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Casimir interaction among heavy fermions in the BCS-BEC crossover
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We investigate a two-species Fermi gas with a large mass ratio interacting by an interspecies short-range
interaction. Using the Born-Oppenheimer approximation, we determine the interaction energy of two heavy
fermions immersed in the Fermi sea of light fermions as a function of the s-wave scattering length. In the BCS
limit, we recover the perturbative calculation of the effective interaction between heavy fermions. The p-wave
projection of the effective interaction is attractive in the BCS limit while it turns out to be repulsive near the
unitarity limit. We find that the p-wave attraction reaches its maximum between the BCS and unitarity limits,
where the maximal p-wave pairing of heavy minority fermions is expected. We also investigate the case where
the heavy fermions are confined in two dimensions and the p-wave attraction between them is found to be
stronger than that in three dimensions.
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I. INTRODUCTION

Experiments using ultracold atomic gases have achieved
great success in realizing a new type of fermionic superfluid.
By arbitrarily varying the strength of interaction via the Fes-
hbach resonance, the crossover from the BCS superfluid of
fermionic atoms to the Bose-Einstein condensate of tightly
bound molecules has been observed and extensively studied
�1,2�. Nowadays a portion of interests of the cold atom com-
munity is shifting to the two-species Fermi gas with unequal
densities �3–7� and with unequal masses �8–10�. Elucidating
the phase diagram of such an asymmetric Fermi gas is an
important and challenging problem. Such an asymmetric sys-
tem of fermions will be also interesting as a prototype of
high density quark matter in the core of neutron stars, where
the density and mass imbalances exist among different quark
flavors �11�.

So far several quantum phases have been proposed as a
ground state of the density-imbalanced Fermi gas. One of
such phases is the p-wave superfluid phase by the pairing
between the same species of fermions �12�. In Ref. �12�, the
attraction between the same species of fermions was found to
be induced by the interaction with the other species of fer-
mions based on the perturbative calculation in the weak-
coupling BCS limit. Although the resulting pairing gap is
exponentially suppressed in the BCS limit, it may be pos-
sible that the pairing gap becomes large enough near the
strong-coupling unitarity limit. Thus an important question is
how large the pairing gap can be near the unitarity limit.

However, difficulties for theoretical treatments arise away
from the weak-coupling BCS limit because we do not have a
controlled tool to analyze the strongly interacting many-body
system. Monte Carlo simulations also have limitations in
asymmetric systems due to the fermion sign problem. We
note that in one dimension the Monte Carlo simulations do
not suffer from the sign problem and have been employed to
study the Fulde-Ferrel-Larkin-Ovchinikov phase in the
density-imbalanced Fermi gas �13–15�.

In order to obtain further insight into the density-
imbalanced Fermi gas and the p-wave pairing therein, we
investigate the Fermi gas with unequal masses between two

different atomic species. In the limit of large mass ratio, we
can determine the effective interaction among heavy fermi-
ons induced by the interaction with light fermions using the
Born-Oppenheimer approximation. Because we do not need
to rely on the weak-coupling approximation, we can go be-
yond the perturbative BCS regime to the strongly interacting
unitary regime in a controlled way.

We will show that the p-wave projection of the effective
interaction between two heavy fermions is attractive in the
BCS limit being consistent with the perturbative prediction,
while it turns out to be repulsive near the unitarity limit.
Thus the p-wave attraction has a maximum between the BCS
and unitarity limits, where the maximal p-wave pairing of
heavy minority fermions is expected. We note that our results
have a direct relevance to the recently realized Fermi-Fermi
mixture of 40K and 6Li because of their large mass ratio
�8–10�.

It is worthwhile to point it out that the effective interac-
tion among heavy fermions immersed in the Fermi sea of
light fermions is an analog of the Casimir force among ob-
jects placed in a vacuum �16�. The origin of the Casimir
force can be traced back to the modification of the spectrum
of zero point fluctuations of the electromagnetic field. In our
case, the role of vacuum is played by the Fermi sea of light
fermions whose spectrum is modified by the presence of
heavy fermions �17�.

