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We develop a general approach for monitoring and controlling evolution of open quantum systems. In
contrast to the master equations describing time evolution of density operators, here, we formulate a dynamical
equation for the evolution of the process matrix acting on a system. This equation is applicable to non-
Markovian and/or strong-coupling regimes. We propose two distinct applications for this dynamical equation.
We first demonstrate identification of quantum Hamiltonians generating dynamics of closed or open systems
via performing process tomography. In particular, we argue how one can efficiently estimate certain classes of
sparse Hamiltonians by performing partial tomography schemes. In addition, we introduce an optimal control
theoretic setting for manipulating quantum dynamics of Hamiltonian systems, specifically for the task of
decoherence suppression.
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I. INTRODUCTION

Characterization and control of quantum systems are
among the most fundamental primitives in quantum physics
and chemistry �1,2�. In particular, it is of paramount impor-
tance to identify and manipulate Hamiltonian systems which
have unknown interactions with their embedding environ-
ment �3�. In the past decade, several methods have been de-
veloped for estimation of quantum dynamical processes
within the context of quantum computation and quantum
control �1,4–8�. These techniques are known as “quantum
process tomography” �QPT� and originally were developed
to estimate the parameters of a “superoperator” or “process
matrix,” which contains all information about the dynamics.
This is usually achieved through an inversion of experimen-
tal data obtained from a complete set of state tomographies.
QPT schemes are generally inefficient since for a complete
process estimation the number of required experimental con-
figurations and the amount of classical information process-
ing grows exponentially with size of the system. Recently,
alternative schemes for partial and efficient estimation of
quantum maps have been developed �5–10� including effi-
cient data processing for selective diagonal �7� and off-
diagonal parameters of a process matrix �8�. However, it is
not clear how the estimated elements of the process matrix
could help us actually characterize the set of parameters for
Hamiltonians generating such dynamics. These parameters
of interest generally include the system free Hamiltonians
and those coupling strengths of system-bath �SB� Hamilto-
nians. More importantly, it is not fully understood how the
relevant information obtained from quantum process estima-
tion experiments can be utilized for other applications such
as optimal control of a quantum device.

In this work, we develop a theoretical framework for
studying general dynamics of open quantum systems. In con-
trast to the usual approach of utilizing master equations for
density operator of a quantum system, we introduce an equa-
tion of motion for the evolution of a process matrix acting on

states of a system. This equation does not presume the Mar-
kovian or perturbative assumptions and hence provides a
broad approach for analysis of quantum processes. We argue
that the application of partial quantum estimation schemes
�5–10� enables efficient estimation of sparse Hamiltonians.
Furthermore, the dynamical equation for process matrices
leads to alternative ways for controlling generic quantum
Hamiltonian systems. In other words, one can utilize this
equation to drive the dynamics of a�n� closed �open� quan-
tum system to any desired target quantum operation. In par-
ticular, we apply quantum control theory to find the optimal
fields to decouple a system from its environment, hence,
“controlling decoherence.”

II. DYNAMICAL EQUATION FOR OPEN QUANTUM
SYSTEMS

In quantum theory, the evolution of a system—assuming
separable initial state of the system and environment—can
be described by a �complete-positive� quantum map Et���
=�iAi�t��Ai

†�t�, where � is the initial state of the system
�11�. An alternative more useful expression is obtained by
expanding Ai�t�=�maim�t��m in ��k ;k=0,1 , . . . ,d2−1�
�a fixed operator basis for the d-dimensional Hilbert space of

the system� which leads to Et���=�mn=0
d2−1 �mn�t��m��n

†. The
positive-Hermitian process matrix ��t�= ��iaim�t�āin�t�� rep-
resents Et in the ��k� basis, where the bar denotes complex
conjugation. The process matrix elements �mn�t�, in any spe-
cific time t, can be experimentally measured by any QPT
scheme �15�.

In an open quantum system, the time-dependent Hamil-
tonian of the total SB has the general form H�t�=HS�t�
+HB�t�+HSB�t�, where S�B� stands for the system �bath or
the surrounding environment�. We denote the evolution op-
erator which is generated from this Hamiltonian, from time 0
to t, by U�t�. The Hamiltonian HSB�t� can be written as
HSB�t�=�k�k�t��k � Bk, where �k�t�’s are the coupling
strengths of the system-bath interaction and �Bk� are some
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bath operators. Now we describe the dynamics in the inter-
action picture by introducing the time evolution operators
U0�t�, US�t�, and UB�t� generated by H0=HS � IB+ IS � HB,
HS, and HB, respectively.

