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Abstract

An intuitive solution-doubling argument establishes well-known results concerning the worst-

case performance of spanning tree-based heuristics for the Steiner network problem and the

traveling salesman problem. This note shows that the solution-doubling argument and its

implications apply to certain more general Low Connectivity Steiner (LCS) problems that are

important in the design of survivable telecommunication networks. We use the doubling

strategy to establish worst-case upper bounds on the value of tree-based heuristics relative to the

optimal value for some variants of the LCS problem, and also provide a lower bound based on

solutions to matching problems.



1. Introduction
Motivated by the telecommunications industry's desire to guarantee minimal service disruptions,

particularly to institutional customers, while also limiting the total investment in the network

needed to provide such guarantees, operations researchers have studied various Survivable

Network Design (SND) problems. In its general form, the SND problem seeks a minimum cost
network topology containing a prespecified number of edge-disjoint paths, say rij, between every

pair of nodes i and j in an undirected network G: (N,E) with node set N and edge set E. Each

edge (i, j) E has a nonnegative cost ci, and the objective is to minimize the total cost of the

chosen edges. For each node i, we define the node connectivity parameter Pi as

maxi r :j E N}. We refer to nodes with connectivity parameters Pi equal to zero, one, and

greater than one as Steiner, regular, and critical nodes, and refer to the regular and critical nodes

together as terminal nodes. Let C and T denote the critical and terminal nodes. Steiner nodes are

optional intermediate points that the design might use to connect the terminal nodes.

Recent research has focused on developing strong formulations, algorithms, and heuristic worst-

case bounds for SND problems. In particular, researchers and practitioners have devoted

considerable attention to the special class of Low Connectivity Steiner (LCS) problems in which

Pi = 0, 1, or 2 for every node i. Both the Steiner network problem and the traveling salesman

problem are special cases of the LCS problem. We will consider LCS problems with or without

edge duplication, and with general or triangular edge costs (i.e., costs satisfying the triangle

inequality). Edge duplication refers to the option of installing multiple copies of the same edge

to provide alternate edge-disjoint paths between critical nodes. We assume that the connectivity
requirements ri, are such that both the overall design and the subnetwork spanning the critical

nodes are connected in any feasible solution.

This paper is motivated by two primary questions. First, do some of the heuristic worst-case

results developed for the Steiner tree and traveling salesman problems extend to LCS problems?

For instance, a well-known Steiner tree result states that the minimum cost tree spanning just the

terminal nodes is no more than twice as expensive as the optimal Steiner tree (Takahashi and

Matsuyama [1980]). Similarly, for traveling salesman problems defined over graphs with

triangular edge costs, a spanning tree-based heuristic generates a solution that costs no more than

twice the optimal value (Papadimitriou and Steiglitz [1982]). Is there an unified view of these

results, and does a similar approach apply more broadly to other LCS problems? Specifically,

can we show that the solution to the "terminal" version of the LCS problem, ignoring the Steiner

nodes, costs at most twice the optimal value? We confirm this conjecture using a "solution-

doubling" argument. Second, a natural heuristic strategy for solving LCS problems is to build a
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solution in one of two ways: (a) design a two-connected network spanning all the critical nodes

and then extend this network to span the remaining regular nodes, or (b) compose a LCS solution

by adding the edges of two subnetworks, one that spans all the terminal nodes and one that spans

just the critical nodes. What is the worst-case performance of either of these heuristic methods?

Again, we use solution-doubling arguments to answer some of these questions. As by-products

of structural properties that we examine for these problems, we also establish some worst-case

bounds that were previously obtained using linear programming-based arguments. Our bounds

compare the heuristic solution value to the optimal integer value, whereas some of the previous

bounds are stronger because they compare the heuristic value to the optimal value of the linear

programming relaxation. However, the doubling argument is intuitive and is easier to develop.

2. Bounding by Doubling
Using a graphical doubling procedure, we establish bounds on the optimal value of some LCS

problems. In particular, using this argument we show that a Tree Completion heuristic has a

worst-case bound of two for LCS problems as well as a Ring-on-Steiner tree problem and certain

other SND special cases. We begin with a general bounding result.

Notation.
Given a graph G, "triangularizing" this graph corresponds to constructing a complete graph GA

with edge costs aio equal to the length of the shortest path from node i to node j in G. For any set

N' of nodes of a graph G, the induced graph G(N ') contains all edges of G that have both

endpoints in N'. Let MST(N ) denote the minimum spanning tree problem defined on the

induced subgraph GA(N) of the triangularized graph G,. Similarly, TSP(N ) is the traveling

salesman problem defined on G (N ) .

