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Abstract

As the computer, communication, and entertainment industries begin to integrate
phone, cable, and video services and to invest in new technologies such as fiber optic
cables, interruptions in service can cause considerable customer dissatisfaction and even be
catastrophic. In this environment, network providers want to offer high levels of service—
in both serviceability (e.g., high bandwidth) and survivability (failure protection)}—and to
segment their markets, providing better technology and more robust configurations to
certain key customers. We study core models with three types of customers (critical,
primary, and secondary) and two types of services/technologies (primary and secondary).
The network must connect primary customers using primary (high bandwidth) services
and, additionally, contain a back-up path connecting certain critical primary customers.
Secondary customers require only single connectivity to other customers and can use either
primary or secondary facilities. We propose a general multi-tier survivable network design
model to configure cost effective networks for this type of market segmentation. When
costs are triangular, we show how to optimally solve single-tier subproblems with two
critical customers as a matroid intersection problem. We also propose and analyze the
worst-case performance of tailored heuristics for several special cases of the two-tier
model. Depending upon the particular problem setting, the heuristics have worst-case
performance ratios ranging between 1.25 and 2.6. We also provide examples to show that
the performance ratios for these heuristics are the best possible.



Introduction

Increasingly, survivability is becoming an important criterion in the design of telecom-
munication networks. Several recent developments have prompted this change. The first
is technological: fiber-optic and opto-electronic cables are replacing traditional copper
cables as a telecommunication medium. Because these newer technologies can carry sub-
stantially more traffic (both more channels and at a higher frequency) than traditional
copper cables, telecommunication networks designed solely to minimize costs will tend to
be sparse. In this case, the failure of a single edge can create significant system-wide
disruptions, disabling traffic between many customer locations if the network does not
provide alternate paths for routing. Second, customers, individual as well as industrial, are
increasingly using telecommunication networks not only for transmitting voice, but also to
transmit video and data. For example, in their logistics operations, many companies are
now using Electronic Data Interchange (EDI) systems to connect suppliers and customers
throughout the supply chain. EDI not only permits the immediate transmittal of sales and
demand information between the different links in the supply chain, but also provides up-
to-date inventory status throughout the chain. In addition, because EDI also provides
automatic billing, monitoring of key marketing variables, and other advantages, companies
have become quite dependent on their inter-organizational telecommunication networks for
day-to-day operations. As yet another motivating factor, recently merged
telecommunication and cable companies will be offering new entertainment services to their
customers; this change has increased the reliance on communication networks connected to
individual households. For all these reasons, and in all these contexts, network providers
need to offer services that are highly reliable and that are robust to localized equipment
(edge and node) failures.

Recent developments have brought about yet another change in telecommunications:
network designers now have a choice of multiple transmission and switching technologies.
For example, they can use twisted pair (copper), fiber optics, or opto-electonic
transmission media, and add/drop multiplexers or digital cross-connect switches.
Moreover, a particular physical technology such as fiber optic cables might be able to
provide different types of service (such as DS1 or DS3). These technologies and services
differ in their cost, reliability, and capacity. As a result, networks need to connect
important customers using higher cost, but also more reliable and higher capacity switches
and transmission media, while connecting less critical customers using less expensive, but



also lower capacity equipment. This technology choice adds a new, and as yet only
partially studied, dimension to the design of survivable networks.

The prevailing literature on network survivability (see, for example, Cornuéjols,
Fonlupt, and Naddef [1985], Grotschel, Monma, and Stoer [1992], and Monma, Munson,
and Pulleyblank [1990]) considers a single interconnection technology. These models
represent survivability through node-connectivity requirements specifying the number of
edge or node-disjoint paths required between every pair of nodes. The network must
provide a larger number of edge-disjoint paths connecting more important node pairs.

Node-connectivity requirements of two or more provides one form of network
reliability. Another recent stream of research in the network design literature attempts to
provide reliable designs by using multiple interconnection technologies. Examples are the
Hierarchical Network Design Problem (Current, Revelle, and Cohon [1986]) and the more
general Multi-Level Network Design Problem (Balakrishnan, Magnanti, and Mirchandani
[1992a]); this “serviceability” approach to network design provides higher grade (more
reliable and more costly) service between certain “important” pairs of nodes, and lower
grade service between other nodes. This approach does not incorporate multiple paths.

