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A. NOISE FIGURES FROM THE VIEWPOINT OF POWER TRANSMISSION

EFFICIENCY

A method has been developed by which the noise figure F at the output of a general

bilateral network is calculated through the use of reciprocity relations. It is found that

1/F is equal to the efficiency of weighted power transmission from output terminals to

source. Weighted power is defined as the power dissipated in each resistor multiplied

by the relative noise temperature of the resistor. In addition to being a useful calcu-

lating tool the method gives a better insight into the problem of minimizing the noise

figure of a network.

Consider, at a frequency f, a linear bilateral network N. Let the noise in any

resistor R. of the network be represented, for a unit bandwidth around the frequency f,

by a current source of the same frequency and magnitude (4kTpi/Ri) 1/ in shunt with

the resistor R i , and let there be no correlation between the noises generated in any two

different resistors of the network. Further, let E, E 2 , ... , En be the open-circuit

voltages at n terminal pairs 11', 22', ... ,nn' of the network, and let x = alE1 + a 2 E 2 +

. + anEn, where al, a 2 , .. ., an are complex constants, be considered as the "output"

of the network. Note that the output x is not necessarily a voltage or current actually

appearing in the network.

Then we can prove

THEOREM 1: The mean square output x 2 per unit bandwidth produced by the noise

source of any resistor R i in the network N is equal to 4kTp.i P.,i' where k is Boltzmann's

constant, T is the resistor temperature in degrees Kelvin, pi is the relative noise tem-

perature of resistor Ri, and P. is the power dissipated in resistor R. when the network
1 1

is driven by current sources I I = a 1I2 = a2,... n = an at terminal pairs 11', 22'

nn', and all other sources of the network are set equal to zero.

PROOF: Let zik = zki, k = 1, 2, . . ., n be the transfer impedances between the terminals

of resistor R. and terminal pairs 11', 22', ... , nn'. Then the current source(/Z1
(4kTpi/Ri) 1/2 across R i will produce an output x given by

x = a 1 zil (4kTPi/Ri)i/2 + a Z zi2 (4kTpi/Ri)1/Z + ... + an zin (4kTpi/Ri)/2

= (a 1 Zil + a 2 zi 2 + ... + an zin) (4kTpi/Ri) 1/2 (1)

But a I zil + a 2 zi2 + . .. + a n zin is the voltage ER. across resistor Ri when the network

is driven by the current sources II = al 2 = a 2,..,I = an. Hence
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x = ER. (4kTpi/R i)I/ (2)
1

that is,

1x12  E (4kTp/R) = 4kTp R i  4kTpi Pi Q.E.D. (3)

Define now as "weighted power" dissipated in a resistor R i the actual power dissi-

pated in R i times the relative noise temperature pi of the resistor. Also define as

weighted power dissipated in a network the sum of the weighted powers dissipated in the

resistors of the network. Then we can prove

THEOREM 2: The single frequency noise figure F of the output x = alE 1 + ... + anE n

of network N is equal to 1/1, where ir is the efficiency of transmission of weighted

power from the sources I = a , .... , In = a to the signal source resistance.

PROOF: Let R s be the signal source resistance, R i (i = 1, ... m) the remaining resis-

tances in the network. Then

mean square output resulting from all noise sources
F = (4)

mean square output resulting from signal noise source

Since the noise sources in different resistors are uncorrelated to each other the mean

square output resulting from all noise sources can be found by summing over the indi-

vidual contributions of these sources. Applying Theorem 1, we get

m m
4kTps P + 4kTp i P P P +  pi Pi

F i=l i=l (5)
4kTPs P P

In the transmission of weighted power from the sources Il = al .. . n = an to R s , the

weighted power ps Ps dissipated in R s has obviously to be considered as output; the

weighted powers pi P. dissipated in the R.'s as losses. Hence

output + losses 1
F = - Q.E.D. (6)

output

When n = 1 the output is the voltage appearing across a single terminal pair 11'.

Then, quite obviously, the efficiency of transmission from output terminals to signal

source is the same, irrespective of whether we drive the output with a voltage or a cur-

rent source. For this special case Theorem 2 can be restated as

THEOREM Za: The noise figure of a network N having a single terminal pair output is

equal to the reciprocal of the efficiency of transmission of weighted power from output

to signal source.
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Fig. X- I

Low-frequency noise equivalent
circuit for a triode.

Fig. X-2

The circuit of Fig. X-l driven at the
output by a unit current source.

Theorems 2 and 2a show that the problem of minimizing the noise figure of a network

is not one of obtaining maximum power in the network from the source; rather, it is one

of obtaining maximum power in the source from the network, for a given power input at

the output terminals of the network.

