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We investigate decoherence in atom interferometry due to scattering from a background gas and show that
the supposition that residual coherence is due to near-forward scattering is incorrect. In fact, the coherent part
is completely unscattered, although it is phase shifted. This recoil-free process leaves both the atom and the gas
in an unchanged state, but allows for the acquisition of a phase shift. This is essential to understanding
decoherence in a separated-arm atom interferometer, where a gas of atoms forms a refractive medium for a
matter wave. Our work elucidates the actual microscopic, many-body, quantum-mechanical scattering mecha-
nism that gives rise to prior phenomenological results for the phase shift and decoherence.
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I. INTRODUCTION

Can a propagating atom run the gauntlet through a gas of
free atoms, interacting with all of them at long range, and
still remain coherent, leaving the quantum state of every gas
atom unchanged? The answer is yes, much of the time, de-
pending on gas density, propagation distance, atom-atom col-
lision cross sections, etc. �the answer is no, however, if the
force is Coulombic�. If this were not the case, the measure-
ment in �1� of the refractive index of a gas of atoms for an
atomic matter wave would not have worked. These measure-
ments took place in a separated-arm atom interferometer,
where one arm intersected a gas cell, filled with other atoms.

The separated-arm atom interferometer exploits superpo-
sition by splitting the spatial wave function of an atom into
two wave packets that can be made to travel along separate
paths and experience different interactions. It takes advan-
tage precisely of the ability of quantum systems to exist in
superposition states. Such an apparatus is, consequently, a
highly sensitive detector of decoherence. In the language of
decoherence theory, the atom passing through the interferom-
eter is the system, and the free gas it interacts with is the
“environment.” “Leaving a trace of passing” in the gas is a
which-way detection that causes decoherence and loss of
fringe contrast when the arms of the interferometer are re-
combined. Any collision that had disturbed the state of an
atom in the gas cell would have been a which-way measure-
ment that reduced the interference fringe contrast of the in-
terferometer.

It is not correct to attribute, as in �1�, the residual coher-
ence in the interference signal to near-forward scattering.
Our intention is to describe the actual mechanism of the mi-
croscopic theory that determines the residual coherence of a
matter wave undergoing scattering from a free gas. As colli-
sions produce decoherence, we expect that the coherent part
of the propagating wave should be determined using known
atom-atom elastic quantum cross sections, computing the
chance of avoiding a collision in the usual way. However,

this leaves another question unanswered: if there is a large
survival rate, avoiding any collisions, can the phase shift
acquired by the coherent atom wavefunction be large com-
pared to �?

It is well known that matter can act as a coherent, refract-
ing medium for matter waves, as, for example, in the propa-
gation of neutrons through condensed matter. In passing
through a solid, neutrons may acquire large phase shifts rela-
tive to the vacuum and emerge coherently; to wit, consider
neutron diffraction from a crystal; the elastic diffractive spots
are prima facie evidence of coherent scattering from the
crystal. However solids are rather rigid compared to a low-
density gas, and it is therefore surprising perhaps that atoms
passing through gaseous matter can also acquire large phase
shifts without leaving a trace of their passing, since gas at-
oms are so easily perturbed. Our analysis is in the context of
a separated arm atom interferometer, with one arm intersect-
ing a cell containing a fixed density of gaseous atoms �Fig.
1�. As we will see, a low-density gas is completely intolerant
of any momentum transfer; momentum transfer will always
lead to decoherence and reduction of interference fringe con-
trast.

The interference fringe contrast is defined precisely in
�2� as C= �Imax− Imin� / �Imax+ Imin�, where I, the count rate in
their detector, is proportional to the probability density of
detecting a projectile at a particular position on the screen in
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FIG. 1. A Mach-Zender interferometer with the gas cell serving
as a which-way detector. The atom beam is coherently split into the
two arms of the interferometer by the leftmost diffraction grating.
The initial state of the gas is �D�, which evolves into �D1� or �D2�
depending on whether an atom from the beam passes through the
cell. An interference pattern forms on the screen at right where the
arms overlap.
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Fig. 1. The contrast of the interference pattern is reduced due
to correlation with the environment �3�. This point of view is
equivalent to a which-way detection, in which the state of the
environment records partial or complete path information.

The relative phase acquired along the different paths of
the interferometer is observed as a shift in the interference
pattern that forms when the wave packets recombine �4,5�.
Previous experiments have measured the interference pattern
due to the presence of a free gas in only one arm of such an
interferometer �1�. The other arm was physically separated
from the gas, and did not interact with it. The experiments
showed that, like light passing through glass, a matter wave
passing through a dilute gas experiences a phase shift, with
the dilute gas acting as a medium with an index of refraction
for matter waves.

