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A. TOPOLOGY OF DYNAMIC SYSTEMS

1. Formulation

A dynamic system, that is, a physical system whose behavior is a function of the

real time variable t, can be characterized mathematically by means of certain excita-

tion and response quantities and their time derivatives in relation to the physical

"constants" of its components. Thus the formulation results in a system of differential

equations that involve functional equalities of a number of variables and their time deriv-

atives. In the case of nonlinear systems of higher order, very little is revealed, through

this individual formulation, about the nature of the problem in general. Thus it may be

that by introducing new variables we shall arrive at a standard formulation that charac-

terizes any general problem.

Consider a set of functional equalities of the variables x, y, . .. , and so on, and their

time derivatives dx/dt, d2x/dt , .. ., dy/dt, d2y/dt 2, .... (We shall use the standard

notation k = dx/dt for time derivatives.)

pi(x, kx .. , Y, y, y .. ;t)= qi(x, , K, . y.. y, y, Y . . ;t)

i = 1, 2, 3, ... k (1)

with their initial conditions x(O) = C 1 , X(O) = C 2 , and so on. The total number of depen-

dent variables in Eq. 1, that is, x, y, and so on (not their time derivatives) is k. Each

variable involves m.(i = 1, 2, . . .,k) of its time derivatives. Obviously, the total number
1

of initial conditions for a particular solution is

k

m +k

i=l

Now let us introduce a set of new variables that involve only the first-order time deriva-

tive. In particular, let

X=Z 1  y=zm +1
1

x=z=

z 2 = 3  (z)

ml- m i
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Solving the set of Eq. 1 for the highest order time derivative of each of the dependent

variables and substituting the new variables (Eq. 2), we obtain the set

i = f i (z l ,z ... z n;t) i = 1,2, n (3)

with the initial conditions

zi(0) = c 1 ,2.... n

where

k

n = k + mi (4)

i=l

Now if we let t = Zn+l, we can eliminate the explicit time dependence in Eq. 3, but we

have to add two more equations to our system:

n+ =

Zn+l(0) = 0

Thus we have

z = fi(zl' z ... z 1 )

iz( = 1, 2 n+ (5)z.(0) =c.

With this formulation we can express any dynamic physical system by means of a
set of autonomous differential equations (the right-hand side of Eq. 5 does not explicitly

involve the time variable t). Of course

z i = zi(t) (6)

To make the formulation more compact'we shall introduce the notion of functional

vectors. Let B be a vector whose components are z i , a a vector with components

fi( ), and C the vector defined by the component ci. Then we can write Eq. 5 in vector

form:

8(0) = (7)

We can now derive the condition that ensures that this vector equation has a unique solu-

tion. In particular, we shall state a Lipschitz condition in vector form. Let a region G
exist in the space defined by the vector -, that is, a set of points with a particular 3 G
value. Then, if S (1) and (2)are any two points of G, Eq. 7 will have a unique solutonG G are any two points of G, Eq. 7 will have a unique solution
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if

Z) ) G) 2) K (8)

where K is a constant characteristic of the entire region G. This condition implies

that w( ) is continuous and bounded in G, and that it has uniformly bounded partial

derivatives with respect to z i in G. A sufficient, but not necessary, condition is that

(3) < M in G (8')

where

n+ 1

11 = Y(9)
i=l

2. An Iterative Method of Solution

We now proceed to solve Eq. 7, subject to the condition stated previously. Equa-

tion 7 can be written in the integral form

t

C (t) = 3+ () dg (10)

0

and its solution can be found by the successive construction of the functions

t

1l(t) =C + d

(11)

t

in+l f n( ) d
0

That this process will converge to the final solution is obvious, since

1n = 41 + ([Z -41 ) + ( 3 - 2) + . + (pn - n-1 )  (12)

and (0n - n-1 ) vanishes in the limit (as imposed by the Lipschitz condition).

3. The Theorem of Successive Approximations

In the preceding paragraph we presented a method of successive approximations for

the solution of a set of first-order differential equations. It is of interest to clarify, if
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possible, in a broad fashion, the conditions of its applicability. Then it will not be

necessary in each separate case to trace the whole method, but it will be sufficient to

show that it fulfills the conditions of its applicability.

THEOREM: Let the family J{} of functions be defined on one and the same set (it

makes no difference what kind) P and possessing the following properties:

1. Each function C is limited

1I < M (13)

2. The limit of each uniform decreasing successive function family is also a func-

tion of the same family.