For example, consider the low-frequency noise equivalent circuit of a triode

(Fig. X-l). The triode output is proportional to the voltage E, and the resistors Rg,

R have the relative noise temperatures pg (p = 1). Z is the source impedance,

referred to point a.

Driving the network by a current source I = 1 at the terminals of E (Fig. X-Z), we

find that:

(a) If p = 0 then the loss in the weighted power transmission from output to source

is fixed (= Req). Hence the minimum noise figure will be obtained when maximum power

is dissipated in Z s . But Z s is fed from a source of internal impedance Rg, so that

Z = R will give the minimum noise figure; and this minimum noise figure will be
s g

R R
losses eq eq

F i =1+ + 1 =1+4 4
min

output 1\2 Ps Rg
Ps RgVs

(b) If pg > 0 then Z s has to have a smaller value than

across, and consequently reduce the loss in, R . To find

resulting Fmin consider Fig. X-2. Let i = ke where

eq g g
F=l R Re i()

ps Rg Re [i(l-i)]

(7)

R to decrease the voltage
g

the optimum Z s value and the

k is real. Then

eq g Rg
= 1+

p R (k cos - z )
sg

(8)

Letting 4 = 0 gives, for a given k, the minimum possible F. . = 0 means that both i and

1 - i are in phase, that is, that Zs = i R /(l - i) is real. And
s g
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(Req/Rg) + P

F= 1+

ps ( - X2)

where

Pg

1 +-

PS

eq
a -

g g

F will be the minimum when

+ z  A (a 2

d 2

that is, when

k = -a + (aZ + a)1/2

and

F =1+m in

Pg 2?

1 - 2X
PS

S1 + 2 [a + (a + a)1/2]
0

Therefore

2
F . =1+-

min Ps

R
eq

R
g

+ 1+

Z = R R
Sopt g 1 - g

R 1/2
eq

eq g g

As a second example, assume that each of the outputs El, E2,..., En is connected to N

through a network N. (i = 1, 2.,n) (Fig. X-3). N1, NZ, .. , Nn could be the noise

equivalent circuits of n tubes and E l , ... , En their effective grid voltages. The outputs

of the tubes are either added directly or (as in a distributed amplifier) added with phase

shifts a l ... ,an. The output of such a system would then be proportional to alE1 +

a 2 E 2 + .. + anEn. The reciprocal of the noise figure F of this output will be given by

the efficiency of weighted power transmission from terminals E 1 ,. ... E n to the source.

This efficiency cannot exceed all of the individual efficiencies of transmission through
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Fig. X-3

A circuit whose outputs E1 ... En are connected to the

network N through the networks N , .. , Nn

networks N, N2 ..... N n . But these latter efficiencies represent the reciprocal of the
noise figures of systems using only one of the tubes N1,. . ., Nn. Hence at least one of

the tubes N l ... Nn can, when properly connected, give a system whose noise figure
is < F.

(This result is a special case, for uncorrelated noise sources, of the noise figure

theorem by A. G. Bose and S. D. Pezaris presented at the IRE National Convention of

March 1955. A summary of this theorem is given in the Quarterly Progress Report,

April 15, 1955, pages 29-31.)

S. D. Pezaris

B. THE WIENER THEORY OF NONLINEAR SYSTEMS

The Wiener theory of nonlinear systems provides a method for characterizing non-
linear systems independent of their input (the input can be a stationary time function, a

periodic function, or a transient) and a method for synthesizing the systems from their

characterizing parameters. The synthesis, from the classifying parameters, is accom-

plished by specifying the parameters A, . . .A in a system of the general form shown

in Fig. X-4. The general system (Fig. X-4) is capable of producing an output y(t) which

is an arbitrary function of the past of its input x(t) with the restriction that the output

become less and less dependent upon the remote past of the input and that the output be

continuous with respect to the input (1).

Since the Wiener theory provides us with a physically realizable arbitrary operator

on the past of a time function, it includes within its scope a very large class of nonlinear

systems. It is of interest to investigate a means for determining the optimum nonlinear

filter from the class of systems considered in the Wiener theory. In this report we

shall propose a procedure for obtaining this optimum filter for a particular error

criterion.

Knowing the form of the general nonlinear system (Fig. X-4), we now have the

See NOTE at end of Section B, page 42.
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y(t)=I AaO (a)e 2
a

Fig. X-4

Block diagram for the synthesis of nonlinear systems.