When produced by propagation through a free gas, the
phase shift of the interference fringes is a probe of the atom-
atom interactions, and was the focus of much theoretical
work �1,6,7�. These treatments build upon the multiple-
scattering theory derived in �8�, and they neglect the possi-
bility of recoil of the background atoms. Only the projectile
is treated explicitly quantum-mechanically. The background
gas creates a background potential, and decoherence is ob-
tained phenomenologically by averaging the resulting scat-
tered projectile wave function over different realizations of
the potential. Our interest is to show that the fundamental
source of decoherence in this system does not require an ad
hoc averaging process. In order to properly understand the
decoherence, however, we must take a substantial step be-
yond the case of a single-particle scattering from a distribu-
tion of potential centers. It is imperative that we address the
full many-body scattering problem, in which the background
gas possesses a quantum-mechanical state that is affected by
scattering interactions with the projectile. This is critical be-
cause, in the absence of recoiling target particles, there
would be no decoherence whatsoever that emerges naturally
from the scattering theory. By eliminating the recoil of the
targets, there remains no possibility of the gas recording the
passage of the projectile and no which-way measurement.

Experiments have also been performed to measure the
amount of decoherence experienced by an atom due to the
scattering of photons from a laser �9,10� and to the scattering
of atoms in a free background gas �2,11�. The decoherence is
observed as a loss of contrast in the interference patterns
formed.

The theoretical foundation of the analysis used to under-
stand these experiments postulates that scattering events can
be described as an instantaneous modification of the system-
environment density matrix, �i→� f =T�iT

† �12�. The
changes to the density matrix due to these scattering events
may be explicitly added to the usual Heisenberg equation of
motion. The additional term gives rise to decoherence of the
system when the degrees of freedom of the environment are
traced over.

The physical mechanism by which this process occurs,
however, remains hidden in the ad hoc addition to the purely
coherent evolution of the density matrix. The explanation of
this process in the literature is incomplete because the deco-
herence phenomenon does not emerge directly as an outcome
of the microscopic scattering process. It is our intention to

make this connection explicit here, in order to lay a founda-
tion for prior theoretical work.

The effect on a quantum particle due to a gas environ-
ment, treated as a Markovian reservoir in which only two-
body scattering is considered, has been treated in a very gen-
eral way by �13�. Our objective is rather different. We wish
to show the origin of the phase shift on an atom wave func-
tion due to scattering from other atoms. We also seek an
explanation of the surprising lack of sensitivity of a free
particle as a which-way detector based on microscopic mul-
tiple scattering theory. We will, therefore, calculate the re-
duction in interference fringe contrast due to the presence of
a free gas interacting with only one arm of a separated-arm
atom interferometer. Our derivation shows how these pro-
cesses emerge directly from microscopic quantum mechani-
cal scattering and avoids the ad hoc modification of the
Heisenberg equation of motion and the introduction of an
average wave function. In fact, the coherent wave introduced
in �8� emerges directly from our calculations, providing a
justification for its use and bridging the gap in the literature
between phenomenological results and the microscopic
theory.

II. THEORETICAL PERSPECTIVE

Standard scattering theory suggests a naive argument that
little or no coherence should remain after an atom passes
through a column of gas. The usual expression for scattering
in free space �in the center of mass frame� gives the wave
function for the scattered atom as �14�

��r�� =
1

�2��3/2�eik�·r� + f��,��
eikr

r
� . �1�

The first term on the right-hand side of this equation is the
unscattered incident wave, which preserves coherence but
has no phase shift. A phase-shifted, coherent contribution
cannot arise from this term. The second term on the right-
hand side is the scattered wave, which corresponds to a
momentum-conserving recoil of the target gas atom, except
when scattering into the exactly forward direction. Scattering
into the infinitesimal solid angle around the forward direc-
tion occurs with zero probability. Any finite recoil changes
the state of a free target gas atom and constitutes a which-
way measurement that ought to eliminate the possibility of
observing interference. Only an infinitesimal fraction of the
incident beam would interact with the free gas atom and
remain coherent. The rest either is not scattered at all or
decoheres completely.

Nonetheless, the experimental results �1� clearly demon-
strate that atoms in the beam do interact with the background
gas coherently because the phase shift that results from the
interaction is observable in the interference pattern. The
beam atoms are able to “scatter” off of the free gas atoms
and acquire a phase shift, without touching the free gas and
changing its quantum state at all.