This paper aims to bring together these two disparate streams of research by viewing
network reliability/survivability as a function of both node-connectivity and of the
technology choices. We propose a multi-tier, multi-connected network design model that
incorporates differential technologies as well as multiple connectivity requirements between
certain node pairs in the network. The single-tier, multi-connected as well as the multi-tier,
single-connected network design problems in the literature are special cases of this model.

In Section 1, we introduce a general model and describe various specializations and
alternative modeling assumptions. We then recast the problem as an “overlay optimization
problem,” a class of models introduced by Balakrishnan, Magnanti, and Mirchandani
[1994a] which has a “base” subproblem and an “overlay” subproblem(s); these
subproblems are linked by the requirement that the overlay solution is “contained in” the
base solution. Since multi-tier survivable network design problems can be modeled as
special cases of the overlay optimization problem, as we show in Section 2, the heuristic
worst-case results in Balakrishnan et al. apply directly. However, Sections 4 and 5
demonstrate that we can strengthen these results by using idiosyncratic problem
characteristics.



The results in Sections 4 and 5 build upon heuristic and optimal methods for solving
single-tier, multi-connected versions of the general multi-tier problem. We first examine
the single-tier models in Section 3. In this discussion, we consider two basic problems: a
dual path tree problem and a dual path Steiner tree problem. In the dual path tree (DPT)
problem we seek a cost-minimizing network that connects all the nodes and has two edge-
disjoint paths between two specified nodes. The dual path Steiner tree (DPST) problem is
a Steiner tree version of the DPT problem,; it contains a set of additional Steiner nodes that
can (but need not) be used as intermediate nodes in the optimal design. We describe a
heuristic method with a worst-case performance guarantee of 2 for both these problems.
When the costs satisfy the triangle inequality, we can do better: using a matroid intersection
algorithm we can optimally solve the DPT problem. We also provide an easily
implemented “1-tree” heuristic with a worst-case performance guarantee of 3/2 for the DPT
problem. We then consider a more general cost structure, called p-direct, and show that in
this case the 1-tree heuristic has a worst-case performance guarantee of 1+ /2 (u =1 for
problems with triangular costs).

Sections 4 and 5 address various two-level, two-connected survivability models. In
these problem settings, we can use either high grade or low grade transmission facilities.
We need to connect certain primary nodes using only high grade paths, we can use any
type of path to connect other, secondary nodes. In addition, the network design must
include an alternative back-up transmission path between certain of the primary nodes. By
making alternate assumptions concerning the nature of the back-up path (high grade or
general) and by making assumptions about the number of primary nodes and their
connectivity requirements, we obtain four different types of models. For each of these
models, we develop two or more heuristic solution procedures and design a composite
heuristic solution procedure that chooses the best of the individual heuristic solution values.
We analyze the performance of this procedure for various cost structures. Our analysis
shows that, depending upon the specific problem setting, the heuristic performance
guarantees for the composite heuristic range from 1.25 to 2.6.

As we note in the conclusions (Section 6), the analysis in this paper extends to more
general multi-tier, multi-connected problems. For example, we could require K instead of
2 paths between the special nodes, or we could consider models with K special nodes that
must all lie on a common ring (and so have connectivity two). Recent SONET networks
use this type of ring topology.



1. The Multi-tier Survivable Network Design Problem

Let G = (N, E) denote an undirected graph with node set N and edge set E. Let L
denote the number of different technology (service) types, indexed from 1 to L; level / =1

refers to the highest grade technology (e.g., fiber optic cables) and level l L corresponds

to the lowest grade. A grade / facility on edge {i,j} costs cu, with cfj 2 c “if /<!’ The

Multi-tier Survivable Network De51gn (MTS) model represents surv1vab1hty through L
nonnegative connectivity parameters ru, for/=1,2, ..., L, defined for each pair i and j of
nodes. The integer connectivity value r; (= ji) specrﬁes the minimum required number of
edge-disjoint paths connecting node i to node j containing facilities of service grade [ or
higher. Therefore, r' 2 r’ if I’ < l. Whenever each connectivity value r equals 0,1, o0r2,
we will say that the problem has low connectivity requirement; for most of this paper, we
consider only low connectivity problems. As Grétschel et al. [1992] have noted, these

models are relevant for designing contemporary telecommunication networks.