This paper is organized as follows. In Sec. II, we deter-
mine the effective interaction between two heavy fermions
induced by the interaction with the Fermi sea of light fermi-
ons as a function of the s-wave scattering length using the
Born-Oppenheimer approximation. �The effective interaction
for a general number of heavy fermions is derived using the
functional integral method and evaluated in Appendix A.�
With having in mind the application to the p-wave pairing of
heavy fermions, we compute the p-wave projection of the
effective interaction in Sec. III. Here we consider both cases
where the heavy fermions are in three dimensions �3D� and
where they are confined in two dimensions �2D� while light
fermions are always in 3D. The latter case corresponds to the
two-species Fermi gas in 2D-3D mixed dimensions studied
in Refs. �18,19�. Finally summary and concluding remarks
are given in Sec. IV.
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II. CASIMIR INTERACTION BETWEEN
TWO HEAVY FERMIONS

A. Born-Oppenheimer approximation

Consider a two-species Fermi gas with unequal masses M
and m interacting by an interspecies short-range interaction.
When the mass ratio is large M /m�1, we can employ the
Born-Oppenheimer approximation to compute the interaction
energy of heavy fermions immersed in the Fermi sea of light
fermions. Here we concentrate on the case of two heavy
fermions. The formula for a general number of heavy fermi-
ons is derived in Appendix A using the functional integral
method. The wave function of a light fermion interacting
with two heavy fermions fixed at positions x1 and x2 satisfies
the Schrödinger equation �here and below �=1�:

−
�y

2

2m
��y;x1,x2� = E��y;x1,x2� . �1�

The interspecies short-range interaction between the light
and heavy fermions is taken into account by imposing the
short-range boundary condition; ��y→xi��

1
�y−xi�

− 1
a +O��y

−xi��, where a is the s-wave scattering length. Below we
determine the energy spectrum of the light fermion both for
bound states and continuum states as a function of a and the
separation between the heavy fermions r�x1−x2.

For the bound state E=− �2

2m �0, the solution of Eq. �1�
takes the form

���y� =
e−��y−x1�

�y − x1�
�

e−��y−x2�

�y − x2�
, �2�

where � is the parity of the wave function. The upper
�lower� sign corresponds to the even �odd� parity. From the
short-range boundary condition, we obtain the equation

− � �
e−��r�

�r�
= −

1

a
. �3�

The solution to this equation exists when �r� /a� 	1 and is
given by

�� =
1

a
+

1

�r�
W��e−�r�/a� , �4�

where W�z� is the Lambert function satisfying z=W�z�eW�z�.
Accordingly we find the following binding energy depending
on a and �r�:

Ebinding
��� = −

��
2

2m
�5�

for �r� /a� 	1.
For the continuum state E= k2

2m �0, the solution of Eq. �1�
takes the form

���y� =
sin�k�y − x1� + 
��

�y − x1�
�

sin�k�y − x2� + 
��
�y − x2�

, �6�

where 0�
��� is the phase shift. From the short-range
boundary condition, we obtain the equation

k cos 
� �
sin�k�r� + 
��

�r�
= −

sin 
�

a
. �7�

The solution to this equation is easily found to be

tan 
� = −
k�r� � sin�k�r��
�r�
a

� cos�k�r��
. �8�

We then suppose that the system is confined in a large sphere
with a radius R� �r� and the two heavy fermions are located
near its center; x1= r

2 and x2=− r
2 . By imposing ����y�

→R�→0 at the boundary of the sphere, the momentum k is
discretized as

kn
+R + 
+ = n� ,

kn
−R + 
− = �n −

1

2
�� �9�

with n=1,2 ,3 , . . .. Therefore the energy level becomes

En
��� =

kn
�2

2m
. �10�

Now we fill the above-obtained energy levels with the
light fermions. The total energy of such a system is given by

E = −
�+

2 + �−
2

2m
+ 	

n=1

N
kn

+2 + kn
−2

2m
, �11�

where 2N is the number of interacting light fermions in the
continuum states. We compare the energy of the interacting
system with that in the noninteracting limit,

Efree = 
	
n=1

N
kn

+2 + kn
−2

2m




�=0

, �12�

and define the energy reduction as E��r���E−Efree. Then
we take the thermodynamic limit N ,R→� with the Fermi
momentum of the light fermions kF�N� /R fixed. If we no-
tice that the summation over n is dominated by n�N�1 and
neglect small corrections of O�1 /N�, we obtain the following
simple expression for the energy reduction:

E��r�� = −
�+

2 + �−
2

2m
− �

0

kF

dkk

+�k� + 
−�k�

m�
. �13�

We note that the phase shifts given in Eq. �8� are defined to
be in the range 0�
��k���. The same result can be ob-
tained on a more general footing by using the functional
integral method �see Appendix A�.