A better approach to understanding the phase shift and the
decoherence is to enclose the target gas in a box, confining it
in three dimensions. We may then treat the interactions be-
tween a projectile and a gas of confined particles. The pro-

SANDERS, MINTERT, AND HELLER PHYSICAL REVIEW A 79, 023610 �2009�

023610-2



jectile can be assumed to be unaffected by the walls of the
box through which it passes, as we will eventually remove
this artifice. The benefit of the box is immediate—there can
be a finite amplitude associated with exactly “forward” scat-
tering, in which the quantum state of the projectile and the
target are unaffected by the interaction. A key point is that
this coherent amplitude automatically comes with a nonvan-
ishing phase shift. The argument of the complex amplitude
gives rise to a phase shift, and its magnitude squared gives
the probability of not disturbing the environment in any way,
and thus leaving the system coherent. This result differs from
free space scattering because there will in general be a finite
flux of system atoms that acquire a phase shift and remain
coherent. The coherent phase shift due to a single target atom
will approach zero as the cross sectional area of the confining
box is enlarged. This recalls the conundrum of �1�; however,
the phase shift does not vanish, even as the box is enlarged,
if the column density of the gas remains constant. It is a
crucial task here to consider this limit carefully.

We will solve the problem of scattering of a beam atom,
the “system,” or projectile, from a gas of atoms, the “envi-
ronment.” The latter are confined to a three-dimensional box.
The beam atom itself will be confined to a waveguide that
overlaps the gas cell �Fig. 2�. In this way, the transverse
modes of the beam atom eigenstates are discrete, as are the
modes in all three directions of the gas atoms. We will as-
sume that the beam atom does not feel the confining wall that
defines the length of the gas cell. We can then study the
interactions that lead to phase shifts of the beam atom with-
out changing the discrete state of the gas atoms. It is pre-
cisely this recoilless interaction that gives rise to the coherent
wave.

The imposition of a cell and a waveguide are reasonable
in the context of the experiments �1�, where the gas was in
fact confined to a cell. The cell was macroscopically large,
however, so our results must not depend on the size of our
cell. The relevant experimental parameter is the column den-
sity of the gas. When we consider the limit of large cell
dimensions, we will choose the number of gas atoms corre-
spondingly, so that the column density remains fixed. We

will find that our results are independent of the dimensions
of the waveguide and gas cell and only depend on the col-
umn density. In the limit where the cross section of the wave-
guide is very large, our results explain the coherent interac-
tions in free space that cause a phase shift on the atom beam,
while leaving the background atoms completely untouched.

III. MULTIPLE SCATTERING DUE TO A FREE GAS

In a dilute gas, any scattering event which leads to recoil
of a target atom, placing it in an orthogonal state, leads also
to complete decoherence of the two-arm projectile density
matrix. The orthogonal target atom state constitutes which-
way evidence and coherence cannot persist. To calculate the
total decoherence, we need only calculate the amplitude of
the many-particle state that remains unchanged by the inter-
actions, other than the acquisition of a phase shift. Over short
enough distances traveled by the projectile, we may neglect
multiple scattering altogether because the gas is dilute. If the
projectile survives the interactions over a short distance by
remaining in the initial state, then it is able to continue its
journey toward the detector and scatter downstream. The
projectile can have many sequential interactions with the gas
atoms, so long as it remains in its initial state after each
scattering event. In this way, it can accumulate a potentially
large phase shift, even if the phase accumulated by a single
scattering event is small. After passing through the entire
cell, the amplitude of the initial state, which is coherent with
the other arm of the interferometer, will also have been re-
duced due to scattering out of it.

Figure 1 shows the experimental configuration we are
considering. The projectile passes coherently through the up-
per and lower arms of the interferometer. A low pressure gas
is present in the upper arm.

We model the upper arm as an overlapping waveguide
and gas cell �Fig. 2�. We discretize the transverse states of
the projectile atom by requiring that its wave function satisfy
periodic boundary conditions on the surface of the wave
guide. Similarly the states of the N gas atoms are discretized
by requiring that they satisfy periodic boundary conditions
on all the surfaces of the gas cell. The projectile and target
gas atoms are otherwise free. The Hamiltonian describing
this �N+1�-particle system, in the absence of interactions, is
H0, with eigenstates �k ,n��. The components of n� are the 3N
+2 discrete quantum numbers describing the transverse state
of the projectile and the states of the N target atoms. k is the
initial longitudinal wave number of the projectile.

For a dilute gas we neglect interactions between target
atoms. The interaction potential between the projectile and
the targets is a sum of binary terms. The projectile is labeled
as the 0th particle, and the targets will be labeled 1 through
N. The full interaction potential V is then

V = 	
i=1

N

V0i. �2�

V0i gives the potential between the projectile and the ith
target, and the full Hamiltonian is H=H0+V. We will take
the projectile to be initially in an eigenstate of the wave-

FIG. 2. Details of the gas cell appearing in Fig. 1. The cell has
length l and is embedded in a waveguide. The jth slab, running
from z= �j−1�w to z= jw, is illustrated. The waveguide in which the
projectile is confined is an infinite tube with a square cross section
of dimensions a�a.
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guide. Conservation of energy and momentum requires that
if a target remains in its initial state, then so must the pro-
jectile.