Fig. X-5

Block diagram of the circuitry for the classification of nonlinear systems.

problem of determining the parameters (A a , . .... A ) for the optimum filter. In solving

this problem we shall make use of the Wiener theory of classifying nonlinear systems

as illustrated by the block diagram in Fig. X-5. The parameters Aa, . . .A which

classify the nonlinear system under test are obtained by averaging the product of the

output of this system and the output of the Hermite polynomial generator when the sys-

tem and the Laguerre network are driven by white gaussian noise. It is necessary in

the Wiener theory of classification that the gaussian noise be white (that is, have a flat

power spectrum) in order to establish the statistical independence of the Laguerre coef-

ficients (ul through u s of Fig. X-5) which is necessary to provide the orthogonality of

the Hermite functions (1).

Now let us consider the optimum filter problem and see how it differs from the

classification problem. Unlike the classification problem, in the determination of an

optimum filter we do not have at our disposal the system labeled "Nonlinear System

Under Test" in Fig. X-5. In the filter problem this system would be the optimum

filter; exactly what we are searching for. It is clear, however, that if we did have the

optimum nonlinear filter, then, by driving it with white gaussian noise in the setup of

Fig. X-5, we could classify it and then synthesize it in the general form of Fig. X-4.
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In other words, a knowledge of the response of the optimum filter to white gaussian

excitation is sufficient to characterize and then to synthesize the filter.

In the filter problem we are generally given the input and the desired output time

functions and asked to find the system that will produce the desired output with a mini-

mum of error for a given error criterion. If the given input function x(t) happened to

have a gaussian distribution with a flat power spectrum, the Wiener method of classifi-

cation would be applicable to the filter problem. The coefficients (Aa, . . ., A ) which

characterize the optimum filter could be obtained by simply averaging the product of the

desired filter output Yd(t) with the output of the Hermite polynomial generator when the

Laguerre network is driven by x(t) as shown in Fig. X-6. Note the difference in the

setup of Figs. X-4 and X-5. In Fig. X-4 the "Nonlinear System Under Test" is a system

whose output is y(t) when it is driven by the white gaussian input x(t). In general, for

the filter problem of Fig. X-6 no such system exists. The characterizing coefficients

obtained from the setup of Fig. X-6 correspond to the coefficients of a system which,

when driven by the white gaussian x(t), yields Yd(t) with a minimum error for an error

criterion that we shall presently discuss.

In the optimum filter problem the given input x(t) is, in general, not gaussianly dis-

tributed with a flat power spectrum. Hence, we cannot directly apply the Wiener method

of classification to this problem. We shall now discuss an extension of the Wiener

method which enables us to determine an optimum filter in the general case when the

given input x(t) is not gaussianly distributed with a flat power spectrum.

As shown in Fig. X-7 the optimum filter is obtained by first operating on the given

stationary random input fi(t) to form a white gaussian time function x(t). With x(t) as

the input to the Laguerre network, the optimum nonlinear system which operates on x(t)

to give the desired output Yd(t) is determined as discussed above (see Fig. X-6). This

optimum nonlinear system (Wopt) has the form shown in Fig. X-8. If it is desired,

the Wiener method of classification could be applied to the system of Fig. X-8 and an

equivalent system could be synthesized in the general form of Fig. X-4.

A proposed method for realizing the transformation 4 of Fig. X-7 consists of cas-

cading a no-storage nonlinear device with a minimum phase linear network. The nonlinear

device transforms the probability distribution of fi(t) into a gaussian distribution. The

transfer characteristic (output vs. input) of this device can always be synthesized as a

monotonically increasing function. The minimum phase linear network operates upon

the output of the nonlinear device to yield a time function with a flat spectrum. Since

the network is linear, it does not alter the gaussian character of the time function upon

which it operates. Hence its output is gaussianly distributed with a flat spectrum.
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Fig. X-6

Block diagram of experimental setup to determine an
optimum filter in the special case where the given filter
input x(t) is gaussianly distributed with a flat power den-
sity spectrum. Yd(t) is the desired filter output.

Fig. X-7

Experimental setup for the determination of
nonlinear filter. f.(t) is the given random

Yd(t) is the desired filter output.

an optimum
filter input;

INPUT l NONLINEAR OUTPUT
TRANSFORMATION WOpT

Fig. X-8

General form of optimum nonlinear filter.
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Two measurements are necessary for the synthesis of the transformation 4. First

we measure the probability density of the given filter input fi(t). This enables us to

synthesize the no-storage nonlinear device. Then we measure the power density spec-

trum of the output of this device when its input is fi(t). This measurement enables us to
synthesize the minimum phase linear network.