The system-bath Hamiltonian in the interaction picture
becomes HI�t�=U0

†�t�HSB�t�U0�t�. By introducing �̃k�t�
=US

†�t��kUS�t���lskl�t��l and B̃k�t�=UB
†�t�BkUB�t� as the ro-

tating operators under the evolution of the free Hamiltonian
of the system and bath, we can rewrite HI�t�=�k�k�t��̃k�t�
� B̃k�t�. The Schrödinger equation in the interaction picture
can be expressed as

idAi
I�t�/dt = �

k

Hik� �t�Ak
I�t� , �1�

where UI�t�=U0
†�t�U�t�, Ai

I�t�= B	bi
UI�t�
b0�B��maim
I �t��m

are the Kraus operators at the interaction picture, Hij� �t�
=�pq�pspq B	bi
B̃p
bj�B�q, and �
bi�� is a basis for the bath
Hilbert space. The interaction picture � matrix is defined as
�mn

I �t�=�iaim
I �t�āin

I �t�, which is related to the elements of the
measured process matrix through �mn

I �t�
=�m�n��m�n��t�Tr��mUS

†�t��m��Tr��nUS
T�t��n��. Thus, the

time evolution of the am
I coefficients reads as

idaim
I /dt = �klpq

akl
I �pspq�m

qp
B	bi
B̃p
bk�B, �2�

where �m
kl=Tr��k�l�m

† �. From this equation, one can obtain
the time evolution of �I as follows:

id�I/dt = H̃K − K†H̃†, �3�

where

�H̃�n�imj� = �pq
�pspq�n

qp
B	bj
B̃m
bi�B, �4�

�K��imj�n = aim
I ājn

I , �5�

in which �imj� is considered as a new single index. The order

of the pseudo-Hamiltonian H̃ is d2�d6, but number of inde-
pendent parameters is �d2, which is the maximum number
of nonzero �p’s. By using a generalized commutator notation
�A ,B���AB−B†A†, Eq. �3� can be represented in the follow-
ing form:

id�I/dt = �H̃,K��. �6�

This is the �super�dynamical equation for open quantum sys-
tems, i.e., an equation for the time variation in quantum dy-
namics itself, in which no state of the system appears, in
contrast to the existing master equations �11�.

The knowledge of the K matrix is generally required for
application of Eq. �6�. The �I matrix can be diagonalized by
the unitary operator V: �I=VDV†, where D=diag�Di�. Then,
the Kraus operators in the interaction picture are Ai

I�t�
=�Di�mVmi�m �1�. Hence, we obtain aim

I =�DiVmi and Kimjn

=�DiDjVmiV̄nj. Diagonalization of a sparse �I matrix, hence
construction of the K matrix, can be performed efficiently.

The unknown parameters of Eq. �6� are elements of H̃ matrix
which contain the information about the system-bath cou-
pling strengths �k.

For unitary evolutions, following a similar approach, the
dynamical equation for the process matrix is obtained as

id�/dt = �H̃,���, �7�

where H̃= �h̃ml�, h̃mn�t���k�m
knhk�t�, and hl�t� are defined

through H�t�=�lhl�t��l. It should be noted that hermiticity of

H implies only d2 real independent parameters in H̃, which
can be estimated via QPT schemes.

III. HAMILTONIAN IDENTIFICATION

Consider a large ensemble of the identically prepared sys-
tems in the state �, half of which are measured after duration
t, and the rest are measured at t+�t, where �t is small rela-
tive to t. Thus, by performing any type of QPT strategy one
can obtain the matrix elements �mn�t� and �mn�t+�t�, hence
their derivatives �̇mn�t���mn�t+�t�−�mn�t�� /�t with accu-
racy �t. Consequently, using Eq. �7� �Eq. �6�� one can in
principle identify the free �system-bath� Hamiltonians for
closed �open� quantum systems.

For unitary evolutions, a simple relation between the ele-
ments of the � matrix and the system Hamiltonian param-
eters is obtained, up to the second order in t and a global

phase Tr�H� as �00�t�1− 1
2 t2�ij�0

ijhihj + �̄0
ijh̄ih̄j, �m0�t�

 ihmt− 1
2 t2�ij�m

ijhihj, and

�mn�t�  hmh̄nt2, �8�

where m ,n�0. From Eq. �8�, for a given short time t, we
have hn=ei	n��nn / t, from which the relative errors satisfy
Re�
hn /hn�=
�nn /2�nn. According to the Chernoff bound
�9,12�, to estimate �nn’s with accuracy
�� 
�nn− �̄nn
=
�nn—where �̄nn is the average of the results
of M repeated measurements—with success probability
greater than 1−�, one needs M =O�
log � /2
 /�2�. Informa-
tion of the phases 	n, up to a global phase, can be estimated
by measuring �mn’s for m�n.