The S matrix connects the initial many-body state �k ,n�0�
with the asymptotic output channel ��� �15�

��� = S�k,n�0� . �3�

��� is the many-body state that emerges after interactions
between the projectile and the gas are complete. We will
refer to the diagonal element of the S matrix that gives the
�k ,n�0� component of ��� as S0,0,

��� = S0,0�k,n�0� + �orthogonal terms� . �4�

The first term on the right-hand side of �4� is the only part of
��� that interferes with the other arm of the interferometer.
The probability of finding the system plus environment in
this state is the probability that the system will remain co-
herent and interfere with itself. The contrast of the interfer-
ence fringes will be reduced by the factor �S0,0� �3�. In order
to calculate the amplitude of the coherent state after interac-
tions with the gas, we need to calculate the S0,0 matrix ele-
ment. This task is facilitated by subdividing the gas cell into
thin slabs, and computing the contributions to S0,0 from each
slab.

Thin slab construction

The volume of the gas cell can be thought of as the com-
position of many adjacent, thin slabs, which are the regions
of space formed by the surface of the waveguide and two of
its cross sections, placed a distance w apart, as in Fig. 2.
Imagine subdividing the gas cell into Ns such regions, so that
l=Nsw. If we number the slabs, j=1,2 ,3 , . . ., beginning from
the point of entry of the projectile into the gas cell, then slab
j has the width and height of the waveguide, and runs from
z= �j−1�w to z= jw.

The total interaction potential can be rewritten in terms of
the contribution from each slab,

V = 	
j=1

Ns

V�j� = 	
j=1

Ns

	
i=1

N

V0i
�j�, �5�

V0i
�j� = V0i�„ẑi − �j − 1�w…��jw − ẑi� . �6�

zî is the z-position operator for the ith target atom. V�j� picks
out the contribution to the total interaction potential due to a
particular region of space. Summing over these contribu-
tions, we obtain the original interaction potential.

For each V�j�, we will define a corresponding S�j�, which is
the S matrix due only to the interactions with the jth slab.
Beginning with the first slab, we can compute the scattered
state due only to that slab. If we then use that result as the
incident state to the subsequent slab �again removing all
other slabs�, the state we will obtain after Ns such iterations
is

���Ns�� = S�Ns�S�Ns−1�
¯ S�1��k,n�0� . �7�

���Ns�� is different from ��� in general because the wave func-
tion at earlier slabs is unaffected by subsequent slabs. This

excludes the possibility that the projectile could backscatter
but be recovered into the incident state by scattering a sec-
ond time from an earlier slab; however, for a dilute gas this
process is negligible, so we may safely approximate ���Ns��

���.

The decoherence, which causes the interference fringe
contrast to be reduced, is due to the reduced amplitude of the
initial many-body state. The phase shift that is measured as a
spatial shift in the observed interference fringes is given by
the argument of that amplitude. Equivalently, the magnitude
of the overlap of the final states of the free gas associated
with each arm gives the decoherence and the argument of the
overlap gives the phase shift. We denote the state of the
many-body system by a single subscript, so that ��i�
= �k� ,n��. The initial state is ��0�= �k ,n�0�. The ��0� component
of the scattered state after interactions with the gas is given
by

S0,0��0� 
 S0,in−1

�Ns� Sin−1,in−2

�Ns−1�
¯ Si1,0

�1� ��0� . �8�

Repeated indices are implicitly summed over. The physi-
cal process that corresponds to each set of indices is scatter-
ing ��0�→ ��i1

�→ ��i2
�→¯→ ��in−1

�→ ��0�. When any of
these intermediate states is not ��0�, we have argued that the
projectile totally decoheres, so the contribution of these
terms to the final coherent state amplitude can be neglected:

S0,0��0� 
 S0,0
�Ns�S0,0

�Ns−1�
¯ S0,0

�1� ��0� . �9�

The physical interpretation of this expression is that the
probability amplitude for remaining in the initial state is re-
duced by each slab. Only this amplitude interferes with the
other arm of the interferometer. �S0,0�2 is the probability that
an atom in the beam will interfere with itself. The remaining
fraction of the atomic beam contributes only to an incoherent
background. The net result is that the interference fringe con-
trast is reduced by the factor �S0,0�. The shift of the interfer-
ence fringes compared to a vacuum is given by the argument
of S0,0.