If P is any optimization problem, we let Zp denote its optimal objective value. If M is any

solution method (typically a heuristic procedure) for solving P, we let ZM denote the objective

value of the solution that the method produces. For any subgraph S of a graph G, let Z(S)

represent the total cost (sum of edge costs) of the subgraph.

Recall that any Eulerian graph (that is, any connected graph in which each node has an even

degree) contains a walk, called an Eulerian walk, that uses each edge exactly once. In our

analysis, we will use the following technical result, which involves an Eulerian subgraph EG and

a subset of nodes N'that, in general, intersects the nodes of EG.
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Proposition 1.
Given a graph G with nonnegative edge costs and a nonempty subset N' of its nodes, for

any connected subgraph SG containing the nodes of N' and any Eulerian (possibly empty)

subgraph EG of SG,
1

ZMST(N) + Z(EG) < (i- I )ZTSP(N) + Z(EG) < 2Z(SG) if EG is nonempty, and (la)
INi

ZMST(N (1 - I )Z<TSP(N)< 2(1- I )Z(SG) if EG is empty. (lb)
INZ sP IN1

Proof:
Let DSG be the Eulerian graph formed by doubling the edges of SG, and let RG be the residual

graph obtained by removing one copy of EG from DSG. RG is a connected Eulerian graph. Let
i - i2 - - iK - i be the node sequence of an Eulerian walk W containing all the edges of RG.

For convenience, assume that i, E N'. In the triangularized graph GA, form a traveling salesman

tour TOUR of the nodes in N' by deleting from the walk W every node j N' and every second

and later occurrence of any node j N' (except the final occurrence of i ). When deleting any

such nodej we replace two adjacent edges (i, j) and (j,k) of Wby the edge (i,k) in GA. If
Z(TOUR) denotes the cost of this tour in GA, then ZTSP(N) < Z(TOUR) < Z(W). By removing

the largest cost edge from the optimal solution to TSP(N ), we obtain a tree TREE, spanning all

the nodes in N', whose cost satisfies ZMST(N) < Z(TREE) < (1- 1/IN 1)ZTSP(N). These arguments

imply that ZMsT(N) • (1- 1/IN 1)ZTSP(N < (-1/IN 1)Z(W). Combining these inequalities with

Z(W) + Z(EG) = Z(DSG) = 2Z(SG), we obtain the desired results.

Note that this proposition remains valid both with and without duplicated edges.

Observations.
(i) For the Steiner tree (ST) problem over the terminal nodes T, by considering the optimal

Steiner tree as the subgraph SG with EG as the null graph, Proposition 1 becomes the

familiar Steiner tree result (Takahashi and Matsuyama [1980]):
1

ZMST(T) < 2(1- I)Z (2)
ITI

(ii) If G has triangular edge costs and no Steiner nodes, then with SG as a minimum

spanning tree of G and EG as the null graph, Proposition 1 becomes the familiar TSP

result (e.g., Papadimitriou and Steiglitz [1982]):
ZTSP(N) <2ZMST(N) (3)
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(iii) The Ring-on-Steiner tree (RST) problem is a constrained LCS problem in which all the

critical nodes must lie on one simple circuit (that can contain non-critical nodes). Let

SG be an optimal solution to this problem and EG the embedded circuit in SG spanning

all the critical nodes. Since the cost of the optimal traveling salesman tour in GA (C)

does not exceed the cost of EG, Proposition 1 implies the inequality:
ZTSP(T) + ZTSP(C) < 2 ZRST (4)

Given any LCS problem instance, we call the version of the problem restricted to just the
terminal nodes (i.e., defined over the subgraph G(T) induced by the terminal nodes T) as the

Terminal Low Connectivity (TLC) problem. How much do we sacrifice in solution quality by

ignoring the Steiner nodes?

Corollary 2.
For any graph with triangular costs or with edge duplication,

ZLCS < ZTLC ZTSP(T) - 2 ZLCS. (5)

Proof:

Select SG as the optimal LCS solution and EG as the null graph in Proposition 1, and note that

since the optimal solution to TSP(T) is feasible for the TLC problem (when costs are triangular),
ZTLC < ZSP(T). Hence, the inequalities in (5) hold for LCS problems with triangular costs. If

edge duplication is permitted, we can assume triangular costs without loss of generality.

