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Casimir interactions are not pairwise additive. This property leads to collective effects that we study for a
pair of objects near a conducting wall. We employ a scattering approach to compute the interaction in terms of
fluctuating multipoles. The wall can lead to a nonmonotonic force between the objects. For two atoms with
anisotropic electric and magnetic dipole polarizabilities, we demonstrate that this nonmonotonic effect results
from a competition between two- and three-body interactions. By including higher-order multipoles we obtain
the force between two macroscopic metallic spheres for a wide range of sphere separations and distances to the
wall.
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A hallmark property of dispersion forces is their nonaddi-
tivity which clearly distinguishes them from electromagnetic
forces between charged particles �1�. Investigations of the
interactions between multiple objects are limited mostly to
atoms or small particles which are described well in dipole
approximation �2�. This approximation cannot be used for
macroscopic objects at separations that are comparable to
their size since higher-order multipole fluctuations have to be
included �3,4�. In such situations, also other common “addi-
tive” methods such as proximity or two-body-interaction ap-
proximations fail. Recently, three-body interactions between
macroscopic bodies, including those resulting from higher
multipoles, have been studied in geometries that are com-
posed of two parallel perfect metal cylinders of quadratic �5�
or circular �6,7� cross section and one or two parallel side-
walls. In these quasi-two-dimensional �2D� geometries the
forces between pairs of objects have been found to vary non-
monotonically with the separation from the other object�s�.
The nonmonotonicity of the forces results from a competi-
tion between transverse magnetic �TM� and transverse elec-
tric �TE� modes. In this paper we study nonmonotonic effects
beyond the dipole approximation by including higher-order
mulitpole fluctuations. This allows us to compute three-body
interactions between macroscopic objects, extending previ-
ous work that is limited to atoms and molecules �2�. We
investigate collective three-body effects between compact
objects, including anisotropic polarizabilities, and a wall in
three dimensions using a recently developed scattering ap-
proach �4,8�. There are precursors of and contributions to the
scattering approach, see, e.g., �9–12�. This approach allows
us to observe the influence of polarization coupling and an-
isotropy on nonmonotonic effects. We find that the force be-
tween atoms and macroscopic spheres depends, again, non-
monotonically on the separation of the sidewall, and we
provide a simple physical argument using image fluctuations
to explain this.

We consider the retarded Casimir interaction between a
pair of polarizable objects with anisotropic electric and mag-
netic polarizabilities near a conducting wall, see Fig. 1. We
identify a competition between two- and three-body effects
and prove that this leads to a nonmonotonic dependence of

the force between the objects on the wall separation H for
each of the four possible polarizations of fluctuations �elec-
tric or magnetic and parallel or perpendicular to the wall�
separately. For isotropic polarizabilities we find that only the
force component due to electric fluctuations is nonmonotonic
in H.

For atoms, magnetic effects are almost always rather
small in the retarded limit. Contrary to this, for conducting
macroscopic objects contributions from electric and mag-
netic multipole fluctuations are comparable. To study the ef-
fect of higher-order multipoles, we consider also two perfect
metal spheres near a wall, see Fig. 1. Based on consistent
analytical results for large separations and numerical compu-
tations at smaller distances we find a nonmonotonic depen-
dence of the force between the spheres on H. Unlike for
atoms, this effect occurs at sufficiently large sphere separa-
tions only.

As presented in Ref. �8� the Casimir energy of two bodies
in the presence of a perfectly conducting sidewall can be
obtained using the scattering approach by employing the
method of images, which introduces fluctuating currents on
the mirror bodies. The Casimir energy of the original system
is then given by the energy of the original and the image

2R

H

L

FIG. 1. Geometry of the two-sphere or atom and sidewall sys-
tem. Shown are also the mirror images �gray� and two- and three-
body contributions �solid and dashed curly lines, respectively�.
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objects, and it can be expressed as an integral over imaginary
wave number,