1.1 Multi-tier problem formulation

To formulate the multi-tier survivable design problem as an integer program, for any
subset of nodes S € N and T = N\S, let {S,T} denote the edge-cutset defined by S and T,
ie., {S,T} includes all edges {i,j} € E withie Sandje T. Let ullJ equal 1 if we install a

ki
level-] facility on edge {i,j}, and equal O otherwise. Define US T= " }GZ{ ST} ujj, ie.,

UI denotes the aggregate number of level-/ facilities across the {S,T} cutset. Let R
denote the maximum level-/ connectivity requirement across the {S,T} cutset, i.e.,

I = max

ST jeSjeT Y

Using the facility design variables u, we can formulate the multi-tier, survivable
network design problem as follows.

Problem [MTS]:

minimize )IND 11111] (1.1)
1<I<L (ij}€E
subject to
Y v =2 R forall ScN, T=N\S,1</<L, (1.2)
1< ST S.T



2 u <1 for all {i,j}€E, and (1.3)

Oorl forall {i,j}eE,1<I/<L. (1.4)

By Menger's theorem (Ford and Fulkerson [1962]), constraints (1.2) establish the
connectivity requirement for each level of service. Constraints (1.3) ensure that we can
install at most one facility on each edge. Formulation [MTS] uses only design variables u.
Alternatively, we could introduce auxiliary flow variables and use these variables to
establish the connectivity requirements. The flow-based formulation has more variables,
but far fewer constraints. A directed version of this alternative model has proven to be very
effective computationally for solving multi-tier, single-connected network design problems
(Balakrishnan, Magnanti, and Mirchandani [1992b]).

Rather than using the intuitive formulation [MTS], the heuristic analysis presented in
this paper is based on an alternative “overlay optimization” model (Balakrishnan et al.

[1994a]) that has the following generic formulation. Let b’ for 1 </ <L be m-dimensional
cost vectors with nonnegative elements bx’; Let v/ for 1 </ <L be m-dimensional decision

vectors with components v1’J For all /, V! denotes a set in Z7 satisfying the property that
Vvi+*1 c vl Consider the following L-level overlay optimization problem.

Problem [OOP]:
Minimize 2 bV} (1.5)
1<I<L
subject to
vi e V! forall1</ <L, and (1.6)
vi < v+l forall 1</ <L-1. (1.7)

Observe that the overlay optimization problem consists of L subproblems v/ € V! along
with linking constraints (1.7). These constraints specify that the solution to the / th
subproblem must be “overlayed” or embedded in the (/ +1)-level solution. An alternative
version of overlay model requires embedding the higher grade facilities on a common base
(level L) design, i.e., this model replaces constraints (1.7) with v/ < vl forall 1 </ <L-1.
Balakrishnan et al. [1994a] use this latter model to analyze the multicommodity
uncapacitated network design problem.



To interpret [MTS] as an overlay optimization problem, let b’ = c"J - c"fjl, with cLi*j' 1=
0, denote the incremental cost of installing a level / facility on edge {i,j}. The
reformulation represents the decision to install a level / facility on edge {i,j} as the decision
to first install a level L facility on {i,j} and then to successively upgrade this facility to level
I' forI'=L~1,L-2, ..., l. The level / facility upgrading variable v’ takes the value 1 if

we upgrade the level (/+1) facility on edge {i,j} to level /, and is 0 otherw15e. For all /, let

= X u andV = X U and define the set
lJ 1<) i ST 15

Vi={v= (v )eachv €Z, vﬁSlandVéT- RST,forallScNT N\S, }.

With this variable redefinition, formulation [MTS] is equivalent to formulation [OOP].

Note that “ilj = Vilj - v’ij‘l forl =2, 3, ..., L; therefore, the nonnegativity restriction on the

u variables becomes the linking constraints for the v variables.

The model [MTS] is deceptively simple; however, as shown in Figure 1, it includes as
special cases many network design problems. The model can permit single or multiple
grades for the transmission facilities and it allows single or multiple connectivities (for
some or all nodes). We can further categorize multi-tier models depending upon the
number of 1-connected and multi-connected nodes (i.e., nodes with connectivity
requirement greater than 1) at each level and whether all the paths between the multi-
connected nodes need to use the same grade paths. For two level problems, we refer to
multi-connected nodes at the higher level as crifical nodes. If the edge-disjoint paths
connecting these nodes must all use the same (or higher) level paths, we say that the
problem requires full back-up; otherwise, we say that it requires partial back-up. Providing
full back-up between two nodes i and j ensures that the network can accommodate all traffic
fromi to j if a single link on the regular i-to-j path fails; networks with full back-up are
expensive and in periods of normal operation have considerable underutilized high-grade
capacity. To reduce network cost, planners might be satisfied with providing minimal
communication capability (for critical traffic) when a link on the regular path fails. In this
case, we provide partial back-up by permitting lower grade facilities on the back-up path.