Corollary 2 implies that any polynomial-time heuristic with a worst-case bound of a for the TLC

problem is a polynomial-time heuristic with a worst-case bound of at most 2a for the LCS

problem defined on a graph with triangular edge costs.

In some situations, it is possible to solve the TLC problem optimally. For example, consider the

Dual Path tree problem: given an undirected graph with triangular edge costs and two critical

nodes 1 and 2, find the minimum cost connected subgraph that spans all the nodes and contains

two edge-disjoint paths between nodes 1 and 2. The Dual Path Steiner tree problem contains

additional Steiner nodes that the solution can optionally use to reduce total cost. Balakrishnan,

Magnanti, and Mirchandani [1998] describe a polynomial, matroid intersection-based algorithm

for solving the Dual Path tree problem. Corollary 2 implies that the optimal solution obtained

using this algorithm costs no more than twice the optimal value of the Dual Path Steiner tree

problem.
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2.1 EG-Tree problems
Given a graph G with terminal nodes T c N and a collection C = {S, S2, ... , SL} of subgraphs of

G, the subgraph extension problem seeks the minimum cost design that spans all the terminal

nodes (via optional Steiner nodes) and contains a subgraph Szbelonging to C. The LCS problem

is a special case of this subgraph extension problem in which the collection C consists of all

subgraphs that provide the required two connectivity among the critical nodes. We examine the

performance of the following Tree Completion heuristic for solving this problem.

Tree Completion heuristic:
Step 1: Find an approximate or optimal (i.e., minimum cost) subgraph OG from the collection

C of subgraphs of G.

Step 2: Contract OG into a single node, 0, and delete all but the lowest-cost edge from any

parallel edges that this contraction creates. Triangularize the edge costs in this reduced

graph to obtain graph G*. Let T* denote all the nodes in T that do not belong to OG.

Find the minimum spanning tree TREE in the subgraph of G* induced by T * u{0} .

Step 3: The Tree Completion heuristic solution is the union of the edges in OG and the edges

of the shortest paths in G connecting nodes i and j, for all edges (i, j) in TREE.

We will focus on collections C containing only Eulerian subgraphs. To emphasize this special
case, we will denote the collection as CEG, and refer to the corresponding subgraph extension

problems as EG-tree problems. One example is the k-path Steiner tree problem, an extension of

the Dual Path Steiner tree problem that requires k edge disjoint paths connecting the designated

critical nodes 1 and 2. We assume, without loss of generality (by adding, if necessary, an

artificial zero-cost path from node 1 to node 2), that k is even. For this problem, the class of
Eulerian graphs CEG is the set of all k edge-disjoint paths in G connecting nodes 1 and 2.

Finding the optimal solution in this collection CEG (in Step 1) is easy, with or without edge

duplication. With edge duplication, the optimal solution consists of k copies of the shortest -to-

2 path. Without edge duplication, the problem reduces to a minimum cost network flow problem

with unit edge capacities, and a demand and supply of k units at nodes 1 and 2, respectively. The

Ring-on-Steiner tree problem that we previously discussed is another example of EG-tree
problems, with CEG equal to the set of simple circuits that visit all the critical nodes (via optional

regular or Steiner nodes).
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The next result uses Proposition 1 to bound the worst-case performance of the Tree Completion

heuristic for EG-tree problems as a function of the worst-case performance of the method used to

solve Step 1 in the Tree Completion heuristic.

Proposition 3.
For EG-tree problems with nonnegative costs, if we find an a-approximate solution to the

problem in Step 1, then the cost of the solution produced by the Tree Completion heuristic is

no more than f = min{2a, a + 2(1- I ) } times the optimal EG-tree cost.
ITI

Proof:
The total cost Z(TREE) of the edges that the Tree Completion heuristic adds to OG in Step 2 is
no more than ZMST(T). Let SG* be an optimal solution to the EG-tree problem. By definition,

this solution contains a subgraph S from the given collection CEG; therefore, Z(S) < ZEG_,ree,

Since the embedded heuristic in Step 1 selects a subgraph OG that costs no more than c times
the minimum cost subgraph in CEG, Z(OG) < aZ(S). Since the cost ZTC of the tree completion

heuristic solution equals Z(OG) + Z(TREE) , Proposition 1 with EG = S and SG = SG * implies

that ZTC < ZMST(T) + Z(OG) < 2 a0ZEG tree Moreover, with EG = ¢ and SG = SG *, Proposition 1

implies that ZMST(T) < 2(1- 1/ITI)ZEGree . Hence, the result. +

Proposition 3 implies that for the k-path Steiner tree problem, the Tree Completion heuristic is a

polynomial-time algorithm with a worst-case performance of at most two. Note that this

analysis does not require triangular costs, and if the given class of Eulerian graphs does not

duplicate any edges, then neither does the heuristic solution.

