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A. A THEOREM CONCERNING NOISE FIGURES

The single frequency noise figure of a one-tube amplifier, such as that shown in

Fig. VIII-1, depends upon the coupling of the tube to the signal source. There exists an

optimum coupling network for which the noise figure assumes a minimum value. This

minimum value is then the greatest lower bound of the noise figure of such an amplifier.

Similarly, for an amplifier using more than one tube, the noise figure will depend upon

the interconnection of the tubes and the source. In general, for such an amplifier, the

noise from any noise source reaches the output through more than one transmission

path. Hence it seems possible that, through an appropriate interconnection of the tubes,

cancellation effects among the transmissions through these paths may result in a very

low noise figure; in particular, a noise figure lower than the greatest lower bound for

the one-tube amplifier. In the past, attempts have been made to find circuits which

would, in such a way, achieve these low noise figures.

This report is concerned with the greatest lower bound of the noise figure of a very

broad class of systems employing n tubes or other amplifying devices, which we will

refer to as UNITS.

The theorem concerns the single frequency noise figure of systems T belonging to the

class T, having the general form shown in Fig. VIII-2. The general system T belonging

to T consists of n UNITS and the coupling network C. The system is driven by a signal

source S; its output is the voltage V shown in Fig. VIII-2. The units 1 through n and

the signal source S are considered to be given and are unalterable.

For the systems T at the frequency f of the noise-figure calculations:

A. The noise generated within the system is such that it can be represented, as far

as noise-figure calculations at the frequency f are concerned, by ensembles of constant-

voltage and/or current generators of this frequency. We shall refer to these sine-wave

generators as noise generators.

B. As far as its output terminals are concerned, the signal source S can be repre-

sented by the equivalent circuit shown in Fig. VIII-2, in which INS is the equivalent signal

source noise generator.

C. The coupling network C consists of linear passive bilateral elements and pos-

sibly contains noise generators.

D. UNIT j consists of a single controlled source 'i. (arbitrarily chosen as a voltage

source) and the networks N. and M.. The constraint between the controlled source T1.

and the control voltage E. is linear. N. consists of linear bilateral elements and noise

generators. Its input connections consist of one or more terminal pairs. M. consistsj
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of linear passive bilateral elements and is driven by the controlled source j*j. Mj. does
not contain any noise generators; all noise generated in it is represented, as far as its
output terminal pair is concerned, by an equivalent noise generator in N..

E. With the signal source as excitation, the system output V, with all of the con-
trolled sources 1 j's replaced by short circuits, must be negligibly small compared to
the output that occurs with all of the controlled sources operating.

F. The condition stated in E must also hold for the excitation consisting of the
simultaneous action of all the noise generators in the system.

G. The noise generators in the system and signal source can be grouped into n + 2
groups according to their location. Noise sources are located in the n networks N., in
the signal source, and possibly in the coupling network C. No correlation is permitted
among the noise sources of different groups. However, correlation may exist among
the noise sources located within any group.

Having defined the class T of systems which we shall consider, we now state the
theorem.

THEOREM: "Let the only constraint upon the interconnection of n given UNITS

1, ... , n be that the resulting system T must belong to the class T. Then the greatest
lower bound of the single-frequency noise figure of T, considering all allowable inter-
connections of the n UNITS, is equal to the noise figure of a system T k (of the form
shown in Fig. VIII-3) consisting of the "best UNIT" of the n UNITS coupled to the source
through an optimum coupling network."
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By the term "optimum" we mean optimum with respect to the noise figure of the

system formed by the coupling network and the particular UNIT. The expression "best

UNIT" refers to one of the UNITS 1,...,n which, when coupled to the source through

an optimum coupling network (Fig. VIII-3), yields a noise figure at least as small as the

noise figure of any of the n UNITS similarly connected with their optimum coupling

networks.

By letting the UNITS be the noise equivalent circuits of triodes the theorem can be

applied to n-tube systems, and a lower bound can be established for the noise figure of

such systems in terms of the minimum noise figure attainable with one tube and an

optimum coupling network.

This theorem was presented at the I. R. E. National Convention, March 21, 1955.

Its proof, along with examples, will appear in full in the Convention Record.

A. G. Bose, S. D. Pezaris

B. SECOND-ORDER CORRELATION FUNCTIONS

1. Properties

Let fl(t) be a function that satisfies these three conditions:

I. The autocorrelation function 1l 1(T) exists and is continuous at T = 0.

II. The autocorrelation function of f2(t) exists for all values of T.

III. The second-order autocorrelation function 11 1-1' - 2 ) exists.

We can then show that the second-order autocorrelation function of fl(t) is continuous

everywhere.