Yet another distinction between multi-connected models concerns assumptions
regarding edge duplication. Edge duplication permits us to install parallel transmission
facilities between pairs of nodes, and to treat these parallel facilities as edge-disjoint for
purposes of establishing back-up paths. Our model [MTS], unlike some other models in
the network survivability literature, does not allow duplicated edges: it permits at most one
facility to be installed on any edge (constraints (1.3)). As we will see and as might be
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expected, allowing duplicate edges simplifies the heuristic solution methods and improves
their worst-case performance. Yet, survivability issues often dictate that we do not allow
duplicated edges (for instance, often a single conduit carries parallel transmission lines and
so if the conduit breaks, then so do all the lines in that conduit). Finally, while we consider
undirected facilities in this paper, we could define multi-tier survivability problems for the
directed case as well.

Figure 1: Hlerarchy of Multi-tier, Multi-connected Network Design Problems
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To summarize, the multi-tier, multi-connected network design framework covers a very
broad range of models. Rather than applying a general solution method or developing
general worst-case bounds that apply to all models, we might wish to exploit the structure
of specialized models within this framework to sharpen the bounds and develop more
effective solution methods. A taxonomy of multi-tier, multi-connected models might
include the following items:

. » the number of node levels and facility grades;
« the number of higher level nodes (for example, two or more than two);
« the number of multi-connected nodes at each level;



» the maximum connectivity level and type of redundancy (full or partial back-up);

« the use or non-use of duplicate edges; and,

+ undirected or directed facilities.
In this paper, we focus on undirected, two-tier, low connectivity models without edge
duplication, making distinctions between (i) two and many nodes at the high grade level,
and (ii) full or partial back-up. At various points in our discussion, we comment on how to
adapt our results to situations permitting edge duplication. To the best of our knowledge,
this paper represents the first study of multi-tier, multi-connected network design
optimization problems.

2. A Composite Heuristic for Two-tier Overlay Optimization Models

We first briefly review prior heuristic analysis for the two-tier overlay optimization
problem (Balakrishnan et al. [1994a]). For notational simplicity, we use X instead of v?
and Y instead of V1. Similarly, we let x denote vZand y denote vl anduseaand b
respectively to denote the cost vectors b2 and bl. We let ¢ denote the total cost (a+b). With
these variable changes, the overlay version of the two-tier survivable network design
problem has the following form:

Problem [TTS]:

Z' = minimize ax +by 2.1
subject to
Overlay constraints: y € Y 2.2)
Base constraints: x € X (2.3)
Linking constraints: y £ Xx 2.4)

We begin by noting that if we ignore the linking constraints (2.4) in formulation [TTS],
then we obtain two subproblems, Zg(a) = min {ax: x € X}, and Z(b) = min {by:ye Y}.

We refer to these problems as the base and the overlay subproblems.

Since our model assumes that X < Y, we can generate feasible solutions to problem
[TTS] by finding feasible solutions x € X to the base subproblem, and then setting y = x.
If we choose x as a solution (approximate or optimal) of the base subproblem BP(c), using
the total costs c, we refer to this method as the Base Upgrading (BU) heuristic. A
complementary heuristic, which we call the Overlay Completion (OC) heuristic, first
generates a feasible solution 9 to the overlay subproblem OP(c), using total costs, and then



“completes” this overlay solution by solving the following completion subproblem: ZB(a,Q)
=min {ax: x 2 y, x € X}. Since x 2 y and the cost vector a is nonnegative, the optimal
value ZB(a,A) of thc completion problem must be at least ay We refer to the difference
S(A) =Zg(a, A) ay as the optimal completion cost. Our analysis applies to problem classes
that satxsfy the following condition: for any feasible problem instance and a given overlay
solution y, the optimal completion cost does not exceed A Zg(a) for some finite known
constant A. We refer to this condition as the feasible completion property, and to A as the
completion cost multiplier. For three out of the four models that we analyze in this paper,
A = 1. Note that any problem that permits duplicate edges satisfies the feasible completion
property w1th A =1 since we can get a feasible solution to the completion problem by
setting xlJ y]lJ + 1 for all the edges {i,j} in the optimal solution to the base subproblem,
and X;j = le for all other edges.