Using the above construction, next we discuss efficient
Hamiltonian identification schemes via performing certain
short-time scale QPTs. A precursor to this type of short-time
expansion in order to efficiently obtain process matrix pa-
rameters can be found in Ref. �13�; however, its underlying
models, the assumptions, and the identification method are
more restrictive and generally incommensurable with ours.

In generic N-body physical systems �e.g., N qubits�, inter-
actions are L-local, where L is typically 2. That is, H
=�kHk, where each Hk includes only interactions of L sub-
systems, with overall O�NL� independent parameters. This
implies that in the ��k� basis H has a sparse-matrix represen-
tation. Hence, the number of free parameters of the corre-
sponding unitary or process matrix, unlike their exponential
size, will be polylog�d� �i.e., a polynomial of N�. Here, we
mainly concentrate on controllable L-local Hamiltonians,
which are of particular interest in the context of quantum
information processing in order to generate a desired quan-
tum operation. An important example of this class is the
Heisenberg exchange Hamiltonian in a network of spins with
nearest neighbor interactions. This two-local sparse Hamil-
tonian �in the Pauli basis� also generates a sparse process
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matrix �10� and is computationally universal over a subspace
of fixed angular momentum �14�.

Let us consider a sparse Hamiltonian, H�t�=�mhm�t��m,
with polylog�d� nonzero hm’s, where ��m� is the nice error
basis �6�. In the short-time limit, according to Eq. �8�, if the
Hamiltonian is sparse in the ��k� basis, only polylog�d� of
hm’s would be nonzero. Thus, number of nonzero elements in

the �t2hmh̄n�m,n�0 block would be also of the same order. A
priori knowledge of the general form of a given sparse
Hamiltonian leads to �up to O�t3�� nonzero elements in the

�t2hmh̄n�m,n�0 block according to Eq. �8�. Therefore, if we
can efficiently determine all nonzero elements of this block,
we would have polylog�d� quadratic equations from which
we can estimate hm’s. In other words, by only polynomial
experimental settings we would be able to extract relevant
information about the Hamiltonian from a suitable QPT ex-
periment �15�. In general, there are three distinct process
estimation techniques, including standard quantum process
tomography �SQPT� �1�, direct characterization of quantum
dynamics �DCQD� �5�, and selective efficient quantum pro-
cess tomography �SEQPT� �8�. The scaleup of physical re-
sources varies among these process estimation strategies �9�.
SQPT is inefficient by construction since we still need to
measure an exponentially large number of observables in or-
der to reconstruct the process matrix through a set of state
tomographies. SEQPT can efficiently estimate quantum
sparse Hamiltonians via selectively estimating a polynomial
number of �mn’s associated to the Hamiltonian, within the
context of short-time analysis. Using the DCQD scheme, in
short-time limit, one can also efficiently estimate all the pa-
rameters of certain sparse Hamiltonians, specifically all the
diagonal elements �nn—a detailed analysis thereof is beyond
the discussion of this work and will be presented in another
publication �16�. Note that in contrast to SQPT, both DCQD
and SEQPT assume access to noise-free ancilla channels.
However, recently a generalization of the DCQD scheme to
certain cases of calibrated faulty preparation, measurement,
and auxiliary systems has been developed �17�.

We emphasize that, within the context of short-time
analysis, the efficient estimation is only applicable to the
Hamiltonians for which the location of nonzero elements in a
given basis is known from general physical or engineering
considerations, such as in the exchange Hamiltonian in solid-
state quantum information processing �14�. The exchange
Hamiltonian describes the underlying interactions for various
systems, such as spin-coupled quantum dots �18�, donor-
atom nuclear/electron spins �19�, semiconductor quantum
dots �20�, and superconducting flux qubits �21�. The aniso-
tropic exchange Hamiltonian exists in quantum Hall systems
�22�, quantum dots/atoms in cavities �23�, exciton-coupled
quantum dots �24�, electrons in liquid-Helium �25�, and neu-
tral atoms in optical lattices �26�.

IV. APPLICATIONS TO QUANTUM DYNAMICAL
CONTROL

An immediate application of any equation of motion, i.e.,
dynamical equation, for a quantum or classical system is to
manipulate its state or dynamics toward a desired target. The

ability to control quantum dynamics by certain external con-
trol fields is essential in many applications including physi-
cal realizations of quantum information devices. Due to en-
vironmental noise and device imperfections, it is generally
difficult to maintain quantum coherence during dynamical
evolution of quantum systems. Reducing or controlling de-
coherence, therefore, is an important objective in a control
theoretic investigation of quantum systems.