B. Effective interaction between two heavy fermions

When the two heavy fermions are infinitely separated, the
energy reduction approaches

E��r� → �� → 2�single, �14�

where �single�0 is the chemical potential of a single heavy
fermion immersed in the Fermi sea of light fermions �20�:

YUSUKE NISHIDA PHYSICAL REVIEW A 79, 013629 �2009�

013629-2



�single = −
kF

2

2m

akF + �1 + �akF�2���/2 + arctan�akF�−1�
��akF�2 .

�15�

The energy reduction with 2�single subtracted is regarded as
the interaction energy of the two heavy fermions:

V��r�� � E��r�� − E��r� → �� = E��r�� − 2�single. �16�

V��r�� represents the effective interaction between two heavy
fermions induced by the interaction with the Fermi sea of
light fermions. We note that the chemical potential of light

fermions �l�
kF

2

2m is fixed here instead of their particle num-
ber.

It is convenient to measure the interaction energy V�r� in
units of the Fermi energy of light fermions and introduce a
dimensionless function v�kFr� as

V�r� �
kF

2

2m
v�kFr� . �17�

v�kFr� is a function of the separation between the heavy fer-
mions kFr and also the s-wave scattering length akF. v�kFr�
for three typical values of �akF�−1=−5,0 ,5 are plotted in Fig.
1. One can see the smooth evolution of the effective interac-
tion between the two heavy fermions as a function of �akF�−1

in Fig. 2. In the BCS regime �akF�−1�−1, the effective in-
teraction is attractive at r� �a� and has a tiny oscillatory be-
havior at r� �a�. This oscillatory behavior grows toward the
unitarity limit �akF�−10 and makes a small hump at r
�kF

−1 �see the left panel of Fig. 2�. This hump further grows
in the BEC regime �akF�−1�1 and eventually develops a
repulsive core at r�a �see the right panel of Fig. 2�.

It is worthwhile to compare our nonperturbative result
�16� with the perturbative calculation of the effective inter-
action in the BCS limit a→−0. In the BCS limit �a��r, kF

−1,
we have ��→0 and the phase shift


��k� →
�a�
r

�kr � sin�kr�� � � �a�
r
�2

cos�kr��kr � sin�kr��

+ O��a�3� . �18�

Thus we can find the interaction energy to be

v�kFr� → ��a�kF�22kFr cos�2kFr� − sin�2kFr�
2��kFr�4 + O��a�3� ,

�19�

which has the same form as the Ruderman-Kittel-Kasuya-
Yosida interaction between magnetic impurities in a Fermi
liquid �21�. Accordingly the Fourier transform of the effec-
tive interaction V��r�� in the BCS limit becomes

1 2 3 4 5
kFr

�0.10

�0.05

0.00

0.05

0.10
v �kFr�

0.5 1.0 1.5 2.0
kFr

�10

�5

0

5

10
v �kFr�

FIG. 1. �Color online� Interaction energy of two heavy fermions v�kFr� as a function of their separation kFr. Three different curves
correspond to the BCS regime �akF�−1=−5 �dashed curve�, unitarity limit �akF�−1=0 �solid curve�, and BEC regime �akF�−1=5 �dotted
curve�. The right panel is a magnification of the left panel.