We analyze the worst-case performance of a composite heuristic that applies both the
BU and OC heuristics to any given problem instance, and selects the solution with the
smaller total cost. Let ZCOMP denote the cost of this solution. If we solve the base and

overlay subproblems using heuristic methods with worst-case performance guarantees of
pp and pq respectively, then the BU heuristic solution value is bounded from above by

PpZg(c), and the OC heuristic solution value is bounded from above by
pOZO(c)+7s,pBZB(a). Therefore, assuming A = 1, the cost of the composite heuristic
solution is bounded from above by

ZComP < min {ppZy(c), PoZo(C)+PpZp(@)). (2.5)
In the subsequent analysis, we let p = p/pg.

2.1 General worst-case results for two-tier models

For the generic two-tier overlay optimization problem [TTS] satisfying the feasible
completion property with A = 1, Balakrishnan et al. [1994a] have characterized the worst-
case performance ratio of the composite heuristic, that is, the maximum possible ratio
between the objective value ZCOMP of the solution generated by the composite heuristic and
the optimal value Z* of problem [TTS]. They consider two cases: (i) problems for which
total and base costs are proportional, i.e., cij/aij =T, a constant for all edges {i,j}, and (ii)
the general case with unrelated total-to-base costs. The following two theorems summarize
these prior results.



Theorem 1:
For overlay optimization problems with A = 1 and proportional costs, the performance
ratio @ of the composite heuristic is bounded from above by

prop 4
Wprop < P ZE ifp<2, (2.6a)

< pgp ifp>2. (2.6b)

Theorem 2:
For overlay optimization problems with A = 1 and unrelated costs, the worst-case
performance @, .. of the composite heuristic is
Ourel £ PotPB if Zg(a) >0, and (2.7a)
< Po if Zg(a) = 0. (2.7b)

2.2 Applications of general worst-case results

To illustrate the use of these theorems, we consider two special cases of the two-tier
network design problem: the Hierarchical Network Design (HND) and the Two-Level
Network Design (TLND ) problems. In both these problems, (i) every pair of nodes has a
connectivity requirement of 1, and (ii) there are two service levels, primary and secondary,
corresponding, for example, to fiber-optic cables and copper cables. In the HND problem,
we designate two nodes of G, say nodes 1 and 2, as primary nodes, and refer to a path
containing only primary facilities, as a primary path. The HND problem seeks a cost
minimizing spanning tree that contains a primary path connecting nodes 1 and 2; the
remaining edges of the tree have secondary facilities. The TLND problem generalizes the
HND problem by designating more than two nodes as primary nodes; the solution must
connect all the primary nodes to each other using primary paths. The optimal TLND
solution is a cost minimizing spanning tree that contains a primary subtree (a Steiner tree)
connecting all the primary nodes (as well, perhaps, as some secondary nodes); the
remaining edges of the tree have secondary facilities.

For the HND problem, the base subproblem is a minimum spanning tree problem, and
the overlay subproblem is a shortest path problem. Therefore, py =pg =p =1. So for

problems with proportional costs, by Theorem 1 the cost of the composite heuristic
solution is at most 4/3 rds the optimal cost. For the TLND problem, pg = 1 and the

minimum spanning tree (MST) heuristic (Takahashi and Matsuyama [1980]) solves the
overlay (Steiner tree) subproblem with a worst-case ratio py = 2. Therefore, Theorem 1

implies that the worst-case ratio of the composite heuristic for TLND problems with
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proportional costs must not exceed 2. These worst-case bounds for the composite heuristic
for HND and TLND problems are tight (Balakrishnan et al. [1992a]).

In Sections 4 and 5, we show that by exploiting special problem structure we can
improve upon the worst-case bounds of Theorems 1 and 2 for several two-tier, two-

connected network design models. For example, for one proportional cost model that we

consider in Section 4.1, pg =3/2 and pg = 1 and so Theorem 1 provides the bound Wprop <
9/5 whereas the bound we obtain has an improved worst-case performance guarantee of

8/5. In another instance, we are able to reduce the bound from 4/3 to 5/4.