For the proof let us consider

1 1 1(T1,T 2 ) - 1p(r + k 1 , T 2 + k2)I  (1)

in which 4 1 1 1 (T 1 ' T 2 ) is defined as

T
1

,1 1(TT2) = lim 2T f(t) f 1 (t + T) f(t + T 2 ) dt (2)T-2 .T-T

and the abbreviated expression is

ll (T 1 , T2 ) = fl(t) fl(t + T ) fl(t + T2 ) (3)

To simplify the work that follows, let

a = f 1 (t), b = fl(t + T 1), c = fl(t + T2), d = fl(t + T 1 + kl), e = fl(t + + k 2 )

(4)
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and the expression given as Eq. 1 be A. Accordingly, Eq. 1 is

A = labc - adel

which can be put into the form

A = lac(b-d) + ae(b-d) + adc - abel

Since for any numbers a, P, y, we have the inequality

l+P+-y I I I + 11 + Ivl
it follows that for Eq. 6

A< lac(b-d)l + Iae(b-d) + ladc - abel

Since

and

lae(b-d) lae(b-d)

we may write

A< Iac(b-d)l + I ae(b-d)l + I adc - abe

The three right-hand members of this equation

the first term we need the proof that Ib-d 12 exists.

(10)

(11)

will be considered one by one. For

Since

Ib-d1 2 = bZ + d2 - 2bd

and bd is

(12)

T

f fl(t + T 1 ) fl(t

-T

+ T 1 + kl) dt

(13)

which exists by condition I, we have

Ib-d 12 = 2 [11(0) - 11(kl)]

showing that Eq. 12 exists. Furthermore, by condition II, ac 2 exists because

ac 2 = a2 c 2 =lim
T ---oc

f 2 (t) f2(t + T2) dt

-T
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Now, by the Schwartz inequality

lac(b-d)l j acl bd12 j = Zlac ) - 1 (k (16)

By similar reasoning, the second right-hand term of Eq. 11 satisfies the inequality

ae(b-d) {2 1 ae 12 [ 1 1(0) - 1 1(k 1)/ (17)

In considering the last term of Eq. 11, let us write

ladc - abel = a d - abc + abc - abet (18)

from which we obtain the inequality

ladc - abcc - ladc - abcl + labc - abel (19)

< lac(d-b)l + lab(c-e) (20)

Application of inequalities similar to those of Eqs. 9 and 10 leads to

ade - abcl < I ac(d-b)l + lab(c-e)1 (21)

in which the first right-hand term is the same as Eq. 16, and by the Schwartz inequality

the last term of Eq. 21 is

ab(c-e)I (< 2 ab! L-11(0) - 41 1(k2)1} (22)

Combining Eqs. 16, 17, and 22, we find that Eq. 11 becomes

A< 2 2 ac 1 11(0) - 11(k 1

+ 2IaeI2 [11(0 ) - 4 1 1 (kl )  + 2 lab12 [I 1 1 (0 ) - 1 1 (k 2 ) 1/2 (23)

Inasmuch as condition II assures that lac 12, ae 2, and lab 12 are finite for all values

of T 1 and r 2 , and condition I enables us to make 1l1(0) - 1 1 (kl) and 14 1 1 (0) - 011(k)l

as small as we please by a proper choice of k 1 and k 2 , it follows that, given an E > 0,

k 1 and k 2 can be so chosen that

A = l(4111'T12) - 4 1 1 (T 1 + k 1, T 2 + k2)l < E (24)

This proves that 1 1(T' T 2 ) is continuous for all values of T 1 and T2 under conditions

I, II, and III.

J. Y. Hayase
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2. Calculations

The second-order autocorrelation function 111 1(T ' T 2 ) of a periodic wave consisting

of the positive half cycles of a sine wave described in the Quarterly Progress Report,

April 15, 1954 (p. 51), has been obtained, and inaccuracies in the previously reported

results have been corrected.

Figure VIII-4 shows the T I , T2 -plane of the second-order autocorrelation function of

the clipped sine wave. In A OAB and A OFA of the plane the expressions for the function

are as follows:

A OAB:

3 T - + 27
2A 3 T1 1 2

1111'2) = s cOS 2 Cos 2

A OFA:

3  T + TA3  21 2
111( 12 = 3 (cos 71 + cos 72 ) cos 2

The function is zero in the shaded areas of the plane.