Optimal control theory �OCT� �27� has been developed
for finding control fields to guide a quantum system, subject
to natural or engineering constraints, as close as possible to a
particular target. For closed quantum system, OCT has been
proposed for controlling states �27� and unitary dynamics
�28�. In OCT, a quantum system is driven from an initial
state or unitary operation to a final configuration, via apply-
ing external fields. This is achieved, for example, by modi-
fying a free Hamiltonian H0 as H�t�=H0−��t�, where  is
a system operator �e.g., atomic or molecular dipole moment�
and ��t� is a shaped external field �e.g., laser pulse� �28�. The

optimization is based on maximizing a yield functional Ỹ,
e.g., fidelity of the final and target configurations, by a varia-

tional procedure �
Ỹ /
�=0� subject to a set of constraints.
Having an equation of motion implies how one can con-

trol dynamics of a system toward a target configuration.
Thus, a method for controlling dynamics of open quantum
systems can be developed by our equation of motion �Eq.
�6��, specifically applicable to optimal decoherence control.

For isolated systems we have �k=0 �hence H̃=0�, from
which one can obtain �mn

I =
m0
n0��E00�mn. However, due
to decoherence or other environmental effects, there might

be some residual interaction H̃0 between the system and en-
vironment. Our objective, here, is to apply a control field
��t� to modify the pseudo-Hamiltonian �Eq. �4�� in order to

suppress the decohering interaction. Since H̃ is linear in �’s,

applying a control coupling field would affect H̃ linearly.
Thus, if we introduce an external controllable field ��t�, the

pseudo-Hamiltonian H̃0 becomes H̃�t�=H̃0−���t�, where �
is a system operator. The control strategy is to find the opti-
mal ��t� such that the constrained fidelity

Ỹ = Re�Y − �
0

T

dt Tr��d�I/dt + i�H̃�t�,K�t������t���
− ��

0

T

dt
��t�
2/f�t� �9�

becomes maximal, where Y=Re�Tr��I†
�T�E00�� and ��t����

is an operator �scalar� Lagrange multiplier. The last term in
Eq. �9� describes an “energy” constraint �28�, in which f�t� is
a shape function for switching the control field on and off. In
order to find the optimal field, we vary �, �, and aim

I , and set


Ỹ=0. By variation in the operator Lagrange multiplier �,
we obtain the original dynamical �Eq. �6��, and the variation
in � yields

��t� = − �f�t�/2��Im�Tr���,K�t�����t��� . �10�

This equation implies that the knowledge of K�t� and ��t� is
necessary to specify the optimal control field. The superop-
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erator K�t� can be constructed by process estimation tech-
niques. To obtain the dynamics of ��t�, we vary aim

I , which
in turn leads to variations in �I and K. Thus, the Lagrange
operator satisfies

− i�K�d�/dt��imim = �
njl

�lnH̃nimjKimjn − �nmH̃mjliK̄jlim. �11�

Equations �10� and �11�, in principle, can be solved itera-
tively by the Krotov method �28,29� to find the optimal con-
trol field � for decoherence suppression. That is, one can
effectively preserve coherence in dynamics of an open quan-
tum system by applying external pulses to decouple it from
the environment. This could provide an alternative method
for an effective dynamical decoupling �30� in the language of
process matrix evolution. One can devise a learning decoher-
ence control strategy by estimating K�t�, via certain QPT
schemes on subensembles of identical systems, after each
application of the optimal control field in a given time t. The
information learned from the estimation is used through Eqs.
�9�–�11� for a second round to find a new optimal �. This
procedure can be repeated to enhance the decoherence sup-
pression task.

V. CONCLUSION AND OUTLOOK

We have developed an alternative framework for monitor-
ing and controlling dynamics of open quantum systems and
have derived a dynamical equation for the time variation in
process matrices. This nonperturbative approach can be ap-
plied to non-Markovian systems and systems or devices
strongly interacting with their embedding environment. In

addition, we have shown how the information gathered via
partial process tomography schemes can be used to effi-
ciently identify unknown parameters of certain classes of lo-
cal Hamiltonians in short-time scales. Furthermore, we have
proposed an optimal quantum control approach for the dy-
namics of open quantum systems. Specifically, we have sug-
gested how this mechanism can be used for a generic deco-
herence suppression.

The approach presented here can be used for exploring
new ways for dynamical open-loop or learning control of
Hamiltonian systems �31�. One can utilize continuous weak
measurements �32� for process tomography to develop a real-
time dynamical closed-loop control for a quantum system.
Our Hamiltonian identification scheme could be utilized for
efficient verification of certain correlated errors for quantum
computers and quantum communication networks �1�. Using
our dynamical approach, one could explore the existence of
certain symmetries in system-bath couplings which would
lead to noiseless subspaces and subsystems. The dynamical
equation developed here can also be applied to studying the
energy transfer in multichoromophoric complexes in the
non-Markovian and/or strong interaction regimes �33�.
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