2.3 Heuristic analysis strategy

Theorems 1 and 2 and our worst-case analysis in Sections 4 and 5 use the following
general approach. The analysis begins with the upper bound (2.5) on the cost of the
composite heuristic. This bound depends on the costs of the BU and OC heuristic
solutions. For each specialized model that we consider, we attempt to improve the BU and
OC heuristics and obtain sharper estimates of their costs. We also determine a lower bound
on the optimal value Z" as follows. If we ignore the linking constraints (2.4) in
formulation [TTS], as we noted previously, the problem decomposes into the overlay
subproblem with costs b and the base subproblem with costs a. Consequently, the sum of
the optimal values for these two subproblems is a valid lower bound on Z*. We obtain
another lower bound by ignoring the base constraints (2.3). Since all costs are

nonnegative, setting x =y is optimal for this relaxation, and so the optimal value of the
relaxation is Zy(c). Combining these two lower bounds shows that

Z' 2 max {Z(b) + Zg(a), Zp(0)}. (2.8)
Dividing the heuristic upper bound (2.5) by the lower bound (2.8) gives an upper bound
on the heuristic worst-case performance ratio. For the proportional costs case, we express
this ratio in terms of two parameters—the cost ratio r and the unknown ratio s =
Z(a)/Zg(a) (we assume Zp(a) > 0). To obtain a data-independent performance

characterization, we maximize the performance ratio with respect to s and r.

3. Solution Methods and Analysis for Underlying Single-tier Models
Sections 4 and 5 analyze two-tier versions of low connectivity network design models.

These models have two new single-tier models—the dual path tree problem and the dual

path Steiner tree problem—as their base and overlay subproblems. In this section, we
study solution methods for these two single-level problems. This analysis will provide the
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values of the worst-case parameters pg and pg that we require for our subsequent two-

level analysis.

Before beginning our analysis, let us introduce some terminology and briefly review
relevant prior results. By triangularizing an undirected graph G = (N,E) with costs i for
all edges {i,j} € E we mean constructing a complete graph G' = (N,E') with edge costs a1J
for all i, j € N equal to the shortest path distance from node i to node j in G. We refer to
G' as the triangularized graph and the costs a;; as triangularized costs. When we consider
edge duplication, we will rely on the following property proved by Goemans and
Bertsimas [1993] for single-tier survivable network design (SND) problems: the optimal
value of the SND problem defined over the triangularized graph G' (with edge duplication
permitted in this graph as well) is the same as the optimal value over the original graph G.
We will refer to this property as the duplication equivalence property. To construct a
feasible SND solution over the original graph G from a feasible solution over G', we
replace each edge {i,j} in the latter solution with the edges of the shortest i-to-j path in G
(with replications if an edge in G appears in more than one such shortest path). We refer to
the resulting solution to the original problem as the recovered solution.

Dual Path Steiner Tree (DPST) problem:
Given an undirected graph G=(N,E) with nonnegative edge costs 3y, and a subset P ¢
N of primary nodes containing two critical nodes 1 and 2, find the minimum cost
subgraph that spans all the nodes of P via optional “Steiner” nodes from N\P, and that
connects nodes 1 and 2 via two edge-disjoint paths.

In terms of the terminology we introduced for the general MTS model, the DPST problem

has L = 1, and r}; = 1 for all node pairs i and j € P exceptrj, =rj; =2, and t}; =0 if i or ]

¢ P. The Dual Path Tree (DPT) problem is a special case of the DPST model with P
=N, i.e., the solution must span all the nodes of graph G.

The DPST problem is NP-hard since it generalizes the Steiner network problem. As

we will show later, if we assume triangular costs then the DPT problem is polynomially
solvable. For DPT and DPST problems with arbitrary edge costs a;, Balakrishnan,

Magnanti and Mirchandani [1994b] propose the following efficient dual path greedy
completion (DPGC) heuristic. Using a graph doubling argument, they show that the
DPGC method solves the DPST and DPT problems with a worst-case performance
guarantee of 2. This bound holds for the problems with or without edge duplication.

-12-



Dual Path Greedy Completion (DPGC) heuristic:
Step 1: Find the minimum cost pair of edge-disjoint paths from node 1 to node 2. Let E;

and N, be the subset of edges and nodes belonging to these paths.

Step 2: Contract the subgraph G;=(N,E,) into a single node 0, triangularize the
resulting graph, and eliminate all the Steiner nodes not in N, and their incident
edges, creating a graph G*. Find the minimum spanning tree of G*. Recover the

original edges corresponding to the edges of this spanning tree and add one copy
of each recovered edge to E; to obtain a feasible DPST solution.

The method derives its name from the operations of first finding the optimal *“dual paths”
(in Step 1) and then completing this solution in a greedy fashion (Step 2).