Knowing the function in A OAB, A OFA, and the shaded regions, we can determine

Fig. VIII-4

T1, T2 -plane of the second-order autocorrelation function of the clipped
sine wave. The function is zero in the shaded areas.
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the function in the entire T7 2 -plane. Since expression 2 is unchanged by replacing

the variables 7 1 and T2 by -T1 and -T 2 , respectively, the function in A OCD is obtained

by a 1800 rotation of that in A OFA about the center O. By actual calculation, it can

be shown that the expression for the function in A OCB is identical to Eq. 1 when 71 and

T2 are interchanged. Hence the function in AOCB and A OAB are symmetrical about

the line 71 = -T 2 . Inasmuch as expression 1 remains the same for -7 1 and -T 2 , the

function in A ODE is determined by rotating that in A OAB about O by 1800. Similarly,

in A OFE, the function is obtained by a 1800 rotation of that in A OCB about O.

Having determined the function in polygon ABCDEF, we can show geometrically that

the remainder of the function is found by translating that in the polygon into the other

polygons shown in Fig. VIII-4. Figure VIII-5 gives a plot of the function.

Although the expression for the autocorrelation function in the Quarterly Progress

Report, April 15, 1954 (p. 51), when simplified, is the same as Eq. 1 of this report,

the figure (Fig. X-2, p. 52) in the April report is incorrect, and should be replaced by

Fig. VIII-5 of this report.

J. Y. Hayase

3. Measurements

In the method which has been used for measuring second-order autocorrelation

functions (1, 2) the correlator inputs are reversed when measurements go from the

first quadrant into the fourth quadrant. A new method has been introduced. It consists

of stepping T2 from minus to plus for a given 71 and repeating the procedure for vari-

ous values of i , thereby obtaining the function for both quadrants without reversing

inputs. This is done by adjusting the correlator in such a way that at the beginning of

the measurement the "B" samples are taken before the "A" samples, and then the "B"

samples are advanced in steps into the +T 2 region.

The block diagram for the new method is shown in Fig. VIII-6. The inputs to the

correlator are

gl(t) = f(t

g2(t)= f(t)
(1)

and the correlator measures

11 (T1 T2 ) = g(.t) g 2(t + T2 ) = f(t - T ) f(t) f(t + T 2)
(2)

= f(t) f(t + T 1) f(t + 1 +  
2 )

In the old method after measuring the function in the first quadrant the inputs were
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Fig. VIII-6

Block diagram for measurement of second-order
autocorrelation functions.
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Fig. VIII-7

Region of required measurement of second-order
autocorrelation functions.
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Second-order autocorrelation function for clipped sine wave,
first and fourth quadrants.
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reversed, giving the function

1 1 1 (T1 , -T 2 ) = g 1(t) g2 (t +T) = f(t) f(t +T 2 ) f(t - T 1 + T 2 )

(3)
= f(t) f(t + T1 ) f(t + T 1 - T2 )

which is 111(T1 , T2 ) in the fourth quadrant.

As a result of the symmetry properties discussed in a previous article (3),

S111 (T1T2) need only be obtained in the shaded region shown in Fig. VIII-7 provided that

the second-order probability distribution of the time series f(t) is equal to that of the
time series f(-t). For these time series all other regions of 1 11 (T T 2 ) can be obtained

by different orientations of this region. The time of measurement is cut down and
reversing of inputs is now unnecessary.

The results in a measurement of the second-order autocorrelation of a clipped sine
wave (4) are shown in Fig. VIII-8. Calculations of this function are given in Section
VIII-B2.

A. G. Bose, K. L. Jordan
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C. SOME PROPERTIES OF EXPERIMENTAL AUTOCORRELATION FUNCTIONS

It will be shown that there exist some definite restrictions on the shape and rates of
change in the vicinity of the origin of measured autocorrelation functions. The condi-
tions under which these restrictions apply to the autocorrelation functions of the more
general class of time series used in theoretical analysis will also be shown.

Limiting the following discussion to measured autocorrelation functions implies that
only those time series that can occur in the laboratory will be considered. Let f(t) be
such a measurable time series. Since physically there is no such thing as an infinite
voltage or current, f(t) is bounded. Also, since applying f(t) to a reactive element can-
not give rise to infinite voltages or currents, f'(t) = df/dt must also exist. Additional
restrictions are implied by the requirement that f(t) be physical, but for the purposes of
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this discussion the two properties mentioned above are sufficient.

The autocorrelation function of f(t) is given by

=() = f(t) f(t+T)

where the bar indicates average with respect to time. Formally, the first derivative

of (T) is

'(T) = f(t) f'(t+T)

Writing u = t + T,

4'(T) = f(u-T) f'(u)

whence

"(T) = -f'(u-T) f'(u)

or

"(7) = -f'(t) f'(t+T) (1)

Thus the physical nature of f(t) (as defined above) immediately implies the existence of

4, C', and f".