E =
�c

2�
�

0

�

d� ln det�MM�
−1� , �1�

with the matrix

M = �T−1 + UI,11 U12 + UI,12

U21 + UI,21 T−1 + UI,22� , �2�

which is given by the T matrix that relates the regular and
scattered electromagnetic �EM� fields for each body and by
the U matrices that describe the interaction between the mul-
tipoles of object � and object �, U��, and between the mul-
tipoles of object � and the image of object �, UI,��. The T
matrices depend only on the properties of the individual bod-
ies such as polarizability, size, and shape. The U matrices
depend only on the distance vector between the objects and
decay exponentially with distance and wave number �. The
matrix M� accounts for the subtraction of the object’s self-
energies and hence follows from M by taking the limit of
infinite separations, i.e., by setting all U matrices to zero. For
a multipole expansion the matrix elements are computed in a
vector spherical basis for the EM field with partial wave
numbers l�1, m=−l , . . . , l. �Details of this expansion and
the U-matrix elements can be found in Ref. �8�.�

In the following we study the force F=−�E /�L between
the two objects at separation L and hence eliminate the con-
tributions to the energy that depend only on the sidewall
separation H, see Fig. 1. We expand the determinant of Eq.
�1� as

det�MM�
−1� = det�1 + TUI�det�1 + TUI�

	det�1 − �1 + TUI�−1T�U21 + UI,21�

	�1 + TUI�−1T�U12 + UI,12�� . �3�

The first two determinants on the rhs yield together twice the
interaction energy between a single object and the sidewall
since UI�UI,11=UI,22 describes the multipole coupling be-
tween one object and its image and hence depends only on
H. Hence, we consider only the energy E�� that corresponds
to the last determinant of Eq. �3� and provides the potential
energy of the two objects in the presence of the sidewall so
that F=−�E�� /�L. In the absence of the sidewall, H→�, the
matrices UI,�� all vanish and E�� simplifies to the energy
between two spheres �4�. For an interpretation in terms of
multiple scatterings, it is instructive to use the relation
ln det=Tr ln and to Taylor expand the logarithm and the in-
verse matrices,

E� � = −
�c

2�
�

0

�

d�	
p=1

�
1

p
Tr�	

n=0

�

�− 1�n�TUI�nT�U21 + UI,21�

	 	
n�=0

�

�− 1�n��TUI�n�T�U12 + UI,12��p. �4�

The trace acts on an alternating product of T and U matrices
which describe scattering and free propagation of EM fluc-

tuations, respectively. Multiple scatterings between an object
and its image �TUI� are followed by a propagation to the
other object-image pair, either to the object �U21� or its image
�UI,21�, between which again multiple scatterings occur be-
fore the fluctuations are scattered back to the initial object or
its image �U12 or UI,12� and the process repeats. This expan-
sion is useful for small objects or large separations.

First, we consider the case of two identical, general po-
larizable objects near a wall in the dipole approximation, see
Fig. 1. This case applies to ground state atoms and also to
general objects at large separations. The separation between
the objects is L, and the separation of each of them from the
wall is H. In dipole approximation, the retarded limit of the
interaction is described by the static electric ��z, �
� and
magnetic ��z, �
� dipole polarizabilities of the objects which
can be different in the directions perpendicular �z� and par-
allel � 
 � to the wall. The T matrix of the objects is diagonal
and has finite elements only for the dipole channel �partial
waves with l=1�, given by T10

E = 2
3�z�

3, T1 m
E = 2

3�
�3 for elec-
tric and T10

M = 2
3�z�

3, T1 m
M = 2

3�
�3 for magnetic polarization
with m= 
1. For atoms, the polarizability is much smaller
than L3, and hence it is sufficient to compute the interaction
to second order in the polarizabilities. This amounts to ne-
glecting all terms other than p=1 and n=n�=0 in Eq. �4�.
The resulting energy E�� is then compared to the well-known
Casimir-Polder �CP� interaction energy between two atoms
�without the wall�,

E2,��L� = −
�c

8�L7 �33�

2 + 13�z

2 − 14�
�z + �� ↔ ��� , �5�

which corresponds to the sequence TU21TU12 in Eq. �4�. The
total interaction energy is

E� ��L,H� = E2,��L� + E2,\�D,L� + E3�D,L� , �6�

with D=�L2+4H2. The two-body energy E2,\�D ,L� comes
from the sequence TUI,21TUI,12 in Eq. �4� and hence is the
usual CP interaction between one atom and the image of the
other atom �see Fig. 1�. The change in the relative orientation
of the objects with �=L /D leads to the modified CP potential