2 4 6 8
kFr
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FIG. 2. �Color online� Evolution of the interaction energy v�kFr� as a function of the inverse s-wave scattering length �akF�−1. Left panel:
�akF�−1 is varied from −2 �curve with the smallest amplitude� to 0 �largest amplitude�. The tiny oscillatory behavior existing in the BCS
regime grows toward the unitarity limit and makes a small hump at r�kF

−1. Right panel: �akF�−1 is varied from 0 �curve with the smallest
height� to 2 �largest height�. The hump further grows in the BEC regime and develops a repulsive core at r�a.
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Ṽ��p�� � � dre−ip·rV��r��

→ −
�a�2kF

2m
�2 + �2kF

�p�
−

�p�
2kF

�ln
1 + �p�/�2kF�
1 − �p�/�2kF�


� ,

�20�

which correctly reproduces the effective interaction to the
leading order in a obtained in Ref. �12�1 as it should be. Our
nonperturbative result �16� can go beyond the perturbative
BCS regime to the strongly interacting unitary regime in a
controlled way by utilizing M /m�1.

Analytic expressions of v�kFr� in various limits are ob-
tained in Appendix B.

III. P-WAVE PROJECTION OF THE EFFECTIVE
INTERACTION

A. Lessons from BCS theory

The physics of heavy fermions immersed in the Fermi sea
of light fermions is described by the Hamiltonian

H =� dx�h
†�x��−

�2

2M
− �h��h�x�

+
1

2
� dxdy�h

†�x��h
†�y�V��x − y���h�y��h�x� , �21�

where �h is the chemical potential of heavy fermions mea-
sured from �single. Strictly speaking, the pairwise interaction
V��r�� obtained in the previous section �Eq. �16�� is valid only
if there are two heavy fermions in the system. This is be-
cause the Casimir interaction energy is not pairwise additive
and also because if heavy fermions have a finite density, it
will perturb the Fermi sea of light fermions and thus affect
the effective interaction V��r��. However, in the dilute limit
�2M�h�kF, we expect that the above Hamiltonian is a good
approximation to the system of heavy fermions because the
probability to find a third heavy fermion near the two heavy
fermions becomes small in the dilute system �22�. Indeed we
will confirm in Appendix A that the Casimir interaction
among more than two heavy fermions at large separations
can be evaluated quite accurately as a sum of pairwise inter-
actions between each of the two heavy fermions. This result
also supports the use of our Hamiltonian �21� to describe the
physics of dilute heavy fermions immersed in the Fermi sea
of light fermions.

Another issue to be addressed is the instability of the sys-
tem. When the mass ratio M /m exceeds the critical value
13.6 in pure 3D�23� or 6.35 in the 2D-3D mixture �18�, the
system will not be stable due to the Efimov effect. Therefore
we need to assume the mass ratio to be large but smaller than
the above critical value. For such a mass ratio, the effective
interaction V��r�� obtained in the Born-Oppenheimer ap-

proximation is no longer exact but can be considered as a
good approximation to the exact one.

One of predictions we can derive from the Hamiltonian
�21� is a pairing between the heavy fermions. The pairing
gap of heavy fermions p is defined to be

�2��d
�k�p =� dq

�2��d Ṽ��p − q����̃h�k

2
− q��̃h�k

2
+ q�� ,

�22�

where �̃h�p� is the Fourier transform of �h�x� and Ṽ��p−q��
is the Fourier transform of V��r�� �see Eq. �20��. Because of
the Fermi statistics of heavy fermions, the pairing gap has to
have an odd parity; −p=−p. The standard mean-field cal-
culation leads to the self-consistent gap equation

p = −� dq

�2��dV��p − q��
q

2Eq
�1 − 2nF�Eq�� . �23�

Here Ep=�� p2

2M −�h�2+ �p�2 is the quasiparticle energy and
nF�Ep�=1 / �eEp/T+1� is the Fermi-Dirac distribution function
at temperature T.

When the coupling between different partial waves can be
neglected, we can solve the gap equation �23� easily by using
the weak-coupling approximation.2 For a given orbital angu-
lar momentum � �odd integer�, the pairing gap and the criti-
cal temperature are given by �24�

�p� � Tc � �h exp� 1

NhṼ�

� . �24�

Here Nh is the density of states of heavy fermions at the

Fermi surface and Ṽ� is the partial-wave projection of the

effective interaction Ṽ��p−q�� with �p�= �q�=�2M�h fixed on
the Fermi surface of heavy fermions and assumed to be at-

tractive Ṽ��0. Because the lowest partial wave for identical
fermions is �=1, the dominant pairing is expected to occur
in the p-wave channel. With having in mind the application

to the pairing of heavy fermions, we compute NhṼ� as a
function of the s-wave scattering length akF from Eq. �16�.
Below we consider both cases where the heavy fermions are
in three dimensions �d=3� and where they are confined in
two dimensions �d=2�.