- If we do not permit edge duplication, then as is well-known we can find the optimal
dual paths in Step 1 by solving a minimum cost network flow problem defined on the
following network. The network contains all the nodes and edges of G. Node 1 has a
supply of 2 units, node 2 has a demand of 2 units, and all other nodes are transshipment
nodes. The flow cost on each edge {i,j} is the original edge cost 3y and every edge has a
capacity of 1 unit. The minimum cost flow solution routes 1 unit of flow on each of the
two required edge-disjoint 1-to-2 paths. When we permit edge duplication, the optimal
dual path solution consists of two copies of the shortest 1-to-2 path.

When the edge costs have special properties, can we develop alternative solution
methods that have better worst-case performance than the DPGC method? For the DPT
problem, we can indeed develop more effective methods. In particular, when the edge
costs satisfy the triangle inequality, as we show in Section 3.1, the DPT problem is
polynomially solvable using a matroid intersection algorithm. For a broader class of cost
structures that we call pi-direct costs, Section 3.2 describes and analyzes the worst-case
performance of a simple 1-tree heuristic that is more effective than the DPGC method for a
range of 1 values. The models considered in both Sections 3.1 and 3.2 prohibit edge
duplication; Section 3.3 discusses algorithmic and worst-case implications for models that
permit edge duplication.

3.1 Dual path trees for graphs with triangular costs

DPT problems with triangular costs are polynomially solvable. To establish this result,
we use the following property.
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Proposition 3: ,
If the edge costs satisfy the triangle inequality, then the DPT problem has an optimal
solution containing exactly IN| edges.

Proof:

The optimal solution to the DPT problem spans all the nodes in the graph and contains
two edge-disjoint paths, say P; and P,, connecting the primary nodes 1 and 2. Because

the costs are nonnegative, we can choose both P; and P, as simple paths (they do not
revisit nodes). If the paths P, and P, intersect only at nodes 1 and 2, then the optimal

solution spans all nodes and contains exactly one cycle, and thus contains exactly IN!
edges.

Next suppose that the paths P; and P, intersect at some intermediate node(s) other than
nodes 1 and 2. Let us orient these paths from node 1 to node 2; that is, node 1 is their first
node and node 2 their last node. If paths P; and P, intersect at more than one intermediate
node, let a be the first intersection point (after node 1) on P, and let b be the first
intersection point on P,. (Nodes a and b might be the same node). First, observe that
nodes b and a cannot simultaneously be (immediate) successors of each other on paths P;
and P,, since then both paths would contain the edge {a,b}, contradicting the fact that P,
and P, are edge-disjoint. So, suppose that the node b is not the successor of node a on
path P;. Leti and j denote the predecessor and successor of node a on path P;. In path P,
replace the edges {i,a} and {a,j} with the edge {i,j}; the triangle inequality implies that the
cost of the resulting path P; does not exceed the cost of path P;.

Now note that if node a's predecessor is node i # 1, then since node a is the first
intersection node on path P, i ¢ P, and so {i,j} € P,. If i=1, the definition of node b as

the first intersection node on path P, and the fact that b # j implies that (i,j) & P,. In either
case, the paths P, and P; are edge disjoint. Moreover, by our previous observation these
two paths cost no more than the two paths P, and P,. Therefore, we have found another

optimal solution to the DPT problem with one less node in common to the two paths.
Repeatedly identifying nodes a and b allows us to short-circuit one of the two paths.

Since each path contains a finite number of nodes, this constructive procedure terminates
when the two paths intersect at only nodes 1 and 2. ]
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Matroid Intersection algorithm:

We now show that the dual path tree is the intersection of two matroids. A 1-tree of a
graph G is the union of a spanning tree and one edge not in the spanning tree. Clearly, a 1-
tree contains exactly one cycle. A g-restricted 1-tree is a 1-tree with the property that
the unique cycle formed by the additional edge contains a particular node q of the graph.
We can interpret a dual path tree with exactly NI edges as the intersection of a 1-restricted
1-tree and a 2-restricted 1-tree. Subsets of q-restricted 1-trees form a matroid (see Exercise
13.39 in Ahuja, Magnanti, and Orlin [1993]). Since the weighted matroid intersection
problem is solvable in polynomial time (Edmonds [1979]), Proposition 3 implies that we
can optimally solve the DPT problem with triangular secondary costs in polynomial time.
We have thus established the following result.