E2,\�D,L� = −
�c

8�D7 �26�

2 + 20�z

2 − 14�2�4�

2 − 9�
�z + 5�z

2�

+ 63�4��
 − �z�2 − 14��
�
�1 − �2� + �2�
�z�

+ �� ↔ ��� . �7�

The three-body energy E3�D ,L� corresponds to the matrix
products TU21TUI,12 and TUI,21TU12 in Eq. �4� and hence
describes the collective interaction between the two objects
and one image object. It is given by

E3�D,L� =
4�c

�

1

L3D4�� + 1�5 ��3�6 + 15�5 + 28�4 + 20�3

+ 6�2 − 5� − 1���

2 − �


2�

− �3�6 + 15�5 + 24�4 − 10�2 − 5� − 1���z
2 − �z

2�

+ 4��4 + 5�3 + �2���z�
 − �
�z�� . �8�

For isotropic electric polarizable atoms this result agrees
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with that of Ref. �2�. It is instructive to consider the two
limits H�L and H�L. For H�L one has D→L and the
two-body potentials are identical, E2,\�L ,L�=E2,��L�. The
three-body energy becomes

E3�L,L� = −
�c

4�L7 �− 33�

2 + 13�z

2 + 14�
�z − �� ↔ ��� .

�9�

The total energy E�� is now twice the energy of Eq. �5� plus
the energy of Eq. �9� and hence E�� becomes the CP potential
of Eq. �5� with the replacements �z→2�z, �
→0, �z→0,
�
→2�
. The two-body and three-body contributions add
constructively or destructively, depending on the relative ori-
entation of a dipole and its image which together form a
dipole of zero or twice the original strength �see Fig. 2�. For
H�L the leading correction to the CP potential of Eq. �5�
comes from the three-body energy which in this limit be-
comes �up to order H−6�

E3�H,L� =
�c

�
�z

2 − �

2

4L3H4 +
9�


2 − �z
2 − 2�
�z

8LH6 − �� ↔ ��� .

�10�

The signs of the polarizabilities in the leading term �H−4

can be understood from the relative orientation of the dipole
of one atom and the image dipole of the other atom, see Fig.
2. If these two electric �magnetic� dipoles are almost perpen-
dicular to their distance vector they contribute attractively
�repulsively� to the potential between the two original ob-
jects. If these electric �magnetic� dipoles are almost parallel
to their distance vector they yield a repulsive �attractive�
contribution. For isotropic polarizabilities the leading term of
Eq. �10� vanishes and the electric �magnetic� part �H−6 of
the three-body energy is always repulsive �attractive�.

The above results show how the force between the two
particles varies with H. If the two particles have only either
�z or �
 polarizability, their attractive force is reduced when
they approach the wall from large H due to the repulsive
three-body interaction. At close proximity to the wall the
fluctuations of the dipole and its image add up to yield a
force between the particles that is enhanced by a factor of 4
compared to the force for H→�. Corresponding arguments
show that the force between particles with either �
 or �z
polarizability is enhanced at large H and reduced to zero for
H→0. This proves that the force between particles which
both have either of the four polarizabilities is always non-

monotonic. The situation can be different if more than one
polarizability is finite, especially for isotropic particles. In
the latter case all contributions �electric, magnetic, mixed�
are enhanced for H→0 and only the electric term is reduced
at large H so that only the electric part gives a nonmonotonic
force. In general, the monotonicity property depends on the
relative strength and anisotropy of the electric and magnetic
polarizabilities.

Second, we study two macroscopic perfect metallic
spheres of radius R for the same geometry as before where
the lengths L and H are measured now from the centers of
the spheres, see Fig. 1. Here we do not limit the analysis to
large separations but consider arbitrary distances and include
higher-order multipole moments than just dipole polariz-
ability. The T matrix is diagonal and the elements Tlm

M

= �−1�l �
2 Il+1/2��R� /Kl+1/2��R�, Tlm

E = �−1�l �
2 �Il+1/2��R�

+2�RIl+1/2� ��R�� / �Kl+1/2��R�+2�RKl+1/2� ��R�� are given in
terms of the modified Bessel functions I, K. First, we ex-
pand the energy in powers of R by using Eq. �4� which
implies that we expand the T matrices for small frequencies
but use the exact expressions for the U matrices. For R�L,
H, and arbitrary H /L the result for the force can be written as