It can be shown that the optimum filter obtained by the process indicated above is an

optimum filter for a weighted mean square error criterion. Let Yo(t) be the actual out-

put of the filter and Yd(t) be the desired output. Then, for the optimum filter the time

average of the quantity exp u2 + . . . + u)/][y(t) - yo(t)]2 is a minimum. The u's in

the exponential weighting factor are the time varying outputs of the Laguerre network.
The weighting factor is such that errors occurring during time intervals over which
the mean square input voltage to the Laguerre network is large are weighted more
heavily than those errors occurring during time intervals over which the mean square

input voltage to the Laguerre network is small. The same error criterion applies to the
Wiener theory of classification when only a finite number of Laguerre and Hermite func-

tions is used.

NOTE (added at press-time): Since the writing of this report, an error has been
found in the proposed procedure for the synthesis of the transformation 4. This error
will be corrected in the next report.

A. G. Bose

References
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C. A UNIFIED DEFINITION OF INFORMATION

The probabilistic theory of information as developed by Wiener and Shannon has been

generalized in such a direction that the discrete and continuous theories form special

cases of a unified theory. This first report concerns primarily a fundamental definition

of information expressed in a unified form. To treat the problem from a general point

of view, it has been necessary to resort to the theories of measure and of Lebesgue

integration, although appeal has been made only to those measure-theoretic concepts

that are absolutely necessary.

We consider a random variable f which takes on real values x in (-o, oo) according

to some monotonic probability distribution function

4(x) Probability that f < x (1)
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(x) is a nondecreasing function, bounded by zero and one, and well defined for every

finite x. At points of discontinuity, it is continuous from the right.

We now introduce a Lebesgue-Stieltjes measure L generated by (x) such that if E

is any measurable subset of the real line, the measure of E is represented by the

probability that the value of f belongs to E.

g(E) = Probability that f E E (2)

If the entire real line is denoted by the space X, clearly i(X) equals 1.

Now let us consider an information process in which we know a priori that the value

of a function f lies in a certain set A, and we are told in addition that f E B. Our

a posteriori knowledge is that f belongs to both A and B and hence lies in their inter-

section A n B. Following Wiener (1), a reasonable measure of the information we have

obtained is

4 (A)
I = log (3)

(A nB)

where the base of the logarithm determines the units of I. Clearly, since A n B is

included in A, the information gained is nonnegative.

A second more general information process is one in which f is known a priori to

be distributed according to p(x), and information is obtained which permits the formu-

lation of a new, a posteriori distribution v(x). Here, the information has not merely

reduced to a subset the range of values of f, but has in fact changed the defining meas-

ure on the space. Later we shall see that this is not a different situation from the one

considered above, but represents in reality a more general process of which the first is

a special case.

Let us suppose that the true value of f is y. Then a reasonable measure of the

information associated with the fact that f = y is

v(y+E) - v(y-E)
I(y) = lim log (4)

E-0 p(y+E) - p(y-E)

To obtain the total information received in the process, we take the average of I(y) with

respect to the a posteriori distribution over all possible y. Thus

I = lim log d v(y) (5)

E-0O p(y+E) - p(y-E)

It is apparent that under certain conditions, the integrand in Eq. 5 does not exist.

First, consider the case in which p(x) contains discontinuities not in common with v(x).

The integrand becomes infinitely negative at these points. However, since p(x) is
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monotonic and bounded, the set of all its discontinuities must be countable - hence, also

the subset of those not in common with v(x). Clearly, this subset is of v-measure zero

(a posteriori probability zero) and does not affect the value of the integral.

Second, consider the case in which v(x) has discontinuities not in common with p(x).

The set of these discontinuities is of positive v-measure and since the integrand of Eq. 5

becomes infinitely positive on this set, the integral diverges. Thus a necessary condi-

tion for the finiteness of I is that any point of discontinuity of v(x) represent a discon-

tinuity of p(x) also. This condition as well as the form of Eq. 5 can be made more

general by an appeal to the concept of absolute continuity and to a restricted form of the

Radon-Nikodym theorem.

Definition: A measure v is said to be absolutely continuous with respect to the

measure p (in symbols, v r- p) if, given an E > 0, there exists a 6 > 0 such that when-

ever p(E) < 6, v(E) < E. More simply, whenever E is a set of p-measure zero, then

v(E) equals 0 also. It should be noted that the symbol (--A) is not in general symmetric.

Whenever we have both v r-_ p and p cv, we write v " p.

Radon-Nikodym Theorem: Given a measure space X and a pair of measures v, p

with v r p, there exists a finite-valued, nonnegative function 0, integrable with respect

to p, such that for every measurable set E C X

v(E)= 0 dp (6)

E

The function 0, which is defined uniquely everywhere except on a set of p-measure zero,

is called the Radon-Nikodym derivative and is frequently written dv/dp. The proof of a

less restricted form of this theorem may be found in Halmos (2).