B. Heavy fermions in d=3

When the heavy fermions are in three dimensions d=3,
the partial-wave projection of the effective interaction

Ṽ��p−q�� with �p�= �q�� p fixed is given by

1For unequal masses, the effective interaction in the BCS limit

becomes Ṽ��p��=−� 2��m+M�a
mM �2 mkF

2�2 L� �p�
2kF

�, where L�z�= 1
2 + 1−z2

4z ln� 1+z
1−z �

is the static Lindhard function. The limit of large mass ratio M /m
�1 coincides with Eq. �20�.

2The weak-coupling approximation even at unitarity is justified in

the dilute limit; �2M�h�kF. From Eqs. �B2� and �B3�, the interac-
tion energy at the mean interparticle distance of heavy fermions r

= �2M�h�−1�kF
−1 becomes V�r��

kF
2

2m
1

�kFr�3 and is parametrically
small compared to the kinetic energy K�r�� 1

2Mr2 .
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Ṽ��p� =
1

2
�

−1

1

d cos �P��cos ��Ṽ��p − q�� , �25�

where cos �= p̂ · q̂. Multiplying it by the density of states of
heavy fermions Nh�p�= Mp

2�2 , we obtain the dimensionless
function representing the effective interaction between two
heavy fermions for the given partial wave �:

NhṼ��p� =
M

2�m
� kF

p
�2�

−1

1

d cos �P��cos ��

� �
0

�

dz
z sin�z�2 − 2 cos ��

�2 − 2 cos �
v� kFz

p
� . �26�

When the projected effective interaction with p=�2M�h be-
ing on the Fermi surface of heavy fermions is attractive

NhṼ��0, the pairing of the heavy fermions is expected to
occur with the pairing gap and the critical temperature given
in Eq. �24�.

Figure 3 shows m
M NhṼ��p� in the p-wave channel �=1 as

a function of �akF�−1 for four values of p /kF
=0.4,0.8,1.2,1.6. We note that what is plotted is not the

p-wave effective interaction NhṼ��p��
M
m itself but m

M NhṼ��p�
that is independent of the mass ratio M /m�1. We can see
that the p-wave effective interaction is attractive in the BCS
limit �akF�−1�−1 being consistent with the perturbative pre-
diction �12�. However, it turns out that the perturbative result
has only a small range of validity. Our result shows that the

p-wave attraction is generally weaker than the extrapolation
of the perturbative calculation and, in particular, the p-wave
effective interaction becomes a strong repulsion near the uni-
tarity limit. This may be understood because of the repulsive
hump of v�kFr� developed near the unitarity limit �see Figs. 1
and 2�. We also find that the p-wave attraction is stronger for
the larger value of p /kF because the contribution from the
attractive part of v�kFr�→−c2 / �kFr�2 at short distance r→0
�see Eq. �B1�� becomes more significant for larger p /kF.
The maximum attraction for each value of p /kF
=0.4,0.8,1.2,1.6 is achieved around �akF�−1−2.7,−2.5,
−1.7,−1.0, respectively. At such a value of the s-wave scat-
tering length, the maximal p-wave pairing of heavy minority
fermions immersed in the Fermi sea of light fermions is pos-
sible while the pairing gap and the critical temperature would
be very small because of the numerically weak attraction

NhṼ�=1�p��1. One can perform the same analysis for the
f-wave channel ��=3� but will find even weaker attraction.