We will now calculate these quantities by first calculating
the S0,0

�j� matrix element due to scattering from a single slab.
Then we may take the product in �9� to obtain S0,0.

IV. CALCULATION OF THE S-MATRIX

The S matrix is the time evolution operator that takes
a quantum state from the distant past, prior to a collision,
into the distant future, after the collision; that is, S
=limt→	U�t ,−t�. It can be expressed in terms of the scatter-
ing matrix T as �16�

S = 1 − 2�i
�E − H0�T , �10�

where T is defined �17� by

T = V + lim
�→0

V
1

E − H0 + i�
T . �11�

The limit will not appear in what follows; it is understood
that we must take the small � limit. V and H0 are the
�N+1�-particle operators defined above. S�j� is the S matrix
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due to the potential V�j�. Replacing V with V�j� in the defini-
tion of T gives T�j�. We calculate S0,0

�j� by expanding S�j��k ,n�0�
to find the coefficient on its �k ,n�0� component,

S�j��k,n�0� = �k,n�0� − 2�i
�E − H0�T�j��k,n�0� . �12�

In order to extract the �k ,n�0� component of the second term
in �12�, we insert a complete set of eigenstates of H0 between
the 
 function and T�j�,


�E − H0�T�j��k,n�0� =� dk�	
n�


�E − Ek�,n���k�,n��

��k�,n� �T�j��k,n�0� . �13�

The terms of the sum with n� �n�0 are orthogonal to �k ,n�0�.
They do not contribute to S0,0

�j� . It is only necessary to con-
sider the term n� =n�0. There, the argument of the 
 function is
considerably simplified due to the cancellation of the energy
contribution of the discrete quantum numbers. In that case,
E−Ek�,n�0

= �2k2

2m − �2k�2

2m , where m is the mass of the projectile.
The integral over k� can then be performed easily to find that
the coefficient on the �k ,n�0� component of S�j��k ,n�0� is

S0,0
�j� = 1 − i

2�m

�2k
�k,n�0�T�j��k,n�0� . �14�

The net effect of the gas on the amplitude of the initial state
is obtained according to �9� as the product of the individual
slab results,

S0,0 
 
j=1

Ns �1 − i
2�m

�2k
�k,n�0�T�j��k,n�0�� . �15�

T�j� is the full scattering matrix due to a single slab, including
multiple scattering within the slab. In a dilute gas, sequential
scattering from different targets is unlikely within a slab that
is much thinner than the length of the gas cell. Neglecting
multiple scattering within single slabs, the �N+1�-particle
matrix element of T�j� reduces to a sum of two-particle ma-
trix elements �see Appendix A�,

�k,n�0�T�j��k,n�0� 
 	
i=1

N

�,�i�t0i
�j��,�i� , �16�

where  designates the initial state of the projectile, �i des-
ignates the initial state of the ith particle, and t0i

�j� is the scat-
tering matrix for the 0th and ith particles without any other
atoms present,

t0i
�j� = V0i

�j� + V0i
�j� 1

E0 + Ei − H0 − Hi + i�
t0i
�j�. �17�

The expression for S0,0, excluding multiple scattering
within individual slabs, is

S0,0 
 
j=1

Ns �1 − i
2�m

�2k 	
i=1

N

�,�i�t0i
�j��,�i�� . �18�

This result gives the complex probability amplitude for the
component of the projectile that remains coherent after inter-
actions with the gas. We have explicitly taken into account

multiple scattering. It remains to examine the limit in which
the dimensions of the gas cell and waveguide become arbi-
trarily large. This will allow us to remove the artificial con-
finement depicted in Fig. 2. We find that the result is inde-
pendent of the confinement and that a solution of the
coherent wave equation emerges directly from these consid-
erations, without invoking the concept of an average wave
function �8�. Even for an arbitrarily large cell, the projectile
may remain partially coherent after scattering from a com-
pletely free gas. This resolves the conflict between the ex-
perimental results and our expectations based on the usual
expression for scattering in free space.

The initial state of each target and the transverse states of
the projectile appropriate to the waveguide and gas cell are
box-normalized plane waves. Along the z direction, the pro-
jectile remains a free particle. � ,�i� in �18� will be denoted
using the wave vectors of the projectile and target as �k�0 ,k�i�.
The normalization of �k�0 ,k�i� reflects the free nature of the
projectile along the longitudinal axis of the waveguide,

�r�0,r�i�k�0,k�i� =
eik�0·r�0

a�2�

eik�i·r�i

a�l
. �19�

When we convert this expression to center-of-mass coordi-
nates, we must allocate the normalization constants,

�r�0i,R� 0i�k�0i,K� 0i� =
eiK� 0i·R

�
0i

a�2�

eik�0i·r�0i

a�l
, �20�

where R� 0i is the center-of-mass coordinate and r�0i=r�0−r�i is
the relative coordinate of the 0th and ith particles. The

center-of-mass momentum K� 0i=k�0+k�i is normalized to the
waveguide, and the relative momentum k�0i= �mi / �m+mi��k�0

− �m / �m+mi��k�i is normalized to the dimensions of the gas
cell. m is the mass of the projectile and mi is the mass of the
ith target.