With the interpretation of

v(y+E) - v(y-E)
lim
E-0 p(y+E) - p(y-E)

as a derivative in the sense of Radon-Nikodym, Eq. 5 can be written in the more general

form

I = log d dv (7)

providing a fundamental definition of information applicable to discrete, continuous, and

mixed information processes. A necessary (but not sufficient) condition for the finite-

ness of I is that v - p.

Now let us show that Eq. 7 is a valid generalization of Eq. 3 and hence reduces to
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the fundamental definition of Wiener. We consider again a random function f distributed

by (x). If j(x) is differentiable, the fact that f E A may be expressed by an a priori

distribution density

I-II(x)/ (A) x E A

p'(x) = (8)

0 otherwise

Or, more generally, we may relax the differentiability condition on 4(x) and write

1/4(A) x c A
dp - (9)
d4

0 otherwise

Similarly, the additional knowledge f E A n B is formulated in terms of the a posteriori

measure v:

1/4(A n B) x EAnB
dv (10)
dp

0 otherwise

From Eq. 7, the information obtained is

dv dv d dv plI = log dpdv - dv log d -log dp d

x x

=- (A n B) log (A n B) -log A)d
AnB

(A)
= log

(A n B)

as before. Hence Eq. 7 includes the definition of Wiener.

Applying a fundamental logarithmic inequality, we find that

dv dv dv
I = log dv = log - dp

dp dp dp
x x

> dp- 1 dp = v(X) - p(X) = 0

with the result that information as defined in Eq. 7 is nonnegative.

It may be shown also that if f and g represent two independent events, the
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information provided about the joint event (f, g) is the sum of the information about f and

g separately. The proof of this result will be omitted here.

It is perhaps of value to show by means of certain examples just what part is played

by the Radon-Nikodym derivative in the evaluation of the integral, Eq. 7. Let us first

consider a discrete case in which p(x) is a step-function having a countable number of

discontinuities of magnitude pk on a set S of elements xk. We further assume v(x) to be

a similar function except that its discontinuities have magnitude qk and occur on a sub-

set M of S. Clearly v r-J p, since every discontinuity of v occurs in common with one

of p. The Stieltjes integral in Eq. 7 becomes in this case a simple summation

I = qk log (11)

xk EM

over all the discontinuities of v(x).

Now let us consider the case in which both p(x) and v(x) are continuous. In this case

the Radon-Nikodym derivative becomes a derivative in the ordinary sense, hence is

simply the ratio of the a posteriori and a priori probability densities. The information

is then given by the ordinary integral

v'(x)
I = v'(x) log- dx (12)

p'(x)

For a third example, we treat a mixed process where p(x) and v(x) are the monotonic

distributions of Fig. X-9. For simplicity, we have chosen a small number of discon-

tinuities. Since every discontinuity of v(x) occurs in common with one of p(x), and since

the interval (x 3 < x < x4) is both of p-measure and v-measure zero, it is easy to verify

that v -- p. Thus the Radon-Nikodym derivative is defined almost everywhere with

regard to p. This function, which we call 6(x), is plotted in Fig. X-9. We note first

of all that 6(x) must be well defined at all points of discontinuity of p(x) and must have

the value pk/q k at such points xk. These values are indicated by the heavy dots in the

figure. With the recognition that any monotonic function may be expressed as the sum

of a continuous function and a step-function, 6(x) is given at all other points by the ratio

v (x)/pc(x) where the subscript c denotes the continuous part. In this manner we define

6(x) at all points except perhaps on a set of p-measure zero. From Fig. X-9 one sees

that 6(x) is left undefined in the interval (x 3 < x < x 4 ) which is indeed of zero p-measure.

However, from the absolute continuity condition, any set of p-measure zero is also of

v-measure zero - hence the integral in Eq. 7 with respect to v is unaffected by any

values we might assign to O(x) in the undefined interval. After we determine the Radon-

Nikodym derivative, it is easy to verify that the Stieltjes integral
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x

- 0 0

0(a) dp(a) (13)

is valid.

It is of interest also to note that the assertion in the Radon-Nikodym theorem that

the function 6(x) be finite-valued does not imply boundedness. In the example of

Fig. X-9, it may be seen that 0(x) does become unbounded in the neighborhood to the left

of x 3 . However, 0(x) has the value zero at the point x 3 and is indeed finite-valued every-

where.

For the mixed case, the information obtained in the process of going from p(x) to

v(x) is given by the Stieltjes integral

q2 q 5
log 0(x) dv(x) = q 2 log - + q 5 log P5

P J-5 o
v (x)

v c(x)log dx
C PIC Wx)

Thus the information received in a mixed process is simply the sum of a discrete and

a continuous part.