C. Heavy fermions in d=2

When the heavy fermions are confined in two dimensions
d=2, the partial-wave projection of the effective interaction

Ṽ��p−q�� with �p�= �q�� p fixed is given by

Ṽ��p� =
1

�
�

0

�

d� cos����Ṽ��p − q�� , �27�

where cos �= p̂ · q̂. Multiplying it by the density of states of
heavy fermions Nh�p�= M

2� , we obtain the dimensionless

����������������������������������������������������������������������������
�
�
�
�

�

�

�

�

�

�

�

�

�p � kF � 0.4

�10 �8 �6 �4 �2

1

akF

�0.00002
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0.00002
m NhV

�
1 �M

������������������������������������������������������������������������������
�
�

�

�

�

�

�

�

�

�

�
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�10 �8 �6 �4 �2

1
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�
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�����������������������������������������������������������������
�
�
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�
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FIG. 3. �Color online� P-wave effective interaction between two heavy fermions in three dimensions as a function of �akF�−1.
m
M NhṼ�=1�p� in d=3 is plotted for p /kF=0.4, 0.8, 1.2, and 1.6. The dashed curves are perturbative results at leading order valid in the BCS
limit �akF�−1→−�.
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function representing the effective interaction between two
heavy fermions for the given partial wave �:

NhṼ��p� =
M

2�m
� kF

p
�2�

0

�

d� cos����

� �
0

�

dzzJ0�z�2 − 2 cos ��v� kFz

p
� . �28�

In the case of d=2, the scattering length a should be re-
garded as the effective scattering length aeff introduced in
Ref. �18�.

Figure 4 shows m
M NhṼ��p� in the p-wave channel �=1

as a function of �akF�−1 for four values of p /kF
=0.4,0.8,1.2,1.6. One can see the similar behavior to the
case of d=3. Again the p-wave effective interaction is attrac-
tive in the BCS limit �akF�−1�−1 being consistent with the
perturbative prediction �19�. Compared to the case of d=3,
we find that the perturbative result has a wider range of va-
lidity. In the case of d=2, the p-wave attraction is found to
be stronger than that in d=3 for the same value of p /kF and
the p-wave effective interaction becomes only a weak repul-
sion near the unitarity limit. This will be understandable be-
cause the contribution from the attractive part of v�kFr�→
−c2 / �kFr�2 at short distance r→0 �see Eq. �B1�� is less sup-
pressed by the phase space factor and thus more significant
in d=2. Our result also shows that the p-wave attraction is
stronger for the larger value of p /kF and the maximum at-
traction for each value of p /kF=0.4,0.8,1.2,1.6 is achieved

around �akF�−1−1.2,−1.2,−0.85,−0.52, respectively. At
such a value of the s-wave scattering length, the maximal
p-wave pairing of heavy minority fermions in two dimen-
sions immersed in the three-dimensional Fermi sea of light
fermions is possible and the pairing gap and the critical tem-
perature will be larger than those in the case of d=3.

IV. SUMMARY AND CONCLUDING REMARKS

We have investigated a two-species Fermi gas with a large
mass ratio interacting by an interspecies short-range interac-
tion. Using the Born-Oppenheimer approximation, we deter-
mined the interaction energy of two heavy fermions im-
mersed in the Fermi sea of light fermions, which is an analog
of the Casimir force, as a function of the s-wave scattering
length. We showed that the p-wave projection of the effec-
tive interaction is attractive in the BCS limit being consistent
with the perturbative prediction, while it turns out to be re-
pulsive near the unitarity limit. We found that the p-wave
attraction reaches its maximum between the BCS and unitar-
ity limits, where the maximal but still weak p-wave pairing
of heavy minority fermions is possible.

We also investigated the case where the heavy fermions
are confined in two dimensions corresponding to the two-
species Fermi gas in the 2D-3D mixed dimensions �18,19�.
Because the p-wave attraction between the heavy fermions in
two dimensions was found to be stronger than that in three
dimensions, we expect the larger p-wave pairing gap of
heavy minority fermions. Such a p-wave pairing in two di-
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mensions is especially interesting because the resulting sys-
tem has a potential application to topological quantum com-
putation using vortices with non-Abelian statistics �25,26�.