3. For the family {} there exists an operator A() by which each function of this

family is transformed into another function of the same family.

4. For any two functions 1I and 2 of this family there exists the relation

IA( 2z) - A(4 1)I < m upper-bound 1c2 - l11

where 0 - m < 1. Here by the term upper-bound we understand the upper-limit value

#2 - 11 on the set 4.

Then the equation

= A(4) (14)

has one and only one solution among the functions of the analyzed families.

Proof: Let us take some function o of the given family and let us construct the

function

1 = A( o)

which we shall name the "first approximation"'of the solution of Eq. 14. According to
property 3, 1 belongs in {}, and, therefore, one may construct the "second approxi-

mation" obtaining

# 2 = A(4 1)

The function 2 also belongs in the family {~}. Consequently, this process can continue

indefinitely, and thus we can obtain the successive functions

o' 1' 2 ..... ' 'n (15)

where

k = A( k-1) for nk >l 1

We shall prove that this sequence of functions decreases uniformly. For this we shall

examine the series
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o + (K1 - o ) + ( 2 - 1) + ... (16)

If I I < Mo and I 11 
< MI' which follows from property 1, then

1L1 - Mol -<M + M = M

From property 4 for the operator A(4) we obtain

14n+ 1 - n1 = IAA(p n ) - A(n-l) < m upper-bound 'n - n- 1 l

Therefore, taken term by term, the absolute magnitude of each part of the series of

Eq. 16 does not exceed the corresponding part of the convergent series

2
M + M + Mm + Mm 2 + ... (17)

each term of which is a positive constant. Therefore, the sequence of Eq. 15, the parts

of which are summed by the series of Eq. 16, uniformly approaches some function 4.
According to property 2 this limit function also belongs in the family {}. Let us notice

further that

IA() - A(nn-l m upper-bound - 4n-l

But, because I - n-ll - 0 uniformly at n - oo, A(n_1 ) also uniformly "descends" to

A(p). Therefore in the equality

n = A(n- 1)

one may pass in the limit as n - oo to

= A(4)

Now if Eq. 14 had two solutions ( 1) and (z) in the family {W}, then, necessarily,

I (2) - O(1)j IA[ ( 2 )] - A[(1)] < m upper-bound I0 ( 2 ) -(1)

and consequently

upper-bound 1 ( 2) - (1) <m upper-bound I (2) - (1)j

This is only possible for 0 ( 2) ( 1) because m < 1.

4. Examples

In this paragraph we shall apply the previously stated theorem in some well-known

problems of analysis and will show that conditions 1 to 4 are necessarily met.

a. It is well known that the equation

x = f(x) (18)
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has a unique solution if f(x) is definite and differentiable in all values of real x and if

everywhere

(x) = f (x) T < 1 (19)

The conditions given above follow from the theorem in this manner. Let us choose a

set P consisting of only one point. Then, each function accepts on M only one value.

Consequently, the family { } will consist of all real numbers. Therefore, it is evident

that conditions 1 and 2 are fulfilled. Now for the operator A() let us assume the func-

tion f(). Since f(x) is defined for all positive values of the argument x, each real

number is transformed by means of f(4) to some other real number; consequently, con-

dition 3 is fulfilled. Condition 4 is also fulfilled because

If(x 2) - f(x 1) = If'[xl + A(x2 - x1 )] IxZ - x1l T Ix2 - x11

b. Let the function f(x, y) be defined for a - x < b and positive values of y, continu-

ous on x, and have everywhere bounded derivatives on y, which always succeed some

constant T > 0. Then the equation

f(x, y) = 0 (20)

has only one solution y(x) which is continuous and falls on the inside of the interval

a < x < b.

In order to apply the conditions of the theorem for the set 4 let us assume the closed

interval [a, b], and for the family {c} let us choose all the families of functions which are

continuous in this interval [a, b]. Then it is evident, that conditions 1 and 2 are fulfilled.