The potential V0i
�j� depends only on the relative coordinates

of the projectile and the ith target, with the exception that it
vanishes if the target coordinates lie outside of the jth slab.
When the range of the potential is much smaller than the
width of the slab, this has the effect of limiting the domain of
the matrix element �k�0 ,k�i�V0i

�j��k�0 ,k�i� to the jth slab. As such,
only when both particles are in the slab is there a contribu-
tion to the matrix element. This requires that the center-of-
mass coordinate must also be in the slab. In principle, the
domain of the relative coordinate that contributes to the ma-
trix element depends on the position of the center-of-mass
coordinate relative to the slab boundaries, but for local po-
tentials we may take the domain of the relative coordinate r�0i

to be all space, and replace t0i
�j� with t0i. t0i is obtained by

replacing V0i
�j� with V0i in �17�. Using these assumptions, we

can rewrite

�,�i�t0i
�j��,�i� 
 �k�0i�t0i�k�0i��K� 0i�K� 0i� . �21�

Taken over a slab, �K� 0i �K� 0i�=w /2�= l / �2�Ns�. Substituting
this result into �18� gives
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S0,0 
 
j=1

Ns �1 − i
2�m

�2k 	
i=1

N

�k�0i�t0i�k�0i�
l

2�Ns
� . �22�

The expression under the product sign in �22� does not de-
pend on the slab index j. We can express the matrix element
of t0i in terms of the forward scattering amplitude in the
center-of-mass frame, f�k0i ,0�, of the 0th and ith particles
�18� and rewrite the sum over the particles as N times the
average,

S0,0 
 �1 + i2�
N

a2

1

Ns
� f�k0i,0�

�0ik/m ��Ns

. �23�

N /a2=�l is the column density of the gas. We have explicitly
written �0i to indicate the reduced mass for each combina-
tion of the projectile and a target. In the case of a target gas
comprised of a single species of atom, we will write � for
the reduced mass. The situation in which the projectile ve-
locity dominates the target velocities permits us to simplify,
k0i
�� /m�k �7,19�. As the number of slabs becomes large,
and the width of each slab becomes small compared to the
length of the gas cell, S0,0 approaches

S0,0 
 exp�i2��l� f�k0i,0�
k0i

�� . �24�

We may take the dimensions of the waveguide and gas cell
to be arbitrarily large under the condition that we also choose
the number of target atoms so that the column density re-
mains fixed. Equation �24� is valid in this free-space limit,
and gives precisely a solution of the coherent wave equation
when we take the incident projectile wave function to be a
plane wave.

This central result accounts completely for the phase shift
and persistence of coherence after multiple scattering with a
dilute, many-body quantum-mechanical target of free par-
ticles. The probability of remaining in the coherent state de-
cays as �S0,0�2=e−��l, where � is the average quantum-
mechanical scattering cross section,

� = � 4�

k0i
Im�f�k0i,0��� . �25�

The cross section is proportional to the imaginary part of the
forward scattering amplitude, whereas the phase shift of the
interference fringes is proportional to the real part,

�� = � 2�

k0i
�l Re�f�k0i,0��� . �26�

The ratio of the real and imaginary parts of the forward scat-
tering amplitude, which is directly measured in interferomet-
ric measurements such as �1�, characterizes the extent that
the interference pattern can be shifted before it is washed out
due to decoherence. For weak interactions—the typical situ-
ation in interferometry—the real part of the forward scatter-
ing amplitude is proportional to the interaction potential V,
whereas the imaginary part is second order in V �see Appen-
dix B�. Consequently, the phase shift acquired by the projec-
tile can be made large by increasing the column density of
the gas, while the loss of contrast,

1 − �S0,0� 
 2��l Im�� f�k0i,0�
k0i

�� � V2, �27�

remains smaller by a factor of the interaction strength. The
difference in the dependence on the interaction strength clari-
fies the ability of a seemingly sensitive, free gas to generate
a large phase shift on a projectile wave function due to scat-
tering. This occurs essentially without loss of contrast if the
target gas is sufficiently dilute and weakly interacting with
the projectile.