It is well known that, for all T, I c(T) 1< I j(0) . This relation is also true without

absolute value signs. Since from Eq. 1, "(7) also has the form of an autocorrelation

function, I 4)"(T) I < 10"(0) 1 follows immediately. In this case, however, because of the

minus sign in Eq. 1, c"(T) >, c"(0). Furthermore, since 4(7) is even and 4'(T) contin-

uous, p'(0) = 0, implying that any measured autocorrelation function has a flat top at

7 = 0. These relations will be useful in establishing the following theorem.

Theorem. If '(T) (and therefore 4(T)) is continuous in the closed interval [0,T] and

differentiable in the open interval (0, T), there exists a positive finite constant k that

satisfies the expression

4(0) - 4(T) < kT 2

Note, in particular, that these hypotheses are satisfied by any measurable f(t), since for

such a time series "(T) exists for all T, whence 4'(T) is necessarily continuous and dif-

ferentiable for all T.

Proof. Since 4(T) is differentiable in [0,T], the mean value theorem asserts that

there exists an ir (0 < Tj < T) that satisfies

4(T) - (O) = &'(i) (T-o) = 4'(r) T (2)

Furthermore, since 4'(T) is itself differentiable in [0,T], there exists a (0 < 5 < i) for

which
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( ) - '(0) = p"( ) (-0) = "() 7

or, since 4'(O) = 0,

071) = ,() T1

whence Eq. 2 becomes

4(T) - 4(0)= 4"() 9T; o < < 7 < T (3)

Noting that 4(O) >, 4(T), Eq. 3 may be rewritten

I(T ) - (0) I = p(0) - (T = I "() I T T

But, as noted above, 4"(T) I 1I4"(0) for all T. Therefore

(o) - (T) < I "() In T I "(o) IT2

since 71 < T. Thus, setting k = I "(0) , we have

(0) - (T) < kT2  for all T (4)

which was to be shown.

Condition 4 places a restriction on the rapidity with which 4(T) may depart from its

value at the origin. If 4(T) is normalized so that 4(0) = 1, and if we recall that
(7) <I (0) I, then any measured autocorrelation is restricted to lie in a region such

as that shown shaded in Fig. VIII-9. Evidently, for ITI > T = (2/k)1/ 2 the condition ofo
Eq. 4 becomes useless. In fact, its usefulness is limited to the region in the vicinity
of T = 0.

The theorem may be extended to time series somewhat more general than measur-
able time series. The important requirement, to make the theorem meaningful, is that

k = "(0)

be finite; for this it is necessary that 0'(T) be continuous at T = 0. To determine

'"

Fig. VIII-9

The region (shaded) in which the points of a measured 4(7) must lie.
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whether or not this requirement is met by an arbitrary time series, the following

theorem, proved in collaboration with Mr. Powers of this group, is useful.

Theorem. A sufficient condition that 4'(T) be continuous at T = 0 is that

00

02 (w) do exists.

As usual, (w) is the power-density spectrum of the time series.

Proof. By definition, .'(T) will be continuous at the origin if, given E > 0, there

exists a 6 > 0 that satisfies the condition

for all TI,4 . Now

00 00

[¢'(7)- '(0) = - o () sin wTdwo - 0 = (w) sin WT dw

00 00

2 sinT d 2 ) sin dw
= 1 w 4( W) WT dwT

-00 00

00 00

-2 (W) sin WTw W 2 sinT dwo

since both o2 and (w) are always positive real. But since

sin WT<1
WT i

00

'(T) - <'(0)I 6 w 2 (w) dw

Thus if the integral on the right exists, and equals A, say,

I'(T)- '(0)I < A6

< E for all 6 <A

which was to be shown.

R. E. Wernikoff
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D. MEASUREMENT OF INDUSTRIAL PROCESS BEHAVIOR

Practical determination of transfer functions by correlation involves several basic

difficulties. These are (a) input time functions are sometimes not statistically station-

ary; (b) the correlation functions measured in practice do not approach final values

rapidly enough to allow Fourier transforms to be computed accurately; (c) solution of

the integral equation

io(T) = 0 h(k) ,ii(T-X) dX

for the impulse response, h(t), presents serious difficulties in practice; (d) whereas

definitions of correlation functions require integrations between infinite limits, only a

finite length of data is available in practice. Simple methods for overcoming these dif-

ficulties are being developed and applied to the heat exchange system described in the

Quarterly Progress Report, October 15, 1954, pages 75-76.

