Prof

Prof.
Prof.

Prof

XI. PROCESSING AND

. S. H. Caldwell
P. Elias

R. M. Fano

. D. A. Huffman

W. G. Breckenridge

J. Capon
E. Ferretti

E. J. McCluskey, Jr.

A. J. Osborne

TRANSMISSION OF INFORMATION

R. A. Silverman
J. C. Stoddard
F. F. Tung

S. H. Unger

W. A. Youngblood

A. AN INFORMATION MEASURE FOR MARKOFF DIAGRAMS

A Markoff diagram is a linear graph whose nodes represent the states of a Markoff
These

From these conditional

source and whose directed branches represent transitions between these states.
branches have associated with them transition probabilities.
probabilities the state probabilities themselves may be calculated from a set of linear
equations. For instance, the diagram of Fig. XI-1 represents a four-state source of
binary symbols. The heavily-lined branch tells us that, if the source is in state "4,"

the probability of the 0 symbol is 2/3 and it will be accompanied by a transition to

state "1." If P,, P,, P and P, are the state probabilities it follows from the diagram

2> Ps
that
( - 3 2
Py = aP3t3 P,
21 1 1
P,=3P,*3 P, t3 P,
p
_2
Py=3P)
_ 1 1
L Pys” 2 Pt 3P
These equations may be solved for
_ 12 _ 14 _8 .9
Py=43. Py 33, P3733, and P =53

From a knowledge of the symbol source an information measure may be associated
with a sequence of symbols from the source. This calculation may be made symbol by
symbol. For example, if we know the source to be in state "4," the information carried
by the symbol 0 will be -log2 —23: bits. The average information/symbol of our example

may be calculated to be

H
av (sequence)

+Py(-gog -3 log )+ Py(-5l0g § - 5108 3]

i

0.925 bits/symbol
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It is as reasonable to compute an informa-
tion measure for the Markoff diagram itself
as it is to attach an information measure to

the sequences from a Markoff source. To

understand this viewpoint, let us imagine that
Fig. XI-1 the diagram is an air view of a highway sys-

A Markoff diagram. tem with intersections and one-way roads.
Suppose that the getaway car of a bank robber
has escaped into this maze of roads. A pur-
suing highway patrol car desires to follow in the tire tracks of the escaping car.

Consider the problem that confronts the patrolman when he reaches an intersection
where a sign informs him: "The escape car followed the road marked "0" with the prob-
ability one-half, or the road marked "1" with the probability one-half." (See state "2"
of Fig. XI-1.) The chase cannot continue with assurance until one bit of information
becomes available. A knowledge of the actual road followed would give just this amount.
The road sign itself furnishes no information.

Now the chase leads past a sign reading: "Escape cars take the left road with a
probability two-thirds and the right road with a probability one-third." (See state "4"
of Fig. XI-1.) Knowledge of the escape route would, at this location, furnish on the
%= 0.919 bits. (This corresponds to the
information content of a single symbol of the sequence.) The difference between this

average an information of -% log—g- - % log

and the one bit necessary for the decision to be made by the patrol car is 1.000 - 0.919
= 0.081 bits. Thus it is convenient to say that this quantity is the average information
given by the road sign.

The maximum possible information would be given by a sign which read: "Escape
cars always turn left here." This would furnish one bit of information to a patrolman
who, previous to reading the sign, assumed that the two roads were equiprobable for
escape.

In all of these cases the average information furnished by the road signs added to the
average information given by a knowledge of the exact escape road (the latter informa-
tion based on the probabilities listed on the sign) is just one bit. Thus, by analogy, the
average information that may be associated with a Markoff diagram for a binary source
is

Hay (diagram) 1-H,, (sequence) bits/transition

The diagram of Fig. XI-1 has, consequently, an information measure of

1.000 - 0.925 = 0.075 bits/transition
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In general, a Markoff diagram for an n-symbol source has a measure of

= log,n-H bits/transition

H.v (diagram) ~ av (sequence)
and the information output rate of a first-order Markoff source and the information

measure of the diagram which describes the source are complementary to each other.
D. A. Huffman

B. ON BINARY CHANNELS AND THEIR CASCADES

The following material is a summary of an investigation which will be reported in
greater detail in the future. This condensation does not contain the detailed derivations

nor the visual aids that a full understanding of the problem requires.

1. Capacity and Symbol Distributions

Many interesting features of binary channels are concealed if only symmetric chan-
nels are considered, as is usually the case. Accordingly, we have applied Muroga's
formalism (1) to a detailed discussion of the arbitrary binary channel.

Let the channel have a matrix

a l-a
6 1 (1)

Then the capacity is

c(a, B) = -6H(u)|34_‘aaH([3) + log [1 + exp, <H(—Q)B—?i@ )] exp,X = 2% (2)
The probability that a zero is transmitted if capacity is achieved is
-1
P.(a,B) = B(B-a) ! - (p-a) 7 [1 + exp, (18- Hla )} (3)

and the probability that a zero is received if the signaling is at capacity is

-1
P!(a, ) = [1 ¢ exp, (H(E) - f(a))] @

H(x) is the entropy function -x log x - (1-x) log (1-x).