Theorem 4:
If the edge costs satisfy the triangle inequality, then a weighted matroid intersection
algorithm solves the DPT problem optimally in polynomial time.

For DPST problems with triangular costs, suppose we use the corresponding optimal
DPT solution over the primary nodes as a heuristic solution. Can we characterize the
worst-case performance of this DPST heuristic method? Balakrishnan et al. [1994b] have
shown that for any low connectivity Steiner problem with triangular costs, the heuristic
solution obtained by optimally solving the corresponding low connectivity problem over
the terminal nodes costs at most twice the original optimal value, and this bound is tight.
This result implies that the matroid intersection-based heuristic for triangular cost DPST
problems has a worst-case performance of 2, which is the same as the worst-case
performance of the more general and simpler DPGC heuristic.

Although polynomial, the generic matroid intersection algorithm is complex and is
typically difficult to implement (its specialization for the dual path tree problem might be
much easier though). As an alternative, we might wish to use a simple heuristic method for
solving the DPT problem even when the costs are triangular. In the Section 3.2, we
develop one such heuristic in the context of a broader class of graphs than those with
triangular costs.

3.2 Dual path trees for u-direct graphs
Whenever the graph G contains the edge {1,2}, this edge can potentially serve as one
of the two edge-disjoint 1-to-2 paths. Therefore, if we do not permit edge duplication and
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G has a feasible dual path tree, then if we start with edge {1,2}, the problem must have a
feasible completion, i.e., the residual graph obtained by deleting edge {1,2} must contain a
1-to-2 path. (When we permit edge duplication and G is connected, we can always
complete any given 1-to-2 path.) This observation motivates the following 1-tree heuristic.
We state and analyze this O(IE! + INI logINI) heuristic in its general form, which is capable
of solving both DPT and DPST problems.

1-Tree Heuristic:
Step 1: Remove the direct edge {1,2} from G and find an approximate or optimal

solution STREE to the Steiner tree problem STP spanning all the primary nodes
(with optional intermediate Steiner nodes) on the resulting residual graph G,.

Step2: Add edge {1,2} to STREE to obtain the 1-tree heuristic solution to the DPST
problem.

When applied to the DPT problem, Step 1 merely requires finding the minimum
spanning tree of G,. In order to bound the worst-case performance of this heuristic, we

need to be able to bound (i) the cost of the Steiner tree it produces, and (ii) bound the cost
of edge {1,2} relative to the rest of the network. For (i), we let PsT denote the worst-case

ratio of the method we use to find the Steiner tree STREE. For (ii), we restrict our
attention to a special class of graphs that we call p-direct: these are graphs that: (a) have
nonnegative edge costs, (b) contain edge { 1,2}, (c) contain a path connecting nodes 1 and
2 without edge {1,2}, and (d) satisfy the property that the cost a;, of the edge (1,2} is no
more than L (2 0) times the cost A, of the shortest 1-to-2 path when we remove edge
{1,2}. This assumption implies that any DPT and DPST solution that does not contain the
edge {1,2} costs at least 2A, 2 2a;,/1. Note that triangular graphs are p-direct graphs
with L = 1. In stating the following worst-case result for the 1-tree heuristic, we let ﬁ =
max {W,1}.

Proposition 5:
Let s = min {a,,, Ay, }/ZppgT < 1/2 be the cost of the shortest path from node 1 to

node 2 relative to the optimal cost of the DPST problem. For p-direct graphs, the 1-

tree heuristic generates a solution to the DPST problem with a worst-case bound of at
most pgy + min {|/2, ﬁs}. If any optimal DPST solution contains edge {1,2}, then
the 1-tree solution has a worst-case bound of at most pgy.

-16 -



Proof: .
We claim that the optimal value Zpgr of the DPST problem is no less than the optimal

value Zgyp of the Steiner tree problem STP that we solve in Step 1 of the 1-tree heuristic.

Let Q* be an optimal DPST solution. Let Q' be any Steiner tree formed by dropping an
edge from the cycle in Q* containing nodes 1 and 2, choosing edge {1,2} if Q* contains
this edge. Since Q'is a feasible solution to the Steiner tree problem STP, its cost Z(Q') is
greater than or equal to Zgyp. Therefore, the cost Z(STREE) of the exact or approximate

Steiner tree STREE satisfies the following inequalities

. Z(STREE
Zopsy 2 ZQ) 2 Zgp 2 X :

PsT
If some optimal DPST solution 