Let us further assume the operator

A(1) = - f(x, p) (2l)

where M is the upper limit of the quantity

f' (x, y) f(x, ) (22)
y ay

It is evident that this operator satisfies condition 3. From the other side, because

A( 2) - A( 1)I = 12- 1(x f(x, 1)

fZ(x, (1 2 1

M

condition 4 is also fulfilled. It should be recognized that what was just shown is that
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the equation

= f(x, ) (23)

has a unique solution for the stated conditions. However, Eq. 23 is everywhere identi-

cally equal to

f(x, ) = 0

5. On the Degree of Smoothness

Before we proceed to the presentation of a very important theorem concerning the

solutions of dynamic systems, perhaps we should clarify what is meant by "degree of

smoothness." Since all responses in the dynamic system ultimately must be explicit

functions of time (real variable t), the derivatives of these functions with respect to t

acquire a defined physical sense. Thus a function y(t) which possesses continuous

derivatives up to the pth order (p > 0) is said to possess a pth degree of smoothness,

where under 0 degree is meant the function itself.

THEOREM: If f(y, t) is of nth degree of smoothness, then any solution of the equation

y = f (y, t) (24)

is of n + 1 degree of smoothness.

Proof: Let y(t) be any solution of Eq. 24. Then we have the identity

y'(t) = f[y(t), t] (25)

Since the function y(t) satisfies Eq. 24, then it has everywhere derivatives on t. There-

fore, if f(y, t) is continuous on t, then the right-hand part of Eq. 25 is continuous and it

means that y'(x) is also continuous. This is for n = 0.

Let us now assume n '> 1. Then the right-hand part of Eq. 25 has continuous deriv-

atives in t, and thus in turn the left part of this identity has continuous derivatives in t.

It means that the function y(t) has continuous derivatives up to the second order. We

now differentiate Eq. 25, with respect ot t. Thus

y"(t) = f,(y, t) + f'(y, t) y'(t) (26)

Applying to this identity the same reasoning which we used with Eq. 25, we find that if

n = 2, then y(t) has continuous derivatives up to the third order. We can differentiate
th

again and proceed with the same reasoning up to the n degree.

N. DeClaris
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B. SUMMARY OF PIECEWISE LINEAR TRANSFER FUNCTION SYNTHESIS

PROCEDURES

Over the past year, investigations were conducted in the general area of piecewise

linear network analysis and synthesis. One phase of these investigations was the synthe-

sis, by the use of diode networks, of piecewise linear resistive transfer functions of one

or more variables. The synthesis procedures were based on an "algebra of inequalities"

(see ref. 1 for explanation of the notation used below). The synthesis problem can be

resolved into two parts: (a) arbitrary function synthesis (general-purpose function gen-

eration) and (b) particular function synthesis (special-purpose function generation).

1. Arbitrary Function Synthesis

Here the problem is as follows: Given an arbitrary function,

y = f(xl, x 2 ) ... xn)

tabulated at regular intervals in the n-variable space, construct a diode network which

will produce a piecewise linear and continuous function taking on the prescribed values

at the tabulated points.

In general, the arbitrary function can be built up as the summation of a number of

simple "unit functions" of varying heights, each unit function being centered over a dif-

ferent point in the grid of tabulation (2). Figure XVII-I is a table of three different types

of unit functions which can be superposed to obtain a general piecewise linear function of

a single variable. The functions pictured are the "ramp," "step," and "triangle." Next

to each is its algebraic representation; an expression for the required height of the kth

unit, A k , in terms of the prescribed ordinates of the desired function, a k , ak- 1 . ... ; and

a realization of the unit with a diode network. In practice, many of these units would be

fed to a summing amplifier to obtain the over-all function. Figure XVII-Z is a similar

table illustrating the extension of these unit functions to a second independent variable.

(Not all of these functions are new developments, but they are included for purposes of

comparison.) It will be noted that the unit functions become more difficult to realize as

one reads down the table. However, this difficulty is accompanied by a simplification

of the expression for the height of the ij t h function: in fact, when one uses triangle or

pyramid functions, the actual ordinate of the desired function at a given point equals

the height of the unit function centered over that point. This is a decided advantage

insofar as propagation of errors and ease in "programing" an arbitrary function are

concerned. Generalization of this procedure to more variables is fairly straightforward.

Note that the two types of pyramids shown in Fig. XVII-2 must be alternated with
each other over the grid of tabulation to obtain the correct over-all function.
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2. Particular Function Synthesis

In the designing of a network to realize one specific function, the preceding methods
would not necessarily prove the most efficient ones. Usually, a function will have cer-
tain geometrical properties that will suggest special types of piecewise linear approxi-
mation and physical realization. This is especially true of functions given in algebraic
form.