Although our controlled analysis is restricted to the dilute
heavy fermions in the limit of large mass ratio, our results
indeed shed light on the phase diagram of asymmetric Fermi
gases with unequal densities and masses �and spatial dimen-
sions�, in particular, in the strongly interacting unitary re-
gime. Our results also have a direct relevance to the recently
realized Fermi-Fermi mixture of 40K and 6Li because of their
large mass ratio �8–10�. It will be an important future prob-
lem to study corrections to our results when the restrictions
of the large mass ratio and the dilute limit of heavy fermions
are relaxed.
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APPENDIX A: CASIMIR INTERACTION AMONG
HEAVY FERMIONS FROM FUNCTIONAL

INTEGRAL METHOD

1. Derivation of Casimir interaction

Here we derive the Casimir interaction among heavy fer-
mions immersed in the Fermi sea of light fermions using the
functional integral method �27�. The action that describes the
light fermions with the chemical potential �l interacting with
the heavy fermions fixed at positions xi is

S =� d�dx�l
†��,x���� −

�2

2m
− �l��l��,x�

− g0	
i
� d��l

†��,xi��l��,xi� , �A1�

where � is an imaginary time. The partition function Z
=e−�� is given by

Z =� D�lD�l
†e−S. �A2�

We first insert the following identity into the integrand:

1 = �
i
� D�iD�̄i
��l��,xi� − �i����
��l

†��,xi� − �̄i����

�A3�

and then exponentiate the delta functions by introducing aux-
iliary fields,

1 = �
i
� D�iD�̄iD�iD�̄i

� ei�d��̄i�����l��,xi�−�i����+i�d���l
†��,xi�−�̄i�����i���. �A4�

Now the partition function can be written as

Z =� D�lD�l
†�

i

D�iD�̄iD�iD�̄ie
−S�, �A5�

where the action becomes

S� =� d�dx�l
†��,x���� −

�2

2m
− �l��l��,x�

− g0	
i
� d��̄i����i��� − i	

i
� d��̄i�����l��,xi�

− �i���� − i	
i
� d���l

†��,xi� − �̄i�����i��� . �A6�

We can easily integrate out �l and �l
† fields and � and �̄

fields to lead to the partition function

Z = Z0� �
i

D�iD�̄ie
−S�, �A7�

where Z0=e−��free is a partition function of noninteracting
light fermions and the action S� in the momentum space
becomes

S� = 	
i,j
� d�dp

�2��4 �̄i���
eip·�xi−xj�

− i� + p2/2m − �l
� j���

−
1

g0
	

i
� d�

2�
�̄i����i��� . �A8�

Finally, by integrating out � and �̄ fields, we obtain the
following expression for the partition function:

Z = Z0 exp��� d�

2�
ln det Mij�i��� , �A9�

where Mij is the scattering matrix given by

Mij = −

ij

g0
+� dp

�2��3

eip·�xi−xj�

− i� + p2/2m − �l

= �
m

2�
�1

a
− �− 2mi� − 2m�l� for i = j

m

2��xi − x j�
e−�−2mi�−2m�l�xi−xj� for i � j .�

�A10�

Here we introduced the s-wave scattering length a through

−
1

g0
+� dp

�2��3

2m

p2 =
m

2�a
. �A11�

Therefore the reduction in the grand potential � compared to
that in the noninteracting limit �free is

���xi�� = −� d�

2�
ln det Mij�i�� . �A12�

By subtracting � in which all heavy fermions are infinitely
separated, the interaction energy of the heavy fermions be-
comes
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V��xi�� = −� d�

2�
ln

det Mij�i��
det Mij

��i��
, �A13�

where Mij
� is a diagonal scattering matrix composed of Mii.

This is the generalization of V��r�� in Eq. �16� to a general
number of heavy fermions fixed at positions xi.

2. Casimir interaction between two heavy fermions

It is worthwhile to reproduce the result obtained in Sec. II
in the case of two heavy fermions. By deforming the path of
the integration over i�� i�+�l into

�
−i�+�l

i�+�l

→ �
−�−i0+

�l

+ �
�l

−�+i0+

, �A14�

we obtain the following expression for the grand potential
reduction:

���r�� = i� d�

2�
ln�1

a
− �− 2m� +

e−�−2m��r�

�r�
�

+ i� d�

2�
ln�1

a
− �− 2m� −

e−�−2m��r�

�r�
�

�A15�

with r=x1−x2. We separate the integral into the contribu-
tions from bound states Re����0 and continuum states
Re����0. For the bound state contribution, we pick up the
singularity in the integrand �A15� as

i�
Re����0

d�

2�
ln�1

a
− �− 2m� �

e−�−2m��r�

�r�
� = �� + const,

�A16�

where ���0 is the binding energy satisfying

1

a
− �− 2m�� �

e−�−2m���r�

�r�
= 0. �A17�

For the continuum state contribution, defining the phase shift
by

� − 
���� = arg�1

a
− �− 2m� − i0+ �

e−�−2m�−i0+�r�

�r�
� ,

�A18�

the integral in Eq. �A15� can be written as

i�
Re����0

d�

2�
ln�1

a
− �− 2m� �

e−�−2m��r�

�r�
�

= �l − �
0

�l

d�

����

�
. �A19�

Therefore, after dropping the unimportant constants, we find
that the grand potential reduction in the case of two heavy
fermions is given by

���r�� = �+ + �− − �
0

�l

d�

+��� + 
−���

�
. �A20�

This result is equivalent to E��r�� in Eq. �13� with ��=

−
��

2

2m , �= k2

2m , and �l=
kF

2

2m and thus provides the same interac-
tion energy V��r�� as Eq. �16�.

3. Casimir interaction among three and four heavy fermions

We now evaluate the Casimir interaction energy �A13�
among three and four heavy fermions fixed with the same
separations �xi−x j��r. We measure the interaction energy in
units of the Fermi energy of light fermions VN�r�
�

kF
2

2mvN�kFr� with the subscript N indicating the number of
heavy fermions. The dimensionless functions vN�kFr� with
three typical values of �akF�−1=−1,0 ,1 are plotted as func-
tions of kFr in Fig. 5 for N=3 and in Fig. 6 for N=4, together
with the sum of pairwise interaction energies N�N−1�

2 v2�kFr�
for comparison.

We can see that the Casimir interaction among more than
two heavy fermions can be reproduced quite accurately by
the sum of pairwise interactions between each of the two
heavy fermions, in particular, at long distances, although the
behaviors at short distances are slightly overestimated. A
similar observation has been made in Ref. �17� in the system
of hardcore spheres immersed in a background Fermi sea.
These results support the use of the Hamiltonian �21� only
with the pairwise interaction to describe the physics of dilute
heavy fermions immersed in the Fermi sea of light fermions.

APPENDIX B: INTERACTION ENERGY
IN VARIOUS LIMITS

Here we evaluate the effective interaction between two
heavy fermions v�kFr� in Eq. �17� in various limits where
analytic expressions are available.
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FIG. 5. �Color online� Interaction energy of three heavy fermions fixed with the same separations r. v3�kFr� as a function of kFr is plotted
for �akF�−1=−1 �left�, 0 �middle�, and 1 �right�. The dashed curves represent the sum of pairwise interaction energies 3v2�kFr�.
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At short distance r�a, kF
−1, we obtain

v�kFr� → −
c2

�kFr�2 −
2c

1 + c

1

akF
2r

−
1 + c + c2

�1 + c�3

1

a2kF
2 +

2akF + �1 + �akF�2��� + 2 arctan�akF�−1�
��akF�2 − 1 + O�r� , �B1�

where c=0.567 143 is a solution to c=e−c.
On the other hand, at long distance r�a, kF

−1, we obtain

v�kFr� →
2�akF�3 sin�2kFr� − �akF�2��akF�2 − 1�cos�2kFr�

���akF�2 + 1�2�kFr�3 −
4�akF�3��akF�2 − 1�cos�2kFr�

2���akF�2 + 1�3�kFr�4

−
�akF�2��akF�4 − 6�akF�2 + 1�sin�2kFr�

2���akF�2 + 1�3�kFr�4 + O�r−5� . �B2�

In particular, in the unitarity limit akF→�, we find

v�kFr� → −
cos�2kFr�
��kFr�3 −

sin�2kFr�
2��kFr�4 +

2 cos�2kFr� + cos�4kFr�
4��kFr�5 + O��kFr�−6� . �B3�

In the BCS or BEC limit �a��r, kF
−1, we obtain

v�kFr� → �akF�22kFr cos�2kFr� − sin�2kFr�
2��kFr�4 + �akF�32kFr cos�2kFr� + �2�kFr�2 − 1�sin�2kFr�

��kFr�5 + O�a4� . �B4�
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