Fig. X-9

The formulation of the Radon-Nikodym derivative in a mixed information process.
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Since 0(x) is unbounded, whether or not the integral in Eq. 14 converges depends

upon the behavior of log 0(x) in the neighborhood to the left of x 3 . It is an easy matter

to draw examples for which divergence results even though v is assumed absolutely

continuous with respect to p. Thus we see that the condition v ~J p is not a sufficient

one for the finiteness of I.

K. H. Powers
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D. A COMPENSATOR FOR THE DIGITAL ELECTRONIC CORRELATOR

The analog section of the digital correlator periodically samples an input signal and

converts the samples to binary numbers. The correlator utilizes a compensator to

minimize zero drifts in this section. The binary number generator has a ten digit

capacity; that is, it can count up to 1111111111 in the binary system (1023 in the decimal

system). 1000000000 is used as a reference zero; that is, for zero input voltage, the

number generator will generate 1000000000 (512 in the decimal system). If the correla-

tor is ac coupled, the average value of the signal will be zero, and the average number

should be 1000000000. The present compensator operates on the principle that the tenth

counter should then be, on the average, on half of the time and off half of the time. Any

deviation from this is corrected by controlling the dc level of the input signal with a long

time-constant feedback circuit.

"PLUS" PULSE

"MINUS" PULSE

-

B

-E

Fig. X-10

Simplified compensator circuit.

This compensator is unsatisfactory, however,

for correlation of certain signals. One example

is a symmetrical square wave, whose average

value could drift within the limits of the peak-to-

peak amplitude without compensation. Another

example is an unsymmetrical square wave which

is never, on the average, half the time on either

side of zero.

A scheme has been proposed which provides

compensation for any signal. It uses the whole

number rather than only one digit. A simplified

circuit of this compensator is shown in Fig. X-10.

The switches have replaced electronic circuitry

to simplify the diagram. For each sample a
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pulse is formed; its duration is proportional to the difference between the number and

the reference zero. If the difference is positive, switch A is closed for the duration

of the pulse; if the difference is negative, switch B is closed for the duration of the

pulse.

If P is the average "plus" pulse length and M is the average "minus" pulse length,

ec can be shown to approach a final value of

E(P-M)e -
c final P+M

with a time constant depending on R and C. This voltage, e c , will adjust the dc level

of the input signal.

This scheme has two distinct advantages over others that were considered. The

first is that if a balanced power supply is used, any variations in E are cancelled out

when e is near zero. The second is that the correction voltage is proportional to E.
c

This scheme is now being tested.

K. L. Jordan, A. G. Bose

E. MEASUREMENT OF INDUSTRIAL PROCESS BEHAVIOR

Earlier reports (1, 2) stated that the heat exchanger was operated with the random

variation of the temperature of the water from the mains as its input, and that the shell

and tube temperature variations were recorded through two-stage, RC, highpass net-

works. The resulting data have been converted to digital form and the autocorrelation

function and power-density spectrum of the shell temperature computed. The results

are shown in Figs. X-ll and X-12. The highpass filtering has produced an autocorre-

lation function with a desirable fast-decaying spike in the neighborhood of T = 0, but with

quite irregular behavior for I T I > 5 sec. It is probable that the dips and peaks in the

power-density spectrum in the region above 0. 1 cps do not reflect the actual variations

in input temperature, but represent the effects of errors in the measuring process.

Consequently, a spectrum-shaping digital filter was designed which would preserve the

spectral components below 0. 1 cps and suppress those above. It was intended that the

result of passing the shell data through such a filter would be a time function with an

autocorrelation function of the form 11 = e- , corresponding to a power-density

spectrum flat from zero frequency to 0. 16 cps (1 rad/sec). The magnitude of the

required filter transfer ratio was found directly from the power-density spectrum; this

transfer function is shown in Fig. X-13. The minimum phase corresponding to the mag-

nitude function was computed by a semigraphical method (3). The real part of the

transfer function was computed for finding the impulse response of the filter (Fig. X-14),

by Guillemin's method (4). As a check on the computations, the magnitude of the Fourier
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Fig. X-1

Normalized autocorrelation function
for use in filter design.

Fig. X- 12

Normalized power density spectrum from
autocorrelation function of Fig. X- 11 for
use in filter design.

0005 001 0.02 0.04 010
FREQUENCY (CPS)

x -CHECK POINTS \

Fig. X-13

Magnitude of the transfer function
of digital filter.

Fig. X-14

Impulse response of digital filter.

Fig. X-15

Correlation functions computed after two-stage analog
filtering and one stage of digital filtering.
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transform of the impulse response was computed; a few values are plotted on Fig. X-13.