When one considers functions of two independent variables, the surface

y = f(x 1 , x 2 )

can be easily approximated and realized if it is (a) completely convex or concave (3)
and/or (b) a ruled surface. Examples of functions of type (a) are

S= x + xZ) (cone)

2 2
y = x + x2  (paraboloid of revolution)

y = (x + x2 + a (hyperboloid of revolution)

Examples of type (b) functions are

y = x1X 2  (multiplier)

Y 2 2
a +x 2

-1 x2y = tan x
x 1

Type (a) functions are easily realizable because they may be approximated piecewise-
linearly to any degree of accuracy by an expression of the form

y =(alx + a2x 2 + a 3 , blx + bX2  + b3  . )

This type of expression can be realized with the most elementary type of diode network.
(Realization of the cone is discussed in ref. 4.)

Type (b) functions (ruled surfaces) can be approximated by segments of planes which
intersect along lines coinciding with the generatrix of the surface. The approximation is
exact along these intersections. In general, additional diagonal intersections must be
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Y" + 2

Fig. XVII-3

Approximation of a ruled surface.

added so that the surface is divided into triangular segments of planes. (Figure XVII-3

illustrates such an approximation.) Once the approximation has been made, the resultant

intersections are classified as either convex or concave, and the surface is divided into

a linear combination of two functions: one containing only the convex intersections, and

the other containing only the concave intersections. These latter functions, being of type

(a), are readily realizable.
T. E. Stern
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C. PIECEWISE- LINEAR DRIVING-POINT CONDUCTANCES

It has been stated previously (1) that a necessary condition for the realizability of a

driving-point conductance of 2 n linear regions with n diodes is that the conductance be

describable by a Gray code. A Gray code is one whose successive states can be obtained

by changing one variable only. The object of this report is to establish whether or not

this is a sufficient condition and to evolve a synthesis procedure for the realization of

the realizable conductances.
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To facilitate the discussion, a few definitions are made.

Definition IV (see ref. 1, Definitions I-III): A "Gray state" is one which could be a

successive state of a given state in a Gray code.

THEOREM V (see ref. 1, Theorems I-IV): A state has as many Gray states as there

are variables. This is seen from the fact that changing one variable at a time, we can

produce only as many new states as there are variables.

1. Gray Code Sufficiency for Realizability

One of the difficult problems so far has been to determine whether or not a given

driving-point conductance picture can be represented by a Gray code. By use of the

ideas of switching circuits, a method was found which, upon the application of a suitable

mapping procedure, would determine if an arbitrary but possible code assigned to the

conductance picture can be replaced by a Gray code. Although this mapping procedure

works in all cases, it gets rather awkward as the number of variables n is increased.

Also, its usefulness is severely limited by the fact that its application requires the

assignment of a possible code to the driving-point conductance picture.

A more useful method would be one which would immediately yield a realizable Gray

code when we know in what order decreases or increases in slope of the given driving-

point conductance take place. Such a method has been developed and is described below.

2. The Code Graph

Nodes of the graph represent states of the network and transmissions represent

permissible changes of state. The graph of n variables has n + 1 levels, each corres-

ponding to the introduction of a different number of l's into the states of the network.

Figure XVII-4(a, b) shows the skeleton code graphs for n equals 2 and n equals 3. The

various transmissions indicated are all the possible transmissions consistent with the

requirement that the resultant code be a Gray code. Note that the number of transmis-

sions from each node is n in agreement with Theorem V. There can be no transmission

between nodes on the same level for that would necessitate multiple switching which is

contradictory to the definition of a Gray code. A change in level upward in the code graph

(the introduction of an additional 1 into the new state of the network) corresponds to an

increase in slope of the driving-point conductance - in agreement with Theorem IV (1).

With these simple properties of the code graph in mind it is possible to go from the given

conductance picture directly to a realizable Gray code or to the determination of the

network's unrealizability by the method illustrated below.

3. Example 1

Problem: The given driving-point conductance is shown in Fig. XVII-5(a). Find out

if it is realizable with two diodes (can be represented by a Gray code of 2 variables), and
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if so, what is the code that describes it.

