 and Al + A2 = 1

and similarly 1o = All + )A2 n2, we define the following sets:

So [[xo - N - M - OTmaz(N, M)]+, Xo - N - M]

Si _ [[xil - N - M -OTmax(N, M)]+,x - N - M]

S 2 [[X2 - N - M - OTmax(N, M)] +, x2 - N - M]

By the definition of L() we have that:

L(xo, o) < G(b, 0o) for all b E So

or,

L(xo, no) < G(Albl + A2 b2, Alr 1 + A2K 2 ) for all bi E Si

by the convexity of G() we have:

L(xo, no) < AlG(bl, i) + A2 G(b2, 2) for all bi E Si

= L(xz, ,o) < Al min G(bl, 1i) + A2 min G(b2, 2)
bl ES1 b2 ES 2

Therefore, L(x, ) is convex. We see that fv-1(xv-1, nrv-1) is the sum of convex functions

and therefore is convex as well when xv1_ > N + M. To complete the proof of the

convexity of fv-l(xv-1, ev-1) we need to connect the two cases for xv-_ > N + M and

xv-1 < N + M. This can be done in a similar fashion to that in the proof of the convexity

of fv(xv, Nv). .

Proposition A.1 If Ccw < Cb < Cot then ft(xt, lt) is convex.

Proof We can apply the arguments of Lemmas A.1 and A.2 inductively and show that:

ft(xt, lt) is convex for all t. 1.

Proposition A.2 The objective function of problem P1:

C(S) = CrwNV + CcWMGV + Cf(N + M) + fs(xi, ni)

is convex.
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Proof From proposition A.1 we know that f(xi, 1r) is convex in (xl, 1). Since 1l =

MGV we have that f(xl, K1) is convex in M as well.

If we redefine xt to be the work in the system in excess of the regular staff N and dt to

be the new work arriving in excess of the regular staff processing capacity, we would have

cost-to-go functions of the form: fl(x l d - N, K1). Standard convexity results show that

fi(xold - N, i) is convex in (N, M) [Baz93].

X ftS(xl, hi) is convex in S. We have noted before that the deterministic part of C(S)

is a combination of linear functions. =: C(S) is the sum of linear terms and a convex term.

= C(S) is convex in S. *.

B Next-period notification with absenteeism analysis

In this appendix we focus on the cost structure with Cb < Cc, < Cot but it should be clear

that they carry over to the other cases of interest.

Lemma B.1 If Cb < Cw < Cot, then f2v(x2v, KC2) is convex.

Proof The final stage, 2V is an even stage in which we make an overtime decision. Since

Cot > Cb we will never utilize overtime:

=: f2v(x2v, Kc2v) = Cbx2v a convex function

·.

Lemma B.2 If Cb < C cw Got, then f2v-l(X2v-1, K2v-1) is convex.

Proof In stage t = 2V-1 we will not use any more call-in workers than we have guarantee

remaining since Cw > Cb. This means we try to utilize u* = min(nt, M) call-in workers,
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and will actually use a = min(u*, m). Where m is the number of call-in workers who are

available.

= ft(xt, ist) = CbEd,a[[Xt + d - a]+ ]

We see that f2v-l(x2v-1, rK2-1) is convex in (2v-1, rc2V-1). ·

Lemma B.3 If Cb < Cw < Cot, then f2v-2(x2v-2, K2V-2) is convex.

Proof When t = 2V-2,

ft(xt, t) = min {C otwt + Cb(Xt - wt) + En[ft+l([xt - wt]+ - n, lt)]
Wt <Xt

Dropping the stage subscript we can write this cost-to-go function as:

f(x,i ) = min {Cb - Cotb + En[G(b- n, )] } + C otX
O<b<x

Where G(b - n, rn) is a convex function as is everything within the minimization. As we

showed in proposition A.1 this implies that ft(xt, it) is convex. ·.

Lemma B.4 If Cb < C < Cot, then f2v-3(x2v-3, K2v-3) is convex.

Proof When t = 2V-3,

ft(xt, rt) = muinCcw,[ut - t]+ + Edt+1 [ft+([xt - Ut + dt+i]+, [t - Ut]+)]}

Based upon our previous results we know that the quantity within the minimization is a

convex function of (t, lat, ut). We can then write:

ft(xt, t) = mnin H(xt, t, ut)

In the continuous approximation, the convexity of H() implies the convexity of ft(). .

We can apply these arguments to inductively to show that:

Proposition B.1 ft(xt, it) is convex, for all t.
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*.

As in the same-period notification analysis, the above convexity results can be used

to demonstrate that the objective function of problem P1 is convex even when we have

next-period notification and absenteeism in the regular and call-in workforces.
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