The shell and tube temperature records were each convolved with the impulse response

of Fig. X-14, and the autocorrelation and crosscorrelation functions 111 and 012 were

computed in accordance with the modified definitions given by Eqs. 3 and 4 on page 43

of the April report (2). The results are plotted in Fig. X-15. These computations were

carried out by the M. I. T. Office of Statistical Services, under the supervision of

Mr. W. B. Thurston, using an I. B. M. Model 604 Electronic Calculating Punch. The

computed c 1 1 has a spike symmetrical about T = 0 and six sec wide at its base. This

agrees with the expected behavior, but small irregularities remain for larger values

of T.

A first approximation to the impulse response relating 12 to 11 was made by

drawing a smooth curve through the positive values of 12 from 8 sec to 20 sec, and

assuming the response to be zero from 0 sec to 8 sec. It was assumed that the impulse

response could assume only positive values because of the resistance-capacitance nature

of the heat transfer process. This approximation to the impulse response was convolved

with the measured 11 to get an approximate l12" A constant multiplier which would

minimize the mean-square error between the measured and approximate values of 12
was computed. The product of the constant multiplier and the first approximation to the

impulse response was assumed to be the impulse response of the heat exchanger. As a

check, the assumed impulse response was convolved with 11; the resulting points are

plotted on Fig. X-15 for comparison with the measured 12"

007 h.
003

COMPUTED

0 5 10 5 20 25 30
t (SEC)

Fig. X-16

Comparison of measured impulse response with impulse response
computed from the correlation functions of Fig. X-15.
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One method of measuring the impulse response of a system is to apply a step function

to the input and measure the input and output through differentiating filters. This test

was performed on the heat exchanger, and a mixing valve was used to produce a fast rise

of shell temperature. The results are shown at the top of Fig. X-16. The curve marked

"tube" can be considered to be the response of the heat exchanger to the differentiated

step of temperature occurring at the beginning of the "shell" trace. The impulse

response computed from the random-input results is shown at the bottom of the figure

for comparison. The two curves are similar in form although a difference in transpor-

tation lag (pure time delay) and a smaller difference in time constant are apparent. The

discrepancies can be attributed to the fact that in the conventional transient test the rise

of shell temperature produced by the mixing valve was accompanied by a slight decrease

in flow rate. It should be pointed out that the spike at the origin in Fig. X-15 represents

a much faster variation in shell temperature than could conveniently be produced in the

physical system.

The experimental data were obtained in the Process Control Laboratory through the

cooperation of Professors D. P. Campbell and L. A. Gould.

S. G. Margolis

References

1. Quarterly Progress Report. Research Laboratory of Electronics, M. I. T., Oct. 15,
1954, pp. 75-76.

2. Quarterly Progress Report, Research Laboratory of Electronics, M. I. T., April 15,
1955, pp. 42-46.

3. D. E. Thomas, Bell System Tech. J. 26, 4, 870 (1947).

4. E. A. Guillemin, Technical Report 268, Research Laboratory of Electronics,
M. I. T., Sept. 2, 1953 (reprinted from Proc. NEC 9, 513 (1954)).

F. FIELD MAPPING BY CROSSCORRELATION

In the Quarterly Progress Report, October 15, 1954 (pp. 66-69), a scheme using

second-order crosscorrelation to locate random signal sources was presented. An

example has been worked out showing the technique for locating independent sources

which generate Poisson square waves. To simplify the calculation, only two independent

sources are considered in illustrating the general procedure.

Figure X-17 shows the area of interest in the xy plane, and the three listening posts

L1 , L 2 , and L 3 located at points

2 21/2 ) and 2 31/2)
3 1/2) / 2 2(3) 1/2 a 2 2(3)1/2)
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respectively. If fl(t) and f 2 (t) denote the random signals generated by sources S 1 and S Z ,

the signals received at L1, L2, and L 3 are

and

gl(t) = f 1 (t - kd 1 1) + fz(t - kd 12 )

g2 (t) = f 1 (t - kd 2 1 ) + f 2 (t - kd 22 )

g 3 (t) = f 1 (t - kd 3 1) + f 2 (t - kd 3 2 )

th
respectively, where d.. is the distance in kilometers between the i listening post

.th 1J
and the j source, and k is the inverse of the velocity of light in air, that is,

k = (10/3)([sec/km).