Solution: First, one quickly establishes the correct level of the starting point, which

in this case can be done by inspection. Then, if one starts anywhere on the correct level

(01 in this example) and follows only the permissible transmissions as indicated on the

skeleton code graph of Fig. XVII-4(a), remembering not to traverse the same node more

than once, the succession of slope increases, and decreases are translated into increases

and decreases of level of the code graph, resulting in Fig. XVII-5(b). The code thus

obtained is readily seen to be that of Fig. XVII-5(c) which is recognized as code g of

reference 1, where the realization of this code is given in Fig. XV-6.

4. Example 2

Consider the driving-point conductance given in Fig. XVII-6. A quick sketch of

increases and decreases in slopes such as that shown in Fig. XVII-7(a) establishes the

"dynamic range" of the code and shows that the given eight linear region conductances,

if realizable with the theoretically minimum number of three diodes, must correspond

to a code graph which starts on the second level. Starting at the arbitrary point 011 on

the second level, we obtain the code graph of Fig. XVII-7(b). Since the graph could be

drawn by our traversing only transmissions existing on the skeleton code graph of three

variables, the conductance is known to be described by a Gray code. This code is given

in Fig. XVII-7(c). This graph is not unique. Figure XVII-7(d) shows an alternate code

graph with the code of Fig. XVII-7(e).

5. Properties of Code Graphs

In the following, some of the properties of code graphs will be briefly summarized

without proof.

The maximum number of successive increases or decreases in slope of the input

conductance is n where n is the number of diodes. The maximum difference in the sum

of increases and decreases of slopes cannot exceed n.

If a graph is started at a certain level and a specified order of increases and

decreases in slopes (levels) is observed, the resulting graphs, if they can be drawn at

all, will all be alike except that the columns will be interchanged (see Fig. XVII-7(c, e)).

Column 1 changed to column 2, column 2 to column 3, and column 3 to column 1. It does

not make any difference, therefore, which code graph is used as a basis for synthesis.

It is only the numbering (designation) of the diodes that is different. An important thing

to notice is that in Example 2 as well as in Example 1, diode one switches once, diode

two switches twice, and diode three, four times. In this type of switching sequence
th n-Athe nth diode switches 2 times. Consider the conductance, however, shown in

Fig. XVII-8. It is described by a Gray code as seen from the code graph of Fig. XVII-8.

The first diode switches three times, the second switches three times and the third once.
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This poses the question of the type of network that can be used to realize the different

switching sequences.

6. Network Realization

The usual Foster or Cauer type of series or parallel connection of simple canonic

network forms will realize any driving-point conductance not containing negative resis-

tance regions. This type is discussed by Stern (2). The disadvantage of this realization

is that n diodes will yield only n + 1 linear regions. Since this investigation stresses

the importance of economy of elements, the Foster and Cauer type of realization will

not be discussed. The Darlington type of cascaded two terminal pair canonic network

forms seems to lend itself more readily to minimization techniques. Consider a

cascade of two terminal pair networks, each containing a single diode as shown in

Fig. XVII-9. This type of network is capable of realizing the switching sequence where
th n-I

the nth diode switches 2 times, but cannot realize any other switching sequence. A

code such as that of Fig. XVII-8 cannot be realized with the type of network shown in

Fig. XVII-9. The reason is that if we have a cascade of two terminal pair networks,

each section acts as a load on the previous section; or, in other words, the network to

the right of any arbitrary dividing line such as aa' in Fig. XVII-9 just acts as a load on

the network to the left of the dividing line and does not actively influence the conditions

imposed on the diodes contained in the left-hand part of the network. Therefore, if

the network of Fig. XVII-9 is claimed to realize a switching sequence such as 331 of

Fig. XVII-8, by disconnecting the last section, we would be left with a two-diode network

exhibiting six breakpoint - that is, seven states. This contradicts the fact that the maxi-

mum number of states a two-diode network can have is four. If we insist on the require-

ment that the second diode switches three times, this can be done only as a result of the

direct, active influence of the third diode on the conditions imposed on the second diode.

This cannot be done with a simple cascade, nonfeedback network. The network of

Fig. XVII-9, however, can realize the 1, 2, 4, 8, . . . switchings for the 1st, 2nd, 3rd, .

diodes, because if an arbitrary number of sections are disconnected, we are always

left with a remaining network which has m diodes and exhibits 2m states.

Work is now under way to determine what type of network, if any, can be used to

realize these other switching sequences. Is it possible to do it with a feedback network

without amplifiers?