V. LOW-ENERGY PROJECTILE: PSEUDOPOTENTIAL

It is well known that a collection of potential centers,
which are assumed to form a uniform medium in a thin slab,
can give rise to an index of refraction for matter waves �20�.
Furthermore, �8� has shown that a finite collection of scatter-
ing centers can, when the scattered waves are appropriately
averaged, act as a medium. The scattered wave is the so-
called coherent wave, which suffers attenuation due to the
averaging process. We have shown here that even a finite
collection of recoiling quantum-mechanical particles in free
space can act as a refractive medium. In addition, decoher-
ence is a natural consequence of entanglement with the target
particles.

In order to illustrate the broader context of our results, it
is instructive to compare the phase shift we obtain for a
special case of the interaction potential with the well-known
results of pure potential scattering. When the projectile is
moving slowly relative to the target atoms, only s-wave scat-
tering needs to be considered, and we can model the interac-
tion as a contact potential,

V0i = V0
�r�0 − r�i� . �28�

Recall that the coefficient on the coherent state after interac-
tions is given by

S0,0 
 
j=1

Ns �1 − 2�i
m

�2k	
i=1

N

�,�i�T0i
�j��,�i�� . �29�

For weak potentials, we may approximate T0i
�j� to first order in

a Dyson series expansion as

T0i
�j� 
 V0i

�j�. �30�

The matrix element � ,�i�V0i
�j�� ,�i� is readily computed us-

ing box-normalized plane waves as before,

�,�i�V0i
�j��,�i� =

V0

2�a2

1

Ns
. �31�

Substituting �31� into �29� gives

S0,0 
 exp�i
2�

k
�− mV0

2��2 ��l� . �32�

S0,0 is a pure phase factor in this approximation. The gas
acts as a medium with an index of refraction for the
projectile matter wave, producing a phase shift �
= �2� /k��−mV0 /2��2��l.
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A direct calculation �20� that ignores the quantum state of
the gas atoms and treats them as potential centers leads to the
phase shift

� = −
2�

k
a0�l , �33�

where the scattering length a0 can be determined from the
solution to the 
 potential scattering problem �21�,

a0 =
mV0/�2��2�

1 + ikmV0/�2��2�

 mV0/�2��2� . �34�

The approximation of a0 is valid under the same conditions
as our expansion of the T matrix. The first-order term in �29�
gives precisely the result for the phase shift that is obtained
due to potential scattering. If we were to keep terms up to
second order in the expansion of T0i

�j�, S0,0 would also reduce
the amplitude of the coherent state, giving rise to decoher-
ence.

VI. CONCLUSIONS

We have demonstrated the correct mechanism by which a
matter wave is coherently refracted by scattering interactions
with a free gas. This work remedies the inconsistency in the
literature due to the interpretation of the coherent part of the
wave as the forward scattered fraction. Explicit treatment of
the many-body quantum state of the targets, which has been
ignored or treated phenomenologically in the previous litera-
ture, connects the microscopic scattering theory to the mac-
roscopic decoherence. This is a significant extension of prior
multiple scattering treatments, and it is absolutely necessary
to obtain decoherence from the fundamental theory.

It was shown that the part of the projectile which does not
become entangled with the target gas can be extracted by
analyzing the scattering in a waveguide. The waveguide ad-
mits discrete scattering channels, and the complex amplitude
of the coherent channel, in which the state of all the target
atoms is completely unchanged, gives the attenuation and
phase shift of the coherent beam. The finite probability that
the atom may scatter from a free gas particle, but not change
the state of the gas particle at all, is the quantum-mechanical
scattering cross section. Nevertheless, the projectile may in-
teract strongly enough with the target to acquire a measur-
able phase shift due to a recoiless interaction. The residual
coherence and phase shift are independent of the dimensions
of the waveguide, which permits the free-space limit of an
arbitrarily large waveguide. The quantitative results for the
phase shift and decoherence properly depend on the column
density of the free gas but not on the dimensions of the
confinement.

The results we have obtained for these experimental con-
ditions are consistent with the potential scattering of �8�, re-
vealing the physical origin of that phenomenological treat-
ment. Our work provides a crucial link, which has been
unaddressed in the literature, between the microscopic scat-
tering theory and reduction in fringe contrast of the interfer-
ence pattern due to decoherence.