Let the signal f (t) be the sum of a Poisson square wave fla(t), that takes the values

+E and -E, and flb(t) = E; and let f 2 (t) be the sum of another Poisson square wave f 2 a(t),

that takes the values +E' and -E', and f2b(t) = E'. Then the second-order crosscorre-

lation function of gl(t), g(t), and g 3 (t) is

I. i, , \ , I

-Zkll k(d 2 1 -d 3 1 )-T 1 +T

gl(t) gZ(t + Tl) g 3 (t + T2)

-2k 1l k(d 1 1-d 3 1 )+T e

+ E' e-2k I k(dl 2 -d 32 )-T,+ E'Z e 23

-Zk1 k(d1 1 -d 21 )+T1

L +TZ , -2kZ k(dlZ2 -d 32 )+T2Z

-2k 2z k(dlZ-d 2 Z)+T1 1

where k I and k2 are the average numbers of zero-crossing per microsecond of the

Poisson waves fla(t) and fZa(t)

Fig. X-17

Location of listening posts L 1 , L 2, L 3 and

area of interest; a = 30 km.
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Fig. X-19

Plot of gl(t) g 2 (t + T1 ) g3 (t + TZ).
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Fig X-20

Trace of hyperbolas from Fig. X-18. T = -60, -30, and -90.
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The values of 71 and T that correspond to the peak values of Eq. 4 determine the
th

positions of the sources. These values of T1 and T2 for the j source are denoted by

(T ( j), j )
). To work an example, we must assume a set of values for the dij's. For

these values we can obtain the values of (T(j), 7 j ) from Eq. 4. In the actual case, how-

ever, the values of (T~ j ) , T(j)) are determined directly by crosscorrelating gl(t), gZ(t),

and g 3 (t) without any knowledge of the dij 's.

For the example, assume that

d11 = d21 = d31 = 17. 32 km (5)

and

dl2 = d22 15. 35 km, d32 = 22. 85 km (6)

These values specify points S1 and S z in Fig. X-18. To simplify Eq. 4, let

E = E' = 1 and k = k2 = 1 (7)

Equation 4 becomes

gl(t) gz(t + Tl) g 3 (t + T2 ) = 2 4 + e + e- + e-Z

+ e-2T2-25. 0 1 + -2 1-T-25. 0 ) (8)

Equation 8 is plotted in Fig. X-19. From this figure we see that

((1) = 0, =0 , T2) = 0, ) = 2 5. (9)

With these values the sources are located by means of the hyperbolic grid system shown

in Fig. X-18. This system consists of three families of hyperbolas superimposed on

each other. Points L 1 and L 2 of Fig. X-17 are the foci of the family of hyperbolas given

by

- 1/2 - 3 1/2

x + + y + - x+ 31/2) 0. 3T (10)

When points L1, L3, and L 2 , L 3 are the foci, the equations of the two families of

hyperbolas are

- 2 + y + - x2 + y - 1Z 0. 3
T (11)

S2(3)1
/ 2 31/z
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and

x + a + y+
2 / a

- x -a + + a ) 0. 3T (12)

2(3)1/2

respectively. In Eqs. 10, 11, and 12, 0 -< T < 100 Lsec and a = 30 km. In Fig. X-18,

the values of the parameter T are shown in the border beside each of the hyperbolas.

For instance, if T = -60, -30, and -90 isec are the parameter values of the hyperbolas

given by Eqs. 11, 12, and 10, respectively, then these hyperbolas are as shown in

Fig. X-20 which has been traced from Fig. X-18 for clarity.

In Eq. 8 of the Quarterly Progress Report, October 15, 1954 (p. 68), the quantities

d2j - dlj, d3j - dlj, and d- d are expressed in terms of T1 and T (j) The firstjj 3j 1 2
relation in the equation shows that T1 is the difference in transmission time of a signal

fth
from the j source to L 2 and L 1 . The parameter T of the family of hyperbolas given

th
by Eq. 10 similarly gives the difference in time for a signal from the j source to

.th
reach L 2 and L 1 . Hence, the j source lies on the hyperbola given by Eq. 10 with

(j) .thT = T . By a similar argument, the j source must also lie on the hyperbola given

by Eq. 11 with T = T (  Hence the intersection of the two hyperbolas determines the
th

location of the j source. Clearly the source S 1 is at the intersection of two hyper-

bolas given by Eqs. 10 and 11 with T = 0. The source S Z is at the intersection of the

hyperbolas specified by Eq. 10 with T = 0, and the hyperbola given by Eq. 11 with

T = 25. 0. The positions of S 1 and S z determined this way agree with the positions

specified by Eqs. 5 and 6.

This example can be solved by means of the first-order crosscorrelation functions

gl(t) g 2(t+T), g 1 (t) g 3 (t+T), and gZ(t) g 3 (t+T) to determine T j ) and T, but in general

when many sources are involved this procedure becomes highly complicated. For the

general problem, second-order crosscorrelation provides a straightforward solution.

J. Y. Hayase
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