7. Networks Not Exhibiting All 2 n States

So far we have considered only the realization of those networks which exhibited all

the 2 n states. If a given conductance has less than that many states, other states have

to be added either in between existing states or at the end as terminating states in such

a way that the resulting new conductance is completed to have all 2n states and is
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described by a Gray code of the 1, 2, 4, . . . switching variety. This new conductance

may now be constructed by means of a cascade of two terminal pair networks and the

breakpoints bounding the undesired states be made to converge by a suitable choice of

parameters. This method is called the method of "completing the network."

8. A Canonic Two Terminal Pair Network Form

If a network containing a single diode and behaving like a biased absolute value

device can be built, a circuit exhibiting all Zn states can be constructed.

Consider the network shown in Fig. XVII-10(a, b) and having the transfer function

shown in Fig. XVII-11. Figure XVII-11 shows that if el is a ramp, e 2 will go from

positive to negative to positive. If a diode, or another canonic network is connected

across the terminals of e 2 , the resulting two-diode network will exhibit four states. As

an illustration, consider the network of Fig. XVII-12. The code of Fig. XVII-12 is

shown in Fig. XVII-13. It is assumed, to make the analysis easier, that each succes-

sive section is a negligible load on the previous one. The network behavior does not

lose any of its generality as a result of this assumption.

An interesting property of this type of network is that n diodes, n - 1 batteries, and

3n resistors can give a network capable of acting as a nonbandwidth limited frequency
n n-i n-2

multiplier, multiplying the input frequency by 2 n, 2 , 2 , and so on. To be rigorous,

this device is a frequency multiplier for only a certain limited number of waveshapes

such as triangular and sawtooth waveforms. For an arbitrary waveform not containing

any major discontinuities and having a sufficiently large amplitude, this cascade of two

terminal pair networks multiplies the time average zero crossings by 2 n . An investi-

gation utilizing this property is in progress.

G. S. Sebestyen
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D. GRAPHICAL PHASE PLANE ANALYSIS

In many types of nonlinear problems the characteristics of the nonlinear components

are expressed in graphical rather than analytical form, and it is most convenient to

analyze circuit behavior from a graphical point of view. With this in mind, we have

developed some techniques which are suitable for the graphical solution of the general

problem of two nonlinear energy storage elements coupled with an arbitrary dissipative

device.
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To facilitate analysis, it has been found convenient to make stepwise linear approxi-

mations to the dissipative characteristics; thereby, one can construct paths of operation

and limit cycles with a simple compass and straight edge. The accuracy of this approxi-

mate graphical method is limited only by the patience of the human operator and, in most

cases, slide rule accuracy is possible with considerably less effort than conventional

difference equation methods require.

Figure XVII-14 illustrates the use of stepwise linear approximations for the analysis

of a simple series RLC circuit with 21R = (L/C) / 2 and initial conditions i L = vC = 1.

If time is eliminated from the equations of motion we arrive at the relation (di/de)

C(v-e)/Li, and by defining new variables i' i(L)1/2, e' = e(C)1/2, v' v(C) 1 / 2 , we

can normalize this equation to read (di'/de') = (v' - e'/i'). The stepwise linear approx-

imation makes v' or i' constant over small regions of operation and thus, within these

regions, the path of operation can be traced out with a compass or, in some cases, with

a straight edge. In Fig. XVII-14 as the path of operation moves from a to b to c and

so on, the compass center is assumed to move in jumps from A to B to C, etc., instead

of moving continuously as it would for an exact solution. Note that although only a few

steps are used, the approximation is amazingly close to the exact solution. Moreover,
the time scale can be computed easily by observing that the compass always rotates

with an angular frequency of A = (LC)1/2 rad/sec. For purpose of comparison, the

time and voltage coordinates of point f(i' = 0) have been computed by the approximate

method and by the exact analytical solution.

Approximate Exact

tf
(L/2 138" 28. 2' = 2. 31204 1/2 tan ) 1/ = 2. 30209

(LC)
I / Z

e C /2 0.67894 2 exp = 0.68897

The close accuracy of this apparently crude approximation can be attributed to the

fact that an average compass center is assumed; the slope of the piecewise-circular

approximate curve contains discontinuities since it is based on average rather than

initial slopes, but the end points of the arc are accurately determined. By limiting the

piecewise circular arcs to about 100 each and by observing some of the more subtle

points of this approximate method, it is possible to obtain slide rule accuracy with

surprisingly little effort.