The projectile must avoid the cross sections of all the gas
atoms in order to remain coherent after passing through the

gas sample. We have shown above that it is possible for a
projectile to do so and still acquire a large phase shift due to
the weaker dependence of the cross section, O�V2�, than the
phase shift, O�V�, on the strength of the interaction potential.
Physical insight into the dominance of the phase shift over
the scattering cross section in this regime can be had by
realizing, as suggested by �1�, that it is small impact param-
eters that contribute to the cross section, and large impact
parameters that contribute to the phase shift. It is precisely at
large impact parameters, when scattering is avoided, that the
phase shift varies as 
L, the Lth partial wave phase shift, and
the cross section varies as 
L

2. In this region, 
L is small, and
the phase accumulates much faster than scattering occurs. A
projectile that is passing through a dilute gas will interact at
long range with the targets and is operating in this regime.

The requirement that a projectile evade the scattering
cross sections of the targets as it skirts its way through the
free gas becomes an impossibility for interaction potentials
which have long-range forces. A particularly common ex-
ample is the Coulomb potential, for which the total scattering
cross section diverges. Such an interaction potential between
the coherent projectile and a target comprised of free par-
ticles should completely suppress interference fringes, even
for a very low-density target gas.

The techniques that we have developed to calculate the
effect of a free gas as a which-way detector explain the sur-
prising robustness of the spatial coherence in an atom inter-
ferometer to interactions with free particles. The calculations
we have done also lay the groundwork for future investiga-
tions into the impact of other, many-body atomic systems on
a coherent atom, due to scattering interactions.
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APPENDIX A: APPROXIMATION OF THE SCATTERING
T MATRIX

We wish to exclude multiple scattering from the initial
state diagonal matrix element of an �N+1�-particle scattering
matrix T,

�T� = �,�1, . . . ,�N�T�,�1, . . . ,�N� . �A1�

The Hamiltonian is a sum of operators acting only on the
Hilbert spaces of the indicated particles,

H = H0 + V = �H0 + ¯ + HN� + �V0i + ¯ + V0N� .

�A2�

Recall that the definition �17� of the corresponding T matrix
is

T = V + VG0T , �A3�
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G0 = lim
�→0

1

E − H0 + i�
. �A4�

We will introduce the operators T01, . . . ,T0N that satisfy

T = 	
i=1

N

T0i, �A5�

T0i = V0i + V0iG0T0i + 	
j�i

V0iG0T0j . �A6�

It is only the third term on the right-hand side of �A6� that
contributes to multiple scattering. The expression for T0i that
excludes multiple scattering is

T0i 
 V0i + V0iG0T0i. �A7�

This approximation of T0i differs from the definition of the
two-particle scattering matrix, t0i, by the replacement of the
�N+1�-particle operator G0, with a two-particle operator g0i:

t0i = V0i + V0ig0it0i, �A8�

g0i = lim
�→0

1

�E0 + Ei� − �H0 + Hi� + i�
. �A9�

Consider i=1, and note that

��2, . . . ,�N�T01��2, . . . ,�N� 
 V01 + V01g01��2, . . . ,�N�T01

���2, . . . ,�N� . �A10�

We have used

��2, . . . ,�N�G0 = ��2, . . . ,�N�g01. �A11�

�A10� is identical to �A8�, so when multiple scattering is
ignored we can identify

t01 
 ��2, . . . ,�N�T01��2, . . . ,�N� . �A12�

This result is the same for any i. Summing the contributions
due to each �T0i� gives the approximation we desired,

�T� 
 	
i=1

N

�,�i�t0i�,�i� . �A13�

APPENDIX B: EXPANSION OF THE SCATTERING
AMPLITUDE

We seek the dependence of the real and imaginary parts of
the forward scattering amplitude, f�k0i ,0�, on the interaction
potential V0i between the projectile and the ith target. This
may be accomplished by relating the scattering amplitude to
the two-body scattering matrix t0i, defined in �A8� �18�,

�k�0i�t0i�k�0i� =
− 2��2

�a2l
f�k0i,0� . �B1�

f�k0i ,0� is the forward scattering amplitude in the center-of-
mass frame of the projectile and target. � is the reduced
mass, a and l are the previously defined dimensions of the
gas cell, and k0i is the relative wave vector. Expanding t0i in
a Dyson series to second order gives

t0i 
 V0i + V0ig0iV0i. �B2�

Separating the real and imaginary parts of the two-body
Green’s function g0i gives �22�

g0i = P
1

�E0 + Ei� − �H0 + Hi�
− i�
„�E0 + Ei� − �H0 + Hi�… .

�B3�

Substituting this result into �B2�, we find that the real part of
the two-body scattering matrix is first order in V0i, whereas
the imaginary part is second order,

Re�t0i� 
 V0i, �B4�

Im�t0i� 
 − �V0i
„�E0 + Ei� − �H0 + Hi�…V0i. �B5�

Therefore, Im�f�k0i ,0�� is a factor of the interaction potential
smaller than Re�f�k0i ,0��.
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