The nonstationary nature of the input time function imposes no restriction on the

accuracy with which the transfer function can be determined if a change is made in the

definition of the correlation functions. If the input 0i and the output 00 of a stable linear

system with impulse response h(t) are replaced by the step approximations shown in

Fig. VIII-10, the convolution integral

S0(t) = f h(k) ei(t-x) dX (1)

is replaced by the summation

-7 / '(n 0t

Att
- I

I I I I
I I I I I

I I I I I
I I tI I

0 I 2 3 4 5 6 7 8 9 n

Fig. VIII-10

A step approximation to a continuous time function.
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(At

S(nat) = 0 (nAt)

0 n

h(X) dX + 0i([n-1] At)

At

h(X) dk + ...

+ O( [n-K] At)
(K+1) At

K At

h(k) dX (2)

where the 0 denotes a step approximation. It is assumed that h(X) = 0 for X > (K+1)At

and n >, K + 1. We now define an experimentally determined "autocorrelation function"

as

N-m Z

ii ( m At )  N
n=m

0 (n At)Oi ( [n+m] At) (3)

and an experimentally determined "crosscorrelation function" as

N-m 2

0 (mAt) N
n=m1

0 (nAt) 0*([n+m]At)
1 0

where NAt is the total length of the experimental data. It should be noted that the "auto-

correlation function" computed according to Eq. 3 is not an even function, but that

Eqs. 3 and 4 reduce to the usual definitions when At is small, and NAt is large.

Replacing 0 in Eq. 4 by Eq. 2, we obtain0

K

0 (nAt) i (n+m-k)At I(kAt)

k=0

where I(k At) has been written for

(k+l)At

k At

h(X) dX

Interchanging the order of summation gives

K

cio(m At) = i(m-k) At I(k At)

k=O

(-ml + K< m< m 2 )

This result is independent of the statistical properties of 0. and requires only that N be
1

-43-
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larger than m I + m 2 . The primary effect of increasing N is a reduction in errors
caused by disturbances which add to the output. Equation 6 can be expanded into a set
of simultaneous equations that can, at least in principle, be solved for each I(k At). The
solution of Eq. 6 can be used to form a step approximation to h(t); a Fourier transfor-
mation gives H(w). In Fig. VIII-11 the transfer function H(w) obtained by transforming
the solution of Eq. 6 is compared with the results of conventional measurements in which
a sinusoidal variation in input temperature was introduced.

If the autocorrelation function of the input to the system is an impulse (the input is
white noise), the solution of the set of Eq. 6 is not required because the crosscorrelation
function between input and output has a form identical with the impulse response of the
system. The proper use of filters allows the same results to be obtained as if the
system were excited by white noise without altering the actual excitation of the system.

Identical linear filters are connected to the input and output of the system under

study, as shown in Fig. VIII-12. Each filter has a transfer function Hf(w). For sinu-
soidal excitation

01 = Hf®i; 02 = H HfO i = H 0 1  (7)

Equation 7 implies that 01 and 2 , as well as e11 and €12, are related through h(t) in
precisely the same way as the input and output of the system itself:

00

0 2 (t) = h(k) e1 (t-k) dX (8)
0

12(T) = h(X) 11(T-k) dk (9)
0

The power density spectrum of 01 is

11 = I Hf 2 ii (10)

Ideally, I Hf I2 would be designed to make (11 a constant independent of frequency. In
practice the lack of exact knowledge of ii and the presence of noise in the recording

equipment limit the frequency range over which 11 can be held constant. The transfer
function Hf need not be realized in a physical filter, but can be incorporated in the
digital computer program used to compute €11 and ¢12'

The method for processing experimental data is diagrammed in Fig. VIII-13(a); the
resulting .ii and 411 are shown in Fig. VIII-14. The convolution corresponding to the
first stage of digital filtering shown in Fig. VIII-13(a) was performed on I. B. M. equip-
ment by the M. I. T. Office of Statistical Services. An examination of 11 shows that it
contains an oscillating component which should be removed by a further stage of digital
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Fig. VIII-11

Transfer function of heat exchanger computed from
correlation measurements (solid lines) and measured
with sinusoidal excitation (points).
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The use of filters to improve the form
of the autocorrelation function.
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combination of analog and digital filtering to improve form of .i.
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data filtering on the shape of the autocorrelation function.

filtering; the further filtering could not be carried out because of the loss of signif-
icant digits in the first stage. Loss of digits is avoided by use of the method of
Fig. VIII-13(b), in which analog-to-digital conversion follows a stage of conventional
analog filtering. An experiment using this method has proceeded through the analog-
to-digital conversion stage.

The experimental data were obtained in the Process Control Laboratory through the
cooperation of Professor D. P. Campbell and Professor L. A. Gould.

S. G. Margolis
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