Each of the functions in Eqs. 2, 3, and 4 defines a surface over the square 0 £ ag 1,
0 < Bg 1, with certain symmetries intimately related to the noiseless recodings possible
if the designation of input symbols or output symbols or both is changed. It is found
that an infinite number of binary channels have the same capacity. Each equicapacity
line has two branches, one above the p = a line, the other below it. If C is a channel

on one branch, then so is ICI, but IC and CI are on the other branch. By I we mean

the matrix
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0 1
1 0
The Po(a, B) surface is saddle-shaped, and has discontinuities at the corners a=p=0
and a=f=1. Any limiting value between 1/e and 1-(1/e) can be achieved by approaching
these points in the proper direction. In particular, if the point a=B=0 is approached
along the positive a-axis, the limit is 1/e; along the positive B-axis, the limit is 1-(1/e).
These two limits are the maximally asymmetric input symbol distributions for a binary
channel; that is, no input symbol distribution more asymmetric than [l/e, 1—(1/e)] or

{1-(1/e), l/e} can achieve capacity in a binary channel. The low-capacity channels

which in the limit of vanishing € exhibit this maximum asymmetry are the channels

€ l1-¢

c, = . IC,, Cl, and IC_I (5)

€’

2. Probability of Error

The probability of error at capacity of the channel (Eq. 1) is
Pe(u, B) = B+ (1-a-B) Po(a’ B8)

and is the same as that of the channel ICI, and one minus that of IC and CI. It follows that
if Pe is greater than 1/2 (which it is, if the channel is on the upper branch of the equi-
capacity line) then Pe can be made less than 1/2 by the simple expedient of reversing
the designation of the input (or output) symbols. Of all the channels on the lower branch
of an equicapacity line, the symmetric channel has the smallest probability of error,
unless the capacity is low, in which case some asymmetric channel has the smallest

probability of error.

3. Cascaded Channels

Cascading a binary channel corresponds to squaring its channel matrix. It is found
that any channel on the upper branch of an equicapacity line, except the symmetric chan-
nel, has a lower capacity in cascade than its images on the lower branch. Thus, even
if no delay can be tolerated in a cascade of channels, the intermediate stations should
cross-connect the outputs of a preceding stage to the inputs of the next stage if the chan-
nel lies on the upper branch of an equicapacity line. It can be shown that this behavior
is minimum probability of error detection, provided rate-destroying mappings are pre-
cluded.

Of the channels on the lower branch of the equicapacity line, the symmetric channel

has the highest capacity in cascade, unless the capacity is low, in which case some

-62-



(XI. PROCESSING AND TRANSMISSION OF INFORMATION)

asymmetric channel has the highest capacity in cascade.

4. Redundancy Coding in €-Channels

If sufficient delay is permitted at intermediate stations, it follows from Shannon's
second coding theorem that the end-to-end capacity of a cascade of identical channels
can be made arbitrarily close to the common capacity of the separate channels. Simple
redundancy coding is quite effective (though not ideal) for the low-capacity €-channels
(Eq. 5), and serves to illustrate how delay can be exchanged for enhanced rate in a
cascade of channels. The coding consists of repeating each digit r times at the trans-
mitter and (synchronously) decoding the received output in blocks of r digits: a run of
r ones is identified as a one, and a sequence of r digits with a zero at any position is
identified as a zero, since in the channel Ce a zero at the receiver means that a zero
was transmitted. Simple though this coding scheme is, it gives rates that are an appre-
ciable fraction of capacity with a very small probability of error. Consequently, the
capacity of a long cascade of redundancy-coded €-channels can be kept much higher (at

the cost of sufficient delay) than if no such coding were permitted.
R. A. Silverman
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C. MEASUREMENTS OF STATISTICS OF PICTURES

Analog measurements of the second-order probability distributions of several pic-
tures were made. The procedure and equipment used were briefly discussed in the
Quarterly Progress Report, April 15, 1955, page 49. A value of comentropy for each
picture was calculated from the measured probabilities. Noise measurements from the
equipment permitted bounds to be placed on the value of comentropy obtained.

Two-dimensional autocorrelation measurements on the same pictures were made
and a second value of entropy obtained for each picture from these statistical measure-
ments. The equipment used for both measurements, as well as the results obtained,
is described fully in Bounds to the Entropy of Television Signals, Jack Capon, M. Sc.
Thesis, Department of Electrical Engineering, M.I.T., 1955. A technical report based
on parts of this thesis will be published.

The digital equipment described in the April report, page 52, was checked and put
into operation. Complete second-order probability measurements on a picture were
made. The equipment is still rather critical in operation, but improvements should
permit more reliable measurements.

The equipment and results of tests, as well as the second-order probabilities of a
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picture, are described in Measurement of Second-Order Probability Distribution of
Pictures by Digital Means, J. C. Stoddard, M. Sc. Thesis, Department of Electrical

Engineering, M.I.T., 1955. A technical report based on parts of this thesis will also
be published.

J. C. Stoddard
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