Worst-case example.
The Dual Path Steiner tree example in Figure 1 shows that the worst-case bound of 2 in

Proposition 3 is best possible. In Figure l(a), nodes 1 and 2 are the critical nodes; all the other

nodes are regular nodes. Four paths connect nodes 1 and 2, each of length q. Two of these paths

have one intermediate node, while the other two paths each have q-1 intermediate nodes. Figure

1(b) shows the Tree Completion heuristic solution. The first step chooses the two paths having a

single intermediate node. Step 2 greedily connects the remaining regular nodes to this dual path.

This solution costs 2q + 2 (q-l) = 4q - 2. The optimal solution (Figure (c)) costs 2q. As q

becomes large, the ratio of these costs approaches two.
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Insert FIGURE 1 about here

2.2 A structural property for LCS problems
The doubling argument also permits us to establish a structural property for the broader class of

LCS problems without requiring Eulerian subgraphs. Consider the "critical-connectivity"

special case of the LCS problem in which every node is either a critical node, with connectivity

requirement of two, or a Steiner node. We refer to this problem as the Critical Connectivity

Steiner (CCS) problem, and denote its optimal value as Zccs . If we can establish a bound on the

optimal value of the LCS or the CCS problem, can we establish a bound for the other problem?

We first consider a general result. Let CLASS be any family of subgraphs of graph G, and for

any given subset of nodes N' c N, let CLASS(N) denote the members of CLASS that span (at

least) the nodes N'. For instance, in one context, CLASS might represent subgraphs used to

construct heuristic CCS solutions; in another context, CLASS might represent solutions to the
Steiner network problem. We denote the value of the minimum cost subgraph in CLASS(N ) as

ZCLASS(N) 

Proposition 4.
Let 8,(.) be a nondecreasing, nonnegative real-valued function of the positive integers. For

any graph G with nonnegative costs, if we permit edge duplication, the following two

properties are equivalent.

(a) ZCASS(C) < ( CI)Zccs for the CCS problem defined over any set of critical nodes

CcN.

(b) ZCLASS(T) + ZCLASS(C) < 2,3(IT )ZLcs for the LCS problem defined over any sets of

terminal nodes T c N and critical nodes C c T.

Proof:
If (b) is true, then since the CCS problem is a special case of the LCS problem with T = C,

substituting C for Tin (b) gives (a), i.e., (b) implies (a).

To establish the converse, choose any optimal solution OS to the LCS problem. Between every

pair of critical nodes, the solution contains two edge-disjoint paths. Let F be the union of the

edges in these paths. Consider a doubled solution containing two copies of each edge in OS.

From this solution, extract one copy of F, and let RG denote the residual graph. F contains two

paths joining the critical nodes, and RG contains two paths joining every pair of terminal nodes.
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Let CCS and CCS denote the Critical Connectivity Steiner problems with T and C as the critical
nodes. Property (a) implies that, ZcAss(T) < 13(ITI)Zccs < j(IT)Z(RG), and property (a) and the

monotonicity of /i(-) implies that ZCASS(c) < I(ICI)Z-s </ (ITl)z(r). But, by construction,

2ZLCS = Z(RG) + Z(F) which, together with the previous inequalities, implies (b).

Since the graph defined by the edges F need not be Eulerian, this result uses the doubling

argument in a slightly different way than we have used it previously. The following three results

are special cases of Proposition 4.

Corollary 5.

ZMST(T) + ZMST(C) < 2(1 TI)ZLCS for LCS problems with edge duplication.

For this corollary, CLASS(N) is the set of all spanning trees on the induced graph G(N') (since

edge duplication is permitted, we assume without loss of generality that G is triangular). The
function /(IN 1) = (1-1/IN 1) is nonincreasing in IN 1. Furthermore, since deleting the most

expensive edge in the optimal CCS solution (with C as the critical nodes) gives a spanning tree,
we have ZMST(c) < (1- 1/ICI)Zccs. Consequently, the result follows from Proposition 4.

The corollary implies that if we construct a heuristic solution to the LCS problem by adding the
edges of MST(T) to the edges of MST(C), then this solution costs no more than twice the

optimal LCS value. Note that both Proposition 4 and Corollary 5 apply even if the graph G does

not contain any Steiner nodes.