F =
�c

�R2	
j=6

�

f j�H/L��R

L
� j+2

. �11�

The functions f j can be computed exactly. We have obtained
them up to j=11 and the first three are �with s��1+4h2�

f6�h� = −
1

16h8 �s−9�18 + 312h2 + 2052h4 + 6048h6 + 5719h8�

+ 18 − 12h2 + 1001h8�, f7�h� = 0, �12�

f8�h� = −
1

160h12�s−11�6210 + 140554h2 + 1315364h4

+ 6500242h6 + 17830560h8 + 25611168h10

+ 15000675h12� − 6210 − 3934h2 + 764h4 − 78h6

+ 71523h12� . �13�

The coefficient f7 of R7 vanishes since a multipole of order l
contributes to the T matrix at order R2l+1 so that beyond the
two-dipole term �R6 the next term comes from a dipole
�l=1� and a quadrupole �l=2�, yielding f8. For H�L one has
f6�h�=−1001 /16+3 / �4h6�+O�h−8�, f8�h�=−71523 /160
+39 / �80h6�+O�h−8� so that the wall induces weak repulsive
corrections. For H�L, f6�h�=−791 /8+6741h2 /8+O�h4�,
f8�h�=−60939 /80+582879h2 /80+O�h4� so that the force
amplitude decreases when the spheres are moved a small
distance away from the wall. This proves the existence of a
minimum in the force amplitude as a function of H /R for
fixed, sufficiently small R /L. We note that all f j�h� are finite
for h→� but some diverge for h→0, e.g., f9� f11�h−3,
making them important for small H.

To obtain the interaction at smaller separations or larger
radius, we have computed the energy E�� and force F
=−�E�� /�L between the spheres numerically. For the energy,
we have computed the last determinant of Eq. �3� and the
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FIG. 2. Typical orientations of electric �e� and magnetic �m�
dipoles and image dipoles for H /L→0 and H /L→�.
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integral over � of Eq. �1� numerically. The force is obtained
by polynomial interpolation of the data for the energy. The
matrices are truncated at a sufficiently large number of par-
tial waves �with a maximum truncation order lmax=17 for the
smallest separation� so that the relative accuracy of the val-
ues for E�� is �10−3. The data for H /R=1 are obtained by
extrapolation in lmax. The results are shown in Figs. 3 and 4.
In order to show the effect of the wall, the figures display the
energy and force normalized to the results for two spheres
without a wall. Figure 3 shows the energy and force as a
function of the �inverse� separation between the spheres for
different fixed wall distances. The proximity of the wall gen-
erally increases the interaction energy and the force between
the two spheres. The effect is more pronounced, the further
the two spheres are separated. For sufficiently large H /R, the
energy and force ratios are nonmonotonic in L and can be
slightly smaller than they would be in the absence of the
wall. Figure 4 shows the force between the two spheres as a
function of the wall distance for fixed L. When the spheres
approach the wall, the force first decreases slightly if R /L
�0.3 and then increases strongly under a further reduction in
H. For R /L�0.3 the force increases monotonically as the
spheres approach the wall. This agrees with the prediction of
the large distance expansion. The expansion of Eq. �11� with
j=10 terms is also shown in Fig. 4 for R /L�0.2. Its validity
is limited to large L /R and not too small H /R; it fails com-
pletely for R /L�0.2 and hence is not shown in this range.

Since experimentalists have made great progress in mea-
suring the Casimir force between two objects in past years

�13–29�, it can be expected that measuring three-body forces
may as well be feasible in the future. Our results for macro-
scopic spheres indicate an interesting modification of the
force between two spheres due to the presence of a sidewall.
Also, the force between two spheres is enhanced by the prox-
imity of the sidewall; thus a sidewall may make the obser-
vation of Casimir forces between small particles easier. Of
course, for realistic predictions, material and temperature de-
pendence, surface roughness, etc. have to be taken into ac-
count, but these considerations lay outside the scope of our
investigation. The dependence on the anisotropy of polariz-
abilities applies not only to atoms but to general polarizable
objects and suggests interesting effects for objects of non-
spherical shape, e.g., spheroids. Our results for isotropic at-
oms are also potentially relevant to the interaction between
trapped Bose-Einstein condensates and a surface �20� at
close surface separations. The results for macroscopic
spheres could be important for the design of nanomechanical
devices where small components operate in close vicinity to
metallic boundaries.
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