Figure XVII-15 shows the application of the stepwise linear analysis to a somewhat

more complicated circuit. It is the same circuit as shown in Fig. XVII-14 except for

the addition of a resistor in parallel with the capacitor. Note that now the compass

center is not restricted to move along the i' = 0 axis, but may be located anywhere in
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the plane. Here again the approximation is very good as long as the circular arcs are
less than about 300 and the compass center moves in relatively small jumps. It is, of
course, not necessary to make a formal stepwise linear approximation and one can vary
the size of the steps at will; the important point is to locate the compass center on an
average-over-a-region basis rather than on an initial-slope basis.

The most general two energy storage case, and perhaps the one of greatest interest,
is an extension of that of Fig. XVII-16 with the additional possibility that the energy
storage elements may be nonlinear. Fortunately, however, we can define new variables
e', v', i', j', such that the analysis is the same as for the linear reactance case. This
redefining of variables may, of course, radically change the nature of the solution and
alter the time scale. Present work is being devoted to a study of this class of nonlinear
circuits with the following questions in mind:

1. Can circuits that will not oscillate with any two linear energy storage elements
oscillate with two nonlinear reactances?

2. Can a circuit containing no negative resistances or dependent generators be made
to oscillate with nonlinear reactances? (A recent paper by Duffin (1) proves this to be
impossible on an energy basis.)

3. If the nonlinear reactances are allowed to have negative incremental values how
does this affect the stability conditions?

4. In what way does hysteresis or memory in the nonlinear reactance affect the
stability conditions ?

It is worth noting that the graphical solution described above can be used to solve
several classes of nonlinear differential equations. Several examples are:

f(x, y)dx + g(x, y)dy = 0

x = f(x, x)

x = f(x, y), y = g(x, y)

The classical van der Pol equation k + i(x 2 - 1)k + x = 0, for example, is easily solved
by this graphical method.

These methods are readily applicable to circuits containing two lumped reactances
but, in many cases, such as microwave filter design, it is more convenient to approxi-
mate the energy storage elements by lossless transmission lines. Even with distributed
energy storage, however, it is still possible to use simple graphical techniques. In
particular, problems involving a lossless transmission line with arbitrary resistive
termination are readily solved, and the method may be extended to circuits containing
more than one line. The method of graphical construction is indicated in Fig. XVII-17
for the simple case of a step of voltage applied through a small resistor to a diode-
terminated line. The construction hinges on the fact that a transmission line insists
that all changes in terminal voltage and current be related by (Av/Ai) = R where R is

o o
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Graphical transmission line analysis. Transmission line oscillator.

the characteristic resistance of the line. The traveling waves are represented by

vectors with slopes of ±Ro (plus or minus depending on polarity definitions of voltage

and current) and with magnitude proportional to the amplitude of the wave.

Referring to Fig. XVII-17, we see that when the step is first applied, the voltage v

and current i must increase together so that (Av/Ai) equals R o , and also so that the

input circuit satisfies Ohm's law. Thus the wave that travels down the line can be

represented by the vector A with a slope Ro and a length just sufficient to intersect the

input volt-ampere load line. This wave of amplitude A travels down the line and T

seconds later reaches the load. To satisfy the e, j load line a reflection must be sent

back down the line; this reflection can be represented graphically by a vector B with

slope -R o . The reflections will continue, C, D, E, and so on, as the line approaches

the equilibrium operating point e = v, i = j.

This graphical representation is especially convenient for transmission line oscilla-

tors. Consider, for example, the behavior of a transmission line terminated at one end

by a negative resistance and at the other by a short circuit; Fig. XVII-18 shows the

"vector" path of operation for this oscillator. Note that we arrive at an eventual limit

cycle much as we would for a parallel inductance-capacitance circuit replacing the

shorted line. The steady-state waveforms are, of course, square waves of frequency

f = 1/4T where T is the transmission line one-way delay time. The coordinates of the

ends of the vectors correspond to the terminal voltage and currents, and the ideal path

of operation would be a series of points a, b, c, and so forth.

In the hope of developing appropriate graphical methods of analysis, we are working

on the more general case of lossy and nonlinear transmission lines. Also, we believe
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that, besides the lumped and distributed energy storage elements, there may be other

approximations, more closely approximating existing components, that will lend them-

selves to graphical analysis.

R. D. Thornton
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