The bound in Corollary 5 is tight. Consider a ring graph with n nodes, shown in Figure 2, on

which every alternate node is a critical node. The cost of each edge on the circumference is 1,

while each chordal edge connecting pairs of critical nodes has a cost of 2. When n is even,
ZMST(T) + ZMST(C) = (n - 1) * 1 + (n/2 - 1) * 2 = 2n - 3. Since ZLCS = n, the right hand side of

Corollary 5 equals 2n - 2. Therefore, the lefthand side and the righthand side of Corollary 5 are

asymptotically equal as n approaches infinity.

Insert FIGURE 2 about here

Balakrishnan et al. [2000] strengthen the bound in Corollary 5 (and its generalization to SND and
CCS problems in which critical nodes have connectivity parameter p 2), and show that the

bound applies relative to the optimal value of the linear programming relaxation of a new class
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of connectivity-dividing cutset formulations (instead of the optimal integer programming value

ZLCS in Corollary 5).

Corollary 6.

ZTSP(T) + ZTSP(C) < 3 ZLCS for LCS problems with edge duplication.

In this context, CLASS(N) is the set of all Hamiltonian circuits through the nodes N'. Monma,
Munson, and Pulleyblank [1990] showed that, for graphs with triangular costs, ZP(C) < 4 Zc s,

i.e., () = 3. So, the result follows from Proposition 4. In Corollary 2 we showed that

ZTSP(T) < 2ZLCS if costs satisfy the triangle inequality (and hence when edge duplication is

permitted). Corollary 6 provides a sharper lower bound than Corollary 2 whenever

ZTSP(C) 2 3 ZTSP(T)

The example shown in Figure 3, a modified version of the example in Monma et al. [1990],

demonstrates that the bound in Corollary 6 is tight. The shaded and clear circles in the network
represent respectively critical and regular nodes. Each of the three parallel paths contains 2q + 1

nodes, and all the edges shown have unit cost. The LCS solution consists of all the edges on the
three parallel paths, and so costs 6q. The TSP(T) solution, shown in Figure 3(b), has cost 8q,

while the TSP(C) solution is the same as the TSP(T) but with all regular nodes short-circuited.

Each of these solutions cost 8q and, therefore, for this example the bound of Corollary 6 is tight.

Insert FIGURE 3 about here

Corollary 7.
If C and T have even cardinalities,

ZMatch(T) + ZMatch(C) < ZLCS for LCS problems with edge duplication.

In this context, CLASS(N) is the set of all matchings over N', and 8l(.) equals 2 . Goemans and

Bertsimas [1993] develop a parsimonious property and use Edmonds' [1965] perfect matching
polytope result to establish the bound ZMatch(C) < 2ZCC . Therefore, Corollary 7 follows from

Proposition 4.

The bound in Corollary 7 is tight. To verify this observation, consider a problem instance

defined over a graph G with four nodes, connected by the edges of the square and one diagonal

edge, as shown in Figure 4a. The nodes incident to the diagonal edge (say the top left and the
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bottom right nodes) are the critical nodes. The diagonal edge costs two, while all other edges
cost one. As Figures 4(b)-4(d) show, ZMatch(C) + ZMarch(T) = 2 + 2 = ZLCS

Insert FIGURE 4 about here

3. Conclusions
In this paper, we have developed a result for LCS problems that is analogous to a well-known

Steiner tree result: if we solve an LCS problem without the Steiner nodes, the resulting solution

costs at most twice the optimal value of the original LCS problem. The solution doubling

argument used to prove this result applies to other related problems as well. For example, it

permits us to use any heuristic with a worst-case bound of ct for optimization problems defined

over Eulerian graphs problems to develop a Tree Completion heuristic with a worst-case bound

of 2a for subgraph extension versions of these problems. A similar doubling argument

establishes relationships among the optimal objective value of certain LCS problems and MST

solution values, TSP solution values, and costs of optimal matchings over regular and critical

nodes.
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(a) Problem instance

O

0

(c) MST(T) (d) MST(C)

Q Critical node

0 Regular node

Figure 2: Worst-case example for Corollary 5
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(a) Base graph for worst-case example
All edges shown have unit cost; LCS problem is

defined over triangularized version of base graph.
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(b) Optimal TSP solution over terminal nodes
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Figure 3: Worst-case example for Corollary 6
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(a) Problem instance
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(b) Solution to the LCS problem
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